Nonlinear Diffusion and Transient Osmosis
International Nuclear Information System (INIS)
Igarashi, Akira; Rondoni, Lamberto; Botrugno, Antonio; Pizzi, Marco
2011-01-01
We investigate both analytically and numerically the concentration dynamics of a solution in two containers connected by a narrow and short channel, in which diffusion obeys a porous medium equation. We also consider the variation of the pressure in the containers due to the flow of matter in the channel. In particular, we identify a phenomenon, which depends on the transport of matter across nano-porous membranes, which we call ''transient osmosis . We find that nonlinear diffusion of the porous medium equation type allows numerous different osmotic-like phenomena, which are not present in the case of ordinary Fickian diffusion. Experimental results suggest one possible candidate for transiently osmotic processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)
Transient enhanced diffusion of dopants in preamorphized Si layers
International Nuclear Information System (INIS)
Claverie, A.; Bonafos, C.; Omri, M.; Mauduit, B. de; Ben Assayag, G.; Martinez, A.; Alquier, D.; Mathiot, D.
1997-01-01
Transient Enhanced Diffusion (TED) of dopants in Si is the consequence of the evolution, upon annealing, of a large supersaturation of Si self-interstitial atoms left after ion bombardment. In the case of amorphizing implants, this supersaturation is located just beneath the c/a interface and evolves through the nucleation and growth of End-Of-Range (EOR) defects. For this reason, the authors discuss here the relation between TED and EOR defects. Modelling of the behavior of these defects upon annealing allows one to understand why and how they affect dopant diffusion. This is possible through the development of the Ostwald ripening theory applied to extrinsic dislocation loops. This theory is shown to be readily able to quantitatively describe the evolution of the defect population (density, size) upon annealing and gives access to the variations of the mean supersaturation of Si self-interstitial atoms between the loops and responsible for TED. This initial supersaturation is, before annealing, at least 5 decades larger than the equilibrium value and exponentially decays with time upon annealing with activation energies that are the same than the ones observed for TED. It is shown that this time decay is precisely at the origin of the transient enhancement of boron diffusivity through the interstitial component of boron diffusion. Side experiments shed light on the effect of the proximity of a free surface on the thermal behavior of EOR defects and allow us to quantitatively describe the space and time evolutions of boron diffusivity upon annealing of preamorphized Si layers
Benchmarks with diffusion theory and transport theory
International Nuclear Information System (INIS)
Cunha Menezes Filho, A. da; Souza, A.L. de.
1984-01-01
The multiplication factor and some spectral indices for five critical assemblies (ZPR-6-7, ZPR-3-11, GODIVA, BIG-TEN and FLATTOP) are calculated by Diffusion and Transport Theory, with group constants generated by MC 2 (for diffusion calculations) and by NJOY (for transport calculations). The discrepancies encountered in the ZPR-6-7 spectra, can be tracked to the large differences in the elastic cross section for Iron, calculated by MC 2 and NJOY. (Author) [pt
Some Aspects of Diffusion Theory
Pignedoli, A
2011-01-01
This title includes: V.C.A. Ferraro: Diffusion of ions in a plasma with applications to the ionosphere; P.C. Kendall: On the diffusion in the atmosphere and ionosphere; F. Henin: Kinetic equations and Brownian motion; T. Kahan: Theorie des reacteurs nucleaires: methodes de resolution perturbationnelles, interactives et variationnelles; C. Cattaneo: Sulla conduzione del calore; C. Agostinelli: Formule di Green per la diffusione del campo magnetico in un fluido elettricamente conduttore; A. Pignedoli: Transformational methods applied to some one-dimensional problems concerning the equations of t
Thermal Diffusivity Measurements in Edible Oils using Transient Thermal Lens
Valdez, R. Carbajal.; Pérez, J. L. Jiménez.; Cruz-Orea, A.; Martín-Martínez, E. San.
2006-11-01
Time resolved thermal lens (TL) spectrometry is applied to the study of the thermal diffusivity of edible oils such as olive, and refined and thermally treated avocado oils. A two laser mismatched-mode experimental configuration was used, with a He Ne laser as a probe beam and an Ar+ laser as the excitation one. The characteristic time constant of the transient thermal lens was obtained by fitting the experimental data to the theoretical expression for a transient thermal lens. The results showed that virgin olive oil has a higher thermal diffusivity than for refined and thermally treated avocado oils. This measured thermal property may contribute to a better understanding of the quality of edible oils, which is very important in the food industry. The thermal diffusivity results for virgin olive oil, obtained from this technique, agree with those reported in the literature.
International Nuclear Information System (INIS)
Kalwarf, D.R.; Nielson, K.K.; Rich, D.C.; Rogers, V.C.
1982-11-01
A method was developed and used to determine radon diffusion coefficients in compacted soils by transient-diffusion measurements. A relative standard deviation of 12% was observed in repeated measurements with a dry soil by the transient-diffusion method, and a 40% uncertainty was determined for moistures exceeding 50% of saturation. Excellent agreement was also obtained between values of the diffusion coefficient for radon in air, as measured by the transient-diffusion method, and those in the published literature. Good agreement was also obtained with diffusion coefficients measured by a steady-state method on the same soils. The agreement was best at low moistures, averaging less than ten percent difference, but differences of up to a factor of two were observed at high moistures. The comparison of the transient-diffusion and steady-state methods at low moistures provides an excellent verification of the theoretical validity and technical accuracy of these approaches, which are based on completely independent experimental conditions, measurement methods and mathematical interpretations
Time scales of transient enhanced diffusion: Free and clustered interstitials
Cowern, N. E. B.; Huizing, H. G. A.; Stolk, P. A.; Visser, C. C. G.; de Kruif, R. C. M.; Kyllesbech Larsen, K.; Privitera, V.; Nanver, L. K.; Crans, W.
1996-12-01
Transient enhanced diffusion (TED) and electrical activation after nonamorphizing Si implantations into lightly B-doped Si multilayers shows two distinct timescales, each related to a different class of interstitial defect. At 700°C, ultrafast TED occurs within the first 15 s with a B diffusivity enhancement of > 2 × 10 5. Immobile clustered B is present at low concentration levels after the ultrafast transient and persists for an extended period (˜ 10 2-10 3 s). The later phase of TED exhibits a near-constant diffusivity enhancement of ≈ 1 × 10 4, consistent with interstitial injection controlled by dissolving {113} interstitial clusters. The relative contributions of the ultrafast and regular TED regimes to the final diffusive broadening of the B profile depends on the proportion of interstitials that escape capture by {113} clusters growing within the implant damage region upon annealing. Our results explain the ultrafast TED recently observed after medium-dose B implantation. In that case there are enough B atoms to trap a large proportion of interstitials in SiB clusters, and the remaining interstitials contribute to TED without passing through an intermediate {113} defect stage. The data on the ultrafast TED pulse allows us to extract lower limits for the diffusivities of the Si interstitial ( DI > 2 × 10 -10 cm 2s -1) and the B interstitial(cy) defect ( DBi > 2 × 10 -13 cm 2s -1) at 700°C.
A phenomenological theory of transient creep
International Nuclear Information System (INIS)
Ajaja, O.; Ardell, A.J.
1979-01-01
A new creep theory is proposed which takes into account the strain generated during the annihilation of dislocations. This contribution is found to be very significant when recovery is appreciable, and is mainly responsible for the decreasing creep rate associated with the normal primary creep of class II materials. The theory provides excellent semiquantitative rationalization for the types of creep curves presented in the preceding paper. In particular, the theory predicts a change in the shape of the primary creep curve from normal to inverted as recovery becomes less important, i.e. as the applied stress and/or temperature decrease(s). It also predicts a minimum creep rate under certain circumstances, hence pseudo-tertiary behaviour. These different types of creep curves are predicted even though the net dislocation density decreases monotonically with time in all cases. Qualitative rationalization is presented for the inverted transient which always follows a stress drop in class II materials, as well as for the inverted primary and sigmoidal creep behaviour of class I solid solutions. (author)
Multicomponent diffusivities from the free volume theory
Wesselingh, J.A; Bollen, A.M
In this paper the free volume theory of diffusion is extended to multicomponent mixtures. The free volume is taken to be accessible for any component according to its surface. fraction. The resulting equations predict multicomponent (Maxwell-Stefan) diffusivities in simple liquid mixtures from pure
Transient Convection, Diffusion, and Adsorption in Surface-Based Biosensors
DEFF Research Database (Denmark)
Hansen, Rasmus; Bruus, Henrik; Callisen, Thomas H.
2012-01-01
This paper presents a theoretical and computational investigation of convection, diffusion, and adsorption in surface-based biosensors. In particular, we study the transport dynamics in a model geometry of a surface plasmon resonance (SPR) sensor. The work, however, is equally relevant for other...... microfluidic surface-based biosensors, operating under flow conditions. A widely adopted approximate quasi-steady theory to capture convective and diffusive mass transport is reviewed, and an analytical solution is presented. An expression of the Damköhler number is derived in terms of the nondimensional...... concentration to the maximum surface capacity is critical for reliable use of the quasi-steady theory. Finally, our results provide users of surface-based biosensors with a tool for correcting experimentally obtained adsorption rate constants....
Diffusion in the special theory of relativity.
Herrmann, Joachim
2009-11-01
The Markovian diffusion theory is generalized within the framework of the special theory of relativity. Since the velocity space in relativity is a hyperboloid, the mathematical stochastic calculus on Riemanian manifolds can be applied but adopted here to the velocity space. A generalized Langevin equation in the fiber space of position, velocity, and orthonormal velocity frames is defined from which the generalized relativistic Kramers equation in the phase space in external force fields is derived. The obtained diffusion equation is invariant under Lorentz transformations and its stationary solution is given by the Jüttner distribution. Besides, a nonstationary analytical solution is derived for the example of force-free relativistic diffusion.
Diffusive-light invisibility cloak for transient illumination
Orazbayev, B.; Beruete, M.; Martínez, A.; García-Meca, C.
2016-12-01
Invisibility in a diffusive-light-scattering medium has been recently demonstrated by employing a scattering-cancellation core-shell cloak. Unlike nondiffusive cloaks, such a device can be simultaneously macroscopic, broadband, passive, polarization independent, and omnidirectional. Unfortunately, it has been verified that this cloak, as well as more sophisticated ones based on transformation optics, fail under pulsed illumination, invalidating their use for a variety of applications. Here, we introduce a different approach based on unimodular transformations that enables the construction of unidirectional diffusive-light cloaks exhibiting a perfect invisibility effect, even under transient conditions. Moreover, we demonstrate that a polygonal cloak can extend this functionality to multiple directions with a nearly ideal behavior, while preserving all other features. We propose and numerically verify a simple cloak realization based on a layered stack of two isotropic materials. The studied devices have several applications not addressable by any of the other cloaks proposed to date, including shielding from pulse-based detection techniques, cloaking undesired scattering elements in time-of-flight imaging or high-speed communication systems for diffusive environments, and building extreme optical security features. The discussed cloaking strategy could also be applied to simplify the implementation of thermal cloaks.
Cable system transients theory, modeling and simulation
Ametani, Akihiro; Nagaoka, Naoto
2015-01-01
A systematic and comprehensive introduction to electromagnetic transient in cable systems, written by the internationally renowned pioneer in this field Presents a systematic and comprehensive introduction to electromagnetic transient in cable systems Written by the internationally renowned pioneer in the field Thorough coverage of the state of the art on the topic, presented in a well-organized, logical style, from fundamentals and practical applications A companion website is available
Inverse diffusion theory of photoacoustics
International Nuclear Information System (INIS)
Bal, Guillaume; Uhlmann, Gunther
2010-01-01
This paper analyzes the reconstruction of diffusion and absorption parameters in an elliptic equation from knowledge of internal data. In the application of photoacoustics, the internal data are the amount of thermal energy deposited by high frequency radiation propagating inside a domain of interest. These data are obtained by solving an inverse wave equation, which is well studied in the literature. We show that knowledge of two internal data based on well-chosen boundary conditions uniquely determines two constitutive parameters in diffusion and Schrödinger equations. Stability of the reconstruction is guaranteed under additional geometric constraints of strict convexity. No geometric constraints are necessary when 2n internal data for well-chosen boundary conditions are available, where n is spatial dimension. The set of well-chosen boundary conditions is characterized in terms of appropriate complex geometrical optics solutions
Diffusion magnetic resonance imaging in transient global amnesia
Energy Technology Data Exchange (ETDEWEB)
Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de [Federal University of Sao Paulo (UNIFESP-EPM), Sao Paulo SP (Brazil). Dept. of Neurology and Neurosurgery], e-mail: cleciojunior@yahoo.com.br; Massaro, Ayrton Roberto [Fleury Diagnostic Center, Sao Paulo SP (Brazil)
2009-03-15
Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)
Diffusion magnetic resonance imaging in transient global amnesia
International Nuclear Information System (INIS)
Godeiro-Junior, Clecio; Miranda-Alves, Maramelia Araujo de
2009-01-01
Transient global amnesia (TGA) is a well known clinical entity characterized by anterograde memory disturbance of sudden onset that lasts 1 to 24 hours. Orientation in space and time is impaired while consciousness remains undisturbed. TGA may refer to a single expression of several physiopathological phenomena. Conceptually, cerebral ischemia, epileptic discharge, and migraine constitute the main pathogenic hypothesis. Diffusion-weighted imaging (DWI) has become a powerful tool in the evaluation of patients with suspected stroke owing to its high sensitivity and specificity, even for small areas of acute ischemia. Consequently, this method has also been applied to TGA to gain further insights into the ischemic hypothesis of this condition. We report a patient with a typical TGA presentation and MRI findings suggestive of an ischemic insult. We further discuss the ischemic hypothesis of TGA. (author)
Cosmic ray diffusion: report of the workshop in cosmic ray diffusion theory
International Nuclear Information System (INIS)
Birmingham, T.J.; Jones, F.C.
1975-02-01
A workshop in cosmic ray diffusion theory was held at Goddard Space Flight Center on May 16-17, 1974. Topics discussed and summarized are: (1) cosmic ray measurements as related to diffusion theory; (2) quasi-linear theory, nonlinear theory, and computer simulation of cosmic ray pitch-angle diffusion; and (3) magnetic field fluctuation measurements as related to diffusion theory. (auth)
Classical diffusion: theory and simulation codes
International Nuclear Information System (INIS)
Grad, H.; Hu, P.N.
1978-03-01
A survey is given of the development of classical diffusion theory which arose from the observation of Grad and Hogan that the Pfirsch-Schluter and Neoclassical theories are very special and frequently inapplicable because they require that plasma mass flow be treated as transport rather than as a state variable of the plasma. The subsequent theory, efficient numerical algorithms, and results of various operating codes are described
Diffusion-weighted MR imaging in transient ischaemic attacks
Energy Technology Data Exchange (ETDEWEB)
Lamy, C.; Calvet, D.; Domigo, V.; Mas, J. [de l' Hopital Sainte-Anne, Service de Neurologie, Paris Cedex 14 (France); Oppenheim, C.; Naggara, O.; Meder, J.F. [Hoepital Sainte-Anne, Departement d' Imagere Morphologique et Fonchonnille, Paris (France)
2006-05-15
The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6{+-}15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm{sup 3}{+-}3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)
Diffusion-weighted MR imaging in transient ischaemic attacks
International Nuclear Information System (INIS)
Lamy, C.; Calvet, D.; Domigo, V.; Mas, J.; Oppenheim, C.; Naggara, O.; Meder, J.F.
2006-01-01
The purpose of this study was to determine frequency and the characteristics of diffusion-weighted imaging (DWI) abnormalities in patients with transient ischaemic attack (TIA). We analysed data of 98 consecutive patients (mean age: 60.6±15.4 years, 56 men) admitted between January 2003 and April 2004 for TIA. Age, gender, symptom type and duration, delay from onset to magnetic resonance imaging (MRI), probable or possible TIA and cause of TIA were compared in patients with (DWI+) and without (DWI-) lesions on DWI. Volume and apparent diffusion coefficient (ADC) values of DWI lesions were computed. DWI revealed ischaemic lesions in 34 patients (34.7%). Lesions were small (mean volume: 1.9 cm 3 ±3.3), and ADC was moderately decreased (mean ADC ratio: 79.5%). The diagnosis of TIA was considered as probable in all DWI+ patients. A multiple logistic regression model demonstrated that TIA duration greater than or equal to 60 min (OR, 7.6; 95% CI, 2.3-25.7), aphasia (OR, 9.2; 95% CI, 2.7-31.4) and motor deficit (OR, 5.1; 95% CI, 1.5-17.8) were independent predictors of DWI lesions. Prolonged TIA duration, aphasia and motor deficits are associated with DWI lesions. More than half of TIA patients with symptoms lasting more than 60 min have DWI lesions. (orig.)
Understanding and controlling transient enhanced dopant diffusion in silicon
International Nuclear Information System (INIS)
Stolk, P.A.; Gossmann, H.J.; Eaglesham, D.J.; Jacobson, D.C.; Poate, J.M.; Luftman, H.S.
1995-01-01
Implanted B and P dopants in Si exhibit transient enhanced diffusion (TED) during initial annealing which arises from the excess interstitials generated by the implant. In order to study the mechanisms of TED, the authors have used B doping marker layers in Si to probe the injection of interstitials from near-surface, non-amorphizing Si implants during annealing. The in-diffusion of interstitials is limited by trapping at impurities and has an activation energy of ∼3.5 eV. Substitutional C is the dominant trapping center with a binding energy of 2--2.5 eV. The high interstitial supersaturation adjacent to the implant damage drives substitutional B into metastable clusters at concentrations below the B solid solubility limit. Transmission electron microscopy shows that the interstitials driving TED are emitted from {311} defect clusters in the damage region at a rate which also exhibits an activation energy of 3.6 eV. The population of excess interstitials is strongly reduced by incorporating substitutional C in Si to levels of ∼10 19 /cm 3 prior to ion implantation. This provides a promising method for suppressing TED, thus enabling shallow junction formation in future Si devices through dopant implantation
Theory of quantum diffusion in biased semiconductors
Bryksin, V V
2003-01-01
A general theory is developed to describe diffusion phenomena in biased semiconductors and semiconductor superlattices. It is shown that the Einstein relation is not applicable for all field strengths so that the calculation of the field-mediated diffusion coefficient represents a separate task. Two quite different diffusion contributions are identified. The first one disappears when the dipole operator commutes with the Hamiltonian. It plays an essential role in the theory of small polarons. The second contribution is obtained from a quantity that is the solution of a kinetic equation but that cannot be identified with the carrier distribution function. This is in contrast to the drift velocity, which is closely related to the distribution function. A general expression is derived for the quantum diffusion regime, which allows a clear physical interpretation within the hopping picture.
The accuracy of the diffusion theory component of removal-diffusion theory
International Nuclear Information System (INIS)
Donnelly, I.J.
1976-03-01
The neutron fluxes in five neutron shields consisting of water, concrete, graphite, iron and an iron-water lattice respectively, have been calculated using P 1 theory, diffusion theory with the usual transport correction for anisotropic scattering (DT), and diffusion theory with a diagonal transport correction (DDT). The calculations have been repeated using transport theory for the flux above 0.5 MeV and the diffusion theories for lower energies. Comparisons with transport theory calculations reveal the accuracy of each diffusion theory when it is used for flux evaluation at all energies, and also its accuracy when used for flux evaluation below 0.5 MeV given the correct flux above 0.5 MeV. It is concluded that the diffusion component of removal-diffusion theory has adequate accuracy unless the high energy diffusion entering the shield is significantly larger than the removal flux. In general, P 1 and DT are more accurate than DDT and give similar fluxes except for shields having a large hydrogen content, in which case DT is better. Therefore it is recommended that DT be used in preference to P 1 theory or DDT. (author)
Evolution of diffusion and dissemination theory.
Dearing, James W
2008-01-01
The article provides a review and considers how the diffusion of innovations Research paradigm has changed, and offers suggestions for the further development of this theory of social change. Main emphases of diffusion Research studies are compared over time, with special attention to applications of diffusion theory-based concepts as types of dissemination science. A considerable degree of paradigmatic evolution is observed. The classical diffusion model focused on adopter innovativeness, individuals as the locus of decision, communication channels, and adoption as the primary outcome measures in post hoc observational study designs. The diffusion systems in question were centralized, with fidelity of implementation often assumed. Current dissemination Research and practice is better characterized by tests of interventions that operationalize one or more diffusion theory-based concepts and concepts from other change approaches, involve complex organizations as the units of adoption, and focus on implementation issues. Foment characterizes dissemination and implementation Research, Reflecting both its interdisciplinary Roots and the imperative of spreading evidence-based innovations as a basis for a new paradigm of translational studies of dissemination science.
INNOVATION DIFFUSION THEORY MAIN DEVELOPMENT STAGES
Directory of Open Access Journals (Sweden)
S. V. Lisafiev
2011-01-01
Full Text Available Abstract: Main innovation diffusion development theory stages are: Rogers model of moving new products to the market including characteristics of its segments; mathematic substantiation of this model by Bass; Moor model taking into account gaps between adjacent market segments; Goldenberg model making it possible to predict sales drops at new product life cycle initial stages. It is reasonable to use this theory while moving innovative products to the market.
Diffusive epidemic process: theory and simulation
International Nuclear Information System (INIS)
Maia, Daniel Souza; Dickman, Ronald
2007-01-01
We study the continuous absorbing-state phase transition in the one-dimensional diffusive epidemic process via mean-field theory and Monte Carlo simulation. In this model, particles of two species (A and B) hop on a lattice and undergo reactions B → A and A+B → 2B; the total particle number is conserved. We formulate the model as a continuous-time Markov process described by a master equation. A phase transition between the (absorbing) B-free state and an active state is observed as the parameters (reaction and diffusion rates, and total particle density) are varied. Mean-field theory reveals a surprising, nonmonotonic dependence of the critical recovery rate on the diffusion rate of B particles. A computational realization of the process that is faithful to the transition rates defining the model is devised, allowing for direct comparison with theory. Using the quasi-stationary simulation method we determine the order parameter and the survival time in systems of up to 4000 sites. Due to strong finite-size effects, the results converge only for large system sizes. We find no evidence for a discontinuous transition. Our results are consistent with the existence of three distinct universality classes, depending on whether A particles diffusive more rapidly, less rapidly or at the same rate as B particles. We also perform quasi-stationary simulations of the triplet creation model, which yield results consistent with a discontinuous transition at high diffusion rates
Diffusion weighted MR imaging of transient ischemic attacks
International Nuclear Information System (INIS)
Chung, Jin Il; Kim, Dong Ik; Lee, Seung Ik; Yoon, Pyung Ho; Heo, Ji Hoe; Lee, Byung In
2000-01-01
To investigate the findings of diffusion-weighted MR imaging in patients with transient ischemic attacks (TIA). Between August 1996 and June 1999, 41 TIA patients (M:F =3D 28:13, mean age 57 (range, 27-75) years) with neurologic symptoms lasting less than 24 hours underwent diffusion-weighted MR imaging. The time interval between the onset of symptoms and MR examination was less than one week in 29 patients, from one week to one month in eight, and undetermined in four. Conventional MR and DWI were compared in terms of location of infarction and lesion size (less than 1 cm, 1-3 cm, greater than 3 cm), and we also determined the anatomical vascular territory of acute stroke lesions and possible etiologic mechanisms. The findings of DWI were normal in 24/41 patients (58.5%), while 15 (36.6%) showed acute ischemic lesions. The other two showed old lacunar infarcts. All acute and old DWI lesions were revealed by conventional MR imaging. Among the 15 acute stroke patients, seven had small vessel lacunar disease. In three patients, the infarction was less than 1 cm in size. Six patients showed large vessel infarction in the territory of the MCA, PCA, and PICA; the size of this was less than 1 cm in three patients, 1-3 cm in two, and more than 3 cm in one. In two patients, embolic infarction of cardiac origin in the territory of the MCA and AICA was diagnosed. The possible mechanism of TIA is still undetermined, but acute lesions revealed by DWI in TIA patients tend, in any case, to be small and multiple. (author)
The limitation and modification of flux-limited diffusion theory
International Nuclear Information System (INIS)
Liu Chengan; Huang Wenkai
1986-01-01
The limitation of various typical flux-limited diffusion theory and advantages of asymptotic diffusion theory with time absorption constant are analyzed and compared. The conclusions are as following: Though the flux-limited problem in neutron diffusion theory are theoretically solved by derived flux-limited diffusion equation, it's going too far to limit flux due to the inappropriate assumption in deriving flux-limited diffusion equation. The asymptotic diffusion theory with time absorption constant has eliminated the above-mentioned limitation, and it is more accurate than flux-limited diffusion theory in describing neutron transport problem
Defects and diffusion, theory & simulation II
Fisher, David J
2010-01-01
This second volume in a new series covering entirely general results in the fields of defects and diffusion includes 356 abstracts of papers which appeared between the end of 2009 and the end of 2010. As well as the abstracts, the volume includes original papers on theory/simulation, semiconductors and metals: ""Predicting Diffusion Coefficients from First Principles ..."" (Mantina, Chen & Liu), ""Gouge Assessment for Pipes ..."" (Meliani, Pluvinage & Capelle), ""Simulation of the Impact Behaviour of ... Hollow Sphere Structures"" (Ferrano, Speich, Rimkus, Merkel & Öchsner), ""Elastic-Plastic
Chapman--Enskog approach to flux-limited diffusion theory
International Nuclear Information System (INIS)
Levermore, C.D.
1979-01-01
Using the technique developed by Chapman and Enskog for deriving the Navier--Stokes equations from the Boltzmann equation, a framework is set up for deriving diffusion theories from the transport equation. The procedure is first applied to give a derivation of isotropic diffusion theory and then of a completely new theory which is naturally flux-limited. This new flux-limited diffusion theory is then compared with asymptotic diffusion theory
On diffusion process generators and scattering theory
International Nuclear Information System (INIS)
Demuth, M.
1980-01-01
In scattering theory the existence of wave operators is one of the mainly interesting points. For two selfadjoint operators K and H defined in separable Hilbertspaces H tilde and H' tilde, respectively, the usual two space wave operator is defined by Ωsub(+-)(H,J,K) = s-lim esup(itH)Jesup(-itK)Psup(ac), t → +-infinity, if these limits exist. J is the identification operator mapping H tilde into H' tilde. Psup(ac) is the orthogonal projection onto the absolutely continuous subspace of K. The objective is to prove the existence and completeness of the wave operator for K and K+V where K is a diffusion process generator and V a singular perturbation. Because generators of diffusion processes can be obtained by extension of second order differential operators with variable coefficients the result connects hard-core potential problems and wave operator existence for diffusion process generators including scattering theory for second order elliptic differential operators by means of the stochastic process theory and stochastic differential equation solutions. (author)
The theory and measurement of partial discharge transients
DEFF Research Database (Denmark)
Pedersen, Aage; Crichton, George C; McAllister, Iain Wilson
1991-01-01
A theoretical approach to partial discharge transients is presented. This approach is based on the relationship between the charge induced on the measurement electrode by those created in the interelectrode volume during partial discharge activity. The primary sources for these induced charges ar...... electrode systems of practical interest is illustrated. A discussion of the salient features and practical aspects of the theory is included...
Hydrodynamization and transient modes of expanding plasma in kinetic theory
Heller, Michal P.; Spalinski, Michal
2016-01-01
We study the transition to hydrodynamics in a weakly-coupled model of quark-gluon plasma given by kinetic theory in the relaxation time approximation. Our studies uncover qualitative similarities to the results on hydrodynamization in strongly coupled gauge theories. In particular, we demonstrate that the gradient expansion in this model has vanishing radius of convergence. The asymptotic character of the hydrodynamic gradient expansion is crucial for the recently discovered applicability of hydrodynamics at large gradients. Furthermore, the analysis of the resurgent properties of the series provides, quite remarkably, indication for the existence of a novel transient, damped oscillatory mode of expanding plasmas in kinetic theory.
Carroll, M. S.; Chang, C.-L.; Sturm, J. C.; Büyüklimanli, T.
1998-12-01
In this letter, we show the ability, through introduction of a thin Si1-x-yGexCy layer, to eliminate the enhancement of enhanced boron diffusion in silicon due to an oxidizing surface or ion implant damage. This reduction of diffusion is accomplished through a low-temperature-grown thin epitaxial Si1-x-yGexCy layer which completely filters out excess interstitials introduced by oxidation or ion implant damage. We also quantify the oxidation-enhanced diffusion (OED) and transient-enhanced diffusion (TED) dependence on substitutional carbon level, and further report both the observation of carbon TED and OED, and its dependence on carbon levels.
van Stroe, A.J.; Janssen, L.J.J.
1993-01-01
An accurate and rapid method for detg. the diffusion coeffs. of electrochem. active gases in electrolytes is described. The technique is based on chronoamperometry where transient currents are measured and interpreted with a Cottrell-related equation. The diffusion coeffs. of oxygen were detd. for
Energy Technology Data Exchange (ETDEWEB)
Li, Y.; Wong, R. K. C. [Calgary Univ., AB (Canada); Yeung, K. C. [Suncor Energy Inc., Calgary, AB (Canada)
1998-12-31
Results of an analysis of transient pressure near a horizontal well using a coupled diffusion-deformation method are discussed. The results are compared with those obtained from the single diffusivity equation. Implications for practical applications such as well testing are addressed. Results indicate that the diffusion-deformation behaviour of porous material affects the transient pressure response near a horizontal well. Evaluation by conventional well testing, based as it is on the single diffusion equation, would likely result in an overestimate of the permeability value. Comparison of results between the coupled diffusion-deformation approach and the single diffusion equation suggests that a better prediction of pressure response could be derived from total compressibility than by using only fluid compressibility. 6 refs., 9 figs.
Platoon Dispersion Analysis Based on Diffusion Theory
Directory of Open Access Journals (Sweden)
Badhrudeen Mohamed
2017-01-01
Full Text Available Urbanization and gro wing demand for travel, causes the traffic system to work ineffectively in most urban areas leadin g to traffic congestion. Many approaches have been adopted to address this problem, one among them being the signal co-ordination. This can be achieved if the platoon of vehicles that gets discharged at one signal gets green at consecutive signals with minimal delay. However, platoons tend to get dispersed as they travel and this dispersion phenomenon should be taken into account for effective signal coordination. Reported studies in this area are from the homogeneous and lane disciplined traffic conditions. This paper analyse the platoon dispersion characteristics under heterogeneous and lane-less traffic conditions. Out of the various modeling techniques reported, the approach based on diffusion theory is used in this study. The diffusion theory based models so far assumed thedata to follow normal distribution. However, in the present study, the data was found to follow lognormal distribution and hence the implementation was carried out using lognormal distribution. The parameters of lognormal distribution were calibrated for the study condition. For comparison purpose, normal distribution was also calibrated and the results were evaluated. It was foun d that model with log normal distribution performed better in all cases than the o ne with normal distribution.
Transient diffusion from a waste solid into fractured porous rock
International Nuclear Information System (INIS)
Ahn, J.; Chambre, P.L.; Pigford, T.H.
1988-01-01
Previous analytical studies of the advective transport of dissolved contaminants through fractured rock have emphasized the effect of molecular diffusion in the rock matrix in affecting the space-time-dependent concentration of the contaminant as it moves along the fracture. Matrix diffusion only in the direction normal to the fracture surface was assumed. Contaminant sources were constant-concentration surfaces of width equal to the fracture aperture and of finite or infinite extent in the transverse direction. Such studies illustrate the far-field transport features of fractured media. To predict the time-dependent mass transfer from a long waste cylinder surrounded by porous rock and intersected by a fracture, the present study includes diffusion from the waste surface directly into porous rock, as well as the more realistic geometry. Here the authors present numerical results from Chambre's analytical solution for the time-dependent mass transfer from the cylinder for the low-flow conditions wherein near-field mass transfer is expected to be controlled by molecular diffusion
TRANSIENT ANOMALOUS SUB-DIFFUSION ON BOUNDED DOMAINS
MEERSCHAERT, MARK M.; NANE, ERKAN; VELLAISAMY, P.
2012-01-01
This paper develops strong solutions and stochastic solutions for the tempered fractional diffusion equation on bounded domains. First the eigenvalue problem for tempered fractional derivatives is solved. Then a separation of variables, and eigenfunction expansions in time and space, are used to write strong solutions. Finally, stochastic solutions are written in terms of an inverse subordinator.
Diffusion in a liquid alloy - theories and experiments
International Nuclear Information System (INIS)
Chastang, C.
1997-01-01
Different theories concerning the calculation of diffusion coefficients in liquid metals, as well for auto as for hetero-diffusion are presented and some experimental procedures using tracer techniques in shear cells and capillary tubes are described. Diffusion curves are calculated with the TRIO-EF code. Calculated and measured values of diffusion coefficients are compared and discussed with regard to various diffusion mechanisms. Copper gadolinium mixtures have been investigated in more detail. (C.B.)
Theory and experiments on surface diffusion
Energy Technology Data Exchange (ETDEWEB)
Silvestri, W.L.
1998-11-01
The following topics were dealt with: adatom formation and self-diffusion on the Ni(100) surface, helium atom scattering measurements, surface-diffusion parameter measurements, embedded atom method calculations.
Diffuse Optical Tomography for Brain Imaging: Theory
Yuan, Zhen; Jiang, Huabei
Diffuse optical tomography (DOT) is a noninvasive, nonionizing, and inexpensive imaging technique that uses near-infrared light to probe tissue optical properties. Regional variations in oxy- and deoxy-hemoglobin concentrations as well as blood flow and oxygen consumption can be imaged by monitoring spatiotemporal variations in the absorption spectra. For brain imaging, this provides DOT unique abilities to directly measure the hemodynamic, metabolic, and neuronal responses to cells (neurons), and tissue and organ activations with high temporal resolution and good tissue penetration. DOT can be used as a stand-alone modality or can be integrated with other imaging modalities such as fMRI/MRI, PET/CT, and EEG/MEG in studying neurophysiology and pathology. This book chapter serves as an introduction to the basic theory and principles of DOT for neuroimaging. It covers the major aspects of advances in neural optical imaging including mathematics, physics, chemistry, reconstruction algorithm, instrumentation, image-guided spectroscopy, neurovascular and neurometabolic coupling, and clinical applications.
Hoelen, C.G.A.; Dekker, Andre; de Mul, F.F.M.
2001-01-01
The generation and detection of broadband photoacoustic (PA) transients may be used for on-axis monitoring or for imaging of optically different structures in the interior of diffuse bodies such as biological tissue. Various piezoelectric sensors are characterized and compared in terms of
International Nuclear Information System (INIS)
Weber, Christopher P.
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field
Energy Technology Data Exchange (ETDEWEB)
Weber, Christopher Phillip [Univ. of California, Berkeley, CA (United States)
2005-01-01
Spin diffusion in n-GaAs quantum wells, as measured by our optical transient-grating technique, is strongly suppressed relative to that of charge. Over a broad range of temperatures and dopings, the suppression of Ds relative to Dc agrees quantitatively with the prediction of ''spin Coulomb dra'' theory, which takes into account the exchange of spin in electron-electron collisions. Moreover, the spin-diffusion length, Ls, is a nearly constant 1 micrometer over the same range of T and n, despite Ds's varying by nearly two orders of magnitude. This constancy supports the D'yakonov-Perel'-Kachorovskii model of spin relaxation through interrupted precessional dephasing in the spin-orbit field.
Transient response of nonlinear polymer networks: A kinetic theory
Vernerey, Franck J.
2018-06-01
Dynamic networks are found in a majority of natural materials, but also in engineering materials, such as entangled polymers and physically cross-linked gels. Owing to their transient bond dynamics, these networks display a rich class of behaviors, from elasticity, rheology, self-healing, or growth. Although classical theories in rheology and mechanics have enabled us to characterize these materials, there is still a gap in our understanding on how individuals (i.e., the mechanics of each building blocks and its connection with others) affect the emerging response of the network. In this work, we introduce an alternative way to think about these networks from a statistical point of view. More specifically, a network is seen as a collection of individual polymer chains connected by weak bonds that can associate and dissociate over time. From the knowledge of these individual chains (elasticity, transient attachment, and detachment events), we construct a statistical description of the population and derive an evolution equation of their distribution based on applied deformation and their local interactions. We specifically concentrate on nonlinear elastic response that follows from the strain stiffening response of individual chains of finite size. Upon appropriate averaging operations and using a mean field approximation, we show that the distribution can be replaced by a so-called chain distribution tensor that is used to determine important macroscopic measures such as stress, energy storage and dissipation in the network. Prediction of the kinetic theory are then explored against known experimental measurement of polymer responses under uniaxial loading. It is found that even under the simplest assumptions of force-independent chain kinetics, the model is able to reproduce complex time-dependent behaviors of rubber and self-healing supramolecular polymers.
Diffusion, quantum theory, and radically elementary mathematics (MN-47)
Faris, William G
2014-01-01
Diffusive motion--displacement due to the cumulative effect of irregular fluctuations--has been a fundamental concept in mathematics and physics since Einstein''s work on Brownian motion. It is also relevant to understanding various aspects of quantum theory. This book explains diffusive motion and its relation to both nonrelativistic quantum theory and quantum field theory. It shows how diffusive motion concepts lead to a radical reexamination of the structure of mathematical analysis. The book''s inspiration is Princeton University mathematics professor Edward Nelson''s influential work in
International Nuclear Information System (INIS)
Uskov, V.A.; Kondrachenko, O.E.; Kondrachenko, L.A.
1977-01-01
A phenomenological theory of multicomponent diffusion involving interaction between the components is employed to analyze how the interaction between two admixtures affects their simultaneous or consequent diffusion into a semiconductor. The theory uses the equations of multicomponent dissusion under common conditions (constant diffusion coefficients and equilibrium distribution of vacancies). The experiments are described on In and Sb simultaneous diffusion into Ge. The diffusion is performed according to the routine gas phase technology with the use of radioactive isotopes In 114 and Sb 124 . It is shown that the introduction of an additional diffusion coefficient D 12 makes it possible to simply and precisely describe the distribution of interacting admixtures in complex diffusion alloying of semiconductors
A Dynamical Theory of Markovian Diffusion
Davidson, Mark
2001-01-01
A dynamical treatment of Markovian diffusion is presented and several applications discussed. The stochastic interpretation of quantum mechanics is considered within this framework. A model for Brownian movement which includes second order quantum effects is derived.
Generalized diffusion theory for calculating the neutron transport scalar flux
International Nuclear Information System (INIS)
Alcouffe, R.E.
1975-01-01
A generalization of the neutron diffusion equation is introduced, the solution of which is an accurate approximation to the transport scalar flux. In this generalization the auxiliary transport calculations of the system of interest are utilized to compute an accurate, pointwise diffusion coefficient. A procedure is specified to generate and improve this auxiliary information in a systematic way, leading to improvement in the calculated diffusion scalar flux. This improvement is shown to be contingent upon satisfying the condition of positive calculated-diffusion coefficients, and an algorithm that ensures this positivity is presented. The generalized diffusion theory is also shown to be compatible with conventional diffusion theory in the sense that the same methods and codes can be used to calculate a solution for both. The accuracy of the method compared to reference S/sub N/ transport calculations is demonstrated for a wide variety of examples. (U.S.)
Transient diffuse hepatic uptake of 99mTc-MDP after hepatitis B vaccination
International Nuclear Information System (INIS)
Kim, Hyun Jin; Park, Young Ha; Hwang, Seong Su; Chung, Soo Kyo; Kim, Sang Heum
2006-01-01
A 38-year-old female with arthralgia in right elbow joint for 6 months was referred for a bone scan which showed diffuse uptakes of 99m Tc-MDP in the liver and spleen without hepatosplenomegaly. She had a history of hepatitis B vaccination 3 days ago. These uptakes were disappeared on the follow-up bone scan after 4 months. We suggest this transient diffuse hepatic uptake after vaccination of hepatitis B might be due to aluminum component within the hepatitis B vaccine as adjuvant
One dimensional benchmark calculations using diffusion theory
International Nuclear Information System (INIS)
Ustun, G.; Turgut, M.H.
1986-01-01
This is a comparative study by using different one dimensional diffusion codes which are available at our Nuclear Engineering Department. Some modifications have been made in the used codes to fit the problems. One of the codes, DIFFUSE, solves the neutron diffusion equation in slab, cylindrical and spherical geometries by using 'Forward elimination- Backward substitution' technique. DIFFUSE code calculates criticality, critical dimensions and critical material concentrations and adjoint fluxes as well. It is used for the space and energy dependent neutron flux distribution. The whole scattering matrix can be used if desired. Normalisation of the relative flux distributions to the reactor power, plotting of the flux distributions and leakage terms for the other two dimensions have been added. Some modifications also have been made for the code output. Two Benchmark problems have been calculated with the modified version and the results are compared with BBD code which is available at our department and uses same techniques of calculation. Agreements are quite good in results such as k-eff and the flux distributions for the two cases studies. (author)
Transient diffusion from a waste solid into water-saturated, fractured porous rock
International Nuclear Information System (INIS)
Ahn, J.; Chambre, P.L.; Pigford, T.H.; Lee, W.W.-L.
1989-09-01
Numerical illustrations for transient mass transfer from an infinitely long cylinder intersected by a planar fracture are shown based on Chambre's exact analytical solutions. The concentration at the cylinder surface is maintained at the solubility. In the fracture contaminant diffuses in the radial direction. In the rock matrix three-dimensional diffusion is assumed in the cylindrical coordinate. No advection is assumed. Radioactive decay and sorption equilibrium are included. Radioactive decay enhances the mass transfer from the cylinder. Due to the presence of the fracture, the mass flux from the cylinder to the rock matrix becomes smaller, but the fracture effect is limited in the vicinity of the fracture in early times. Even though the fracture is assumed to be a faster diffusion path than the rock matrix, the larger waste surface exposed to the matrix and the greater assumed matrix sorption result in greater release rate to the matrix than to the fracture. 8 refs., 4 figs
International Nuclear Information System (INIS)
Lee, Jun-Ha; Lee, Hoong-Joo
2005-01-01
We developed a new systematic calibration procedure which was applied to the prediction of the diffusivity, the segregation, and transient enhanced diffusion (TED) of an indium impurity. The TED of the indium impurity was studied using four different experimental conditions. Although indium is susceptible to TED, rapid thermal annealing (RTA) is effective in suppressing the TED effect and maintaining a steep retrograde profile. Like boron impurities, the indium shows significant oxidation-enhanced diffusion in silicon and has segregation coefficients much less than 1 at the Si/SiO 2 interface. In contrast to boron, the segregation coefficient of indium decreases as the temperature increases. The accuracy of the proposed procedure was validated by using secondary ion mass spectrometry (SIMS) data and by using the 0.13-μm device characteristics, such as V th and I dsat , for which the differences between simulation and experiment less than 5 %.
Assessing one-dimensional diffusion in nanoporous materials from transient concentration profiles
International Nuclear Information System (INIS)
Heinke, Lars; Kaerger, Joerg
2008-01-01
The use of interference microscopy has enabled the direct observation of transient concentration profiles generated by intracrystalline transport diffusion in nanoporous materials. The thus accessible intracrystalline concentration profiles contain a wealth of information which cannot be deduced by any macroscopic method. In this paper, we illustrate five different ways for determining the concentration-dependent diffusivity in one-dimensional systems and two for the surface permeability. These methods are discussed by application to concentration profiles evolving during the uptake of methanol by the zeolite ferrierite and of methanol by the metal organic framework (MOF) manganese(II) formate. We show that the diffusivity can be calculated most precisely by means of Fick's 1st law. As the circumstances permit, Boltzmann's integration method also yields very precise results. Furthermore, we present a simple procedure that enables the estimation of the influence of the surface barrier on the overall uptake process by plotting the boundary concentration versus the overall uptake
Energy Technology Data Exchange (ETDEWEB)
Galinsky, M.; Breitkopf, C. [Technische Univ. Dresden (Germany). Inst. fuer Energietechnik
2011-07-01
Sulfated zirconias have attracted an interest as catalysts due to their ability to isomerize alkanes at low temperatures, e.g., under thermodynamically favored conditions. However, the fast deactivation during the reaction remains a problem. To improve the catalytic performance of such porous catalysts, it is necessary to understand all steps in the catalytic cycle, namely diffusion and adsorption in more detail. The transient TAP method was applied to investigate sorption and diffusion phenomena of different alkanes in three different morphologically structured sulfated zirconias to elucidate their catalytic performances in the n-butane isomerization. New theoretical models were developed to describe the experimental results of TAP single-pulse experiments. The application of these models to pulse response curves allowed the extraction of adsorption and desorption rate constants as well as diffusion coefficients. Via introducing a second sorption center, the new adsorption model is able to reproduce the sorption behavior for larger alkanes quantitatively better than former models, especially in the low-temperature region. Moreover, the heterogeneous distribution of active centers was taken into account. Temperature dependent measurements have been performed to calculate heats of adsorption for various alkanes at the two assumed adsorption sites. The impact of these values on the catalytic properties is discussed. With the help of the new diffusion model, the diffusion coefficients for the inter- and intrapellet volume could be determined. These values are used in a numerical simulation to check whether the reaction rate for the isomerization at the investigated sulfated zirconias is diffusion limited. (orig.)
International Nuclear Information System (INIS)
Cahalan, J.E.; Ama, T.; Palmiotti, G.; Taiwo, T.A.; Yang, W.S.
2000-01-01
The VARIANT-K and DIF3D-K nodal spatial kinetics computer codes have been coupled to the SAS4A and SASSYS-1 liquid metal reactor accident and systems analysis codes. SAS4A and SASSYS-1 have been extended with the addition of heavy liquid metal (Pb and Pb-Bi) thermophysical properties, heat transfer correlations, and fluid dynamics correlations. The coupling methodology and heavy liquid metal modeling additions are described. The new computer code suite has been applied to analysis of neutron source and thermal-hydraulics transients in a model of an accelerator-driven minor actinide burner design proposed in an OECD/NEA/NSC benchmark specification. Modeling assumptions and input data generation procedures are described. Results of transient analyses are reported, with emphasis on comparison of P1 and P3 variational nodal transport theory results with nodal diffusion theory results, and on significance of spatial kinetics effects
Color diffusion in QCD transport theory
International Nuclear Information System (INIS)
Selikhov, A.V.; Gyulassy, M.
1993-01-01
Color diffusion is shown to be an important dissipative property of quark-gluon plasmas with the characteristic color relaxation time scale, t c ∼ (3α s T log (m E /m M )) -1 , showing its sensitivity to the ratio of the static color electric and magnetic screening masses. Fokker-Planck equations are derived for QCD Wigner distributions taking into account quantum color dynamics. These equations show that the anomalously small color relaxation time leads to a small color conductivity and to strong damping of collective color modes
Applications of a systematic homogenization theory for nodal diffusion methods
International Nuclear Information System (INIS)
Zhang, Hong-bin; Dorning, J.J.
1992-01-01
The authors recently have developed a self-consistent and systematic lattice cell and fuel bundle homogenization theory based on a multiple spatial scales asymptotic expansion of the transport equation in the ratio of the mean free path to the reactor characteristics dimension for use with nodal diffusion methods. The mathematical development leads naturally to self-consistent analytical expressions for homogenized diffusion coefficients and cross sections and flux discontinuity factors to be used in nodal diffusion calculations. The expressions for the homogenized nuclear parameters that follow from the systematic homogenization theory (SHT) are different from those for the traditional flux and volume-weighted (FVW) parameters. The calculations summarized here show that the systematic homogenization theory developed recently for nodal diffusion methods yields accurate values for k eff and assembly powers even when compared with the results of a fine mesh transport calculation. Thus, it provides a practical alternative to equivalence theory and GET (Ref. 3) and to simplified equivalence theory, which requires auxiliary fine-mesh calculations for assemblies embedded in a typical environment to determine the discontinuity factors and the equivalent diffusion coefficient for a homogenized assembly
Physics of pitch angle scattering and velocity diffusion. I - Theory
Karimabadi, H.; Krauss-Varban, D.; Terasawa, T.
1992-01-01
A general theory for the pitch angle scattering and velocity diffusion of particles in the field of a spectrum of waves in a magnetized plasma is presented. The test particle theory is used to analyze the particle motion. The form of diffusion surfaces is examined, and analytical expressions are given for the resonance width and bounce frequency. The resonance widths are found to vary strongly as a function of harmonic number. The resulting diffusion can be quite asymmetric with respect to pitch angle of 90 deg. The conditions for the onset of pitch angle scattering and energy diffusion are explained in detail. Some of the known shortcomings of the standard quasi-linear theory are also addressed, and ways to overcome them are shown. In particular, the often stated quasi-linear gap at 90 deg is found to exist only under very special cases. For instance, oblique wave propagation can easily remove the gap. The conditions for the existence of the gap are described in great detail. A new diffusion equation which takes into account the finite resonance widths is also discussed. The differences between this new theory and the standard resonance broadening theory is explained.
Scanning ion deep level transient spectroscopy: I. Theory
International Nuclear Information System (INIS)
Laird, J S; Jagadish, C; Jamieson, D N; Legge, G J F
2006-01-01
Theoretical aspects of a new technique for the MeV ion microbeam are described in detail for the first time. The basis of the technique, termed scanning ion deep level transient spectroscopy (SIDLTS), is the imaging of defect distributions within semiconductor devices. The principles of SIDLTS are similar to those behind other deep level transient spectroscopy (DLTS) techniques with the main difference stemming from the injection of carriers into traps using the localized energy-loss of a focused MeV ion beam. Energy-loss of an MeV ion generates an electron-hole pair plasma, providing the equivalent of a DLTS trap filling pulse with a duration which depends on space-charge screening of the applied electric field and ambipolar erosion of the plasma for short ranging ions. Some nanoseconds later, the detrapping current transient is monitored as a charge transient. Scanning the beam in conjunction with transient analysis allows the imaging of defect levels. As with DLTS, the temperature dependence of the transient can be used to extract trap activation levels. In this, the first of a two-part paper, we introduce the various stages of corner capture and derive a simple expression for the observed charge transient. The second paper will illustrate the technique on a MeV ion implanted Au-Si Schottky junction
Field theory of propagating reaction-diffusion fronts
International Nuclear Information System (INIS)
Escudero, C.
2004-01-01
The problem of velocity selection of reaction-diffusion fronts has been widely investigated. While the mean-field limit results are well known theoretically, there is a lack of analytic progress in those cases in which fluctuations are to be taken into account. Here, we construct an analytic theory connecting the first principles of the reaction-diffusion process to an effective equation of motion via field-theoretic arguments, and we arrive at results already confirmed by numerical simulations
The quasi-diffusive approximation in transport theory: Local solutions
International Nuclear Information System (INIS)
Celaschi, M.; Montagnini, B.
1995-01-01
The one velocity, plane geometry integral neutron transport equation is transformed into a system of two equations, one of them being the equation of continuity and the other a generalized Fick's law, in which the usual diffusion coefficient is replaced by a self-adjoint integral operator. As the kernel of this operator is very close to the Green function of a diffusion equation, an approximate inversion by means of a second order differential operator allows to transform these equations into a purely differential system which is shown to be equivalent, in the simplest case, to a diffusion-like equation. The method, the principles of which have been exposed in a previous paper, is here extended and applied to a variety of problems. If the inversion is properly performed, the quasi-diffusive solutions turn out to be quite accurate, even in the vicinity of the interface between different material regions, where elementary diffusion theory usually fails. 16 refs., 3 tabs
Linear response theory of activated surface diffusion with interacting adsorbates
Energy Technology Data Exchange (ETDEWEB)
Marti' nez-Casado, R. [Department of Chemistry, Imperial College London, South Kensington, London SW7 2AZ (United Kingdom); Sanz, A.S.; Vega, J.L. [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cientificas, Serrano 123, 28006 Madrid (Spain); Rojas-Lorenzo, G. [Instituto Superior de Tecnologi' as y Ciencias Aplicadas, Ave. Salvador Allende, esq. Luaces, 10400 La Habana (Cuba); Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain); Miret-Artes, S., E-mail: s.miret@imaff.cfmac.csic.es [Instituto de Fi' sica Fundamental, Consejo Superior de Investigaciones Cienti' ficas, Serrano 123, 28006 Madrid (Spain)
2010-05-12
Graphical abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed. - Abstract: Activated surface diffusion with interacting adsorbates is analyzed within the Linear Response Theory framework. The so-called interacting single adsorbate model is justified by means of a two-bath model, where one harmonic bath takes into account the interaction with the surface phonons, while the other one describes the surface coverage, this leading to defining a collisional friction. Here, the corresponding theory is applied to simple systems, such as diffusion on flat surfaces and the frustrated translational motion in a harmonic potential. Classical and quantum closed formulas are obtained. Furthermore, a more realistic problem, such as atomic Na diffusion on the corrugated Cu(0 0 1) surface, is presented and discussed within the classical context as well as within the framework of Kramer's theory. Quantum corrections to the classical results are also analyzed and discussed.
An extension of diffusion theory for thermal neutrons near boundaries
International Nuclear Information System (INIS)
Alvarez Rivas, J. L.
1963-01-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PIGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs
A coupled theory for chemically active and deformable solids with mass diffusion and heat conduction
Zhang, Xiaolong; Zhong, Zheng
2017-10-01
To analyse the frequently encountered thermo-chemo-mechanical problems in chemically active material applications, we develop a thermodynamically-consistent continuum theory of coupled deformation, mass diffusion, heat conduction and chemical reaction. Basic balance equations of force, mass and energy are presented at first, and then fully coupled constitutive laws interpreting multi-field interactions and evolving equations governing irreversible fluxes are constructed according to the energy dissipation inequality and the chemical kinetics. To consider the essential distinction between mass diffusion and chemical reactions in affecting free energy and dissipations of a highly coupled system, we regard both the concentrations of diffusive species and the extent of reaction as independent state variables. This new formulation then distinguishes between the energy contribution from the diffusive species entering the solid and that from the subsequent chemical reactions occurring among these species and the host solid, which not only interact with stresses or strains in different manners and on different time scales, but also induce different variations of solid microstructures and material properties. Taking advantage of this new description, we further establish a specialized isothermal model to predict precisely the transient chemo-mechanical response of a swelling solid with a proposed volumetric constraint that accounts for material incompressibility. Coupled kinetics is incorporated to capture the volumetric swelling of the solid caused by imbibition of external species and the simultaneous dilation arised from chemical reactions between the diffusing species and the solid. The model is then exemplified with two numerical examples of transient swelling accompanied by chemical reaction. Various ratios of characteristic times of diffusion and chemical reaction are taken into account to shed light on the dependency on kinetic time scales of evolution patterns for
Application of optimal interation strategies to diffusion theory calculations
International Nuclear Information System (INIS)
Jones, R.B.
