WorldWideScience

Sample records for transgenic rats differentiation

  1. Transgenic rats with green, red, and blue fluorescence: powerful tools for bioimaging, cell trafficking, and differentiation

    Science.gov (United States)

    Murakami, Takashi; Kobayashi, Eiji

    2005-04-01

    The rat represents a perfect animal for broadening medical experiments, because its physiology has been well understood in the history of experimental animals. In addition, its larger body size takes enough advantage for surgical manipulation, compared to the mouse. Many rat models mimicking human diseases, therefore, have been used in a variety of biomedical studies including physiology, pharmacology, transplantation, and immunology. In an effort to create the specifically designed rats for biomedical research and regenerative medicine, we have developed the engineered rat system on the basis of transgenic technology and succeeded in establishing various transgenic rat strains. The transgenic rats with green fluorescent protein (GFP) were generated in the two different strains (Wistar and Lewis), in which GFP is driven under the chicken beta-actin promoter and cytomegalovirus enhancer (CAG promoter). Their GFP expression levels were different in each organ, but the Lewis line expressed GFP strongly and ubiquitously in most of the organs compared with that of Wistar. For red fluorescence, DsRed2 was transduced to the Wistar rats: one line specifically expresses DsRed2 in the liver under the mouse albumin promoter, another is designed for the Cre/LoxP system as the double reporter rat (the initial DsRed2 expression turns on GFP in the presence of Cre recombinase). LacZ-transgenic rats represent blue color, and LacZ is driven the CAG (DA) or ROSA26 promoter (Lewis). Our unique transgenic rats" system highlights the powerful performance for the elucidation of many cellular processes in regenerative medicine, leading to innovative medical treatments.

  2. HIV-1 transgene expression in rats induces differential expression of tumor necrosis factor alpha and zinc transporters in the liver and the lung

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2011-10-01

    Full Text Available Abstract Background Highly effective antiviral treatment can suppress HIV-1 infection, but the chronic effects of HIV-1-related viral proteins, including gp120 and Tat, on organs such as the lungs can be damaging. HIV-1 transgenic rodent models are useful for studying the systemic effects of these proteins independently of viral infection. We have previously shown that HIV-1 transgene expression (and therefore, HIV-1-related protein expression in rats decreases alveolar macrophage zinc levels and phagocytic capacity by unknown mechanisms. We hypothesized that HIV-1 transgene expression induces chronic inflammation and zinc sequestration within the liver and thereby decreases zinc bioavailability in the lung. We examined the expression of the pro-inflammatory cytokine, tumor necrosis factor alpha (TNFα, the zinc storage protein, metallothionein (MT1, and the zinc exporter, ZNT1 in the livers and the lungs of wild type and HIV-1 transgenic rats ± dietary zinc supplementation. In addition, we measured zinc levels, the zinc importing protein ZIP1, and the phagocytic capacity in the alveolar macrophages. Results HIV-1 transgene expression increased the liver-specific expression of TNFα, suggesting a chronic inflammatory response within the liver in response to HIV-1-related protein expression. In parallel, HIV-1 transgene expression significantly increased MT1 and ZNT1 expression in the liver as compared to the lung, a pattern that is consistent with zinc sequestration in the liver as occurs during systemic inflammation. Further, HIV-1 transgene expression decreased intracellular zinc levels and increased expression of ZIP1 in the alveolar macrophages, a pattern consistent with zinc deficiency, and decreased their bacterial phagocytic capacity. Interestingly, dietary zinc supplementation in HIV-1 transgenic rats decreased gene expression of TNFα, MT1, and ZNT1 in the liver while simultaneously increasing their expression in the lung. In parallel

  3. Inducible gene manipulations in brain serotonergic neurons of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Tillmann Weber

    Full Text Available The serotonergic (5-HT system has been implicated in various physiological processes and neuropsychiatric disorders, but in many aspects its role in normal and pathologic brain function is still unclear. One reason for this might be the lack of appropriate animal models which can address the complexity of physiological and pathophysiological 5-HT functioning. In this respect, rats offer many advantages over mice as they have been the animal of choice for sophisticated neurophysiological and behavioral studies. However, only recently technologies for the targeted and tissue specific modification of rat genes - a prerequisite for a detailed study of the 5-HT system - have been successfully developed. Here, we describe a rat transgenic system for inducible gene manipulations in 5-HT neurons. We generated a Cre driver line consisting of a tamoxifen-inducible CreERT2 recombinase under the control of mouse Tph2 regulatory sequences. Tissue-specific serotonergic Cre recombinase expression was detected in four transgenic TPH2-CreERT2 rat founder lines. For functional analysis of Cre-mediated recombination, we used a rat Cre reporter line (CAG-loxP.EGFP, in which EGFP is expressed after Cre-mediated removal of a loxP-flanked lacZ STOP cassette. We show an in-depth characterisation of this rat Cre reporter line and demonstrate its applicability for monitoring Cre-mediated recombination in all major neuronal subpopulations of the rat brain. Upon tamoxifen induction, double transgenic TPH2-CreERT2/CAG-loxP.EGFP rats show selective and efficient EGFP expression in 5-HT neurons. Without tamoxifen administration, EGFP is only expressed in few 5-HT neurons which confirms minimal background recombination. This 5-HT neuron specific CreERT2 line allows Cre-mediated, inducible gene deletion or gene overexpression in transgenic rats which provides new opportunities to decipher the complex functions of the mammalian serotonergic system.

  4. PP005. Vitamin D depletion aggravates hypertension in transgenic rats

    DEFF Research Database (Denmark)

    Bjørkholt Andersen, Louise; Herse, Florian; Christesen, Henrik Thybo

    2013-01-01

    INTRODUCTION: Vitamin D may ameliorate hypertension and kidney disease through genomic and extra-genomic pathways. OBJECTIVE: To investigate the impact of vitamin D in a transgenic rat model of angiotensin II-mediated hypertensive organ failure. METHODS: In 4-week-old age-matched rats...... found between groups in mortality or proteinuria. CONCLUSION: Short-term vitamin D depletion aggravated hypertension and end-organ damage in a rat model of angiotensin II-induced hypertension. Short-term interventions with high-dose vitamin D analogues had no protective effect....

  5. An Efficient Method for Generation of Transgenic Rats Avoiding Embryo Manipulation

    Directory of Open Access Journals (Sweden)

    Bhola Shankar Pradhan

    2016-01-01

    Full Text Available Although rats are preferred over mice as an animal model, transgenic animals are generated predominantly using mouse embryos. There are limitations in the generation of transgenic rat by embryo manipulation. Unlike mouse embryos, most of the rat embryos do not survive after male pronuclear DNA injection which reduces the efficiency of generation of transgenic rat by this method. More importantly, this method requires hundreds of eggs collected by killing several females for insertion of transgene to generate transgenic rat. To this end, we developed a noninvasive and deathless technique for generation of transgenic rats by integrating transgene into the genome of the spermatogonial cells by testicular injection of DNA followed by electroporation. After standardization of this technique using EGFP as a transgene, a transgenic disease model displaying alpha thalassemia was successfully generated using rats. This efficient method will ease the generation of transgenic rats without killing the lives of rats while simultaneously reducing the number of rats used for generation of transgenic animal.

  6. A transgenic rat with ubiquitous expression of firefly luciferase gene

    Science.gov (United States)

    Hakamata, Yoji; Murakami, Takashi; Kobayashi, Eiji

    2006-02-01

    In vivo imaging strategies provide cellular and molecular events in real time that helps us to understand biological processes in living animals. The development of molecular tags such as green fluorescent proteins and luciferase from the firefly Photinus pyralis has lead to a revolution in the visualization of complex biochemical processes. We developed a novel inbred transgenic rat strain containing firefly luciferase based on the transgenic (Tg) technique in rats. This Tg rat expressed the luciferase gene ubiquitously under control of the ROSA26 promoter. Cellular immune responsiveness against the luciferase protein was evaluated using conventional skin grafting and resulted in the long-term acceptance of Tg rat skin on wild-type rats. Strikingly, organ transplant with heart and small bowel demonstrated organ viability and graft survival, suggesting that cells from luciferase-Tg are transplantable to track their fate. Taking advantage of the less immunogenic luciferase, we also tested the role of hepatocyte-infusion in a liver injury model, and bone marrow-derived cells in a skin defect model. Employed in conjunction with modern advances in optical imaging, this luciferase-Tg rat system provides an innovative animal tool and a new means of facilitating biomedical research such as in the case of regeneration medicine.

  7. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1998-10-01

    mutations in the rat genome is suggested on the heels of the recent abilities to clone animals from somatic cells, as was the case for sheep named...34 Dolly " (32). In this approach one would generate the desired mutations by gene targeting in somatic cells that can be grown in culture. One cell clones

  8. A Transgenic Rat for Specifically Inhibiting Adult Neurogenesis.

    Science.gov (United States)

    Snyder, Jason S; Grigereit, Laura; Russo, Alexandra; Seib, Désirée R; Brewer, Michelle; Pickel, James; Cameron, Heather A

    2016-01-01

    The growth of research on adult neurogenesis and the development of new models and tools have greatly advanced our understanding of the function of newborn neurons in recent years. However, there are still significant limitations in the ability to identify the functions of adult neurogenesis in available models. Here we report a transgenic rat (TK rat) that expresses herpes simplex virus thymidine kinase in GFAP+ cells. Upon treating TK rats with the antiviral drug valganciclovir, granule cell neurogenesis can be completely inhibited in adulthood, in both the hippocampus and olfactory bulb. Interestingly, neurogenesis in the glomerular and external plexiform layers of the olfactory bulb was only partially inhibited, suggesting that some adult-born neurons in these regions derive from a distinct precursor population that does not express GFAP. Within the hippocampus, blockade of neurogenesis was rapid and nearly complete within 1 week of starting treatment. Preliminary behavioral analyses indicate that general anxiety levels and patterns of exploration are generally unaffected in neurogenesis-deficient rats. However, neurogenesis-deficient TK rats showed reduced sucrose preference, suggesting deficits in reward-related behaviors. We expect that TK rats will facilitate structural, physiological, and behavioral studies that complement those possible in existing models, broadly enhancing understanding of the function of adult neurogenesis.

  9. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  10. Dual reporter transgene driven by 2.3Col1a1 promoter is active in differentiated osteoblasts

    Science.gov (United States)

    Marijanovic, Inga; Jiang, Xi; Kronenberg, Mark S.; Stover, Mary Louise; Erceg, Ivana; Lichtler, Alexander C.; Rowe, David W.

    2003-01-01

    AIM: As quantitative and spatial analyses of promoter reporter constructs are not easily performed in intact bone, we designed a reporter gene specific to bone, which could be analyzed both visually and quantitatively by using chloramphenicol acetyltransferase (CAT) and a cyan version of green fluorescent protein (GFPcyan), driven by a 2.3-kb fragment of the rat collagen promoter (Col2.3). METHODS: The construct Col2.3CATiresGFPcyan was used for generating transgenic mice. Quantitative measurement of promoter activity was performed by CAT analysis of different tissues derived from transgenic animals; localization was performed by visualized GFP in frozen bone sections. To assess transgene expression during in vitro differentiation, marrow stromal cell and neonatal calvarial osteoblast cultures were analyzed for CAT and GFP activity. RESULTS: In mice, CAT activity was detected in the calvaria, long bone, teeth, and tendon, whereas histology showed that GFP expression was limited to osteoblasts and osteocytes. In cell culture, increased activity of CAT correlated with increased differentiation, and GFP activity was restricted to mineralized nodules. CONCLUSION: The concept of a dual reporter allows a simultaneous visual and quantitative analysis of transgene activity in bone.

  11. Transgenic Expression of Osteoactivin/gpnmb Enhances Bone Formation In Vivo and Osteoprogenitor Differentiation Ex Vivo.

    Science.gov (United States)

    Frara, Nagat; Abdelmagid, Samir M; Sondag, Gregory R; Moussa, Fouad M; Yingling, Vanessa R; Owen, Thomas A; Popoff, Steven N; Barbe, Mary F; Safadi, Fayez F

    2016-01-01

    Initial identification of osteoactivin (OA)/glycoprotein non-melanoma clone B (gpnmb) was demonstrated in an osteopetrotic rat model, where OA expression was increased threefold in mutant bones, compared to normal. OA mRNA and protein expression increase during active bone regeneration post-fracture, and primary rat osteoblasts show increased OA expression during differentiation in vitro. To further examine OA/gpnmb as an osteoinductive agent, we characterized the skeletal phenotype of transgenic mouse overexpressing OA/gpnmb under the CMV-promoter (OA-Tg). Western blot analysis showed increased OA/gpnmb in OA-Tg osteoblasts, compared to wild-type (WT). In OA-Tg mouse femurs versus WT littermates, micro-CT analysis showed increased trabecular bone volume and thickness, and cortical bone thickness; histomorphometry showed increased osteoblast numbers, bone formation and mineral apposition rates in OA-Tg mice; and biomechanical testing showed higher peak moment and stiffness. Given that OA/gpnmb is also over-expressed in osteoclasts in OA-Tg mice, we evaluated bone resorption by ELISA and histomorphometry, and observed decreased serum CTX-1 and RANK-L, and decreased osteoclast numbers in OA-Tg, compared to WT mice, indicating decreased bone remodeling in OA-Tg mice. The proliferation rate of OA-Tg osteoblasts in vitro was higher, compared to WT, as was alkaline phosphatase staining and activity, the latter indicating enhanced differentiation of OA-Tg osteoprogenitors. Quantitative RT-PCR analysis showed increased TGF-β1 and TGF-β receptors I and II expression in OA-Tg osteoblasts, compared to WT. Together, these data suggest that OA overexpression has an osteoinductive effect on bone mass in vivo and stimulates osteoprogenitor differentiation ex vivo. © 2015 Wiley Periodicals, Inc.

  12. Repeat-induced gene silencing of L1 transgenes is correlated with differential promoter methylation.

    Science.gov (United States)

    Rosser, James M; An, Wenfeng

    2010-05-15

    Recent transgenic studies on L1 retrotransposons have afforded exciting insights into L1 biology, and a unique opportunity to model their function and regulation in vivo. Thus far, the majority of the transgenic L1 mouse lines are constructed via pronuclear microinjection, a procedure that typically results in the integration of tandem arrayed transgenes. Transgene arrays are susceptible to repeat-induced gene silencing (RIGS) in both plants and animals. In order to examine the potential impact of RIGS on L1 retrotransposition, we derived a cohort of animals carrying reduced copies of ORFeus transgene at the same genomic locus by Cre-mediated recombination. The copy number reduction of ORFeus transgenes did not decrease the overall retrotransposition activity. Using a sensitive and reproducible quantitative PCR assay, an average frequency of 0.45 insertions per cell was observed for animals carrying the donor transgene at a single copy, representing a 9-fold increase of retrotransposition frequency on a per-copy basis. DNA methylation analyses revealed that the observed retrotransposition activity was correlated with differential CpG methylation at the heterologous promoter: the promoter region was largely methylated in animals with the high-copy array but significantly hypomethylated in animals with the single-copy counterpart. In contrast, the ORF2 region, which represents the body of the ORFeus transgene, and the 3' end of the transgene showed high level of methylation in both high-copy and single-copy samples. The observed methylation patterns were metastable across generations. In summary, our data suggest that tandem arrayed L1 transgenes are subject to RIGS, and transgenes present at a single copy in the genome are thus recommended for modeling L1 in animals. Copyright 2010 Elsevier B.V. All rights reserved.

  13. A Novel Model of Intravital Platelet Imaging Using CD41-ZsGreen1 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Makoto Mizuno

    Full Text Available Platelets play pivotal roles in both hemostasis and thrombosis. Although models of intravital platelet imaging are available for thrombosis studies in mice, few are available for rat studies. The present effort aimed to generate fluorescent platelets in rats and assess their dynamics in a rat model of arterial injury. We generated CD41-ZsGreen1 transgenic rats, in which green fluorescence protein ZsGreen1 was expressed specifically in megakaryocytes and thus platelets. The transgenic rats exhibited normal hematological and biochemical values with the exception of body weight and erythroid parameters, which were slightly lower than those of wild-type rats. Platelet aggregation, induced by 20 μM ADP and 10 μg/ml collagen, and blood clotting times were not significantly different between transgenic and wild-type rats. Saphenous arteries of transgenic rats were injured with 10% FeCl3, and the formation of fluorescent thrombi was evaluated using confocal microscopy. FeCl3 caused time-dependent increases in the mean fluorescence intensity of injured arteries of vehicle-treated rats. Prasugrel (3 mg/kg, p.o., administered 2 h before FeCl3, significantly inhibited fluorescence compared with vehicle-treated rats (4.5 ± 0.4 vs. 14.9 ± 2.4 arbitrary fluorescence units at 30 min, respectively, n = 8, P = 0.0037. These data indicate that CD41-ZsGreen1 transgenic rats represent a useful model for intravital imaging of platelet-mediated thrombus formation and the evaluation of antithrombotic agents.

  14. Lactobacillus GG prevents recurrence of colitis in HLA-B27 transgenic rats after antibiotic treatment

    NARCIS (Netherlands)

    Dieleman, L. A.; Goerres, M. S.; Arends, A.; Sprengers, D.; Torrice, C.; Hoentjen, F.; Grenther, W. B.; Sartor, R. B.

    2003-01-01

    Bacteroides vulgatus induces colitis in gnotobiotic HLA-B27 transgenic (TG) rats while broad spectrum antibiotics prevent and treat colitis in specific pathogen free (SPF) TG rats although disease recurs after treatment ends. Lactobacilli treat human pouchitis and experimental colitis. We

  15. Effects of SCN lesions on circadian blood pressure rhythm in normotensive and transgenic hypertensive rats

    NARCIS (Netherlands)

    Witte, K.; Schnecko, A.; Buijs, R. M.; van der Vliet, J.; Scalbert, E.; Delagrange, P.; Guardiola-Lemaître, B.; Lemmer, B.