1978-01-01
The geometric interpretation of optimal (minimum computational time) iteration strategies is applied to one- and two-group, two-dimensional diffusion-theory calculations. The method is a ''spectral/time balance'' technique which weighs the convergence enhancement of the inner iteration procedure with that of the outer iteration loop and the time required to reconstruct the source. The diffusion-theory option of the discrete-ordinates transport code DOT3.5 was altered to incorporate the theoretical inner/outer decision logic. For the two-dimensional configuration considered, the optimal strategies reduced the total number of iterations performed for a given error criterion
Diffusion theory in biology: a relic of mechanistic materialism.
Agutter, P S; Malone, P C; Wheatley, D N
2000-01-01
Diffusion theory explains in physical terms how materials move through a medium, e.g. water or a biological fluid. There are strong and widely acknowledged grounds for doubting the applicability of this theory in biology, although it continues to be accepted almost uncritically and taught as a basis of both biology and medicine. Our principal aim is to explore how this situation arose and has been allowed to continue seemingly unchallenged for more than 150 years. The main shortcomings of diffusion theory will be briefly reviewed to show that the entrenchment of this theory in the corpus of biological knowledge needs to be explained, especially as there are equally valid historical grounds for presuming that bulk fluid movement powered by the energy of cell metabolism plays a prominent note in the transport of molecules in the living body. First, the theory's evolution, notably from its origins in connection with the mechanistic materialist philosophy of mid nineteenth century physiology, is discussed. Following this, the entrenchment of the theory in twentieth century biology is analyzed in relation to three situations: the mechanism of oxygen transport between air and mammalian tissues; the structure and function of cell membranes; and the nature of the intermediary metalbolism, with its implicit presumptions about the intracellular organization and the movement of molecules within it. In our final section, we consider several historically based alternatives to diffusion theory, all of which have their precursors in nineteenth and twentieth century philosophy of science.
Bremmer, Rolf H; van Gemert, Martin J C; Faber, Dirk J; van Leeuwen, Ton G; Aalders, Maurice C G
2013-08-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to the radiative transfer equation, implying that it is limited to tissues where the reduced scattering coefficient dominates over the absorption coefficient. Nevertheless, up to absorption coefficients of 20 mm-1 at reduced scattering coefficients of 1 and 11.5 mm-1, we observed excellent agreement (r2=0.994) between reflectance measurements of phantoms and the diffuse reflectance equation proposed by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], derived as an approximation to one of the diffusion dipole equations of Farrell et al. [Med. Phys.19, 879-888 (1992)]. However, two parameters were fitted to all phantom experiments, including strongly absorbing samples, implying that the reflectance equation differs from diffusion theory. Yet, the exact diffusion dipole approximation at high reduced scattering and absorption also showed agreement with the phantom measurements. The mathematical structure of the diffuse reflectance relation used, derived by Zonios et al. [Appl. Opt.38, 6628-6637 (1999)], explains this observation. In conclusion, diffuse reflectance relations derived as an approximation to the diffusion dipole theory of Farrell et al. can analyze reflectance ratios accurately, even for much larger absorption than reduced scattering coefficients. This allows calibration of fiber-probe set-ups so that the object's diffuse reflectance can be related to its absorption even when large. These findings will greatly expand the application of diffuse reflection spectroscopy. In medicine, it may allow the use of blue/green wavelengths and measurements on whole blood, and in forensic science, it may allow inclusion of objects such as blood stains and cloth at crime
Transient hydrogen diffusion analyses coupled with crack-tip plasticity under cyclic loading
International Nuclear Information System (INIS)
Kotake, Hirokazu; Matsumoto, Ryosuke; Taketomi, Shinya; Miyazaki, Noriyuki
2008-01-01
The effect of hydrogen on the material strengths of metals is known as the hydrogen embrittlement, which affects the structural integrity of a hydrogen energy system. In the present paper, we developed a computer program for a transient hydrogen diffusion-elastoplastic coupling analysis by combining an in-house finite element program with a general purpose finite element computer program to analyze hydrogen diffusion. In this program, we use a hypothesis that the hydrogen absorbed in the metal affects the yield stress of the metal. In the present paper, we discuss the effects of the cyclic loading on the hydrogen concentration near the crack tip. An important finding we obtained here is the fact that the hydrogen concentration near the crack tip greatly depends on the loading frequency. This result indicates that the fatigue lives of the components in a hydrogen system depend not only on the number of loading cycles but also on the loading frequency
A diffusion model for two parallel queues with processor sharing: transient behavior and asymptotics
Directory of Open Access Journals (Sweden)
Charles Knessl
1999-01-01
Full Text Available We consider two identical, parallel M/M/1 queues. Both queues are fed by a Poisson arrival stream of rate λ and have service rates equal to μ. When both queues are non-empty, the two systems behave independently of each other. However, when one of the queues becomes empty, the corresponding server helps in the other queue. This is called head-of-the-line processor sharing. We study this model in the heavy traffic limit, where ρ=λ/μ→1. We formulate the heavy traffic diffusion approximation and explicitly compute the time-dependent probability of the diffusion approximation to the joint queue length process. We then evaluate the solution asymptotically for large values of space and/or time. This leads to simple expressions that show how the process achieves its stead state and other transient aspects.
Evolution of end-of-range damage and transient enhanced diffusion of indium in silicon
Noda, T.
2002-01-01
Correlation of evolution of end-of-range (EOR) damage and transient enhanced diffusion (TED) of indium has been studied by secondary ion mass spectrometry and transmission electron microscopy. A physically based model of diffusion and defect growth is applied to the indium diffusion system. Indium implantation with 200 keV, 1×1014/cm2 through a 10 nm screen oxide into p-type Czochralski silicon wafer was performed. During postimplantation anneal at 750 °C for times ranging from 2 to 120 min, formation of dislocation loops and indium segregation into loops were observed. Simulation results of evolution of EOR defects show that there is a period that {311} defects dissolve and release free interstitials before the Ostwald ripening step of EOR dislocation loops. Our diffusion model that contains the interaction between indium and loops shows the indium pileup to the loops. Indium segregation to loops occurs at a pure growth step of loops and continues during the Ostwald ripening step. Although dislocation loops and indium segregation in the near-surface region are easily dissolved by high temperature annealing, EOR dislocation loops in the bulk region are rigid and well grown. It is considered that indium trapped by loops with a large radius is energetically stable. It is shown that modeling of the evolution of EOR defects is important for understanding indium TED.
International Nuclear Information System (INIS)
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-01-01
Highlights: • Fractal theory is introduced into the prediction of VOC diffusion coefficient. • MSFC model of the diffusion coefficient is developed for porous building materials. • The MSFC model contains detailed pore structure parameters. • The accuracy of the MSFC model is verified by independent experiments. - Abstract: Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber.
Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model
Energy Technology Data Exchange (ETDEWEB)
Baudron, Anne-Marie, E-mail: anne-marie.baudron@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Lautard, Jean-Jacques, E-mail: jean-jacques.lautard@cea.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CEA-DRN/DMT/SERMA, CEN-Saclay, 91191 Gif sur Yvette Cedex (France); Maday, Yvon, E-mail: maday@ann.jussieu.fr [Sorbonne Universités, UPMC Univ Paris 06, UMR 7598, Laboratoire Jacques-Louis Lions and Institut Universitaire de France, F-75005, Paris (France); Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); Brown Univ, Division of Applied Maths, Providence, RI (United States); Riahi, Mohamed Kamel, E-mail: riahi@cmap.polytechnique.fr [Laboratoire de Recherche Conventionné MANON, CEA/DEN/DANS/DM2S and UPMC-CNRS/LJLL (France); CMAP, Inria-Saclay and X-Ecole Polytechnique, Route de Saclay, 91128 Palaiseau Cedex (France); Salomon, Julien, E-mail: salomon@ceremade.dauphine.fr [CEREMADE, Univ Paris-Dauphine, Pl. du Mal. de Lattre de Tassigny, F-75016, Paris (France)
2014-12-15
In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.
Turbulent diffusion of chemically reacting flows: Theory and numerical simulations.
Elperin, T; Kleeorin, N; Liberman, M; Lipatnikov, A N; Rogachevskii, I; Yu, R
2017-11-01
The theory of turbulent diffusion of chemically reacting gaseous admixtures developed previously [T. Elperin et al., Phys. Rev. E 90, 053001 (2014)PLEEE81539-375510.1103/PhysRevE.90.053001] is generalized for large yet finite Reynolds numbers and the dependence of turbulent diffusion coefficient on two parameters, the Reynolds number and Damköhler number (which characterizes a ratio of turbulent and reaction time scales), is obtained. Three-dimensional direct numerical simulations (DNSs) of a finite-thickness reaction wave for the first-order chemical reactions propagating in forced, homogeneous, isotropic, and incompressible turbulence are performed to validate the theoretically predicted effect of chemical reactions on turbulent diffusion. It is shown that the obtained DNS results are in good agreement with the developed theory.
Neutron diffusion: connection with the theory of browniam motion
International Nuclear Information System (INIS)
Dellagi, Mohamed
1977-01-01
The displacement of the neutron projection on an axis Ox and its density of probability are introduced instead of describing the diffusion theory with neutron density, as is usual. If the point source O is isotropic and neutron monoenergetic, the brownian particle described by Langevin's equation and neutron have the same time correlation of velocity [fr
A call for Return to Rogers' Innovation Diffusion Theory ...
African Journals Online (AJOL)
On organizational characteristics, it is postulated that each of organizational readiness for change, culture, size and leader's change management style is positively related to the adoption of innovations. Gaps in the studies reviewed are highlighted. Keywords: Innovation Diffusion Theory; Everett Rogers; Adoption.
Theory of strong-field attosecond transient absorption
International Nuclear Information System (INIS)
Wu, Mengxi; Chen, Shaohao; Camp, Seth; Schafer, Kenneth J; Gaarde, Mette B
2016-01-01
Attosecond transient absorption is one of the promising new techniques being developed to exploit the availability of sub-femtosecond extreme ultraviolet (XUV) pulses to study the dynamics of the electron on its natural time scale. The temporal resolution in a transient absorption setup comes from the control of the relative delay and coherence between pump and probe pulses, while the spectral resolution comes from the characteristic width of the features that are being probed. In this review we focus on transient absorption scenarios where an attosecond pulse of XUV radiation creates a broadband excitation that is subsequently probed by a few cycle infrared (IR) laser. Because the attosecond XUV pulses are locked to the IR field cycle, the exchange of energy in the laser–matter interaction can be studied with unprecedented precision. We focus on the transient absorption by helium atoms of XUV radiation around the first ionization threshold, where we can simultaneoulsy solve the time-dependent Schrödinger equation for the single atom response and the Maxwell wave equation for the collective response of the nonlinear medium. We use a time-domain method that allows us to treat on an equal footing all the different linear and nonlinear processes by which the medium can exchange energy with the fields. We present several simple models, based on a few-level system interacting with a strong IR field, to explain many of the novel features found in attosecond transient absorption spectrograms. These include the presence of light-induced states, which demonstrate the ability to probe the dressed states of the atom. We also present a time-domain interpretation of the resonant pulse propagation features that appear in absorption spectra in dense, macroscopic media. We close by reviewing several recent experimental results that can be explained in terms of the models we discuss. Our aim is to present a road map for understanding future attosecond transient absorption
Explicit studies of the quantum theory of light interstitial diffusion
International Nuclear Information System (INIS)
Emin, D.; Baskes, M.I.; Wilson, W.D.
1978-01-01
The formalism associated with small-polaron diffusion in the high temperature semiclassical regime is generalized so as to transcend simplifications employed in developing the nonadiabatic theory. The diffusion constant is then calculated for simple models in which the metal atoms interact with each other and with the interstitial atom with two-body forces. Studies of these models not only confirm the necessity of generalizing the formalism but also yield diffusion constants whose magnitudes and temperature dependenes ar consistent with the general features of the existing data for the diffusion of hydrogen and its isotopes in bcc metals. The motion of a positive muon between interstitial positions of a metal is also investigated
Exact Markov chains versus diffusion theory for haploid random mating.
Tyvand, Peder A; Thorvaldsen, Steinar
2010-05-01
Exact discrete Markov chains are applied to the Wright-Fisher model and the Moran model of haploid random mating. Selection and mutations are neglected. At each discrete value of time t there is a given number n of diploid monoecious organisms. The evolution of the population distribution is given in diffusion variables, to compare the two models of random mating with their common diffusion limit. Only the Moran model converges uniformly to the diffusion limit near the boundary. The Wright-Fisher model allows the population size to change with the generations. Diffusion theory tends to under-predict the loss of genetic information when a population enters a bottleneck. 2010 Elsevier Inc. All rights reserved.
Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.
2001-08-01
Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank-Turnbull reactions. This study of boron TED reduction in Si1-x-yGexCy during 750 °C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank-Turnbull reaction, and a carbon interstitial-carbon substitutional (CiCs) pairing reaction that successfully simulates carbon suppression of boron TED at 750 °C for anneal times ranging from 10 s to 60 min.
International Nuclear Information System (INIS)
Ngau, Julie L.; Griffin, Peter B.; Plummer, James D.
2001-01-01
Recent work has indicated that the suppression of boron transient enhanced diffusion (TED) in carbon-rich Si is caused by nonequilibrium Si point defect concentrations, specifically the undersaturation of Si self-interstitials, that result from the coupled out-diffusion of carbon interstitials via the kick-out and Frank--Turnbull reactions. This study of boron TED reduction in Si 1-x-y Ge x C y during 750 o C inert anneals has revealed that the use of an additional reaction that further reduces the Si self-interstitial concentration is necessary to describe accurately the time evolved diffusion behavior of boron. In this article, we present a comprehensive model which includes {311} defects, boron-interstitial clusters, a carbon kick-out reaction, a carbon Frank--Turnbull reaction, and a carbon interstitial-carbon substitutional (C i C s ) pairing reaction that successfully simulates carbon suppression of boron TED at 750 o C for anneal times ranging from 10 s to 60 min. copyright 2001 American Institute of Physics
Defects and diffusion, theory and simulation an annual retrospective I
Fisher, David J
2009-01-01
This first volume, in a new series covering entirely general results in the fields of defects and diffusion, includes abstracts of papers which appeared between the beginning of 2008 and the end of October 2009 (journal availability permitting).This new series replaces the 'general' section which was previously part of each issue of the Metals, Ceramics and Semiconductor retrospective series. As well as 356 abstracts, the volume includes original papers on all of the usual material groups: ""Predicting Diffusion Coefficients from First Principles via Eyring's Reaction Rate Theory"" (Mantina, C
Application of the evolution theory in modelling of innovation diffusion
Directory of Open Access Journals (Sweden)
Krstić Milan
2016-01-01
Full Text Available The theory of evolution has found numerous analogies and applications in other scientific disciplines apart from biology. In that sense, today the so-called 'memetic-evolution' has been widely accepted. Memes represent a complex adaptable system, where one 'meme' represents an evolutional cultural element, i.e. the smallest unit of information which can be identified and used in order to explain the evolution process. Among others, the field of innovations has proved itself to be a suitable area where the theory of evolution can also be successfully applied. In this work the authors have started from the assumption that it is also possible to apply the theory of evolution in the modelling of the process of innovation diffusion. Based on the conducted theoretical research, the authors conclude that the process of innovation diffusion in the interpretation of a 'meme' is actually the process of imitation of the 'meme' of innovation. Since during the process of their replication certain 'memes' show a bigger success compared to others, that eventually leads to their natural selection. For the survival of innovation 'memes', their manifestations are of key importance in the sense of their longevity, fruitfulness and faithful replicating. The results of the conducted research have categorically confirmed the assumption of the possibility of application of the evolution theory with the innovation diffusion with the help of innovation 'memes', which opens up the perspectives for some new researches on the subject.
International Nuclear Information System (INIS)
Nakamura, Tomomi; Shibagaki, Yasuro; Uchiyama, Shinichiro; Iwata, Makoto
2003-01-01
We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)
Energy Technology Data Exchange (ETDEWEB)
Nakamura, Tomomi; Shibagaki, Yasuro [Ushiku Aiwa General Hospital, Ibaraki (Japan); Uchiyama, Shinichiro; Iwata, Makoto [Tokyo Women' s Medical Coll. (Japan)
2003-03-01
We studied abnormalities on diffusion-weighted magnetic resonance imaging (DWI) in patients with transient ischemic attack (TIA). Out of 18 consecutive TIA patients, 9 patients had relevant focal abnormalities on DWI. Among TIA patients, six patients were associated with atrial fibrillation (Af), and all of these patients had focal abnormalities on DWI as well. TIA patients with Af had significantly more frequent focal abnormalities on DWI than those without Af (p=0.009; Fisher's exact probability test). In addition, the duration of TIA symptoms was not related to the presence of focal abnormalities on DWI. These results indicate that embolic mechanism may cause focal abnormalities on DWI. DWI was more sensitive to detect responsible ischemic lesions in these patients than T2-weighted image or fluid-attenuated inversion recovery image. (author)
International Nuclear Information System (INIS)
Uchino, A.; Sawada, A.; Takase, Y.; Egashira, R.; Kudo, S.
2004-01-01
We report three patients with a cerebrovascular accident studied serially by MRI, including diffusion-weighted imaging (DWI). In case 1, DWI 1 day after the onset of left frontoparietal cortical infarcts showed no abnormal signal in the left corticospinal tract. DWI 12 days after onset showed high signal in the corticospinal tract, interpreted as early wallerian degeneration. This had disappeared by 22 days after onset. In case 2, DWI obtained 7 days after the onset of a right internal capsule lacunar infarct showed high signal from the right corticospinal tract in the brainstem, which was less marked 15 days after onset. In case 3, MRI on postnatal day 7 showed a cerebral haemorrhage in the right corona radiata and high signal from the right corticospinal tract on DWI. The latter disappeared by day 23. DWI shows early wallerian degeneration; transient signal abnormalities within 2 weeks of stroke should not be mistaken for new ischaemic lesions. (orig.)
Energy Technology Data Exchange (ETDEWEB)
Uchino, A.; Sawada, A.; Takase, Y.; Egashira, R.; Kudo, S. [Department of Radiology, Saga Medical School, 5-1-1 Nabeshima, Saga, 849-8501 (Japan)
2004-03-01
We report three patients with a cerebrovascular accident studied serially by MRI, including diffusion-weighted imaging (DWI). In case 1, DWI 1 day after the onset of left frontoparietal cortical infarcts showed no abnormal signal in the left corticospinal tract. DWI 12 days after onset showed high signal in the corticospinal tract, interpreted as early wallerian degeneration. This had disappeared by 22 days after onset. In case 2, DWI obtained 7 days after the onset of a right internal capsule lacunar infarct showed high signal from the right corticospinal tract in the brainstem, which was less marked 15 days after onset. In case 3, MRI on postnatal day 7 showed a cerebral haemorrhage in the right corona radiata and high signal from the right corticospinal tract on DWI. The latter disappeared by day 23. DWI shows early wallerian degeneration; transient signal abnormalities within 2 weeks of stroke should not be mistaken for new ischaemic lesions. (orig.)
Diffusion theory model for optimization calculations of cold neutron sources
International Nuclear Information System (INIS)
Azmy, Y.Y.
1987-01-01
Cold neutron sources are becoming increasingly important and common experimental facilities made available at many research reactors around the world due to the high utility of cold neutrons in scattering experiments. The authors describe a simple two-group diffusion model of an infinite slab LD 2 cold source. The simplicity of the model permits to obtain an analytical solution from which one can deduce the reason for the optimum thickness based solely on diffusion-type phenomena. Also, a second more sophisticated model is described and the results compared to a deterministic transport calculation. The good (particularly qualitative) agreement between the results suggests that diffusion theory methods can be used in parametric and optimization studies to avoid the generally more expensive transport calculations
International Nuclear Information System (INIS)
Ekrami, A.
2003-01-01
Transient liquid phase diffusion bonding procedure was used to join an ODS Ma 758 superalloy in two conditions, wrought fine grains, and recrystallised grains. An Ni-Cr-B-Si alloy was used as an interlayer. Bonding was carried out at 1100 d ig C for bonding hold times of 15,30, and 60 minutes under vacuum of 6x10 -4 torr. Bonded samples were homogenized at 1360 d ig C for one hour and then cooled with a rate of 15 d ig C /min. Shear and fatigue strengths of bonds were determined. The results showed that there is no effect of bonding hold times on shear strength after bonding hold time of 30 minutes. At a given bonding hold time, the shear strength of bonds made in the recrystallized condition was greater than the shear strength of bonds made in the fine grain condition. The same was true for fatigue strength at a given cycle to fracture. Transient liquid phase bonding was also carried out under pressure of 0.1 Mpa under the same temperature and bonding hold time for fine grain material. Microstructure studies of bonds made under pressure showed no effects of pressure on bond region grain size. Shear tests results also demonstrate little effects of pressure on shear strength of bonds
Rate Theory for Correlated Processes: Double Jumps in Adatom Diffusion
DEFF Research Database (Denmark)
Jacobsen, J.; Jacobsen, Karsten Wedel; Sethna, J.
1997-01-01
We study the rate of activated motion over multiple barriers, in particular the correlated double jump of an adatom diffusing on a missing-row reconstructed platinum (110) surface. We develop a transition path theory, showing that the activation energy is given by the minimum-energy trajectory...... which succeeds in the double jump. We explicitly calculate this trajectory within an effective-medium molecular dynamics simulation. A cusp in the acceptance region leads to a root T prefactor for the activated rate of double jumps. Theory and numerical results agree....
Transient enhanced diffusion in preamorphized silicon: the role of the surface
Cowern, N. E. B.; Alquier, D.; Omri, M.; Claverie, A.; Nejim, A.
1999-01-01
Experiments on the depth dependence of transient enhanced diffusion (TED) of boron during rapid thermal annealing of Ge-preamorphized layers reveal a linear decrease in the diffusion enhancement between the end-of-range (EOR) defect band and the surface. This behavior, which indicates a quasi-steady-state distribution of excess interstitials, emitted from the EOR band and absorbed at the surface, is observed for annealing times as short as 1 s at 900°C. Using an etching procedure we vary the distance xEOR from the EOR band to the surface in the range 80-175 nm, and observe how this influences the interstitial supersaturation, s( x). The supersaturations at the EOR band and the surface remain unchanged, while the gradient d s/d x, and thus the flux to the surface, varies inversely with xEOR. This confirms the validity of earlier modelling of EOR defect evolution in terms of Ostwald ripening, and provides conclusive evidence that the surface is the dominant sink for interstitials during TED.
Some basic mathematical methods of diffusion theory. [emphasis on atmospheric applications
Giere, A. C.
1977-01-01
An introductory treatment of the fundamentals of diffusion theory is presented, starting with molecular diffusion and leading up to the statistical methods of turbulent diffusion. A multilayer diffusion model, designed to permit concentration and dosage calculations downwind of toxic clouds from rocket vehicles, is described. The concepts and equations of diffusion are developed on an elementary level, with emphasis on atmospheric applications.
Energy Technology Data Exchange (ETDEWEB)
Matsui, M.; Sakamoto, S.; Ishii, K. [Division of Neuroimaging Research, Hyogo Institute for Aging Brain and Cognitive Disorders (Japan); Imamura, T.; Kazui, H.; Mori, E. [Division of Clinical Neurosciences, Hyogo Institute for Aging Brain and Cognitive Disorders, Hyogo (Japan)
2002-03-01
We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)
International Nuclear Information System (INIS)
Matsui, M.; Sakamoto, S.; Ishii, K.; Imamura, T.; Kazui, H.; Mori, E.
2002-01-01
We report on a patient with pure transient global amnesia (TGA) whose magnetic resonance imaging (MRI) demonstrated a small region of increased signal intensity in the right hippocampus on diffusion-weighted imaging (DWI). DWI was sensitive and useful for evaluating the early stage of TGA and might help to explain the pathophysiology of TGA. (orig.)
Thermal conductivity and thermal diffusivity are two important physical properties essential for designing any food engineering processes. Recently a new transient plane-source method was developed to measure a variety of materials, but its application in foods has not been documented. Therefore, ...
Energy Technology Data Exchange (ETDEWEB)
Mohamed, M. Shadi, E-mail: m.s.mohamed@durham.ac.uk [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Seaid, Mohammed; Trevelyan, Jon [School of Engineering and Computing Sciences, University of Durham, South Road, Durham DH1 3LE (United Kingdom); Laghrouche, Omar [Institute for Infrastructure and Environment, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom)
2013-10-15
We investigate the effectiveness of the partition-of-unity finite element method for transient conduction–radiation problems in diffusive grey media. The governing equations consist of a semi-linear transient heat equation for the temperature field and a stationary diffusion approximation to the radiation in grey media. The coupled equations are integrated in time using a semi-implicit method in the finite element framework. We show that for the considered problems, a combination of hyperbolic and exponential enrichment functions based on an approximation of the boundary layer leads to improved accuracy compared to the conventional finite element method. It is illustrated that this approach can be more efficient than using h adaptivity to increase the accuracy of the finite element method near the boundary walls. The performance of the proposed partition-of-unity method is analyzed on several test examples for transient conduction–radiation problems in two space dimensions.
Liu, Yanfeng; Zhou, Xiaojun; Wang, Dengjia; Song, Cong; Liu, Jiaping
2015-12-15
Most building materials are porous media, and the internal diffusion coefficients of such materials have an important influences on the emission characteristics of volatile organic compounds (VOCs). The pore structure of porous building materials has a significant impact on the diffusion coefficient. However, the complex structural characteristics bring great difficulties to the model development. The existing prediction models of the diffusion coefficient are flawed and need to be improved. Using scanning electron microscope (SEM) observations and mercury intrusion porosimetry (MIP) tests of typical porous building materials, this study developed a new diffusivity model: the multistage series-connection fractal capillary-bundle (MSFC) model. The model considers the variable-diameter capillaries formed by macropores connected in series as the main mass transfer paths, and the diameter distribution of the capillary bundles obeys a fractal power law in the cross section. In addition, the tortuosity of the macrocapillary segments with different diameters is obtained by the fractal theory. Mesopores serve as the connections between the macrocapillary segments rather than as the main mass transfer paths. The theoretical results obtained using the MSFC model yielded a highly accurate prediction of the diffusion coefficients and were in a good agreement with the VOC concentration measurements in the environmental test chamber. Copyright © 2015 Elsevier B.V. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Shestakov, A I; Offner, S R
2006-09-21
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory
Energy Technology Data Exchange (ETDEWEB)
Shestakov, A I; Offner, S R
2007-03-02
We present a scheme to solve the nonlinear multigroup radiation diffusion (MGD) equations. The method is incorporated into a massively parallel, multidimensional, Eulerian radiation-hydrodynamic code with adaptive mesh refinement (AMR). The patch-based AMR algorithm refines in both space and time creating a hierarchy of levels, coarsest to finest. The physics modules are time-advanced using operator splitting. On each level, separate 'level-solve' packages advance the modules. Our multigroup level-solve adapts an implicit procedure which leads to a two-step iterative scheme that alternates between elliptic solves for each group with intra-cell group coupling. For robustness, we introduce pseudo transient continuation ({Psi}tc). We analyze the magnitude of the {Psi}tc parameter to ensure positivity of the resulting linear system, diagonal dominance and convergence of the two-step scheme. For AMR, a level defines a subdomain for refinement. For diffusive processes such as MGD, the refined level uses Dirichet boundary data at the coarse-fine interface and the data is derived from the coarse level solution. After advancing on the fine level, an additional procedure, the sync-solve (SS), is required in order to enforce conservation. The MGD SS reduces to an elliptic solve on a combined grid for a system of G equations, where G is the number of groups. We adapt the 'partial temperature' scheme for the SS; hence, we reuse the infrastructure developed for scalar equations. Results are presented. We consider a multigroup test problem with a known analytic solution. We demonstrate utility of {Psi}tc by running with increasingly larger timesteps. Lastly, we simulate the sudden release of energy Y inside an Al sphere (r = 15 cm) suspended in air at STP. For Y = 11 kT, we find that gray radiation diffusion and MGD produce similar results. However, if Y = 1 MT, the two packages yield different results. Our large Y simulation contradicts a long-standing theory
Atomic diffusion theory challenging the Cahn-Hilliard method
International Nuclear Information System (INIS)
Nastar, M.
2014-01-01
Our development of the self-consistent mean-field (SCMF) kinetic theory for nonuniform alloys leads to the statement that kinetic correlations induced by the vacancy diffusion mechanism have a dramatic effect on nano-scale diffusion phenomena, leading to nonlinear features of the interdiffusion coefficients. Lattice rate equations of alloys including nonuniform gradients of chemical potential are derived within the Bragg-Williams statistical approximation and the third shell kinetic approximation of the SCMF theory. General driving forces including deviations of the free energy from a local equilibrium thermodynamic formulation are introduced. These deviations are related to the variation of vacancy motion due to the spatial variation of the alloy composition. During the characteristic time of atomic diffusion, multiple exchanges of the vacancy with the same atoms may happen, inducing atomic kinetic correlations that depend as well on the spatial variation of the alloy composition. As long as the diffusion driving forces are uniform, the rate equations are shown to obey in this form the Onsager formalism of thermodynamics of irreversible processes (TIP) and the TIP-based Cahn-Hilliard diffusion equation. If now the chemical potential gradients are not uniform, the continuous limit of the present SCMF kinetic equations does not coincide with the Cahn-Hilliard (CH) equation. In particular, the composition gradient and higher derivative terms depending on kinetic parameters add to the CH thermodynamic-based composition gradient term. Indeed, a diffusion equation written as a mobility multiplied by a thermodynamic formulation of the driving forces is shown to be inadequate. In the reciprocal space, the thermodynamic driving force has to be multiplied by a nonlinear function of the wave vector accounting for the variation of kinetic correlations with composition inhomogeneities. Analytical expressions of the effective interdiffusion coefficient are given for two limit
The velocity correlation function in cosmic-ray diffusion theory
International Nuclear Information System (INIS)
Forman, M.A.
1977-01-01
The concept of velocity correlation functions is introduced and applied to the calculation of cosmic ray spatial diffusion coefficients. It is assumed that the pitch angle scattering coefficient is already known from some other theory, and is reasonably well-behaved. Previous results for the coefficient for diffusion parallel to the mean field are recovered when the velocity-changing mechanism is artificially restricted to pitch angle scattering. The velocity correlation method is then applied to the more general case where there are fluctuations in the local mean field. It is found that the parallel diffusion coefficient is reduced in proportion to the amplitude of the field fluctuations, and that the ratio of the perpendicular to parallel diffusion coefficients cannot be greater than 2 >/B 0 2 . It is shown in the appendix that the Liouville form of the scattering equation implies that the Fokker-Planck coefficients (Δμ 2 )/Δt=2Dsub(μμ) and (Δμ)/Δt=deltaDsub(μμ)/deltaμ, and that all higher-order coefficients are identically zero. (Auth.)
Application of differential sensitivity theory to transients with scram
International Nuclear Information System (INIS)
Parks, C.V.; Maudlin, P.J.; Weber, C.F.
1980-01-01
Differential sensitivity theory (DST) based on adjoint functions has been applied to various reactor safety problems. The most comprehensive application of DST sensitivity analysis has addressed the coupled thermal-hydraulic equations of the MELT-III fast reactor safety code, where a power ramp was imposed to eliminate the neutron point kinetics equations. In extending the above work to include realistic neutronic coupling, a DST procedure was developed for dealing with parameter discontinuities induced by dependent variables
Analytical modal diffusion theory based on flux separability
International Nuclear Information System (INIS)
Segev, M.
1987-01-01
The theory provides for an iterative solution of the mathematical problem of generating the assembly-wise power distribution in a LWR through the solution of the 2-group, multidimensional, diffusion equation. The companion problems of assembly pre-homogenization and of pin power reconstruction are of no direct concern presently. The theoretical development stems from the assumption of flux separability in X, Y and Z. The assumption derives from the notion that separability holds in a great part of the interior of a LWR assembly. More important, well accurate power maps are generated with a code based on the theoretical develpment yielded by the basic assumption
A theory of post-stall transients in axial compression systems. I - Development of equations
Moore, F. K.; Greitzer, E. M.
1985-01-01
An approximate theory is presented for post-stall transients in multistage axial compression systems. The theory leads to a set of three simultaneous nonlinear third-order partial differential equations for pressure rise, and average and disturbed values of flow coefficient, as functions of time and angle around the compressor. By a Galerkin procedure, angular dependence is averaged, and the equations become first order in time. These final equations are capable of describing the growth and possible decay of a rotating-stall cell during a compressor mass-flow transient. It is shown how rotating-stall-like and surgelike motions are coupled through these equations, and also how the instantaneous compressor pumping characteristic changes during the transient stall process.
Energy Technology Data Exchange (ETDEWEB)
Delarousse, P; Trouve, C; Jacques, R [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1962-07-01
A finite difference system is used to describe concentration transients in a gaseous diffusion plant for uranium isotope separation. The equipment used in this study is described and examples are given to illustrate the problems which have been solved with it. (authors) [French] Le comportement transitoire d'une cascade de diffusion gazeuse est represente de facon approchee par un systeme differentiel aux differences. On decrit le materiel analogique original qui a permis de simuler ce systeme. Une serie d'exemples illustre les differents problemes qui ont ete resolus au moyen de cet appareil. (auteurs)
International Nuclear Information System (INIS)
Wen Feng; Guo Liang
2007-01-01
Objective: To explore the incidence and morphological findings of transient ischemic attacks (TIA) related-focus by diffusion weighted magnetic resonance imaging(DWI), and the semi-quantitative characteristics of TIA related-focus on DWI manifestation were researched. Methods: A prospective analysis was performed on 39 TIA patients who were admitted to the Pudong New Area People Hospital and who had also undergone DWI scan 3 , and rADC ratio of the lesion was (-25.8 ± 9.01)%, and rAI ratio was(59.9 ± 12.9)% and compared with that of the contralateral side there was significant difference. Conclusion: The incidence of positivity rate of DWI is more than that obtained by conventional MR imaging. The related focus of TIA are very small and the ADC value of the lesion is decreased slightly, but averge intensity is increased highly. These data may be of value in identifying those TIA patients for whom MRI evaluation with DWI is of great clinical utility. (authors)
Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus
Energy Technology Data Exchange (ETDEWEB)
Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun [Seoul National University Bundang Hospital, Department of Radiology, Seoul National University College of Medicine, Seongnam-si (Korea); Lee, Jung Seok; Kim, Sang Yun [Seoul National University Bundang Hospital, Department of Neurology, Seoul National University College of Medicine, Seongnam-si (Korea)
2007-06-15
Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)
Diffusion-weighted imaging in transient global amnesia exposes the CA1 region of the hippocampus
International Nuclear Information System (INIS)
Lee, Ho Yun; Kim, Jae Hyoung; Weon, Young-Cheol; Youn, Sung Won; Kim, Sung Hyun; Lee, Jung Seok; Kim, Sang Yun
2007-01-01
Transient global amnesia (TGA) is characterized by a sudden onset of anterograde amnesia without alteration of consciousness or personal identity. Interestingly, recent studies have reported a high frequency of small high-signal abnormalities in the hippocampus with diffusion-weighted (DW) imaging, and ischemia has been proposed as an etiology of TGA. We hypothesized that TGA lesions occur preferentially in the CA1 region of the hippocampus, known to be susceptible to ischemia. Over a 30-month period 34 patients with TGA underwent MRI including DW imaging within 4 days of symptom onset. Patients with high-signal abnormalities in the hippocampus on the initial DW images underwent subsequent DW and T2-weighted imaging in the coronal plane to identify the precise lesion locations. Fourteen patients had small (1-3 mm) high-signal abnormalities in the hippocampus unilaterally on DW images. One of these patients had two lesions in one hippocampus and therefore in total 15 lesions were identified: four in the hippocampal head, and 11 in the body. Eleven lesions in ten patients with available coronal images were clearly demonstrated on both coronal DW and T2-weighted images and were localized to the lateral portion of the hippocampus, corresponding to the CA1 region. Lesions associated with TGA were localized exclusively to the lateral portion of the hippocampus corresponding to the CA1 region. This finding supports the ischemic etiology of TGA; however, the pathophysiological mechanism involved requires further study. (orig.)
Ichimiya, Yuko; Kaku, Noriyuki; Sakai, Yasunari; Yamashita, Fumiya; Matsuoka, Wakato; Muraoka, Mamoru; Akamine, Satoshi; Mizuguchi, Soichi; Torio, Michiko; Motomura, Yoshitomo; Hirata, Yuichiro; Ishizaki, Yoshito; Sanefuji, Masafumi; Torisu, Hiroyuki; Takada, Hidetoshi; Maehara, Yoshihiko; Ohga, Shouichi
2017-08-01
Paroxysmal sympathetic hyperactivity (PSH) is a dysautonomic condition that is associated with various types of acquired brain injuries. Traumatic brain lesions have been documented as the leading cause of PSH. However, detailed clinical features of pediatric PSH caused by intrinsic brain lesions remain to be elusive. We present a 3-year-old boy, who had been diagnosed as having cerebral palsy, developmental delay and epilepsy after perinatal hypoxia-induced brain injury. He developed status epilepticus with fever on the third day of respiratory infection. Whereas the seizure was terminated by systemic infusion of midazolam, consciousness remained disturbed for the next 48h. Serial magnetic resonance imaging studies revealed that acute encephalopathy with biphasic seizures and late reduced diffusion (AESD) evolved on 3days after the seizure. Therapeutic hypothermia was immediately introduced, however, the brain lesion extended to the whole subcortical white matters on day 8. The intermittent bilateral dilation of pupils with increased blood pressure and tachycardia were observed until day 12. Real-time monitoring of electroencephalograms ruled out the recurrent attacks of seizures. The abnormal signs of autonomic nervous system gradually ceased and never relapsed after recovery from the hypothermia. PSH or a transient condition of dysautonomia may emerge and persist during the acute phase of AESD. Copyright © 2017 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.
Solving the radiation diffusion and energy balance equations using pseudo-transient continuation
International Nuclear Information System (INIS)
Shestakov, A.I.; Greenough, J.A.; Howell, L.H.
2005-01-01
We develop a scheme for the system coupling the radiation diffusion and matter energy balance equations. The method is based on fully implicit, first-order, backward Euler differencing; Picard-Newton iterations solve the nonlinear system. We show that iterating on the radiation energy density and the emission source is more robust. Since the Picard-Newton scheme may not converge for all initial conditions and time steps, pseudo-transient continuation (Ψtc) is introduced. The combined Ψtc-Picard-Newton scheme is analyzed. We derive conditions on the Ψtc parameter that guarantee physically meaningful iterates, e.g., positive energies. Successive Ψtc iterates are bounded and the radiation energy density and emission source tend to equilibrate. The scheme is incorporated into a multiply dimensioned, massively parallel, Eulerian, radiation-hydrodynamic computer program with automatic mesh refinement (AMR). Three examples are presented that exemplify the scheme's performance. (1) The Pomraning test problem that models radiation flow into cold matter. (2) A similar, but more realistic problem simulating the propagation of an ionization front into tenuous hydrogen gas with a Saha model for the equation-of-state. (3) A 2D axisymmetric (R,Z) simulation with real materials featuring jetting, radiatively driven, interacting shocks
Cognitive Load Theory and the Effects of Transient Information on the Modality Effect
Leahy, Wayne; Sweller, John
2016-01-01
Based on cognitive load theory and the "transient information effect," this paper investigated the "modality effect" while interpreting a contour map. The length and complexity of auditory and visual text instructions were manipulated. Experiment 1 indicated that longer audio text information within a presentation was inferior…
Cassandre : a two-dimensional multigroup diffusion code for reactor transient analysis
International Nuclear Information System (INIS)
Arien, B.; Daniels, J.
1986-12-01
CASSANDRE is a two-dimensional (x-y or r-z) finite element neutronics code with thermohydraulics feedback for reactor dynamics prior to the disassembly phase. It uses the multigroup neutron diffusion theory. Its main characteristics are the use of a generalized quasistatic model, the use of a flexible multigroup point-kinetics algorithm allowing for spectral matching and the use of a finite element description. The code was conceived in order to be coupled with any thermohydraulics module, although thermohydraulics feedback is only considered in r-z geometry. In steady state criticality search is possible either by control rod insertion or by homogeneous poisoning of the coolant. This report describes the main characterstics of the code structure and provides all the information needed to use the code. (Author)
Energy Technology Data Exchange (ETDEWEB)
Hakyemez, B.; Erdogan, C.; Yildirim, N.; Gokalp, G.; Parlak, M. [Uludag Univ. Medical School, Bursa (Turkey). Dept. of Radiology
2005-11-01
Transient focal lesions of splenium of corpus callosum can be seen as a component of many central nervous system diseases, including antiepileptic drug toxicity. The conventional magnetic resonance (MR) findings of the disease are characteristic and include ovoid lesions with high signal intensity at T2-weighted MRI. Limited information exists about the diffusion-weighted MRI characteristics of these lesions vanishing completely after a period of time. We examined the conventional, FLAIR, and diffusion-weighted MR images of a patient complaining of depressive mood and anxiety disorder after 1 year receiving antiepileptic medication.
Energy Technology Data Exchange (ETDEWEB)
Jacques, R; Bilous, O [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1961-07-01
Concentration transients are examined in the case of a gaseous diffusion plant for uranium isotope separation. An application is made for a plant built with two rectifying cascades of different sizes and a stripping cascade. Transients are calculated for a change in the feed concentration, the transport and also for shutdown of a group of separating stages in one of the cascades. (authors) [French] On examine l'evolution des concentrations dans une usine de separation isotopique de l'uranium basee sur le procede de diffusion gazeuse et formee de cascades carrees. Une application est faite pour une installation formee de deux cascades enrichissantes de tailles differentes et d'une cascade appauvrissante. On calcule en particulier les regimes transitoires apres variation de la concentration d'alimentation, du transport et apres mise hors circuit d'un groupe d'etages dans l'une des cascades. (auteurs)
DEFF Research Database (Denmark)
Rode, Carsten
1998-01-01
Analytical theory of transient heat conduction.Fourier's law. General heat conducation equation. Thermal diffusivity. Biot and Fourier numbers. Lumped analysis and time constant. Semi-infinite body: fixed surface temperature, convective heat transfer at the surface, or constant surface heat flux...
Improved age-diffusion model for low-energy electron transport in solids. I. Theory
International Nuclear Information System (INIS)
Devooght, J.; Dubus, A.; Dehaes, J.C.
1987-01-01
We have developed in this paper a semianalytical electron transport model designed for parametric studies of secondary-electron emission induced by low-energy electrons (keV range) and by fast light ions (100 keV range). The primary-particle transport is assumed to be known and to give rise to an internal electron source. The importance of the nearly isotropic elastic scattering in the secondary-electron energy range (50 eV) and the slowing-down process strongly reduce the influence of the anisotropy of the internal electron source, and the internal electron flux is nearly isotropic as is evidenced by the experimental results. The differential energy behavior of the inelastic scattering kernel is very complicated and the real kernel is replaced by a synthetic scattering kernel of which parameters are obtained by energy and angle moments conservation. Through a P 1 approximation and the use of the synthetic scattering kernel, the Boltzmann equation is approximated by a diffusion--slowing-down equation for the isotropic part of the internal electron flux. The energy-dependent partial reflection boundary condition reduces to a Neumann-Dirichlet boundary condition. An analytical expression for the Green's function of the diffusion--slowing-down equation with the surface boundary condition is obtained by means of approximations close to the age-diffusion theory and the model allows for transient conditions. Independently from the ''improved age-diffusion'' model, a correction formula is developed in order to take into account the backscattering of primary electrons for an incident-electron problem
International Nuclear Information System (INIS)
Eaglesham, D.J.; Stolk, P.A.; Cheng, J.Y.; Gossmann, H.J.; Poate, J.M.; Haynes, T.E.
1995-04-01
Ion implantation is used at several critical stages of Si integrated circuit manufacturing. The authors show how {311} defects arising after implantation are responsible for both enhanced dopant diffusion during annealing, and stable dislocations post-anneal. They observe {311} defects in the earliest stages of an anneal. They subsequently undergo rapid Ostwald ripening and evaporation. At low implant doses evaporation dominates, and they can quantitatively relate the interstitials emitted from these defects to the transient enhancement in diffusivity of dopants such as B and P. At higher doses Ostwald ripening is significant, and they observe the defects to undergo a series of unfaulting reactions to form both Frank loops and perfect dislocations. They demonstrate the ability to control both diffusion and dislocations by the addition of small amounts of carbon impurities
Cooperative learning of neutron diffusion and transport theories
International Nuclear Information System (INIS)
Robinson, Michael A.
1999-01-01
A cooperative group instructional strategy is being used to teach a unit on neutron transport and diffusion theory in a first-year-graduate level, Reactor Theory course that was formerly presented in the traditional lecture/discussion style. Students are divided into groups of two or three for the duration of the unit. Class meetings are divided into traditional lecture/discussion segments punctuated by cooperative group exercises. The group exercises were designed to require the students to elaborate, summarize, or practice the material presented in the lecture/discussion segments. Both positive interdependence and individual accountability are fostered by adjusting individual grades on the unit exam by a factor dependent upon group achievement. Group collaboration was also encouraged on homework assignments by assigning each group a single grade on each assignment. The results of the unit exam have been above average in the two classes in which the cooperative group method was employed. In particular, the problem solving ability of the students has shown particular improvement. Further,the students felt that the cooperative group format was both more educationally effective and more enjoyable than the lecture/discussion format
Transient theory of double slope floating cum tilted - wick type solar still
International Nuclear Information System (INIS)
Balan, R.; Chandrasekaran, J.; Janarthanan, B.; Kumar, S.
2011-01-01
A double slope floating cum tilted-wick solar still has been fabricated and transient theory of floating cum tilted-wick type solar still has been proposed. Analytical expressions have been derived for the different temperatures components of the proposed system. For elocution of the analytical results, numerical calculations have been carried out using the meteorological parameters for a typical summer day in Coimbatore. Analytical expression results are found to be in the close agreement with the experimental results. (authors)
Jasanta PERANGINANGIN
2015-01-01
Competitive advantage is the main purposed of the business entity focusing on market base view. Resource advantage theorists put their concern to empowering resources development with resources based view, in the other side needs to redefining competitive advantage. All the competitive advantage are transient, concluded the end of competitive advantage. Redefining competitive advantage by selling migration and shrewdness outward. This research to emphasize innovation capability rarely appears...
Diffusion of Innovation Theory: A Bridge for the Research-Practice Gap in Counseling
Murray, Christine E.
2009-01-01
This article presents a diffusion of innovation theory-based framework for addressing the gap between research and practice in the counseling profession. The author describes the nature of the research-practice gap and presents an overview of diffusion of innovation theory. On the basis of the application of several major postulates of diffusion…
Self-Determination Theory Application In The Discharge Of Patients With Transient Ischemic Attack
Directory of Open Access Journals (Sweden)
Tahere Sarboozi Hosein Abadi
2017-02-01
Full Text Available Background: The principle of transient ischemic attack treatment is lifestyle modification and pharmacological treatment that would reduce recurrence and incidence of stroke. Lifestyle changes require follow-up care and continuity of nurse and patient relationships, but the current training does not meet this need. The trainings based on motivating theory such as self-determination, besides continuity of the relationship with patient, improve his/her incentive, specially of it is carried out at the discharge time. Therefore, this study has been done by the purpose of defining the impact of discharge plan based on self-determination theory on the lifestyle patients with transient ischemic attack. Methodology: The analysis has been done on 57, 18-90 years old clinical random patients in Tehran hospitals (29 cases and 28 controls in 2015. Data were collected by demographic questionnaire at the beginning and health-promoting lifestyle questionnaire(second edition were collected at the end of the study. Discharge plan based on self-determination theory, including patients and families meeting in hospital and telephone counseling during the 12 weeks after discharge was accomplished in cases group. The control group received only routine hospital care. Data were analyzed by t-test and chi- squre test. Results: The score of lifestyle was similar in both groups (p> .05 at beginning of the study, but at the end of the study, the average score of cases group (17.1 ± 164.2 significantly higher than the control group (17.6 ± 118.3 (p < 0.001. Furthermore, At the end of study, the mean scores of nutrition, physical activity, stress management, interpersonal relationships, spiritual growth and responsibility in the lifestyle cases group was significantly higher than the control group (p <.001. The frequency of transient ischemic attacks after discharge in the cases group (13.8%, significantly lower than the control group (46.4%, respectively (p = .016
Evaluation of diffusion coefficients in multicomponent mixtures by means of the fluctuation theory
DEFF Research Database (Denmark)
Shapiro, Alexander
2003-01-01
We derive general expressions for diffusion coefficients in multicomponent non-ideal gas or liquid mixtures. The derivation is based on the general statistical theory of fluctuations around an equilibrium state. The matrix of diffusion coefficients is expressed in terms of the equilibrium...... characteristics. We demonstrate on several examples that the developed theory is in agreement with the established experimental facts and dependencies for the diffusion coefficients. (C) 2002 Elsevier Science B.V. All rights reserved....
Literature survey of matrix diffusion theory and of experiments and data including natural analogues
International Nuclear Information System (INIS)
Ohlsson, Yvonne; Neretnieks, I.
1995-08-01
Diffusion theory in general and matrix diffusion in particular has been outlined, and experimental work has been reviewed. Literature diffusion data has been systematized in the form of tables and data has been compared and discussed. Strong indications of surface diffusion and anion exclusion have been found, and natural analogue studies and in-situ experiments suggest pore connectivity in the scale of meters. Matrix diffusion, however, mostly seem to be confined to zones of higher porosity extending only a few centimeters into the rock. Surface coating material do not seem to hinder sorption or diffusion into the rock. 54 refs, 18 tabs
International Nuclear Information System (INIS)
De Windt, Laurent; Marsal, François; Corvisier, Jérôme; Pellegrini, Delphine
2014-01-01
Highlights: • This paper deals with the geochemistry of underground HLW disposals. • The oxic transient is a key issue in performance assessment (e.g. corrosion, redox). • A reactive transport model is explicitly coupled to gas diffusion and reactivity. • Application to in situ experiment (Tournemire laboratory) and HLW disposal cell. • Extent of the oxidizing/reducing front is investigated by sensitivity analysis. - Abstract: The oxic transient in geological radioactive waste disposals is a key issue for the performance of metallic components that may undergo high corrosion rates under such conditions. A previous study carried out in situ in the argillite formation of Tournemire (France) has suggested that oxic conditions could have lasted several years. In this study, a multiphase reactive transport model is performed with the code HYTEC to analyze the balance between the kinetics of pyrite oxidative dissolution, the kinetics of carbon steel corrosion and oxygen gas diffusion when carbon steel components are emplaced in the geological medium. Two cases were modeled: firstly, the observations made in situ have been reproduced, and the model established was then applied to a disposal cell for high-level waste (HLW) in an argillaceous formation, taking into account carbon steel components and excavated damaged zones (EDZ). In a closed system, modeling leads to a complete and fast consumption of oxygen in both cases. Modeling results are more consistent with the in situ test while considering residual voids between materials and/or a water unsaturated state allowing for oxygen gas diffusion (open conditions). Under similar open conditions and considering ventilation of the handling drifts, a redox contrast occurs between reducing conditions at the back of the disposal cell (with anoxic corrosion of steel and H 2 production) and oxidizing conditions at the front of the cell (with oxic corrosion of steel). The extent of the oxidizing/reducing front in the
Zhang, Yong; Green, Christopher T.; Tick, Geoffrey R.
2015-01-01
This study evaluates the role of the Peclet number as affected by molecular diffusion in transient anomalous transport, which is one of the major knowledge gaps in anomalous transport, by combining Monte Carlo simulations and stochastic model analysis. Two alluvial settings containing either short- or long-connected hydrofacies are generated and used as media for flow and transport modeling. Numerical experiments show that 1) the Peclet number affects both the duration of the power-law segment of tracer breakthrough curves (BTCs) and the transition rate from anomalous to Fickian transport by determining the solute residence time for a given low-permeability layer, 2) mechanical dispersion has a limited contribution to the anomalous characteristics of late-time transport as compared to molecular diffusion due to an almost negligible velocity in floodplain deposits, and 3) the initial source dimensions only enhance the power-law tail of the BTCs at short travel distances. A tempered stable stochastic (TSS) model is then applied to analyze the modeled transport. Applications show that the time-nonlocal parameters in the TSS model relate to the Peclet number, Pe. In particular, the truncation parameter in the TSS model increases nonlinearly with a decrease in Pe due to the decrease of the mean residence time, and the capacity coefficient increases with an increase in molecular diffusion which is probably due to the increase in the number of immobile particles. The above numerical experiments and stochastic analysis therefore reveal that the Peclet number as affected by molecular diffusion controls transient anomalous transport in alluvial aquifer–aquitard complexes.
International Nuclear Information System (INIS)
Hayward, Robert M.; Rahnema, Farzad; Zhang, Dingkang
2013-01-01
Highlights: ► A new hybrid stochastic–deterministic transport theory method to couple with diffusion theory. ► The method is implemented in 2D hexagonal geometry. ► The new method produces excellent results when compared with Monte Carlo reference solutions. ► The method is fast, solving all test cases in less than 12 s. - Abstract: A new hybrid stochastic–deterministic transport theory method, which is designed to couple with diffusion theory, is presented. The new method is an extension of the incident flux response expansion method, and it combines the speed of diffusion theory with the accuracy of transport theory. With ease of use in mind, the new method is derived in such a way that it can be implemented with only minimal modifications to an existing diffusion theory method. A new angular expansion, which is necessary for the diffusion theory coupling, is developed in 2D and 3D. The method is implemented in 2D hexagonal geometry, and an HTTR benchmark problem is used to test its accuracy in a standalone configuration. It is found that the new method produces excellent results (with average relative error in partial current less than 0.033%) when compared with Monte Carlo reference solutions. Furthermore, the method is fast, solving all test cases in less than 12 s
International Nuclear Information System (INIS)
Mueller, E.Z.
1991-01-01
An equivalent diffusion theory PWR reflector model is presented, which has as its basis Smith's generalisation of Koebke's Equivalent Theory. This method is an adaptation, in one-dimensional slab geometry, of the Generalised Equivalence Theory (GET). Since the method involves the renormalisation of the GET discontinuity factors at nodal interfaces, it is called the Normalised Generalised Equivalence Theory (NGET) method. The advantages of the NGET method for modelling the ex-core nodes of a PWR are summarized. 23 refs
Transient interfacial tension and dilatational rheology of diffuse polymer-polymer interfaces
Peters, G.W.M.; Zdravkov, A.N.; Meijer, H.E.H.
2005-01-01
We demonstrate the influence of molecular weight and molecular weightasymmetry across an interface on the transient behavior of the interfacial tension. The interfacial tension was measured as a function of time for a range of polymer combinations with a broadrange of interfacial properties using a
Understanding Diffusion Theory and Fick's Law through Food and Cooking
Zhou, Larissa; Nyberg, Kendra; Rowat, Amy C.
2015-01-01
Diffusion is critical to physiological processes ranging from gas exchange across alveoli to transport within individual cells. In the classroom, however, it can be challenging to convey the concept of diffusion on the microscopic scale. In this article, we present a series of three exercises that use food and cooking to illustrate diffusion…
International Nuclear Information System (INIS)
Sathyabama, N.; Mohanakrishnan, P.; Lee, S.M.
1994-01-01
A systematic analysis has been performed by 3 dimensional diffusion and transport methods to calculate the measured control rod worths and subassembly wise power distribution in fast breeder test reactor. Geometry corrections (rectangular to hexagonal and diffusion to transport corrections are estimated for multiplication factors and control rod worths. Calculated control rod worths by diffusion and transport theory are nearly the same and 10% above measured values. Power distribution in the core periphery is over predicted (15%) by diffusion theory. But, this over prediction reduces to 8% by use of the S N method. (authors). 9 refs., 4 tabs., 3 fig
On the theory of helium diffusion in stellar outer layers
International Nuclear Information System (INIS)
Ponce D, S.; Verga, A.D.
1986-01-01
We discuss the approximations usually made in the different approaches to diffusion in stellar outer layers. We analyze the hypotheses of binary diffusion and diffusion over a non altered background both analytically and numerically. Numerical calculations are applied to central stars of planetary nebulae in which a depletion of helium is observed. We find that in this case helium diffusion may be considered as a binary process but cannot be decoupled from the structure computation. We present an alternative method for studying diffusion and apply it to the central stars. We thus solve a stationary hydrodynamic model for a completely ionized H-He plasma, which takes into account consistently the behavior of all the species. We find equilibrium abundance distributions very different from those obtained according to the trace element approaches while helium and electron densities increase with depth in the atmosphere, protons tend to decrease. However, preliminary studies of the stability show that these are not the actual distributions. (author)
Transient effect of soil thermal diffusivity on performance of EATHE system
Mathur, Anuj; Srivastava, Ayushman; Mathur, Jyotirmay; Mathur, Sanjay; Agrawal, G.D.
2015-01-01
This paper presents effect of thermo-physical properties of soil on performance of an Earth Air Tunnel Heat Exchanger (EATHE). The analysis has been carried out using a validated three-dimensional, transient numerical model for three different types of soil. The governing equations, based on the k–ε model and energy equation were used to describe the turbulence and heat transfer phenomena, are solved by using finite volume method. Comparisons were made in terms of temperature drop, heat trans...
International Nuclear Information System (INIS)
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-01-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Energy Technology Data Exchange (ETDEWEB)
Kuwahara, Tomotaka, E-mail: tomotaka.phys@gmail.com [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); WPI, Advanced Institute for Materials Research, Tohoku University, Sendai 980-8577 (Japan); Mori, Takashi [Department of Physics, Graduate School of Science, University of Tokyo, Bunkyo-ku, Tokyo 113-0033 (Japan); Saito, Keiji [Department of Physics, Keio University, 3-14-1 Hiyoshi, Kohoku-ku, Yokohama, 223-8522 (Japan)
2016-04-15
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet–Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems. -- Highlights: •A general framework to describe transient dynamics for periodically driven systems. •The theory is applicable to generic quantum many-body systems including long-range interacting systems. •Physical meaning of the truncation of the Floquet–Magnus expansion is rigorously established. •New mechanism of the prethermalization is proposed. •Revealing an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed.
Application of diffusion theory to neutral atom transport in fusion plasmas
International Nuclear Information System (INIS)
Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.
1987-01-01
It is found that the energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and the diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium, even for small values of c, the ratio of the scattering cross-section to the total cross-section. Second, the effective value of c at low energy is very close to 1 because of the downscattering via collisions of high energy neutrals. The first reason is proven computationally and theoretically by solving the transport equation in a power series in c and solving the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN. Earlier studies comparing one-speed diffusion and transport theory indicated that the diffusion theory would be inaccurate. A detailed analysis shows that this conclusion is limited to a very specific case. Surprisingly, for a very wide range of conditions and when energy dependence is included, the diffusion theory is highly accurate. (author)
Maqsood, Asghari; Anis-ur-Rehman, M.
2013-12-01
Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes1. The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids3 and high-TC superconductors4. The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations2,5. The tps-sensor has been used to measure thermal conductivities from 0.001 Wm-1K-1to 600 Wm-1K-1 and temperature ranges covered from 77K- 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials.
International Nuclear Information System (INIS)
Maqsood, Asghari; Anis-ur-Rehman, M
2013-01-01
Thermal conductivity and thermal diffusivity are two important physical properties for designing any food engineering processes 1 . The knowledge of thermal properties of the elements, compounds and different materials in many industrial applications is a requirement for their final functionality. Transient plane source (tps) sensors are reported 2 to be useful for the simultaneous measurement of thermal conductivity, thermal diffusivity and volumetric heat capacity of insulators, conductor liquids 3 and high-T C superconductors 4 . The tps-sensor consists of a resistive element in the shape of double spiral made of 10 micrometer thick Ni-foils covered on both sides with 25 micrometer thick Kapton. This sensor acts both as a heat source and a resistance thermometer for recording the time dependent temperature increase. From the knowledge of the temperature co-efficient of the metal spiral, the temperature increase of the sensor can be determined precisely by placing the sensor in between two surfaces of the same material under test. This temperature increase is then related to the thermal conductivity, thermal diffusivity and volumetric heat capacity by simple relations 2,5 . The tps-sensor has been used to measure thermal conductivities from 0.001 Wm −1 K −1 to 600 Wm −1 K −1 and temperature ranges covered from 77K– 1000K. This talk gives the design, advantages and limitations of the tpl-sensor along with its applications to the measurementof thermal properties in a variety of materials
International Nuclear Information System (INIS)
Agarwal, A.; Gossmann, H.-.; Eaglesham, D.J.; Pelaz, L.; Jacobson, D.C.; Haynes, T.E.; Erokhin, Y.E.
1997-01-01
The reduction of transient enhanced diffusion (TED) with reduced implantation energy has been investigated and quantified. A fixed dose of 1x10 14 cm -2 Si + was implanted at energies ranging from 0.5 to 20 keV into boron doping superlattices and enhanced diffusion of the buried boron marker layers was measured for anneals at 810, 950, and 1050 degree C. A linearly decreasing dependence of diffusivity enhancement on decreasing Si + ion range is observed at all temperatures, extrapolating to ∼1 for 0 keV. This is consistent with our expectation that at zero implantation energy there would be no excess interstitials from the implantation and hence no TED. Monte Carlo modeling and continuum simulations are used to fit the experimental data. The results are consistent with a surface recombination length for interstitials of <10 nm. The data presented here demonstrate that in the range of annealing temperatures of interest for p-n junction formation, TED is reduced at smaller ion implantation energies and that this is due to increased interstitial annihilation at the surface. copyright 1997 American Institute of Physics
Diffuse-charge effects on the transient response of electrochemical cells
Soestbergen, M.; Biesheuvel, P.M.; Bazant, M.Z.
2010-01-01
We present theoretical models for the time-dependent voltage of an electrochemical cell in response to a current step, including effects of diffuse charge (or “space charge”) near the electrodes on Faradaic reaction kinetics. The full model is based on the classical Poisson-Nernst-Planck equations
Czech Academy of Sciences Publication Activity Database
Zoremba, N.; Homola, Aleš; Šlais, Karel; Voříšek, Ivan; Rossaint, R.; Lehmenkühler, A.; Syková, Eva
2008-01-01
Roč. 28, č. 10 (2008), s. 1665-1673 ISSN 0271-678X R&D Projects: GA MŠk(CZ) LC554; GA ČR GA305/06/1316 Institutional research plan: CEZ:AV0Z50390512 Keywords : Diffusion * Edema * Extracellular space Subject RIV: FH - Neurology Impact factor: 5.741, year: 2008
International Nuclear Information System (INIS)
Sampaio, P.A.B. de.
1987-08-01
Some modifications in Teach-C computer program to analyse the heat conduction with convective heat transport are presented. The utilization of the program to solve a convective - diffusion problem is studied and the results are compared with an analysis of the same problem, in steady - state conditions, by finite element method [pt
Theory of collective diffusion in two-dimensional colloidal suspensions
Czech Academy of Sciences Publication Activity Database
Chvoj, Zdeněk; Lahtinen, J. M.; Ala-Nissila, T.
-, - (2004), s. 1-8 ISSN 1742-5468 R&D Projects: GA AV ČR IAA1010207 Institutional research plan: CEZ:AV0Z1010914 Keywords : surface diffusion * Brownian motion * fluctuations Subject RIV: BE - Theoretical Physics
Linear extended neutron diffusion theory for semi-in finites homogeneous means
International Nuclear Information System (INIS)
Vazquez R, R.; Vazquez R, A.; Espinosa P, G.
2009-10-01
Originally developed for heterogeneous means, the linear extended neutron diffusion theory is applied to the limit case of monoenergetic neutron diffusion in a semi-infinite homogeneous mean with a neutron source, located in the coordinate origin situated in the frontier of dispersive material. The monoenergetic neutron diffusion is studied taking into account the spatial deviations in the neutron flux to the interfacial current caused by the neutron source, as well as the influence of the spatial deviations in the absorption rate. The developed pattern is an unidimensional model for an energy group obtained of application of volumetric average diffusion equation in the moderator. The obtained results are compared against the classic diffusion theory and qualitatively against the neutron transport theory. (Author)
A statistical theory on the turbulent diffusion of Gaussian puffs
International Nuclear Information System (INIS)
Mikkelsen, T.; Larsen, S.E.; Pecseli, H.L.
1982-12-01
The relative diffusion of a one-dimensional Gaussian cloud of particles is related to a two-particle covariance function in a homogeneous and stationary field of turbulence. A simple working approximation is suggested for the determination of this covariance function in terms of entirely Eulerian fields. Simple expressions are derived for the growth of the puff's standard deviation for diffusion times that are small compared to the integral time scale of the turbulence. (Auth.)
Bremmer, Rolf H.; van Gemert, Martin J. C.; Faber, Dirk J.; van Leeuwen, Ton G.; Aalders, Maurice C. G.
2013-01-01
Diffuse reflectance spectra are used to determine the optical properties of biological samples. In medicine and forensic science, the turbid objects under study often possess large absorption and/or scattering properties. However, data analysis is frequently based on the diffusion approximation to
Field theory of absorbing phase transitions with a non-diffusive conserved field
International Nuclear Information System (INIS)
Pastor-Satorras, R.; Vespignani, A.
2000-04-01
We investigate the critical behavior of a reaction-diffusion system exhibiting a continuous absorbing-state phase transition. The reaction-diffusion system strictly conserves the total density of particles, represented as a non-diffusive conserved field, and allows an infinite number of absorbing configurations. Numerical results show that it belongs to a wide universality class that also includes stochastic sandpile models. We derive microscopically the field theory representing this universality class. (author)
AlHarbi, Nawaf N. S.; Treagust, David F.; Chandrasegaran, A. L.; Won, Mihye
2015-01-01
This study investigated the understanding of diffusion, osmosis and particle theory of matter concepts among 192 pre-service science teachers in Saudi Arabia using a 17-item two-tier multiple-choice diagnostic test. The data analysis showed that the pre-service teachers' understanding of osmosis and diffusion concepts was mildly correlated with…
DEFF Research Database (Denmark)
Bording, Thue Sylvester; Nielsen, Søren Bom; Balling, Niels
2016-01-01
and volumetric heat capacity, and thereby also thermal diffusivity, are measured simultaneously. As the density of samples is easily determined independently, specific heat capacity may also be determined. Finite element formulation provides a flexible forward solution for heat transfer across the bar...... and thermal properties are estimated by inverse Monte Carlo modelling. This methodology enables a proper quantification of experimental uncertainties on measured thermal properties. The developed methodology was applied to laboratory measurements of various materials, including a standard ceramic material......-3 %, and for diffusivity uncertainty may be reduced to about 3-5 %. The main uncertainty originates from the presence of thermal contact resistance associated with the internal interfaces of the bar. They are not resolved during inversion, and it is highly important that they are minimized by careful sample preparation....
Kuwahara, Tomotaka; Mori, Takashi; Saito, Keiji
2016-04-01
This work explores a fundamental dynamical structure for a wide range of many-body quantum systems under periodic driving. Generically, in the thermodynamic limit, such systems are known to heat up to infinite temperature states in the long-time limit irrespective of dynamical details, which kills all the specific properties of the system. In the present study, instead of considering infinitely long-time scale, we aim to provide a general framework to understand the long but finite time behavior, namely the transient dynamics. In our analysis, we focus on the Floquet-Magnus (FM) expansion that gives a formal expression of the effective Hamiltonian on the system. Although in general the full series expansion is not convergent in the thermodynamics limit, we give a clear relationship between the FM expansion and the transient dynamics. More precisely, we rigorously show that a truncated version of the FM expansion accurately describes the exact dynamics for a certain time-scale. Our theory reveals an experimental time-scale for which non-trivial dynamical phenomena can be reliably observed. We discuss several dynamical phenomena, such as the effect of small integrability breaking, efficient numerical simulation of periodically driven systems, dynamical localization and thermalization. Especially on thermalization, we discuss a generic scenario on the prethermalization phenomenon in periodically driven systems.
Current status of models for transient phenomena in dopant diffusion and activation
International Nuclear Information System (INIS)
Pichler, P.; Stiebel, D.
2002-01-01
Transient phenomena caused by ion-implantation processes have been studied for more than 25 years now with a continuously increasing number of research articles published in this field per year. One driving force of this research is the ongoing miniaturization of ULSI MOS and bipolar technology which uses extensively the capabilities of technology-computer-aided-design (TCAD). The other driving force which attracts also academic institutions and research institutes is the high complexity of the phenomena, involving the interaction of dopants, intrinsic point defects, extended defects and impurities like carbon as well as the interactions of mobile defects with surfaces and interfaces and their redistribution in multilayer structures. This paper outlines some recent advances towards a quantitative description of such phenomena
Application of response theory to steam venting during a loss of AC power transient
Energy Technology Data Exchange (ETDEWEB)
Cady, K.B.; Miller, R.J.
1987-05-01
We have applied the theory of response to the loss of AC power transient for an LMFBR design to determine the ultimate loss of coolant inventory and the sensitivity of this figure with respect to the initial conditions and input parameters. Using a simple four region heat transfer model, the analysis shows that 3717 kg coolant are vented after feed water is lost and before venting stops. The sensitivity analysis reveals that this figure is strongly dependent on design parameters and system assumptions. The uncertainty in the lost inventory caused by the uncertainties and correlations in the input parameters and initial conditions is found to be 3464 kg. We thus report the result of the calculation as lost inventory (kg)=3717+-3464 and conclude that the available inventory of 8775 kg is sufficient to ensure an adequate heat sink.
Theory of spin-lattice relaxation of diffusing light nuclei in glasses
International Nuclear Information System (INIS)
Schirmer, A.; Schirmacher, W.
1988-01-01
NMR data of diffusion-induced spin-lattice relaxation in glasses cannot generally be interpreted in the framework of the classical theory of Bloembergen, Purcell and Pound (BPP). Since it is based on exponential density relaxation, generally bnot found in glasses, the BPP formula must be generalized. Here a combination of standard relaxation theory with a hopping model for diffusion in glasses is present. It is shown that the observed anomaties in the NMR data can be explained as a result of anomalous diffusion. 25 refs.; 1 figure
On the Emergence and Diffusion of Technological Capabilities and the Theory of the MNC
DEFF Research Database (Denmark)
Blomkvist, Katarina; Kappen, Philip; Zander, Ivo
2015-01-01
This paper intersects extant theories of the MNC with empirically observed patterns in the intra-company emergence and diffusion of technological capabilities. It draws upon a database containing the complete patenting history of 24 Swedish multinationals over the 1890-2008 period, which allows...... as distinctive and differentiated diffusion patterns across headquarters, greenfield subsidiaries, and acquired units in the MNC group. We conclude that a theory of the MNC should recognize the shift towards more equal conditions for the generation of new technology within the multinational organization......, but that within this overall development some conspicuous inequalities in intra-company capability dif-fusion remain to be accounted for....
INNOVATION AND DIFFUSION IN SMALL FIRMS - THEORY AND EVIDENCE
NOOTEBOOM, B
1994-01-01
The article provides an inventory of the strengths and weaknesses of small firms in a dynamic context. To do this it considers verbal accounts of the processes of innovation and diffusion, as well as quantitative studies testing cause-effect relations. ft consider both economic and noneconomic
Dense fluid self-diffusion coefficient calculations using perturbation theory and molecular dynamics
Directory of Open Access Journals (Sweden)
COELHO L. A. F.
1999-01-01
Full Text Available A procedure to correlate self-diffusion coefficients in dense fluids by using the perturbation theory (WCA coupled with the smooth-hard-sphere theory is presented and tested against molecular simulations and experimental data. This simple algebraic expression correlates well the self-diffusion coefficients of carbon dioxide, ethane, propane, ethylene, and sulfur hexafluoride. We have also performed canonical ensemble molecular dynamics simulations by using the Hoover-Nosé thermostat and the mean-square displacement formula to compute self-diffusion coefficients for the reference WCA intermolecular potential. The good agreement obtained from both methods, when compared with experimental data, suggests that the smooth-effective-sphere theory is a useful procedure to correlate diffusivity of pure substances.
International Nuclear Information System (INIS)
Ahnert, C.; Aragones, J.M.
1982-01-01
The Carmen code (theory and user's manual) is described. This code for assembly and core calculations uses diffusion theory (Citation), with feedback in the cross sections by zone due to the effects of burnup, water density, fuel temperature, Xenon and Samarium. The burnup calculation of a full cycle is solved in only an execution of Carmen, and in a reduced computer time. (auth.)
Applications of a general random-walk theory for confined diffusion.
Calvo-Muñoz, Elisa M; Selvan, Myvizhi Esai; Xiong, Ruichang; Ojha, Madhusudan; Keffer, David J; Nicholson, Donald M; Egami, Takeshi
2011-01-01
A general random walk theory for diffusion in the presence of nanoscale confinement is developed and applied. The random-walk theory contains two parameters describing confinement: a cage size and a cage-to-cage hopping probability. The theory captures the correct nonlinear dependence of the mean square displacement (MSD) on observation time for intermediate times. Because of its simplicity, the theory also requires modest computational requirements and is thus able to simulate systems with very low diffusivities for sufficiently long time to reach the infinite-time-limit regime where the Einstein relation can be used to extract the self-diffusivity. The theory is applied to three practical cases in which the degree of order in confinement varies. The three systems include diffusion of (i) polyatomic molecules in metal organic frameworks, (ii) water in proton exchange membranes, and (iii) liquid and glassy iron. For all three cases, the comparison between theory and the results of molecular dynamics (MD) simulations indicates that the theory can describe the observed diffusion behavior with a small fraction of the computational expense. The confined-random-walk theory fit to the MSDs of very short MD simulations is capable of accurately reproducing the MSDs of much longer MD simulations. Furthermore, the values of the parameter for cage size correspond to the physical dimensions of the systems and the cage-to-cage hopping probability corresponds to the activation barrier for diffusion, indicating that the two parameters in the theory are not simply fitted values but correspond to real properties of the physical system.
Application of diffusion theory to the transport of neutral particles in fusion plasmas
International Nuclear Information System (INIS)
Hasan, M.Z.
1985-01-01
It is shown that the widely held view that diffusion theory can not provide good accuracy for the transport of neutral particles in fusion plasmas is misplaced. In fact, it is shown that multigroup diffusion theory gives quite good accuracy as compared to the transport theory. The reasons for this are elaborated and some of the physical and theoretical reasons which make the multigroup diffusion theory provide good accuracy are explained. Energy dependence must be taken into consideration to obtain a realistic neutral atom distribution in fusion plasmas. There are two reasons for this; presence of either is enough to necessitate an energy dependent treatment. First, the plasma temperature varies spatially, and second, the ratio of charge-exchange to total plasma-neutral interaction cross section (c) is not close to one. A computer code to solve the one-dimensional multigroup diffusion theory in general geometry (slab, cylindrical and spherical) has been written for use on Cray computers, and its results are compared with those from the one-dimensional transport code ANISN to support the above finding. A fast, compact and versatile two-dimensional finite element multigroup diffusion theory code, FINAT, in X-Y and R-Z cylindrical/toroidal geometries has been written for use on CRAY computers. This code has been compared with the two dimensional transport code DOT-4.3. The accuracy is very good, and FENAT runs much faster compared even to DOT-4.3 which is a finite difference code
A simple Boltzmann transport equation for ballistic to diffusive transient heat transport
International Nuclear Information System (INIS)
Maassen, Jesse; Lundstrom, Mark
2015-01-01
Developing simplified, but accurate, theoretical approaches to treat heat transport on all length and time scales is needed to further enable scientific insight and technology innovation. Using a simplified form of the Boltzmann transport equation (BTE), originally developed for electron transport, we demonstrate how ballistic phonon effects and finite-velocity propagation are easily and naturally captured. We show how this approach compares well to the phonon BTE, and readily handles a full phonon dispersion and energy-dependent mean-free-path. This study of transient heat transport shows (i) how fundamental temperature jumps at the contacts depend simply on the ballistic thermal resistance, (ii) that phonon transport at early times approach the ballistic limit in samples of any length, and (iii) perceived reductions in heat conduction, when ballistic effects are present, originate from reductions in temperature gradient. Importantly, this framework can be recast exactly as the Cattaneo and hyperbolic heat equations, and we discuss how the key to capturing ballistic heat effects is to use the correct physical boundary conditions
CYLFUX, Fast Reactor Reactivity Transients Simulation in LWR by 2-D 2 Group Diffusion
International Nuclear Information System (INIS)
Schmidt, A.
1973-01-01
1 - Nature of physical problem solved: A 2-dimensional calculation of the 2-group, space-dependent neutron diffusion equations is performed in r-z geometry using an arbitrary number of groups of delayed neutron precursors. The program is designed to simulate fast reactivity excursions in light water reactors taking into account Doppler feedback via adiabatic heatup of fuel. Axial motions of control rods may be considered including scram action on option. 2 - Method of solution: The differential equations are solved at each time step by an explicit finite difference method using two time levels. The stationary distributions are obtained by using the same algorithm. 3 - Restrictions on the complexity of the problem: No restriction to the number of space points and delayed neutron energy groups besides the computer size
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
Energy Technology Data Exchange (ETDEWEB)
Heusen, M.; Shalchi, A., E-mail: husseinm@myumanitoba.ca, E-mail: andreasm4@yahoo.com [Department of Physics and Astronomy, University of Manitoba, Winnipeg, MB R3T 2N2 (Canada)
2017-04-20
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Numerical Test of Analytical Theories for Perpendicular Diffusion in Small Kubo Number Turbulence
International Nuclear Information System (INIS)
Heusen, M.; Shalchi, A.
2017-01-01
In the literature, one can find various analytical theories for perpendicular diffusion of energetic particles interacting with magnetic turbulence. Besides quasi-linear theory, there are different versions of the nonlinear guiding center (NLGC) theory and the unified nonlinear transport (UNLT) theory. For turbulence with high Kubo numbers, such as two-dimensional turbulence or noisy reduced magnetohydrodynamic turbulence, the aforementioned nonlinear theories provide similar results. For slab and small Kubo number turbulence, however, this is not the case. In the current paper, we compare different linear and nonlinear theories with each other and test-particle simulations for a noisy slab model corresponding to small Kubo number turbulence. We show that UNLT theory agrees very well with all performed test-particle simulations. In the limit of long parallel mean free paths, the perpendicular mean free path approaches asymptotically the quasi-linear limit as predicted by the UNLT theory. For short parallel mean free paths we find a Rechester and Rosenbluth type of scaling as predicted by UNLT theory as well. The original NLGC theory disagrees with all performed simulations regardless what the parallel mean free path is. The random ballistic interpretation of the NLGC theory agrees much better with the simulations, but compared to UNLT theory the agreement is inferior. We conclude that for this type of small Kubo number turbulence, only the latter theory allows for an accurate description of perpendicular diffusion.
Theory of diffusion of rare gases in solids
International Nuclear Information System (INIS)
Lidiard, A.B.
1980-01-01
This paper reviews the basic theoretical description of the solubility and diffusion of rare gas atoms in crystalline solids. It then shows how this description can be used in conjunction with atomistic calculations to understand experimental observations. This understanding is particularly good for ionic compounds and a brief summary of the present situation is given for three main classes, namely those with the rocksalt structure, the fluorite structure and the caesium chloride structure. (author)
Donovan, Preston; Chehreghanianzabi, Yasaman; Rathinam, Muruhan; Zustiak, Silviya Petrova
2016-01-01
The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.
Directory of Open Access Journals (Sweden)
Preston Donovan
Full Text Available The study of diffusion in macromolecular solutions is important in many biomedical applications such as separations, drug delivery, and cell encapsulation, and key for many biological processes such as protein assembly and interstitial transport. Not surprisingly, multiple models for the a-priori prediction of diffusion in macromolecular environments have been proposed. However, most models include parameters that are not readily measurable, are specific to the polymer-solute-solvent system, or are fitted and do not have a physical meaning. Here, for the first time, we develop a homogenization theory framework for the prediction of effective solute diffusivity in macromolecular environments based on physical parameters that are easily measurable and not specific to the macromolecule-solute-solvent system. Homogenization theory is useful for situations where knowledge of fine-scale parameters is used to predict bulk system behavior. As a first approximation, we focus on a model where the solute is subjected to obstructed diffusion via stationary spherical obstacles. We find that the homogenization theory results agree well with computationally more expensive Monte Carlo simulations. Moreover, the homogenization theory agrees with effective diffusivities of a solute in dilute and semi-dilute polymer solutions measured using fluorescence correlation spectroscopy. Lastly, we provide a mathematical formula for the effective diffusivity in terms of a non-dimensional and easily measurable geometric system parameter.
Nasrabad, Afshin Eskandari; Laghaei, Rozita; Eu, Byung Chan
2005-04-28
In previous work on the density fluctuation theory of transport coefficients of liquids, it was necessary to use empirical self-diffusion coefficients to calculate the transport coefficients (e.g., shear viscosity of carbon dioxide). In this work, the necessity of empirical input of the self-diffusion coefficients in the calculation of shear viscosity is removed, and the theory is thus made a self-contained molecular theory of transport coefficients of liquids, albeit it contains an empirical parameter in the subcritical regime. The required self-diffusion coefficients of liquid carbon dioxide are calculated by using the modified free volume theory for which the generic van der Waals equation of state and Monte Carlo simulations are combined to accurately compute the mean free volume by means of statistical mechanics. They have been computed as a function of density along four different isotherms and isobars. A Lennard-Jones site-site interaction potential was used to model the molecular carbon dioxide interaction. The density and temperature dependence of the theoretical self-diffusion coefficients are shown to be in excellent agreement with experimental data when the minimum critical free volume is identified with the molecular volume. The self-diffusion coefficients thus computed are then used to compute the density and temperature dependence of the shear viscosity of liquid carbon dioxide by employing the density fluctuation theory formula for shear viscosity as reported in an earlier paper (J. Chem. Phys. 2000, 112, 7118). The theoretical shear viscosity is shown to be robust and yields excellent density and temperature dependence for carbon dioxide. The pair correlation function appearing in the theory has been computed by Monte Carlo simulations.
International Nuclear Information System (INIS)
Ammann, W.
1983-01-01
After a short introduction of the theory of dynamic plasticity, the possible applications of this theory on reinforced concrete structures under transient loading are discussed. Estimates can be obtained by relations giving lower and upper limits for dynamically loaded supporting beams. A procedure similar for the mode approximation method is described for the calculation of beams after a sudden failure of a support. (orig.) [de
Theory of Moessbauer line broadening due to diffusion
International Nuclear Information System (INIS)
Schroeder, K.; Wolf, D.; Dederichs, P.H.
1981-12-01
We have calculated the line broadening of the Moessbauer line due to diffusion of Moessbauer atoms via single vacanices. We take into account the perturbation of vacancy jumps in the neighbourhood of an impurity Moessbauer atom (e.g. Fe in Al) using the 5-frequency model. The anisotropy of the line width is given by the Fourier transform of the final distribution of a Moessbauer atom after an encounter with a vacancy. This distribution is calculated by Monte Carlo computer simulation. 3 figures, 1 tables
International Nuclear Information System (INIS)
Kubaschewski, O.
1983-01-01
The diffusion rate values of titanium, its compounds and alloys are summarized and tabulated. The individual chemical diffusion coefficients and self-diffusion coefficients of certain isotopes are given. Experimental methods are listed which were used for the determination of diffusion coefficients. Some values have been taken over from other studies. Also given are graphs showing the temperature dependences of diffusion and changes in the diffusion coefficient with concentration changes
Communication: On the diffusion tensor in macroscopic theory of cavitation
Shneidman, Vitaly A.
2017-08-01
The classical description of nucleation of cavities in a stretched fluid relies on a one-dimensional Fokker-Planck equation (FPE) in the space of their sizes r, with the diffusion coefficient D(r) constructed for all r from macroscopic hydrodynamics and thermodynamics, as shown by Zeldovich. When additional variables (e.g., vapor pressure) are required to describe the state of a bubble, a similar approach to construct a diffusion tensor D ^ generally works only in the direct vicinity of the thermodynamic saddle point corresponding to the critical nucleus. It is shown, nevertheless, that "proper" kinetic variables to describe a cavity can be selected, allowing to introduce D ^ in the entire domain of parameters. In this way, for the first time, complete FPE's are constructed for viscous volatile and inertial fluids. In the former case, the FPE with symmetric D ^ is solved numerically. Alternatively, in the case of an inertial fluid, an equivalent Langevin equation is considered; results are compared with analytics. The suggested approach is quite general and can be applied beyond the cavitation problem.
Nonlinear theory of diffusive acceleration of particles by shock waves
Energy Technology Data Exchange (ETDEWEB)
Malkov, M.A. [University of California at San Diego, La Jolla, CA (United States)]. E-mail: mmalkov@ucsd.edu; Drury, L. O' C. [Dublin Institute for Advanced Studies, 5 Merrion Square, Dublin 2 (Ireland)
2001-04-01
Among the various acceleration mechanisms which have been suggested as responsible for the nonthermal particle spectra and associated radiation observed in many astrophysical and space physics environments, diffusive shock acceleration appears to be the most successful. We review the current theoretical understanding of this process, from the basic ideas of how a shock energizes a few reactionless particles to the advanced nonlinear approaches treating the shock and accelerated particles as a symbiotic self-organizing system. By means of direct solution of the nonlinear problem we set the limit to the test-particle approximation and demonstrate the fundamental role of nonlinearity in shocks of astrophysical size and lifetime. We study the bifurcation of this system, proceeding from the hydrodynamic to kinetic description under a realistic condition of Bohm diffusivity. We emphasize the importance of collective plasma phenomena for the global flow structure and acceleration efficiency by considering the injection process, an initial stage of acceleration and, the related aspects of the physics of collisionless shocks. We calculate the injection rate for different shock parameters and different species. This, together with differential acceleration resulting from nonlinear large-scale modification, determines the chemical composition of accelerated particles. The review concentrates on theoretical and analytical aspects but our strategic goal is to link the fundamental theoretical ideas with the rapidly growing wealth of observational data. (author)
On the finite line source problem in diffusion theory
International Nuclear Information System (INIS)
Mikkelsen, T.; Troen, I.; Larsen, S.E.
1981-09-01
A simple formula for calculating dispersion from a continuous finite line source, placed at right angles to the mean wind direction, is derived on the basis of statistical theory. Comparison is made with the virtual source concept usually used and this is shown to be correct only in the limit where the virtual time lag Tsub(v) is small compared to the timescale of the turbulence tsub(l). (Auth.)
Absence of saturation of void growth in rate theory with anisotropic diffusion
Hudson, T S; Sutton, A P
2002-01-01
We present a first attempt at solution the problem of the growth of a single void in the presence of anisotropically diffusing radiation induced self-interstitial atom (SIA) clusters. In order to treat a distribution of voids we perform ensemble averaging over the positions of centres of voids using a mean-field approximation. In this way we are able to model physical situations in between the Standard Rate Theory (SRT) treatment of swelling (isotropic diffusion), and the purely 1-dimensional diffusion of clusters in the Production Bias Model. The background absorption by dislocations is however treated isotropically, with a bias for interstitial cluster absorption assumed similar to that of individual SIAs. We find that for moderate anisotropy, unsaturated void growth is characteristic of this anisotropic diffusion of clusters. In addition we obtain a higher initial void swelling rate than predicted by SRT whenever the diffusion is anisotropic.
Homogenisation of a Wigner-Seitz cell in two group diffusion theory
International Nuclear Information System (INIS)
Allen, F.R.
1968-02-01
Two group diffusion theory is used to develop a theory for the homogenisation of a Wigner-Seitz cell, neglecting azimuthal flux components of higher order than dipoles. An iterative method of solution is suggested for linkage with reactor calculations. The limiting theory for no cell leakage leads to cell edge flux normalisation of cell parameters, the current design method for SGHW reactor design calculations. Numerical solutions are presented for a cell-plus-environment model with monopoles only. The results demonstrate the exact theory in comparison with the approximate recipes of normalisation to cell edge, moderator average, or cell average flux levels. (author)
Turbulent Diffusion of the Geomagnetic Field and Dynamo Theories
Filippi, Enrico
2016-01-01
The thesis deals with the Dynamo Theories of the Earth’s Magnetic Field and mainly deepens the turbulence phenomena in the fluid Earth’s core. Indeed, we think that these phenomena are very important to understand the recent decay of the geomagnetic field. The thesis concerns also the dynamics of the outer core and some very rapid changes of the geomagnetic field observed in the Earth’s surface and some aspects regarding the (likely) isotropic turbulence in the Magnetohydrodynamics. These top...
International Nuclear Information System (INIS)
Pack, M. V.; Camacho, R. M.; Howell, J. C.
2006-01-01
We present a theory describing the transients and rise times of the refractive Kerr nonlinearity which is enhanced using electromagnetically induced transparency (EIT). We restrict our analysis to the case of a pulsed signal field with continuous-wave EIT fields, and all fields are well below saturation. These restrictions enable the reduction of an EIT Kerr, four-level, density-matrix equation to a two-level Bloch-vector equation which has a simple and physically intuitive algebraic solution. The physically intuitive picture of a two-level Bloch vector provides insights that are easily generalized to more complex and experimentally realistic models. We consider generalization to the cases of Doppler broadening, many-level EIT systems (we consider the D1 line of 87 Rb), and optically thick media. For the case of optically thick media we find that the rise time of the refractive EIT Kerr effect is proportional to the optical thickness. The rise time of the refractive EIT Kerr effect sets important limitations for potential few-photon applications
A coupled deformation-diffusion theory for fluid-saturated porous solids
Henann, David; Kamrin, Ken; Anand, Lallit
2012-02-01
Fluid-saturated porous materials are important in several familiar applications, such as the response of soils in geomechanics, food processing, pharmaceuticals, and the biomechanics of living bone tissue. An appropriate constitutive theory describing the coupling of the mechanical behavior of the porous solid with the transport of the fluid is a crucial ingredient towards understanding the material behavior in these varied applications. In this work, we formulate and numerically implement in a finite-element framework a large-deformation theory for coupled deformation-diffusion in isotropic, fluid-saturated porous solids. The theory synthesizes the classical Biot theory of linear poroelasticity and the more-recent Coussy theory of poroplasticity in a large deformation framework. In this talk, we highlight several salient features of our theory and discuss representative examples of the application of our numerical simulation capability to problems of consolidation as well as deformation localization in granular materials.
Diffusion theory and knowledge dissemination, utilization, and integration in public health.
Green, Lawrence W; Ottoson, Judith M; García, César; Hiatt, Robert A
2009-01-01
Legislators and their scientific beneficiaries express growing concerns that the fruits of their investment in health research are not reaching the public, policy makers, and practitioners with evidence-based practices. Practitioners and the public lament the lack of relevance and fit of evidence that reaches them and barriers to their implementation of it. Much has been written about this gap in medicine, much less in public health. We review the concepts that have guided or misguided public health in their attempts to bridge science and practice through dissemination and implementation. Beginning with diffusion theory, which inspired much of public health's work on dissemination, we compare diffusion, dissemination, and implementation with related notions that have served other fields in bridging science and practice. Finally, we suggest ways to blend diffusion with other theory and evidence in guiding a more decentralized approach to dissemination and implementation in public health, including changes in the ways we produce the science itself.
Using Diffusion of Innovation Theory to Promote Universally Designed College Instruction
Scott, Sally; McGuire, Joan
2017-01-01
Universal Design applied to college instruction has evolved and rapidly spread on an international scale. Diffusion of Innovation theory is described and used to identify patterns of change in this trend. Implications and strategies are discussed for promoting this inclusive approach to teaching in higher education.
Heterogeneous Two-group Diffusion Theory for a Finite Cylindrical Reactor
Energy Technology Data Exchange (ETDEWEB)
Jonsson, Alf; Naeslund, Goeran
1961-06-15
The source and sink method given by Feinberg and Galanin is extended to a finite cylindrical reactor. The two-group diffusion theory formulation is chosen primarily because of the relatively simple formulae emerging. A machine programme, calculating the criticality constant thermal utilization and the relative number of thermal absorptions in fuel rods, has been developed for the Ferranti-Mercury Computer.
Adoption of renewable heating systems: An empirical test of the diffusion of innovation theory
International Nuclear Information System (INIS)
Franceschinis, Cristiano; Thiene, Mara; Scarpa, Riccardo; Rose, John; Moretto, Michele; Cavalli, Raffaele
2017-01-01
The implementation of heating technologies based on renewable resources is an important part of Italy's energy policy. Yet, despite efforts to promote the uptake of such technologies, their diffusion is still limited while heating systems based on fossil fuels are still predominant. Theory suggests that beliefs and attitudes of individual consumers play a crucial role in the diffusion of innovative products. However, empirical studies corroborating such observations are still thin on the ground. We use a Choice Experiment and a Latent Class-Random Parameter model to analyze preferences of households in the Veneto region (North-East Italy) for key features of ambient heating systems. We evaluate the coherence of the underlying preference structure using as criteria psychological constructs from the Theory of Diffusion of Innovation by Rogers. Our results broadly support this theory by providing evidence of segmentation of the population consistent with the individuals' propensity to adopt innovations. We found that preferences for heating systems and respondents' willingness to pay for their key features vary across segments. These results enabled us to generate maps that show how willingness to pay estimates vary across the region and can guide local policy design aimed at stimulating adoption of sustainable solutions. - Highlights: • We relate preferences for wood pellet heating systems to Diffusion of Innovation theory. • We found a segmentation of the population according to individual innovativeness. • Preferences for wood pellet heating systems vary across population segments. • Public intervention seems necessary to foster adoption among late adopters.
Single-particle thermal diffusion of charged colloids: Double-layer theory in a temperature gradient
Dhont, J.K.G.; Briels, Willem J.
2008-01-01
The double-layer contribution to the single-particle thermal diffusion coefficient of charged, spherical colloids with arbitrary double-layer thickness is calculated and compared to experiments. The calculation is based on an extension of the Debye-Hückel theory for the double-layer structure that
Mothers "Google It Up:" Extending Communication Channel Behavior in Diffusion of Innovations Theory.
Sundstrom, Beth
2016-01-01
This study employed qualitative methods, conducting 44 in-depth interviews with biological mothers of newborns to understand women's perceptions and use of new media, mass media, and interpersonal communication channels in relation to health issues. Findings contribute to theoretical and practical understandings of the role of communication channels in diffusion of innovations theory. In particular, this study provides a foundation for the use of qualitative research to advance applications of diffusion of innovations theory. Results suggest that participants resisted mass media portrayals of women's health. When faced with a health question, participants uniformly started with the Internet to "Google it up." Findings suggest new media comprise a new communication channel with new rules, serving the functions of both personal and impersonal influence. In particular, pregnancy and the postpartum period emerged as a time when campaign planners can access women in new ways online. As a result, campaign planners could benefit from introducing new ideas online and capitalizing on the strength of weak ties favored in new media. Results expand the innovativeness/needs paradox in diffusion of innovations theory by elaborating on the role of new media to reach underserved populations. These findings provide an opportunity to better understand patient information seeking through the lens of diffusion of innovations theory.
Passive Rocket Diffuser Theory: A Re-Examination of Minimum Second Throat Size
Jones, Daniel R.
2016-01-01
Second-throat diffusers serve to isolate rocket engines from the effects of ambient back pressure during testing without using active control systems. Among the most critical design parameters is the relative area of the diffuser throat to that of the nozzle throat. A smaller second throat is generally desirable because it decreases the stagnation-to-ambient pressure ratio the diffuser requires for nominal operation. There is a limit, however. Below a certain size, the second throat can cause pressure buildup within the diffuser and prevent it from reaching the start condition that protects the nozzle from side-load damage. This paper presents a method for improved estimation of the minimum second throat area which enables diffuser start. The new 3-zone model uses traditional quasi-one-dimensional compressible flow theory to approximate the structure of two distinct diffuser flow fields observed in Computational Fluid Dynamics (CFD) simulations and combines them to provide a less-conservative estimate of the second throat size limit. It is unique among second throat sizing methods in that it accounts for all major conical nozzle and second throat diffuser design parameters within its limits of application. The performance of the 3-zone method is compared to the historical normal shock and force balance methods, and verified against a large number of CFD simulations at specific heat ratios of 1.4 and 1.25. Validation is left as future work, and the model is currently intended to function only as a first-order design tool.
Directory of Open Access Journals (Sweden)
Sabeti M
2012-10-01
Full Text Available Background: Finding an acute brain lesion by diffusion-weighted (DW MRI upon an episode of transient ischemic attack (TIA is a predictor of imminent stroke in the near future. Therefore, exploring risk factors associated with lesions in DW-MRI of the brain is important in adopting an approach to TIA management. In the current study, we tried to determine the risk factors associated with lesions in DW-MRI of the brain in patients experiencing TIA episodes.Methods: Fifty patients with TIA were recruited consecutively in Sina Hospital, Tehran, Iran, over a 6-month period between July 2008 and January 2009. All of the patients underwent a complete neurological examination and laboratory tests. Brain DW-MRIs were performed for all the patients within 72 hours of a TIA episode.Results: DW-MRI revealed an acute lesion in 16% of the participants. There was a significant correlation between presence of an acute lesion in DW-MRI and TIA duration, history of diabetes mellitus and presence of unilateral facial palsy (P=0.0003, P=0.02 and P=0.008, respectively. Other variables such as age, hypertension, hyperlipidemia, past history of TIA, headache, vertigo, and sensory or visual disturbances had no significant relation with the presence of an acute lesion in DW-MRI.Conclusion: Duration of TIA, presence of diabetes mellitus and unilateral facial palsy are risk factors for an acute lesion in DW-MRI, meaning that patients with such risk factors are at risk for stroke in the near future.
Application of diffusion theory to neutral atom transport in fusion plasmas
International Nuclear Information System (INIS)
Hasan, M.Z.; Conn, R.W.; Pomraning, G.C.
1986-05-01
It is found that energy dependent diffusion theory provides excellent accuracy in the modelling of transport of neutral atoms in fusion plasmas. Two reasons in particular explain the good accuracy. First, while the plasma is optically thick for low energy neutrals, it is optically thin for high energy neutrals and diffusion theory with Marshak boundary conditions gives accurate results for an optically thin medium even for small values of 'c', the ratio of the scattering to the total cross section. Second, the effective value of 'c' at low energy becomes very close to one due to the down-scattering via collisions of high energy neutrals. The first reason is proven both computationally and theoretically by solving the transport equation in a power series in 'c' and the diffusion equation with 'general' Marshak boundary conditions. The second reason is established numerically by comparing the results from a one-dimensional, general geometry, multigroup diffusion theory code, written for this purpose, with the results obtained using the transport code ANISN
Theory of the Thermal Diffusion of Microgel Particles in Highly Compressed Suspensions
Sokoloff, Jeffrey; Maloney, Craig; Ciamarra, Massimo; Bi, Dapeng
One amazing property of microgel colloids is the ability of the particles to thermally diffuse, even when they are compressed to a volume well below their swollen state volume, despite the fact that they are surrounded by and pressed against other particles. A glass transition is expected to occur when the colloid is sufficiently compressed for diffusion to cease. It is proposed that the diffusion is due to the ability of the highly compressed particles to change shape with little cost in free energy. It will be shown that most of the free energy required to compress microgel particles is due to osmotic pressure resulting from either counterions or monomers inside of the gel, which depends on the particle's volume. There is still, however, a cost in free energy due to polymer elasticity when particles undergo the distortions necessary for them to move around each other as they diffuse through the compressed colloid, even if it occurs at constant volume. Using a scaling theory based on simple models for the linking of polymers belonging to the microgel particles, we examine the conditions under which the cost in free energy needed for a particle to diffuse is smaller than or comparable to thermal energy, which is a necessary condition for particle diffusion. Based on our scaling theory, we predict that thermally activated diffusion should be possible when the mean number of links along the axis along which a distortion occurs is much larger than N 1 / 5, where Nis the mean number of monomers in a polymer chain connecting two links in the gel.
DEFF Research Database (Denmark)
Havsteen, Inger; Ovesen, Christian; Willer, Lasse
2017-01-01
Objective: Diffusion tensor imaging may aid brain ischemia assessment but is more time consuming than conventional diffusion-weighted imaging (DWI). We compared 3-gradient direction DWI (3DWI) and 20-gradient direction DWI (20DWI) standard vendor protocols in a hospital-based prospective cohort...... of patients with transient ischemic attack (TIA) for lesion detection, lesion brightness, predictability of persisting infarction, and final infarct size. Methods: We performed 3T-magnetic resonance imaging including diffusion and T2-fluid attenuated inversion recovery (FLAIR) within 72 h and 8 weeks after...... uniquely 20DWI positive. 3DWI was visually brightest for 34 lesions. 12 lesions were brightest on 20DWI. The median 3DWI lesion area was larger for lesions equally bright, or brightest on 20DWI [median (IQR) 39 (18-95) versus 18 (10-34) mm2, P = 0.007]. 3DWI showed highest measured relative lesion signal...
International Nuclear Information System (INIS)
Zhang, H.; Rizwan-uddin; Dorning, J.J.
1995-01-01
A diffusion equation-based systematic homogenization theory and a self-consistent dehomogenization theory for fuel assemblies have been developed for use with coarse-mesh nodal diffusion calculations of light water reactors. The theoretical development is based on a multiple-scales asymptotic expansion carried out through second order in a small parameter, the ratio of the average diffusion length to the reactor characteristic dimension. By starting from the neutron diffusion equation for a three-dimensional heterogeneous medium and introducing two spatial scales, the development systematically yields an assembly-homogenized global diffusion equation with self-consistent expressions for the assembly-homogenized diffusion tensor elements and cross sections and assembly-surface-flux discontinuity factors. The rector eigenvalue 1/k eff is shown to be obtained to the second order in the small parameter, and the heterogeneous diffusion theory flux is shown to be obtained to leading order in that parameter. The latter of these two results provides a natural procedure for the reconstruction of the local fluxes and the determination of pin powers, even though homogenized assemblies are used in the global nodal diffusion calculation
The science of making more torque from wind: Diffuser experiments and theory revisited
International Nuclear Information System (INIS)
Bussel, Gerard J W van
2007-01-01
History of the development of DAWT's stretches a period of more than 50 years. So far without any commercial success. In the initial years of development the conversion process was not understood very well. Experimentalists strived at maximising the pressure drop over the rotor disk, but lacked theoretical insight into optimising the performance. Increasing the diffuser area as well as the negative back pressure at the diffuser exit was found profitable in the experiments. Claims were made that performance augmentations with a factor of 4 or more were feasible, but these claims were not confirmed experimentally. With a simple momentum theory, developed along the lines of momentum theory for bare windturbines, it was shown that power augmentation is proportional to the mass flow increase generated at the nozzle of the DAWT. Such mass flow augmentation can be achieved through two basic principles: increase in the diffuser exit ratio and/or by decreasing the negative back pressure at the exit. The theory predicts an optimal pressure drop of 8/9 equal to the pressure drop for bare windturbines independent from the mass flow augmentation obtained. The maximum amount of energy that can be extracted per unit of volume with a DAWT is also the same as for a bare wind turbine. Performance predictions with this theory show good agreement with a CFD calculation. Comparison with a large amount of experimental data found in literature shows that in practice power augmentation factors above 3 have never been achieved. Referred to rotor power coefficients values of C P,rotort = 2.5 might be achievable according to theory, but to the cost of fairly large diffuser area ratio's, typically values of β>4.5
Mutual diffusion coefficient models for polymer-solvent systems based on the Chapman-Enskog theory
Directory of Open Access Journals (Sweden)
R. A. Reis
2004-12-01
Full Text Available There are numerous examples of the importance of small molecule migration in polymeric materials, such as in drying polymeric packing, controlled drug delivery, formation of films, and membrane separation, etc. The Chapman-Enskog kinetic theory of hard-sphere fluids with the Weeks-Chandler-Andersen effective hard-sphere diameter (Enskog-WCA has been the most fruitful in diffusion studies of simple fluids and mixtures. In this work, the ability of the Enskog-WCA model to describe the temperature and concentration dependence of the mutual diffusion coefficient, D, for a polystyrene-toluene system was evaluated. Using experimental diffusion data, two polymer model approaches and three mixing rules for the effective hard-sphere diameter were tested. Some procedures tested resulted in models that are capable of correlating the experimental data with the refereed system well for a solvent mass fraction greater than 0.3.
Transport-diffusion comparisons for small core LMFBR disruptive accidents
International Nuclear Information System (INIS)
Tomlinson, E.T.
1977-11-01
A number of numerical experiments were performed to assess the validity of diffusion theory for calculating the reactivity state of various small core LMFBR disrupted geometries. The disrupted configurations correspond, in general, to various configurations predicted by SAS3A for transient undercooling (TUC) and transient overpower (TOP) accidents for homogeneous cores and to the ZPPR-7 configurations for heterogeneous core. In all TUC cases diffusion theory was shown to be inadequate for the calculation of reactivity changes during core disassembly
SIX SIGMA FRAMEWORKS: AN ANALYSIS BASED ON ROGERS’ DIFFUSION OF INNOVATION THEORY
Directory of Open Access Journals (Sweden)
Kifayah Amar
2012-06-01
Full Text Available This paper attempt to analyze frameworks related to Six Sigma and Lean Six Sigma. The basis of analysis the frameworks is the diffusion of innovation theory. Several criteria was used to analyze the frameworks e.g. relative advantage, compatibility, complexity, trialability, observability, communication channels, nature of the social system/culture and extent of change agent. Based on framework analysis, there is only one framework fits to Rogers’ theory on diffusion of innovation. The framework is a Lean Six Sigma framework which consists elements such owner/manager commitment and involvement, employee involvement, training, culture change and external support. Even though the elements have similarity to other Six Sigma frameworks but they put more attention on culture change and external support. Generally speaking, the culture change and external support are the most important elements to the implementation of Six Sigma or other soft approaches particularly for small organizations.
SIX SIGMA FRAMEWORKS: AN ANALYSIS BASED ON ROGERS’ DIFFUSION OF INNOVATION THEORY
Directory of Open Access Journals (Sweden)
Kifayah Amar
2012-06-01
Full Text Available This paper attempt to analyze frameworks related to Six Sigma and Lean Six Sigma. The basis of analysis the frameworks is the diffusion of innovation theory. Several criteria was used to analyze the frameworks e.g. relative advantage, compatibility, complexity, trialability, observability, communication channels, nature of the social system/culture and extent of change agent. Based on framework analysis, there is only one framework fits to Rogers’ theory on diffusion of innovation. The framework is a Lean Six Sigma framework which consists elements such owner/manager commitment and involvement, employee involvement, training, culture change and external support. Even though the elements have similarity to other Six Sigma frameworks but they put more attention on culture change and external support. Generally speaking, the culture change and external support are the most important elements to the implementation of Six Sigma or other soft approaches particularly for small organizations.