    1998-01-01

    Transgenic hypertensive TGR(mREN2)27 (TGR) rats, carrying an additional mouse renin gene, have been found to show inverse circadian blood pressure profiles compared to normotensive Sprague-Dawley rats. In order to evaluate the contributions of the suprachiasmatic nucleus (SCN) and the neurohormone

  16. High blood pressure in transgenic mice carrying the rat angiotensinogen gene.

    Science.gov (United States)

    Kimura, S; Mullins, J J; Bunnemann, B; Metzger, R; Hilgenfeldt, U; Zimmermann, F; Jacob, H; Fuxe, K; Ganten, D; Kaling, M

    1992-01-01

    Transgenic mice were generated by injecting the entire rat angiotensinogen gene into the germline of NMRI mice. The resulting transgenic animals were characterized with respect to hemodynamics, parameters of the renin angiotension system, and expression of the transgene. The transgenic line TGM(rAOGEN)123 developed hypertension with a mean arterial blood pressure of 158 mmHg in males and 132 mmHg in females. In contrast, the transgenic line TGM(rAOGEN)92 was not hypertensive. Rat angiotensinogen was detectable only in plasma of animals of line 123. Total plasma angiotensinogen and plasma angiotensin II concentrations were about three times as high as those of negative control mice. In TGM(rAOGEN)123 the transgene was highly expressed in liver and brain. Transcripts were also detected in heart, kidney and testis. In TGM(rAOGEN)92 the brain was the main expressing organ. In situ hybridization revealed an mRNA distribution in the brain of TGM(rAOGEN)123 similar to the one in rat. In TGM(rAOGEN)92 the expression pattern in the brain was aberrant. These data indicate that overexpression of the angiotensinogen gene in liver and brain leads to the development of hypertension in transgenic mice. The TGM(rAOGEN)123 constitutes a high angiotensin II type of hypertension and may provide a new experimental animal model to study the kinetics and function of the renin angiotensin system. Images PMID:1547785

  17. Transgenic rat model of neurodegeneration caused by mutation in the TDP gene.

    Science.gov (United States)

    Zhou, Hongxia; Huang, Cao; Chen, Han; Wang, Dian; Landel, Carlisle P; Xia, Pedro Yuxing; Bowser, Robert; Liu, Yong-Jian; Xia, Xu Gang

    2010-03-26

    TDP-43 proteinopathies have been observed in a wide range of neurodegenerative diseases. Mutations in the gene encoding TDP-43 (i.e., TDP) have been identified in amyotrophic lateral sclerosis (ALS) and in frontotemporal lobe degeneration associated with motor neuron disease. To study the consequences of TDP mutation in an intact system, we created transgenic rats expressing normal human TDP or a mutant form of human TDP with a M337V substitution. Overexpression of mutant, but not normal, TDP caused widespread neurodegeneration that predominantly affected the motor system. TDP mutation reproduced ALS phenotypes in transgenic rats, as seen by progressive degeneration of motor neurons and denervation atrophy of skeletal muscles. This robust rat model also recapitulated features of TDP-43 proteinopathies including the formation of TDP-43 inclusions, cytoplasmic localization of phosphorylated TDP-43, and fragmentation of TDP-43 protein. TDP transgenic rats will be useful for deciphering the mechanisms underlying TDP-43-related neurodegenerative diseases.

  18. Neural differentiation of adipose-derived stem cells isolated from GFP transgenic mice

    International Nuclear Information System (INIS)

    Fujimura, Juri; Ogawa, Rei; Mizuno, Hiroshi; Fukunaga, Yoshitaka; Suzuki, Hidenori

    2005-01-01

    Taking advantage of homogeneously marked cells from green fluorescent protein (GFP) transgenic mice, we have recently reported that adipose-derived stromal cells (ASCs) could differentiate into mesenchymal lineages in vitro. In this study, we performed neural induction using ASCs from GFP transgenic mice and were able to induce these ASCs into neuronal and glial cell lineages. Most of the neurally induced cells showed bipolar or multipolar appearance morphologically and expressed neuronal markers. Electron microscopy revealed their neuronal morphology. Some cells also showed glial phenotypes, as shown immunocytochemically. The present study clearly shows that ASCs derived from GFP transgenic mice differentiate into neural lineages in vitro, suggesting that these cells might provide an ideal source for further neural stem cell research with possible therapeutic application for neurological disorders

  19. FUS transgenic rats develop the phenotypes of amyotrophic lateral sclerosis and frontotemporal lobar degeneration.

    Directory of Open Access Journals (Sweden)

    Cao Huang

    2011-03-01

    Full Text Available Fused in Sarcoma (FUS proteinopathy is a feature of frontotemporal lobar dementia (FTLD, and mutation of the fus gene segregates with FTLD and amyotrophic lateral sclerosis (ALS. To study the consequences of mutation in the fus gene, we created transgenic rats expressing the human fus gene with or without mutation. Overexpression of a mutant (R521C substitution, but not normal, human FUS induced progressive paralysis resembling ALS. Mutant FUS transgenic rats developed progressive paralysis secondary to degeneration of motor axons and displayed a substantial loss of neurons in the cortex and hippocampus. This neuronal loss was accompanied by ubiquitin aggregation and glial reaction. While transgenic rats that overexpressed the wild-type human FUS were asymptomatic at young ages, they showed a deficit in spatial learning and memory and a significant loss of cortical and hippocampal neurons at advanced ages. These results suggest that mutant FUS is more toxic to neurons than normal FUS and that increased expression of normal FUS is sufficient to induce neuron death. Our FUS transgenic rats reproduced some phenotypes of ALS and FTLD and will provide a useful model for mechanistic studies of FUS-related diseases.

  20. Subchronic feeding study of high-free-lysine transgenic rice in Sprague-Dawley rats.

    Science.gov (United States)

    Yang, Qing-Qing; He, Xiao-Yun; Wu, Hong-Yu; Zhang, Chang-Quan; Zou, Shi-Ying; Lang, Tian-Qi; Sun, Samuel Sai-Ming; Liu, Qiao-Quan

    2017-07-01

    Lysine is considered to be the first essential amino acid in rice. An elite High-Free-Lysine transgenic line HFL1 was previously produced by metabolic engineering to regulate lysine metabolism. In this study, a 90-day toxicology experiment was undertaken to investigate the potential health effect of feeding different doses of HFL1 rice to Sprague-Dawley rats. During the trial, body weight gain, food consumption and food efficiency were recorded, and no adverse effect was observed in rats fed transgenic (T) rice diets compared with non-transgenic (N) or control diets. At both midterm and final assessments, hematological parameters and serum chemistry were measured, and organ weights and histopathology were examined at the end of the trial. There was no diet-related difference in most hematological or serum chemistry parameters or organ weights between rats fed the T diets and those fed the N or control diets. Some parameters were found to differ between T groups and their corresponding N and/or control groups, but no adverse histological effect was observed. Taken together, the data from the current trial demonstrates that high lysine transgenic rice led to no adverse effect in Sprague-Dawley rats given a diet containing up to 70% HFL1 rice in 90 days. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  1. New Wistar Kyoto and spontaneously hypertensive rat transgenic models with ubiquitous expression of green fluorescent protein

    Directory of Open Access Journals (Sweden)

    Ana Isabel Garcia Diaz

    2016-04-01

    Full Text Available The Wistar Kyoto (WKY rat and the spontaneously hypertensive (SHR rat inbred strains are well-established models for human crescentic glomerulonephritis (CRGN and metabolic syndrome, respectively. Novel transgenic (Tg strains add research opportunities and increase scientific value to well-established rat models. We have created two novel Tg strains using Sleeping Beauty transposon germline transgenesis, ubiquitously expressing green fluorescent protein (GFP under the rat elongation factor 1 alpha (EF1a promoter on the WKY and SHR genetic backgrounds. The Sleeping Beauty system functioned with high transgenesis efficiency; 75% of new rats born after embryo microinjections were transgene positive. By ligation-mediated PCR, we located the genome integration sites, confirming no exonic disruption and defining a single or low copy number of the transgenes in the new WKY-GFP and SHR-GFP Tg lines. We report GFP-bright expression in embryos, tissues and organs in both lines and show preliminary in vitro and in vivo imaging data that demonstrate the utility of the new GFP-expressing lines for adoptive transfer, transplantation and fate mapping studies of CRGN, metabolic syndrome and other traits for which these strains have been extensively studied over the past four decades.

  2. The production of fluorescent transgenic trout to study in vitro myogenic cell differentiation

    Directory of Open Access Journals (Sweden)

    Rescan Pierre-Yves

    2010-05-01

    Full Text Available Abstract Background Fish skeletal muscle growth involves the activation of a resident myogenic stem cell population, referred to as satellite cells, that can fuse with pre-existing muscle fibers or among themselves to generate a new fiber. In order to monitor the regulation of myogenic cell differentiation and fusion by various extrinsic factors, we generated transgenic trout (Oncorhynchus mykiss carrying a construct containing the green fluorescent protein reporter gene driven by a fast myosin light chain 2 (MlC2f promoter, and cultivated genetically modified myogenic cells derived from these fish. Results In transgenic trout, green fluorescence appeared in fast muscle fibers as early as the somitogenesis stage and persisted throughout life. Using an in vitro myogenesis system we observed that satellite cells isolated from the myotomal muscle of transgenic trout expressed GFP about 5 days post-plating as they started to fuse. GFP fluorescence persisted subsequently in myosatellite cell-derived myotubes. Using this in vitro myogenesis system, we showed that the rate of muscle cell differentiation was strongly dependent on temperature, one of the most important environmental factors in the muscle growth of poikilotherms. Conclusions We produced MLC2f-gfp transgenic trout that exhibited fluorescence in their fast muscle fibers. The culture of muscle cells extracted from these trout enabled the real-time monitoring of myogenic differentiation. This in vitro myogenesis system could have numerous applications in fish physiology to evaluate the myogenic activity of circulating growth factors, to test interfering RNA and to assess the myogenic potential of fish mesenchymal stem cells. In ecotoxicology, this system could be useful to assess the impact of environmental factors and marine pollutants on fish muscle growth.

  3. Chromosome assignment of Cd36 transgenes in two rat SHR lines by FISH and linkage mapping of transgenic insert in the SHR-TG19 line

    Czech Academy of Sciences Publication Activity Database

    Liška, F.; Levan, G.; Helou, K.; Sladká, M.; Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Křen, Vladimír

    2002-01-01

    Roč. 48, č. 4 (2002), s. 139-144 ISSN 0015-5500 R&D Projects: GA ČR GV204/98/K015 Institutional research plan: CEZ:AV0Z5011922 Keywords : spontaneously hypertensive rat * Cd36 * transgenic lines Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.615, year: 2002

  4. Chronic alcohol ingestion exacerbates skeletal muscle myopathy in HIV-1 transgenic rats

    Directory of Open Access Journals (Sweden)

    Bratina Margaux A

    2011-08-01

    Full Text Available Abstract Background Separately, chronic alcohol ingestion and HIV-1 infection are associated with severe skeletal muscle derangements, including atrophy and wasting, weakness, and fatigue. One prospective cohort study reported that 41% of HIV-infected patients met the criteria for alcoholism, however; few reports exist on the co-morbid effects of these two disease processes on skeletal muscle homeostasis. Thus, we analyzed the atrophic effects of chronic alcohol ingestion in HIV-1 transgenic rats and identified alterations to several catabolic and anabolic factors. Findings Relative plantaris mass, total protein content, and fiber cross-sectional area were reduced in each experimental group compared to healthy, control-fed rats. Alcohol abuse further reduced plantaris fiber area in HIV-1 transgenic rats. Consistent with previous reports, gene levels of myostatin and its receptor activin IIB were not increased in HIV-1 transgenic rat muscle. However, myostatin and activin IIB were induced in healthy and HIV-1 transgenic rats fed alcohol for 12 weeks. Catabolic signaling factors such as TGFβ1, TNFα, and phospho-p38/total-p38 were increased in all groups compared to controls. There was no effect on IL-6, leukemia inhibitory factor (LIF, cardiotrophin-1 (CT-1, or ciliary neurotrophic factor (CNTF in control-fed, transgenic rats. However, the co-morbidity of chronic alcohol abuse and HIV-1-related protein expression decreased expression of the two anabolic factors, CT-1 and CNTF. Conclusions Consistent with previous reports, alcohol abuse accentuated skeletal muscle atrophy in an animal model of HIV/AIDS. While some catabolic pathways known to drive alcoholic or HIV-1-associated myopathies were also elevated in this co-morbid model (e.g., TGFβ1, consistent expression patterns were not apparent. Thus, specific alterations to signaling mechanisms such as the induction of the myostatin/activin IIB system or reductions in growth factor signaling via

  5. HLA-B27 and human β2-microglobulin affect the gut microbiota of transgenic rats.

    Directory of Open Access Journals (Sweden)

    Phoebe Lin

    Full Text Available The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m, compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene.

  6. HLA-B27 and Human β2-Microglobulin Affect the Gut Microbiota of Transgenic Rats

    Science.gov (United States)

    Lin, Phoebe; Bach, Mary; Asquith, Mark; Lee, Aaron Y.; Akileswaran, Lakshmi; Stauffer, Patrick; Davin, Sean; Pan, Yuzhen; Cambronne, Eric D.; Dorris, Martha; Debelius, Justine W.; Lauber, Christian L.; Ackermann, Gail; Baeza, Yoshiki V.; Gill, Tejpal; Knight, Rob; Colbert, Robert A.; Taurog, Joel D.; Van Gelder, Russell N.; Rosenbaum, James T.

    2014-01-01

    The HLA-B27 gene is a major risk factor for clinical diseases including ankylosing spondylitis, acute anterior uveitis, reactive arthritis, and psoriatic arthritis, but its mechanism of risk enhancement is not completely understood. The gut microbiome has recently been shown to influence several HLA-linked diseases. However, the role of HLA-B27 in shaping the gut microbiome has not been previously investigated. In this study, we characterize the differences in the gut microbiota mediated by the presence of the HLA-B27 gene. We identified differences in the cecal microbiota of Lewis rats transgenic for HLA-B27 and human β2-microglobulin (hβ2m), compared with wild-type Lewis rats, using biome representational in situ karyotyping (BRISK) and 16S rRNA gene sequencing. 16S sequencing revealed significant differences between transgenic animals and wild type animals by principal coordinates analysis. Further analysis of the data set revealed an increase in Prevotella spp. and a decrease in Rikenellaceae relative abundance in the transgenic animals compared to the wild type animals. By BRISK analysis, species-specific differences included an increase in Bacteroides vulgatus abundance in HLA-B27/hβ2m and hβ2m compared to wild type rats. The finding that HLA-B27 is associated with altered cecal microbiota has not been shown before and can potentially provide a better understanding of the clinical diseases associated with this gene. PMID:25140823

  7. A three generation reproduction study with Sprague-Dawley rats consuming high-amylose transgenic rice.

    Science.gov (United States)

    Zhou, Xing Hua; Dong, Ying; Zhao, Yan Sheng; Xiao, Xiang; Wang, Yun; He, Yuan Qing; Liu, Qiao Quan

    2014-12-01

    The transgenic rice line (TRS) enriched with amylose and resistant starch (RS) was developed by antisense RNA inhibition of starch-branching enzymes. Cereal starch with high amylose has a great benefit on human health through its resistant starch. In order to evaluate the effect of transgenic rice on rats, the rats were fed diets containing 70% TRS rice flour, its near-isogenic rice flour or the standard diet as the control through three generations. In the present study, clinical performance, reproductive capacity and pathological responses including body weight, food consumption, reproductive data, hematological parameters, serum chemistry components, organ relative weights and histopathology were examined. Some statistically significant differences were observed in rats consuming the high amylose rice diet when compared to rats fed the near-isogenic control rice diet or the conventional (non-rice) standard diet. These differences were generally of small magnitude, appeared to be random in nature, and were within normal limits for the strain of rat used, and were therefore not considered to be biologically meaningful or treatment related. Crown Copyright © 2014. Published by Elsevier Ltd. All rights reserved.

  8. Differential gene expression in ADAM10 and mutant ADAM10 transgenic mice

    Directory of Open Access Journals (Sweden)

    Postina Rolf

    2009-02-01

    Full Text Available Abstract Background In a transgenic mouse model of Alzheimer disease (AD, cleavage of the amyloid precursor protein (APP by the α-secretase ADAM10 prevented amyloid plaque formation, and alleviated cognitive deficits. Furthermore, ADAM10 overexpression increased the cortical synaptogenesis. These results suggest that upregulation of ADAM10 in the brain has beneficial effects on AD pathology. Results To assess the influence of ADAM10 on the gene expression profile in the brain, we performed a microarray analysis using RNA isolated from brains of five months old mice overexpressing either the α-secretase ADAM10, or a dominant-negative mutant (dn of this enzyme. As compared to non-transgenic wild-type mice, in ADAM10 transgenic mice 355 genes, and in dnADAM10 mice 143 genes were found to be differentially expressed. A higher number of genes was differentially regulated in double-transgenic mouse strains additionally expressing the human APP[V717I] mutant. Overexpression of proteolytically active ADAM10 affected several physiological pathways, such as cell communication, nervous system development, neuron projection as well as synaptic transmission. Although ADAM10 has been implicated in Notch and β-catenin signaling, no significant changes in the respective target genes were observed in adult ADAM10 transgenic mice. Real-time RT-PCR confirmed a downregulation of genes coding for the inflammation-associated proteins S100a8 and S100a9 induced by moderate ADAM10 overexpression. Overexpression of the dominant-negative form dnADAM10 led to a significant increase in the expression of the fatty acid-binding protein Fabp7, which also has been found in higher amounts in brains of Down syndrome patients. Conclusion In general, there was only a moderate alteration of gene expression in ADAM10 overexpressing mice. Genes coding for pro-inflammatory or pro-apoptotic proteins were not over-represented among differentially regulated genes. Even a decrease of

  9. Reduction of colitis by prebiotics in HLA-1327 transgenic rats is associated with microflora changes and immunomodulation

    NARCIS (Netherlands)

    Hoentjen, F; Welling, GW; Harmsen, HJM; Zhang, XY; Snart, J; Tannock, GW; Lien, K; Churchill, TA; Lupicki, M; Dieleman, LA

    2005-01-01

    HLA-B27 transgenic rats develop spontaneous colitis under specific pathogen-free conditions (SPF) but germ-free rats remain disease-free, emphasizing a role for intestinal bacteria in the pathogenesis of chronic intestinal inflammation. Prebiotics are dietary substances that affect the host by

  10. Megaesophagus in a line of transgenic rats: a model of achalasia.

    Science.gov (United States)

    Pang, J; Borjeson, T M; Muthupalani, S; Ducore, R M; Carr, C A; Feng, Y; Sullivan, M P; Cristofaro, V; Luo, J; Lindstrom, J M; Fox, J G

    2014-11-01

    Megaesophagus is defined as the abnormal enlargement or dilatation of the esophagus, characterized by a lack of normal contraction of the esophageal walls. This is called achalasia when associated with reduced or no relaxation of the lower esophageal sphincter (LES). To date, there are few naturally occurring models for this disease. A colony of transgenic (Pvrl3-Cre) rats presented with megaesophagus at 3 to 4 months of age; further breeding studies revealed a prevalence of 90% of transgene-positive animals having megaesophagus. Affected rats could be maintained on a total liquid diet long term and were shown to display the classic features of dilated esophagus, closed lower esophageal sphincter, and abnormal contractions on contrast radiography and fluoroscopy. Histologically, the findings of muscle degeneration, inflammation, and a reduced number of myenteric ganglia in the esophagus combined with ultrastructural lesions of muscle fiber disarray and mitochondrial changes in the striated muscle of these animals closely mimic that seen in the human condition. Muscle contractile studies looking at the response of the lower esophageal sphincter and fundus to electrical field stimulation, sodium nitroprusside, and L-nitro-L-arginine methyl ester also demonstrate the similarity between megaesophagus in the transgenic rats and patients with achalasia. No primary cause for megaesophagus was found, but the close parallel to the human form of the disease, as well as ease of care and manipulation of these rats, makes this a suitable model to better understand the etiology of achalasia as well as study new management and treatment options for this incurable condition. © The Author(s) 2014.