Perturbation theory for the effective diffusion constant in a medium of random scatterers
International Nuclear Information System (INIS)
Dean, D S; Drummond, I T; Horgan, R R; Lefevre, A
2004-01-01
We develop perturbation theory and physically motivated resummations of the perturbation theory for the problem of a tracer particle diffusing in a random medium. The random medium contains point scatterers of density ρ uniformly distributed throughout the material. The tracer is a Langevin particle subjected to the quenched random force generated by the scatterers. Via our perturbative analysis, we determine when the random potential can be approximated by a Gaussian random potential. We also develop a self-similar renormalization group approach based on thinning out the scatterers; this scheme is similar to that used with success for diffusion in Gaussian random potentials and agrees with known exact results. To assess the accuracy of this approximation scheme, its predictions are confronted with results obtained by numerical simulation
Eddy diffusion coefficients and their upper limits based on application of the similarity theory
Directory of Open Access Journals (Sweden)
M. N. Vlasov
2015-07-01
Full Text Available The equation for the diffusion velocity in the mesosphere and the lower thermosphere (MLT includes the terms for molecular and eddy diffusion. These terms are very similar. For the first time, we show that, by using the similarity theory, the same formula can be obtained for the eddy diffusion coefficient as the commonly used formula derived by Weinstock (1981. The latter was obtained by taking, as a basis, the integral function for diffusion derived by Taylor (1921 and the three-dimensional Kolmogorov kinetic energy spectrum. The exact identity of both formulas means that the eddy diffusion and heat transport coefficients used in the equations, both for diffusion and thermal conductivity, must meet a criterion that restricts the outer eddy scale to being much less than the scale height of the atmosphere. This requirement is the same as the requirement that the free path of molecules must be much smaller than the scale height of the atmosphere. A further result of this criterion is that the eddy diffusion coefficients Ked, inferred from measurements of energy dissipation rates, cannot exceed the maximum value of 3.2 × 106 cm2 s−1 for the maximum value of the energy dissipation rate of 2 W kg−1 measured in the mesosphere and the lower thermosphere (MLT. This means that eddy diffusion coefficients larger than the maximum value correspond to eddies with outer scales so large that it is impossible to use these coefficients in eddy diffusion and eddy heat transport equations. The application of this criterion to the different experimental data shows that some reported eddy diffusion coefficients do not meet this criterion. For example, the large values of these coefficients (1 × 107 cm2 s−1 estimated in the Turbulent Oxygen Mixing Experiment (TOMEX do not correspond to this criterion. The Ked values inferred at high latitudes by Lübken (1997 meet this criterion for summer and winter polar data, but the Ked values for summer at low latitudes
International Nuclear Information System (INIS)
Turinsky, P.J.; Al-Chalabi, R.M.K.; Engrand, P.; Sarsour, H.N.; Faure, F.X.; Guo, W.
1994-06-01
NESTLE is a FORTRAN77 code that solves the few-group neutron diffusion equation utilizing the Nodal Expansion Method (NEM). NESTLE can solve the eigenvalue (criticality); eigenvalue adjoint; external fixed-source steady-state; or external fixed-source. or eigenvalue initiated transient problems. The code name NESTLE originates from the multi-problem solution capability, abbreviating Nodal Eigenvalue, Steady-state, Transient, Le core Evaluator. The eigenvalue problem allows criticality searches to be completed, and the external fixed-source steady-state problem can search to achieve a specified power level. Transient problems model delayed neutrons via precursor groups. Several core properties can be input as time dependent. Two or four energy groups can be utilized, with all energy groups being thermal groups (i.e. upscatter exits) if desired. Core geometries modelled include Cartesian and Hexagonal. Three, two and one dimensional models can be utilized with various symmetries. The non-linear iterative strategy associated with the NEM method is employed. An advantage of the non-linear iterative strategy is that NSTLE can be utilized to solve either the nodal or Finite Difference Method representation of the few-group neutron diffusion equation
Analysis of mass incident diffusion in Weibo based on self-organization theory
Pan, Jun; Shen, Huizhang
2018-02-01
This study introduces some theories and methods of self-organization system to the research of the diffusion mechanism of mass incidents in Weibo (Chinese Twitter). Based on the analysis on massive Weibo data from Songjiang battery factory incident happened in 2013 and Jiiangsu Qidong OJI PAPER incident happened in 2012, we find out that diffusion system of mass incident in Weibo satisfies Power Law, Zipf's Law, 1/f noise and Self-similarity. It means this system is the self-organization criticality system and dissemination bursts can be understood as one kind of Self-organization behavior. As the consequence, self-organized criticality (SOC) theory can be used to explain the evolution of mass incident diffusion and people may come up with the right strategy to control such kind of diffusion if they can handle the key ingredients of Self-organization well. Such a study is of practical importance which can offer opportunities for policy makers to have good management on these events.
Applicability of the Taylor-Green-Kubo formula in particle diffusion theory
International Nuclear Information System (INIS)
Shalchi, A.
2011-01-01
Diffusion coefficients of particles can be defined as time integrals over velocity correlation functions, or as mean square displacements divided by time. In the present paper it is demonstrated that these two definitions are not equivalent. An exact relation between mean square displacements and velocity correlations is derived. As an example of the applicability of these results so-called drift coefficients of energetic particles are discussed. It is explained why different previous approaches in drift theory provided contradicting results.
Kochukhov, O.; Ryabchikova, T. A.
2018-02-01
A series of recent theoretical atomic diffusion studies has address the challenging problem of predicting inhomogeneous vertical and horizontal chemical element distributions in the atmospheres of magnetic ApBp stars. Here we critically assess the most sophisticated of such diffusion models - based on a time-dependent treatment of the atomic diffusion in a magnetized stellar atmosphere - by direct comparison with observations as well by testing the widely used surface mapping tools with the spectral line profiles predicted by this theory. We show that the mean abundances of Fe and Cr are grossly underestimated by the time-dependent theoretical diffusion model, with discrepancies reaching a factor of 1000 for Cr. We also demonstrate that Doppler imaging inversion codes, based either on modelling of individual metal lines or line-averaged profiles simulated according to theoretical three-dimensional abundance distribution, are able to reconstruct correct horizontal chemical spot maps despite ignoring the vertical abundance variation. These numerical experiments justify a direct comparison of the empirical two-dimensional Doppler maps with theoretical diffusion calculations. This comparison is generally unfavourable for the current diffusion theory, as very few chemical elements are observed to form overabundance rings in the horizontal field regions as predicted by the theory and there are numerous examples of element accumulations in the vicinity of radial field zones, which cannot be explained by diffusion calculations.
Energy Technology Data Exchange (ETDEWEB)
Mueller, Dirk, E-mail: d.mueller@uk-koeln.de [Department of Radiology, University of Cologne (Germany); Department of Radiology, Technische Universität München (Germany); Schaeffeler, Christoph, E-mail: schaeffeler@me.com [Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Department of Radiology, Cantonal Hospital Graubuenden, Chur (Switzerland); Baum, Thomas, E-mail: thomas-baum@gmx.de [Department of Radiology, Technische Universität München (Germany); Walter, Flavia, E-mail: flavia_walter2000@yahoo.de [Department of Radiology, Technische Universität München (Germany); Rechl, Hans, E-mail: rechl@tum.de [Department of Orthopaedics, Technische Universität München (Germany); Rummeny, Ernst J., E-mail: rummeny@tum.de [Department of Radiology, Technische Universität München (Germany); Woertler, Klaus, E-mail: klaus.woertler@tum.de [Department of Radiology, Technische Universität München (Germany)
2014-10-15
Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E{sub max}), slope (E{sub slope}) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology
International Nuclear Information System (INIS)
Mueller, Dirk; Schaeffeler, Christoph; Baum, Thomas; Walter, Flavia; Rechl, Hans; Rummeny, Ernst J.; Woertler, Klaus
2014-01-01
Highlights: • DCE-MRI may add information to the pathophysiology of bone marrow edema (BME) of the proximal femur. • Patients with transient bone marrow edema (TBME) or subchondral insufficiency fractures (SIF) and avascular osteonecrosis (AVN) showed different MR perfusion patterns. • Perfusion characteristics suggest different pathophysiology for AVN compared with TBME or SIF. • Diffusion weighted imaging (DWI) was not able to discriminate necrotic from edematous bone marrow. • DWI is of limited value to evaluate BME of the proximal femur. - Abstract: Purpose: To evaluate magnetic resonance (MR) perfusion and diffusion imaging characteristics in patients with transient bone marrow edema (TBME), avascular necrosis (AVN), or subchondral insufficiency fractures (SIF) of the proximal femur. Materials and methods: 29 patients with painful hip and bone marrow edema pattern of the proximal femur on non-contrast MR imaging were examined using diffusion-weighted and dynamic gadolinium-enhanced sequences. Apparent diffusion coefficients (ADCs) and perfusion parameters were calculated for different regions of the proximal femur. Regional distribution and differences in ADC values and perfusion parameters were evaluated. Results: Seven patients presented with TBME, 15 with AVN and seven with SIF of the proximal femur. Perfusion imaging showed significant differences for maximum enhancement values (E max ), slope (E slope ) and time to peak (TTP) between the three patient groups (p < 0.05). In contrast, no significant differences for ADC values were calculated when comparing TBME, AVN, and SIF patients. Conclusion: Diffusion weighted imaging of bone marrow of the proximal femur did not show significant differences between patients with TBME, AVN or SIF. In contrast, MR perfusion imaging demonstrated significant differences for the different patient groups and may as a complementary imaging technique add information to the understanding of the pathophysiology of
Theory of lifetime measurements with the scanning electron microscope: transient analysis
Kuiken, H.K.
1976-01-01
A transient analysis of an SEM experiment is given with the purpose of determining directly the lifetime of minority carriers in a semiconductor material. The injection takes place below a surface normal to the junction and expressions are derived for the current-decay which ensues when the electron
Merrett, Craig G.
-partial differential equations. The spatial component of the governing equations is eliminated using a series expansion of basis functions and by applying Galerkin's method. The number of terms in the series expansion affects the convergence of the spatial component, and convergence is best determined by the von Koch rules that previously appeared for column buckling problems. After elimination of the spatial component, an ordinary integral-differential equation in time remains. The dynamic stability of elastic and viscoelastic problems is assessed using the determinant of the governing system of equations and the time component of the solution in the form exp (lambda t). The determinant is in terms of lambda where the values of lambda are the latent roots of the aero-servo-viscoelastic system. The real component of lambda dictates the stability of the system. If all the real components are negative, the system is stable. If at least one real component is zero and all others are negative, the system is neutrally stable. If one or more real components are positive, the system is unstable. In aero-servo-viscoelasticity, the neutrally stable condition is termed flutter. For an aero-servo-viscoelastic lifting surface, the unstable condition is historically termed torsional divergence. The more general aero-servo-viscoelastic theory has produced a number of important results, enumerated in the following list: 1. Subsonic panel flutter can occur before panel instability. This result overturned a long held assumption in aeroelasticity, and was produced by the novel application of the von Koch rules for convergence. Further, experimental results from the 1950s by the Air Force were retrieved to provide additional proof. 2. An expanded definition for flutter of a lifting surface. The legacy definition is that flutter is the first occurrence of simple harmonic motion of a structure, and the flight velocity at which this motion occurs is taken as the flutter speed. The expanded definition
Nanoscopic diffusion studies on III-V compound semiconductor structures: Experiment and theory
Gonzalez Debs, Mariam
The electronic structure of multilayer semiconductor heterostructures is affected by the detailed compositional profiles throughout the structure and at critical interfaces. The extent of interdiffusion across these interfaces places limits on both the processing time and temperatures for many applications based on the resultant compositional profile and associated electronic structure. Atomic and phenomenological methods were used in this work through the combination of experiment and theory to understand the nanoscopic mechanisms in complex heterostructures. Two principal studies were conducted. Tin diffusion in GaAs was studied by fitting complex experimental diffusion profiles to a phenomenological model which involved the diffusion of substitutional and interstitial dopant atoms. A methodology was developed combining both the atomistic model and the use of key features within these experimentally-obtained diffusion profiles to determine meaningful values of the transport and defect reaction rate parameters. Interdiffusion across AlSb/GaSb multi-quantum well interfaces was also studied. The chemical diffusion coefficient characterizing the AlSb/GaSb diffusion couple was quantitatively determined by fitting the observed photoluminescence (PL) peak shifts to the solution of the Schrodinger equation using a potential derived from the solution of the diffusion equation to quantify the interband transition energy shifts. First-principles calculations implementing Density Functional Theory were performed to study the thermochemistry of point defects as a function of local environment, allowing a direct comparison of interfacial and bulk diffusion phenomena within these nanoscopic structures. Significant differences were observed in the Ga and Al vacancy formation energies at the AlSb/GaSb interface when compared to bulk AlSb and GaSb with the largest change found for Al vacancies. The AlSb/GaSb structures were further studied using positron annihilation spectroscopy
Quantum theory of multiple-input-multiple-output Markovian feedback with diffusive measurements
International Nuclear Information System (INIS)
Chia, A.; Wiseman, H. M.
2011-01-01
Feedback control engineers have been interested in multiple-input-multiple-output (MIMO) extensions of single-input-single-output (SISO) results of various kinds due to its rich mathematical structure and practical applications. An outstanding problem in quantum feedback control is the extension of the SISO theory of Markovian feedback by Wiseman and Milburn [Phys. Rev. Lett. 70, 548 (1993)] to multiple inputs and multiple outputs. Here we generalize the SISO homodyne-mediated feedback theory to allow for multiple inputs, multiple outputs, and arbitrary diffusive quantum measurements. We thus obtain a MIMO framework which resembles the SISO theory and whose additional mathematical structure is highlighted by the extensive use of vector-operator algebra.
Theory of activated penetrant diffusion in viscous fluids and colloidal suspensions
International Nuclear Information System (INIS)
Zhang, Rui; Schweizer, Kenneth S.
2015-01-01
We heuristically formulate a microscopic, force level, self-consistent nonlinear Langevin equation theory for activated barrier hopping and non-hydrodynamic diffusion of a hard sphere penetrant in very dense hard sphere fluid matrices. Penetrant dynamics is controlled by a rich competition between force relaxation due to penetrant self-motion and collective matrix structural (alpha) relaxation. In the absence of penetrant-matrix attraction, three activated dynamical regimes are predicted as a function of penetrant-matrix size ratio which are physically distinguished by penetrant jump distance and the nature of matrix motion required to facilitate its hopping. The penetrant diffusion constant decreases the fastest with size ratio for relatively small penetrants where the matrix effectively acts as a vibrating amorphous solid. Increasing penetrant-matrix attraction strength reduces penetrant diffusivity due to physical bonding. For size ratios approaching unity, a distinct dynamical regime emerges associated with strong slaving of penetrant hopping to matrix structural relaxation. A crossover regime at intermediate penetrant-matrix size ratio connects the two limiting behaviors for hard penetrants, but essentially disappears if there are strong attractions with the matrix. Activated penetrant diffusivity decreases strongly with matrix volume fraction in a manner that intensifies as the size ratio increases. We propose and implement a quasi-universal approach for activated diffusion of a rigid atomic/molecular penetrant in a supercooled liquid based on a mapping between the hard sphere system and thermal liquids. Calculations for specific systems agree reasonably well with experiments over a wide range of temperature, covering more than 10 orders of magnitude of variation of the penetrant diffusion constant
A discussion on validity of the diffusion theory by Monte Carlo method
Peng, Dong-qing; Li, Hui; Xie, Shusen
2008-12-01
Diffusion theory was widely used as a basis of the experiments and methods in determining the optical properties of biological tissues. A simple analytical solution could be obtained easily from the diffusion equation after a series of approximations. Thus, a misinterpret of analytical solution would be made: while the effective attenuation coefficient of several semi-infinite bio-tissues were the same, the distribution of light fluence in the tissues would be the same. In order to assess the validity of knowledge above, depth resolved internal fluence of several semi-infinite biological tissues which have the same effective attenuation coefficient were simulated with wide collimated beam in the paper by using Monte Carlo method in different condition. Also, the influence of bio-tissue refractive index on the distribution of light fluence was discussed in detail. Our results showed that, when the refractive index of several bio-tissues which had the same effective attenuation coefficient were the same, the depth resolved internal fluence would be the same; otherwise, the depth resolved internal fluence would be not the same. The change of refractive index of tissue would have affection on the light depth distribution in tissue. Therefore, the refractive index is an important optical property of tissue, and should be taken in account while using the diffusion approximation theory.
Rezende, Sergio M.; Azevedo, Antonio; Rodríguez-Suárez, Roberto L.
2018-05-01
In magnetic insulators, spin currents are carried by the elementary excitations of the magnetization: spin waves or magnons. In simple ferromagnetic insulators there is only one magnon mode, while in two-sublattice antiferromagnetic insulators (AFIs) there are two modes, which carry spin currents in opposite directions. Here we present a theory for the diffusive magnonic spin current generated in a magnetic insulator layer by a thermal gradient in the spin Seebeck effect. We show that the formulations describing magnonic perturbation using a position-dependent chemical potential and those using a magnon accumulation are completely equivalent. Then we develop a drift–diffusion formulation for magnonic spin transport treating the magnon accumulation governed by the Boltzmann transport and diffusion equations and considering the full boundary conditions at the surfaces and interfaces of an AFI/normal metal bilayer. The theory is applied to the ferrimagnetic yttrium iron garnet and to the AFIs MnF2 and NiO, providing good quantitative agreement with experimental data.
Hydrodynamic theory of convective transport across a dynamically stabilized diffuse boundary layer
International Nuclear Information System (INIS)
Gerhauser, H.
1983-09-01
The diffuse boundary layer between miscible liquids is subject to Rayleigh-Taylor instabilities if the heavy fluid is supported by the light one. The resulting rapid interchange of the liquids can be suppressed by enforcing vertical oscillations on the whole system. This dynamic stabilization is incomplete and produces some peculiar novel transport phenomena such as decay off the density profile into several steps, periodic peeling of density sheets of the boundary layer and the appearance of steady vortex flow. The theory presented in this paper identifies the basic mechanism as formation of convective cells leading to enhanced diffusion, and explains previous experimental results with water and ZnJ 2 -solutions. A nonlinear treatment of the stationary convective flow problem gives the saturation amplitude of the ground mode and provides an upper bound for the maximum convective transport. The hydrodynamic model can be used for visualizing similar transport processes in the plasma of toroidal confinement devices such as sawtooth oscillations in soft disruptions of tokamak discharges and anomalous diffusion by excitation of convective cells. The latter process is investigated here in some detail, leading to the result that the maximum possible transport is of the order of Bohm diffusion. (orig.)
Investigation of the local component of power-reactor noise via diffusion theory
International Nuclear Information System (INIS)
Kosaly, G.
1975-03-01
The aim of the paper is to provide a theoretical background for the phenomenological model, which postulates the existence of a local component in the neutron noise of a light water cooled boiling water reactor. After the introductory review of the phenomenological model, noise calculation are performed by help of the one-group and two-group diffusion theory. Only in the two-group diffusion model it is succeeded to find a term in the response to a propagating disturbance of density which results in a small volume of neutrons physical sensivity around the point of observation. The problem, whether this local component can be a dominating term in the solution or not, is investigated in the Appenix. (Sz.Z.)
Unified path integral approach to theories of diffusion-influenced reactions
Prüstel, Thorsten; Meier-Schellersheim, Martin
2017-08-01
Building on mathematical similarities between quantum mechanics and theories of diffusion-influenced reactions, we develop a general approach for computational modeling of diffusion-influenced reactions that is capable of capturing not only the classical Smoluchowski picture but also alternative theories, as is here exemplified by a volume reactivity model. In particular, we prove the path decomposition expansion of various Green's functions describing the irreversible and reversible reaction of an isolated pair of molecules. To this end, we exploit a connection between boundary value and interaction potential problems with δ - and δ'-function perturbation. We employ a known path-integral-based summation of a perturbation series to derive a number of exact identities relating propagators and survival probabilities satisfying different boundary conditions in a unified and systematic manner. Furthermore, we show how the path decomposition expansion represents the propagator as a product of three factors in the Laplace domain that correspond to quantities figuring prominently in stochastic spatially resolved simulation algorithms. This analysis will thus be useful for the interpretation of current and the design of future algorithms. Finally, we discuss the relation between the general approach and the theory of Brownian functionals and calculate the mean residence time for the case of irreversible and reversible reactions.
Energy Technology Data Exchange (ETDEWEB)
Benoist, P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-01-15
In an previous publication, a simple and general formulation of the diffusion coefficient, which defines the mode of weighting of the mean free paths of the various media, in introducing the collision probabilities in each medium, was established. This expression is demonstrated again here through a more direct method, and the velocity is introduced; new terms are emphasised, the existence of which implies that the representation of the diffusion area as the mean square of the straight line distance from source to absorption is not correct in a lattice. However these terms are of small enough an order of magnitude to he treated as a correction. The general expression also shows the existence, for the radial coefficient, of the series of angular correlation terms, which is seen to converge very slowly for large channels. The term by term computation which was initiated in the first work was then interrupted and a global formulation, which emphasize a resemblance with the problem of the thermal utilisation factor, was adopted. An integral method, analogous to that use for the computation of this factor, gives the possibility to establish new and simple practical formulae, which require the use of a few basic functions only. These formulae are very accurate, as seen from the results of a variational method which was studied as a reference. Various correction effects are reviewed. Expressions which allow the exact treatment of fuel rod clusters are presented. The theory is confronted with various experimental results, and a new method of measuring the radial coefficient is proposed. (author) [French] Dans une publication anterieure, on a etablie une formulation simple et generale du coefficient de diffusion, qui definit le mode de ponderation des libres parcours des differents milieux constituants en faisant apparaitre les probabilites de collision dans chaque milieu. On redemontre ici cette expression d'une maniere plus directe, tout en introduisant la variable
Energy Technology Data Exchange (ETDEWEB)
Benoist, P. [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-01-15
In an previous publication, a simple and general formulation of the diffusion coefficient, which defines the mode of weighting of the mean free paths of the various media, in introducing the collision probabilities in each medium, was established. This expression is demonstrated again here through a more direct method, and the velocity is introduced; new terms are emphasised, the existence of which implies that the representation of the diffusion area as the mean square of the straight line distance from source to absorption is not correct in a lattice. However these terms are of small enough an order of magnitude to he treated as a correction. The general expression also shows the existence, for the radial coefficient, of the series of angular correlation terms, which is seen to converge very slowly for large channels. The term by term computation which was initiated in the first work was then interrupted and a global formulation, which emphasize a resemblance with the problem of the thermal utilisation factor, was adopted. An integral method, analogous to that use for the computation of this factor, gives the possibility to establish new and simple practical formulae, which require the use of a few basic functions only. These formulae are very accurate, as seen from the results of a variational method which was studied as a reference. Various correction effects are reviewed. Expressions which allow the exact treatment of fuel rod clusters are presented. The theory is confronted with various experimental results, and a new method of measuring the radial coefficient is proposed. (author) [French] Dans une publication anterieure, on a etablie une formulation simple et generale du coefficient de diffusion, qui definit le mode de ponderation des libres parcours des differents milieux constituants en faisant apparaitre les probabilites de collision dans chaque milieu. On redemontre ici cette expression d'une maniere plus directe, tout en introduisant la variable
International Nuclear Information System (INIS)
Jha, Shailendra K.; Kant, Rama
2010-01-01
We developed a mathematical model for the first order homogeneous catalytic chemical reaction coupled with an electron transfer (EC') on a rough working electrode. Results are obtained for the various roughness models of electrode corrugations, viz., (i) roughness as an exact periodic function, (ii) roughness as a random function with known statistical properties, and (iii) roughness as a random function with statistical self-affine fractality over a finite range of length scales. Method of Green's function is used in the formulation to obtain second-order perturbation (in roughness profile) expressions for the concentration, the local current density and the current transients. A general operator structure between these quantities and arbitrary roughness profile is emphasized. The statistically averaged (randomly rough) electrode response is obtained by an ensemble averaging over all possible surface configurations. An elegant mathematical formula between the average electrochemical current transient and surface structure factor or power-spectrum of roughness is obtained. This formula is used to obtain an explicit equation for the current on an approximately self-affine (or realistic) fractal electrode with a limited range of length scales of irregularities. This description of realistic fractal is obtained by cutoff power law power-spectrum of roughness. The realistic fractal power-spectrum consists of four physical characteristics, viz., the fractal dimension (D H ), lower (l) and upper (L) cutoff length scales of fractality and a proportionality factor (μ), which is related to the topothesy or strength of fractality. Numerical calculations are performed on final results to understand the effect of catalytic reaction and fractal morphological characteristics on potentiostatic current transients.
Density functional theory prediction for diffusion of lithium on boron-doped graphene surface
International Nuclear Information System (INIS)
Gao Shuanghong; Ren Zhaoyu; Wan Lijuan; Zheng Jiming; Guo Ping; Zhou Yixuan
2011-01-01
The density functional theory (DFT) investigation shows that graphene has changed from semimetal to semiconductor with the increasing number of doped boron atoms. Lithium and boron atoms acted as charge contributors and recipients, which attracted to each other. Further investigations show that, the potential barrier for lithium diffusion on boron-doped graphene is higher than that of intrinsic graphene. The potential barrier is up to 0.22 eV when six boron atoms doped (B 6 C 26 ), which is the lowest potential barrier in all the doped graphene. The potential barrier is dramatically affected by the surface structure of graphene.
Decay constants of subcritical system by diffusion theory for two groups
International Nuclear Information System (INIS)
Moura Neto, C. de.
1977-01-01
The effects of a neutronic pulse applied to a subcritical multiplicative medium are analysed on the basis of the diffusion theory for one and two groups. The decay constants of the system for various values of geometric buckling were determined from the experimental data. A natural uranium-light water lattice was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes is attempted through two groups formulation. (author)
Livestock vaccine adoption among poor farmers in Bolivia: remembering innovation diffusion theory.
Heffernan, Claire; Thomson, Kim; Nielsen, Louise
2008-05-02
The paper explores the low uptake of livestock vaccination among poor farming communities in Bolivia utilising core elements of the original innovation diffusion theory. Contrary to the recent literature, we found that vaccination behaviour was strongly linked to social and cultural, rather than economic, drivers. While membership in a group increased uptake, the 'hot' and 'cold' distinctions which dictate health versus illness within Andean cosmology also played a role, with vaccination viewed as a means of addressing underlying imbalances. We concluded that uptake of livestock vaccination was unlikely to improve without knowledge transfer that acknowledges local epistemologies for livestock disease.
From gas dynamics with large friction to gradient flows describing diffusion theories
Lattanzio, Corrado
2016-12-09
We study the emergence of gradient flows in Wasserstein distance as high friction limits of an abstract Euler flow generated by an energy functional. We develop a relative energy calculation that connects the Euler flow to the gradient flow in the diffusive limit regime. We apply this approach to prove convergence from the Euler-Poisson system with friction to the Keller-Segel system in the regime that the latter has smooth solutions. The same methodology is used to establish convergence from the Euler-Korteweg theory with monotone pressure laws to the Cahn-Hilliard equation.
Decay constants of a subcritical system by two-group diffusion theory
International Nuclear Information System (INIS)
Moura Neto, C. de.
1979-08-01
The effects of a neutronic pulse applied to a subcritical multiplicative medium are analyzed on the basis of the diffusion theory for one and two groups. The decay constants of the system were determined from the experimental data, for various values geometric buckling. A natural uranium light-water configuration was pulsed employing a Texas Nuclear 9905 neutron generator. The least square method was employed in the data reduction procedures to determine the decay constants. The separation of the decay constants associated with thermal and epithermal fluxes are verified through two groups formulation. (Author) [pt
From gas dynamics with large friction to gradient flows describing diffusion theories
Lattanzio, Corrado; Tzavaras, Athanasios
2016-01-01
We study the emergence of gradient flows in Wasserstein distance as high friction limits of an abstract Euler flow generated by an energy functional. We develop a relative energy calculation that connects the Euler flow to the gradient flow in the diffusive limit regime. We apply this approach to prove convergence from the Euler-Poisson system with friction to the Keller-Segel system in the regime that the latter has smooth solutions. The same methodology is used to establish convergence from the Euler-Korteweg theory with monotone pressure laws to the Cahn-Hilliard equation.
International Nuclear Information System (INIS)
Barhen, J.; Bjerke, M.A.; Cacuci, D.G.; Mullins, C.B.; Wagschal, G.G.
1982-01-01
An advanced methodology for performing systematic uncertainty analysis of time-dependent nonlinear systems is presented. This methodology includes a capability for reducing uncertainties in system parameters and responses by using Bayesian inference techniques to consistently combine prior knowledge with additional experimental information. The determination of best estimates for the system parameters, for the responses, and for their respective covariances is treated as a time-dependent constrained minimization problem. Three alternative formalisms for solving this problem are developed. The two ''off-line'' formalisms, with and without ''foresight'' characteristics, require the generation of a complete sensitivity data base prior to performing the uncertainty analysis. The ''online'' formalism, in which uncertainty analysis is performed interactively with the system analysis code, is best suited for treatment of large-scale highly nonlinear time-dependent problems. This methodology is applied to the uncertainty analysis of a transient upflow of a high pressure water heat transfer experiment. For comparison, an uncertainty analysis using sensitivities computed by standard response surface techniques is also performed. The results of the analysis indicate the following. Major reduction of the discrepancies in the calculation/experiment ratios is achieved by using the new methodology. Incorporation of in-bundle measurements in the uncertainty analysis significantly reduces system uncertainties. Accuracy of sensitivities generated by response-surface techniques should be carefully assessed prior to using them as a basis for uncertainty analyses of transient reactor safety problems
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
Energy Technology Data Exchange (ETDEWEB)
Adams, C. H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center.
SYN3D: a single-channel, spatial flux synthesis code for diffusion theory calculations
International Nuclear Information System (INIS)
Adams, C.H.
1976-07-01
This report is a user's manual for SYN3D, a computer code which uses single-channel, spatial flux synthesis to calculate approximate solutions to two- and three-dimensional, finite-difference, multigroup neutron diffusion theory equations. SYN3D is designed to run in conjunction with any one of several one- and two-dimensional, finite-difference codes (required to generate the synthesis expansion functions) currently being used in the fast reactor community. The report describes the theory and equations, the use of the code, and the implementation on the IBM 370/195 and CDC 7600 of the version of SYN3D available through the Argonne Code Center
SIRIUS - A one-dimensional multigroup analytic nodal diffusion theory code
Energy Technology Data Exchange (ETDEWEB)
Forslund, P. [Westinghouse Atom AB, Vaesteraas (Sweden)
2000-09-01
In order to evaluate relative merits of some proposed intranodal cross sections models, a computer code called Sirius has been developed. Sirius is a one-dimensional, multigroup analytic nodal diffusion theory code with microscopic depletion capability. Sirius provides the possibility of performing a spatial homogenization and energy collapsing of cross sections. In addition a so called pin power reconstruction method is available for the purpose of reconstructing 'heterogeneous' pin qualities. consequently, Sirius has the capability of performing all the calculations (incl. depletion calculations) which are an integral part of the nodal calculation procedure. In this way, an unambiguous numerical analysis of intranodal cross section models is made possible. In this report, the theory of the nodal models implemented in sirius as well as the verification of the most important features of these models are addressed.
Expression for time travel based on diffusive wave theory: applicability and considerations
Aguilera, J. C.; Escauriaza, C. R.; Passalacqua, P.; Gironas, J. A.
2017-12-01
Prediction of hydrological response is of utmost importance when dealing with urban planning, risk assessment, or water resources management issues. With the advent of climate change, special care must be taken with respect to variations in rainfall and runoff due to rising temperature averages. Nowadays, while typical workstations have adequate power to run distributed routing hydrological models, it is still not enough for modeling on-the-fly, a crucial ability in a natural disaster context, where rapid decisions must be made. Semi-distributed time travel models, which compute a watershed's hydrograph without explicitly solving the full shallow water equations, appear as an attractive approach to rainfall-runoff modeling since, like fully distributed models, also superimpose a grid on the watershed, and compute runoff based on cell parameter values. These models are heavily dependent on the travel time expression for an individual cell. Many models make use of expressions based on kinematic wave theory, which is not applicable in cases where watershed storage is important, such as mild slopes. This work presents a new expression for concentration times in overland flow, based on diffusive wave theory, which considers not only the effects of storage but also the effects on upstream contribution. Setting upstream contribution equal to zero gives an expression consistent with previous work on diffusive wave theory; on the other hand, neglecting storage effects (i.e.: diffusion,) is shown to be equivalent to kinematic wave theory, currently used in many spatially distributed time travel models. The newly found expression is shown to be dependent on plane discretization, particularly when dealing with very non-kinematic cases. This is shown to be the result of upstream contribution, which gets larger downstream, versus plane length. This result also provides some light on the limits on applicability of the expression: when a certain kinematic threshold is reached, the
Applicability of the diffusion and simplified P3 theories for BWR pin-by-pin core analysis
International Nuclear Information System (INIS)
Tada, Kenichi; Yamamoto, Akio; Kitamura, Yasunori; Yamane, Yoshihiro; Watanabe, Masato; Noda, Hiroshi
2007-01-01
The pin-by-pin fine mesh core calculation method is considered as a candidate of next-generation core calculation method for BWR. In this study, the diffusion and the simplified P 3 (SP 3 ) theories are applied to the pin-by-pin core analysis of BWR. Performances of the diffusion and the SP 3 theories for cell-homogeneous pin-by-pin fine mesh BWR core analysis are evaluated through comparison with cell-heterogeneous detailed transport calculation by the method of characteristics (MOC). In this study, two-dimensional, 2x2 multi-assemblies geometry is used to compare the prediction accuracies of the diffusion and the SP 3 theories. The 2x2 multi- assemblies geometry consists of two types of 9x9 UO 2 assembly that have two different enrichment splittings. To mitigate the cell-homogenization error, the SPH method is applied for the pin-by-pin fine mesh calculation. The SPH method is a technique that reproduces a result of heterogeneous calculation by that of homogeneous calculation. The calculation results indicated that diffusion theory shows larger discrepancy than that of SP 3 theory on pin-wise fission rates. Furthermore, the accuracy of the diffusion theory would not be sufficient for the pin-by-pin fine mesh calculation. In contrast to the diffusion theory, the SP 3 theory shows much better accuracy on pin wise fission rates. Therefore, if the SP 3 theory is applied, the accuracy of the pin-by-pin fine mesh BWR core analysis will be higher and will be sufficient for production calculation. (author)
Energy Technology Data Exchange (ETDEWEB)
Lafranceschina, Jacopo, E-mail: jlafranceschina@alaska.edu; Wackerbauer, Renate, E-mail: rawackerbauer@alaska.edu [Department of Physics, University of Alaska, Fairbanks, Alaska 99775-5920 (United States)
2015-01-15
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state.
International Nuclear Information System (INIS)
Lafranceschina, Jacopo; Wackerbauer, Renate
2015-01-01
Spatiotemporal chaos collapses to either a rest state or a propagating pulse solution in a ring network of diffusively coupled, excitable Morris-Lecar neurons. Weak excitatory synapses can increase the Lyapunov exponent, expedite the collapse, and promote the collapse to the rest state rather than the pulse state. A single traveling pulse solution may no longer be asymptotic for certain combinations of network topology and (weak) coupling strengths, and initiate spatiotemporal chaos. Multiple pulses can cause chaos initiation due to diffusive and synaptic pulse-pulse interaction. In the presence of chaos initiation, intermittent spatiotemporal chaos exists until typically a collapse to the rest state
Pyridine adsorption and diffusion on Pt(111) investigated with density functional theory
International Nuclear Information System (INIS)
Kolsbjerg, Esben L.; Groves, Michael N.; Hammer, Bjørk
2016-01-01
The adsorption, diffusion, and dissociation of pyridine, C 5 H 5 N, on Pt(111) are investigated with van der Waals-corrected density functional theory. An elaborate search for local minima in the adsorption potential energy landscape reveals that the intact pyridine adsorbs with the aromatic ring parallel to the surface. Piecewise interconnections of the local minima in the energy landscape reveal that the most favourable diffusion path for pyridine has a barrier of 0.53 eV. In the preferred path, the pyridine remains parallel to the surface while performing small single rotational steps with a carbon-carbon double bond hinged above a single Pt atom. The origin of the diffusion pathway is discussed in terms of the C 2 –Pt π-bond being stronger than the corresponding CN–Pt π-bond. The energy barrier and reaction enthalpy for dehydrogenation of adsorbed pyridine into an adsorbed, upright bound α-pyridyl species are calculated to 0.71 eV and 0.18 eV, respectively (both zero-point energy corrected). The calculations are used to rationalize previous experimental observations from the literature for pyridine on Pt(111).
Diffusion of hydrogen into and through γ-iron by density functional theory
Chohan, Urslaan K.; Koehler, Sven P. K.; Jimenez-Melero, Enrique
2018-06-01
This study is concerned with the early stages of hydrogen embrittlement on an atomistic scale. We employed density functional theory to investigate hydrogen diffusion through the (100), (110) and (111) surfaces of γ-Fe. The preferred adsorption sites and respective energies for hydrogen adsorption were established for each plane, as well as a minimum energy pathway for diffusion. The H atoms adsorb on the (100), (110) and (111) surfaces with energies of ∼4.06 eV, ∼3.92 eV and ∼4.05 eV, respectively. The barriers for bulk-like diffusion for the (100), (110) and (111) surfaces are ∼0.6 eV, ∼0.5 eV and ∼0.7 eV, respectively. We compared these calculated barriers with previously obtained experimental data in an Arrhenius plot, which indicates good agreement between experimentally measured and theoretically predicted activation energies. Texturing austenitic steels such that the (111) surfaces of grains are preferentially exposed at the cleavage planes may be a possibility to reduce hydrogen embrittlement.
Mphahlele, Ramatsemela
A methodology is developed for the determination of the optimum spectral zones in Pebble Bed Reactors (PBR). In this work a spectral zone is defined as a zone made up of a number of nodes whose characteristics are collectively similar and that are assigned the same few-group diffusion constants. In other words the spectral zones are the regions over which the few-group diffusion parameters are generated. The identification of spectral boundaries is treated as an optimization problem. It is solved by systematically and simultaneously repositioning all zone boundaries to achieve the global minimum error between the reference transport solution (MCNP) and the diffusion code solution (NEM). The objective function for the optimization algorithm is the total reaction rate error, which is defined as the sum of the leakage, absorption and fission reaction rates error in each zone. An iterative determination of group-dependent bucklings is incorporated into the methodology to properly account for spectral effects of neighboring zones. A preferred energy group structure has also been chosen. This optimization approach with the reference transport solution has proved to be accurate and consistent, however the computational effort required to complete the optimization process is significant. Thus a more practical methodology is also developed for the determination of the spectral zones in PBRs. The reactor physics characteristics of the spectral zones have been studied to understand the nature of the spectral zone boundaries. The practical tool involves the use of spectral indices based on few-group diffusion theory whole core calculations. With this methodology, there is no need to first have a reference transport solution. It is shown that the diffusion-theory coarse group fluxes and the effective multiplication factor computed using zones based on the practical index agrees within a narrow tolerance with those of the reference approach. Therefore the "practical" index
Directory of Open Access Journals (Sweden)
Zhongyi Liu
2015-11-01
Full Text Available Wind turbines with direct-driven permanent magnet synchronous generators (PMSGs are widely used in wind power generation. According to the dynamic characteristics of PMSGs, an impact analysis of PMSG-based wind power penetration on the transient stability of multi-machine power systems is carried out in this paper based on the theory of extended equal area criterion (EEAC. Considering the most severe PMSG integration situation, the changes in the system’s equivalent power-angle relationships after integrating PMSGs are studied in detail. The system’s equivalent mechanical input power and the fault period electrical output power curves are found to be mainly affected. The analysis demonstrates that the integration of PMSGs can cause either detrimental or beneficial effects on the system transient stability. It is determined by several factors, including the selection of the synchronous generators used to balance wind power, the reactive power control mode of PMSGs and the wind power penetration level. Two different simulation systems are also adopted to verify the analysis results.
International Nuclear Information System (INIS)
Munoz-Jaramillo, Andres; Martens, Petrus C. H.; Nandy, Dibyendu
2011-01-01
The turbulent magnetic diffusivity in the solar convection zone is one of the most poorly constrained ingredients of mean-field dynamo models. This lack of constraint has previously led to controversy regarding the most appropriate set of parameters, as different assumptions on the value of turbulent diffusivity lead to radically different solar cycle predictions. Typically, the dynamo community uses double-step diffusivity profiles characterized by low values of diffusivity in the bulk of the convection zone. However, these low diffusivity values are not consistent with theoretical estimates based on mixing-length theory, which suggest much higher values for turbulent diffusivity. To make matters worse, kinematic dynamo simulations cannot yield sustainable magnetic cycles using these theoretical estimates. In this work, we show that magnetic cycles become viable if we combine the theoretically estimated diffusivity profile with magnetic quenching of the diffusivity. Furthermore, we find that the main features of this solution can be reproduced by a dynamo simulation using a prescribed (kinematic) diffusivity profile that is based on the spatiotemporal geometric average of the dynamically quenched diffusivity. This bridges the gap between dynamically quenched and kinematic dynamo models, supporting their usage as viable tools for understanding the solar magnetic cycle.
Kuntsche, Sandra; Gmel, Gerhard
2005-01-01
Cultural and sex differences in smoking rates among countries indicate different phases of the smoking epidemic. Their background is summarized in a four-stage model based on the Rogers Theory of Diffusion of Innovations. First, to test predictions of the Rogers theory and, second, to test whether, according to the theory, today's innovative process is smoking cessation, predicted by higher rates of cessation among the more highly educated and among men of all educational levels. Data covered respondents older than 24 years from two Swiss Health Surveys (1997 and 2002). Logistic regression models were on lifetime smoking versus never-smoking, and on former smoking versus current smoking. Declining smoking rates in both sexes over time, measured by birth cohorts, indicate that the epidemic has peaked, but women of all educational levels and men of lower education still show high prevalence rates. The gap between higher-educated and lower-educated individuals is widening. Smoking prevalence is expected to decline further, particularly among women and little educated men. The incidence of tobacco-related diseases in women is predicted to exceed that of men, owing to their lower cessation rates.
Energy Technology Data Exchange (ETDEWEB)
Hsu, Po Jen; Lai, S. K., E-mail: sklai@coll.phy.ncu.edu.tw [Complex Liquids Laboratory, Department of Physics, National Central University, Chungli 320, Taiwan and Molecular Science and Technology Program, Taiwan International Graduate Program, Academia Sinica, Taipei 115, Taiwan (China); Rapallo, Arnaldo [Istituto per lo Studio delle Macromolecole (ISMAC) Consiglio Nazionale delle Ricerche (CNR), via E. Bassini 15, C.A.P 20133 Milano (Italy)
2014-03-14
Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit
International Nuclear Information System (INIS)
Hsu, Po Jen; Lai, S. K.; Rapallo, Arnaldo
2014-01-01
Improved basis sets for the study of polymer dynamics by means of the diffusion theory, and tests on a melt of cis-1,4-polyisoprene decamers, and a toluene solution of a 71-mer syndiotactic trans-1,2-polypentadiene were presented recently [R. Gaspari and A. Rapallo, J. Chem. Phys. 128, 244109 (2008)]. The proposed hybrid basis approach (HBA) combined two techniques, the long time sorting procedure and the maximum correlation approximation. The HBA takes advantage of the strength of these two techniques, and its basis sets proved to be very effective and computationally convenient in describing both local and global dynamics in cases of flexible synthetic polymers where the repeating unit is a unique type of monomer. The question then arises if the same efficacy continues when the HBA is applied to polymers of different monomers, variable local stiffness along the chain and with longer persistence length, which have different local and global dynamical properties against the above-mentioned systems. Important examples of this kind of molecular chains are the proteins, so that a fragment of the protein transthyretin is chosen as the system of the present study. This peptide corresponds to a sequence that is structured in β-sheets of the protein and is located on the surface of the channel with thyroxin. The protein transthyretin forms amyloid fibrils in vivo, whereas the peptide fragment has been shown [C. P. Jaroniec, C. E. MacPhee, N. S. Astrof, C. M. Dobson, and R. G. Griffin, Proc. Natl. Acad. Sci. U.S.A. 99, 16748 (2002)] to form amyloid fibrils in vitro in extended β-sheet conformations. For these reasons the latter is given considerable attention in the literature and studied also as an isolated fragment in water solution where both experimental and theoretical efforts have indicated the propensity of the system to form β turns or α helices, but is otherwise predominantly unstructured. Differing from previous computational studies that employed implicit
International Nuclear Information System (INIS)
Tittle, C.W.
1992-01-01
Diffusion theory has been successfully used to model the effect of fluid invasion into the formation for neutron porosity logs and for the gamma-gamma density log. The purpose of this paper is to present results of computations using a five-group time-dependent diffusion code on invasion effects for the pulsed neutron thermal decay time log. Previous invasion studies by the author involved the use of a three-dimensional three-group steady-state diffusion theory to model the dual-detector thermal neutron porosity log and the gamma-gamma density log. The five-group time-dependent code MGNDE (Multi-Group Neutron Diffusion Equation) used in this work was written by Ferguson. It has been successfully used to compute the intrinsic formation life-time correction for pulsed neutron thermal decay time logs. This application involves the effect of fluid invasion into the formation
Makowsky, Mark J; Guirguis, Lisa M; Hughes, Christine A; Sadowski, Cheryl A; Yuksel, Nese
2013-09-14
In 2007, Alberta became the first Canadian jurisdiction to grant pharmacists a wide range of prescribing privileges. Our objective was to understand what factors influence pharmacists' adoption of prescribing using a model for the Diffusion of Innovations in healthcare services. Pharmacists participated in semi-structured telephone interviews to discuss their prescribing practices and explore the facilitators and barriers to implementation. Pharmacists working in community, hospital, PCN, or other settings were selected using a mix of random and purposive sampling. Two investigators independently analyzed each transcript using an Interpretive Description approach to identify themes. Analyses were informed by a model explaining the Diffusion of Innovations in health service organizations. Thirty-eight participants were interviewed. Prescribing behaviours varied from non-adoption through to product, disease, and patient focused use of prescribing. Pharmacists' adoption of prescribing was dependent on the innovation itself, adopter, system readiness, and communication and influence. Adopting pharmacists viewed prescribing as a legitimization of previous practice and advantageous to instrumental daily tasks. The complexity of knowledge required for prescribing increased respectively in product, disease and patient focused prescribing scenarios. Individual adopters had higher levels of self-efficacy toward prescribing skills. At a system level, pharmacists who were in practice settings that were patient focused were more likely to adopt advanced prescribing practices, over those in product-focused settings. All pharmacists stated that physician relationships impacted their prescribing behaviours and individual pharmacists' decisions to apply for independent prescribing privileges. Diffusion of Innovations theory was helpful in understanding the multifaceted nature of pharmacists' adoption of prescribing. The characteristics of the prescribing model itself which
International Nuclear Information System (INIS)
Schick, W.C. Jr.; Milani, S.; Duncombe, E.
1980-03-01
A model has been devised for incorporating into the thermal feedback procedure of the PDQ few-group diffusion theory computer program the explicit calculation of depletion and temperature dependent fuel-rod shrinkage and swelling at each mesh point. The model determines the effect on reactivity of the change in hydrogen concentration caused by the variation in coolant channel area as the rods contract and expand. The calculation of fuel temperature, and hence of Doppler-broadened cross sections, is improved by correcting the heat transfer coefficient of the fuel-clad gap for the effects of clad creep, fuel densification and swelling, and release of fission-product gases into the gap. An approximate calculation of clad stress is also included in the model
An entropic barriers diffusion theory of decision-making in multiple alternative tasks.
Directory of Open Access Journals (Sweden)
Diego Fernandez Slezak
2018-03-01
Full Text Available We present a theory of decision-making in the presence of multiple choices that departs from traditional approaches by explicitly incorporating entropic barriers in a stochastic search process. We analyze response time data from an on-line repository of 15 million blitz chess games, and show that our model fits not just the mean and variance, but the entire response time distribution (over several response-time orders of magnitude at every stage of the game. We apply the model to show that (a higher cognitive expertise corresponds to the exploration of more complex solution spaces, and (b reaction times of users at an on-line buying website can be similarly explained. Our model can be seen as a synergy between diffusion models used to model simple two-choice decision-making and planning agents in complex problem solving.
Multifractality and quantum diffusion from self-consistent theory of localization
Energy Technology Data Exchange (ETDEWEB)
Suslov, I. M., E-mail: suslov@kapitza.ras.ru [Kapitza Institute for Physical Problems (Russian Federation)
2015-11-15
Multifractal properties of wave functions in a disordered system can be derived from self-consistent theory of localization by Vollhardt and Wölfle. A diagrammatic interpretation of results allows to obtain all scaling relations used in numerical experiments. The arguments are given that the one-loop Wegner result for a space dimension d = 2 + ϵ is exact, so the multifractal spectrum is strictly parabolical. The σ-models are shown to be deficient at the four-loop level and the possible reasons of that are discussed. The extremely slow convergence to the thermodynamic limit is demonstrated. The open question on the relation between multifractality and a spatial dispersion of the diffusion coefficient D(ω, q) is resolved in the compromise manner due to ambiguity of the D(ω, q) definition. Comparison is made with the extensive numerical material.
International Nuclear Information System (INIS)
Tatekawa, Takayuki
2014-01-01
We study the initial conditions for cosmological N-body simulations for precision cosmology. In general, Zel'dovich approximation has been applied for the initial conditions of N-body simulations for a long time. These initial conditions provide incorrect higher-order growth. These error caused by setting up the initial conditions by perturbation theory is called transients. We investigated the impact of transient on non-Gaussianity of density field by performing cosmological N-body simulations with initial conditions based on first-, second-, and third-order Lagrangian perturbation theory in previous paper. In this paper, we evaluates the effect of the transverse mode in the third-order Lagrangian perturbation theory for several statistical quantities such as power spectrum and non-Gaussianty. Then we clarified that the effect of the transverse mode in the third-order Lagrangian perturbation theory is quite small
International Nuclear Information System (INIS)
Ackroyd, R.T.
1987-01-01
A least squares principle is described which uses a penalty function treatment of boundary and interface conditions. Appropriate choices of the trial functions and vectors employed in a dual representation of an approximate solution established complementary principles for the diffusion equation. A geometrical interpretation of the principles provides weighted residual methods for diffusion theory, thus establishing a unification of least squares, variational and weighted residual methods. The complementary principles are used with either a trial function for the flux or a trial vector for the current to establish for regular meshes a connection between finite element, finite difference and nodal methods, which can be exact if the mesh pitches are chosen appropriately. Whereas the coefficients in the usual nodal equations have to be determined iteratively, those derived via the complementary principles are given explicitly in terms of the data. For the further development of the connection between finite element, finite difference and nodal methods, some hybrid variational methods are described which employ both a trial function and a trial vector. (author)
Arjunan, Satya Nanda Vel; Tomita, Masaru
2010-03-01
Many important cellular processes are regulated by reaction-diffusion (RD) of molecules that takes place both in the cytoplasm and on the membrane. To model and analyze such multicompartmental processes, we developed a lattice-based Monte Carlo method, Spatiocyte that supports RD in volume and surface compartments at single molecule resolution. Stochasticity in RD and the excluded volume effect brought by intracellular molecular crowding, both of which can significantly affect RD and thus, cellular processes, are also supported. We verified the method by comparing simulation results of diffusion, irreversible and reversible reactions with the predicted analytical and best available numerical solutions. Moreover, to directly compare the localization patterns of molecules in fluorescence microscopy images with simulation, we devised a visualization method that mimics the microphotography process by showing the trajectory of simulated molecules averaged according to the camera exposure time. In the rod-shaped bacterium Escherichia coli, the division site is suppressed at the cell poles by periodic pole-to-pole oscillations of the Min proteins (MinC, MinD and MinE) arising from carefully orchestrated RD in both cytoplasm and membrane compartments. Using Spatiocyte we could model and reproduce the in vivo MinDE localization dynamics by accounting for the previously reported properties of MinE. Our results suggest that the MinE ring, which is essential in preventing polar septation, is largely composed of MinE that is transiently attached to the membrane independently after recruited by MinD. Overall, Spatiocyte allows simulation and visualization of complex spatial and reaction-diffusion mediated cellular processes in volumes and surfaces. As we showed, it can potentially provide mechanistic insights otherwise difficult to obtain experimentally. The online version of this article (doi:10.1007/s11693-009-9047-2) contains supplementary material, which is available to
Analytical Assessment for Transient Stability Under Stochastic Continuous Disturbances
Energy Technology Data Exchange (ETDEWEB)
Ju, Ping [Hohai Univ., Nanjing (China); Li, Hongyu [Hohai Univ., Nanjing (China); Gan, Chun [The Univ. of Tennessee, Knoxville, TN (United States); Liu, Yong [The Univ. of Tennessee, Knoxville, TN (United States); Yu, Yiping [Hohai Univ., Nanjing (China); Liu, Yilu [Univ. of Tennessee, Knoxville, TN (United States)
2017-06-28
Here, with the growing integration of renewable power generation, plug-in electric vehicles, and other sources of uncertainty, increasing stochastic continuous disturbances are brought to power systems. The impact of stochastic continuous disturbances on power system transient stability attracts significant attention. To address this problem, this paper proposes an analytical assessment method for transient stability of multi-machine power systems under stochastic continuous disturbances. In the proposed method, a probability measure of transient stability is presented and analytically solved by stochastic averaging. Compared with the conventional method (Monte Carlo simulation), the proposed method is many orders of magnitude faster, which makes it very attractive in practice when many plans for transient stability must be compared or when transient stability must be analyzed quickly. Also, it is found that the evolution of system energy over time is almost a simple diffusion process by the proposed method, which explains the impact mechanism of stochastic continuous disturbances on transient stability in theory.
Otsuka, F.; Matsukiyo, S.; Kis, A.; Hada, T.