  11. DDX4-EGFP transgenic rat model for the study of germline development and spermatogenesis.

    Science.gov (United States)

    Gassei, Kathrin; Sheng, Yi; Fayomi, Adetunji; Mital, Payal; Sukhwani, Meena; Lin, Chih-Cheng; Peters, Karen A; Althouse, Andrew; Valli, Hanna; Orwig, Kyle E

    2017-03-01

    Spermatogonial stem cells (SSC) are essential for spermatogenesis and male fertility. In addition, these adult tissue stem cells can be used as vehicles for germline modification in animal models and may have application for treating male infertility. To facilitate the investigation of SSCs and germ lineage development in rats, we generated a DEAD-box helicase 4 (DDX4) (VASA) promoter-enhanced green fluorescent protein (EGFP) reporter transgenic rat. Quantitative real-time polymerase chain reaction and immunofluorescence confirmed that EGFP was expressed in the germ cells of the ovaries and testes and was absent in somatic cells and tissues. Germ cell transplantation demonstrated that the EGFP-positive germ cell population from DDX4-EGFP rat testes contained SSCs capable of establishing spermatogenesis in experimentally infertile mouse recipient testes. EGFP-positive germ cells could be easily isolated by fluorescence-activated cells sorting, while simultaneously removing testicular somatic cells from DDX4-EGFP rat pup testes. The EGFP-positive fraction provided an optimal cell suspension to establish rat SSC cultures that maintained long-term expression of zinc finger and BTB domain containing 16 (ZBTB16) and spalt-like transcription factor 4 (SALL4), two markers of mouse SSCs that are conserved in rats. The novel DDX4-EGFP germ cell reporter rat described here combined with previously described GCS-EGFP rats, rat SSC culture and gene editing tools will improve the utility of the rat model for studying stem cells and germ lineage development. © The Authors 2017. Published by Oxford University Press on behalf of Society for the Study of Reproduction.

  12. Differential transgene expression in brain cells in vivo and in vitro from AAV-2 vectors with small transcriptional control units

    International Nuclear Information System (INIS)

    Kuegler, S.; Lingor, P.; Schoell, U.; Zolotukhin, S.; Baehr, M.

    2003-01-01

    Adeno-associated- (AAV) based vectors are promising tools for gene therapy applications in several organs, including the brain, but are limited by their small genome size. Two short promoters, the human synapsin 1 gene promoter (hSYN) and the murine cytomegalovirus immediate early promoter (mCMV), were evaluated in bicistronic AAV-2 vectors for their expression profiles in cultured primary brain cells and in the rat brain. Whereas transgene expression from the hSYN promoter was exclusively neuronal, the murine CMV promoter targeted expression mainly to astrocytes in vitro and showed weak transgene expression in vivo in retinal and cortical neurons, but strong expression in thalamic neurons. We propose that neuron specific transgene expression in combination with enhanced transgene capacity will further substantially improve AAV based vector technology

  13. Specific expression of an oxytocin-enhanced cyan fluorescent protein fusion transgene in the rat hypothalamus and posterior pituitary

    Science.gov (United States)

    Katoh, Akiko; Fujihara, Hiroaki; Ohbuchi, Toyoaki; Onaka, Tatsushi; Young, W. Scott; Dayanithi, Govindan; Yamasaki, Yuka; Kawata, Mitsuhiro; Suzuki, Hitoshi; Otsubo, Hiroki; Suzuki, Hideaki; Murphy, David; Ueta, Yoichi

    2010-01-01

    We have generated rats bearing an oxytocin (OXT)-enhanced cyan fluorescent protein (eCFP) fusion transgene designed from a murine construct previously shown to be faithfully expressed in transgenic mice. In situ hybridisation histochemistry revealed that the OXT-eCFP fusion gene was expressed in the supraoptic (SON) and the paraventricular nuclei (PVN) in these rats. The fluorescence emanating from eCFP was observed only in the SON, the PVN, the internal layer of the median eminence (ME) and the posterior pituitary (PP). In in vitro preparations, freshly dissociated cells from the SON and axon terminals showed clear eCFP fluorescence. Immunohistochemistry for OXT and arginine vasopressin (AVP) revealed that the eCFP fluorescence co-localises with OXT-immunofluorescence, but not with AVP-immunofluorescence in the SON and the PVN. Although the expression levels of the OXT-eCFP fusion gene in the SON and the PVN showed a wide range of variation in transgenic rats, eCFP fluorescence was markedly increased in the SON and the PVN, but decreased in the PP after chronic salt loading. The expression of the OXT gene was significantly increased in the SON and the PVN after chronic salt loading in both non-transgenic and transgenic rats. Compared to wild-type animals, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT and AVP levels, suggesting that the fusion gene expression did not disturb any physiological processes. These results suggest that our new transgenic rat is a valuable new tool to identify OXT-producing neurones and their terminals. PMID:20026620

  14. HIV-1 transgene expression in rats causes oxidant stress and alveolar epithelial barrier dysfunction

    Directory of Open Access Journals (Sweden)

    Jacob Barbara A

    2009-02-01

    Full Text Available Abstract Background HIV-infected individuals are at increased risk for acute and chronic airway disease even though there is no evidence that the virus can infect the lung epithelium. Although HIV-related proteins including gp120 and Tat can directly cause oxidant stress and cellular dysfunction, their effects in the lung are unknown. The goal of this study was to determine the effects of HIV-1 transgene expression in rats on alveolar epithelial barrier function. Alveolar epithelial barrier function was assessed by determining lung liquid clearance in vivo and alveolar epithelial monolayer permeability in vitro. Oxidant stress in the alveolar space was determined by measuring the glutathione redox couple by high performance liquid chromatography, and the expression and membrane localization of key tight junction proteins were assessed. Finally, the direct effects of the HIV-related proteins gp120 and Tat on alveolar epithelial barrier formation and tight junction protein expression were determined. Results HIV-1 transgene expression caused oxidant stress within the alveolar space and impaired epithelial barrier function even though there was no evidence of overt inflammation within the airways. The expression and membrane localization of the tight junction proteins zonula occludens-1 and occludin were decreased in alveolar epithelial cells from HIV-1 transgenic rats. Further, treating alveolar epithelial monolayers from wild type rats in vitro with recombinant gp120 or Tat for 24 hours reproduced many of the effects on zonula occludens-1 and occludin expression and membrane localization. Conclusion Taken together, these data indicate that HIV-related proteins cause oxidant stress and alter the expression of critical tight junction proteins in the alveolar epithelium, resulting in barrier dysfunction.

  15. Effect of HIV-1-related protein expression on cardiac and skeletal muscles from transgenic rats

    Directory of Open Access Journals (Sweden)

    Guidot David M

    2008-04-01

    Full Text Available Abstract Background Human immunodeficiency virus type 1 (HIV-1 infection and the consequent acquired immunodeficiency syndrome (AIDS has protean manifestations, including muscle wasting and cardiomyopathy, which contribute to its high morbidity. The pathogenesis of these myopathies remains partially understood, and may include nutritional deficiencies, biochemical abnormalities, inflammation, and other mechanisms due to viral infection and replication. Growing evidence has suggested that HIV-1-related proteins expressed by the host in response to viral infection, including Tat and gp120, may also be involved in the pathophysiology of AIDS, particularly in cells or tissues that are not directly infected with HIV-1. To explore the potentially independent effects of HIV-1-related proteins on heart and skeletal muscles, we used a transgenic rat model that expresses several HIV-1-related proteins (e.g., Tat, gp120, and Nef. Outcome measures included basic heart and skeletal muscle morphology, glutathione metabolism and oxidative stress, and gene expressions of atrogin-1, muscle ring finger protein-1 (MuRF-1 and Transforming Growth Factor-β1 (TGFβ1, three factors associated with muscle catabolism. Results Consistent with HIV-1 associated myopathies in humans, HIV-1 transgenic rats had increased relative heart masses, decreased relative masses of soleus, plantaris and gastrocnemius muscles, and decreased total and myosin heavy chain type-specific plantaris muscle fiber areas. In both tissues, the levels of cystine (Cyss, the oxidized form of the anti-oxidant cysteine (Cys, and Cyss:Cys ratios were significantly elevated, and cardiac tissue from HIV-1 transgenic rats had altered glutathione metabolism, all reflective of significant oxidative stress. In HIV-1 transgenic rat hearts, MuRF-1 gene expression was increased. Further, HIV-1-related protein expression also increased atrogin-1 (~14- and ~3-fold and TGFβ1 (~5-fold and ~3-fold in heart and

  16. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

    Science.gov (United States)

    Persons, Amanda L; Bradaric, Brinda D; Dodiya, Hemraj B; Ohene-Nyako, Michael; Forsyth, Christopher B; Keshavarzian, Ali; Shaikh, Maliha; Napier, T Celeste

    2018-01-01

    The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg) and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1), two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.

  17. Colon dysregulation in methamphetamine self-administering HIV-1 transgenic rats.

    Directory of Open Access Journals (Sweden)

    Amanda L Persons

    Full Text Available The integrity and function of the gut is impaired in HIV-infected individuals, and gut pathogenesis may play a role in several HIV-associated disorders. Methamphetamine is a popular illicit drug abused by HIV-infected individuals. However, the effect of methamphetamine on the gut and its potential to exacerbate HIV-associated gut pathology is not known. To shed light on this scenario, we evaluated colon barrier pathology in a rat model of the human comorbid condition. Intestinal barrier integrity and permeability were assessed in drug-naïve Fischer 344 HIV-1 transgenic (Tg and non-Tg rats, and in Tg and non-Tg rats instrumented with jugular cannulae trained to self-administer methamphetamine or serving as saline-yoked controls. Intestinal permeability was determined by measuring the urine content of orally gavaged sugars. Intestinal barrier integrity was evaluated by immunoblotting or immunofluorescence of colon claudin-1 and zonula occludens-1 (ZO-1, two major tight junction proteins that regulate gut epithelial paracellular permeability. Both non-Tg and Tg rats self-administered moderate amounts of methamphetamine. These amounts were sufficient to increase colon permeability, reduce protein level of claudin-1, and reduce claudin-1 and ZO-1 immunofluorescence in Tg rats relative to non-Tg rats. Methamphetamine decreased tight junction immunofluorescence in non-Tg rats, with a similar, but non-significant trend observed in Tg rats. However, the effect of methamphetamine on tight junction proteins was subthreshold to gut leakiness. These findings reveal that both HIV-1 proteins and methamphetamine alter colon barrier integrity, and indicate that the gut may be a pathogenic site for these insults.

  18. Expression of stabilized β-catenin in differentiated neurons of transgenic mice does not result in tumor formation

    International Nuclear Information System (INIS)

    Kratz, John E; Stearns, Duncan; Huso, David L; Slunt, Hilda H; Price, Donald L; Borchelt, David R; Eberhart, Charles G

    2002-01-01

    Medulloblastomas, embryonal tumors arising in the cerebellum, commonly contain mutations that activate Wnt signaling. To determine whether increased Wnt signaling in the adult CNS is sufficient to induce tumor formation, we created transgenic mice expressing either wild-type or activated β-catenin in the brain. Wild-type and mutant human β-catenin transgenes were expressed under the control of a murine PrP promoter fragment that drives high level postnatal expression in the CNS. Mutant β-catenin was stabilized by a serine to phenylalanine alteration in codon 37. Expression of the mutant transgene resulted in an approximately two-fold increase in β-catenin protein levels in the cortex and cerebellum of adult animals. Immunohistochemical analysis revealed nuclear β-catenin in hippocampal, cortical and cerebellar neurons of transgenic animals but not in non-transgenic controls. Tail kinking was observed in some transgenic animals, but no CNS malformations or tumors were detected. No tumors or morphologic alterations were detected in the brains of transgenic mice expressing stabilized β-catenin, suggesting that postnatal Wnt signaling in differentiated neurons may not be sufficient to induce CNS tumorigenesis

  19. Neuroinflammation and Behavior in HIV-1 Transgenic Rats Exposed to Chronic Adolescent Stress.

    Science.gov (United States)

    Rowson, Sydney A; Harrell, Constance S; Bekhbat, Mandakh; Gangavelli, Apoorva; Wu, Matthew J; Kelly, Sean D; Reddy, Renuka; Neigh, Gretchen N

    2016-01-01

    Highly active antiretroviral therapy (HAART) has improved prognosis for people living with HIV (PLWH) and dramatically reduced the incidence of AIDS. However, even when viral load is controlled, PLWH develop psychiatric and neurological disorders more frequently than those living without HIV. Adolescents with HIV are particularly susceptible to the development of psychiatric illnesses and neurocognitive impairments. While both psychiatric and neurocognitive disorders have been found to be exacerbated by stress, the extent to which chronic stress and HIV-1 viral proteins interact to impact behavior and relevant neuroinflammatory processes is unknown. Determination of the individual contributions of stress and HIV to neuropsychiatric disorders is heavily confounded in humans. In order to isolate the influence of HIV-1 proteins and chronic stress on behavior and neuroinflammation, we employed the HIV-1 transgenic (Tg) rat model, which expresses HIV-1 proteins with a gag and pol deletion, allowing for viral protein expression without viral replication. This Tg line has been characterized as a model of HAART-controlled HIV-1 infection due to the lack of viral replication but continued presence of HIV-1 proteins. We exposed male and female adolescent HIV-1 Tg rats to a mixed-modality chronic stress paradigm consisting of isolation, social defeat and restraint, and assessed behavior, cerebral vascularization, and neuroinflammatory endpoints. Stress, sex, and presence of the HIV-1 transgene impacted weight gain in adolescent rats. Female HIV-1 Tg rats showed decreases in central tendency during the light cycle in the open field regardless of stress exposure. Both male and female HIV-1 Tg rats exhibited decreased investigative behavior in the novel object recognition task, but no memory impairments. Adolescent stress had no effect on the tested behaviors. Microglia in female HIV-1 Tg rats exhibited a hyper-ramified structure, and gene expression of complement factor B was

  20. Relaxin Treatment in an Ang-II-Based Transgenic Preeclamptic-Rat Model.

    Directory of Open Access Journals (Sweden)

    Nadine Haase

    Full Text Available Relaxin is a peptide related to pregnancy that induces nitric oxide-related and gelatinase-related effects, allowing vasodilation and pregnancy-related adjustments permitting parturition to occur. Relaxin controls the hemodynamic and renovascular adaptive changes that occur during pregnancy. Interest has evolved regarding relaxin and a therapeutic principle in preeclampsia and heart failure. Preeclampsia is a pregnancy disorder, featuring hypertension, proteinuria and placental anomalies. We investigated relaxin in an established transgenic rat model of preeclampsia, where the phenotype is induced by angiotensin (Ang-II production in mid pregnancy. We gave recombinant relaxin to preeclamtic rats at day 9 of gestation. Hypertension and proteinuria was not ameliorated after relaxin administration. Intrauterine growth retardation of the fetus was unaltered by relaxin. Heart-rate responses and relaxin levels documented drug effects. In this Ang-II-based model of preeclampsia, we could not show a salubrious effect on preeclampsia.

  1. Genistein in the diet reduces the incidence of poorly differentiated prostatic adenocarcinoma in transgenic mice (TRAMP).