2017-12-01
Spatial diffusion of energetic particles is an important problem not only from a fundamental physics point of view but also for its application to particle acceleration processes at astrophysical shocks. Quasi-linear theory can provide the spatial diffusion coefficient as a function of the wave turbulence spectrum. By assuming a simple power-law spectrum for the turbulence, the theory has been successfully applied to diffusion and acceleration of cosmic rays in the interplanetary and interstellar medium. Near the earth's foreshock, however, the wave spectrum often has an intense peak, presumably corresponding to the upstream ULF waves generated by the field-aligned beam (FAB). In this presentation, we numerically and theoretically discuss how the intense ULF peak in the wave spectrum modifies the spatial parallel diffusion of energetic ions. The turbulence is given as a superposition of non-propagating transverse MHD waves in the solar wind rest frame, and its spectrum is composed of a piecewise power-law spectrum with different power-law indices. The diffusion coefficients are then estimated by using the quasi-linear theory and test particle simulations. We find that the presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The results above are used to discuss the Cluster observations of the diffuse ions at the Earth's foreshock. Using the density gradients of the energetic ions detected by the Cluster spacecraft, we determine the e-folding distances, equivalently, the spatial diffusion coefficients, of ions with their energies from 10 to 32 keV. The observed e-folding distances are significantly smaller than those estimated in the past statistical studies. This suggests that the particle acceleration at the foreshock can be more efficient than considered before. Our test particle simulation explains well the small estimate of the e-folding distances, by using the observed wave turbulence spectrum
A self-consistent mean field theory for diffusion in alloys
International Nuclear Information System (INIS)
Nastar, M.; Barbe, V.
2007-01-01
Starting from a microscopic model of the atomic transport via vacancies and interstitials in alloys, a self-consistent mean field (SCMF) kinetic theory yields the phenomenological coefficients L ij . In this theory, kinetic correlations are accounted for through a set of effective interactions within a non-equilibrium distribution function of the system. The introduction of a master equation describing the evolution with time of the distribution function and its moments leads to general self-consistent kinetic equations. The L ij of a face centered cubic alloy are calculated using the kinetic equations of Nastar (M. Nastar, Philos. Mag., 2005, 85, 3767, ref. 1) derived from a microscopic broken bond model of the vacancy jump frequency. A first approximation leads to an analytical expression of the L ij and a second approximation to a better agreement with the Monte Carlo simulations. A change of sign of the L ij is studied as a function of the microscopic parameters of the jump frequency. The L ij of a cubic centered alloy obtained for the complex diffusion mechanism of the dumbbell configuration of the interstitial are used to study the effect of an on-site rotation of the dumbbell on the transport. (authors)
Energy Technology Data Exchange (ETDEWEB)
Han, Zongying [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Union Research Center of Fuel Cell, School of Chemical and Environmental Engineering, China University of Mining and Technology, Beijing 100083 (China); Chen, Haipeng [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); Zhou, Shixue, E-mail: zhoushixue66@163.com [College of Chemical and Environmental Engineering, Shandong University of Science and Technology, Qingdao 266590 (China); College of Mechanical and Electronic Engineering, Shandong University of Science and Technology, Qingdao 266590 (China)
2017-02-01
Highlights: • Clarify the effect of vacancy defect on H{sub 2} dissociation on Mg (0001) surface. • Demonstrate the effects of vacancy defect on H atom diffusion. • Reveal the minimum energy diffusion path of H atom from magnesium surface into bulk. - Abstract: First-principles calculations with the density functional theory (DFT) have been carried out to study dissociation and diffusion of hydrogen on defect-free and vacancy defective Mg (0001) surfaces. Results show that energy barriers of 1.42 eV and 1.28 eV require to be overcome for H{sub 2} dissociation on defect-free and vacancy defective Mg (0001) surfaces respectively, indicating that reactivity of Mg (0001) surface is moderately increased due to vacancy defect. Besides, the existence of vacancy defect changes the preferential H atom diffusion entrance to the subsurface and reduces the diffusion energy barrier. An interesting remark is that the minimum energy diffusion path of H atom from magnesium surface into bulk is a spiral channel formed by staggered octahedral and tetrahedral interstitials. The diffusion barriers computed for H atom penetration from the surface into inner-layers are all less than 0.70 eV, which is much smaller than the activation energy for H{sub 2} dissociation on the Mg (0001) surface. This suggests that H{sub 2} dissociation is more likely than H diffusion to be rate-limiting step for magnesium hydrogenation.
International Nuclear Information System (INIS)
An, Yonghao; Jiang, Hanqing
2013-01-01
Lithium-ion batteries have attracted great deal of attention recently. Silicon is one of the most promising anode materials for high-performance lithium-ion batteries, due to its highest theoretical specific capacity. However, the short lifetime confined by mechanical failure in the silicon anode is now considered to be the biggest challenge in desired applications. High stress induced by the huge volume change due to lithium insertion/extraction is the main reason underlying this problem. Some theoretical models have been developed to address this issue. In order to properly implement these models, we develop a finite element based numerical method using a commercial software package, ABAQUS, as a platform at the continuum level to study fully coupled large deformation and mass diffusion problem. Using this method, large deformation, elasticity–plasticity of the electrodes, various spatial and temporal conditions, arbitrary geometry and dimension could be fulfilled. The interaction between anode and other components of the lithium ion batteries can also be studied as an integrated system. Several specific examples are presented to demonstrate the capability of this numerical platform. (paper)
Shtrahman, E.; Maruyama, D.; Olariu, E.; Fink, C. G.; Zochowski, M.
2017-02-01
Astrocytes form interconnected networks in the brain and communicate via calcium signaling. We investigate how modes of coupling between astrocytes influence the spatio-temporal patterns of calcium signaling within astrocyte networks and specifically how these network interactions promote coordination within this group of cells. To investigate these complex phenomena, we study reduced cultured networks of astrocytes and neurons. We image the spatial temporal patterns of astrocyte calcium activity and quantify how perturbing the coupling between astrocytes influences astrocyte activity patterns. To gain insight into the pattern formation observed in these cultured networks, we compare the experimentally observed calcium activity patterns to the patterns produced by a reduced computational model, where we represent astrocytes as simple units that integrate input through two mechanisms: gap junction coupling (network transport) and chemical release (extracellular diffusion). We examine the activity patterns in the simulated astrocyte network and their dependence upon these two coupling mechanisms. We find that gap junctions and extracellular chemical release interact in astrocyte networks to modulate the spatiotemporal patterns of their calcium dynamics. We show agreement between the computational and experimental findings, which suggests that the complex global patterns can be understood as a result of simple local coupling mechanisms.
DEFF Research Database (Denmark)
Tian, Yihui; Govindan, Kannan; Zhu, Qinghua
2014-01-01
In this study, a system dynamics (SD) model is developed to guide the subsidy policies to promote the diffusion of green supply chain management (GSCM) in China. The relationships of stakeholders such as government, enterprises and consumers are analyzed through evolutionary game theory. Finally...
Gray, Kishonna L.
2012-01-01
This article examines the response of minority gamers as they adopt new innovations in Xbox Live. Using diffusion of innovation theory, specific attention is given to gamers' rate of adoption of the new Xbox Live environment, which was a recent update to the Xbox Live interface. By employing virtual ethnography, observations, and interviews reveal…
International Nuclear Information System (INIS)
Guenza, M.; Schweizer, K.S.
1998-01-01
The predictions of polymer-mode-coupling theory for self-diffusion in entangled structurally and interaction symmetric diblock copolymer fluids are illustrated by explicit numerical calculations. We find that retardation of translational motion emerges near and somewhat below the order endash disorder transition (ODT) in an approximately exponential and/or thermally activated manner. At fixed reduced temperature, suppression of diffusion is enhanced with increasing diblock molecular weight, compositional symmetry, and/or copolymer concentration. At very low temperatures, a new entropic-like regime of mobility suppression is predicted based on an isotropic supercooled liquid description of the copolymer structure. Preliminary generalization of the theory to treat diblock tracer diffusion is also presented. Quantitative applications to recent self and tracer diffusion measurements on compositionally symmetric polyolefin diblock materials have been carried out, and very good agreement between theory and experiment is found. Asymmetry in block local friction constants is predicted to significantly influence mobility suppression, with the largest effects occurring when the minority block is also the high friction species. New experiments to further test the predictions of the theory are suggested. copyright 1998 American Institute of Physics
Lee, Yi-Hsuan; Hsieh, Yi-Chuan; Hsu, Chia-Ning
2011-01-01
This study intends to investigate factors affecting business employees' behavioral intentions to use the e-learning system. Combining the innovation diffusion theory (IDT) with the technology acceptance model (TAM), the present study proposes an extended technology acceptance model. The proposed model was tested with data collected from 552…
International Nuclear Information System (INIS)
Modak, R.S.; Sahni, D.C.
1996-01-01
Some simple reciprocity-like relations that exist in multi-group neutron diffusion and transport theory over bare homogeneous regions are presented. These relations do not involve the adjoint solutions and are directly related to numerical schemes based on an explicit evaluation of the fission matrix. (author)
Theory of the diffusion coefficient of neutrons in a lattice containing cavities
International Nuclear Information System (INIS)
Benoist, P.
1964-01-01
In an previous publication, a simple and general formulation of the diffusion coefficient, which defines the mode of weighting of the mean free paths of the various media, in introducing the collision probabilities in each medium, was established. This expression is demonstrated again here through a more direct method, and the velocity is introduced; new terms are emphasised, the existence of which implies that the representation of the diffusion area as the mean square of the straight line distance from source to absorption is not correct in a lattice. However these terms are of small enough an order of magnitude to he treated as a correction. The general expression also shows the existence, for the radial coefficient, of the series of angular correlation terms, which is seen to converge very slowly for large channels. The term by term computation which was initiated in the first work was then interrupted and a global formulation, which emphasize a resemblance with the problem of the thermal utilisation factor, was adopted. An integral method, analogous to that use for the computation of this factor, gives the possibility to establish new and simple practical formulae, which require the use of a few basic functions only. These formulae are very accurate, as seen from the results of a variational method which was studied as a reference. Various correction effects are reviewed. Expressions which allow the exact treatment of fuel rod clusters are presented. The theory is confronted with various experimental results, and a new method of measuring the radial coefficient is proposed. (author) [fr
Zendejas, Gerardo; Chiasson, Mike
This paper will propose and explore a method to enhance focal actors' abilities to enroll and control the many social and technical components interacting during the initiation, production, and diffusion of innovations. The reassembling and stabilizing of such components is the challenging goal of the focal actors involved in these processes. To address this possibility, a healthcare project involving the initiation, production, and diffusion of an IT-based innovation will be influenced by the researcher, using concepts from actor network theory (ANT), within an action research methodology (ARM). The experiences using this method, and the nature of enrolment and translation during its use, will highlight if and how ANT can provide a problem-solving method to help assemble the social and technical actants involved in the diffusion of an innovation. Finally, the paper will discuss the challenges and benefits of implementing such methods to attain widespread diffusion.
Energy Technology Data Exchange (ETDEWEB)
Breton, J P [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1962-06-15
The present-day theories of separation by gaseous diffusion (Present and de BETHUNE, KYNCH, BOSANQUET) are all based on the same model in which the pores are cylindrical capillaries. In the theory presented here, we substitute for this model that of a disordered and isotropic bed of identical spheres, which describes more accurately most of the porous media. We take as our starting point DERIAGUINE and BAKANOV'S permeability theory, which expresses the flow of a simple gas in such a bed when the latter is of high porosity. We first generalise this theory in the case of medium and low porosities; then, we go on to a mixture of two gases, from which we deduce our separation theory. Finally we compare our results with those of Present and de BETHUNE. (author) [French] Les theories actuelles de la separation par diffusion gazeuse (PRESENT et de BETHUNE, KYNCH, BOSANQUET) reposent toutes sur le modele des pores capillaires cylindriques. Dans la theorie presentee ici, nous substituons a ce modele celui d'un empilement desordonne et isotropes de spheres identiques, qui decrit plus correctement la plupart des milieux poreux. Nous partons de la theorie de la permeabilite de DERIAGUINE et BAKANOV, qui exprime l'ecoulement d'un gaz simple dans un tel empilement dans le cas ou la porosite en est elevee. Nous generalisons d'abord cette theorie du cas des porosites moyennes ou faibles, puis, passant a un melange de deux gaz, nous en deduisons une theorie de la separation. Pour terminer, nous comparons nos resultats a ceux de PRESENT et de BETHUNE. (auteur)
Characterization of the thermalness of a fissile system with a two-group diffusion theory parameter
International Nuclear Information System (INIS)
Bredehoft, B.B.; Busch, R.D.
1993-01-01
In tabulating critical data, the hydrogen-to-fissile atom ratio (H/X) is commonly used to characterize the amount of moderation in a system. Though adequate in many cases, H/X does not account for the moderating contribution of other light nuclei contained in common uranium-moderator mixtures. This ratio also does not account for enrichment of the system, which affects the resonance absorption characteristics and, therefore, the moderating behavior of that system. To alleviate these problems, a two-energy-group diffusion theory analogy to the six-factor formula was applied to define a new parameter p/(η 2 · f 2 ), which describes the moderation characteristics or the 'thermalness' of a fissioning system and includes the effects of enrichment and the presence of moderators other than hydrogen. From an analysis of several low-enriched uranium systems with different moderators, it was found that the values of p/(η 2 · f 2 ) corresponding to minimum critical mass and volume tend to center in a narrower range than do the values of H/X for the same systems. Also, the thermalness parameter does not vary with the addition of a reflector and is applicable to systems with other than hydrogenous moderators. Based on these results, the thermalness parameter p/(η 2 · f 2 ) provides an effective means of characterizing moderated systems relative to optimum conditions
Solution to the Diffusion equation for multi groups in X Y geometry using Linear Perturbation theory
International Nuclear Information System (INIS)
Mugica R, C.A.
2004-01-01
Diverse methods exist to solve numerically the neutron diffusion equation for several energy groups in stationary state among those that highlight those of finite elements. In this work the numerical solution of this equation is presented using Raviart-Thomas nodal methods type finite element, the RT0 and RT1, in combination with iterative techniques that allow to obtain the approached solution in a quick form. Nevertheless the above mentioned, the precision of a method is intimately bound to the dimension of the approach space by cell, 5 for the case RT0 and 12 for the RT1, and/or to the mesh refinement, that makes the order of the problem of own value to solve to grow considerably. By this way if it wants to know an acceptable approach to the value of the effective multiplication factor of the system when this it has experimented a small perturbation it was appeal to the Linear perturbation theory with which is possible to determine it starting from the neutron flow and of the effective multiplication factor of the not perturbed case. Results are presented for a reference problem in which a perturbation is introduced in an assemble that simulates changes in the control bar. (Author)
International Nuclear Information System (INIS)
Maldonado, G.I.; Turinsky, P.J.
1995-01-01
The determination of the family of optimum core loading patterns for pressurized water reactors (PWRs) involves the assessment of the core attributes for thousands of candidate loading patterns. For this reason, the computational capability to efficiently and accurately evaluate a reactor core's eigenvalue and power distribution versus burnup using a nodal diffusion generalized perturbation theory (GPT) model is developed. The GPT model is derived from the forward nonlinear iterative nodal expansion method (NEM) to explicitly enable the preservation of the finite difference matrix structure. This key feature considerably simplifies the mathematical formulation of NEM GPT and results in reduced memory storage and CPU time requirements versus the traditional response-matrix approach to NEM. In addition, a treatment within NEM GPT can account for localized nonlinear feedbacks, such as that due to fission product buildup and thermal-hydraulic effects. When compared with a standard nonlinear iterative NEM forward flux solve with feedbacks, the NEM GPT model can execute between 8 and 12 times faster. These developments are implemented within the PWR in-core nuclear fuel management optimization code FORMOSA-P, combining the robustness of its adaptive simulated annealing stochastic optimization algorithm with an NEM GPT neutronics model that efficiently and accurately evaluates core attributes associated with objective functions and constraints of candidate loading patterns
Evaluation of energy collapsing effect on reactor kinetics parameters by diffusion theory
International Nuclear Information System (INIS)
Unesaki, Hironobu
1989-01-01
Reactor kinetics parameters play an important role as scaling factors between observed and calculated reactivities in the analysis of reactor physics experiments. In this report, energy collapsing errors in two kinetic parameters, the effective delayed neutron fraction and the neutron life time, are investigated by means of the diffusion theory. Coarse group calculations are made for various energy group structures. Cores of various moderator-to-fuel volume ratios are selected to investigate the influence of neutron spectrum changes on the energy collapsing error. The energy collapsing errors in the effective delayed neutron fraction and neutron life time are much larger than those in k eff . This might be because the former two parameters are functions of both the foward and adjoint flux, whereas the latter is a function of the forward flux alone. The use of coarse constants will cause errors in both fluxes, and the resulting errors in the former will be much more emphasized. As the effective delayed neutron fraction is sensitive to the treatment of an energy region in the vicinity of the fission spectrum peak, the coarse group error in it might differ between cores with different enrichment and composition. Inaccurate weighting of group constants leads to neutron spectra which do not conserve the fine group spectra, and those errors will be emphasized in calculated integral parameters. (N.K.)
De Civita, Mirella; Dasgupta, Kaberi
2007-09-01
Optimal management of type 2 diabetes requires achievement of optimal glucose, blood pressure and lipid targets through promotion of prudent diet, regular physical activity and adherence to necessary medication. This may require the development of new programs for the coordination of required multidisciplinary services. Diffusion of innovations theory offers a conceptual framework that may facilitate the implementation of such programs. To illustrate this, we have re-examined the implementation experiences previously reported by the developers of an actual diabetes management pilot program in Montreal, with an eye toward identifying potentially important process factors that could effectively increase adoption and sustainability. Physician participation in the program appeared to be influenced by perceived advantages of participation, compatibility of the program with own perspective and perceived barriers to participation. Organizational features that may have influenced participation included the extent of the program's integration within the existing health care system. A thorough consideration of process factors that impact system and team integration must equally include a focus on ensuring ongoing partnerships among the producers of the model, governments, nongovernmental organizations, private industry, user professionals and patients. This can only be achieved when a knowledge transfer action plan is developed to guide program development, implementation and sustainability.
Energy Technology Data Exchange (ETDEWEB)
Mirigian, Stephen, E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com; Schweizer, Kenneth S., E-mail: kschweiz@illinois.edu, E-mail: smirigian@gmail.com [Departments of Materials Science and Chemistry, University of Illinois, Urbana, Illinois 61801 (United States)
2015-12-28
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry.
International Nuclear Information System (INIS)
Mirigian, Stephen; Schweizer, Kenneth S.
2015-01-01
We have constructed a quantitative, force level, statistical mechanical theory for how confinement in free standing thin films introduces a spatial mobility gradient of the alpha relaxation time as a function of temperature, film thickness, and location in the film. The crucial idea is that relaxation speeds up due to the reduction of both near-surface barriers associated with the loss of neighbors in the local cage and the spatial cutoff and dynamical softening near the vapor interface of the spatially longer range collective elasticity cost for large amplitude hopping. These two effects are fundamentally coupled. Quantitative predictions are made for how an apparent glass temperature depends on the film thickness and experimental probe technique, the emergence of a two-step decay and mobile layers in time domain measurements, signatures of confinement in frequency-domain dielectric loss experiments, the dependence of film-averaged relaxation times and dynamic fragility on temperature and film thickness, surface diffusion, and the relationship between kinetic experiments and pseudo-thermodynamic measurements such as ellipsometry
International Nuclear Information System (INIS)
Drury, L.O'C.
1983-01-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalised Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed. (author)
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.O. (Max-Planck-Institut fuer Kernphysik, Heidelberg (Germany, F.R.))
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints; applied to reactionless test particles in a steady plane shock the mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks; the possible time dependence is briefly discussed.
Introduction to the theory of diffusive shock acceleration of energetic particles in tenuous plasmas
Energy Technology Data Exchange (ETDEWEB)
Drury, L.Oc.
1983-08-01
The central idea of diffusive shock acceleration is presented from microscopic and macroscopic viewpoints applied to reactionless test particles in a steady plane shock. The mechanism is shown to produce a power law spectrum in momentum with a slope which, to lowest order in the ratio of plasma to particle speed, depends only on the compression in the shock. The associated time scale is found (also by a macroscopic and a microscopic method) and the problems of spherical shocks, as exemplified by a point explosion and a stellar-wind terminator, are treated by singular perturbation theory. The effect of including the particle reaction is then studied. It is shown that if the scattering is due to resonant waves these can rapidly grow with unknown consequences. The possible steady modified shock structures are classified and generalized Rankine-Hugoniot conditions found. Modifications of the spectrum are discussed on the basis of an exact, if rather artificial, solution, a high-energy asymptotic expansion and a perturbation expansion due to Blandford. It is pointed out that no steady solution can exist for very strong shocks. The possible time dependence is briefly discussed. 75 references.
Directory of Open Access Journals (Sweden)
Matthew D Sacchet
2015-02-01
Full Text Available Recently there has been considerable interest in understanding brain networks in Major Depressive Disorder (MDD. Neural pathways can be tracked in the living brain using diffusion weighted imaging (DWI; graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on ‘support vector machines’ to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and co-morbidities.
TASK, 1-D Multigroup Diffusion or Transport Theory Reactor Kinetics with Delayed Neutron
International Nuclear Information System (INIS)
Buhl, A.R.; Hermann, O.W.; Hinton, R.J.; Dodds, H.L. Jr.; Robinson, J.C.; Lillie, R.A.
1975-01-01
1 - Description of problem or function: TASK solves the one-dimensional multigroup form of the reactor kinetics equations, using either transport or diffusion theory and allowing an arbitrary number of delayed neutron groups. The program can also be used to solve standard static problems efficiently such as eigenvalue problems, distributed source problems, and boundary source problems. Convergence problems associated with sources in highly multiplicative media are circumvented, and such problems are readily calculable. 2 - Method of solution: TASK employs a combination scattering and transfer matrix method to eliminate certain difficulties that arise in classical finite difference approximations. As such, within-group (inner) iterations are eliminated and solution convergence is independent of spatial mesh size. The time variable is removed by Laplace transformation. (A later version will permit direct time solutions.) The code can be run either in an outer iteration mode or in closed (non-iterative) form. The running mode is dictated by the number of groups times the number of angles, consistent with available storage. 3 - Restrictions on the complexity of the problem: The principal restrictions are available storage and computation time. Since the code is flexibly-dimensioned and has an outer iteration option there are no internal restrictions on group structure, quadrature, and number of ordinates. The flexible-dimensioning scheme allows optional use of core storage. The generalized cylindrical geometry option is not complete in Version I of the code. The feedback options and omega-mode search options are not included in Version I
Sacchet, Matthew D; Prasad, Gautam; Foland-Ross, Lara C; Thompson, Paul M; Gotlib, Ian H
2015-01-01
Recently, there has been considerable interest in understanding brain networks in major depressive disorder (MDD). Neural pathways can be tracked in the living brain using diffusion-weighted imaging (DWI); graph theory can then be used to study properties of the resulting fiber networks. To date, global abnormalities have not been reported in tractography-based graph metrics in MDD, so we used a machine learning approach based on "support vector machines" to differentiate depressed from healthy individuals based on multiple brain network properties. We also assessed how important specific graph metrics were for this differentiation. Finally, we conducted a local graph analysis to identify abnormal connectivity at specific nodes of the network. We were able to classify depression using whole-brain graph metrics. Small-worldness was the most useful graph metric for classification. The right pars orbitalis, right inferior parietal cortex, and left rostral anterior cingulate all showed abnormal network connectivity in MDD. This is the first use of structural global graph metrics to classify depressed individuals. These findings highlight the importance of future research to understand network properties in depression across imaging modalities, improve classification results, and relate network alterations to psychiatric symptoms, medication, and comorbidities.
Mezzasalma, Stefano A
2007-03-15
The theoretical basis of a recent theory of Brownian relativity for polymer solutions is deepened and reexamined. After the problem of relative diffusion in polymer solutions is addressed, its two postulates are formulated in all generality. The former builds a statistical equivalence between (uncorrelated) timelike and shapelike reference frames, that is, among dynamical trajectories of liquid molecules and static configurations of polymer chains. The latter defines the "diffusive horizon" as the invariant quantity to work with in the special version of the theory. Particularly, the concept of universality in polymer physics corresponds in Brownian relativity to that of covariance in the Einstein formulation. Here, a "universal" law consists of a privileged observation, performed from the laboratory rest frame and agreeing with any diffusive reference system. From the joint lack of covariance and simultaneity implied by the Brownian Lorentz-Poincaré transforms, a relative uncertainty arises, in a certain analogy with quantum mechanics. It is driven by the difference between local diffusion coefficients in the liquid solution. The same transformation class can be used to infer Fick's second law of diffusion, playing here the role of a gauge invariance preserving covariance of the spacetime increments. An overall, noteworthy conclusion emerging from this view concerns the statistics of (i) static macromolecular configurations and (ii) the motion of liquid molecules, which would be much more related than expected.
Effective diffusion coefficient of radon in concrete, theory and method for field measurements
International Nuclear Information System (INIS)
Culot, M.V.J.; Olson, H.G.; Schiager, K.J.
1976-01-01
A linear diffusion model serves as the basis for determination of an effective radon diffusion coefficient in concrete. The coefficient was needed to later allow quantitative prediction of radon accumulation within and behind concrete walls after application of an impervious radon barrier. A resolution of certain discrepancies noted in the literature in the use of an effective diffusion coefficient to model diffusion of a radioactive gas through a porous medium is suggested. An outline of factors expected to affect the concrete physical structure and the effective diffusion coefficient of radon through it is also presented. Finally, a field method for evaluating effective radon diffusion coefficients in concrete is proposed and results of measurements performed on a concrete foundation wall are compared with similar published values of gas diffusion coefficients in concrete. (author)
Directory of Open Access Journals (Sweden)
Seyyed Milad Salehi
2014-01-01
Full Text Available It seems using the Maxwell-Stefan (M-S diffusion model in combination with the vacancy solution theory (VST and the single-component adsorption data provides a superior, qualitative, and quantitative prediction of diffusion in zeolites. In the M-S formulation, thermodynamic factor (Г is an essential parameter which must be estimated by an adsorption isotherm. Researchers usually utilize the simplest form of adsorption isotherms such as Langmuir or improved dual-site Langmuir, which eventually cannot predict the real behavior of mixture diffusion particularly at high concentrations of adsorbates because of ignoring nonideality in the adsorbed phase. An isotherm model with regard to the real behavior of the adsorbed phase, which is based on the vacancy solution theory (VST and considers adsorbate-adsorbent interactions, is employed. The objective of this study is applying vacancy solution theory to pure component data, calculating thermodynamic factor (Г, and finally evaluating the simulation results by comparison with literature. Vacancy solution theory obviously predicts thermodynamic factor better than simple models such as dual-site Langmuir.
Gaspari, Roberto; Rapallo, Arnaldo
2008-06-28
In this work a new method is proposed for the choice of basis functions in diffusion theory (DT) calculations. This method, named hybrid basis approach (HBA), combines the two previously adopted long time sorting procedure (LTSP) and maximum correlation approximation (MCA) techniques; the first emphasizing contributions from the long time dynamics, the latter being based on the local correlations along the chain. In order to fulfill this task, the HBA procedure employs a first order basis set corresponding to a high order MCA one and generates upper order approximations according to LTSP. A test of the method is made first on a melt of cis-1,4-polyisoprene decamers where HBA and LTSP are compared in terms of efficiency. Both convergence properties and numerical stability are improved by the use of the HBA basis set whose performance is evaluated on local dynamics, by computing the correlation times of selected bond vectors along the chain, and on global ones, through the eigenvalues of the diffusion operator L. Further use of the DT with a HBA basis set has been made on a 71-mer of syndiotactic trans-1,2-polypentadiene in toluene solution, whose dynamical properties have been computed with a high order calculation and compared to the "numerical experiment" provided by the molecular dynamics (MD) simulation in explicit solvent. The necessary equilibrium averages have been obtained by a vacuum trajectory of the chain where solvent effects on conformational properties have been reproduced with a proper screening of the nonbonded interactions, corresponding to a definite value of the mean radius of gyration of the polymer in vacuum. Results show a very good agreement between DT calculations and the MD numerical experiment. This suggests a further use of DT methods with the necessary input quantities obtained by the only knowledge of some experimental values, i.e., the mean radius of gyration of the chain and the viscosity of the solution, and by a suitable vacuum
Analysis of the HTTR with Monte-Carlo and diffusion theory. An IRI-ECN intercomparison
International Nuclear Information System (INIS)
De Haas, J.B.M.; Wallerbos, E.J.M.
2000-09-01
In the framework of the IAEA Co-ordinated Research Program (CRP) 'Evaluation of HTGR Performance' for the start-up core physics benchmark of the High Temperature Engineering Test Reactor (HTTR) two-group cross section data for a fuel compact lattice and for a two-dimensional R-Z model have been generated for comparison purposes. For this comparison, 5.2% enriched uranium was selected. Furthermore, a simplified core configuration utilising only the selected type of fuel has been analysed with both the Monte Carlo code KENO and with the diffusion theory codes BOLD VENTURE and PANTHER. With a very detailed KENO model of this simplified core, k eff was calculated to be 1.1278±0.0005. Homogenisation of the core region was seen to increase k eff by 0.0340 which can be attributed to streaming of neutrons in the detailed model. The difference in k eff between the homogenised models of KENO and BOLD VENTURE amounts then only,Δk =0.0025. The PANTHER result for this core is k eff = 1. 1251, which is in good agreement with the KENO result. The fully loaded core configuration, with a range of enrichments, has also been analysed with both KENO and BOLD VENTURE. In this case the homogenisation was seen to increase k eff by 0.0375 (streaming effect). In BOLD VENTURE the critical state could be reached by the insertion of the control rods through adding an effective 10 B density over the insertion depth while the streaming of neutrons was accounted for by adjustment of the diffusion coefficient. The generation time and the effective fraction of delayed neutrons in the critical state have been calculated to be 1.11 ms and 0.705 %, respectively. This yields a prompt decay constant at critical of 6.9 s -1 . The analysis with PANTHER resulted in a k eff =1.1595 and a critical control rod setting of 244.5 cm compared to the detailed KENO results of: k eff = 1.1600 and 234.5 cm, again an excellent agreement. 5 refs
Analysis of the HTTR with Monte-Carlo and diffusion theory. An IRI-ECN intercomparison
Energy Technology Data Exchange (ETDEWEB)
De Haas, J.B.M. [Nuclear Research and Consultancy Group NRG, Petten (Netherlands); Wallerbos, E.J.M. [Interfaculty Reactor Institute IRI, Delft University of Technology, Delft (Netherlands)
2000-09-01
In the framework of the IAEA Co-ordinated Research Program (CRP) 'Evaluation of HTGR Performance' for the start-up core physics benchmark of the High Temperature Engineering Test Reactor (HTTR) two-group cross section data for a fuel compact lattice and for a two-dimensional R-Z model have been generated for comparison purposes. For this comparison, 5.2% enriched uranium was selected. Furthermore, a simplified core configuration utilising only the selected type of fuel has been analysed with both the Monte Carlo code KENO and with the diffusion theory codes BOLD VENTURE and PANTHER. With a very detailed KENO model of this simplified core, k{sub eff} was calculated to be 1.1278{+-}0.0005. Homogenisation of the core region was seen to increase k{sub eff} by 0.0340 which can be attributed to streaming of neutrons in the detailed model. The difference in k{sub eff} between the homogenised models of KENO and BOLD VENTURE amounts then only,{delta}k =0.0025. The PANTHER result for this core is k{sub eff} = 1. 1251, which is in good agreement with the KENO result. The fully loaded core configuration, with a range of enrichments, has also been analysed with both KENO and BOLD VENTURE. In this case the homogenisation was seen to increase k{sub eff} by 0.0375 (streaming effect). In BOLD VENTURE the critical state could be reached by the insertion of the control rods through adding an effective {sup 10}B density over the insertion depth while the streaming of neutrons was accounted for by adjustment of the diffusion coefficient. The generation time and the effective fraction of delayed neutrons in the critical state have been calculated to be 1.11 ms and 0.705 %, respectively. This yields a prompt decay constant at critical of 6.9 s{sup -1}. The analysis with PANTHER resulted in a k{sub eff} =1.1595 and a critical control rod setting of 244.5 cm compared to the detailed KENO results of: k{sub eff} = 1.1600 and 234.5 cm, again an excellent agreement. 5 refs.
Oulebsir, Fouad; Vermorel, Romain; Galliero, Guillaume
2018-01-16
With the advent of graphene material, membranes based on single-layer nanoporous solids appear as promising devices for fluid separation, be it liquid or gaseous mixtures. The design of such architectured porous materials would greatly benefit from accurate models that can predict their transport and separation properties. More specifically, there is no universal understanding of how parameters such as temperature, fluid loading conditions, or the ratio of the pore size to the fluid molecular diameter influence the permeation process. In this study, we address the problem of pure supercritical fluids diffusing through simplified models of single-layer porous materials. Basically, we investigate a toy model that consists of a single-layer lattice of Lennard-Jones interaction sites with a slit gap of controllable width. We performed extensive equilibrium and biased molecular dynamics simulations to document the physical mechanisms involved at the molecular scale. We propose a general constitutive equation for the diffusional transport coefficient derived from classical statistical mechanics and kinetic theory, which can be further simplified in the ideal gas limit. This transport coefficient relates the molecular flux to the fluid density jump across the single-layer membrane. It is found to be proportional to the accessible surface porosity of the single-layer porous solid and to a thermodynamic factor accounting for the inhomogeneity of the fluid close to the pore entrance. Both quantities directly depend on the potential of mean force that results from molecular interactions between solid and fluid atoms. Comparisons with the simulations data show that the kinetic model captures how narrowing the pore size below the fluid molecular diameter lowers dramatically the value of the transport coefficient. Furthermore, we demonstrate that our general constitutive equation allows for a consistent interpretation of the intricate effects of temperature and fluid loading
Directory of Open Access Journals (Sweden)
Dylan Molenaar
2015-08-01
Full Text Available In the psychometric literature, item response theory models have been proposed that explicitly take the decision process underlying the responses of subjects to psychometric test items into account. Application of these models is however hampered by the absence of general and flexible software to fit these models. In this paper, we present diffIRT, an R package that can be used to fit item response theory models that are based on a diffusion process. We discuss parameter estimation and model fit assessment, show the viability of the package in a simulation study, and illustrate the use of the package with two datasets pertaining to extraversion and mental rotation. In addition, we illustrate how the package can be used to fit the traditional diffusion model (as it has been originally developed in experimental psychology to data.
International Nuclear Information System (INIS)
Santos, R.S. dos
1993-01-01
This paper presents a computational program to solve numerically the reactor kinetics equations in the multigroup diffusion theory. One or two-dimensional problems in cylindrical or Cartesian geometries, with any number of energy and delayed-neutron precursors groups are dealt with. The main input and output of the program are briefly discussed. Various results demonstrate the accuracy and versatility of the program, when compared with other kinetics programs. (author)
Zhang, Tao; Kamlah, Marc
2018-01-01
A nonlocal species concentration theory for diffusion and phase changes is introduced from a nonlocal free energy density. It can be applied, say, to electrode materials of lithium ion batteries. This theory incorporates two second-order partial differential equations involving second-order spatial derivatives of species concentration and an additional variable called nonlocal species concentration. Nonlocal species concentration theory can be interpreted as an extension of the Cahn-Hilliard theory. In principle, nonlocal effects beyond an infinitesimal neighborhood are taken into account. In this theory, the nonlocal free energy density is split into the penalty energy density and the variance energy density. The thickness of the interface between two phases in phase segregated states of a material is controlled by a normalized penalty energy coefficient and a characteristic interface length scale. We implemented the theory in COMSOL Multiphysics^{circledR } for a spherically symmetric boundary value problem of lithium insertion into a Li_xMn_2O_4 cathode material particle of a lithium ion battery. The two above-mentioned material parameters controlling the interface are determined for Li_xMn_2O_4 , and the interface evolution is studied. Comparison to the Cahn-Hilliard theory shows that nonlocal species concentration theory is superior when simulating problems where the dimensions of the microstructure such as phase boundaries are of the same order of magnitude as the problem size. This is typically the case in nanosized particles of phase-separating electrode materials. For example, the nonlocality of nonlocal species concentration theory turns out to make the interface of the local concentration field thinner than in Cahn-Hilliard theory.
Specifying theories of developmental dyslexia: a diffusion model analysis of word recognition
Zeguers, M.H.T.; Snellings, P.; Tijms, J.; Weeda, W.D.; Tamboer, P.; Bexkens, A.; Huizenga, H.M.
2011-01-01
The nature of word recognition difficulties in developmental dyslexia is still a topic of controversy. We investigated the contribution of phonological processing deficits and uncertainty to the word recognition difficulties of dyslexic children by mathematical diffusion modeling of visual and
Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system
Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van, F.J.J.
1996-01-01
Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not sensitive to the boundary conditions (bent and planar, constrained, samples) and is influenced mainly by the feeding back effects of stresses (described by the stress term in the genealized diffusion pote...
Density functional theory study of the mechanism of Li diffusion in rutile RuO2
International Nuclear Information System (INIS)
Jung, Jongboo; Cho, Maenghyo; Zhou, Min
2014-01-01
First-principle calculations are carried out to study the diffusion of Li ions in rutile structure RuO 2 , a material for positive electrodes in rechargeable Li ion batteries. The calculations focus on migration pathways and energy barriers for diffusion in Li-poor and Li-rich phases using the Nudged Elastic Band Method. Diffusion coefficients estimated based on calculated energy barriers are in good agreement with experimental values reported in the literature. The results confirm the anisotropic nature of diffusion of Li ions in one-dimensional c channels along the [001] crystalline direction of rutile RuO 2 and show that Li diffusion in the Li-poor phase is faster than in the Li-rich phase. The findings of fast Li diffusion and feasible Li insertion at low temperatures in the host rutile RuO 2 suggest this material is a good ionic conductor for Li transport. The finding also suggests possible means for enhancing the performance of RuO 2 -based electrode materials
International Nuclear Information System (INIS)
Liu, Wenyuan; Sk, Mahasin Alam; Manzhos, Sergei; Martin-Bragado, Ignacio; Benistant, Francis; Cheong, Siew Ann
2017-01-01
A roadblock in utilizing InGaAs for scaled-down electronic devices is its anomalous dopant diffusion behavior; specifically, existing models are not able to explain available experimental data on beryllium diffusion consistently. In this paper, we propose a more comprehensive model, taking self-interstitial migration and Be interaction with Ga and In into account. Density functional theory (DFT) calculations are first used to calculate the energy parameters and charge states of possible diffusion mechanisms. Based on the DFT results, continuum modeling and kinetic Monte Carlo simulations are then performed. The model is able to reproduce experimental Be concentration profiles. Our results suggest that the Frank-Turnbull mechanism is not likely, instead, kick-out reactions are the dominant mechanism. Due to a large reaction energy difference, the Ga interstitial and the In interstitial play different roles in the kick-out reactions, contrary to what is usually assumed. The DFT calculations also suggest that the influence of As on Be diffusion may not be negligible.
Theory and simulation of time-fractional fluid diffusion in porous media
International Nuclear Information System (INIS)
Carcione, José M; Sanchez-Sesma, Francisco J; Gavilán, Juan J Perez; Luzón, Francisco
2013-01-01
We simulate a fluid flow in inhomogeneous anisotropic porous media using a time-fractional diffusion equation and the staggered Fourier pseudospectral method to compute the spatial derivatives. A fractional derivative of the order of 0 < ν < 2 replaces the first-order time derivative in the classical diffusion equation. It implies a time-dependent permeability tensor having a power-law time dependence, which describes memory effects and accounts for anomalous diffusion. We provide a complete analysis of the physics based on plane waves. The concepts of phase, group and energy velocities are analyzed to describe the location of the diffusion front, and the attenuation and quality factors are obtained to quantify the amplitude decay. We also obtain the frequency-domain Green function. The time derivative is computed with the Grünwald–Letnikov summation, which is a finite-difference generalization of the standard finite-difference operator to derivatives of fractional order. The results match the analytical solution obtained from the Green function. An example of the pressure field generated by a fluid injection in a heterogeneous sandstone illustrates the performance of the algorithm for different values of ν. The calculation requires storing the whole pressure field in the computer memory since anomalous diffusion ‘recalls the past’. (paper)
Energy Technology Data Exchange (ETDEWEB)
Kimmich, R; Nusser, W; Gneiting, T [Ulm Universitaet (Federal Republic of Germany). Sektion Kernresonanzspektroskopie
1990-04-01
A model theory is presented explaining a series of striking phenomena observed with nuclear magnetic relaxation in protein systems such as solutions or tissue. The frequency, concentration and temperature dependences of proton or deuteron relaxation times of protein solutions and tissue are explained. It is concluded that the translational diffusion of water molecules along the rugged surfaces of proteins and, to a minor degree, protein backbone fluctuations are crucial processes. The rate limiting factor of macromolecular tumbling is assumed to be given by the free water content in a certain analogy to the free-volume model of Cohen ad Turnbull. There are two characteristic water mass fractions indicating the saturation of the hydration shells and the onset of protein tumbling. A closed and relatively simple set of relaxation formulas is presented. The potentially fractal nature of the diffusion of water molecules on the protein surface is discussed. (author). 43 refs.; 4 figs.
Yang, Jing; Youssef, Mostafa; Yildiz, Bilge
2018-01-01
In this work, we quantify oxygen self-diffusion in monoclinic-phase zirconium oxide as a function of temperature and oxygen partial pressure. A migration barrier of each type of oxygen defect was obtained by first-principles calculations. Random walk theory was used to quantify the diffusivities of oxygen interstitials by using the calculated migration barriers. Kinetic Monte Carlo simulations were used to calculate diffusivities of oxygen vacancies by distinguishing the threefold- and fourfold-coordinated lattice oxygen. By combining the equilibrium defect concentrations obtained in our previous work together with the herein calculated diffusivity of each defect species, we present the resulting oxygen self-diffusion coefficients and the corresponding atomistically resolved transport mechanisms. The predicted effective migration barriers and diffusion prefactors are in reasonable agreement with the experimentally reported values. This work provides insights into oxygen diffusion engineering in Zr O2 -related devices and parametrization for continuum transport modeling.
Estimation of axial diffusion processes by analog Monte-Carlo: theory, tests and examples
International Nuclear Information System (INIS)
Milgram, M.S.
1997-01-01
With the advent of fast, reasonably inexpensive computer hardware, it has become possible to follow the histories of several million particles and tally quantities such as currents and fluxes in a finite reactor region using analog Monte-Carlo. Here use is made of this new capability to demonstrate that it is possible to test various approximations that cumulatively are known as the axial diffusion approximation in a realistic, heterogenous reactor lattice cell. From this, it proves possible to extract excellent estimates of the homogenized diffusion coefficient in few energy groups and lattice sub-regions for further comparison with deterministic methods of deriving the same quantity. The breakdown of the diffusion approximation near the endpoints of the axial lattice cell, as well as in the moderator at certain energies, can be observed. (Author)
Gatowski, S I; Dobbin, S A; Richardson, J T; Ginsburg, G P
1997-01-01
A theoretical framework is proposed for understanding how the innovative use of behavioral science evidence is both produced and diffused among members of the global legal community. Using case law analyses and interviews with key individuals involved in selected cases, we examine how battered woman syndrome (BWS) is produced and diffused between and among Australia, Canada, England, and the United States. The following diffusion mechanisms are proposed: (1) The availability and accessibility of credible dissemination sources; (2) characteristics of the overall practice environment operating in each legal culture; (3) the attitudes and knowledge of attorneys and judges about the use of scientific evidence; (4) political and social support for the use of the evidence in the legal culture; and (5) the level of structural equivalence, communication, and "neighbor effects" between and among legal cultures. Each mechanism is discussed and supplemented with information from interviews with individuals involved in key cases involving BWS evidence.
International Nuclear Information System (INIS)
Ganapol, B.D.
2011-01-01
Highlights: → Coupled neutron and gamma transport is considered in the multigroup diffusion approximation. → The model accommodates fission, up- and down-scattering and common neutron-gamma interactions. → The exact solution to the diffusion equation in a heterogeneous media of any number of regions is found. → The solution is shown to parallel the one-group case in a homogeneous medium. → The discussion concludes with a heterogeneous, 2 fuel-plate 93.2% enriched reactor fuel benchmark demonstration. - Abstract: The angular flux for the 'rod model' describing coupled neutron/gamma (n, γ) diffusion has a particularly straightforward analytical representation when viewed from the perspective of a one-group homogeneous medium. Cast in the form of matrix functions of a diagonalizable matrix, the solution to the multigroup equations in heterogeneous media is greatly simplified. We shall show exactly how the one-group homogeneous medium solution leads to the multigroup solution.
Directory of Open Access Journals (Sweden)
Shengyun Dai
2018-05-01
Full Text Available Particle size is of great importance for the quantitative model of the NIR diffuse reflectance. In this paper, the effect of sample particle size on the measurement of harpagoside in Radix Scrophulariae powder by near infrared diffuse (NIR reflectance spectroscopy was explored. High-performance liquid chromatography (HPLC was employed as a reference method to construct the quantitative particle size model. Several spectral preprocessing methods were compared, and particle size models obtained by different preprocessing methods for establishing the partial least-squares (PLS models of harpagoside. Data showed that the particle size distribution of 125–150 μm for Radix Scrophulariae exhibited the best prediction ability with Rpre2 = 0.9513, RMSEP = 0.1029 mg·g−1, and RPD = 4.78. For the hybrid granularity calibration model, the particle size distribution of 90–180 μm exhibited the best prediction ability with Rpre2 = 0.8919, RMSEP = 0.1632 mg·g−1, and RPD = 3.09. Furthermore, the Kubelka-Munk theory was used to relate the absorption coefficient k (concentration-dependent and scatter coefficient s (particle size-dependent. The scatter coefficient s was calculated based on the Kubelka-Munk theory to study the changes of s after being mathematically preprocessed. A linear relationship was observed between k/s and absorption A within a certain range and the value for k/s was >4. According to this relationship, the model was more accurately constructed with the particle size distribution of 90–180 μm when s was kept constant or in a small linear region. This region provided a good reference for the linear modeling of diffuse reflectance spectroscopy. To establish a diffuse reflectance NIR model, further accurate assessment should be obtained in advance for a precise linear model.
Thurber, Melanie D; Fahey, Jed W
2009-01-01
Moringa oleifera, an edible tree found worldwide in the dry tropics, is increasingly being used for nutritional supplementation. Its nutrient-dense leaves are high in protein quality, leading to its widespread use by doctors, healers, nutritionists and community leaders, to treat under-nutrition and a variety of illnesses. Despite the fact that no rigorous clinical trial has tested its efficacy for treating under-nutrition, the adoption of M. oleifera continues to increase. The "Diffusion of innovations theory" describes well, the evidence for growth and adoption of dietary M. oleifera leaves, and it highlights the need for a scientific consensus on the nutritional benefits. Copyright © Taylor & Francis Group, LLC
International Nuclear Information System (INIS)
Mendonca, A.G.
1980-01-01
Two computer codes that are available at IPEN for analyses of static neutron diffusion problems are studied and applied. The CITATION code is animed at analyses of criticality, fuel burnup, flux and power distributions etc, in one, two, and three spatial dimensions in multigroup. The EXTERMINATOR code can be used for the same purposes as for CITATION with a limitation to one or two spatial dimensions. Basic theories and numerical techniques used in the codes are studied and summarized. Benchmark problems have been solved using the codes. Comparisons of the results show that both codes can be used with confidence in the analyses of nuclear reactor problems. (author) [pt
Diffusion in the presence of a local attracting factor: Theory and interdisciplinary applications
Veermäe, Hardi; Patriarca, Marco
2017-06-01
In many complex diffusion processes the drift of random walkers is not caused by an external force, as in the case of Brownian motion, but by local variations of fitness perceived by the random walkers. In this paper, a simple but general framework is presented that describes such a type of random motion and may be of relevance in different problems, such as opinion dynamics, cultural spreading, and animal movement. To this aim, we study the problem of a random walker in d dimensions moving in the presence of a local heterogeneous attracting factor expressed in terms of an assigned position-dependent "attractiveness function." At variance with standard Brownian motion, the attractiveness function introduced here regulates both the advection and diffusion of the random walker, thus providing testable predictions for a specific form of fluctuation-relations. We discuss the relation between the drift-diffusion equation based on the attractiveness function and that describing standard Brownian motion, and we provide some explicit examples illustrating its relevance in different fields, such as animal movement, chemotactic diffusion, and social dynamics.
Theory of charge transport in diffusive normal metal conventional superconductor point contacts
Tanaka, Y.; Golubov, Alexandre Avraamovitch; Kashiwaya, S.
2003-01-01
Tunneling conductance in diffusive normal (DN) metal/insulator/s-wave superconductor junctions is calculated for various situations by changing the magnitudes of the resistance and Thouless energy in DN and the transparency of the insulating barrier. The generalized boundary condition introduced by
Brownian motion in a field of force and the diffusion theory of chemical reactions. II
Brinkman, H.C.
1956-01-01
H. A. Kramers has studied the rate of chemical reactions in view of the Brownian forces caused by a surrounding medium in temperature equilibrium. In a previous paper 3) the author gave a solution of Kramers' diffusion equation in phase space by systematic development. In this paper the general
Theory of thermal and charge transport in diffusive normal metal / superconductor junctions
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Asano, Y.
2005-01-01
Thermal and charge transport in diffusive normal metal (DN)/insulator/s-, d-, and p-wave superconductor junctions are studied based on the Usadel equation with the Nazarov's generalized boundary condition. We derive a general expression of the thermal conductance in unconventional superconducting
Diffusion tensor imaging. Theory, sequence optimization and application in Alzheimer's disease
International Nuclear Information System (INIS)
Stieltjes, B.; Schlueter, M.; Hahn, H.K.; Wilhelm, T.; Essig, M.
2003-01-01
Diffusion tensor imaging (DTI) offers an in vivo view into the microarchitecture of the brain. Furthermore it allows a three-dimensional reconstruction of fiber tracts. We will discuss the principles of DTI and possibilities for sequence optimization. Finally we will give an overview of DTI and its application in Alzheimer's disease. (orig.) [de
Solution of the diffusion equation in the GPT theory by the Laplace transform technique
International Nuclear Information System (INIS)
Lemos, R.S.M.; Vilhena, M.T.; Segatto, C.F.; Silva, M.T.
2003-01-01
In this work we present a analytical solution to the auxiliary and importance functions attained from the solution of a multigroup diffusion problem in a multilayered slab by the Laplace Transform technique. We also obtain the the transcendental equation for the effective multiplication factor, resulting from the application of the boundary and interface conditions. (author)
Diffusion-induced bending of thin sheet couples : theory and experiments in Ti-Zr system
Daruka, I.; Szabo, I.A.; Beke, D.L.; Cserhati, C.; Kodentsov, A.; Loo, van F.J.J.
1996-01-01
Numerical and analytical calculations of concentration and stress distributions of thin-sheet diffusion couples have been carried out as well as the time dependence of the Kirkendall shift, xk, and the curvature has also been determined. It is shown that the concentration distribution is not
International Nuclear Information System (INIS)
Ozgener, B.
1998-01-01
A boundary integral equation (BIE) is developed for the application of the boundary element method to the multigroup neutron diffusion equations. The developed BIE contains no explicit scattering term; the scattering effects are taken into account by redefining the unknowns. Boundary elements of the linear and constant variety are utilised for validation of the developed boundary integral formulation
Hidalgo de la Cruz, M; Domínguez Rubio, R; Luque Buzo, E; Díaz Otero, F; Vázquez Alén, P; Orcajo Rincón, J; Prieto Montalvo, J; Contreras Chicote, A; Grandas Pérez, F
2017-04-17
HaNDL syndrome (transient headache and neurological deficits with cerebrospinal fluid lymphocytosis) is characterised by one or more episodes of headache and transient neurological deficits associated with cerebrospinal fluid lymphocytosis. To date, few cases of HaNDL manifesting with confusional symptoms have been described. Likewise, very few patients with HaNDL and confusional symptoms have been evaluated with transcranial Doppler ultrasound (TCD). TCD data from patients with focal involvement reveal changes consistent with vasomotor alterations. We present the case of a 42-year-old man who experienced headache and confusional symptoms and displayed pleocytosis, diffuse slow activity on EEG, increased blood flow velocity in both middle cerebral arteries on TCD, and single-photon emission computed tomography (SPECT) findings suggestive of diffuse involvement, especially in the left hemisphere. To our knowledge, this is the first description of a patient with HaNDL, confusional symptoms, diffuse slow activity on EEG, and increased blood flow velocity in TCD. Our findings suggest a relationship between cerebral vasomotor changes and the pathophysiology of HaNDL. TCD may be a useful tool for early diagnosis of HaNDL. Copyright © 2017 Sociedad Española de Neurología. Publicado por Elsevier España, S.L.U. All rights reserved.
A nonlinear theory of cosmic ray pitch angle diffusion in homogeneous magnetostatic turbulence
International Nuclear Information System (INIS)
Goldstein, M.L.
1975-04-01
A plasma strong turbulence, weak coupling theory is applied to the problem of cosmic ray pitch angle scattering in magnetostatic turbulence. The theory used is a rigorous generalization of Weinstock's resonance-broadening theory and contains no ad hoc approximations. A detailed calculation is presented for a model of slab turbulence with an exponential correlation function. The results agree well with numerical simulations. The rigidity dependence of the pitch angle scattering coefficient differs from that found by previous researchers. The differences result from an inadequate treatment of particle trajectories near 90 0 pitch angle in earlier work
Feliciano-Torres, Hector L.