    Science.gov (United States)

    Mentor-Marcel, R; Lamartiniere, C A; Eltoum, I E; Greenberg, N M; Elgavish, A

    2001-09-15

    Latent prostate tumors are commonly found with similar frequency in many countries and ethnic groups. In contrast, aggressive prostate cancer (PC) is significantly less prevalent among Asian men, where the intake of soy products is very high. High consumption of foods containing soy results in high plasma, urine, and prostatic fluid concentrations of phytoestrogens, including genistein. The objective of the present study was to test the hypothesis that dietary genistein might prevent PC progression in a transgenic mouse model of PC (TRAMP). By 28-30 weeks of age, all TRAMP mice in the study had developed prostate tumors, with about half of them displaying well-differentiated prostatic adenocarcinoma (WD, score 4), and the other half divided between moderately differentiated (MD, score 5) and poorly differentiated adenocarcinoma (PD, score 6). Two lines of evidence supported the possibility that prostates with PD may represent a more advanced stage of PC in TRAMP mice: (a) the weight of prostates with PD was two orders of magnitude higher than that of prostates with WD or MD; and (b) expression of androgen receptor transcripts was altered in PD as compared with WD and MD. To test the potential of genistein to prevent the incidence of mice with PD, starting at 5-6 weeks of age, transgenic males were fed a phytoestrogen-free diet (AIN-76A) containing 0, 100, 250, or 500 mg of genistein per kg AIN-76A (25, 10, 17, and 7 mice/group, respectively). Mice were on the diet until they were 28-30 weeks of age. Each mouse was weighed once a week throughout the study. At necropsy, selected organs were weighed and prepared for histopathological evaluation. Serum levels of genistein in mice on diet containing 0, 250, or 500 mg of genistein per kg AIN-76A were 52.4 +/- 32.7, 138.9 +/- 69.6, and 397.3 +/- 104.9 nM, respectively, comparable with those found in Asian men on regular soy diet (276 nM). Using body and organ weights as indicators, dietary genistein had no toxic effect on

  2. Angiotensin II induced inflammation in the kidney and in the heart of double transgenic rats

    Directory of Open Access Journals (Sweden)

    Haller Hermann

    2002-01-01

    Full Text Available Abstract Background We are investigating a double transgenic rat (dTGR model, in which rats transgenic for the human angiotensinogen and renin genes are crossed. These rats develop moderately severe hypertension but die of end-organ cardiac and renal damage by week 7. The heart shows necrosis and fibrosis, whereas the kidneys resemble the hemolytic-uremic syndrome vasculopathy. Surface adhesion molecules (ICAM-1 and VCAM-1 are expressed early on the endothelium, while the corresponding ligands are found on circulating leukocytes. Leukocyte infiltration in the vascular wall accompanies PAI-1, MCP-1, iNOS and Tissue Factor expression. Furthermore we show evidence that Ang II causes the upregulation of NF-kB in our model. Methods We started PDTC-treatment on four weeks old dTGR (200 mg/kg sc and age-matched SD rats.. Blood-pressure- and albuminuria- measurements were monitored during the treatement period (four weeks. The seven weeks old animals were killed, hearts and kidneys were isolated and used for immunohistochemical-and electromobility shift assay analsis. Results Chronic treatment with the antioxidant PDTC decreased blood pressure (162 ± 8 vs. 190 ± 7 mm Hg, p = 0.02. Cardiac hypertrophy index was significantly reduced (4.90 ± 0.1 vs. 5.77 ± 0.1 mg/g, p Conclusion Our data show that inhibition of NF-κB by PDTC markedly reduces inflammation, iNOS expression in the dTGR most likely leading to decreased cytotoxicity, and cell proliferation. Thus, NF-κB activation plays an important role in ANG II-induced end-organ damage.

  3. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Science.gov (United States)

    Abbondanzo, Susan J; Chang, Sulie L

    2014-01-01

    Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg) rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS) to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  4. HIV-1 transgenic rats display alterations in immunophenotype and cellular responses associated with aging.

    Directory of Open Access Journals (Sweden)

    Susan J Abbondanzo

    Full Text Available Advances in anti-retroviral therapy over the last two decades have allowed life expectancy in patients infected with the human immunodeficiency virus to approach that of the general population. The process of aging in mammalian species, including rats, results in immune response changes, alterations in immunological phenotypes, and ultimately increased susceptibility to many infectious diseases. In order to investigate the immunological pathologies associated with chronic HIV-1 disease, particularly in aging individuals, the HIV-1 transgenic (HIV-1Tg rat model was utilized. HIV-1Tg rats were challenged with lipopolysaccharide (LPS to determine immunological alterations during the aging process. LPS is known to cause an imbalance in cytokine and chemokine release, and provides a method to identify changes in immune responses to bacterial infection in an HIV animal model. An immune profile and accompanying cellular consequences as well as changes in inflammatory cytokine and chemokine release related to age and genotype were assessed in HIV-1Tg rats. The percentage of T cells decreased with age, particularly T cytotoxic cells, whereas T helper cells increased with age. Neutrophils and monocytes increased in HIV-1Tg rats during maturation compared to age-matched F344 control rats. Aging HIV-1Tg rats displayed a significant increase in the pro-inflammatory cytokines, IL-6 and TNF-α, along with an increase in the chemokine, KC/GRO, in comparison to age-matched controls. Our data indicate that immunophenotype and immune responses can change during aging in HIV-positive individuals. This information could be important in determining the most beneficial age-dependent therapeutic treatment for HIV patients.

  5. Increased oxytocin-monomeric red fluorescent protein 1 fluorescent intensity with urocortin-like immunoreactivity in the hypothalamo-neurohypophysial system of aged transgenic rats.

    Science.gov (United States)

    Ohno, Shigeo; Hashimoto, Hirofumi; Fujihara, Hiroaki; Fujiki, Nobuhiro; Yoshimura, Mitsuhiro; Maruyama, Takashi; Motojima, Yasuhito; Saito, Reiko; Ueno, Hiromichi; Sonoda, Satomi; Ohno, Motoko; Umezu, Yuichi; Hamamura, Akinori; Saeki, Satoru; Ueta, Yoichi

    2018-03-01

    To visualize oxytocin in the hypothalamo-neurohypophysial system, we generated a transgenic rat that expresses the oxytocin-monomeric red fluorescent protein 1 (mRFP1) fusion gene. In the present study, we examined the age-related changes of oxytocin-mRFP1 fluorescent intensity in the posterior pituitary (PP), the supraoptic nucleus (SON) and the paraventricular nucleus (PVN) of transgenic rats. The mRFP1 fluorescent intensities were significantly increased in the PP, the SON and the PVN of 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Immunohistochemical staining for urocortin, which belongs to the family of corticotropin-releasing factor family, revealed that the numbers of urocortin-like immunoreactive (LI) cells in the SON and the PVN were significantly increased in 12-, 18- and 24-month-old transgenic rats in comparison with 3-month-old transgenic rats. Almost all of urocortin-LI cells co-exist mRFP1-expressing cells in the SON and the PVN of aged transgenic rats. These results suggest that oxytocin content of the hypothalamo-neurohypophysial system may be modulated by age-related regulation. The physiological role of the co-existence of oxytocin and urocortin in the SON and PVN of aged rats remains unclear. Copyright © 2017 Elsevier Ireland Ltd and Japan Neuroscience Society. All rights reserved.

  6. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  7. Modified impact of emotion on temporal discrimination in a transgenic rat model of Huntington disease

    Directory of Open Access Journals (Sweden)

    Alexis eFaure

    2013-09-01

    Full Text Available Huntington’s disease (HD is characterized by triad of motor, cognitive and emotional symptoms along with neuropathology in fronto-striatal circuit and limbic system including amygdala. Emotional alterations, which have a negative impact on patient well-being, represent some of the earliest symptoms of HD and might be related to the onset of the neurodegenerative process. In the transgenic rat model (tgHD rats, evidence suggest emotional alterations at the symptomatic stage along with neuropathology of the central nucleus of amygdala (CE. Studies in humans and animals demonstrate that emotion can modulate time perception. The impact of emotion on time perception has never been tested in HD, nor is it known if that impact could be part of the presymptomatic emotional phenotype of the pathology. The aim of this paper was to characterize the effect of emotion on temporal discrimination in presymptomatic tgHD animals. In the first experiment, we characterized the acute effect of an emotion (fear conditioned stimulus on temporal discrimination using a bisection procedure, and tested its dependency upon an intact central amygdala. The second experiment was aimed at comparing presymptomatic homozygous transgenic animals at 7-months of age and their wild-type littermates (WT in their performance on the modulation of temporal discrimination by emotion. Our principal findings show that (1 a fear cue produces a short-lived decrease of temporal precision after its termination, and (2 animals with medial CE lesion and presymptomatic tgHD animals demonstrate an alteration of this emotion-evoked temporal distortion. The results contribute to our knowledge about the presymptomatic phenotype of this HD rat model, showing susceptibility to emotion that may be related to dysfunction of the central nucleus of amygdala.

  8. Moderate additive effects of endothelin receptor A blockade in Ren-2 transgenic rats subjected to various types of RAS blockade

    Czech Academy of Sciences Publication Activity Database

    Vaněčková, Ivana; Řezáčová, Lenka; Kuneš, Jaroslav; Zicha, Josef

    2016-01-01

    Roč. 159, Aug 15 (2016), s. 127-154 ISSN 0024-3205 R&D Projects: GA MZd(CZ) NV15-25396A Institutional support: RVO:67985823 Keywords : aliskiren * captopril * atrasentan * hypertension * losartan * ren-2 transgenic rats Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 2.936, year: 2016

  9. Suppression of inflammation by dexamethasone prolongs adenoviral vector-mediated transgene expression in the facial nucleus of the rat

    NARCIS (Netherlands)

    Hermens, W.T.J.M.C.; Verhaagen, J

    1998-01-01

    Adenoviral vector directed gene transfer to rat facial motoneurons occurs efficiently following intra-parenchymal injection of relatively high dosages (> or =10(7) pfu per injection) of a prototype first generation adenoviral vector. However, high level of transgene expression, as observed during

  10. Cardiac remodeling during and after renin-angiotensin system stimulation in Cyp1a1-Ren2 transgenic rats

    DEFF Research Database (Denmark)

    Heijnen, Bart Fj; Pelkmans, Leonie Pj; Danser, Ah Jan

    2013-01-01

    This study investigated renin-angiotensin system (RAS)-induced cardiac remodeling and its reversibility in the presence and absence of high blood pressure (BP) in Cyp1a1-Ren2 transgenic inducible hypertensive rats (IHR). In IHR (pro)renin levels and BP can be dose-dependently titrated by oral...

  11. Origin of Androgen-Insensitive Poorly Differentiated Tumors in the Transgenic Adenocarcinoma of Mouse Prostate Model

    Directory of Open Access Journals (Sweden)

    Wendy J. Huss

    2007-11-01

    Full Text Available Following castration, the transgenic adenocarcinoma of mouse prostate (TRAMP model demonstrates rapid development of SV40-Tag-driven poorly differentiated tumors that express neuroendocrine cell markers. The cell population dynamics within the prostates of castrated TRAMP mice were characterized by analyzing the incorporation of 5-bromodeoxyuridine (BrdUrd and the expression of SV40-Tag, synaptophysin, and androgen receptor (AR. Fourteen days postcastration, the remaining epithelial cells and adenocarcinoma cells were nonproliferative and lacked detectable SV40-Tag or synaptophysin expression. In contrast, morphologically distinct intraglandular foci were identified which expressed SV40-Tag, synaptophysin, and Ki67, but that lacked AR expression. These proliferative SV40-Tag and synaptophysin-expressing intraglandular foci were associated with the rare BrdUrd-retaining cells. These foci expanded rapidly in the postcastration prostate environment, in contrast to the AR- and SV40-Tag-expressing adenocarcinoma cells that lost SV40-Tag expression and underwent apoptosis after castration. Intraglandular foci of synaptophysin-expressing cells were also observed in the prostates of intact TRAMP mice at a comparable frequency; however, they did not progress to rapidly expanding tumors until much later in the life of the mice. This suggests that the foci of neuroendocrine-like cells that express SV40-Tag and synaptophysin, but lack AR, arise independent of androgen-deprivation and represent the source of the poorly differentiated tumors that are the lethal phenotype in the TRAMP model.

  12. Comparative Genomic Analysis of Transgenic Poplar Dwarf Mutant Reveals Numerous Differentially Expressed Genes Involved in Energy Flow

    Directory of Open Access Journals (Sweden)

    Su Chen

    2014-09-01

    Full Text Available In our previous research, the Tamarix androssowii LEA gene (Tamarix androssowii late embryogenesis abundant protein Mrna, GenBank ID: DQ663481 was transferred into Populus simonii × Populus nigra. Among the eleven transgenic lines, one exhibited a dwarf phenotype compared to the wild type and other transgenic lines, named dwf1. To uncover the mechanisms underlying this phenotype, digital gene expression libraries were produced from dwf1, wild-type, and other normal transgenic lines, XL-5 and XL-6. Gene expression profile analysis indicated that dwf1 had a unique gene expression pattern in comparison to the other two transgenic lines. Finally, a total of 1246 dwf1-unique differentially expressed genes were identified. These genes were further subjected to gene ontology and pathway analysis. Results indicated that photosynthesis and carbohydrate metabolism related genes were significantly affected. In addition, many transcription factors genes were also differentially expressed in dwf1. These various differentially expressed genes may be critical for dwarf mutant formation; thus, the findings presented here might provide insight for our understanding of the mechanisms of tree growth and development.

  13. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Directory of Open Access Journals (Sweden)

    Yah-Se K Abada

    Full Text Available RATIONALE: Huntington disease (HD is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35 in the HUNTINGTIN (HTT gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. OBJECTIVES: The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. MATERIALS AND METHODS: Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. RESULTS: Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. CONCLUSION: The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  14. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for huntington disease.

    Science.gov (United States)

    Abada, Yah-Se K; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97 CAG-CAA repeats has been established recently. Behavioral phenotyping of BACHD rats will help to determine the validity of this model and its potential use in preclinical drug discovery studies. The present study seeks to characterize the progressive emergence of motor, sensorimotor and cognitive deficits in BACHD rats. Wild type and transgenic rats were tested from 1 till 12 months of age. Motor tests were selected to measure spontaneous locomotor activity (open field) and gait coordination. Sensorimotor gating was assessed in acoustic startle response paradigms and recognition memory was evaluated in an object recognition test. Transgenic rats showed hyperactivity at 1 month and hypoactivity starting at 4 months of age. Motor coordination imbalance in a Rotarod test was present at 2 months and gait abnormalities were seen in a Catwalk test at 12 months. Subtle sensorimotor changes were observed, whereas object recognition was unimpaired in BACHD rats up to 12 months of age. The current BACHD rat model recapitulates certain symptoms from HD patients, especially the marked motor deficits. A subtle neuropsychological phenotype was found and further studies are needed to fully address the sensorimotor phenotype and the potential use of BACHD rats for drug discovery purposes.

  15. Developmental immunotoxicity is not associated with the consumption of transgenic Bt rice TT51 in rats.

    Science.gov (United States)

    Hu, Jing; Liang, Chunlai; Zhang, Xiaopeng; Zhang, Qiannan; Cui, Wenming; Yu, Zhou

    2018-04-01

    TT51 is a transgenic strain of Bt rice generated by fusing a synthetic CryAb/Ac gene into MingHui rice. In this study, rats from F0, F1, and F2 generations were fed a diet with 60% TT51 rice, MingHui rice, or nominal-origin rice. The study focused on developmental immunotoxicity in F1 and F2 offspring after long-term consumption of TT51. A wide range of immunological parameters was monitored in this two-generation study on reproductive toxicity. The experiments were performed on F1 and F2 offspring at postnatal days 21 and 42. No adverse clinical effects were observed in any of the experimental groups. In addition, histopathology observations and immunotoxicity tests, including hematological indicators, spleen lymphocyte subsets, natural killer cell activity, lymphoproliferative response, and plaque-forming cell assay, revealed no significant difference between the groups. These results indicated that developmental immunotoxicity was not associated with a diet of transgenic Bt rice TT51, compared to the parental MingHui rice. Copyright © 2018 Elsevier Inc. All rights reserved.

  16. Identification of a TAAT-containing motif required for high level expression of the COL1A1 promoter in differentiated osteoblasts of transgenic mice

    Science.gov (United States)

    Dodig, M.; Kronenberg, M. S.; Bedalov, A.; Kream, B. E.; Gronowicz, G.; Clark, S. H.; Mack, K.; Liu, Y. H.; Maxon, R.; Pan, Z. Z.; hide

    1996-01-01

    Our previous studies have shown that the 49-base pair region of promoter DNA between -1719 and -1670 base pairs is necessary for transcription of the rat COL1A1 gene in transgenic mouse calvariae. In this study, we further define this element to the 13-base pair region between -1683 and -1670. This element contains a TAAT motif that binds homeodomain-containing proteins. Site-directed mutagenesis of this element in the context of a COL1A1-chloramphenicol acetyltransferase construct extending to -3518 base pairs decreased the ratio of reporter gene activity in calvariae to tendon from 3:1 to 1:1, suggesting a preferential effect on activity in calvariae. Moreover, chloramphenicol acetyltransferase-specific immunofluorescence microscopy of transgenic calvariae showed that the mutation preferentially reduced levels of chloramphenicol acetyltransferase protein in differentiated osteoblasts. Gel mobility shift assays demonstrate that differentiated osteoblasts contain a nuclear factor that binds to this site. This binding activity is not present in undifferentiated osteoblasts. We show that Msx2, a homeodomain protein, binds to this motif; however, Northern blot analysis revealed that Msx2 mRNA is present in undifferentiated bone cells but not in fully differentiated osteoblasts. In addition, cotransfection studies in ROS 17/2.8 osteosarcoma cells using an Msx2 expression vector showed that Msx2 inhibits a COL1A1 promoter-chloramphenicol acetyltransferase construct. Our results suggest that high COL1A1 expression in bone is mediated by a protein that is induced during osteoblast differentiation. This protein may contain a homeodomain; however, it is distinct from homeodomain proteins reported previously to be present in bone.

  17. Differentiation ability of rat postnatal dental pulp cells in vitro.

    NARCIS (Netherlands)

    Zhang, W.; Walboomers, X.F.; Wolke, J.G.C.; Bian, Z.; Fan, M.W.; Jansen, J.A.

    2005-01-01

    The current rapid progression in stem cell research has enhanced our knowledge of dental tissue regeneration. In this study, rat dental pulp cells were isolated and their differentiation ability was evaluated. First, dental pulp cells were obtained from maxillary incisors of male Wistar rats.

  18. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale).

    Science.gov (United States)

    Mei, Nan; Guo, Lei; Zhang, Lu; Shi, Leming; Sun, Yongming Andrew; Fung, Chris; Moland, Carrie L; Dial, Stacey L; Fuscoe, James C; Chen, Tao

    2006-09-06

    Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. In this study, we identified comfrey-induced gene expression profile in the livers of rats. Groups of 6 male transgenic Big Blue rats were fed a basal diet and a diet containing 8% comfrey roots, a dose that resulted in liver tumors in a previous carcinogenicity bioassay. The animals were treated for 12 weeks and sacrificed one day after the final treatment. We used a rat microarray containing 26,857 genes to perform genome-wide gene expression studies. Dietary comfrey resulted in marked changes in liver gene expression, as well as in significant decreases in the body weight and increases in liver mutant frequency. When a two-fold cutoff value and a P-value less than 0.01 were selected, 2,726 genes were identified as differentially expressed in comfrey-fed rats compared to control animals. Among these genes, there were 1,617 genes associated by Ingenuity Pathway Analysis with particular functions, and the differentially expressed genes in comfrey-fed rat livers were involved in metabolism, injury of endothelial cells, and liver injury and abnormalities, including liver fibrosis and cancer development. The gene expression profile provides us a better understanding of underlying mechanisms for comfrey-induced hepatic toxicity. Integration of gene expression changes with known pathological changes can be used to formulate a mechanistic scheme for comfrey-induced liver toxicity and tumorigenesis.

  19. Food-anticipatory activity and liver per1-luc activity in diabetic transgenic rats

    Science.gov (United States)

    Davidson, Alec J.; Stokkan, Karl-Arne; Yamazaki, Shin; Menaker, Michael

    2002-01-01

    The mammalian Per1 gene is an important component of the core cellular clock mechanism responsible for circadian rhythms. The rodent liver and other tissues rhythmically express Per1 in vitro but typically damp out within a few cycles. In the liver, the peak of this rhythm occurs in the late subjective night in an ad lib-fed rat, but will show a large phase advance in response to restricted availability of food during the day. The relationship between this shift in the liver clock and food-anticipatory activity (FAA), the circadian behavior entrained by daily feeding, is currently unknown. Insulin is released during feeding in mammals and could serve as an entraining signal to the liver. To test the role of insulin in the shift in liver Per1 expression and the generation of FAA, per-luciferase transgenic rats were made diabetic with a single injection of streptozotocine. Following 1 week of restricted feeding and locomotor activity monitoring, liver was collected for per-luc recording. In two separate experiments, FAA emerged and liver Per1 phase-shifted in response to daytime 8-h food restriction. The results rule out insulin as a necessary component of this system.

  20. XBP1 Depletion Precedes Ubiquitin Aggregation and Golgi Fragmentation in TDP-43 Transgenic Rats

    Science.gov (United States)

    Tong, Jianbin; Huang, Cao; Bi, Fangfang; Wu, Qinxue; Huang, Bo; Zhou, Hongxia

    2012-01-01

    Protein inclusion is a prominent feature of neurodegenerative diseases including frontotemporal lobar degeneration (FTLD) that is characterized by the presence of ubiquitinated TDP-43 inclusion. Presence of protein inclusions indicates an interruption to protein degradation machinery or the overload of misfolded proteins. In response to the increase in misfolded proteins, cells usually initiate a mechanism called unfolded protein response (UPR) to reduce misfolded proteins in the lumen of endoplasmic reticules. Here we examined the effects of mutant TDP-43 on the UPR in transgenic rats that express mutant human TDP-43 restrictedly in the neurons of the forebrain. Overexpression of mutant TDP-43 in rats caused prominent aggregation of ubiquitin and remarkable fragmentation of Golgi complexes prior to neuronal loss. While ubiquitin aggregates and Golgi fragments were accumulating, neurons expressing mutant TDP-43 failed to upregulate chaperones residing in the endoplasmic reticules and failed to initiate the UPR. Prior to ubiquitin aggregation and Golgi fragmentation, neurons were depleted of X-box binding protein 1 (XBP1), a key player of UPR machinery. While it remains to determine how mutation of TDP-43 leads to the failure of the UPR, our data demonstrate that failure of the UPR is implicated in TDP-43 pathogenesis. PMID:22970712

  1. Fumaric acid esters can block pro-inflammatory actions of human CRP and ameliorate metabolic disturbances in transgenic spontaneously hypertensive rats.

    Directory of Open Access Journals (Sweden)

    Jan Šilhavý

    Full Text Available Inflammation and oxidative stress have been implicated in the pathogenesis of metabolic disturbances. Esters of fumaric acid, mainly dimethyl fumarate, exhibit immunomodulatory, anti-inflammatory, and anti-oxidative effects. In the current study, we tested the hypothesis that fumaric acid ester (FAE treatment of an animal model of inflammation and metabolic syndrome, the spontaneously hypertensive rat transgenically expressing human C-reactive protein (SHR-CRP, will ameliorate inflammation, oxidative stress, and metabolic disturbances. We studied the effects of FAE treatment by administering Fumaderm, 10 mg/kg body weight for 4 weeks, to male SHR-CRP. Untreated male SHR-CRP rats were used as controls. All rats were fed a high sucrose diet. Compared to untreated controls, rats treated with FAE showed significantly lower levels of endogenous CRP but not transgenic human CRP, and amelioration of inflammation (reduced levels of serum IL6 and TNFα and oxidative stress (reduced levels of lipoperoxidation products in liver, heart, kidney, and plasma. FAE treatment was also associated with lower visceral fat weight and less ectopic fat accumulation in liver and muscle, greater levels of lipolysis, and greater incorporation of glucose into adipose tissue lipids. Analysis of gene expression profiles in the liver with Affymetrix arrays revealed that FAE treatment was associated with differential expression of genes in pathways that involve the regulation of inflammation and oxidative stress. These findings suggest potentially important anti-inflammatory, anti-oxidative, and metabolic effects of FAE in a model of inflammation and metabolic disturbances induced by human CRP.

  2. Differentiation and selection of hepatocyte precursors in suspension spheroid culture of transgenic murine embryonic stem cells.

    Directory of Open Access Journals (Sweden)

    Elke Gabriel

    Full Text Available Embryonic stem cell-derived hepatocyte precursor cells represent a promising model for clinical transplantations to diseased livers, as well as for establishment of in vitro systems for drug metabolism and toxicology investigations. This study aimed to establish an in vitro culture system for scalable generation of hepatic progenitor cells. We used stable transgenic clones of murine embryonic stem cells possessing a reporter/selection vector, in which the enhanced green fluorescent protein- and puromycin N-acetyltransferase-coding genes are driven by a common alpha-fetoprotein gene promoter. This allowed for "live" monitoring and puromycin selection of the desired differentiating cell type possessing the activated alpha-fetoprotein gene. A rotary culture system was established, sequentially yielding initially partially selected hepatocyte lineage-committed cells, and finally, a highly purified cell population maintained as a dynamic suspension spheroid culture, which progressively developed the hepatic gene expression phenotype. The latter was confirmed by quantitative RT-PCR analysis, which showed a progressive up-regulation of hepatic genes during spheroid culture, indicating development of a mixed hepatocyte precursor-/fetal hepatocyte-like cell population. Adherent spheroids gave rise to advanced differentiated hepatocyte-like cells expressing hepatic proteins such as albumin, alpha-1-antitrypsin, cytokeratin 18, E-cadherin, and liver-specific organic anion transporter 1, as demonstrated by fluorescent immunostaining. A fraction of adherent cells was capable of glycogen storage and of reversible up-take of indocyanine green, demonstrating their hepatocyte-like functionality. Moreover, after transplantation of spheroids into the mouse liver, the spheroid-derived cells integrated into recipient. These results demonstrate that large-scale hepatocyte precursor-/hepatocyte-like cultures can be established for use in clinical trials, as well as in

  3. Increased Sensitivity to Binge Alcohol-Induced Gut Leakiness and Inflammatory Liver Disease in HIV Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Atrayee Banerjee

    Full Text Available The mechanisms of alcohol-mediated advanced liver injury in HIV-infected individuals are poorly understood. Thus, this study was aimed to investigate the effect of binge alcohol on the inflammatory liver disease in HIV transgenic rats as a model for simulating human conditions. Female wild-type (WT or HIV transgenic rats were treated with three consecutive doses of binge ethanol (EtOH (3.5 g/kg/dose oral gavages at 12-h intervals or dextrose (Control. Blood and liver tissues were collected at 1 or 6-h following the last dose of ethanol or dextrose for the measurements of serum endotoxin and liver pathology, respectively. Compared to the WT, the HIV rats showed increased sensitivity to alcohol-mediated gut leakiness, hepatic steatosis and inflammation, as evidenced with the significantly elevated levels of serum endotoxin, hepatic triglycerides, histological fat accumulation and F4/80 staining. Real-time PCR analysis revealed that hepatic levels of toll-like receptor-4 (TLR4, leptin and the downstream target monocyte chemoattractant protein-1 (MCP-1 were significantly up-regulated in the HIV-EtOH rats, compared to all other groups. Subsequent experiments with primary cultured cells showed that both hepatocytes and hepatic Kupffer cells were the sources of the elevated MCP-1 in HIV-EtOH rats. Further, TLR4 and MCP-1 were found to be upregulated by leptin. Collectively, these results show that HIV rats, similar to HIV-infected people being treated with the highly active anti-retroviral therapy (HAART, are more susceptible to binge alcohol-induced gut leakiness and inflammatory liver disease than the corresponding WT, possibly due to additive or synergistic interaction between binge alcohol exposure and HIV infection. Based on these results, HIV transgenic rats can be used as a surrogate model to study the molecular mechanisms of many disease states caused by heavy alcohol intake in HIV-infected people on HAART.

  4. A transgenic rat for investigating the anatomy and function of corticotrophin releasing factor circuits

    Directory of Open Access Journals (Sweden)

    Matthew B Pomrenze

    2015-12-01

    Full Text Available Corticotrophin-releasing factor (CRF is a 41 amino acid neuropeptide that coordinates adaptive responses to stress. CRF projections from neurons in the central nucleus of the amygdala (CeA to the brainstem are of particular interest for their role in motivated behavior. To directly examine the anatomy and function of CRF neurons, we generated a BAC transgenic Crh-Cre rat in which bacterial Cre recombinase is expressed from the Crh promoter. Using Cre-dependent reporters, we found that Cre expressing neurons in these rats are immunoreactive for CRF and are clustered in the lateral CeA (CeL and the oval nucleus of the BNST. We detected major projections from CeA CRF neurons to parabrachial nuclei and the locus coeruleus, dorsal and ventral BNST, and more minor projections to lateral portions of the substantia nigra, ventral tegmental area, and lateral hypothalamus. Optogenetic stimulation of CeA CRF neurons evoked GABA-ergic responses in 11% of non-CRF neurons in the medial CeA (CeM and 44% of non-CRF neurons in the CeL. Chemogenetic stimulation of CeA CRF neurons induced Fos in a similar proportion of non-CRF CeM neurons but a smaller proportion of non-CRF CeL neurons. The CRF1 receptor antagonist R121919 reduced this Fos induction by two-thirds in these regions. These results indicate that CeL CRF neurons provide both local inhibitory GABA and excitatory CRF signals to other CeA neurons, and demonstrate the value of the Crh-Cre rat as a tool for studying circuit function and physiology of CRF neurons.

  5. Highly visible expression of an oxytocin-monomeric red fluorescent protein 1 fusion gene in the hypothalamus and posterior pituitary of transgenic rats.

    Science.gov (United States)

    Katoh, Akiko; Fujihara, Hiroaki; Ohbuchi, Toyoaki; Onaka, Tatsushi; Hashimoto, Takashi; Kawata, Mitsuhiro; Suzuki, Hideaki; Ueta, Yoichi

    2011-07-01

    We have generated rats bearing an oxytocin (OXT)-monomeric red fluorescent protein 1 (mRFP1) fusion transgene. The mRFP1 fluorescence was highly visible in ventral part of the supraoptic nucleus (SON) and the posterior pituitary in a whole mount. mRFP1 fluorescence in hypothalamic sections was also observed in the SON, the paraventricular nucleus (PVN), and the internal layer of the median eminence. Salt loading for 5 d caused a marked increase in mRFP1 fluorescence in the SON, the PVN, the median eminence, and the posterior pituitary. In situ hybridization histochemistry revealed that the expression of the mRNA encoding the OXT-mRFP1 fusion gene was observed in the SON and the PVN of euhydrated rats and increased dramatically after chronic salt loading. The expression of the endogenous OXT and the arginine vasopressin (AVP) genes were significantly increased in the SON and the PVN after chronic salt loading in both nontransgenic and transgenic rats. These responses were not different between male and female rats. Compared with nontransgenic rats, euhydrated and salt-loaded male and female transgenic rats showed no significant differences in plasma osmolality, sodium concentration, OXT, and AVP levels. Finally, we succeeded in generating a double-transgenic rat that expresses both the OXT-mRFP1 fusion gene and the AVP-enhanced green fluorescent protein fusion gene. Our new transgenic rats are valuable new tools to study the physiology of the hypothalamo-neurohypophysial system.

  6. Excision of reprogramming transgenes improves the differentiation potential of iPS cells generated with a single excisable vector.

    Science.gov (United States)

    Sommer, Cesar A; Sommer, Andreia Gianotti; Longmire, Tyler A; Christodoulou, Constantina; Thomas, Dolly D; Gostissa, Monica; Alt, Fred W; Murphy, George J; Kotton, Darrell N; Mostoslavsky, Gustavo

    2010-01-01

    The residual presence of integrated transgenes following the derivation of induced pluripotent stem (iPS) cells is highly undesirable. Here we demonstrate efficient derivation of iPS cells free of exogenous reprogramming transgenes using an excisable polycistronic lentiviral vector. A novel version of this vector containing a reporter fluorochrome allows direct visualization of vector excision in living iPS cells in real time. We find that removal of the reprogramming vector markedly improves the developmental potential of iPS cells and significantly augments their capacity to undergo directed differentiation in vitro. We further propose that methods to efficiently excise reprogramming transgenes with minimal culture passaging, such as those demonstrated here, are critical since we find that iPS cells may acquire chromosomal abnormalities, such as trisomy of chromosome 8, similar to embryonic stem cells after expansion in culture. Our findings illustrate an efficient method for the generation of transgene-free iPS cells and emphasize the potential beneficial effects that may result from elimination of integrated reprogramming factors. In addition, our results underscore the consequences of long-term culture that will need to be taken into account for the clinical application of iPS cells.

  7. Reduction of colitis by prebiotics in HLA-B27 transgenic rats is associated with microflora changes and immunomodulation.

    Science.gov (United States)

    Hoentjen, Frank; Welling, Gjalt W; Harmsen, Hermie J M; Zhang, Xiaoyin; Snart, Jennifer; Tannock, Gerald W; Lien, Kelvin; Churchill, Thomas A; Lupicki, Maryla; Dieleman, Levinus A

    2005-11-01

    HLA-B27 transgenic rats develop spontaneous colitis under specific pathogen-free conditions (SPF) but germ-free rats remain disease-free, emphasizing a role for intestinal bacteria in the pathogenesis of chronic intestinal inflammation. Prebiotics are dietary substances that affect the host by stimulating growth and/or activity of potentially health promoting bacteria. The aims of this study were to investigate whether prebiotics can prevent colitis in SPF HLA-B27 rats, and secondly, to explore mechanisms of protection. SPF HLA-B27 transgenic rats received orally the prebiotic combination long-chain inulin and oligofructose (Synergy 1), or not, prior to the development of clinically detectable colitis. After seven weeks, cecal and colonic tissues were collected for gross cecal scores (GCS), histologic inflammatory scores (scale 0-4), and mucosal cytokine measurement. Cecal and colonic contents were collected for analysis of the gut microbiota by PCR-denaturing gradient gel electrophoresis (PCR-DGGE) and fluorescent in-situ hybridization (FISH), and analysis of short-chain fatty acid composition. Prebiotic treatment significantly decreased GCS and inflammatory histologic scores in the cecum and colon. Prebiotic treatment also decreased cecal IL-1beta, but increased cecal TGF-beta concentrations. Inulin/oligofructose altered the cecal and colonic PCR-DGGE profiles, and FISH analysis showed significant increases in cecal Lactobacillus and Bifidobacterium populations after prebiotic treatment compared with water-treated rats. In conclusion, the prebiotic combination Synergy 1 reduced colitis in HLA-B27 transgenic rats, which effect was associated with alterations to the gut microbiota, decreased tissue proinflammatory cytokines and increased immunomodulatory molecules. These results show promise for prebiotics as primary or adjuvant maintenance therapy for chronic inflammatory bowel diseases.

  8. Rosuvastatin ameliorates inflammation, renal fat accumulation, and kidney injury in transgenic spontaneously hypertensive rats expressing human C-reactive protein

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Jan; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Oliyarnyk, O.; Malínská, H.; Kazdová, L.; Mancini, M.; Pravenec, Michal

    2015-01-01

    Roč. 64, č. 3 (2015), s. 295-301 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH11049; GA MŠk(CZ) LL1204; GA MZd(CZ) NT14325; GA ČR(CZ) GB14-36804G Institutional support: RVO:67985823 Keywords : rosuvastatin * kidney damage * CRP * transgenic * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.643, year: 2015

  9. Fat-specific transgenic expression of resistin in the spontaneously hypertensive rat impairs fatty acid re-esterification

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Kazdová, L.; Cahová, M.; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Wang, J.; Qi, N.; Kurtz, T. W.

    2006-01-01

    Roč. 30, č. 7 (2006), s. 1157-1159 ISSN 0307-0565 R&D Projects: GA ČR(CZ) GA301/03/0751; GA MZd(CZ) NB7403; GA MŠk(CZ) 1M0520 Grant - others:HHMI(US) 55005624 Institutional research plan: CEZ:AV0Z50110509 Keywords : spontaneously hypertensive rat * transgenic resistin * fatty acid reesterification Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.055, year: 2006

  10. Effects of Metformin on Tissue Oxidative and Dicarbonyl Stress in Transgenic Spontaneously Hypertensive Rats Expressing Human C-Reactive Protein

    Czech Academy of Sciences Publication Activity Database

    Malínská, H.; Oliyarnyk, O.; Škop, V.; Šilhavý, Jan; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Strnad, Hynek; Kazdová, L.; Pravenec, Michal

    2016-01-01

    Roč. 11, č. 3 (2016), e0150924 E-ISSN 1932-6203 R&D Projects: GA MŠk(CZ) LL1204; GA MZd(CZ) NT14325 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : inflammation * spontaneously hypertensive rat * transgenic * C-reactive protein * dicarbonyl stress * metformin Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.806, year: 2016

  11. Effects of transgenic expression of dopamine beta hydroxylase (Dbh) gene on blood pressure in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šilhavý, Jan; Mir, S.A.; Vaingankar, S. M.; Wang, J.; Kurtz, T. W.