2017-01-01
The purpose of this quantitative, descriptive non experimental study was to investigate the use of wireless mobile network devices at a post-secondary institution using the innovation diffusion theory (IDT) and technology acceptance model (TAM) as background theories. The researcher intended to explore how students and personnel of the institution…
Iles, Irina A; Egnoto, Michael J; Fisher Liu, Brooke; Ackerman, Gary; Roberts, Holly; Smith, Daniel
2017-11-01
After the 9/11 terrorist attacks, the U.S. government initiated several national security technology adoption programs. The American public, however, has been skeptical about these initiatives and adoption of national security technologies has been mandated, rather than voluntary. We propose and test a voluntary behavioral intention formation model for the adoption of one type of new security technology: portable radiation detectors. Portable radiation detectors are an efficient way of detecting radiological and nuclear threats and could potentially prevent loss of life and damage to individuals' health. However, their functioning requires that a critical mass of individuals use them on a daily basis. We combine the explanatory advantages of diffusion of innovation with the predictive power of two volitional behavior frameworks: the theory of reasoned action and the health belief model. A large sample survey (N = 1,482) investigated the influence of factors identified in previous diffusion of innovation research on portable radiation detector adoption intention. Results indicated that nonfinancial incentives, as opposed to financial incentives, should be emphasized in persuasive communications aimed at fostering adoption. The research provides a new integration of diffusion of innovation elements with determinants of volitional behavior from persuasion literature, and offers recommendations on effective communication about new security technologies to motivate public adoption and enhance national safety. © 2017 Society for Risk Analysis.
Qin, Dan; Ge, Xu-Jin; Lü, Jing-Tao
2018-05-01
Through density functional theory based calculations, we study the adsorption and diffusion of tin phthalocyanine (SnPc) molecule on Au(111) and Cu(111) surfaces. SnPc has two conformers with Sn pointing to the vacuum (Sn-up) and substrate (Sn-down), respectively. The binding energies of the two conformers with different adsorption sites on the two surfaces, including top, bridge, fcc, hcp, are calculated and compared. It is found that the SnPc molecule binds stronger on Cu(111) surface, with binding energy about 1 eV larger than that on Au(111). Only the bridge and top adsorption sites are stable on Cu(111), while all the four adsorption sites are stable on Au(111), with small diffusion barriers between them. Moreover, the flipping barrier from Sn-up to Sn-down conformer is of the same magnitude on the two metal surfaces. These results are consistent with a recent experiment [Zhang, et al., Angew. Chem., 56, 11769 (2017)], which shows that conformation change from Sn-up to Sn-down on Cu(111) surface can be induced by a C60-functionalized STM tip, while similar change is difficult to realize on Au(111), due to smaller diffusion barrier on Au(111).
International Nuclear Information System (INIS)
Paul, O.P.K.
1978-01-01
An approach to simulate the flux vanishing boundary condition in solving the two group coupled neutron diffusion equations in three dimensions (x, y, z) employed to calculate the flux distribution and keff of the reactor is summarised. This is of particular interest when the flux vanishing boundary in x, y, z directions is not an integral multiple of the mesh spacings in these directions. The method assumes the flux to be negative, hypothetically at the mesh points lying outside the boundary and thus the finite difference formalism for Laplacian operator, taking into account six neighbours of a mesh point in a square mesh arrangement, is expressed in a general form so as to account for the boundary mesh points of the system. This approach has been incorporated in a three dimensional diffusion code similar to TAPPS23 and has been used for IRT-2000 reactor and the results are quite satisfactory. (author)
The Diffusion Decision Model: Theory and Data for Two-Choice Decision Tasks
Ratcliff, Roger; McKoon, Gail
2008-01-01
The diffusion decision model allows detailed explanations of behavior in two-choice discrimination tasks. In this article, the model is reviewed to show how it translates behavioral data—accuracy, mean response times, and response time distributions—into components of cognitive processing. Three experiments are used to illustrate experimental manipulations of three components: stimulus difficulty affects the quality of information on which a decision is based; instructions emphasizing either ...
International Nuclear Information System (INIS)
Butland, A.T.D.; Putney, J.; Sweet, D.W.
1980-04-01
This report describes work performed to compare two UK neutron diffusion theory codes, TIGAR and SNAP, with published results for eight other codes available abroad. Both mesh edge and mesh centred finite difference diffusion theory codes as well as one axial synthesis code are included in the comparison and a range of iteration procedures are used by them. Comparison is made of calculations for a model of the sodium cooled fast reactor SNR-300 in both triangular and rectangular geometry and for a range of spatial meshes, enabling extrapolations to infinite mesh to be made. Calculated values of the effective multiplication constant, keff, for all the codes, agree very well when extrapolated to infinite mesh, indicating that no significant errors arising from the finite difference approximation but independent of mesh spacing are present in the calculations. The variation of keff with mesh area is found to be linear for the small meshes considered here, with the gradients for the mesh centred and mesh edged codes being of opposite sign. The results obtained using the mesh centred codes TIGAR, SNAP and CITATION agree closely with one another for all the meshes considered; the mesh edge codes agree less closely. (author)
Maggi, Federico; Riley, William J.
2009-12-01
The theoretical formulation of biological kinetic isotope fractionation often assumes first-order or Michaelis-Menten kinetics, the latter solved under the quasi-steady state assumption. Both formulations lead to a constant isotope fractionation factor, therefore they may return incorrect estimations of isotopic effects and misleading interpretations of isotopic signatures when fractionation is not a steady process. We have analyzed the isotopic signature of denitrification in biogeochemical soil systems by Menyailo and Hungate (2006) in which high and variable 15N-N2O enrichment during N2O production and inverse isotope fractionation during N2O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with Michaelis-Menten kinetics. When Michaelis-Menten kinetics were coupled to Monod kinetics to describe biomass and enzyme dynamics, and the quasi-steady state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observed concentrations, and variable and inverse isotope fractionations. These results imply a substantial revision in modeling isotopic effects, suggesting that steady state kinetics such as first-order, Rayleigh, and classic Michaelis-Menten kinetics should be superseded by transient kinetics in conjunction with biomass and enzyme dynamics.
The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory
International Nuclear Information System (INIS)
Woznicki, Z.I.
1994-01-01
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs
The numerical analysis of eigenvalue problem solutions in the multigroup diffusion theory
International Nuclear Information System (INIS)
Woznick, Z.I.
1994-01-01
In this paper a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations is described. Usually the solution method is based on the system of inner and outer iterations. The presented matrix formalism allows us to visualize clearly, how the used matrix splitting influences the structure of the matrix in an eigenvalue problem to be solved as well as the independence between inner and outer iterations within global iterations. To keep the page limit, the present version of the paper consists only with first three of five sections given in the original paper under the same title (which will be published soon). (author). 13 refs
New macroscopic theory of anamalous diffusion induced by the dissipative trapped-ion instability
International Nuclear Information System (INIS)
Wimmel, H.K.
1975-03-01
For an axisymmetric toroidal plasma of the TOKAMAK type a new set of dissipative trapped-fluid equations is established. In addition to E vector x B vector drifts and collisions of the trapped particles, these equations take full account of the effect of Esub(//) (of the trapped ion modes) on free and trapped particles, and of the effect of grad delta 0 (delta 0 = equilibrium fraction of trapped particles). From the new equations the linear-mode properties of the dissipative trapped-ion instability and the anomalous diffusion flux of the trapped particles are derived. (orig.) [de
The numerical analysis of eigenvalue problem solutions in the multigroup neutron diffusion theory
Energy Technology Data Exchange (ETDEWEB)
Woznicki, Z I [Institute of Atomic Energy, Otwock-Swierk (Poland)
1994-12-31
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iteration within global iterations. Particular interactive strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 32 figs, 15 tabs.
The numerical analysis of eigenvalue problem solutions in multigroup neutron diffusion theory
International Nuclear Information System (INIS)
Woznicki, Z.I.
1995-01-01
The main goal of this paper is to present a general iteration strategy for solving the discrete form of multidimensional neutron diffusion equations equivalent mathematically to an eigenvalue problem. Usually a solution method is based on different levels of iterations. The presented matrix formalism allows us to visualize explicitly how the used matrix splitting influences the matrix structure in an eigenvalue problem to be solved as well as the interdependence between inner and outer iterations within global iterations. Particular iterative strategies are illustrated by numerical results obtained for several reactor problems. (author). 21 refs, 35 figs, 16 tabs
Silver, Wayne
A description of the communication behaviors in high innovation societies depends on the application of selected principles from modern systems theory. The first is the principle of equifinality which explains the activities of open systems. If the researcher views society as an open system, he frees himself from the client approach since society…
A kinetic theory of diffusion in general relativity with cosmological scalar field
International Nuclear Information System (INIS)
Calogero, Simone
2011-01-01
A new model to describe the dynamics of particles undergoing diffusion in general relativity is proposed. The evolution of the particle system is described by a Fokker-Planck equation without friction on the tangent bundle of spacetime. It is shown that the energy-momentum tensor for this matter model is not divergence-free, which makes it inconsistent to couple the Fokker-Planck equation to the Einstein equations. This problem can be solved by postulating the existence of additional matter fields in spacetime or by modifying the Einstein equations. The case of a cosmological scalar field term added to the left hand side of the Einstein equations is studied in some details. For the simplest cosmological model, namely the flat Robertson-Walker spacetime, it is shown that, depending on the initial value of the cosmological scalar field, which can be identified with the present observed value of the cosmological constant, either unlimited expansion or the formation of a singularity in finite time will occur in the future. Future collapse into a singularity also takes place for a suitable small but positive present value of the cosmological constant, in contrast to the standard diffusion-free scenario
Diffusion-kinetic theories for LET effects on the radiolysis of water
International Nuclear Information System (INIS)
Pimblott, S.M.; LaVerne, J.A.
1994-01-01
Diffusion-kinetic methods are used to investigate the effects of incident particle linear energy transfer (LET) on the radiolysis of water and aqueous solutions. Chemically realistic deterministic diffusion-kinetic calculations examining the scavenging capacity dependences of the scavenged yield of e aq - and of OH demonstrate that the scavenged yields are related to the underlying time-dependent kinetics in the absence of the scavenger by a simple Laplace transform relationship. This relationship is also shown to link the effect of an e eq - scavenger on the formation of H 2 with the time dependence of H 2 production in the absence of the scavenger. The simple Laplace relationship does not work well when applied to H 2 O 2 formation in high-LET particle tracks even though such a relationship is valid with low-LET particles. It is found that while the secondary reaction of H 2 O 2 with e aq - can be neglected in low-LET particle radiolysis, it is of considerable significance in the tracks produced by high-LET particles. The increased importance of this reaction with increasing LET is the major reason for the failure of the Laplace relationship for H 2 O 2 . 55 refs., 9 figs., 2 tabs
Mechanism for transient migration of xenon in UO2
International Nuclear Information System (INIS)
Liu, X.-Y.; Uberuaga, B. P.; Andersson, D. A.; Stanek, C. R.; Sickafus, K. E.
2011-01-01
In this letter, we report recent work on atomistic modeling of diffusion migration events of the fission gas product xenon in UO 2 nuclear fuel. Under nonequilibrium conditions, Xe atoms can occupy the octahedral interstitial site, in contrast to the thermodynamically most stable uranium substitutional site. A transient migration mechanism involving Xe and two oxygen atoms is identified using basin constrained molecular dynamics employing a Buckingham type interatomic potential. This mechanism is then validated using density functional theory calculations using the nudged elastic band method. An overall reduction in the migration barrier of 1.6-2.7 eV is obtained compared to vacancy-mediated diffusion on the uranium sublattice.
Theory of the propagation dynamics of spiral edges of diffusion flames in von Karman swirling flows
Energy Technology Data Exchange (ETDEWEB)
Urzay, Javier; Williams, Forman A. [Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA 92093-0411 (United States); Nayagam, Vedha [National Center for Space Exploration Research, NASA Glenn Research Center, Cleveland, OH 44135 (United States)
2011-02-15
This analysis addresses the propagation of spiral edge flames found in von Karman swirling flows induced in rotating porous-disk burners. In this configuration, a porous disk is spun at a constant angular velocity in an otherwise quiescent oxidizing atmosphere. Gaseous methane is injected through the disk pores and burns in a flat diffusion flame adjacent to the disk. Among other flame patterns experimentally found, a stable, rotating spiral flame is observed for sufficiently large rotation velocities and small fuel flow rates as a result of partial extinction of the underlying diffusion flame. The tip of the spiral can undergo a steady rotation for sufficiently large rotational velocities or small fuel flow rates, whereas a meandering tip in an epicycloidal trajectory is observed for smaller rotational velocities and larger fuel flow rates. A formulation of this problem is presented in the equidiffusional and thermodiffusive limits within the framework of one-step chemistry with large activation energies. Edge-flame propagation regimes are obtained by scaling analyses of the conservation equations and exemplified by numerical simulations of straight two-dimensional edge flames near a cold porous wall, for which lateral heat losses to the disk and large strains induce extinction of the trailing diffusion flame but are relatively unimportant in the front region, consistent with the existence of the cooling tail found in the experiments. The propagation dynamics of a steadily rotating spiral edge is studied in the large-core limit, for which the characteristic Markstein length is much smaller than the distance from the center at which the spiral tip is anchored. An asymptotic description of the edge tangential structure is obtained, spiral edge shapes are calculated, and an expression is found that relates the spiral rotational velocity to the rest of the parameters. A quasiestatic stability analysis of the edge shows that the edge curvature at extinction in the tip
A numerical study of the eigenvalues in the neutron diffusion theory
International Nuclear Information System (INIS)
Lima Bezerra, J. de.
1982-12-01
A systematic numerical study for the eigenvalue problem in one dimension was carried out. A computer code RED2G was developed to obtain and to discuss a number of numerical solutions concerning eigenvalues problems originating from the discretization of the two groups neutron diffusion equation in one dimension and steady state. The problem of eigenvalues was created from the discretization by the method of finite differences. The solutions were obtained by four different iterative methods, i.e. Power, Wielandt-1, Wielandt-2 and accelerated Power with the Chebyshev polinomials. The numerical results given by the solution of the two test-problems indicate that the RED2G code is fast and efficient in these calculations and the Wielandt-2 method has been found to be the best both in respect of rapidity of calculations as well as programation effort required. (E.G.) [pt
International Nuclear Information System (INIS)
Moraes, Pedro Gabriel B.; Leite, Michel C.A.; Barros, Ricardo C.
2013-01-01
In this work we developed a software to model and generate results in tables and graphs of one-dimensional neutron transport problems in multi-group formulation of energy. The numerical method we use to solve the problem of neutron diffusion is analytic, thus eliminating the truncation errors that appear in classical numerical methods, e.g., the method of finite differences. This numerical analytical method increases the computational efficiency, since they are not refined spatial discretization necessary because for any spatial discretization grids used, the numerical result generated for the same point of the domain remains unchanged unless the rounding errors of computational finite arithmetic. We chose to develop a computational application in MatLab platform for numerical computation and program interface is simple and easy with knobs. We consider important to model this neutron transport problem with a fixed source in the context of shielding calculations of radiation that protects the biosphere, and could be sensitive to ionizing radiation
DEFF Research Database (Denmark)
Galliero, Guillaume; Medvedev, Oleg; Shapiro, Alexander
2005-01-01
A 322 (2004) 151). In the current study, a fast molecular dynamics scheme has been developed to determine the values of the penetration lengths in Lennard-Jones binary systems. Results deduced from computations provide a new insight into the concept of penetration lengths. It is shown for four different...... fluctuation theory and molecular dynamics scheme exhibit consistent trends and average deviations from experimental data around 10-20%. (c) 2004 Elsevier B.V. All rights reserved....
Hayat, Tasawar; Qayyum, Sajid; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
The present research article focuses on three-dimensional flow of viscoelastic(second grade) nanofluid in the presence of Cattaneo-Christov double-diffusion theory. Flow caused is due to stretching sheet. Characteristics of heat transfer are interpreted by considering the heat generation/absorption. Nanofluid theory comprises of Brownian motion and thermophoresis. Cattaneo-Christov double-diffusion theory is introduced in the energy and concentration expressions. Such diffusions are developed as a part of formulating the thermal and solutal relaxation times framework. Suitable variables are implemented for the conversion of partial differential systems into a sets of ordinary differential equations. The transformed expressions have been explored through homotopic algorithm. Behavior of sundry variables on the velocities, temperature and concentration are scrutinized graphically. Numerical values of skin friction coefficients are also calculated and examined. Here thermal field enhances for heat generation parameter while reverse situation is noticed for heat absorption parameter.
International Nuclear Information System (INIS)
Gittus, J.H.
1977-01-01
A new theory is developed to explain superplastic flow in two-phase materials. It is postulated that boundary-dislocations, piled up in dislocation-Interphase-Boundaries (IPBs) climb away into disordered regions of the IPB. Sliding then occurs at an IPB as dislocations glide toward the head of the pile up to replace those which have climbed into disordered regions of the boundary. An energy barrier which would otherwise render sliding virtually impossible on dislocation-IPBs can, it is shown, be largely eliminated if the dislocations glide in pairs. The disorder (actually an antiphase domain boundary) which is created by the passage of the leading dislocation is then repaired by passage of its successor. The threshold stress for superplastic flow is provisionally identified with the stress which pins IPB dislocations to boundary ledges. The activation energy is theoretically that for IPB diffusion. Good agreement is obtained between the theoretical equation for superplastic flow and the results of published experiments
DIF3D: a code to solve one-, two-, and three-dimensional finite-difference diffusion theory problems
International Nuclear Information System (INIS)
Derstine, K.L.
1984-04-01
The mathematical development and numerical solution of the finite-difference equations are summarized. The report provides a guide for user application and details the programming structure of DIF3D. Guidelines are included for implementing the DIF3D export package on several large scale computers. Optimized iteration methods for the solution of large-scale fast-reactor finite-difference diffusion theory calculations are presented, along with their theoretical basis. The computational and data management considerations that went into their formulation are discussed. The methods utilized include a variant of the Chebyshev acceleration technique applied to the outer fission source iterations and an optimized block successive overrelaxation method for the within-group iterations. A nodal solution option intended for analysis of LMFBR designs in two- and three-dimensional hexagonal geometries is incorporated in the DIF3D package and is documented in a companion report, ANL-83-1
International Nuclear Information System (INIS)
Takamatsu, Kuniyoshi; Shimakawa, Satoshi; Nojiri, Naoki; Fujimoto, Nozomu
2003-10-01
In the case of evaluations for the highest temperature of the fuels in the HTTR, it is very important to expect the power density distributions accurately; therefore, it is necessary to improve the analytical model with the neutron diffusion and the burn-up theory. The power density distributions are analyzed in terms of two models, the one mixing the fuels and the burnable poisons homogeneously and the other modeling them heterogeneously. Moreover these analytical power density distributions are compared with the ones derived from the gross gamma-ray measurements and the Monte Carlo calculational code with continuous energy. As a result the homogeneous mixed model isn't enough to expect the power density distributions of the core in the axial direction; on the other hand, the heterogeneous model improves the accuracy. (author)
International Nuclear Information System (INIS)
Lipperheide, R.; Wille, U.
2006-01-01
A theory of spin-polarized electron transport in ferromagnet-semiconductor heterostructures, based on a unified semiclassical description of ballistic and diffusive transport in semiconductors, is outlined. The aim is to provide a framework for studying the interplay of spin relaxation and transport mechanism in spintronic devices. Transport inside the (nondegenerate) semiconductor is described in terms of a thermoballistic current, in which electrons move ballistically in the electric field arising from internal and external electrostatic potentials, and are thermalized at randomly distributed equilibration points. Spin relaxation is allowed to take place during the ballistic motion. For arbitrary potential profile and arbitrary values of the momentum and spin relaxation lengths, an integral equation for a spin transport function determining the spin polarization in the semiconductor is derived. For field-driven transport in a homogeneous semiconductor, the integral equation can be converted into a second-order differential equation that generalizes the spin drift-diffusion equation. The spin polarization in ferromagnet-semiconductor structures is obtained by matching the spin-resolved chemical potentials at the interfaces, with allowance for spin-selective interface resistances. Illustrative examples are considered
Energy Technology Data Exchange (ETDEWEB)
Lawrence, R.D.
1983-03-01
A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code.
International Nuclear Information System (INIS)
Lawrence, R.D.
1983-03-01
A nodal method is developed for the solution of the neutron-diffusion equation in two- and three-dimensional hexagonal geometries. The nodal scheme has been incorporated as an option in the finite-difference diffusion-theory code DIF3D, and is intended for use in the analysis of current LMFBR designs. The nodal equations are derived using higher-order polynomial approximations to the spatial dependence of the flux within the hexagonal-z node. The final equations, which are cast in the form of inhomogeneous response-matrix equations for each energy group, involved spatial moments of the node-interior flux distribution plus surface-averaged partial currents across the faces of the node. These equations are solved using a conventional fission-source iteration accelerated by coarse-mesh rebalance and asymptotic source extrapolation. This report describes the mathematical development and numerical solution of the nodal equations, as well as the use of the nodal option and details concerning its programming structure. This latter information is intended to supplement the information provided in the separate documentation of the DIF3D code
Otsuka, Fumiko; Matsukiyo, Shuichi; Kis, Arpad; Nakanishi, Kento; Hada, Tohru
2018-02-01
Field-aligned diffusion of energetic ions in the Earth’s foreshock is investigated by using the quasi-linear theory (QLT) and test particle simulation. Non-propagating MHD turbulence in the solar wind rest frame is assumed to be purely transverse with respect to the background field. We use a turbulence model based on a multi-power-law spectrum including an intense peak that corresponds to upstream ULF waves resonantly generated by the field-aligned beam (FAB). The presence of the ULF peak produces a concave shape of the diffusion coefficient when it is plotted versus the ion energy. The QLT including the effect of the ULF wave explains the simulation result well, when the energy density of the turbulent magnetic field is 1% of that of the background magnetic field and the power-law index of the wave spectrum is less than 2. The numerically obtained e-folding distances from 10 to 32 keV ions match with the observational values in the event discussed in the companion paper, which contains an intense ULF peak in the spectra generated by the FAB. Evolution of the power spectrum of the ULF waves when approaching the shock significantly affects the energy dependence of the e-folding distance.
Energy Technology Data Exchange (ETDEWEB)
Alvarez Rivas, J L
1963-07-01
The distribution of thermal neutron flux has been measured inside and outside copper rods of several diameters, immersed in water. It has been found that these distributions can be calculated by means of elemental diffusion theory if the value of the coefficient of diffusion is changed. this parameter is truly a diffusion coefficient, which now also depends on the diameter of the rod. Through a model an expression of this coefficient is introduced which takes account of the measurements of the author and of those reported in PUGC P/928 (1995), ANL-5872 (1959), DEGR 319 (D) (1961). This model could be extended also to plane geometry. (Author) 19 refs.
International Nuclear Information System (INIS)
Yin, Chukai; Su, Bingjing
2001-01-01
The Minerbo's maximum entropy Eddington factor (MEEF) method was proposed as a low-order approximation to transport theory, in which the first two moment equations are closed for the scalar flux f and the current F through a statistically derived nonlinear Eddington factor f. This closure has the ability to handle various degrees of anisotropy of angular flux and is well justified both numerically and theoretically. Thus, a lot of efforts have been made to use this approximation in transport computations, especially in the radiative transfer and astrophysics communities. However, the method suffers numerical instability and may lead to anomalous solutions if the equations are solved by certain commonly used (implicit) mesh schemes. Studies on numerical stability in one-dimensional cases show that the MEEF equations can be solved satisfactorily by an implicit scheme (of treating δΦ/δx) if the angular flux is not too anisotropic so that f 32 , the classic diffusion solution P 1 , the MEEF solution f M obtained by Riemann solvers, and the NFLD solution D M for the two problems, respectively. In Fig. 1, NFLD and MEEF quantitatively predict very close results. However, the NFLD solution is qualitatively better because it is continuous while MEEF predicts unphysical jumps near the middle of the slab. In Fig. 2, the NFLD and MEEF solutions are almost identical, except near the material interface. In summary, the flux-limited diffusion theory derived from the MEEF description is quantitatively as accurate as the MEEF method. However, it is more qualitatively correct and user-friendly than the MEEF method and can be applied efficiently to various steady-state problems. Numerical tests show that this method is widely valid and overall predicts better results than other low-order approximations for various kinds of problems, including eigenvalue problems. Thus, it is an appealing approximate solution technique that is fast computationally and yet is accurate enough for a
Roy, Susmita; Yashonath, Subramanian; Bagchi, Biman
2015-03-28
A self-consistent mode coupling theory (MCT) with microscopic inputs of equilibrium pair correlation functions is developed to analyze electrolyte dynamics. We apply the theory to calculate concentration dependence of (i) time dependent ion diffusion, (ii) intermediate scattering function of the constituent ions, and (iii) ion solvation dynamics in electrolyte solution. Brownian dynamics with implicit water molecules and molecular dynamics method with explicit water are used to check the theoretical predictions. The time dependence of ionic self-diffusion coefficient and the corresponding intermediate scattering function evaluated from our MCT approach show quantitative agreement with early experimental and present Brownian dynamic simulation results. With increasing concentration, the dispersion of electrolyte friction is found to occur at increasingly higher frequency, due to the faster relaxation of the ion atmosphere. The wave number dependence of intermediate scattering function, F(k, t), exhibits markedly different relaxation dynamics at different length scales. At small wave numbers, we find the emergence of a step-like relaxation, indicating the presence of both fast and slow time scales in the system. Such behavior allows an intriguing analogy with temperature dependent relaxation dynamics of supercooled liquids. We find that solvation dynamics of a tagged ion exhibits a power law decay at long times-the decay can also be fitted to a stretched exponential form. The emergence of the power law in solvation dynamics has been tested by carrying out long Brownian dynamics simulations with varying ionic concentrations. The solvation time correlation and ion-ion intermediate scattering function indeed exhibit highly interesting, non-trivial dynamical behavior at intermediate to longer times that require further experimental and theoretical studies.
The role of fluid-wall interactions on confined liquid diffusion using Mori theory
International Nuclear Information System (INIS)
Devi, Reena; Srivastava, Sunita; Tankeshwar, K.
2015-01-01
The dynamics of fluid confined in a nano-channel with smooth walls have been studied through velocity autocorrelation function within the memory function approach by incorporating the atomic level interactions of fluid with the confining wall. Expressions for the second and fourth sum rules of velocity autocorrelation have been derived for nano-channel which involves fluid-fluid and fluid-wall interactions. These expressions, in addition, involve pair correlation function and density profiles. The numerical contributions of fluid-wall interaction to sum rules are found to play a very significant role, specifically at smaller channel width. Results obtained for velocity autocorrelation and self-diffusion coefficient of a fluid confined to different widths of the nanochannel have been compared with the computer simulation results. The comparison shows a good agreement except when the width of the channel is of the order of two atomic diameters, where it becomes difficult to estimate sum rules involving the triplet correlation’s contribution
Energy Technology Data Exchange (ETDEWEB)
DeCarlo, R.; Hawley, P.; Sebok, D.
1983-08-01
Chapter 1 describes a continuation algorithm to construct decentralized state feedback gains which place the natural frequencies (natural modes of vibration or eigenvalues) of a linearized power system at desired locations. Chapter 2 and 3 address the problem of designing a decentralized dither control for linearly interconnected synchronous machines, each of which is nonlinear. In Chapter 2, the theory finds application to the nonlinear third order model of a single machine infinite bus system where the primary control is via an ac-dc converter. Similarly Chapter 3 considers a two machine system with individual machine converters acting as the primary control. Computer simulations of the control action given various system perturbations are found in both Chapters 2 and 3.
A Non-local Model for Transient Moisture Flow in Unsaturated Soils Based on the Peridynamic Theory
Jabakhanji, R.; Mohtar, R. H.
2012-12-01
A non-local, gradient free, formulation of the porous media flow problem in unsaturated soils was derived. It parallels the peridynamic theory, a non-local reformulation of solid mechanics presented by Silling. In the proposed model, the evolution of the state of a material point is driven by pairwise interactions with other points across finite distances. Flow and changes in moisture are the result of these interactions. Instead of featuring local gradients, the proposed model expresses the flow as a functional integral of the hydraulic potential field. The absence of spatial gradients, undefined at or on discontinuities, makes the model a good candidate for flow simulations in fractured soils. It also lends itself to coupling with peridynamic mechanical models for simulating crack formation triggered by shrinkage and swelling, and assessing their potential impact on a wide range of processes, such as infiltration, contaminant transport, slope stability and integrity of clay barriers. A description of the concept and an outline of the derivation and numerical implementation are presented. Simulation results of infiltration and drainage for 1D, single and two-layers soil columns, for three different soil types are also presented. The same simulations are repeated using HYDRUS-1D, a computer model using the classic local flow equation. We show that the proposed non-local formulation successfully reproduces the results from HYDRUS-1D. S.A. Silling, "Reformulation of Elasticity Theory for Discontinuities and Long-range Forces," Journal of the Mechanics and Physics of Solids 48, no. 1 (January 2000): 175-209. J. Simunek, M. Sejna, and M.T. Van Genuchten, "The HYDRUS-1D Software Package for Simulating the One-dimensional Movement of Water, Heat, and Multiple Solutes in Variably-saturated Media," University of California, Riverside, Research Reports 240 (2005).
Energy Technology Data Exchange (ETDEWEB)
Ji, Zhi [Instituto de Ciencias Físicas, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, 62210 Cuernavaca, Morelos (Mexico); Contreras-Torres, Flavio F., E-mail: flavioc@nucleares.unam.mx [Instituto de Ciencias Nucleares, Universidad Nacional Autónoma de México, Circuito Exterior, Ciudad Universitaria, 04510 México, DF (Mexico); Jalbout, Abraham F.; Ramírez-Treviño, Alberto [Instituto Tecnológico de Estudios Superiores de Cajeme, Ciudad Obregon, Sonora (Mexico)
2013-11-15
The adsorption of Li atom on graphene is examined using density functional theory methods. Three different adsorption sites are considered, including the on top of a carbon atom (OT), on top of a C-C bond (Bri), and on top of a hexagon (Hol), as well as Li adsorbed at different coverage. The Hol site is found to be the most stable, followed by the Bri and OT sites. The order of stabilization is independent of coverage. The localization of Li–graphene interaction at all sites has reverse order with stabilization. The localization will cause different repulsive interaction between Li atoms which is believed to take responsibility for the difference between the charge transfer order and adsorption energy order of Li adsorption at all possible sites. Repulsive interaction also causes the decreasing of adsorption energies of Li at Hol site with increasing coverage, but the corresponding influence is bigger at low coverage range (0.020–0.056 monolayers) than that at high coverage range (0.056–0.250 monolayers). The trend of charge transfer and dipole moment with increasing coverage is also in agreement with that of adsorption energy. It is also found that the distance of Li above graphene will increase with increasing coverage, but a so-called “zigzag” curve appears, which exhibits an oscillatory behavior as a function of increasing coverage. The diffusion of Li atom on graphene is also studied. Li atom migrates from a Hol site to a neighboring Hol site through the Bri site between them is found to be the minimum energy path. Within the studied coverage range, the diffusion barrier decreases with increasing coverage which can be ascribed to the phenomenon of different repulsion interactions when Li atom adsorbs at different sites. The increasing coverage amplified the phenomenon.
Directory of Open Access Journals (Sweden)
Inger Havsteen
2017-12-01
Full Text Available ObjectiveDiffusion tensor imaging may aid brain ischemia assessment but is more time consuming than conventional diffusion-weighted imaging (DWI. We compared 3-gradient direction DWI (3DWI and 20-gradient direction DWI (20DWI standard vendor protocols in a hospital-based prospective cohort of patients with transient ischemic attack (TIA for lesion detection, lesion brightness, predictability of persisting infarction, and final infarct size.MethodsWe performed 3T-magnetic resonance imaging including diffusion and T2-fluid attenuated inversion recovery (FLAIR within 72 h and 8 weeks after ictus. Qualitative lesion brightness was assessed by visual inspection. We measured lesion area and brightness with manual regions of interest and compared with homologous normal tissue.Results117 patients with clinical TIA showed 78 DWI lesions. 2 lesions showed only on 3DWI. No lesions were uniquely 20DWI positive. 3DWI was visually brightest for 34 lesions. 12 lesions were brightest on 20DWI. The median 3DWI lesion area was larger for lesions equally bright, or brightest on 20DWI [median (IQR 39 (18–95 versus 18 (10–34 mm2, P = 0.007]. 3DWI showed highest measured relative lesion signal intensity [median (IQR 0.77 (0.48–1.17 versus 0.58 (0.34–0.81, P = 0.0006]. 3DWI relative lesion signal intensity was not correlated to absolute signal intensity, but 20DWI performed less well for low-contrast lesions. 3DWI lesion size was an independent predictor of persistent infarction. 3-gradient direction apparent diffusion coefficient areas were closest to 8-week FLAIR infarct size.Conclusion3DWI detected more lesions and had higher relative lesion SI than 20DWI. 20DWI appeared blurred and did not add information.Clinical Trial Registrationhttp://www.clinicaltrials.gov. Unique Identifier NCT01531946.
Directory of Open Access Journals (Sweden)
Ludovic F. Dumée
2016-09-01
Full Text Available The fabrication of molecular gas sieving materials with specific affinities for a single gas species and able to store large quantities of materials at a low or atmospheric pressure is desperately required to reduce the adverse effects of coal and oil usage in carbon capture. Fundamental understanding of the dynamic adsorption of gas, the diffusion mechanisms across thin film membranes, and the impact of interfaces play a vital role in developing these materials. In this work, single gas permeation tests across micro-porous membrane materials, based on metal organic framework crystals grown on the surface of carbon nanotubes (ZiF-8@CNT, were performed for the first time in-situ at the Australian Synchrotron on the small angle X-ray scattering beamline in order to reveal molecular sieving mechanisms and gas adsorption within the material. The results show that specific chemi-sorption of CO2 across the ZiF-8 crystal lattices affected the morphology and unit cell parameters, while the sieving of other noble or noble like gases across the ZiF-8@CNT membranes was found to largely follow Knudsen diffusion. This work demonstrates for the first time a novel and effective technique to assess molecular diffusion at the nano-scale across sub-nano-porous materials by probing molecular flexibility across crystal lattice and single cell units.
Directory of Open Access Journals (Sweden)
Timpka Toomas
2009-12-01
Full Text Available Abstract Background Computerized provider order entry (CPOE systems have been introduced to reduce medication errors, increase safety, improve work-flow efficiency, and increase medical service quality at the moment of prescription. Making the impact of CPOE systems more observable may facilitate their adoption by users. We set out to examine factors associated with the adoption of a CPOE system for inter-organizational and intra-organizational care. Methods The diffusion of innovation theory was used to understand physicians' and nurses' attitudes and thoughts about implementation and use of the CPOE system. Two online survey questionnaires were distributed to all physicians and nurses using a CPOE system in county-wide healthcare organizations. The number of complete questionnaires analyzed was 134 from 200 nurses (67.0% and 176 from 741 physicians (23.8%. Data were analyzed using descriptive-analytical statistical methods. Results More nurses (56.7% than physicians (31.3% stated that the CPOE system introduction had worked well in their clinical setting (P P = P = 0.041. We found that in particular the received relative advantages of the CPOE system were estimated to be significantly (P P Conclusions Qualifications for CPOE adoption as defined by three attributes of diffusion of innovation theory were not satisfied in the study setting. CPOE systems are introduced as a response to the present limitations in paper-based systems. In consequence, user expectations are often high on their relative advantages as well as on a low level of complexity. Building CPOE systems therefore requires designs that can provide rather important additional advantages, e.g. by preventing prescription errors and ultimately improving patient safety and safety of clinical work. The decision-making process leading to the implementation and use of CPOE systems in healthcare therefore has to be improved. As any change in health service settings usually faces resistance
Mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods
International Nuclear Information System (INIS)
Baker, A.R.
1982-07-01
A study has been performed of mesh-size errors in diffusion-theory calculations using finite-difference and finite-element methods. As the objective was to illuminate the issues, the study was performed for a 1D slab model of a reactor with one neutron-energy group for which analytical solutions were possible. A computer code SLAB was specially written to perform the finite-difference and finite-element calculations and also to obtain the analytical solutions. The standard finite-difference equations were obtained by starting with an expansion of the neutron current in powers of the mesh size, h, and keeping terms as far as h 2 . It was confirmed that these equations led to the well-known result that the criticality parameter varied with the square of the mesh size. An improved form of the finite-difference equations was obtained by continuing the expansion for the neutron current as far as the term in h 4 . In this case, the critical parameter varied as the fourth power of the mesh size. The finite-element solutions for 2 and 3 nodes per element revealed that the criticality parameter varied as the square and fourth power of the mesh size, respectively. Numerical results are presented for a bare reactive core of uniform composition with 2 zones of different uniform mesh and for a reactive core with an absorptive reflector. (author)
Yang, Mino
2007-06-07
Theoretical foundation of rate kernel equation approaches for diffusion-influenced chemical reactions is presented and applied to explain the kinetics of fluorescence quenching reactions. A many-body master equation is constructed by introducing stochastic terms, which characterize the rates of chemical reactions, into the many-body Smoluchowski equation. A Langevin-type of memory equation for the density fields of reactants evolving under the influence of time-independent perturbation is derived. This equation should be useful in predicting the time evolution of reactant concentrations approaching the steady state attained by the perturbation as well as the steady-state concentrations. The dynamics of fluctuation occurring in equilibrium state can be predicted by the memory equation by turning the perturbation off and consequently may be useful in obtaining the linear response to a time-dependent perturbation. It is found that unimolecular decay processes including the time-independent perturbation can be incorporated into bimolecular reaction kinetics as a Laplace transform variable. As a result, a theory for bimolecular reactions along with the unimolecular process turned off is sufficient to predict overall reaction kinetics including the effects of unimolecular reactions and perturbation. As the present formulation is applied to steady-state kinetics of fluorescence quenching reactions, the exact relation between fluorophore concentrations and the intensity of excitation light is derived.
International Nuclear Information System (INIS)
Gupta, A.; Hong, S.; Moacanin, J.
1981-01-01
A method and apparatus for measuring thermal diffusivity and molecular relaxation processes in a sample material utilizing two light beams, one being a pulsed laser light beam for forming a thermal lens in the sample material, and the other being a relatively low power probe light beam for measuring changes in the refractive index of the sample material during formation and dissipation of the thermal lens. More specifically, a sample material is irradiated by relatively high power, short pulses from a dye laser. Energy from the pulses is absorbed by the sample material, thereby forming a thermal lens in the area of absorption. The pulse repetition rate is chosen so that the thermal lens is substantially dissipated by the time the next pulse reaches the sample material. A probe light beam, which in a specific embodiment is a relatively low power, continuous wave (Cw) laser beam, irradiates the thermal lens formed in the sample material. The intensity characteristics of the probe light beam subsequent to irradiation of the thermal lens is related to changes in the refractive index of the sample material as the thermal lens is formed and dissipated. A plot of the changes in refractive index as a function of time during formation of the thermal lens as reflected by changes in intensity of the probe beam, provides a curve related to molecular relaxation characteristics of the material, and a plot during dissipation of the thermal lens provides a curve related to the thermal diffusivity of the sample material
International Nuclear Information System (INIS)
Hsu, Y.Y.
1974-01-01
The following papers related to two-phase flow are summarized: current assumptions made in two-phase flow modeling; two-phase unsteady blowdown from pipes, flow pattern in Laval nozzle and two-phase flow dynamics; dependence of radial heat and momentum diffusion; transient behavior of the liquid film around the expanding gas slug in a vertical tube; flooding phenomena in BWR fuel bundles; and transient effects in bubble two-phase flow. (U.S.)
International Nuclear Information System (INIS)
Muir, M.D.
1975-01-01
The design and design philosophy of a high performance, extremely versatile transient analyzer is described. This sub-system was designed to be controlled through the data acquisition computer system which allows hands off operation. Thus it may be placed on the experiment side of the high voltage safety break between the experimental device and the control room. This analyzer provides control features which are extremely useful for data acquisition from PPPL diagnostics. These include dynamic sample rate changing, which may be intermixed with multiple post trigger operations with variable length blocks using normal, peak to peak or integrate modes. Included in the discussion are general remarks on the advantages of adding intelligence to transient analyzers, a detailed description of the characteristics of the PPPL transient analyzer, a description of the hardware, firmware, control language and operation of the PPPL transient analyzer, and general remarks on future trends in this type of instrumentation both at PPPL and in general
Ahmed, Chaara El Mouez
Nous avons etudie les relations de dispersion et la diffusion des glueballs et des mesons dans le modele U(1)_{2+1} compact. Ce modele a ete souvent utilise comme un simple modele de la chromodynamique quantique (QCD), parce qu'il possede le confinement ainsi que les etats de glueballs. Par contre, sa structure mathematique est beaucoup plus simple que la QCD. Notre methode consiste a diagonaliser l'Hamiltonien de ce modele dans une base appropriee de graphes et sur reseau impulsion, afin de generer les relations de dispersion des glueballs et des mesons. Pour la diffusion, nous avons utilise la methode dependante du temps pour calculer la matrice S et la section efficace de diffusion des glueballs et des mesons. Les divers resultats obtenus semblent etre en accord avec les travaux anterieurs de Hakim, Alessandrini et al., Irving et al., qui eux, utilisent plutot la theorie des perturbations en couplage fort, et travaillent sur un reseau espace-temps.
Rahimi, Bahlol; Timpka, Toomas; Vimarlund, Vivian; Uppugunduri, Srinivas; Svensson, Mikael
2009-12-31
Computerized provider order entry (CPOE) systems have been introduced to reduce medication errors, increase safety, improve work-flow efficiency, and increase medical service quality at the moment of prescription. Making the impact of CPOE systems more observable may facilitate their adoption by users. We set out to examine factors associated with the adoption of a CPOE system for inter-organizational and intra-organizational care. The diffusion of innovation theory was used to understand physicians' and nurses' attitudes and thoughts about implementation and use of the CPOE system. Two online survey questionnaires were distributed to all physicians and nurses using a CPOE system in county-wide healthcare organizations. The number of complete questionnaires analyzed was 134 from 200 nurses (67.0%) and 176 from 741 physicians (23.8%). Data were analyzed using descriptive-analytical statistical methods. More nurses (56.7%) than physicians (31.3%) stated that the CPOE system introduction had worked well in their clinical setting (P system not adapted to their specific professional practice (P = system (P = 0.041). We found that in particular the received relative advantages of the CPOE system were estimated to be significantly (P systems are introduced as a response to the present limitations in paper-based systems. In consequence, user expectations are often high on their relative advantages as well as on a low level of complexity. Building CPOE systems therefore requires designs that can provide rather important additional advantages, e.g. by preventing prescription errors and ultimately improving patient safety and safety of clinical work. The decision-making process leading to the implementation and use of CPOE systems in healthcare therefore has to be improved. As any change in health service settings usually faces resistance, we emphasize that CPOE system designers and healthcare decision-makers should continually collect users' feedback about the systems, while
Shi, Jianjian; Wang, Zhiguo; Qing Fu, Yong
2016-12-01
Coating LiMnPO4 with a thin layer of LiFePO4 shows a better electrochemical performance than the pure LiFePO4 and LiMnPO4, thus it is critical to understand Li diffusion at their interfaces to improve the performance of electrode materials. Li diffusion at the (1 0 0)\\text{LiFeP{{\\text{O}}4}} //(1 0 0)\\text{LiMnP{{\\text{O}}4}} , (0 1 0)\\text{LiFeP{{\\text{O}}4}} //(0 1 0)\\text{LiMnP{{\\text{O}}4}} , and (0 0 1)\\text{LiFeP{{\\text{O}}4}} //(0 0 1)\\text{LiMnP{{\\text{O}}4}} interfaces between LiFePO4 and LiMnPO4 was investigated using density functional theory. The calculated diffusion energy barriers are 0.55 eV for Li to diffuse along the (0 0 1) interface, 0.44 and 0.49 eV for the Li diffusion inside the LiMnPO4 and along the (1 0 0) interface, respectively. When Li diffuses from the LiFePO4 to LiMnPO4 by passing through the (0 1 0) interfaces, the diffusion barriers are 0.45 and 0.60 eV for the Li diffusions in both sides. The diffusion barriers for Li to diffuse in LiMnPO4 near the interfaces decrease compared with those in the pure LiMnPO4. The calculated diffusion coefficient of Li along the (1 0 0) interface is in the range of 3.65 × 10-11-5.28 × 10-12 cm2 s-1, which is larger than that in the pure LiMnPO4 with a value of 7.5 × 10-14 cm2 s-1. Therefore, the charging/discharging rate performance of the LiMnPO4 can be improved by surface coating with the LiFePO4.
Rogers革新擴散理論於課程推廣之意涵 Rogers’ Theory of Innovation Diffusion
Directory of Open Access Journals (Sweden)
侯一欣 Yi-Hsin Hou
2017-09-01
Full Text Available 從擴散的興革背景與Rogers理論的探析，了解到擴散在推廣中的概念本質其實就是人際體系中隨著時間的訊息傳播。而為助益於訊息在人際溝通網絡的擴散，需釐清個人和組織層次的採用依據，以充分掌握教育場域的教師特性及組織脈絡。最後，依據擴散的時間特性，將個人採用時間早晚所衍生的態度進行角色分析，並對革新本身的生命週期提出有關對課程推廣的擴散層面之啟示與省思。 本篇為理論性研究，係針對革新擴散理論與課程推廣研究之相關文獻進行回顧和整理後，大致歸納出以下四個結論： 一、革新擴散理論為課程推廣的源頭，新近則有結合制度理論的趨勢。 二、Rogers的革新擴散理論有助於課程推廣的人際互動過程。 三、採用革新有個人和組織層次的考量，也有時間的先後順序之別。 四、經當代科技創新與制度理論的補充，使擴散理論在課程推廣的應用更為完善。 Based on the academic background of diffusion and Rogers’ theory, the paper shows that diffusion is nested in the concepts of dissemination, and only restricted in message transferred by time through interpersonal communication channel. The judgment of innovation diffusion depends on personal adoption. For innovation diffusion to come true, disseminators should take individual and organizational considerations into account. Finally, the correlation between the timing of individuals’ innovation diffusion and the persons’ attitudes is analyzed, with implications on the diffusive respect of curriculum dissemination from the life cycle of innovation. This paper presents the following three conclusions after reviewing the theoretical research and sorting out the relevant literatures. First, curriculum dissemination originates from the theory of innovation diffusion, which recently integrates with institutionalization theory
Transient Infrared Emission Spectroscopy
Jones, Roger W.; McClelland, John F.
1989-12-01
Transient Infrared Emission Spectroscopy (TIRES) is a new technique that reduces the occurrence of self-absorption in optically thick solid samples so that analytically useful emission spectra may be observed. Conventional emission spectroscopy, in which the sample is held at an elevated, uniform temperature, is practical only for optically thin samples. In thick samples the emission from deep layers of the material is partially absorbed by overlying layers.1 This self-absorption results in emission spectra from most optically thick samples that closely resemble black-body spectra. The characteristic discrete emission bands are severely truncated and altered in shape. TIRES bypasses this difficulty by using a laser to heat only an optically thin surface layer. The increased temperature of the layer is transient since the layer will rapidly cool and thicken by thermal diffusion; hence the emission collection must be correlated with the laser heating. TIRES may be done with both pulsed and cw lasers.2,3 When a pulsed laser is used, the spectrometer sampling must be synchronized with the laser pulsing so that only emission during and immediately after each laser pulse is observed.3 If a cw laser is used, the sample must move rapidly through the beam. The hot, transient layer is then in the beam track on the sample at and immediately behind the beam position, so the spectrometer field of view must be limited to this region near the beam position.2 How much self-absorption the observed emission suffers depends on how thick the heated layer has grown by thermal diffusion when the spectrometer samples the emission. Use of a pulsed laser synchronized with the spectrometer sampling readily permits reduction of the time available for heat diffusion to about 100 acs .3 When a cw laser is used, the heat-diffusion time is controlled by how small the spectrometer field of view is and by how rapidly the sample moves past within this field. Both a very small field of view and a
Excitation of neutron flux waves in reactor core transients
International Nuclear Information System (INIS)
Carew, J.F.; Neogy, P.
1983-01-01
An analysis of the excitation of neutron flux waves in reactor core transients has been performed. A perturbation theory solution has been developed for the time-dependent thermal diffusion equation in which the absorption cross section undergoes a rapid change, as in a PWR rod ejection accident (REA). In this analysis the unperturbed reactor flux states provide the basis for the spatial representation of the flux solution. Using a simplified space-time representation for the cross section change, the temporal integrations have been carried out and analytic expressions for the modal flux amplitudes determined. The first order modal excitation strength is determined by the spatial overlap between the initial and final flux states, and the cross section perturbation. The flux wave amplitudes are found to be largest for rapid transients involving large reactivity perturbations
Energy Technology Data Exchange (ETDEWEB)
Rabone, Jeremy, E-mail: jeremy.rabone@ec.europa.eu [European Commission, Joint Research Centre, Institute for Transuranium Elements, D-76125 Karlsruhe (Germany); López-Honorato, Eddie [Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV), Unidad Saltillo, Industria Metalúrgica 1062, Parque Industrial, Ramos Arizpe 25900, Coahuila (Mexico)
2015-03-15
Highlights: • DFT metadynamics of diffusion of Pd, Ag and Cs on grain boundaries in β-SiC. • The calculated diffusion rates for Pd and Ag tally with experimental release rates. • A mechanism of release other than grain boundary diffusion seems likely for Cs. - Abstract: The use of silicon carbide in coated nuclear fuel particles relies on this materials impermeability towards fission products under normal operating conditions. Determining the underlying factors that control the rate at which radionuclides such as Silver-110m and Caesium-137 can cross the silicon carbide barrier layers, and at which fission products such as palladium could compromise or otherwise alter the nature of this layer, are of paramount importance for the safety of this fuel. To this end, DFT-based metadynamics simulations are applied to the atomic diffusion of silver, caesium and palladium along a Σ5 grain boundary and to palladium along a carbon-rich Σ3 grain boundary in cubic silicon carbide at 1500 K. For silver, the calculated diffusion coefficients lie in a similar range (7.04 × 10{sup −19}–3.69 × 10{sup −17} m{sup 2} s{sup −1}) as determined experimentally. For caesium, the calculated diffusion rates are very much slower (3.91 × 10{sup −23}–2.15 × 10{sup −21} m{sup 2} s{sup −1}) than found experimentally, suggesting a different mechanism to the simulation. Conversely, the calculated atomic diffusion of palladium is very much faster (7.96 × 10{sup −11}–7.26 × 10{sup −9} m{sup 2} s{sup −1}) than the observed penetration rate of palladium nodules. This points to the slow dissolution and rapid regrowth of palladium nodules as a possible ingress mechanism in addition to the previously suggested migration of entire nodules along grain boundaries. The diffusion rate of palladium along the Σ3 grain boundary was calculated to be slightly slower (2.38 × 10{sup −11}–8.24 × 10{sup −10} m{sup 2} s{sup −1}) than along the Σ5 grain boundary. Rather
Directory of Open Access Journals (Sweden)
Wei Chen
2016-01-01
Full Text Available Since WeChat has been launched in 2011, as of the first quarter of 2015, the active users have reached 549 million per month1. WeChat has become the largest mobile instant messaging software among the user groups in Asia. Therefore, WeChat is no longer “micro”, and grabs the attention of more youth groups by virtue of the “micro” advantages in the Internet era in a way of low-priced new media. Through sorting 192 effective questionnaires recovered, this paper summarizes some transmitting tendency and suggestions of “micro” innovation diffusion from the research view of the concept of innovation diffusion theory, and development stage of WeChat in the youth group, based on the survey data and by the use of the statistics of informatics, qualitative and quantitative analysis method, so as to provide a certain theoretical basis for the future research of WeChat.
International Nuclear Information System (INIS)
Groebner, R.J.
1986-04-01
The study of ion transport in neutral beam-heated discharges in tokamaks is necessary to determine if neoclassical theory can reliably be used to predict the performance of future machines. Previous studies of ion tranport have generally been difficult due to the lack of information regarding the ion temperature profile. The standard procedure used to study ion transport has been to model the T/sub i/ profile with the assumption that the ion thermal diffusivity profile chi/sub i/(r) was equal to a multiplier times chi/sub i//sup neo/(r), the ion thermal diffusivity calculated from neoclassical theory. The multiplier was varied until the calculated T/sub i/ profile agreed with the available ion temperature data, usually T/sub i/(0) or the measured neutron rate. Values of the multiplier in the range of 1 to 10 have generally been obtained with few estimates of the uncertainties in these values. Furthermore, there have been few, if any, attempts to calculate chi/sub i/ by modeling the ion temperature profiles in other ways. As a result, the issue as to whether or not the ion transport in tokamaks is in agreement with neoclassical theory has not been definitively answered
Lai, Angel; Saleem, Qasim; Macdonald, Peter M
2015-10-14
Centerband-only-detection-of-exchange (CODEX) (31)P NMR lateral diffusion measurements were performed on dimyristoylphosphatidylcholine (DMPC) assembled into large unilamellar spherical vesicles. Optimization of sample and NMR acquisition conditions provided significant sensitivity enhancements relative to an earlier first report (Q. Saleem, A. Lai, H. Morales, and P. M. Macdonald, Chem. Phys. Lipids, 2012, 165, 721). An analytical description was developed that permitted the extraction of lateral diffusion coefficients from CODEX data, based on a Gaussian-diffusion-on-a-sphere model (A. Ghosh, J. Samuel, and S. Sinha, Europhys. Lett., 2012, 98, 30003-p1) as relevant to CODEX (31)P NMR measurements on a population of spherical unilamellar phospholipid bilayer vesicles displaying a distribution of vesicle radii.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently
Energy Technology Data Exchange (ETDEWEB)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1977-11-01
The report documents the computer code block VENTURE designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P/sub 1/) in up to three-dimensional geometry. It uses and generates interface data files adopted in the cooperative effort sponsored by the Reactor Physics Branch of the Division of Reactor Research and Development of the Energy Research and Development Administration. Several different data handling procedures have been incorporated to provide considerable flexibility; it is possible to solve a wide variety of problems on a variety of computer configurations relatively efficiently.