    2016-01-01

    Roč. 65, č. 6 (2016), s. 1039-1044 ISSN 0862-8408 R&D Projects: GA ČR(CZ) GAP301/12/0696; GA TA ČR(CZ) TA02010013 Institutional support: RVO:67985823 Keywords : spontaneously hypertensive rat * transgenic * dopamine beta hydroxylase * catecholamines * blood pressure * left ventricular mass Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 1.461, year: 2016

  12. Selection for increased adult body weight in mouse lines with and without the rat growth hormone transgene.

    Science.gov (United States)

    Nagai, J; Lin, C Y; Sabour, P

    1993-01-12

    Four lines of mice with and without the rat growth hormone (rGH) transgene were developed to measure responses to selection for increased 42-day body weight and evaluate fitness of mice with and without the rGH transgene. Each line contained selected and unselected (control) sublines. At the last three generations of selection (Generations 12-14), selected sublines differed from unselected controls by 3.8 to 4.7 g (14.8 to 19.8%) in 42-day weight, -0.5 to -8.3% in fertility, and 0.5 to 1.6 in litter size at birth. The origin of the lines (W: previously selected for 42-day weight and C: unselected) affected 42-day weight, i. e. 42-day weight of mice originating from W was significantly (P transgene that increased 63-day weight by 54% was not found at Generation 12. The unexpected loss of rGH transgene was due to poor fitness of mice with the rGH transgene. Mice with the transgene had lower fertility rate than those without the transgene (50.0 to 73.7% vs. 95.0%), smaller litter size (6.8 to 7.8 vs. 8.6) and poorer survival of the progeny (69.2 to 74.5% vs. 88.3%). Based on these data, selective advantage/disadvantage of the rGH transgene in the fitness traits was estimated quantitatively. The results from the study on growth and reproductive traits suggest that desirable effects of gene transfer on a specific trait (42- and 63-day weight in the present study) might be offset by undesirable effects on other traits (e. g., reproduction and survival) in some cases of transgenic animals. ZUSAMMENFASSUNG: Selektion auf hohes adultes Gewicht in Mäuselinien mit und ohne Rattenwachstumshormon-Transgenen Vier Mäuselinien mit und ohne das Rattenwachstumshormon (rGH) Transgen wurden zur Messung des Selektionserfolges auf gesteigertes 42-Tage-Körpergewicht entwickelt, um auch Fitneß zu prüfen. Jede Linie bestand aus einer selektierten und aus einer unselektierten (Kontroll-)Unterlinie. In den drei letzten Selektionsgenerationen (Generationen 12-14) unterschieden sich die

  13. Regional gene expression of LOX-1, VCAM-1, and ICAM-1 in aorta of HIV-1 transgenic rats.

    Directory of Open Access Journals (Sweden)

    Anne Mette Fisker Hag

    Full Text Available BACKGROUND: Increased prevalence of atherosclerotic cardiovascular disease in HIV-infected patients has been observed. The cause of this accelerated atherosclerosis is a matter of controversy. As clinical studies are complicated by a multiplicity of risk-factors and a low incidence of hard endpoints, studies in animal models could be attractive alternatives. METHODOLOGY/PRINCIPAL FINDINGS: We evaluated gene expression of lectin-like oxidized-low-density-lipoprotein receptor-1 (LOX-1, vascular cell adhesion molecule-1 (VCAM-1, and intercellular adhesion molecule-1 (ICAM-1 in HIV-1 transgenic (HIV-1Tg rats; these genes are all thought to play important roles in early atherogenesis. Furthermore, the plasma level of sICAM-1 was measured. We found that gene expressions of LOX-1 and VCAM-1 were higher in the aortic arch of HIV-1Tg rats compared to controls. Also, the level of sICAM-1 was elevated in the HIV-1Tg rats compared to controls, but the ICAM-1 gene expression profile did not show any differences between the groups. CONCLUSIONS/SIGNIFICANCE: HIV-1Tg rats have gene expression patterns indicating endothelial dysfunction and accelerated atherosclerosis in aorta, suggesting that HIV-infection per se may cause atherosclerosis. This transgenic rat model may be a very promising model for further studies of the pathophysiology behind HIV-associated cardiovascular disease.

  14. Differential leaf resistance to insects of transgenic sweetgum (Liquidambar styraciflua) expressing tobacco anionic peroxidase.

    Science.gov (United States)

    Dowd, P F; Lagrimini, L M; Herms, D A

    1998-07-01

    Leaves of transgenic sweetgum (Liquidambar styraciflua) trees that expressed tobacco anionic peroxidase were compared with leaves of L. styraciflua trees that did not express the tobacco enzyme. Leaves of the transgenic trees were generally more resistant to feeding by caterpillars and beetles than wild-type leaves. However, as for past studies with transgenic tobacco and tomato expressing the tobacco anionic peroxidase, the degree of relative resistance depended on the size of insect used and the maturity of the leaf. Decreased growth of gypsy moth larvae appeared mainly due to decreased consumption, and not changes in the nutritional quality of the foliage. Transgenic leaves were more susceptible to feeding by the corn earworm, Helicoverpa zea. Thus, it appears the tobacco anionic peroxidase can contribute to insect resistance, but its effects are more predictable when it is expressed in plant species more closely related to the original gene source.

  15. Loss of bone strength in HLA-B27 transgenic rats is characterized by a high bone turnover and is mainly osteoclast-driven.

    Science.gov (United States)

    Rauner, Martina; Thiele, Sylvia; Fert, Ingrid; Araujo, Luiza M; Layh-Schmitt, Gerlinde; Colbert, Robert A; Hofbauer, Christine; Bernhardt, Ricardo; Bürki, Alexander; Schwiedrzik, Jakob; Zysset, Philippe K; Pietschmann, Peter; Taurog, Joel D; Breban, Maxime; Hofbauer, Lorenz C

    2015-06-01

    Although osteopenia is frequent in spondyloarthritis (SpA), the underlying cellular mechanisms and association with other symptoms are poorly understood. This study aimed to characterize bone loss during disease progression, determine cellular alterations, and assess the contribution of inflammatory bowel disease (IBD) to bone loss in HLA-B27 transgenic rats. Bones of 2-, 6-, and 12-month-old non-transgenic, disease-free HLA-B7 and disease-associated HLA-B27 transgenic rats were examined using peripheral quantitative computed tomography, μCT, and nanoindentation. Cellular characteristics were determined by histomorphometry and ex vivo cultures. The impact of IBD was determined using [21-3 x 283-2]F1 rats, which develop arthritis and spondylitis, but not IBD. HLA-B27 transgenic rats continuously lost bone mass with increasing age and had impaired bone material properties, leading to a 3-fold decrease in bone strength at 12 months of age. Bone turnover was increased in HLA-B27 transgenic rats, as evidenced by a 3-fold increase in bone formation and a 6-fold increase in bone resorption parameters. Enhanced osteoclastic markers were associated with a larger number of precursors in the bone marrow and a stronger osteoclastogenic response to RANKL or TNFα. Further, IBD-free [21-3 x 283-2]F1 rats also displayed decreased total and trabecular bone density. HLA-B27 transgenic rats lose an increasing amount of bone density and strength with progressing age, which is primarily mediated via increased bone remodeling in favor of bone resorption. Moreover, IBD and bone loss seem to be independent features of SpA in HLA-B27 transgenic rats. Copyright © 2015 Elsevier Inc. All rights reserved.

  16. Methyl bromide causes DNA methylation in rats and mice but fails to induce somatic mutations in λlacZ transgenic mice

    NARCIS (Netherlands)

    Pletsa, V.; Steenwinkel, M.-J.S.T.; Delft, J.H.M. van; Baan, R.A.; Kyrtopoulos, S.A.

    1998-01-01

    Following single or multiple oral treatments of rats or λlacZ transgenic mice with methyl bromide, methylated DNA adducts (N7- and/or O6-methylguanine) were found at comparable levels in various tissues, including among others the glandular stomach, the forestomach and the liver. Multiple rat

  17. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease.

    Science.gov (United States)

    Galeano, Pablo; Martino Adami, Pamela V; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg(+/-)) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg(+/-) rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg(+/-) rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  18. Longitudinal analysis of the behavioral phenotype in a novel transgenic rat model of early stages of Alzheimer's disease

    Science.gov (United States)

    Galeano, Pablo; Martino Adami, Pamela V.; Do Carmo, Sonia; Blanco, Eduardo; Rotondaro, Cecilia; Capani, Francisco; Castaño, Eduardo M.; Cuello, A. Claudio; Morelli, Laura

    2014-01-01

    Intraneuronal accumulation of amyloid β (iAβ) has been linked to mild cognitive impairment that may precede Alzheimer's disease (AD) onset. This neuropathological trait was recently mimicked in a novel animal model of AD, the hemizygous transgenic McGill-R-Thy1-APP (Tg+/−) rat. The characterization of the behavioral phenotypes in this animal model could provide a baseline of efficacy for earlier therapeutic interventions. The aim of the present study was to undertake a longitudinal study of Aβ accumulation and a comprehensive behavioral evaluation of this transgenic rat model. We assessed exploratory activity, anxiety-related behaviors, recognition memory, working memory, spatial learning and reference memory at 3, 6, and 12 months of age. In parallel, we measured Aβ by ELISA, Western blots and semiquantitative immunohistochemistry in hippocampal samples. SDS-soluble Aβ peptide accumulated at low levels (~9 pg/mg) without differences among ages. However, Western blots showed SDS-resistant Aβ oligomers (~30 kDa) at 6 and 12 months, but not at 3 months. When compared to wild-type (WT), male Tg+/− rats exhibited a spatial reference memory deficit in the Morris Water Maze (MWM) as early as 3 months of age, which persisted at 6 and 12 months. In addition, Tg+/− rats displayed a working memory impairment in the Y-maze and higher anxiety levels in the Open Field (OF) at 6 and 12 months of age, but not at 3 months. Exploratory activity in the OF was similar to that of WT at all-time points. Spatial learning in the MWM and the recognition memory, as assessed by the Novel Object Recognition Test, were unimpaired at any time point. The data from the present study demonstrate that the hemizygous transgenic McGill-R-Thy1-APP rat has a wide array of behavioral and cognitive impairments from young adulthood to middle-age. The low Aβ burden and early emotional and cognitive deficits in this transgenic rat model supports its potential use for drug discovery purposes in

  19. Reduced impact of emotion on choice behavior in presymptomatic BACHD rats, a transgenic rodent model for Huntington Disease.

    Science.gov (United States)

    Adjeroud, Najia; Yagüe, Sara; Yu-Taeger, Libo; Bozon, Bruno; Leblanc-Veyrac, Pascale; Riess, Olaf; Allain, Philippe; Nguyen, Huu Phuc; Doyère, Valérie; El Massioui, Nicole

    2015-11-01

    Executive dysfunction and psychiatric symptoms are hallmarks of Huntington disease (HD), a neurodegenerative disorder genetically characterized by expanded CAG repeats in the HTT gene. Using the BACHD rat model of HD (97 CAG-CAA repeats), the present research seeks to characterize the progressive emergence of decision-making impairments in a rat version of the Iowa Gambling Task (RGT) and the impact of emotional modulation, whether positive or negative, on choice behavior. The choice efficiency shown both by WT rats (independent of their age) and the youngest BACHD rats (2 and 8months old) evidenced that they are able to integrate outcomes of past decisions to determine expected reward values for each option. However, 18months old BACHD rats made fewer choices during the RGT session and were less efficient in choosing advantageous options than younger animals. Presenting either chocolate pellets or electrical footshocks half-way through a second RGT session reduced exploratory activity (inefficient nose-poking) and choices with a weaker effect on BACHD animals than on WT. Choice efficiency was left intact in transgenic rats. Our results bring new knowledge on executive impairments and impact of emotional state on decision-making at different stages of the disease, increasing the face-validity of the BACHD rat model. Copyright © 2015 Elsevier Inc. All rights reserved.

  20. Inhibition of cell proliferation, cell expansion and differentiation by the Arabidopsis SUPERMAN gene in transgenic tobacco plants.

    Science.gov (United States)

    Bereterbide, A; Hernould, M; Castera, S; Mouras, A

    2001-11-01

    Plant development depends upon the control of growth, organization and differentiation of cells derived from shoot and root meristems. Among the genes involved in flower organ determination, the cadastral gene SUPERMAN controls the boundary between whorls 3 and 4 and the growth of the adaxial outer ovule integument by down-regulating cell divisions. To determine the precise function of this gene we overexpressed ectopically the Arabidopsis thaliana (L.) Heynh. SUPERMAN gene in tobacco (Nicotiana tabacum L.). The transgenic plants exhibited a dwarf phenotype. Histologically and cytologically detailed analyses showed that dwarfism is correlated with a reduction in cell number, which is in agreement with the SUPERMAN function in Arabidopsis. Furthermore, a reduction in cell expansion and an impairment of cell differentiation were observed in tobacco organs. These traits were observed in differentiated vegetative and floral organs but not in meristem structures. A potential effect of the SUPERMAN transcription factor in the control of gibberellin biosynthesis is discussed.

  1. Visual properties of transgenic rats harboring the channelrhodopsin-2 gene regulated by the thy-1.2 promoter.

    Directory of Open Access Journals (Sweden)

    Hiroshi Tomita

    Full Text Available Channelrhodopsin-2 (ChR2, one of the archea-type rhodopsins from green algae, is a potentially useful optogenetic tool for restoring vision in patients with photoreceptor degeneration, such as retinitis pigmentosa. If the ChR2 gene is transferred to retinal ganglion cells (RGCs, which send visual information to the brain, the RGCs may be repurposed to act as photoreceptors. In this study, by using a transgenic rat expressing ChR2 specifically in the RGCs under the regulation of a Thy-1.2 promoter, we tested the possibility that direct photoactivation of RGCs could restore effective vision. Although the contrast sensitivities of the optomotor responses of transgenic rats were similar to those observed in the wild-type rats, they were enhanced for visual stimuli of low-spatial frequency after the degeneration of native photoreceptors. This result suggests that the visual signals derived from the ChR2-expressing RGCs were reinterpreted by the brain to form behavior-related vision.

  2. Differential strain vulnerability to binge eating behaviors in rats.

    Science.gov (United States)

    Hildebrandt, Britny A; Klump, Kelly L; Racine, Sarah E; Sisk, Cheryl L

    2014-03-29

    Binge eating is a significantly heritable phenotype, but efforts to detect specific risk genes have fallen short. Identification of animal strain differences in risk for binge eating could highlight genetic differences across individuals of the same species that can be exploited in future animal and molecular genetic research. The current study aimed to explore strain differences in risk for binge eating in Sprague-Dawley versus Wistar female rats using the Binge Eating Resistant/Binge Eating Prone model. A sample of male Sprague-Dawley rats, a known low-risk group for binge eating, was included as a comparison group. A total of 83 rats (23 Wistar females, 30 Sprague-Dawley females, 30 Sprague-Dawley males) completed a protocol of intermittently administered, palatable food. Binge eating prone (BEP) and binge eating resistant (BER) rats were identified using a tertile approach. Sprague-Dawley female rats consumed the highest amount of palatable food and were more likely to be classified as BEP compared to Wistar female and Sprague-Dawley male rats. Wistar female rats were not significantly different from Sprague-Dawley male rats in their palatable food intake and tendency to be classified as BER rather than BEP. Sprague-Dawley female rats appear to be a particularly vulnerable genotype for binge eating. Comparisons between this group and others could help identify specific genetic/biological factors that differentiate it from lower risk groups. The reward system, linked to binge eating in humans, is a possible candidate to explore. Strain differences in the reward system could help increase understanding of individual differences in risk for binge eating in humans. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Age-related autocrine diabetogenic effects of transgenic resistin in spontaneously hypertensive rats: gene expression profile analysis

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Šimáková, Miroslava; Mlejnek, Petr; Šilhavý, J.; Maxová, M.; Kazdová, L.; Seidman, J. G.; Seidman, Ch. E.; Eminaga, S.; Gorham, J.; Wang, J.; Kurtz, T. W.

    2011-01-01

    Roč. 43, č. 7 (2011), s. 372-379 ISSN 1094-8341 R&D Projects: GA MŠk(CZ) ME08006; GA MŠk(CZ) 1M0510; GA AV ČR(CZ) IAA500110805; GA MZd(CZ) NS9759 Grant - others:Fondation Leducq(FR) 06CVD03 Institutional research plan: CEZ:AV0Z50110509 Keywords : transgenic rat * adipose tissue * insulin resistance * autocrine effects Subject RIV: FB - Endocrinology, Diabetology, Metabolism, Nutrition Impact factor: 2.735, year: 2011

  4. Emdogain regulation of cellular differentiation in wounded rat periodontium.

    Science.gov (United States)

    Chano, Laura; Tenenbaum, Howard C; Lekic, P Charles; Sodek, Jaro; McCulloch, Christopher A

    2003-04-01

    Emdogain is an enamel matrix derivative that may promote periodontal regeneration by recapitulating critical events in tooth morphogenesis. We hypothesized that Emdogain enhances periodontal regeneration by promoting the differentiation of cells required for the synthesis of periodontal ligament, bone and cementum. Cell differentiation was examined in rat periodontal window wounds in which there is no microbial biofilm or epithelial downgrowth, thereby simplifying the model system. Defects were filled with vehicle control or Emdogain (3 mg/ml or 30 mg/ml). Rats were sacrificed at 7, 14 and 21 d after wounding. Specimens of periodontium were immunostained for osteopontin, bone sialoprotein, osteocalcin as markers of osteogenic differentiation and for alpha-smooth muscle actin, a myofibroblastic marker. Morphometry and 3H-proline radioautography were used for assessment of tissue homeostasis and matrix production. Rats treated with Emdogain (only at 30 mg/ml) showed widening of the periodontal ligament at 7 d; by 14 and 21 d, periodontal ligament width was restored to normal values for all groups. Emdogain exerted no effect on cementum thickness, bone volume, osteoid deposition rates, or extracellular staining for osteopontin, bone sialoprotein or osteocalcin. Further, the percentage of cells with intracellular staining for osteopontin, osteocalcin or bone sialoprotein was unaffected by Emdogain. Staining for alpha-smooth muscle actin was abundant in the repopulating wound but was also unaffected by Emdogain. In conclusion, Emdogain does not apparently affect the expression of differentiation markers or bone matrix protein synthesis in the repopulation response of wounded rat molar periodontium. Therefore the effect of Emdogain on wound healing in the periodontium may be independent of differentiation in the cell populations examined in this model.

  5. A 90-day safety study in Sprague-Dawley rats fed milk powder containing recombinant human lactoferrin (rhLF) derived from transgenic cloned cattle.

    Science.gov (United States)

    Zhou, Cui; Wang, Jian Wu; Huang, Kun Lun; He, XiaoYun; Chen, Xiu Ping; Sun, Hong; Yu, Tian; Che, Hui Lian

    2011-10-01

    Transgenic cloned animals expressing beneficial human nutritional traits offer a new strategy for large-scale production of some kinds of functional substances. In some cases, the required safety testing for genetically modified (GM) foods do not seem appropriate for human food safety, though regulations do not seem to provide alternatives. A 90-day rat feeding study is the core study for the safety assessment of GM foods. The test material in this 90-day study was prepared nonfat milk powder containing recombinant human lactoferrin (rhLF), which was expressed in transgenic cloned cattle. Groups of 10 male and female Sprague-Dawley rats were given a nutritionally balanced purified diet containing 7.5, 15, or 30% transgenic or conventional milk powder for 90 days. A commercial AIN93G diet was used as an additional control group. Clinical, biological, and pathological parameters were compared between groups. The only significant effect of treatment was higher mean ferritin and Fe(+) concentrations for both male and female rats fed the transgenic milk powder diets, as compared to rats fed nontransgenic milk diets or the commercial diet. The results of the present study are consistent with previous research, which indicates that milk powder containing rhLF derived from healthy transgenic cloned cattle is as safe as conventional milk powder.

  6. Response to metal stress of Nicotiana langsdorffii plants wild-type and transgenic for the rat glucocorticoid receptor gene.

    Science.gov (United States)

    Fuoco, Roger; Bogani, Patrizia; Capodaglio, Gabriele; Del Bubba, Massimo; Abollino, Ornella; Giannarelli, Stefania; Spiriti, Maria Michela; Muscatello, Beatrice; Doumett, Saer; Turetta, Clara; Zangrando, Roberta; Zelano, Vincenzo; Buiatti, Marcello

    2013-05-01

    Recently our findings have shown that the integration of the gene coding for the rat gluco-corticoid receptor (GR receptor) in Nicotiana langsdorffii plants induced morphophysiological effects in transgenic plants through the modification of their hormonal pattern. Phytohormones play a key role in plant responses to many different biotic and abiotic stresses since a modified hormonal profile up-regulates the activation of secondary metabolites involved in the response to stress. In this work transgenic GR plants and isogenic wild type genotypes were exposed to metal stress by treating them with 30ppm cadmium(II) or 50ppm chromium(VI). Hormonal patterns along with changes in key response related metabolites were then monitored and compared. Heavy metal up-take was found to be lower in the GR plants. The transgenic plants exhibited higher values of S-abscisic acid (S-ABA) and 3-indole acetic acid (IAA), salicylic acid and total polyphenols, chlorogenic acid and antiradical activity, compared to the untransformed wild type plants. Both Cd and Cr treatments led to an increase in hormone concentrations and secondary metabolites only in wild type plants. Analysis of the results suggests that the stress responses due to changes in the plant's hormonal system may derive from the interaction between the GR receptor and phytosteroids, which are known to play a key role in plant physiology and development. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. Changes of purine metabolism during differentiation of rat heart myoblasts

    International Nuclear Information System (INIS)

    Mueller, M.M.; Rumpold, H.; Schopf, G.; Zilla, P.

    1986-01-01

    The authors attempt to determine if differentiation from embryonic heart cells (myoblasts) can result in changes of purine metabolism towards differentiated cells (myocytes) using selective cultivation conditions. Embryonic rat heart myoblasts were used and cell flasks containing 1.3 to 1.5x10 6 myoblasts or myocytes were incubated for 1 hour at 37 C with C 14-labeled purine bases or purine nucleosides. The extent of uptake and incorporation of labeled purine metabolites into intracellular adenine nucleotides of both cell populations is presented

  8. Activation of endogenous arginine vasopressin neurons inhibit food intake: by using a novel transgenic rat line with DREADDs system.

    Science.gov (United States)

    Yoshimura, Mitsuhiro; Nishimura, Kazuaki; Nishimura, Haruki; Sonoda, Satomi; Ueno, Hiromichi; Motojima, Yasuhito; Saito, Reiko; Maruyama, Takashi; Nonaka, Yuki; Ueta, Yoichi

    2017-11-16

    Various studies contributed to discover novel mechanisms of central arginine vasopressin (AVP) system responsible for the behaviour albeit endogenous vasopressin activation. We established a novel transgenic rat line which expresses both human muscarinic acetylcholine receptors (hM3Dq), of which ligand is clozapine-N-oxide (CNO), and mCherry fluorescence specifically in AVP neurons. The mCherry neurons that indicate the expression of the hM3Dq gene were observed in the suprachiasmatic (SCN), supraoptic (SON), and paraventricular nuclei (PVN). hM3Dq-mCherry fluorescence was localized mainly in the membrane of the neurons. The mCherry neurons were co-localized with AVP-like immunoreactive (LI) neurons, but not with oxytocin-LI neurons. The induction of Fos, which is the indicator for neuronal activity, was observed in approximately 90% of the AVP-LI neurons in the SON and PVN 90 min after intraperitoneal (i.p.) administration of CNO. Plasma AVP was significantly increased and food intake, water intake, and urine volume were significantly attenuated after i.p. administration of CNO. Although the detailed mechanism has unveiled, we demonstrated, for the first time, that activation of endogenous AVP neurons decreased food intake. This novel transgenic rat line may provide a revolutionary insight into the neuronal mechanism regarding central AVP system responsible for various kind of behaviours.

  9. Influence of temperature fluctuations during cryopreservation on vital parameters, differentiation potential, and transgene expression of placental multipotent stromal cells.

    Science.gov (United States)

    Pogozhykh, Denys; Pogozhykh, Olena; Prokopyuk, Volodymyr; Kuleshova, Larisa; Goltsev, Anatoliy; Blasczyk, Rainer; Mueller, Thomas

    2017-03-11

    Successful implementation of rapidly advancing regenerative medicine approaches has led to high demand for readily available cellular suspensions. In particular, multipotent stromal cells (MSCs) of placental origin have shown therapeutic efficiency in the treatment of numerous pathologies of varied etiology. Up to now, cryopreservation is the only effective way to preserve the viability and unique properties of such cells in the long term. However, practical biobanking is often associated with repeated temperature fluctuations or interruption of a cold chain due to various technical, transportation, and stocking events. While biochemical processes are expected to be suspended during cryopreservation, such temperature fluctuations may lead to accumulation of stress as well as to periodic release of water fractions in the samples, possibly leading to damage during long-term storage. In this study, we performed a comprehensive analysis of changes in cell survival, vital parameters, and differentiation potential, as well as transgene expression of placental MSCs after temperature fluctuations within the liquid nitrogen steam storage, mimicking long-term preservation in practical biobanking, transportation, and temporal storage. It was shown that viability and metabolic parameters of placental MSCs did not significantly differ after temperature fluctuations in the range from -196 °C to -100 °C in less than 20 cycles in comparison to constant temperature storage. However, increasing the temperature range to -80 °C as well as increasing the number of cycles leads to significant lowering of these parameters after thawing. The number of apoptotic changes increases depending on the number of cycles of temperature fluctuations. Besides, adhesive properties of the cells after thawing are significantly compromised in the samples subjected to temperature fluctuations during storage. Differentiation potential of placental MSCs was not compromised after cryopreservation

  10. A novel animal model of thymic tumour: Development of epithelial thymoma in transgenic rats carrying human T lymphocyte virus type I pX gene

    Science.gov (United States)

    Kikuchi, Kazunori; Ikeda, Hitoshi; Tsuchikawa, Takahiro; Tsuji, Takahiro; Tanaka, Satoshi; Fugo, Kazunori; Sugaya, Toshiaki; Tanaka, Yuetsu; Tateno, Masatoshi; Maruyama, Naoki; Yoshiki, Takashi

    2002-01-01

    The pX region encodes a major product of human T lymphocyte virus type I (HTLV-I) that has been implicated previously in tumour formation. To investigate the pathogenesis of pX gene in lymphoid tissues, we established a series of novel transgenic rats carrying the pX gene under the control of a rat lymphocyte-specific protein tyrosine kinase (p56lck) proximal promoter. The transgene was constructed with the −269 to +26 region of a rat p56lck proximal promoter and the pX cDNA, and was microinjected into fertilized ova of Fischer 344/jcl female rats. Six transgenic lines from 114 pups were established. Integration and expression of the transgene were detected by polymerase chain reaction (PCR) and Southern hybridization or by reverse transcriptase-PCR, northern hybridization, and immunostaining.  Thymic tumours with lethal expansion occurred in 4 of 6 transgenic lines. The tumour consisted of spindle shaped cells. Immunohistochemical and ultra-structural analysis characterized the tumour cells to as epithelial cell type, and in the tumour arose in the medulla. Therefore, the tumour is classified into predominantly epithelial and spindle cell of medullary thymoma (type A of the new World Health Organization classification), as based on the human classification. Tumor occurrence increased in proportion to levels of the pX transcription in the thymus, for each line, and sex distinction was evident regarding rates related to tumour expansion. The transgenic rat model described here is suitable as a model for analysing tumorigenesis in epithelial thymoma occurring in humans. PMID:12641821

  11. Differential gene expression between skin and cervix induced by the E7 oncoprotein in a transgenic mouse model

    Science.gov (United States)

    Ibarra Sierra, E; Díaz Chávez, J; Cortés-Malagón, EM; Uribe-Figueroa, L; Hidalgo-Miranda, A; Lambert, PF; Gariglio, P

    2013-01-01

    HPV16 E7 oncoprotein expression in K14E7 transgenic mice induces cervical cancer after 6 months of treatment with the co-carcinogen 17β-estradiol. In untreated mice, E7 also induces skin tumors late in life albeit at low penetrance. These findings indicate that E7 alters cellular functions in cervix and skin so as to predispose these organs to tumorigenesis. Using microarrays, we determined the global genes expression profile in cervical and skin tissue of young adult K14E7 transgenic mice without estrogen treatment. In these tissues, the E7 oncoprotein altered the transcriptional pattern of genes involved in several biological processes including signal transduction, transport, metabolic process, cell adhesion, apoptosis, cell differentiation, immune response and inflammatory response. Among the E7-dysregulated genes were ones not previously known to be involved in cervical neoplasia including DMBT1, GLI1 and 17βHSD2 in cervix, as well as MMP2, 12, 14, 19 and 27 in skin. PMID:22980503

  12. Non-uniform distribution pattern for differentially expressed genes of transgenic rice Huahui 1 at different developmental stages and environments.

    Directory of Open Access Journals (Sweden)

    Zhi Liu

    Full Text Available DNA microarray analysis is an effective method to detect unintended effects by detecting differentially expressed genes (DEG in safety assessment of genetically modified (GM crops. With the aim to reveal the distribution of DEG of GM crops under different conditions, we performed DNA microarray analysis using transgenic rice Huahui 1 (HH1 and its non-transgenic parent Minghui 63 (MH63 at different developmental stages and environmental conditions. Considerable DEG were selected in each group of HH1 under different conditions. For each group of HH1, the number of DEG was different; however, considerable common DEG were shared between different groups of HH1. These findings suggested that both DEG and common DEG were adequate for investigation of unintended effects. Furthermore, a number of significantly changed pathways were found in all groups of HH1, indicating genetic modification caused everlasting changes to plants. To our knowledge, our study for the first time provided the non-uniformly distributed pattern for DEG of GM crops at different developmental stages and environments. Our result also suggested that DEG selected in GM plants at specific developmental stage and environment could act as useful clues for further evaluation of unintended effects of GM plants.

  13. TRANSGENIC GDNF POSITIVELY INFLUENCES PROLIFERATION, DIFFERENTIATION, MATURATION AND SURVIVAL OF MOTOR NEURONS PRODUCED FROM MOUSE EMBRYONIC STEM CELLS.

    Directory of Open Access Journals (Sweden)

    Daniel Édgar Cortés

    2016-09-01

    Full Text Available Embryonic stem cells (ESC are pluripotent and thus can differentiate into every cell type present in the body. Directed differentiation into motor neurons has been described for pluripotent cells. Although neurotrophic factors promote neuronal survival, their role in neuronal commitment is elusive. Here, we developed double-transgenic lines of mouse ESC that constitutively produce Glial cell-derived neurotrophic factor (GDNF and also contain a GFP reporter, driven by HB9, which is expressed only by postmitotic motor neurons. After lentiviral transduction, ESC lines integrated and expressed the human GDNF gene without altering pluripotency markers before differentiation. Further, GDNF-ESC showed significantly higher spontaneous release of this neurotrophin to the medium, when compared to controls. To study motor neuron induction, control and GDNF cell lines were grown as embryoid bodies and stimulated with retinoic acid and Sonic Hedgehog. In GDNF-overexpressing cells, a significant increase of proliferative Olig2+ precursors, which are specified as spinal motor neurons, was found. Accordingly, GDNF increases the yield of cells with the pan motor neuronal markers HB9, monitored by GFP expression, and Isl1. At terminal differentiation, almost all differentiated neurons express phenotypic markers of motor neurons in GDNF cultures, with lower proportions in control cells. To test if the effects of GDNF were present at early differentiation stages, exogenous recombinant human GDNF was added to control ESC, also resulting in enhanced motor neuron differentiation. This effect was abolished by the co-addition of neutralizing anti-GDNF antibodies, strongly suggesting that differentiating ESC are responsive to GDNF. Using the HB9::GFP reporter, motor neurons were selected for electrophysiological recordings. Motor neurons differentiated from GDNF-ESC, compared to control motor neurons, showed greater electrophysiological maturation, characterized by

  14. Motor coordination and balance measurements reveal differential pathogenicity of currently spreading enterovirus 71 strains in human SCARB2 transgenic mice.

    Science.gov (United States)

    Chen, Mei-Feng; Shih, Shin-Ru

    2016-12-01

    Enterovirus 71 (EV71) has caused large-scale epidemics with neurological complications in the Asia-Pacific region. The C4a and B5 strains are the two major genotypes circulating in many countries recently. This study used a new protocol, a motor coordination task, to assess the differential pathogenicity of C4a and B5 strains in human SCARB2 transgenic mice. We found that the pathogenicity of C4a viruses was more severe than that of B5 viruses. Moreover, we discovered that an increased level of monocyte chemoattractant protein-1 was positively correlated with severely deficient motor function. This study provides a new method for evaluating EV71 infection in mice and distinguishing the severity of the symptoms caused by different clinical strains, which would contribute to studies of pathogenesis and development of vaccines and antivirals in EV71 infections.

  15. Effects of 90-Day Feeding of Transgenic Maize BT799 on the Reproductive System in Male Wistar Rats

    Directory of Open Access Journals (Sweden)

    Qian-ying Guo

    2015-12-01

    Full Text Available BT799 is a genetically modified (GM maize plant that expresses the Cry1Ac gene from Bacillus thuringiensis (Bt. The Cry1Ac gene was introduced into maize line Zhen58 to encode the Bt crystal protein and thus produce insect-resistant maize BT799. Expression of Bt protein in planta confers resistance to Lepidopteran pests and corn rootworms. The present study was designed to investigate any potential effects of BT799 on the reproductive system of male rats and evaluate the nutritional value of diets containing BT799 maize grain in a 90-day subchronic rodent feeding study. Male Wistar rats were fed with diets containing BT799 maize flours or made from its near isogenic control (Zhen58 at a concentration of 84.7%, nutritionally equal to the standard AIN-93G diet. Another blank control group of male rats were treated with commercial AIN-93G diet. No significant differences in body weight, hematology and serum chemistry results were observed between rats fed with the diets containing transgenic BT799, Zhen58 and the control in this 13-week feeding study. Results of serum hormone levels, sperm parameters and relative organ/body weights indicated no treatment-related side effects on the reproductive system of male rats. In addition, no diet-related changes were found in necropsy and histopathology examinations. Based on results of the current study, we did not find any differences in the parameters tested in our study of the reproductive system of male rats between BT799 and Zhen58 or the control.

  16. Light-evoked somatosensory perception of transgenic rats that express channelrhodopsin-2 in dorsal root ganglion cells.

    Directory of Open Access Journals (Sweden)

    Zhi-Gang Ji

    Full Text Available In vertebrate somatosensory systems, each mode of touch-pressure, temperature or pain is sensed by sensory endings of different dorsal root ganglion (DRG neurons, which conducted to the specific cortical loci as nerve impulses. Therefore, direct electrical stimulation of the peripheral nerve endings causes an erroneous sensation to be conducted by the nerve. We have recently generated several transgenic lines of rat in which channelrhodopsin-2 (ChR2 transgene is driven by the Thy-1.2 promoter. In one of them, W-TChR2V4, some neurons were endowed with photosensitivity by the introduction of the ChR2 gene, coding an algal photoreceptor molecule. The DRG neurons expressing ChR2 were immunohistochemically identified using specific antibodies to the markers of mechanoreceptive or nociceptive neurons. Their peripheral nerve endings in the plantar skin as well as the central endings in the spinal cord were also examined. We identified that ChR2 is expressed in a certain population of large neurons in the DRG of W-TChR2V4. On the basis of their morphology and molecular markers, these neurons were classified as mechanoreceptive but not nociceptive. ChR2 was also distributed in their peripheral sensory nerve endings, some of which were closely associated with CK20-positive cells to form Merkel cell-neurite complexes or with S-100-positive cells to form structures like Meissner's corpuscles. These nerve endings are thus suggested to be involved in the sensing of touch. Each W-TChR2V4 rat showed a sensory-evoked behavior in response to blue LED flashes on the plantar skin. It is thus suggested that each rat acquired an unusual sensory modality of sensing blue light through the skin as touch-pressure. This light-evoked somatosensory perception should facilitate study of how the complex tactile sense emerges in the brain.