International Nuclear Information System (INIS)
Vondy, D.R.; Fowler, T.B.; Cunningham, G.W.
1975-10-01
The computer code block VENTURE, designed to solve multigroup neutronics problems with application of the finite-difference diffusion-theory approximation to neutron transport (or alternatively simple P 1 ) in up to three-dimensional geometry is described. A variety of types of problems may be solved: the usual eigenvalue problem, a direct criticality search on the buckling, on a reciprocal velocity absorber (prompt mode), or on nuclide concentrations, or an indirect criticality search on nuclide concentrations, or on dimensions. First-order perturbation analysis capability is available at the macroscopic cross section level
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study Josephson effect in d-wave superconductor/diffusive ferromagnet/d-wave superconductor junctions, changing the exchange field and the angles between the normal to the interfaces and the crystal axes of d-wave superconductors. We find a 0–π transition at a certain value of the exchange field.
Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch; Inoue, J.; Asano, Y.
2006-01-01
Charge transport in the diffusive normal metal/insulator/s-wave superconductor junctions is studied in the presence of the magnetic impurity for various situations, where we have used the Usadel equation with Nazarov's generalized boundary condition. It is revealed that the magnetic impurity
Raffray, A. René; Federici, Gianfranco
1997-04-01
RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case.
International Nuclear Information System (INIS)
Raffray, A.R.; Federici, G.
1997-01-01
For pt.II see ibid., p.101-30, 1997. RACLETTE (Rate Analysis Code for pLasma Energy Transfer Transient Evaluation), a comprehensive but relatively simple and versatile model, was developed to help in the design analysis of plasma facing components (PFCs) under 'slow' high power transients, such as those associated with plasma vertical displacement events. The model includes all the key surface heat transfer processes such as evaporation, melting, and radiation, and their interaction with the PFC block thermal response and the coolant behaviour. This paper represents part I of two sister and complementary papers. It covers the model description, calibration and validation, and presents a number of parametric analyses shedding light on and identifying trends in the PFC armour block response to high plasma energy deposition transients. Parameters investigated include the plasma energy density and deposition time, the armour thickness and the presence of vapour shielding effects. Part II of the paper focuses on specific design analyses of ITER plasma facing components (divertor, limiter, primary first wall and baffle), including improvements in the thermal-hydraulic modeling required for better understanding the consequences of high energy deposition transients in particular for the ITER limiter case. (orig.)
Partial discharge transients: The field theoretical approach
DEFF Research Database (Denmark)
McAllister, Iain Wilson; Crichton, George C
1998-01-01
Up until the mid-1980s the theory of partial discharge transients was essentially static. This situation had arisen because of the fixation with the concept of void capacitance and the use of circuit theory to address what is in essence a field problem. Pedersen rejected this approach and instead...... began to apply field theory to the problem of partial discharge transients. In the present paper, the contributions of Pedersen using the field theoretical approach will be reviewed and discussed....
Transient formation of forbidden lines
International Nuclear Information System (INIS)
Rosmej, F.B.; Rosmej, O.N.
1996-01-01
An explanation of anomalously long time scales in the transient formation of forbidden lines is proposed. The concept is based on a collisionally induced density dependence of the relaxation times of metastable level populations in transient plasma. Generalization leads to an incorporation of diffusion phenomena. We demonstrate this new concept for the simplest atomic system: the He-like isoelectronic sequence. A new interpretation of the observed long duration and anomalously high intensity of spin-forbidden emission in hot plasmas is given. (author)
Transient formation of forbidden lines
Energy Technology Data Exchange (ETDEWEB)
Rosmej, F.B. [Bochum Univ., Ruhr (Germany). Inst. fuer Experimentalphysik V; Rosmej, O.N. [VNIIFTRI, Moscow Region (Russian Federation). MISDC
1996-05-14
An explanation of anomalously long time scales in the transient formation of forbidden lines is proposed. The concept is based on a collisionally induced density dependence of the relaxation times of metastable level populations in transient plasma. Generalization leads to an incorporation of diffusion phenomena. We demonstrate this new concept for the simplest atomic system: the He-like isoelectronic sequence. A new interpretation of the observed long duration and anomalously high intensity of spin-forbidden emission in hot plasmas is given. (author).
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
International Nuclear Information System (INIS)
Zhou, Jianjun; Zhang, Daling; Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei
2015-01-01
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor
Three dimensional neutronic/thermal-hydraulic coupled simulation of MSR in transient state condition
Energy Technology Data Exchange (ETDEWEB)
Zhou, Jianjun [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); College of Mechanical and Power Engineering, China Three Gorges University, No 8, Daxue road, Yichang, Hubei 443002 (China); Zhang, Daling, E-mail: dlzhang@mail.xjtu.edu.cn [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China); Qiu, Suizheng; Su, Guanghui; Tian, Wenxi; Wu, Yingwei [School of Nuclear Science and Technology, Xi’an Jiaotong University, Xianning Road, 28, Xi’an 710049, Shaanxi (China)
2015-02-15
Highlights: • Developed a three dimensional neutronic/thermal-hydraulic coupled transient analysis code for MSR. • Investigated the neutron distribution and thermal-hydraulic characters of the core under transient condition. • Analyzed three different transient conditions of inlet temperature drop, reactivity jump and pump coastdown. - Abstract: MSR (molten salt reactor) use liquid molten salt as coolant and fuel solvent, which was the only one liquid reactor of six Generation IV reactor types. As a liquid reactor the physical property of reactor was significantly influenced by fuel salt flow and the conventional analysis methods applied in solid fuel reactors are not applicable for this type of reactors. The present work developed a three dimensional neutronic/thermal-hydraulic coupled code investigated the neutronics and thermo-hydraulics characteristics of the core in transient condition based on neutron diffusion theory and numerical heat transfer. The code consists of two group neutron diffusion equations for fast and thermal neutron fluxes and six group balance equations for delayed neutron precursors. The code was separately validated by neutron benchmark and flow and heat transfer benchmark. Three different transient conditions was analyzed with inlet temperature drop, reactivity jump and pump coastdown. The results provide some valuable information in design and research this kind of reactor.
Energy Technology Data Exchange (ETDEWEB)
Naderi, Ebadollah, E-mail: enaderi42@gmail.com [Department of Physics, Savitribai Phule Pune University (SPPU), Pune-411007 (India); Nanavati, Sachin [Center for Development of Advanced Computing (C-DAC), SPPU campus, Pune 411007 (India); Majumder, Chiranjib [Chemistry Division, Bhabha Atomic Research Center, Mumbai, 400085 (India); Ghaisas, S. V. [Department of Electronic Science, Savitribai Phule Pune University (SPPU), Pune-411007 (India); Department of Physics, Savitribai Phule Pune University (SPPU), Pune-411007 (India)
2015-01-15
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A{sub a} site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A{sub a} (occupied) to A{sub a} (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.
2015-01-01
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as Aa site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from Aa (occupied) to Aa (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth.
International Nuclear Information System (INIS)
Naderi, Ebadollah; Nanavati, Sachin; Majumder, Chiranjib; Ghaisas, S. V.
2015-01-01
CdTe is one of the most promising semiconductor for thin-film based solar cells. Here we report a computational study of Cd and Te adatom diffusion on the CdTe (111) A-type (Cd terminated) and B-type (Te terminated) surfaces and their migration paths. The atomic and electronic structure calculations are performed under the DFT formalism and climbing Nudge Elastic Band (cNEB) method has been applied to evaluate the potential barrier of the Te and Cd diffusion. In general the minimum energy site on the surface is labeled as A a site. In case of Te and Cd on B-type surface, the sub-surface site (a site just below the top surface) is very close in energy to the A site. This is responsible for the subsurface accumulation of adatoms and therefore, expected to influence the defect formation during growth. The diffusion process of adatoms is considered from A a (occupied) to A a (empty) site at the nearest distance. We have explored three possible migration paths for the adatom diffusion. The adatom surface interaction is highly dependent on the type of the surface. Typically, Te interaction with both type (5.2 eV for A-type and 3.8 eV for B-type) is stronger than Cd interactions(2.4 eV for B-type and 0.39 eV for A-type). Cd interaction with the A-type surface is very weak. The distinct behavior of the A-type and B-type surfaces perceived in our study explain the need of maintaining the A-type surface during growth for smooth and stoichiometric growth
Woo, Michael Y; Frank, Jason R; Lee, A Curtis
2014-09-01
Point-of-care ultrasonography (PoCUS) first appeared in the 1980s in North America, but the extent of the diffusion of its adoption is unknown. We characterized early PoCUS adoption by emergency physicians in Canada and its barriers to use using Rogers' diffusion of innovations theory. We developed a questionnaire based on a pilot study and literature review to assess past, current, and potential use of PoCUS and potential barriers to adoption. A Dillman technique for electronic surveys was used for dissemination. Using Rogers' diffusion of innovations theory, we developed and validated the Evaluation Tool for Ultrasound skills Development and Education (ETUDE). ETUDE scores allowed categorization of respondents into innovators, early adopters, majority, and nonadopters. Descriptive statistics, correlations, and χ² statistics were used to analyze the data. The 296 respondents (36.4% of 814 surveyed) had a median age of 40 and were 72.5% male. Adoption scores using ETUDE revealed nonadopters (18.8%), majority (28.7%), early adopters (34.5%), and innovators (18.0%). Respondents endorsed "always" using PoCUS currently and in the future for focused assessment with sonography in trauma (FAST) (current 41.8%/future 88.4%), first trimester pregnancy (current 23.3%/future 73.7%), suspected abdominal aortic aneurysm (current 32.7%/future 92.6%), basic cardiac indications (current 30.7%/future 87.5%), and central venous catheterization (current 17.0%/future 80.3%). Several barriers to PoCUS were identified for part-time emergency physicians and those working in inner-city/urban/suburban settings. This is the first study to determine the state of adoption and barriers to the introduction of PoCUS in Canadian emergency medicine practice. The novel validated ETUDE instrument should be used to evaluate the uptake of PoCUS over time.
Superresolution microscopy with transient binding.
Molle, Julia; Raab, Mario; Holzmeister, Susanne; Schmitt-Monreal, Daniel; Grohmann, Dina; He, Zhike; Tinnefeld, Philip
2016-06-01
For single-molecule localization based superresolution, the concentration of fluorescent labels has to be thinned out. This is commonly achieved by photophysically or photochemically deactivating subsets of molecules. Alternatively, apparent switching of molecules can be achieved by transient binding of fluorescent labels. Here, a diffusing dye yields bright fluorescent spots when binding to the structure of interest. As the binding interaction is weak, the labeling is reversible and the dye ligand construct diffuses back into solution. This approach of achieving superresolution by transient binding (STB) is reviewed in this manuscript. Different realizations of STB are discussed and compared to other localization-based superresolution modalities. We propose the development of labeling strategies that will make STB a highly versatile tool for superresolution microscopy at highest resolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Muñoz Morales, Aarón A; Vázquez Y Montiel, Sergio
2012-10-01
The determination of optical parameters of biological tissues is essential for the application of optical techniques in the diagnosis and treatment of diseases. Diffuse Reflection Spectroscopy is a widely used technique to analyze the optical characteristics of biological tissues. In this paper we show that by using diffuse reflectance spectra and a new mathematical model we can retrieve the optical parameters by applying an adjustment of the data with nonlinear least squares. In our model we represent the spectra using a Fourier series expansion finding mathematical relations between the polynomial coefficients and the optical parameters. In this first paper we use spectra generated by the Monte Carlo Multilayered Technique to simulate the propagation of photons in turbid media. Using these spectra we determine the behavior of Fourier series coefficients when varying the optical parameters of the medium under study. With this procedure we find mathematical relations between Fourier series coefficients and optical parameters. Finally, the results show that our method can retrieve the optical parameters of biological tissues with accuracy that is adequate for medical applications.
Ranger, Jochen; Kuhn, Jörg-Tobias; Szardenings, Carsten
2016-05-01
Psychological tests are usually analysed with item response models. Recently, some alternative measurement models have been proposed that were derived from cognitive process models developed in experimental psychology. These models consider the responses but also the response times of the test takers. Two such models are the Q-diffusion model and the D-diffusion model. Both models can be calibrated with the diffIRT package of the R statistical environment via marginal maximum likelihood (MML) estimation. In this manuscript, an alternative approach to model calibration is proposed. The approach is based on weighted least squares estimation and parallels the standard estimation approach in structural equation modelling. Estimates are determined by minimizing the discrepancy between the observed and the implied covariance matrix. The estimator is simple to implement, consistent, and asymptotically normally distributed. Least squares estimation also provides a test of model fit by comparing the observed and implied covariance matrix. The estimator and the test of model fit are evaluated in a simulation study. Although parameter recovery is good, the estimator is less efficient than the MML estimator. © 2016 The British Psychological Society.
Diffusion in reactor materials
International Nuclear Information System (INIS)
Fedorov, G.B.; Smirnov, E.A.
1984-01-01
The monograph contains a brief description of the principles underlying the theory of diffusion, as well as modern methods of studying diffusion. Data on self-diffusion and diffusion of impurities in a nuclear fuel and fissionable materials (uranium, plutonium, thorium, zirconium, titanium, hafnium, niobium, molybdenum, tungsten, beryllium, etc.) is presented. Anomalous diffusion, diffusion of components, and interdiffusion in binary and ternary alloys were examined. The monograph presents the most recent reference material on diffusion. It is intended for a wide range of researchers working in the field of diffusion in metals and alloys and attempting to discover new materials for application in nuclear engineering. It will also be useful for teachers, research scholars and students of physical metallurgy
International Nuclear Information System (INIS)
Ritchie, A.I.M.; Wilson, D.J.
1984-12-01
A multigroup diffusion code has been used to predict the count rate from a neutron moisture meter for a range of values of soil water content ω, thermal neutron absorption cross section Ssub(a) (defined as Σsub(a)/rho) of the soil matrix and soil matrix density rho. Two dimensions adequately approximated the geometry of the source, detector and soil surrounding the detector. Seven energy groups, the data for which were condensed from 128 group data set over the neutron energy spectrum appropriate to the soil-water mixture under study, proved adequate to describe neutron slowing-down and diffusion. The soil-water mixture was an SiO 2 →water mixture, with the absorption cross section of SiO 2 increased to cover the range of Σsub(a) required. The response to changes in matrix density is, in general, linear but the response to changes in water content is not linear over the range of parameter values investigated. Tabular results are presented which allow interpolation of the response for a particular ω, Ssub(a) and rho. It is shown that R(ω, Ssub(a), rho) rho M(Ssub(a)) + C(ω) is a crude representation of the response over a very limited range of variation of ω, and Ssub(a). As the response is a slowly varying function of rho, Ssub(a) and ω, a polynomial fit will provide a better estimate of the response for values of rho, Ssub(a) and ω not tabulated
International Nuclear Information System (INIS)
Jagannathan, V.
1985-01-01
A modular computer code system called FEMSYN has been developed to solve the multigroup diffusion theory equations. The various methods that are incorporated in FEMSYN are (i) finite difference method (FDM) (ii) finite element method (FEM) and (iii) single channel flux synthesis method (SCFS). These methods are described in detail in parts II, III and IV of the present report. In this report, a comparison of the accuracy and the speed of different methods of solution for some benchmark problems are reported. The input preparation and listing of sample input and output are included in the Appendices. The code FEMSYN has been used to solve a wide variety of reactor core problems. It can be used for both LWR and PHWR applications. (author)
International Nuclear Information System (INIS)
Jagannathan, V.
1985-01-01
For solving the multigroup diffusion theory equations in 3-D problems in which the material properties are uniform in large segments of axial direction, the synthesis method is known to give fairly accurate results, at very low computational cost. In the code system FEMSYN, the single channel continuous flux synthesis option has been incorporated. One can generate the radial trail functions by either finite difference method (FDM) or finite element method (FEM). The axial mixing functions can also be found by either FDM or FEM. Use of FEM for both radial and axial directions is found to reduce the calculation time considerably. One can determine eigenvalue, 3-D flux and power distributions with FEMSYN. In this report, a detailed discription of the synthesis module SYNTHD is given. (author)
Transient pseudohypoaldosteronism
Directory of Open Access Journals (Sweden)
Stajić Nataša
2011-01-01
Full Text Available Introduction. Infants with urinary tract malformations (UTM presenting with urinary tract infection (UTI are prone to develop transient type 1 pseudohypoaldosteronism (THPA1. Objective. Report on patient series with characteristics of THPA1, UTM and/or UTI and suggestions for the diagnosis and therapy. Methods. Patients underwent blood and urine electrolyte and acid-base analysis, serum aldosterosterone levels and plasma rennin activity measuring; urinalysis, urinoculture and renal ultrasound were done and medical and/or surgical therapy was instituted. Results. Hyponatraemia (120.9±5.8 mmol/L, hyperkalaemia (6.9±0.9 mmol/L, metabolic acidosis (plasma bicarbonate, 11±1.4 mmol/L, and a rise in serum creatinine levels (145±101 μmol/L were associated with inappropriately high urinary sodium (51.3±17.5 mmol/L and low potassium (14.1±5.9 mmol/L excretion. Elevated plasma aldosterone concentrations (170.4±100.5 ng/dL and the very high levels of the plasma aldosterone to potassium ratio (25.2±15.6 together with diminished urinary K/Na values (0.31±0.19 indicated tubular resistance to aldosterone. After institution of appropriate medical and/or surgical therapy, serum electrolytes, creatinine, and acid-base balance were normalized. Imaging studies showed ureteropyelic or ureterovesical junction obstruction in 3 and 2 patients, respectively, posterior urethral valves in 3, and normal UT in 1 patient. According to our knowledge, this is the first report on THPA1 in the Serbian literature. Conclusion. Male infants with hyponatraemia, hyperkalaemia and metabolic acidosis have to have their urine examined and the renal ultrasound has to be done in order to avoid both, the underdiagnosis of THPA1 and the inappropriate medication.
International Nuclear Information System (INIS)
Zalan, T.A.
1988-01-01
Multi-energy-group neutron diffusion theory is used to numerically evaluate the utility of two different dual-detector neutron porosity logging devices, a 14 MeV (accelerator) neutron source - epithermal neutron detector device and a 4 MeV neutron source - capture gamma-ray detector device, relative to the traditional 4 MeV neutron source - thermal neutron detector device. Fast and epithermal neutron diffusion parameters are calculated using Monte Carlo - derived neutron flux distributions. Thermal parameters are calculated from tabulated cross sections. An existing analytical method to describe the transport of gamma-rays through common earth materials is modified in order to accommodate the modeling of the 4 MeV neutron - capture gamma-ray device. The 14 MeV neutron - epithermal neutron device is found to be less sensitive to porosity than the 4 MeV neutron - capture gamma-ray device, which in turn is found to be less sensitive to porosity than the traditional 4 MeV neutron - thermal neutron device. Salinity effects are found to be comparable for the 4 MeV neutron - capture gamma-ray and 4 MeV neutron - thermal neutron devices. The 4 MeV neutron capture gamma-ray measurement is found to be deepest investigating
International Nuclear Information System (INIS)
Choi, C. K.; Margraves, C. H.; Kihm, K. D.
2007-01-01
Multilayered distributions of hindered mean square displacement (MSD) for nanoparticles are measured in the near-wall region within 500 nm from the solid surface using total internal reflection fluorescence microscopy, an evanescent wave microscopic imaging technique. Examined particles are yellow-green (505/515) polystyrene fluorescent nanospheres of 100, 250, and 500 nm radii with a specific gravity of 1.055. To ensure the measurement accuracy, special care is taken to minimize photobleaching of fluorescent particles by adding neutral density filters to optimally reduce the excitation power. The experimental results for parallel MSDs to the solid surface validate the theory of hindered diffusion [A. J. Goldman, R. G. Cox, and H. Brenner, 'Slow viscous motion of a sphere parallel to a plane - I: Motion through a quiescent fluid', Chem. Eng. Sci. 22, 637 (1967)] of spheres based on viscous slow-down in the near-wall region. It is also reported that the effect of adding sodium chloride up to 10 mM to the solution has little effect on the parallel diffusive motion of the tested nanoparticles. Experimental evidence shows that normal MSDs, for submicroscopic charged nanoparticles, are substantially different from Einstein's 2DΔt due to the deterministic motion arising from electrostatic forces
Modeling of Transients in an Enrichment Circuit
International Nuclear Information System (INIS)
Fernandino, Maria; Delmastro, Dario; Brasnarof, Daniel
2003-01-01
In the present work a mathematical model is presented in order to describe the dynamic behavior inside a closed enrichment loop, the latter representing a single stage of an uranium gaseous diffusion enrichment cascade.The analytical model is turned into a numerical model, and implemented through a computational code.Transients of two species separation were numerically analyzed, including setting times of each magnitude, behavior of each one of them during different transients, and redistribution of concentrations along the closed loop
McMullen, Heather; Griffiths, Chris; Leber, Werner; Greenhalgh, Trisha
2015-05-31
Complex intervention trials may require health care organisations to implement new service models. In a recent cluster randomised controlled trial, some participating organisations achieved high recruitment, whereas others found it difficult to assimilate the intervention and were low recruiters. We sought to explain this variation and develop a model to inform organisational participation in future complex intervention trials. The trial included 40 general practices in a London borough with high HIV prevalence. The intervention was offering a rapid HIV test as part of the New Patient Health Check. The primary outcome was mean CD4 cell count at diagnosis. The process evaluation consisted of several hundred hours of ethnographic observation, 21 semi-structured interviews and analysis of routine documents (e.g., patient leaflets, clinical protocols) and trial documents (e.g., inclusion criteria, recruitment statistics). Qualitative data were analysed thematically using--and, where necessary, extending--Greenhalgh et al.'s model of diffusion of innovations. Narrative synthesis was used to prepare case studies of four practices representing maximum variety in clinicians' interest in HIV (assessed by level of serological testing prior to the trial) and performance in the trial (high vs. low recruiters). High-recruiting practices were, in general though not invariably, also innovative practices. They were characterised by strong leadership, good managerial relations, readiness for change, a culture of staff training and available staff time ('slack resources'). Their front-line staff believed that patients might benefit from the rapid HIV test ('relative advantage'), were emotionally comfortable administering it ('compatibility'), skilled in performing it ('task issues') and made creative adaptations to embed the test in local working practices ('reinvention'). Early experience of a positive HIV test ('observability') appeared to reinforce staff commitment to recruiting
Metric diffusion along foliations
Walczak, Szymon M
2017-01-01
Up-to-date research in metric diffusion along compact foliations is presented in this book. Beginning with fundamentals from the optimal transportation theory and the theory of foliations; this book moves on to cover Wasserstein distance, Kantorovich Duality Theorem, and the metrization of the weak topology by the Wasserstein distance. Metric diffusion is defined, the topology of the metric space is studied and the limits of diffused metrics along compact foliations are discussed. Essentials on foliations, holonomy, heat diffusion, and compact foliations are detailed and vital technical lemmas are proved to aide understanding. Graduate students and researchers in geometry, topology and dynamics of foliations and laminations will find this supplement useful as it presents facts about the metric diffusion along non-compact foliation and provides a full description of the limit for metrics diffused along foliation with at least one compact leaf on the two dimensions.
Cross-sections for homogenized BWR fuel elements in 2d-diffusion theory by 1d-transport calculations
International Nuclear Information System (INIS)
Ambrosius, G.
1980-01-01
Leakage has a large influence on the thermal spectrum in a fuel rod cell of a BWR and originates: a) from rods with different absorptions and; b) from the different distances to the water gaps. Due to reason a) Gd-rods are treated together with a ring of the homogenized eight nearest neighbours. The often used definition of homogenized cross-sections as the ratio of the integrated reaction rate to the integrated flux proved to be inadequate. This homogenization method is exact as far as the flux is constant over the boundary and as the leakag e during calculating the homogenized cross-sections is similar to that during application. With respect to the condition b) a 1d-transport calculation for the whole fuel element with rings or slabs of homogenized fuel rod cells is performed. With the definition above the flux distribution is that of the fluxes in the moderator regions. The spectrum within each fuel rod cell which includes the leakage is calculated by superimposing at each energy on the flux distribution in the cell the flux at the cell position from the bundle calculation. Changes in the flux ratio between fuel and moderator due to the leakage are taken into account in a final few group 2d-diffusion calculation with fuel and (moderator + cladding) taken separately
Directory of Open Access Journals (Sweden)
Svetlana Strbac Savic
2015-01-01
Full Text Available Forecasting the operational efficiency of an existing underground mine plays an important role in strategic planning of production. Degree of Operating Leverage (DOL is used to express the operational efficiency of production. The forecasting model should be able to involve common time horizon, taking the characteristics of the input variables that directly affect the value of DOL. Changes in the magnitude of any input variable change the value of DOL. To establish the relationship describing the way of changing we applied multivariable grey modeling. Established time sequence multivariable response formula is also used to forecast the future values of operating leverage. Operational efficiency of production is often associated with diverse sources of uncertainties. Incorporation of these uncertainties into multivariable forecasting model enables mining company to survive in today’s competitive environment. Simulation of mean reversion process and geometric Brownian motion is used to describe the stochastic diffusion nature of metal price, as a key element of revenues, and production costs, respectively. By simulating a forecasting model, we imitate its action in order to measure its response to different inputs. The final result of simulation process is the expected value of DOL for every year of defined time horizon.
Transient analysis of multicavity klystrons
International Nuclear Information System (INIS)
Lavine, T.L.; Miller, R.H.; Morton, P.L.; Ruth, R.D.
1988-09-01
We describe a model for analytic analysis of transients in multicavity klystron output power and phase. Cavities are modeled as resonant circuits, while bunching of the beam is modeled using linear space-charge wave theory. Our analysis has been implemented in a computer program which we use in designing multicavity klystrons with stable output power and phase. We present as examples transient analysis of a relativistic klystron using a magnetic pulse compression modulator, and of a conventional klystron designed to use phase shifting techniques for RF pulse compression. 4 refs., 4 figs
Adaptation and Cultural Diffusion.
Ormrod, Richard K.
1992-01-01
Explores the role of adaptation in cultural diffusion. Explains that adaptation theory recognizes the lack of independence between innovations and their environmental settings. Discusses testing and selection, modification, motivation, and cognition. Suggests that adaptation effects are pervasive in cultural diffusion but require a broader, more…
International Nuclear Information System (INIS)
Dixmier, Marc.
1980-10-01
A general expression of the diffusion coefficient (d.c.) of neutrons was given, with stress being put on symmetries. A system of first-flight collision probabilities for the case of a random stack of any number of types of one- and two-zoned spherical pebbles, with an albedo at the frontiers of the elements or (either) consideration of the interstital medium, was built; to that end, the bases of collision probability theory were reviewed, and a wide generalisation of the reciprocity theorem for those probabilities was demonstrated. The migration area of neutrons was expressed for any random stack of convex, 'simple' and 'regular-contact' elements, taking into account the correlations between free-paths; the average cosinus of re-emission of neutrons by an element, in the case of a homogeneous spherical pebble and the transport approximation, was expressed; the superiority of the so-found result over Behrens' theory, for the type of media under consideration, was established. The 'fine structure current term' of the d.c. was also expressed, and it was shown that its 'polarisation term' is negligible. Numerical applications showed that the global heterogeneity effect on the d.c. of pebble-bed reactors is comparable with that for Graphite-moderated, Carbon gas-cooled, natural Uranium reactors. The code CARACOLE, which integrates all the results here obtained, was introduced [fr
International Nuclear Information System (INIS)
McDeavitt, S.M.; Solomon, A.A.
1997-01-01
Uranium-10 wt % zirconium (U-10Zr) is a fuel alloy that has been used in the Experimental Breeder Reactor-II (EBR-II). The high burnup that was desired in this fuel system made high demands on the mechanical compatibility between fuel and cladding both during normal operation and during safety-related transients when rapid differential expansion may cause high stresses. In general, this mechanical stress can be reduced by cladding deformation if the cladding is sufficiently ductile at high burnup, and/or by fuel hot-pressing. Fortunately, the fuel is very porous when it contacts the cladding, but this porosity gradually fills with solid fission products (primarily lanthanides) that may limit the fuel's compressibility. If the porosity remains open, gaseous fission products are released and the porous fuel creeps rather than hot-presses under contact stresses. If the pores are closed by sintering or by solid fission products, the porous fuel will hot-isostatic press (HIP), as represented by the models to be discussed. HIP experiments performed at 700 C on U-10Zr samples with different impurity phase contents (Part 1) are analyzed in terms of several creep cavitation models. The coupled diffusion/creep cavitation model of Chen and Argon shows good quantitative agreement with measured HIP rates for hydride- and metal-derived U-10Zr materials, assuming that pores are uniformly distributed on grain boundaries and are of modal size, and that far-field strain rates are negligible. The analysis predicts, for the first time, an asymmetry between HIP and swelling at identical pressure-induced driving forces due to differences in grain boundary stresses. The differences in compressibility of hydride- and metal-derived U-10Zr can be partially explained by differences in pore size and spacing. The relevance of the experiments to description of in-reactor densification under external pressure or contact stress due to fuel/cladding mechanical interaction is discussed
International Nuclear Information System (INIS)
Tyobeka, Bismark; Pautz, Andreas; Ivanov, Kostadin
2008-01-01
In new reactor designs that are still under review such as the PBMR, not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400 MW OECD/NEA/NSC coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate the transient scenarios in the above-mentioned benchmark problem. Steady-state calculations results are compared with selected participants' results as well as transient models in which the diffusion and transport theory solutions of the same code system are directly compared. Several sensitivity studies are also shown in order to determine how much the change in certain parameters influences the overall behaviour of a given transient. It is shown in this paper that DORT-TD/THERMIX is a versatile tool which can be deployed for design and safety analyses of high temperature reactors of pebble-bed type. (authors)
Energy Technology Data Exchange (ETDEWEB)
Maggi, F.M.; Riley, W.J.
2009-06-01
The theoretical formulation of biological kinetic reactions in isotopic applications often assume first-order or Michaelis-Menten-Monod kinetics under the quasi-steady-state assumption to simplify the system kinetics. However, isotopic e ects have the same order of magnitude as the potential error introduced by these simpli cations. Both formulations lead to a constant fractionation factor which may yield incorrect estimations of the isotopic effect and a misleading interpretation of the isotopic signature of a reaction. We have analyzed the isotopic signature of denitri cation in biogeochemical soil systems by Menyailo and Hungate [2006], where high {sup 15}N{sub 2}O enrichment during N{sub 2}O production and inverse isotope fractionation during N{sub 2}O consumption could not be explained with first-order kinetics and the Rayleigh equation, or with the quasi-steady-state Michaelis-Menten-Monod kinetics. When the quasi-steady-state assumption was relaxed, transient Michaelis-Menten-Monod kinetics accurately reproduced the observations and aided in interpretation of experimental isotopic signatures. These results may imply a substantial revision in using the Rayleigh equation for interpretation of isotopic signatures and in modeling biological kinetic isotope fractionation with first-order kinetics or quasi-steady-state Michaelis-Menten-Monod kinetics.
Current interruption transients calculation
Peelo, David F
2014-01-01
Provides an original, detailed and practical description of current interruption transients, origins, and the circuits involved, and how they can be calculated Current Interruption Transients Calculationis a comprehensive resource for the understanding, calculation and analysis of the transient recovery voltages (TRVs) and related re-ignition or re-striking transients associated with fault current interruption and the switching of inductive and capacitive load currents in circuits. This book provides an original, detailed and practical description of current interruption transients, origins,
Current limiting capability of diffused resistors
International Nuclear Information System (INIS)
Shedd, W.; Cappelli, J.
1979-01-01
An experimental evaluation of the current limiting capability of dielectrically isolated diffused resistors at transient ionizing dose rates up to 6*10 12 rads(Si)/sec is presented. Existing theoretical predictions of the transient response of diffused resistors are summarized and compared to the experimentally measured values. The test resistors used allow the effects of sheet resistance and geometry on the transient response to be determined. The experimental results show that typical dielectrically isolated diffused resistors maintain adequate current limiting capability for use in radiation hardened integrated circuits
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics.
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-10-17
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law.
Transient chaos - a resolution of breakdown of quantum-classical correspondence in optomechanics
Wang, Guanglei; Lai, Ying-Cheng; Grebogi, Celso
2016-01-01
Recently, the phenomenon of quantum-classical correspondence breakdown was uncovered in optomechanics, where in the classical regime the system exhibits chaos but in the corresponding quantum regime the motion is regular - there appears to be no signature of classical chaos whatsoever in the corresponding quantum system, generating a paradox. We find that transient chaos, besides being a physically meaningful phenomenon by itself, provides a resolution. Using the method of quantum state diffusion to simulate the system dynamics subject to continuous homodyne detection, we uncover transient chaos associated with quantum trajectories. The transient behavior is consistent with chaos in the classical limit, while the long term evolution of the quantum system is regular. Transient chaos thus serves as a bridge for the quantum-classical transition (QCT). Strikingly, as the system transitions from the quantum to the classical regime, the average chaotic transient lifetime increases dramatically (faster than the Ehrenfest time characterizing the QCT for isolated quantum systems). We develop a physical theory to explain the scaling law. PMID:27748418
Degenerate nonlinear diffusion equations
Favini, Angelo
2012-01-01
The aim of these notes is to include in a uniform presentation style several topics related to the theory of degenerate nonlinear diffusion equations, treated in the mathematical framework of evolution equations with multivalued m-accretive operators in Hilbert spaces. The problems concern nonlinear parabolic equations involving two cases of degeneracy. More precisely, one case is due to the vanishing of the time derivative coefficient and the other is provided by the vanishing of the diffusion coefficient on subsets of positive measure of the domain. From the mathematical point of view the results presented in these notes can be considered as general results in the theory of degenerate nonlinear diffusion equations. However, this work does not seek to present an exhaustive study of degenerate diffusion equations, but rather to emphasize some rigorous and efficient techniques for approaching various problems involving degenerate nonlinear diffusion equations, such as well-posedness, periodic solutions, asympt...
International Nuclear Information System (INIS)
Seregin, A.S.
2000-01-01
In the paper the formulae for perturbation theory functionals calculation are given and equations are based on improved coarse mesh discretization of diffusion problem in 3-dimensional geometry (Hex-Z). Expressions for the reactivity effect components and reactivity coefficients, written in the framework of the first order perturbation theory, are presented. On this basis the formulae for estimation of the sensitivity coefficients of different reactivity effects group cross-sections were derived. Expressions for the reactivity effect and its components obtained in the framework of the strict perturbation theory, are also presented in the paper. (author)
International Nuclear Information System (INIS)
Brzoska, A.M.; Lenz, F.; Thies, M.; Negele, J.W.
2005-01-01
A phenomenological analysis of the distribution of Wilson loops in SU(2) Yang-Mills theory is presented in which Wilson loop distributions are described as the result of a diffusion process on the group manifold. It is shown that, in the absence of forces, diffusion implies Casimir scaling and, conversely, exact Casimir scaling implies free diffusion. Screening processes occur if diffusion takes place in a potential. The crucial distinction between screening of fundamental and adjoint loops is formulated as a symmetry property related to the center symmetry of the underlying gauge theory. The results are expressed in terms of an effective Wilson loop action and compared with various limits of SU(2) Yang-Mills theory
DEFF Research Database (Denmark)
Pries-Heje, Jan; Baskerville, Richard
2014-01-01
approach. The study context is a design case in which an organization desires to diffuse its best practices across different groups. The design goal is embodied in organizational mechanisms to achieve this diffusion. The study used Theory of Planned Behavior (TPB) as a kernel theory. The artifacts...... resulting from the design were two-day training workshops conceptually anchored to TBP. The design theory was evaluated through execution of eight diffusion workshops involving three different groups in the same company. The findings indicate that the match between the practice and the context materialized...... that the behavior will be effective). These two factors were especially critical if the source context of the best practice is qualitatively different from the target context into which the organization is seeking to diffuse the best practice....
International Nuclear Information System (INIS)
Gong Yungui; Wang Anzhong; Wu Qiang
2008-01-01
Orbifold branes are studied in the framework of the 11-dimensional Horava-Witten heterotic M-theory. It is found that the effective cosmological constant can be easily lowered to its current observational value by the mechanism of large extra dimensions. The domination of this constant over the evolution of the universe is only temporary. Due to the interaction of the bulk and the branes, the universe will be in its decelerating expansion phase again in the future, whereby all problems connected with a far future de Sitter universe are resolved
Consequences of Diffusion of Innovations.
Goss, Kevin F.
1979-01-01
The article traces evolution of diffusion theory; illustrates undesirable consequences in a cross-cultural setting, reviews criticisms of several scholars; considers distributional effects and unanticipated consequences for potential ameliorative impact on diffusion theory; and codifies these factors into a framework for research into consequences…
Lin, Ching-Pin; Guirguis-Blake, Janelle; Keppel, Gina A; Dobie, Sharon; Osborn, Justin; Cole, Allison M; Baldwin, Laura-Mae
2016-04-15
Adverse drug events (ADEs) are a leading cause of death in the United States. Patients with stage 3 and 4 chronic kidney disease (CKD) are at particular risk because many medications are cleared by the kidneys. Alerts in the electronic health record (EHR) about drug appropriateness and dosing at the time of prescription have been shown to reduce ADEs for patients with stage 3 and 4 CKD in inpatient settings, but more research is needed about the implementation and effectiveness of such alerts in outpatient settings. To explore factors that might inform the implementation of an electronic drug-disease alert for patients with CKD in primary care clinics, using Rogers' diffusion of innovations theory as an analytic framework. Interviews were conducted with key informants in four diverse clinics using various EHR systems. Interviews were audio recorded and transcribed. results Although all clinics had a current method for calculating glomerular filtration rate (GFR), clinics were heterogeneous with regard to current electronic decision support practices, quality improvement resources, and organizational culture and structure. Understanding variation in organizational culture and infrastructure across primary care clinics is important in planning implementation of an intervention to reduce ADEs among patients with CKD.
Directory of Open Access Journals (Sweden)
Maryam Akbari
2012-10-01
Full Text Available The present study investigated the analysis of search engines and meta search engines adoption process by University of Isfahan users during 2009-2010 based on the Rogers' diffusion of innovation theory. The main aim of the research was to study the rate of adoption and recognizing the potentials and effective tools in search engines and meta search engines adoption among University of Isfahan users. The research method was descriptive survey study. The cases of the study were all of the post graduate students of the University of Isfahan. 351 students were selected as the sample and categorized by a stratified random sampling method. Questionnaire was used for collecting data. The collected data was analyzed using SPSS 16 in both descriptive and analytic statistic. For descriptive statistic frequency, percentage and mean were used, while for analytic statistic t-test and Kruskal-Wallis non parametric test (H-test were used. The finding of t-test and Kruscal-Wallis indicated that the mean of search engines and meta search engines adoption did not show statistical differences gender, level of education and the faculty. Special search engines adoption process was different in terms of gender but not in terms of the level of education and the faculty. Other results of the research indicated that among general search engines, Google had the most adoption rate. In addition, among the special search engines, Google Scholar and among the meta search engines Mamma had the most adopting rate. Findings also showed that friends played an important role on how students adopted general search engines while professors had important role on how students adopted special search engines and meta search engines. Moreover, results showed that the place where students got the most acquaintance with search engines and meta search engines was in the university. The finding showed that the curve of adoption rate was not normal and it was not also in S-shape. Morover
Transient drainage summary report
International Nuclear Information System (INIS)
1996-09-01
This report summarizes the history of transient drainage issues on the Uranium Mill Tailings Remedial Action (UMTRA) Project. It defines and describes the UMTRA Project disposal cell transient drainage process and chronicles UMTRA Project treatment of the transient drainage phenomenon. Section 4.0 includes a conceptual cross section of each UMTRA Project disposal site and summarizes design and construction information, the ground water protection strategy, and the potential for transient drainage
General purpose dynamic Monte Carlo with continuous energy for transient analysis
Energy Technology Data Exchange (ETDEWEB)
Sjenitzer, B. L.; Hoogenboom, J. E. [Delft Univ. of Technology, Dept. of Radiation, Radionuclide and Reactors, Mekelweg 15, 2629JB Delft (Netherlands)
2012-07-01
For safety assessments transient analysis is an important tool. It can predict maximum temperatures during regular reactor operation or during an accident scenario. Despite the fact that this kind of analysis is very important, the state of the art still uses rather crude methods, like diffusion theory and point-kinetics. For reference calculations it is preferable to use the Monte Carlo method. In this paper the dynamic Monte Carlo method is implemented in the general purpose Monte Carlo code Tripoli4. Also, the method is extended for use with continuous energy. The first results of Dynamic Tripoli demonstrate that this kind of calculation is indeed accurate and the results are achieved in a reasonable amount of time. With the method implemented in Tripoli it is now possible to do an exact transient calculation in arbitrary geometry. (authors)
PSH Transient Simulation Modeling
Energy Technology Data Exchange (ETDEWEB)
Muljadi, Eduard [National Renewable Energy Laboratory (NREL), Golden, CO (United States)
2017-12-21
PSH Transient Simulation Modeling presentation from the WPTO FY14 - FY16 Peer Review. Transient effects are an important consideration when designing a PSH system, yet numerical techniques for hydraulic transient analysis still need improvements for adjustable-speed (AS) reversible pump-turbine applications.
Singh, Gurmak; Hardaker, Glenn
2011-01-01
This exploratory study identifies the factors that influence the adoption and diffusion of instructional technology at five prominent universities in the United Kingdom. The study examines the organisational factors that enable and inhibit organisational adoption and diffusion of innovation. Five diverse approaches to adoption and diffusions of instructional technology were examined; top-down, integrated top-down and bottom, research driven and project driven approach. The paper argues that s...
Directory of Open Access Journals (Sweden)
Alexander E. Kobryn
2016-04-01
Full Text Available Although better means to model the properties of bulk heterojunction molecular blends are much needed in the field of organic optoelectronics, only a small subset of methods based on molecular dynamics- and Monte Carlo-based approaches have been hitherto employed to guide or replace empirical characterization and testing. Here, we present the first use of the integral equation theory of molecular liquids in modelling the structural properties of blends of phenyl-C61-butyric acid methyl ester (PCBM with poly(3-hexylthiophene (P3HT and a carboxylated poly(3-butylthiophene (P3BT, respectively. For this, we use the Reference Interaction Site Model (RISM with the Universal Force Field (UFF to compute the microscopic structure of blends and obtain insight into the miscibility of its components. Input parameters for RISM, such as optimized molecular geometries and charge distribution of interaction sites, are derived by the Density Functional Theory (DFT methods. We also run Molecular Dynamics (MD simulation to compare the diffusivity of the PCBM in binary blends with P3HT and P3BT, respectively. A remarkably good agreement with available experimental data and results of alternative modelling/simulation is observed for PCBM in the P3HT system. We interpret this as a step in the validation of the use of our approach for organic photovoltaics and support of its results for new systems that do not have reference data for comparison or calibration. In particular, for the less-studied P3BT, our results show that expectations about its performance in binary blends with PCBM may be overestimated, as it does not demonstrate the required level of miscibility and short-range structural organization. In addition, the simulated mobility of PCBM in P3BT is somewhat higher than what is expected for polymer blends and falls into a range typical for fluids. The significance of our predictive multi-scale modelling lies in the insights it offers into nanoscale
Hadorn, Fabienne; Comte, Pascal; Foucault, Eliane; Morin, Diane; Hugli, Olivier
2016-02-01
It has been shown that over 70% of patients waiting in emergency departments (EDs) do not receive analgesics, despite the fact that more than 78% complain of pain. A clinical innovation in the form of a pain management protocol that includes task-shifting has been implemented in the ED of a university hospital in Switzerland in order to improve pain-related outcomes in patients. This innovation involves a change in clinical practice for physicians and nurses. The aim of this study is to explore nurses' perceptions on how well this innovation is adopted. This descriptive correlational study took place in the ED of a Swiss university hospital; the hospital provides healthcare for the city, the canton, and adjoining cantons. A convenience sample of 37 ED nurses participated. They were asked to complete a questionnaire comprising 56 statements based on Rogers's "Diffusion of Innovation" theory. Nurses' opinions (on a 1-10 Likert scale) indicate that the new protocol benefits the ED (mean [M] = 7.4, standard deviation [SD] = 1.21), is compatible with nursing roles (M = 8.0, SD = 1.9), is not too complicated to apply (M = 2.7, SD = 1.7), provides observable positive effects in patients (M = 7.0, SD = 1.28), and is relatively easy to introduce into daily practice (M = 6.5, SD = 1.0). Further studies are now needed to examine patients' experiences of this innovation. Copyright © 2016 American Society for Pain Management Nursing. Published by Elsevier Inc. All rights reserved.
Transient thermal camouflage and heat signature control
Yang, Tian-Zhi; Su, Yishu; Xu, Weikai; Yang, Xiao-Dong
2016-09-01
Thermal metamaterials have been proposed to manipulate heat flux as a new way to cloak or camouflage objects in the infrared world. To date, however, thermal metamaterials only operate in the steady-state and exhibit detectable, transient heat signatures. In this letter, the theoretical basis for a thermal camouflaging technique with controlled transient diffusion is presented. This technique renders an object invisible in real time. More importantly, the thermal camouflaging device instantaneously generates a pre-designed heat signature and behaves as a perfect thermal illusion device. A metamaterial coating with homogeneous and isotropic thermal conductivity, density, and volumetric heat capacity was fabricated and very good camouflaging performance was achieved.
TRANSIENT ELECTRONICS CATEGORIZATION
2017-08-24
AFRL-RY-WP-TR-2017-0169 TRANSIENT ELECTRONICS CATEGORIZATION Dr. Burhan Bayraktaroglu Devices for Sensing Branch Aerospace Components & Subsystems...SUBTITLE TRANSIENT ELECTRONICS CATEGORIZATION 5a. CONTRACT NUMBER In-house 5b. GRANT NUMBER N/A 5c. PROGRAM ELEMENT NUMBER N/A 6. AUTHOR(S) Dr. Burhan...88ABW-2017-3747, Clearance Date 31 July 2017. Paper contains color. 14. ABSTRACT Transient electronics is an emerging technology area that lacks proper
Zhang, Xiaojun; Yu, Ping; Yan, Jun; Ton A M Spil, Ir
2015-02-21
Consumer e-Health is a potential solution to the problems of accessibility, quality and costs of delivering public healthcare services to patients. Although consumer e-Health has proliferated in recent years, it remains unclear if patients are willing and able to accept and use this new and rapidly developing technology. Therefore, the aim of this research is to study the factors influencing patients' acceptance and usage of consumer e-health innovations. A simple but typical consumer e-health innovation--an e-appointment scheduling service--was developed and implemented in a primary health care clinic in a regional town in Australia. A longitudinal case study was undertaken for 29 months after system implementation. The major factors influencing patients' acceptance and use of the e-appointment service were examined through the theoretical lens of Rogers' innovation diffusion theory. Data were collected from the computer log records of 25,616 patients who visited the medical centre in the entire study period, and from in-depth interviews with 125 patients. The study results show that the overall adoption rate of the e-appointment service increased slowly from 1.5% at 3 months after implementation, to 4% at 29 months, which means only the 'innovators' had used this new service. The majority of patients did not adopt this innovation. The factors contributing to the low the adoption rate were: (1) insufficient communication about the e-appointment service to the patients, (2) lack of value of the e-appointment service for the majority of patients who could easily make phone call-based appointment, and limitation of the functionality of the e-appointment service, (3) incompatibility of the new service with the patients' preference for oral communication with receptionists, and (4) the limitation of the characteristics of the patients, including their low level of Internet literacy, lack of access to a computer or the Internet at home, and a lack of experience with
Strong Stationary Duality for Diffusion Processes
Fill, James Allen; Lyzinski, Vince
2014-01-01
We develop the theory of strong stationary duality for diffusion processes on compact intervals. We analytically derive the generator and boundary behavior of the dual process and recover a central tenet of the classical Markov chain theory in the diffusion setting by linking the separation distance in the primal diffusion to the absorption time in the dual diffusion. We also exhibit our strong stationary dual as the natural limiting process of the strong stationary dual sequence of a well ch...
Transient response in granular bounded heap flows
Xiao, Hongyi; Ottino, Julio M.; Lueptow, Richard M.; Umbanhowar, Paul B.
2017-11-01
Heap formation, a canonical granular flow, is common in industry and is also found in nature. Here, we study the transition between steady flow states in quasi-2D bounded heaps by suddenly changing the feed rate from one fixed value to another. During the transition, in both experiments and discrete element method simulations, an additional wedge of flowing particles propagates over the rising free surface. The downstream edge of the wedge - the wedge front - moves downstream with velocity inversely proportional to the square root of time. An additional longer duration transient process continues after the wedge front reaches the downstream wall. The transient flux profile during the entire transition is well modeled by a diffusion-like equation derived from local mass balance and a local linear relation between the flux and the surface slope. Scalings for the transient kinematics during the flow transitions are developed based on the flux profiles. Funded by NSF Grant CBET-1511450.
Transient virulence of emerging pathogens.
Bolker, Benjamin M; Nanda, Arjun; Shah, Dharmini
2010-05-06
Should emerging pathogens be unusually virulent? If so, why? Existing theories of virulence evolution based on a tradeoff between high transmission rates and long infectious periods imply that epidemic growth conditions will select for higher virulence, possibly leading to a transient peak in virulence near the beginning of an epidemic. This transient selection could lead to high virulence in emerging pathogens. Using a simple model of the epidemiological and evolutionary dynamics of emerging pathogens, along with rough estimates of parameters for pathogens such as severe acute respiratory syndrome, West Nile virus and myxomatosis, we estimated the potential magnitude and timing of such transient virulence peaks. Pathogens that are moderately evolvable, highly transmissible, and highly virulent at equilibrium could briefly double their virulence during an epidemic; thus, epidemic-phase selection could contribute significantly to the virulence of emerging pathogens. In order to further assess the potential significance of this mechanism, we bring together data from the literature for the shapes of tradeoff curves for several pathogens (myxomatosis, HIV, and a parasite of Daphnia) and the level of genetic variation for virulence for one (myxomatosis). We discuss the need for better data on tradeoff curves and genetic variance in order to evaluate the plausibility of various scenarios of virulence evolution.
Gamma-ray transients and related astrophysical phenomena
International Nuclear Information System (INIS)
Lingenfelter, R.E.; Hudson, H.S.; Worrall, D.M.
1982-01-01
The workshop covered the study of the explosive phenomena responsible for the various gamma ray transients. X-ray burster observations and theories were also reviewed with emphasis on their relationship to gamma ray bursts. Recent observational data, particularly from the SMM, HEAO, and VENERA satellites made the workshop especially timely. Major headings include: gamma-ray transients, x-ray bursts, solar transients, and instrumental concepts. Individual items from the workshop were prepared separately for the data base
Spectroscopic classification of transients
DEFF Research Database (Denmark)
Stritzinger, M. D.; Fraser, M.; Hummelmose, N. N.
2017-01-01
We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017.......We report the spectroscopic classification of several transients based on observations taken with the Nordic Optical Telescope (NOT) equipped with ALFOSC, over the nights 23-25 August 2017....
Interface Evolution During Transient Pressure Solution Creep
Dysthe, D. K.; Podladchikov, Y. Y.; Renard, F.; Jamtveit, B.; Feder, J.
When aggregates of small grains are pressed together in the presence of small amounts of solvent the aggregate compacts and the grains tend to stick together. This hap- pens to salt and sugar in humid air, and to sediments when buried in the Earths crust. Stress concentration at the grain contacts cause local dissolution, diffusion of the dissolved material out of the interface and deposition on the less stressed faces of the grains{1}. This process, in geology known as pressure solution, plays a cen- tral role during compaction of sedimentary basins{1,2}, during tectonic deformation of the Earth's crust{3}, and in strengthening of active fault gouges following earth- quakes{4,5}. Experimental data on pressure solution has so far not been sufficiently accurate to understand the transient processes at the grain scale. Here we present ex- perimental evidence that pressure solution creep does not establish a steady state inter- face microstructure as previously thought. Conversely, cumulative creep strain and the characteristic size of interface microstructures grow as the cubic root of time. A sim- ilar transient phenomenon is known in metallurgy (Andrade creep) and is explained here using an analogy with spinodal dewetting. 1 Weyl, P. K., Pressure solution and the force of crystallization - a phenomenological theory. J. Geophys. Res., 64, 2001-2025 (1959). 2 Heald, M. T., Cementation of Simpson and St. Peter Sandstones in parts of Okla- homa, Arkansas and Missouri, J. Geol. Chicago, 14, 16-30 (1956). 3 Schwartz, S., Stöckert, B., Pressure solution in siliciclastic HP-LT metamorphic rocks constraints on the state of stress in deep levels of accretionary complexes. Tectonophysics, 255, 203-209 (1996). 4 Renard, F., Gratier, J.P., Jamtveit, B., Kinetics of crack-sealing, intergranular pres- sure solution, and compaction around active faults. J. Struct. Geol., 22, 1395-1407, (2000). 5 Miller, S. A., BenZion, Y., Burg, J. P.,A three-dimensional fluid-controlled earth
Confinement and diffusion in tokamaks
International Nuclear Information System (INIS)
McWilliams, R.
1988-01-01
The effect of electric field fluctuations on confinement and diffusion in tokamak is discussed. Based on the experimentally determined cross-field turbolent diffusion coefficient, D∼3.7*cT e /eB(δn i /n i ) rms which is also derived by a simple theory, the cross-field diffusion time, tp=a 2 /D, is calculated and compared to experimental results from 51 tokamak for standard Ohmic operation
Diffusion coefficient for anomalous transport
International Nuclear Information System (INIS)
1986-01-01
A report on the progress towards the goal of estimating the diffusion coefficient for anomalous transport is given. The gyrokinetic theory is used to identify different time and length scale inherent to the characteristics of plasmas which exhibit anomalous transport
Peppin, Stephen S. L.
2009-01-01
Diffusion and permeation are discussed within the context of irreversible thermodynamics. A new expression for the generalized Stokes-Einstein equation is obtained which links the permeability to the diffusivity of a two-component solution and contains the poroelastic Biot-Willis coefficient. The theory is illustrated by predicting the concentration and pressure profiles during the filtration of a protein solution. At low concentrations the proteins diffuse independently while at higher concentrations they form a nearly rigid porous glass through which the fluid permeates. The theoretically determined pressure drop is nonlinear in the diffusion regime and linear in the permeation regime, in quantitative agreement with experimental measurements. © 2009 Walter de Gruyter, Berlin, New York.
Gain reduction measurements in transient stimulated Raman scattering
Heeman, R.J.; Godfried, H.P
1995-01-01
Threshold energy measurements of transient rotational stimulated Raman scattering are compared to Raman conversion calculations from semiclassical theories using a simple concept of a gain reduction factor which expresses the reduction of the gain from its steady-state value due to transient
Introduction to percolation theory
Stauffer, Dietrich
1991-01-01
Percolation theory deals with clustering, criticallity, diffusion, fractals, phase transitions and disordered systems. This book covers the basic theory for the graduate, and also professionals dealing with it for the first time
Takeda, M; Hiratsuka, T; Ito, K; Finsterle, S
2011-04-25
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Energy Technology Data Exchange (ETDEWEB)
Takeda, M.; Hiratsuka, T.; Ito, K.; Finsterle, S.
2011-02-01
Diffusion anisotropy is a critical property in predicting migration of substances in sedimentary formations with very low permeability. The diffusion anisotropy of sedimentary rocks has been evaluated mainly from laboratory diffusion experiments, in which the directional diffusivities are separately estimated by through-diffusion experiments using different rock samples, or concurrently by in-diffusion experiments in which only the tracer profile in a rock block is measured. To estimate the diffusion anisotropy from a single rock sample, this study proposes an axisymmetric diffusion test, in which tracer diffuses between a cylindrical rock sample and a surrounding solution reservoir. The tracer diffusion between the sample and reservoir can be monitored from the reservoir tracer concentrations, and the tracer profile could also be obtained after dismantling the sample. Semi-analytical solutions are derived for tracer concentrations in both the reservoir and sample, accounting for an anisotropic diffusion tensor of rank two as well as the dilution effects from sampling and replacement of reservoir solution. The transient and steady-state analyses were examined experimentally and numerically for different experimental configurations, but without the need for tracer profiling. These experimental configurations are tested for in- and out-diffusion experiments using Koetoi and Wakkanai mudstones and Shirahama sandstone, and are scrutinized by a numerical approach to identify favorable conditions for parameter estimation. The analysis reveals the difficulty in estimating diffusion anisotropy; test configurations are proposed for enhanced identifiability of diffusion anisotropy. Moreover, it is demonstrated that the axisymmetric diffusion test is efficient in obtaining the sorption parameter from both steady-state and transient data, and in determining the effective diffusion coefficient if isotropic diffusion is assumed. Moreover, measuring reservoir concentrations in an
Molecular dynamics studies of the transient nucleation regime in the freezing of (RbCl)108 clusters
International Nuclear Information System (INIS)
Huang, Jinfan; Bartell, L.S.Lawrence S.
2004-01-01
The freezing of supercooled liquids in the transient period before a steady state of nucleation is attained has been the subject of a number of theoretical treatments. To our knowledge, no published experimental studies or computer simulations have been carried out in sufficient detail to test definitively the behavior predicted by the various theories. The present molecular dynamics (MD) simulation of 375 nucleation events in small, liquid RbCl clusters, however, yields a reasonably accurate account of the transient region. Despite published criticisms of a 1969 treatment by Kashchiev, it turns out that the behavior observed in the present study agrees with that predicted by Kashchiev. The study also obtains a much more accurate nucleation rate and time lag than reported for MD studies of RbCl previously published in this journal. In addition, it provides estimates of the solid-liquid interfacial free energy and the Granasy thickness of the diffuse solid-liquid interface
International Nuclear Information System (INIS)
Saha, P.
1984-01-01
This chapter reviews the papers on the pressurized water reactor (PWR) and boiling water reactor (BWR) transient analyses given at the American Nuclear Society Topical Meeting on Anticipated and Abnormal Plant Transients in Light Water Reactors. Most of the papers were based on the systems calculations performed using the TRAC-PWR, RELAP5 and RETRAN codes. The status of the nuclear industry in the code applications area is discussed. It is concluded that even though comprehensive computer codes are available for plant transient analysis, there is still a need to exercise engineering judgment, simpler tools and even hand calculations to supplement these codes
Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We study the Josephson effect in chiral p-wave superconductor/diffusive normal metal (DN)/chiral p-wave superconductor (CP/DN/CP) junctions using quasiclassical Green's function formalism with proper boundary conditions. The px+ipy-wave symmetry of superconducting order parameter is chosen which is
Theory of Josephson effect in Sr2RuO4/diffusive normal metal/Sr2RuO4 junctions
Sawa, Y.; Yokoyama, T.; Tanaka, Y.; Golubov, Alexandre Avraamovitch
2007-01-01
We derive a generalized Nazarov’s boundary condition for diffusive normal metal (DN)/chiral p-wave superconductor (CP) interface including the macroscopic phase of the superconductor. The Josephson effect is studied in CP/DN/CP junctions solving the Usadel equations under the above boundary
International Nuclear Information System (INIS)
Gong, Ha Seong
2006-02-01
This book explains electric theory which is divided into four chapters. The first chapter includes electricity and material, electric field, capacitance, magnetic field and electromagnetic force, inductance. The second chapter mentions electronic circuit analysis, electric resistance,heating and power, chemical activity on current and battery with electrolysis. The third chapter deals with an alternating current circuit about the basics of an AC circuit, operating of resistance, inductance and capacitance, series circuit and parallel circuit of PLC, an alternating current circuit, Three-phase Alternating current, two terminal pair network and voltage and current of non-linearity circuit. The last explains transient phenomena of RC series circuit, RL series circuit, transient phenomena of an alternating current circuit and transient phenomena of RLC series circuit.
Moessbauer effect and vacancy diffusion
International Nuclear Information System (INIS)
Gunther, L.
1976-01-01
A dynamical theory of vacancy diffusion which was motivated by the need to explain recent experimental results for the Moessbauer spectra of Fe in Cu, Fe in Au and Fe in Al is presented. Diffusion in these systems is dominated by the vacancy mechanism, which involves strong correlations between successive jumps. The theory developed by Singwi and Sjoelander for the Moessbauer spectrum of a diffusing nucleus is therefore not applicable. The inverse of the normalized Moessbauer spectrum evaluated at zero frequency is introduced as a useful means of comparing experimental with theoretical spectral widths
PWR systems transient analysis
International Nuclear Information System (INIS)
Kennedy, M.F.; Peeler, G.B.; Abramson, P.B.
1985-01-01
Analysis of transients in pressurized water reactor (PWR) systems involves the assessment of the response of the total plant, including primary and secondary coolant systems, steam piping and turbine (possibly including the complete feedwater train), and various control and safety systems. Transient analysis is performed as part of the plant safety analysis to insure the adequacy of the reactor design and operating procedures and to verify the applicable plant emergency guidelines. Event sequences which must be examined are developed by considering possible failures or maloperations of plant components. These vary in severity (and calculational difficulty) from a series of normal operational transients, such as minor load changes, reactor trips, valve and pump malfunctions, up to the double-ended guillotine rupture of a primary reactor coolant system pipe known as a Large Break Loss of Coolant Accident (LBLOCA). The focus of this paper is the analysis of all those transients and accidents except loss of coolant accidents
Transients: The regulator's view
International Nuclear Information System (INIS)
Sheron, B.W.; Speis, T.P.
1984-01-01
This chapter attempts to clarify the basis for the regulator's concerns for transient events. Transients are defined as both anticipated operational occurrences and postulated accidents. Recent operational experience, supplemented by improved probabilistic risk analysis methods, has demonstrated that non-LOCA transient events can be significant contributors to overall risk. Topics considered include lessons learned from events and issues, the regulations governing plant transients, multiple failures, different failure frequencies, operator errors, and public pressure. It is concluded that the formation of Owners Groups and Regulatory Response Groups within the owners groups are positive signs of the industry's concern for safety and responsible dealing with the issues affecting both the US NRC and the industry
Transient waves in visco-elastic media
Ricker, Norman
1977-01-01
Developments in Solid Earth Geophysics 10: Transient Waves in Visco-Elastic Media deals with the propagation of transient elastic disturbances in visco-elastic media. More specifically, it explores the visco-elastic behavior of a medium, whether gaseous, liquid, or solid, for very-small-amplitude disturbances. This volume provides a historical overview of the theory of the propagation of elastic waves in solid bodies, along with seismic prospecting and the nature of seismograms. It also discusses the seismic experiments, the behavior of waves propagated in accordance with the Stokes wave
Transient multivariable sensor evaluation
Energy Technology Data Exchange (ETDEWEB)
Vilim, Richard B.; Heifetz, Alexander
2017-02-21
A method and system for performing transient multivariable sensor evaluation. The method and system includes a computer system for identifying a model form, providing training measurement data, generating a basis vector, monitoring system data from sensor, loading the system data in a non-transient memory, performing an estimation to provide desired data and comparing the system data to the desired data and outputting an alarm for a defective sensor.
International Nuclear Information System (INIS)
Carlen, E.A.
1984-01-01
In Nelson's stochastic mechanics, quantum phenomena are described in terms of diffusions instead of wave functions. These diffusions are formally given by stochastic differential equations with extremely singular coefficients. Using PDE methods, we prove the existence of solutions. This reult provides a rigorous basis for stochastic mechanics. (orig.)
International Nuclear Information System (INIS)
Dungey, J.W.
1984-01-01
The authors want to talk about future work, but first he will reply to Stan Cowley's comment on his naivety in believing in the whole story to 99% confidence in '65, when he knew about Fairfield's results. Does it matter whether you make the right judgment about theories? Yes, it does, particularly for experimentalists perhaps, but also for theorists. The work you do later depends on the judgment you've made on previous work. People have wasted a lot of time developing on insecure or even wrong foundations. Now for future work. One mild surprise the authors have had is that they haven't heard more about diffusion, in two contexts. Gordon Rostoker is yet to come and he may talk about particles getting into the magnetosphere by diffusion. Lots of noise is observed and so diffusion must happen. If time had not been short, the authors were planning to discuss in a handwaving way what sort of diffusion mechanisms one might consider. The other aspect of diffusion he was going to talk about is at the other end of things and is velocity diffusion, which is involved in anomalous resistivity
MASTER-2.0: Multi-purpose analyzer for static and transient effects of reactors
Energy Technology Data Exchange (ETDEWEB)
Cho, Byung Oh; Song, Jae Seung; Joo, Han Gyu [Korea Atomic Energy Research Institute, Taejon (Korea)
1999-01-01
MASTER-2.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the two group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM(Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with AFEN/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. Master-2.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P model can be used selectively. In addition, MASTER-2.0 is designed to cover various PWRs including SMART as well as WH-and CE-type reactors, providing all data required in their design procedures. (author). 39 refs., 12 figs., 4 tabs.
Master-3.0: multi-purpose analyzer for static and transient effects of reactors
International Nuclear Information System (INIS)
Cho, Byung Oh; Joo, Han Gyu; Cho, Jin Young; Song, Jae Seung; Zee, Sung Quun
2002-03-01
MASTER-3.0 (Multi-purpose Analyzer for Static and Transient Effects of Reactors) is a nuclear design code based on the multi-group diffusion theory to calculate the steady-state and transient pressurized water reactor core in a 3-dimensional Cartesian or hexagonal geometry. Its neutronics model solves the space-time dependent neutron diffusion equations with NIM (Nodal Integration Method), NEM (Nodal Expansion Method), AFEN (Analytic Function Expansion Nodal Method)/NEM Hybrid Method, NNEM (Non-linear Nodal Expansion Method) or NANM (Non-linear Analytic Nodal Method) for a Cartesian geometry and with NTPEN (Non-linear Triangle-based Polynomial Expansion Nodal Method), AFEN (Analytic Function Expansion Nodal)/NEM Hybrid Method or NLFM (Non-linear Local Fine-Mesh Method) for a hexagonal one. Coarse mesh rebalancing, Krylov Subspace method, energy group restriction/prolongation method and asymptotic extrapolation method are implemented to accelerate the convergence of iteration process. MASTER-3.0 performs microscopic depletion calculations using microscopic cross sections provided by CASMO-3 or HELIOS and also has the reconstruction capability of pin information by use of MSS-IAS (Method of Successive Smoothing with Improved Analytic Solution). For the thermal-hydraulic calculation, fuel temperature table or COBRA3-C/P or MATRA model can be used selectively. In addition, MASTER-3.0 is designed to cover various PWRs including SMART as well as WH- and CE-type reactors, providing all data required in their design procedures
Basko, D M
2014-02-01
We study the discrete nonlinear Schröinger equation with weak disorder, focusing on the regime when the nonlinearity is, on the one hand, weak enough for the normal modes of the linear problem to remain well resolved but, on the other, strong enough for the dynamics of the normal mode amplitudes to be chaotic for almost all modes. We show that in this regime and in the limit of high temperature, the macroscopic density ρ satisfies the nonlinear diffusion equation with a density-dependent diffusion coefficient, D(ρ) = D(0)ρ(2). An explicit expression for D(0) is obtained in terms of the eigenfunctions and eigenvalues of the linear problem, which is then evaluated numerically. The role of the second conserved quantity (energy) in the transport is also quantitatively discussed.
International Nuclear Information System (INIS)
Goto, Minoru; Takamatsu, Kuniyoshi
2007-03-01
The HTTR temperature coefficients required for the core dynamics calculations had been calculated from the HTTR core calculation results by the diffusion code with which the corrections had been performed using the core calculation results by the Monte-Carlo code MVP. This calculation method for the temperature coefficients was considered to have some issues to be improved. Then, the calculation method was improved to obtain the temperature coefficients in which the corrections by the Monte-Carlo code were not required. Specifically, from the point of view of neutron spectrum calculated by lattice calculations, the lattice model was revised which had been used for the calculations of the temperature coefficients. The HTTR core calculations were performed by the diffusion code with the group constants which were generated by the lattice calculations with the improved lattice model. The core calculations and the lattice calculations were performed by the SRAC code system. The HTTR core dynamics calculation was performed with the temperature coefficient obtained from the core calculation results. In consequence, the core dynamics calculation result showed good agreement with the experimental data and the valid temperature coefficient could be calculated only by the diffusion code without the corrections by Monte-Carlo code. (author)
Quantum diffusion of light interstitials in metals
International Nuclear Information System (INIS)
McMullen, T.; Bergersen, B.
1978-01-01
A quantum theory of diffusion of self-trapped light interstitials in metals is presented. The theory encompasses both coherent and incoherent tunneling, but the approximation used neglects the dependence of the interstitial transfer matrix element on the vibrational state of the crystal. The coherent tunneling contribution is estimated by fitting the incoherent diffusion rate to experimental data for hydrogen and muon diffusion. It is predicted that coherent diffusion should be dominant below approximately 80 K for H in Nb and below approximately 190 K for μ + in Cu. Experimental verifications of these predictions would require high purity strain free samples and low concentrations of the diffusing species. (author)
Transient effects in friction fractal asperity creep
Goedecke, Andreas
2013-01-01
Transient friction effects determine the behavior of a wide class of mechatronic systems. Classic examples are squealing brakes, stiction in robotic arms, or stick-slip in linear drives. To properly design and understand mechatronic systems of this type, good quantitative models of transient friction effects are of primary interest. The theory developed in this book approaches this problem bottom-up, by deriving the behavior of macroscopic friction surfaces from the microscopic surface physics. The model is based on two assumptions: First, rough surfaces are inherently fractal, exhibiting roughness on a wide range of scales. Second, transient friction effects are caused by creep enlargement of the real area of contact between two bodies. This work demonstrates the results of extensive Finite Element analyses of the creep behavior of surface asperities, and proposes a generalized multi-scale area iteration for calculating the time-dependent real contact between two bodies. The toolset is then demonstrated both...
Gas phase thermal diffusion of stable isotopes
International Nuclear Information System (INIS)
Eck, C.F.
1979-01-01
The separation of stable isotopes at Mound Facility is reviewed from a historical perspective. The historical development of thermal diffusion from a laboratory process to a separation facility that handles all the noble gases is described. In addition, elementary thermal diffusion theory and elementary cascade theory are presented along with a brief review of the uses of stable isotopes
Composite interlayer for diffusion bonding
International Nuclear Information System (INIS)
1976-01-01
A ductile interlayer is described, which is useful for transient liquid phase diffusion bonding of metallic articles; the interlayer consisting of a melting point depressant and a plurality of ductile lamellae which are free from carbides, aluminides and borides. The composition and fabrication of the lamellae, and the process for bonding the metallic articles, depend on the composition of the metals to be bonded, and are exemplified in the specification. (U.K.)
Tacina, R. R.
1984-01-01
Non-steady combustion problems can result from engine sources such as accelerations, decelerations, nozzle adjustments, augmentor ignition, and air perturbations into and out of the compressor. Also non-steady combustion can be generated internally from combustion instability or self-induced oscillations. A premixed-prevaporized combustor would be particularly sensitive to flow transients because of its susceptability to flashback-autoignition and blowout. An experimental program, the Transient Flow Combustion Study is in progress to study the effects of air and fuel flow transients on a premixed-prevaporized combustor. Preliminary tests performed at an inlet air temperature of 600 K, a reference velocity of 30 m/s, and a pressure of 700 kPa. The airflow was reduced to 1/3 of its original value in a 40 ms ramp before flashback occurred. Ramping the airflow up has shown that blowout is more sensitive than flashback to flow transients. Blowout occurred with a 25 percent increase in airflow (at a constant fuel-air ratio) in a 20 ms ramp. Combustion resonance was found at some conditions and may be important in determining the effects of flow transients.
Vrentas, James S
2013-01-01
The book first covers the five elements necessary to formulate and solve mass transfer problems, that is, conservation laws and field equations, boundary conditions, constitutive equations, parameters in constitutive equations, and mathematical methods that can be used to solve the partial differential equations commonly encountered in mass transfer problems. Jump balances, Green’s function solution methods, and the free-volume theory for the prediction of self-diffusion coefficients for polymer–solvent systems are among the topics covered. The authors then use those elements to analyze a wide variety of mass transfer problems, including bubble dissolution, polymer sorption and desorption, dispersion, impurity migration in plastic containers, and utilization of polymers in drug delivery. The text offers detailed solutions, along with some theoretical aspects, for numerous processes including viscoelastic diffusion, moving boundary problems, diffusion and reaction, membrane transport, wave behavior, sedime...
International Nuclear Information System (INIS)
Michaud, Georges; Montmerle, Thierry
1977-01-01
This paper is dealing with the origin of the elements in the universe. The scheme of nucleosynthesis is kept to explain the stellar generation of helium, carbon, etc... from the initial hydrogen; but a nonlinear theory is then elaborated to account for the anomalous abundances which were observed. The chemical elements would diffuse throughout the outer layers of a star under the action of the opposite forces of gravitation and radiation. This theory, with completing the nucleosynthesis, would contribute to give a consistent scheme of the elemental origin and abundances [fr
Transient cognitive dynamics, metastability, and decision making.
Directory of Open Access Journals (Sweden)
Mikhail I Rabinovich
2008-05-01
Full Text Available The idea that cognitive activity can be understood using nonlinear dynamics has been intensively discussed at length for the last 15 years. One of the popular points of view is that metastable states play a key role in the execution of cognitive functions. Experimental and modeling studies suggest that most of these functions are the result of transient activity of large-scale brain networks in the presence of noise. Such transients may consist of a sequential switching between different metastable cognitive states. The main problem faced when using dynamical theory to describe transient cognitive processes is the fundamental contradiction between reproducibility and flexibility of transient behavior. In this paper, we propose a theoretical description of transient cognitive dynamics based on the interaction of functionally dependent metastable cognitive states. The mathematical image of such transient activity is a stable heteroclinic channel, i.e., a set of trajectories in the vicinity of a heteroclinic skeleton that consists of saddles and unstable separatrices that connect their surroundings. We suggest a basic mathematical model, a strongly dissipative dynamical system, and formulate the conditions for the robustness and reproducibility of cognitive transients that satisfy the competing requirements for stability and flexibility. Based on this approach, we describe here an effective solution for the problem of sequential decision making, represented as a fixed time game: a player takes sequential actions in a changing noisy environment so as to maximize a cumulative reward. As we predict and verify in computer simulations, noise plays an important role in optimizing the gain.
DASH-FP, Multicomponent Time-Dependent Concentration Diffusion
International Nuclear Information System (INIS)
Apperson, C.E. Jr.; Carruthers, L.M.; Shinn, J.F.; Lee, C.E.
1995-01-01
1 - Description of program or function: The program DASH-FP calculates the transient concentration of multiple diffusing species with radioactive decay. 2 - Method of solution: Uses finite difference and exponential operator techniques
International Nuclear Information System (INIS)
Dawes, W.R. Jr.; Fischer, T.A.; Huang, C.C.C.; Meyer, W.J.; Smith, C.S.; Blanchard, R.A.; Fortier, T.J.
1986-01-01
N-channel power FETs offer significant advantages in power conditioning circuits. Similiarily to all MOS technologies, power FET devices are vulnerable to ionizing radiation, and are particularily susceptible to burn-out in high dose rate irradiations (>1E10 rads(Si)/sec.), which precludes their use in many military environments. This paper will summarize the physical mechanisms responsible for burn-out, and discuss various fabrication techniques designed to improve the transient hardness of power FETs. Power FET devices were fabricated with several of these techniques, and data will be presented which demonstrates that transient hardness levels in excess of 1E12 rads(Si)/sec. are easily achievable
International Nuclear Information System (INIS)
Cooke, C.M.; Frick, G.; Roumie, M.
1993-01-01
Electrical measurements are presented for the construction of a model for the study of transients in the Vivitron. Observation of the transmission of electrical pulses in the porticos clearly shows transmission-line behaviour. Measurements of the vector impedance of the outer porticos show the same transmission-line properties, but also gives a description of the modification from a pure transmission line due to the circular electrodes. The results of this investigation should allow the construction of a computer model which predicts the evolution of the transients in the case of a spark in the Vivitron. (orig.)
An atmospheric electrical method to determine the eddy diffusion ...
Indian Academy of Sciences (India)
Keywords. Atmospheric electrical profiles; electrode layer; ion–aerosol balance equations. ... eddy diffusion theory (K-theory) in our model equations. K-theory is appropriate for near neutral ...... limit of strong turbulent mixing; J. Geophys. Res.
Partial discharge transients and the influence of dielectric polarization
DEFF Research Database (Denmark)
Pedersen, A.; Crichton, George C; McAllister, Iain Wilson
1996-01-01
Based on a field-theoretical approach, a physically valid theory of partial discharge transients has been developed. The theory is based upon the concept of the charge induced upon the detecting electrode by the partial discharge. This induced charge is shown to be composed of a component...
Transient cavitation in pipelines
Kranenburg, C.
1974-01-01
The aim of the present study is to set up a one-dimensional mathematical model, which describes the transient flow in pipelines, taking into account the influence of cavitation and free gas. The flow will be conceived of as a three-phase flow of the liquid, its vapour and non-condensible gas. The
Pink, David A.; Peyronel, Fernanda; Quinn, Bonnie; Singh, Pratham; Marangoni, Alejandro G.
2015-09-01
Understanding how solid fats structures come about in edible oils and quantifying their structures is of fundamental importance in developing edible oils with pre-selected characteristics. We considered the great range of fractal dimensions, from 1.91 to 2.90, reported from rheological measurements. We point out that, if the structures arise via DLA/RLA or DLCA/RLCA, as has been established using ultra small angle x-ray scattering (USAXS), we would expect fractal dimensions in the range ~1.7 to 2.1, and ~2.5 or ~3.0. We present new data for commercial fats and show that the fractal dimensions deduced lie outside these values. We have developed a model in which competition between two processes can lead to the range of fractal dimensions observed. The two processes are (i) the rate at which the solid fat particles are created as the temperature is decreased, and (ii) the rate at which these particles diffuse, thereby meeting and forming aggregates. We assumed that aggregation can take place essentially isotropically and we identified two characteristic times: a time characterizing the rate of creation of solid fats, {τ\\text{create}}(T)\\equiv 1/{{R}S}(T) , where {{R}S}(T) is the rate of solid condensation (cm3 s-1), and the diffusion time of solid fats, {τ\\text{diff}}≤ft(T,{{c}S}\\right)= /6{D}≤ft(T,{{c}S}\\right) , where {D}≤ft(T,{{c}S}\\right) is their diffusion coefficient and is the typical average distance that fats must move in order to aggregate. The intent of this model is to show that a simple process can lead to a wide range of fractal dimensions. We showed that in the limit of very fast solid creation, {τ\\text{create}}\\ll {τ\\text{diff}} the fractal dimension is predicted to be that of DLCA, ~1.7, relaxing to that of RLCA, 2.0-2.1, and that in the limit of very slow solid creation, {τ\\text{create}}\\gg {τ\\text{diff}} , the fractal dimension is predicted to be that obtained via DLA, ~2.5, relaxing to that of RLA, 3.0. We predict that
Sun, Qilin
2017-04-01
High resolution transient/3D imaging technology is of high interest in both scientific research and commercial application. Nowadays, all of the transient imaging methods suffer from low resolution or time consuming mechanical scanning. We proposed a new method based on TCSPC and Compressive Sensing to achieve a high resolution transient imaging with a several seconds capturing process. Picosecond laser sends a serious of equal interval pulse while synchronized SPAD camera\\'s detecting gate window has a precise phase delay at each cycle. After capturing enough points, we are able to make up a whole signal. By inserting a DMD device into the system, we are able to modulate all the frames of data using binary random patterns to reconstruct a super resolution transient/3D image later. Because the low fill factor of SPAD sensor will make a compressive sensing scenario ill-conditioned, We designed and fabricated a diffractive microlens array. We proposed a new CS reconstruction algorithm which is able to denoise at the same time for the measurements suffering from Poisson noise. Instead of a single SPAD senor, we chose a SPAD array because it can drastically reduce the requirement for the number of measurements and its reconstruction time. Further more, it not easy to reconstruct a high resolution image with only one single sensor while for an array, it just needs to reconstruct small patches and a few measurements. In this thesis, we evaluated the reconstruction methods using both clean measurements and the version corrupted by Poisson noise. The results show how the integration over the layers influence the image quality and our algorithm works well while the measurements suffer from non-trival Poisson noise. It\\'s a breakthrough in the areas of both transient imaging and compressive sensing.
Fractional Diffusion Equations and Anomalous Diffusion
Evangelista, Luiz Roberto; Kaminski Lenzi, Ervin
2018-01-01
Preface; 1. Mathematical preliminaries; 2. A survey of the fractional calculus; 3. From normal to anomalous diffusion; 4. Fractional diffusion equations: elementary applications; 5. Fractional diffusion equations: surface effects; 6. Fractional nonlinear diffusion equation; 7. Anomalous diffusion: anisotropic case; 8. Fractional Schrödinger equations; 9. Anomalous diffusion and impedance spectroscopy; 10. The Poisson–Nernst–Planck anomalous (PNPA) models; References; Index.
Directory of Open Access Journals (Sweden)
R.T. DeHoff
2002-09-01
Full Text Available The phenomenological formalism, which yields Fick's Laws for diffusion in single phase multicomponent systems, is widely accepted as the basis for the mathematical description of diffusion. This paper focuses on problems associated with this formalism. This mode of description of the process is cumbersome, defining as it does matrices of interdiffusion coefficients (the central material properties that require a large experimental investment for their evaluation in three component systems, and, indeed cannot be evaluated for systems with more than three components. It is also argued that the physical meaning of the numerical values of these properties with respect to the atom motions in the system remains unknown. The attempt to understand the physical content of the diffusion coefficients in the phenomenological formalism has been the central fundamental problem in the theory of diffusion in crystalline alloys. The observation by Kirkendall that the crystal lattice moves during diffusion led Darken to develop the concept of intrinsic diffusion, i.e., atom motion relative to the crystal lattice. Darken and his successors sought to relate the diffusion coefficients computed for intrinsic fluxes to those obtained from the motion of radioactive tracers in chemically homogeneous samples which directly report the jump frequencies of the atoms as a function of composition and temperature. This theoretical connection between tracer, intrinsic and interdiffusion behavior would provide the basis for understanding the physical content of interdiffusion coefficients. Definitive tests of the resulting theoretical connection have been carried out for a number of binary systems for which all three kinds of observations are available. In a number of systems predictions of intrinsic coefficients from tracer data do not agree with measured values although predictions of interdiffusion coefficients appear to give reasonable agreement. Thus, the complete
Energy Technology Data Exchange (ETDEWEB)
Tikhomirov, Victor V. [Belarusian State University, Institute for Nuclear Problems, Minsk (Belarus)
2017-07-15
A refined equation for channeling particle diffusion in transverse energy taking into consideration large-angle scattering by nuclei is suggested. This equation is reduced to the Sturm-Liouville problem, allowing one to reveal both the origin and the limitations of the dechanneling length notion. The values of the latter are evaluated for both positively and negatively charged particles of various energies. New features of the dechanneling dynamics of positively charged particles are also revealed. First, it is demonstrated that the dechanneling length notion is completely inapplicable for their nuclear dechanneling process. Second, the effective electron dechanneling length of positively charged particle varies more than twice converging to a constant asymptotic value only at the depth exceeding the latter. (orig.)
Tracer diffusion in ternary alloys
International Nuclear Information System (INIS)
Tahir-Kheli, R.A.
1985-07-01
An intuitive extension of the theory for diffusion in dynamic binary alloys given in the preceding paper is presented. This theory has also received an independent derivation, based on more formal procedures, by Holdsworth and Elliott. We present Monte Carlo estimates for diffusion correlation factors, fsup(A), fsup(B), and fsup(C) and compare them with the theory. The agreement between the theoretical results and the Monte Carlo estimates for the correlation factors of the slow particles, i.e., fsup(C) and fsup(B), is found to be generally good. In contrast, for the correlation factor, fsup(A), referring to the diffusion coefficient of fast particles in the system, the theoretical results are found to be systematically lower by a small but resolvable margin. It is suggested that this is occasioned by the neglect of spatial constraints on the scattering of coupled tracer-background particle field pairs. (author)
Crowding and hopping in a protein’s diffusive transport on DNA
International Nuclear Information System (INIS)
Koslover, Elena F; Spakowitz, Andrew J; Díaz de la Rosa, Mario
2017-01-01
Diffusion is a ubiquitous phenomenon that impacts virtually all processes that involve random fluctuations, and as such, the foundational work of Smoluchowski has proven to be instrumental in addressing innumerable problems. Here, we focus on a critical biological problem that relies on diffusive transport and is analyzed using a probabilistic treatment originally developed by Smoluchowski. The search of a DNA binding protein for its specific target site is believed to rely on non-specific binding to DNA with transient hops along the chain. In this work, we address the impact of protein crowding along the DNA on the transport of a DNA-binding protein. The crowders dramatically alter the dynamics of the protein while bound to the DNA, resulting in single-file transport that is subdiffusive in nature. However, transient unbinding and hopping results in a long-time behavior (shown to be superdiffusive) that is qualitatively unaffected by the crowding on the DNA. Thus, hopping along the chain mitigates the role that protein crowding has in restricting the translocation dynamics along the chain. The superdiffusion coefficient is influenced by the quantitative values of the effective binding rate, which is influenced by protein crowding. We show that vacancy fraction and superdiffusion coefficient exhibits a non-monotonic relationship under many circumstances. We leverage analytical theory and dynamic Monte Carlo simulations to address this problem. With several additional contributions, the core of our modeling work adopts a reaction-diffusion framework that is based on Smoluchowski’s original work. (paper)
Directory of Open Access Journals (Sweden)
Mahesh M Choudhary
2015-01-01
Full Text Available We report a case of transient osteoporosis of the hip (TOH in a 50-year-old man including the clinical presentation, diagnostic studies, management, and clinical progress. TOH is a rare self-limiting condition that typically affects middle-aged men or, less frequently, women in the third trimester of pregnancy. Affected individuals present clinically with acute hip pain, limping gait, and limited ranges of hip motion. TOH may begin spontaneously or after a minor trauma. Radiographs are typically unremarkable but magnetic resonance (MR imaging studies yield findings consistent with bone marrow edema. TOH is referred to as regional migratory osteoporosis (RMO if it travels to other joints or the contralateral hip. TOH often resembles osteonecrosis but the two conditions must be differentiated due to different prognoses and management approaches. The term TOH is often used interchangeably and synonymously with transient bone marrow edema (TBME.
International Nuclear Information System (INIS)
Pautz, A.; Tyobeka, B.; Ivanov, K.
2009-01-01
In new reactor designs that are still under review such as the Pebble Bed Modular Reactor (PBMR), not much experimental data exists to benchmark newly developed computer codes against. Such a situation requires that nuclear engineers and designers of this novel reactor design must resort to the validation of a newly developed code through a code-to-code benchmarking exercise because there are validated codes that are currently in use to analyze this reactor design, albeit very few of them. There are numerous HTR core physics benchmarks that are currently being pursued by different organizations, for different purposes. One such benchmark exercise is the PBMR-400MW OECD/NEA coupled neutronics/thermal hydraulics transient benchmark. In this paper, a newly developed coupled neutronics thermal hydraulics code system, DORT-TD/THERMIX with both transport and diffusion theory options, is used to simulate both the steady-state as well as several transient scenarios in this benchmark problem. (orig.)
Stability of Ignition Transients
V.E. Zarko
1991-01-01
The problem of ignition stability arises in the case of the action of intense external heat stimuli when, resulting from the cut-off of solid substance heating, momentary ignition is followed by extinction. Physical pattern of solid propellant ignition is considered and ignition criteria available in the literature are discussed. It is shown that the above mentioned problem amounts to transient burning at a given arbitrary temperature distribution in the condensed phase. A brief survey...
Transient FDTD simulation validation
Jauregui Tellería, Ricardo; Riu Costa, Pere Joan; Silva Martínez, Fernando
2010-01-01
In computational electromagnetic simulations, most validation methods have been developed until now to be used in the frequency domain. However, the EMC analysis of the systems in the frequency domain many times is not enough to evaluate the immunity of current communication devices. Based on several studies, in this paper we propose an alternative method of validation of the transients in time domain allowing a rapid and objective quantification of the simulations results.
Wen, Hongwei; Liu, Yue; Wang, Shengpei; Zhang, Jishui; Peng, Yun; He, Huiguang
2017-03-01
Tourette syndrome (TS) is a childhood-onset neurobehavioral disorder. At present, the topological disruptions of the whole brain white matter (WM) structural networks remain poorly understood in TS children. Considering the unique position of the topologically central role of densely interconnected brain hubs, namely the rich club regions, therefore, we aimed to investigate whether the rich club regions and their related connections would be particularly vulnerable in early TS children. In our study, we used diffusion tractography and graph theoretical analyses to explore the rich club structures in 44 TS children and 48 healthy children. The structural networks of TS children exhibited significantly increased normalized rich club coefficient, suggesting that TS is characterized by increased structural integrity of this centrally embedded rich club backbone, potentially resulting in increased global communication capacity. In addition, TS children showed a reorganization of rich club regions, as well as significantly increased density and decreased number in feeder connections. Furthermore, the increased rich club coefficients and feeder connections density of TS children were significantly positively correlated to tic severity, indicating that TS may be characterized by a selective alteration of the structural connectivity of the rich club regions, tending to have higher bridging with non-rich club regions, which may increase the integration among tic-related brain circuits with more excitability but less inhibition for information exchanges between highly centered brain regions and peripheral areas. In all, our results suggest the disrupted rich club organization in early TS children and provide structural insights into the brain networks.
MHD aspects of coronal transients
International Nuclear Information System (INIS)
Anzer, U.
1979-10-01
If one defines coronal transients as events which occur in the solar corona on rapid time scales (< approx. several hours) then one would have to include a large variety of solar phenomena: flares, sprays, erupting prominences, X-ray transients, white light transients, etc. Here we shall focus our attention on the latter two phenomena. (orig.) 891 WL/orig. 892 RDG
DIFFUSION MEASUREMENTS DURING PERVAPORATION THROUGH A ZEOLITE MEMBRANE
An isotopic-transient technique was used to directly measure diffusion times of H2O, methanol, ethanol, 2-propanol, and acetone in pure and binary mixture feeds transporting through a zeolite membrane under steady-state pervaporation conditions. Diffusivities can be determ...
Electrolyte diffusion in compacted montmorillonite engineered barriers
International Nuclear Information System (INIS)
Jahnke, F.M.; Radke, C.J.
1985-09-01
The bentonite-based engineered barrier or packing is a proposed component of several designs conceived to dispose of high-level nuclear waste in geologic repositories. Once radionuclides escape the waste package, they must first diffuse through the highly impermeable clay-rich barrier before they reach the host repository. To determine the effectiveness of the packing as a sorption barrier in the transient release period and as a mass-transfer barrier in the steady release period over the geologic time scales involved in nuclear waste disposal, a fundamental understanding of the diffusion of electrolytes in compacted clays is required. We present, and compare with laboratory data, a model quantifying the diffusion rates of cationic cesium and uncharged tritium in compacted montmorillonite clay. Neutral tritium characterizes the geometry (i.e., tortuosity) of the particulate gel. After accounting for cation exchange, we find that surface diffusion is the dominant mechanism of cation transport, with an approximate surface diffusion coefficient of 2 x 10 -6 cm 2 /s for cesium. This value increases slightly with increasing background ionic strength. The implications of this work for the packing as a migration barrier are twofold. During the transient release period, K/sub d/ values are of little importance in retarding ion migration. This is because sorption also gives rise to a surface diffusion path, and it is surface diffusion which controls the diffusion rate of highly sorbing cations in compacted montmorillonite. During the steady release period, the presence of surface diffusion leads to a flux through the packing which is greatly enhanced. In either case, if surface diffusion is neglected, the appropriate diffusion coefficient of ions in compacted packing will be in considerable error relative to current design recommendations. 11 refs., 4 figs., 1 tab
Directory of Open Access Journals (Sweden)
Prashant SINGH
2011-03-01
Full Text Available This paper presents theoretical analysis of a new approach for development of surface acoustic wave (SAW sensor array based odor recognition system. The construction of sensor array employs a single polymer interface for selective sorption of odorant chemicals in vapor phase. The individual sensors are however coated with different thicknesses. The idea of sensor coating thickness variation is for terminating solvation and diffusion kinetics of vapors into polymer up to different stages of equilibration on different sensors. This is expected to generate diversity in information content of the sensors transient. The analysis is based on wavelet decomposition of transient signals. The single sensor transients have been used earlier for generating odor identity signatures based on wavelet approximation coefficients. In the present work, however, we exploit variability in diffusion kinetics due to polymer thicknesses for making odor signatures. This is done by fusion of the wavelet coefficients from different sensors in the array, and then applying the principal component analysis. We find that the present approach substantially enhances the vapor class separability in feature space. The validation is done by generating synthetic sensor array data based on well-established SAW sensor theory.
Evaluation of empirical atmospheric diffusion data
International Nuclear Information System (INIS)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for groundlevel sources
Evaluation of empirical atmospheric diffusion data
Energy Technology Data Exchange (ETDEWEB)
Horst, T.W.; Doran, J.C.; Nickola, P.W.
1979-10-01
A study has been made of atmospheric diffusion over level, homogeneous terrain of contaminants released from non-buoyant point sources up to 100 m in height. Current theories of diffusion are compared to empirical diffusion data, and specific dispersion estimation techniques are recommended which can be implemented with the on-site meteorological instrumentation required by the Nuclear Regulatory Commission. A comparison of both the recommended diffusion model and the NRC diffusion model with the empirical data demonstrates that the predictions of the recommended model have both smaller scatter and less bias, particularly for ground-level sources.
Possible effects of oxidation on the transient release of fission gas from UO2
International Nuclear Information System (INIS)
Stoner, H.C.; Matthews, J.R.; Wood, M.H.
1981-01-01
The effect of varying the fuel composition from UO 2 to UOsub(2.3), on the transient behaviour of fission gas is simulated on the assumption that surface diffusion behaves in a similar manner to volume diffusion. The results may help in the understanding of fuel behaviour after pin failure in accident conditions in thermal reactor systems. (author)
International Nuclear Information System (INIS)
Anderson, R.C.
1976-01-01
A method is described for joining beryllium to beryllium by diffusion bonding. At least one surface portion of at least two beryllium pieces is coated with nickel. A coated surface portion is positioned in a contiguous relationship with another surface portion and subjected to an environment having an atmosphere at a pressure lower than ambient pressure. A force is applied on the beryllium pieces for causing the contiguous surface portions to abut against each other. The contiguous surface portions are heated to a maximum temperature less than the melting temperature of the beryllium, and the applied force is decreased while increasing the temperature after attaining a temperature substantially above room temperature. A portion of the applied force is maintained at a temperature corresponding to about maximum temperature for a duration sufficient to effect the diffusion bond between the contiguous surface portions
International Nuclear Information System (INIS)
Lalis, A.; Rouviere, R.; Simon, G.
1976-01-01
A multipassage diffuser having 2p passages comprises a leak-tight cylindrical enclosure closed by a top cover and a bottom end-wall, parallel porous tubes which are rigidly assembled in sectors between tube plates and through which the gas mixture flows, the tube sectors being disposed at uniform intervals on the periphery of the enclosure. The top tube plates are rigidly fixed to an annular header having the shape of a half-torus and adapted to communicate with the tubes of the corresponding sector. Each passage is constituted by a plurality of juxtaposed sectors in which the mixture circulates in the same direction, the header being divided into p portions limited by radial partition-walls and each constituting two adjacent passages. The diffuser is provided beneath the bottom end-wall with p-1 leak-tight chambers each adapted to open into two different portions of the header, and with two collector-chambers each fitted with a nozzle for introducing the gas mixture and discharging the fraction of the undiffused mixture. By means of a central orifice formed in the bottom end-wall the enclosure communicates with a shaft for discharging the diffused fraction of the gas mixture
International Nuclear Information System (INIS)
Zirin, H.; Tanaka, K.
1981-01-01
We present data on magnetic transients (mgtr's) observed in flares on 1980 July 1 and 5 with Big Bear videomagnetograph (VMG). The 1980 July 1 event was a white light flare in which a strong bipolar mgtr was observed, and a definite change in the sunspots occurred at the time of the flare. In the 1980 July 5 flare, a mgtr was observed in only one polarity, and, although no sunspot changes occurred simultaneous with the flare, major spot changes occurred in a period of hours
Familial Transient Global Amnesia
Directory of Open Access Journals (Sweden)
R.Rhys Davies
2012-12-01
Full Text Available Following an episode of typical transient global amnesia (TGA, a female patient reported similar clinical attacks in 2 maternal aunts. Prior reports of familial TGA are few, and no previous account of affected relatives more distant than siblings or parents was discovered in a literature survey. The aetiology of familial TGA is unknown. A pathophysiological mechanism akin to that in migraine attacks, comorbidity reported in a number of the examples of familial TGA, is one possibility. The study of familial TGA cases might facilitate the understanding of TGA aetiology.
A transient model to the thermal detonation
International Nuclear Information System (INIS)
Karachalios, K.
1987-04-01
The model calculates the escalation dynamics and the long time behavior of thermal detonation waves depending on the initial and boundary conditions (data of the premixture, ignition at a solid wall or at an open end, etc.). Especially, for a given mixture and a certain fragmentation behavior more than one stable steady-state cases resulted, depending on the applied ignition energy. Investigations showed a very good consistency between the transient model and a steady-state model which is based on the same physical description and includes an additional stability criterion. Also the influence of effects such as e.g. non-homogeneous coolant heating, spherical instead of plane wave propagation and inhomogeneities of the premixture on the development of the wave were investigated. Comparison calculations with large scale experiments showed that they can be well explained by means of the thermal detonation theory, especially considering the transient phase of the wave development. (orig./HP) [de
Institute of Scientific and Technical Information of China (English)
张寅平; 梁新刚; 江忆; 狄洪发; 宁志军
2000-01-01
Degree of mixing of composite material is defined and the condition of using the effective thermal diffusivity for calculating the transient thermal performance of composite material is studied. The analytical result shows that for a prescribed precision of temperature, there is a condition under which the transient temperature distribution in composite material can be calculated by using the effective thermal diffusivity. As illustration, for the composite material whose temperatures of both ends are constant, the condition is presented and the factors affecting the relative error of calculated temperature of composite materials by using effective thermal diffusivity are discussed.
Spin diffusion in disordered organic semiconductors
Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz
2015-12-01
An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.
Control of operational transients in power reactors - Methodology
International Nuclear Information System (INIS)
Vukovic, D.
1983-01-01
By introducing the nuclear power stations in the electric power system, questions of their possibilities to satisfy system's demand arise. Control of operational transients (temperature and Xe 135 ) in power reactors by determining the optimal control rod strategy is given. Ti optimize the Xe 135 transients, the Pantryagin theorem of optimal processes is applied. For solving three dimensional, two-group diffusion equations the heterogeneous Feinberg-Galanin method with axial flux harmonics is adopted. An application of this formalism to three-dimensional, finite cylindrical pressurised water reactor radially reflected is presented. (author)
Innovation and creativity : Beyond diffusion
DEFF Research Database (Denmark)
Michelsen, Anders Ib
2009-01-01
of postwar systems theory and introduce Castoriadis' philosophy as an interesting option in this regard. It proceeds in four parts: (a) First, it debates the limits of the commonplace metaphor of diffusion and adoption in today's debate on innovation. (b) Second, it will present aspects of Castoriadis...
Diffusion of student business incubators
DEFF Research Database (Denmark)
Hjortsø, Carsten Nico Portefée; Honig, Benson; Riis, Nina Louise Fynbo
education. Applying neo-institutional theory, we examine the development of student incubation activities in the field of general state-funded Danish universities. We review institutional pressures from the political sphere that led to the diffusion of student incubation, introducing a three-phase process...
Measurand transient signal suppressor
Bozeman, Richard J., Jr. (Inventor)
1994-01-01
A transient signal suppressor for use in a controls system which is adapted to respond to a change in a physical parameter whenever it crosses a predetermined threshold value in a selected direction of increasing or decreasing values with respect to the threshold value and is sustained for a selected discrete time interval is presented. The suppressor includes a sensor transducer for sensing the physical parameter and generating an electrical input signal whenever the sensed physical parameter crosses the threshold level in the selected direction. A manually operated switch is provided for adapting the suppressor to produce an output drive signal whenever the physical parameter crosses the threshold value in the selected direction of increasing or decreasing values. A time delay circuit is selectively adjustable for suppressing the transducer input signal for a preselected one of a plurality of available discrete suppression time and producing an output signal only if the input signal is sustained for a time greater than the selected suppression time. An electronic gate is coupled to receive the transducer input signal and the timer output signal and produce an output drive signal for energizing a control relay whenever the transducer input is a non-transient signal which is sustained beyond the selected time interval.
Transient regional osteoporosis
Directory of Open Access Journals (Sweden)
F. Trotta
2011-09-01
Full Text Available Transient osteoporosis of the hip and regional migratory osteoporosis are uncommon and probably underdiagnosed bone diseases characterized by pain and functional limitation mainly affecting weight-bearing joints of the lower limbs. These conditions are usually self-limiting and symptoms tend to abate within a few months without sequelae. Routine laboratory investigations are unremarkable. Middle aged men and women during the last months of pregnancy or in the immediate post-partum period are principally affected. Osteopenia with preservation of articular space and transitory edema of the bone marrow provided by magnetic resonance imaging are common to these two conditions, so they are also known by the term regional transitory osteoporosis. The appearance of bone marrow edema is not specific to regional transitory osteoporosis but can be observed in several diseases, i.e. trauma, reflex sympathetic dystrophy, avascular osteonecrosis, infections, tumors from which it must be differentiated. The etiology of this condition is unknown. Pathogenesis is still debated in particular the relationship with reflex sympathetic dystrophy, with which regional transitory osteoporosis is often identified. The purpose of the present review is to remark on the relationship between transient osteoporosis of the hip and regional migratory osteoporosis with particular attention to the bone marrow edema pattern and relative differential diagnosis.
Viscous conformal gauge theories
DEFF Research Database (Denmark)
Toniato, Arianna; Sannino, Francesco; Rischke, Dirk H.
2017-01-01
We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories.......We present the conformal behavior of the shear viscosity-to-entropy density ratio and the fermion-number diffusion coefficient within the perturbative regime of the conformal window for gauge-fermion theories....
Transient hydrodynamic finite-size effects in simulations under periodic boundary conditions
Asta, Adelchi J.; Levesque, Maximilien; Vuilleumier, Rodolphe; Rotenberg, Benjamin
2017-06-01
We use lattice-Boltzmann and analytical calculations to investigate transient hydrodynamic finite-size effects induced by the use of periodic boundary conditions. These effects are inevitable in simulations at the molecular, mesoscopic, or continuum levels of description. We analyze the transient response to a local perturbation in the fluid and obtain the local velocity correlation function via linear response theory. This approach is validated by comparing the finite-size effects on the steady-state velocity with the known results for the diffusion coefficient. We next investigate the full time dependence of the local velocity autocorrelation function. We find at long times a crossover between the expected t-3 /2 hydrodynamic tail and an oscillatory exponential decay, and study the scaling with the system size of the crossover time, exponential rate and amplitude, and oscillation frequency. We interpret these results from the analytic solution of the compressible Navier-Stokes equation for the slowest modes, which are set by the system size. The present work not only provides a comprehensive analysis of hydrodynamic finite-size effects in bulk fluids, which arise regardless of the level of description and simulation algorithm, but also establishes the lattice-Boltzmann method as a suitable tool to investigate such effects in general.
International Nuclear Information System (INIS)
Wang, Lei; Wang, Xiaodong
2014-01-01
Resulting from the nature of anisotropy of coal media, it is a meaningful work to evaluate pressure transient behavior and flow characteristics within coals. In this article, a complete analytical model called the elliptical flow model is established by combining the theory of elliptical flow in anisotropic media and Fick's laws about the diffusion of coalbed methane. To investigate pressure transient behavior, analytical solutions were first obtained through introducing a series of special functions (Mathieu functions), which are extremely complex and are hard to calculate. Thus, a computer program was developed to establish type curves, on which the effects of the parameters, including anisotropy coefficient, storage coefficient, transfer coefficient and rate constant, were analyzed in detail. Calculative results show that the existence of anisotropy would cause great pressure depletion. To validate new analytical solutions, previous results were used to compare with the new results. It is found that a better agreement between the solutions obtained in this work and the literature was achieved. Finally, a case study is used to explain the effects of the parameters, including rock total compressibility coefficient, coal medium porosity and anisotropic permeability, sorption time constant, Langmuir volume and fluid viscosity, on bottom-hole pressure behavior. It is necessary to coordinate these parameters so as to reduce the pressure depletion. (paper)
International Nuclear Information System (INIS)
Sieniutycz, S.; Berry, R.S.
1992-01-01
For coupled transfer of the energy and mass in a multicomponent system at mechanical equilibrium a simple thermodynamic theory is developed, and the damped wave equations of change are derived. We show that under nonstationary conditions, where relaxation of diffusive fluxes is essential, the evolution of the distributed coupled transfer of the energy and mass follows the path that minimizes the difference between the total entropy generated within the system and that exchanged by the system. The principle is also valid in the limit in which flux relaxation effects are negligible and the heat and mass transfer, whether steady or not, obeys Onsager's generalization of the Fourier and Fick laws. For coupled steady-state processes the principle goes into that of Onsager, yielding his phenomenological equations. In contrast to the local steady-state nature of Onsager's principle the new principle is global, valid for both stationary and transient situations, and requires no frozen fields. For an isolated, distributed system, in which transient relaxation to equilibrium is the only possible process, the principle implies the least possible increase of the system entropy between any two successive configurations
Thermal diffusion and separation of isotopes
International Nuclear Information System (INIS)
Fournier, Andre
1944-01-01
After a review of the various processes used to separate isotopes or at least to obtain mixes with a composition different from the natural proportion, this research addresses the use of thermal diffusion. The author reports a theoretical study of gas thermal diffusion and of the Clusius-Dickel method. In the second part, he reports the enrichment of methane with carbon-13, and of ammoniac with nitrogen-15. The next part reports the experimental study of thermal diffusion of liquids and solutions, and the enrichment of carbon tetra-chloride with chlorine-37. The author then proposes an overview of theories of thermal diffusion in liquid phase (hydrodynamic theory, kinetic theory, theory of caged molecules)
International Nuclear Information System (INIS)
Habib, S.
1994-01-01
We consider a simple quantum system subjected to a classical random force. Under certain conditions it is shown that the noise-averaged Wigner function of the system follows an integro-differential stochastic Liouville equation. In the simple case of polynomial noise-couplings this equation reduces to a generalized Fokker-Planck form. With nonlinear noise injection new ''quantum diffusion'' terms rise that have no counterpart in the classical case. Two special examples that are not of a Fokker-Planck form are discussed: the first with a localized noise source and the other with a spatially modulated noise source
Hereditary Diffuse Gastric Cancer
... Hereditary Diffuse Gastric Cancer Request Permissions Hereditary Diffuse Gastric Cancer Approved by the Cancer.Net Editorial Board , 10/2017 What is hereditary diffuse gastric cancer? Hereditary diffuse gastric cancer (HDGC) is a rare ...
Integrated Temperature Sensors based on Heat Diffusion
Van Vroonhoven, C.P.L.
2015-01-01
This thesis describes the theory, design and implementation of a new class of integrated temperature sensors, based on heat diffusion. In such sensors, temperature is sensed by measuring the time it takes for heat to diffuse through silicon. An on-chip thermal delay can be determined by geometry and