  17. Benzo[a]pyrene-enhanced mutagenesis by man-made mineral fibres in the lung of gama-lacI transgenic rats.

    Czech Academy of Sciences Publication Activity Database

    Topinka, Jan; Loli, P.; Hurbánková, M.; Kováčiková, Z.; Volkovová, K.; Wolff, T.; Oesterle, D.; Kyrtopoulos, S.A.; Georgiadis, P.

    2006-01-01

    Roč. 595, - (2006), s. 167-173 ISSN 0027-5107 Institutional research plan: CEZ:AV0Z50390512 Keywords : transgenic rats * mineral fibres * mutations Subject RIV: DN - Health Impact of the Environment Quality Impact factor: 4.111, year: 2006

  18. Supplemental Antioxidants Do Not Ameliorate Colitis Development in HLA-B27 Transgenic Rats Despite Extremely Low Glutathione Levels in Colonic Mucosa

    NARCIS (Netherlands)

    Schepens, M.A.A.; Vink, C.; Schonewille, A.J.; Roelofs, H.M.J.; Brummer, R.J.; Meer, van der R.; Bovee-Oudenhoven, I.M.J.

    2011-01-01

    Background: Oxidative stress is presumed to play an important role in inflammatory bowel disease (IBD). Accordingly, antioxidant supplementation might be protective. Dietary calcium inhibited colitis development in HLA-B27 transgenic rats, an animal model mimicking IBD. As antioxidants might act at

  19. Sterol regulatory element binding protein 2 overexpression is associated with reduced adipogenesis and ectopic fat accumulation in transgenic spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Landa, Vladimír; Zídek, Václav; Mlejnek, Petr; Šimáková, Miroslava; Šilhavý, Jan; Trnovská, J.; Kazdová, L.; Pravenec, Michal

    2014-01-01

    Roč. 63, č. 5 (2014), s. 587-590 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LH12061 Institutional support: RVO:67985823 Keywords : sterol regulatory element binding protein 2 * transgenic * spontaneously hypertensive rat * lipid metabolism Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 1.293, year: 2014

  20. Age-related prodiabetogenic effects of transgenic resistin in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Zídek, Václav; Landa, Vladimír; Kazdová, L.; Kurtz, T.

    2006-01-01

    Roč. 23, Suppl. 4 (2006), s. 271-271 ISSN 0742-3071. [World Diabetes Congress /19./. 03.12.2006-07.12.2006, Cape Town] R&D Projects: GA ČR(CZ) GA301/06/0028 Institutional research plan: CEZ:AV0Z50110509 Keywords : resistin * autocrine effects * transgenic Subject RIV: ED - Physiology

  1. Prodiabetogenic effect of transgenic resistin expression in the old spontaneously hypertensive rat

    Czech Academy of Sciences Publication Activity Database

    Marková, I.; Landa, Vladimír; Zídek, Václav; Šeda, O.; Kazdová, L.; Pravenec, Michal

    2005-01-01

    Roč. 48, č. S1 (2005), A100-A100 ISSN 0012-186X. [Annual Meeting of the European Association for the Study of Diabetes /41./. 10.09.2005-15.09.2005, Athen] R&D Projects: GA MZd(CZ) NB7403 Institutional research plan: CEZ:AV0Z50110509 Keywords : resistin * transgenic SHR Subject RIV: ED - Physiology

  2. Combined renin inhibition/(prorenin receptor blockade in diabetic retinopathy--a study in transgenic (mREN227 rats.

    Directory of Open Access Journals (Sweden)

    Wendy W Batenburg

    Full Text Available Dysfunction of renin-angiotensin system (RAS contributes to the pathogenesis of diabetic retinopathy (DR. Prorenin, the precursor of renin is highly elevated in ocular fluid of diabetic patients with proliferative retinopathy. Prorenin may exert local effects in the eye by binding to the so-called (prorenin receptor ((PRR. Here we investigated the combined effects of the renin inhibitor aliskiren and the putative (PRR blocker handle-region peptide (HRP on diabetic retinopathy in streptozotocin (STZ-induced diabetic transgenic (mRen227 rats (a model with high plasma prorenin levels as well as prorenin stimulated cytokine expression in cultured Müller cells. Adult (mRen227 rats were randomly divided into the following groups: (1 non-diabetic; (2 diabetic treated with vehicle; (3 diabetic treated with aliskiren (10 mg/kg per day; and (4 diabetic treated with aliskiren+HRP (1 mg/kg per day. Age-matched non-diabetic wildtype Sprague-Dawley rats were used as control. Drugs were administered by osmotic minipumps for three weeks. Transgenic (mRen227 rat retinas showed increased apoptotic cell death of both inner retinal neurons and photoreceptors, increased loss of capillaries, as well as increased expression of inflammatory cytokines. These pathological changes were further exacerbated by diabetes. Aliskiren treatment of diabetic (mRen227 rats prevented retinal gliosis, and reduced retinal apoptotic cell death, acellular capillaries and the expression of inflammatory cytokines. HRP on top of aliskiren did not provide additional protection. In cultured Müller cells, prorenin significantly increased the expression levels of IL-1α and TNF-α, and this was completely blocked by aliskiren or HRP, their combination, (PRR siRNA and the AT1R blocker losartan, suggesting that these effects entirely depended on Ang II generation by (PRR-bound prorenin. In conclusion, the lack of effect of HRP on top of aliskiren, and the Ang II-dependency of the ocular

  3. Differential susceptibility of transgenic mice expressing human surfactant protein B genetic variants to Pseudomonas aeruginosa induced pneumonia.

    Science.gov (United States)

    Ge, Lin; Liu, Xinyu; Chen, Rimei; Xu, Yongan; Zuo, Yi Y; Cooney, Robert N; Wang, Guirong

    2016-01-08

    Surfactant protein B (SP-B) is essential for lung function. Previous studies have indicated that a SP-B 1580C/T polymorphism (SNP rs1130866) was associated with lung diseases including pneumonia. The SNP causes an altered N-linked glycosylation modification at Asn129 of proSP-B, e.g. the C allele with this glycosylation site but not in the T allele. This study aimed to generate humanized SP-B transgenic mice carrying either SP-B C or T allele without a mouse SP-B background and then examine functional susceptibility to bacterial pneumonia in vivo. A total of 18 transgenic mouse founders were generated by the DNA microinjection method. These founders were back-crossed with SP-B KO mice to eliminate mouse SP-B background. Four founder lines expressing similar SP-B levels to human lung were chosen for further investigation. After intratracheal infection with 50 μl of Pseudomonas aeruginosa solution (1 × 10(6) CFU/mouse) or saline in SP-B-C, SP-B-T mice the mice were sacrificed 24 h post-infection and tissues were harvested. Analysis of surfactant activity revealed differential susceptibility between SP-B-C and SP-B-T mice to bacterial infection, e.g. higher minimum surface tension in infected SP-B-C versus infected SP-B-T mice. These results demonstrate for the first time that human SP-B C allele is more susceptible to bacterial pneumonia than SP-B T allele in vivo. Copyright © 2015 Elsevier Inc. All rights reserved.

  4. Establishment and functional characterization of a tracheal epithelial cell line RTEC11 from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen.

    Science.gov (United States)

    Tabuchi, Yoshiaki; Doi, Takeshi; Takasaki, Ichiro; Takahashi, Ri-ichi; Ueda, Masatsugu; Suzuki, Yoshihisa; Obinata, Masuo

    2008-11-01

    A tracheal epithelial cell line RTEC11 was established from transgenic rats harboring temperature-sensitive simian virus 40 large T-antigen. The cells grew continuously at a permissive temperature of 33 degrees C but not at a non-permissive temperature of 39 degrees C. Morphological and functional investigations demonstrated that the cells were polarized epithelial cells maintaining a regulated permeability barrier function. Interestingly, the expression levels of Muc1 (mucin 1) and Scgb1a1 (uteroglobin), non-ciliated secretory cell markers, and Tubb4 (tubulin beta 4), a ciliated cell marker, were significantly increased under the cell growth-restricted condition. Global gene expression and computational network analyses demonstrated a significant genetic network associated with cellular development and differentiation in cells cultured at the non-permissive temperature. The tracheal epithelial cell line RTEC11 with unique characteristics should be useful as an in vitro model for studies of the physiological functions and gene expression of tracheal epithelial cells.

  5. A new transgenic rat model of hepatic steatosis and the metabolic syndrome

    Czech Academy of Sciences Publication Activity Database

    Qi, N.R.; Wang, J.; Zídek, Václav; Landa, Vladimír; Mlejnek, Petr; Kazdová, L.; Pravenec, Michal; Kurtz, T. W.

    2005-01-01

    Roč. 45, č. 5 (2005), s. 1004-1011 ISSN 0194-911X R&D Projects: GA MZd(CZ) NB7403; GA MŠk(CZ) 1M0520 Grant - others:NIH(US) HL35018; NIH(US) HL63709; NIH(US) TW01236 Institutional research plan: CEZ:AV0Z50110509 Keywords : hepatic steatosis * Srebp1a * transgenic SHR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 6.331, year: 2005

  6. Safety evaluation of transgenic low-gliadin wheat in Sprague Dawley rats: An alternative to the gluten free diet with no subchronic adverse effects.

    Science.gov (United States)

    Ozuna, Carmen Victoria; Barro, Francisco

    2017-09-01

    Gluten-associated pathologies have increased in recent years and there is a greater demand for low or gluten-free products. Transgenic low-gliadin wheat lines showed low T-cell response, good bread-making properties, and excellent sensory assets. The aim of this study was to evaluate the safety of the whole-wheat flour from one transgenic low-gliadin line (named E82) in a 90-day feeding study. In this study males (n = 50) and females (n = 50) SD rats were used. They were fed with doses of 1.42, 2.83 and 5.67 g/kg/day of the transgenic E82 line, 5.67 g/kg/day of the WT and a blank group. We found that there were no significant differences in the development of animals. Biochemistry for liver and kidney function were similar for males and females of all groups. Other haematological and metabolic blood parameters, as well as organ weight did not show significant differences in the five groups of animals. In the histopathological study performed for the higher dose of transgenic E82 line, WT and blank group no abnormalities were observed. The whole-wheat flour of E82 line administered to rats at tested doses for 90 days did not have any adverse effects and there was no difference with the rats which ate WT wheat. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Characterization and differentiation of diverse transgenic and nontransgenic soybean varieties from CE protein profiles. Research article

    OpenAIRE

    García Ruiz, Carmen; García López, María Concepción; Cifuentes, Alejandro; Marina Alegre, María Luisa

    2007-01-01

    Nowadays, soybeans are commercialized in a wide variety of colors and tones. Moreover, some pigmented seeds are being commercialized as soybeans while, on other occasions, these seeds are labeled as mung beans, azuki beans or soybean frijoles generating confusion on their identity. In this work, CE has been applied for the first time for the characterization and differentiation of different pigmented beans commercialized as soybeans. Other seeds commercialized as azuki, mung gr...

  8. HIV-1 transgenic rat CD4+ T cells develop decreased CD28 responsiveness and suboptimal Lck tyrosine dephosphorylation following activation

    International Nuclear Information System (INIS)

    Yadav, Anjana; Pati, Shibani; Nyugen, Anhthu; Barabitskaja, Oxana; Mondal, Prosanta; Anderson, Michael; Gallo, Robert C.; Huso, David L.; Reid, William

    2006-01-01

    Impaired CD4+ T cell responses, resulting in dysregulated T-helper 1 (Th1) effector and memory responses, are a common result of HIV-1 infection. These defects are often preceded by decreased expression and function of the α/β T cell receptor (TCR)-CD3 complex and of co-stimulatory molecules including CD28, resulting in altered T cell proliferation, cytokine secretion and cell survival. We have previously shown that HIV Tg rats have defective development of T cell effector function and generation of specific effector/memory T cell subsets. Here we identify abnormalities in activated HIV-1 Tg rat CD4+ T cells that include decreased pY505 dephosphorylation of Lck (required for Lck activation), decreased CD28 function, reduced expression of the anti-apoptotic molecule Bcl-xL, decreased secretion of the mitogenic lympokine interleukin-2 (IL-2) and increased activation induced apoptosis. These events likely lead to defects in antigen-specific signaling and may help explain the disruption of Th1 responses and the generation of specific effector/memory subsets in transgenic CD4+ T cells

  9. Cis-vaccenic acid induces differentiation and up-regulates gamma globin synthesis in K562, JK1 and transgenic mice erythroid progenitor stem cells

    Science.gov (United States)

    Aimola, Idowu A.; Inuwa, Hajiya M.; Nok, Andrew J.; Mamman, Aisha I.; Bieker, James J.

    2017-01-01

    Gamma globin induction remains a promising pharmacological therapeutic treatment mode for sickle cell anemia and beta thalassemia, however Hydroxyurea remains the only FDA approved drug which works via this mechanism. In this regard, we assayed the γ-globin inducing capacity of Cis-vaccenic acid (CVA). CVA induced differentiation of K562, JK1 and transgenic mice primary bone marrow hematopoietic progenitor stem cells. CVA also significantly up-regulated γ-globin gene expression in JK-1 and transgenic mice bone marrow erythroid progenitor stem cells (TMbmEPSCs) but not K562 cells without altering cell viability. Increased γ-globin expression was accompanied by KLF1 suppression in CVA induced JK-1 cells. Erythropoietin induced differentiation of JK-1 cells 24 h before CVA induction did not significantly alter CVA induced differentiation and γ-globin expression in JK-1 cells. Inhibition of JK-1 and Transgenic mice bone marrow erythroid progenitor stem cells Fatty acid elongase 5 (Elovl5) and Δ9 desaturase suppressed the γ-globin inductive effects of CVA. CVA treatment failed to rescue γ-globin expression in Elovl5 and Δ9-desaturase inhibited cells 48 h post inhibition in JK-1 cells. The data suggests that CVA directly modulates differentiation of JK-1 and TMbmEPSCs, and indirectly modulates γ-globin gene expression in these cells. Our findings provide important clues for further evaluations of CVA as a potential fetal hemoglobin therapeutic inducer PMID:26879870

  10. A transgenic rat expressing green fluorescent protein (GFP) in peripheral nerves provides a new hindlimb model for the study of nerve injury and regeneration.

    Science.gov (United States)

    Moore, Amy M; Borschel, Gregory H; Santosa, Katherine A; Flagg, Eric R; Tong, Alice Y; Kasukurthi, Rahul; Newton, Piyaraj; Yan, Ying; Hunter, Daniel A; Johnson, Philip J; Mackinnon, Susan E

    2012-02-15

    In order to evaluate nerve regeneration in clinically relevant hindlimb surgical paradigms not feasible in fluorescent mice models, we developed a rat that expresses green fluorescent protein (GFP) in neural tissue. Transgenic Sprague-Dawley rat lines were created using pronuclear injection of a transgene expressing GFP under the control of the thy1 gene. Nerves were imaged under fluorescence microscopy and muscles were imaged with confocal microscopy to determine GFP expression following sciatic nerve crush, transection and direct suturing, and transection followed by repair with a nerve isograft from nonexpressing littermates. In each surgical paradigm, fluorescence microscopy demonstrated the loss and reappearance of fluorescence with regeneration of axons following injury. Nerve regeneration was confirmed with imaging of Wallerian degeneration followed by reinnervation of extensor digitorum longus (EDL) muscle motor endplates using confocal microscopy. The generation of a novel transgenic rat model expressing GFP in neural tissue allows in vivo imaging of nerve regeneration and visualization of motor endplate reinnervation. This rat provides a new model for studying peripheral nerve injury and regeneration over surgically relevant distances. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Medial prefrontal cortex neuronal activation and synaptic alterations after stress-induced reinstatement of palatable food seeking: a study using c-fos-GFP transgenic female rats.

    Science.gov (United States)

    Cifani, Carlo; Koya, Eisuke; Navarre, Brittany M; Calu, Donna J; Baumann, Michael H; Marchant, Nathan J; Liu, Qing-Rong; Khuc, Thi; Pickel, James; Lupica, Carl R; Shaham, Yavin; Hope, Bruce T

    2012-06-20

    Relapse to maladaptive eating habits during dieting is often provoked by stress and there is evidence for a role of ovarian hormones in stress responses and feeding. We studied the role of these hormones in stress-induced reinstatement of food seeking and medial prefrontal cortex (mPFC) neuronal activation in c-fos-GFP transgenic female rats, which express GFP in strongly activated neurons. Food-restricted ovariectomized or sham-operated c-fos-GFP rats were trained to lever-press for palatable food pellets. Subsequently, lever-pressing was extinguished and reinstatement of food seeking and mPFC neuronal activation was assessed after injections of the pharmacological stressor yohimbine (0.5-2 mg/kg) or pellet priming (1-4 noncontingent pellets). Estrous cycle effects on reinstatement were also assessed in wild-type rats. Yohimbine- and pellet-priming-induced reinstatement was associated with Fos and GFP induction in mPFC; both reinstatement and neuronal activation were minimally affected by ovarian hormones in both c-fos-GFP and wild-type rats. c-fos-GFP transgenic rats were then used to assess glutamatergic synaptic alterations within activated GFP-positive and nonactivated GFP-negative mPFC neurons following yohimbine-induced reinstatement of food seeking. This reinstatement was associated with reduced AMPA receptor/NMDA receptor current ratios and increased paired-pulse facilitation in activated GFP-positive but not GFP-negative neurons. While ovarian hormones do not appear to play a role in stress-induced relapse of food seeking in our rat model, this reinstatement was associated with unique synaptic alterations in strongly activated mPFC neurons. Our paper introduces the c-fos-GFP transgenic rat as a new tool to study unique synaptic changes in activated neurons during behavior.

  12. Analysis of Differentially Expressed Genes in Gastrocnemius Muscle between DGAT1 Transgenic Mice and Wild-Type Mice

    Directory of Open Access Journals (Sweden)

    Fei Ying

    2017-01-01

    Full Text Available Adipose tissue was the major energy deposition site of the mammals and provided the energy for the body and released the external pressure to the internal organs. In animal production, fat deposition in muscle can affect the meat quality, especially the intramuscular fat (IMF content. Diacylglycerol acyltransferase-1 (DGAT1 was the key enzyme to control the synthesis of the triacylglycerol in adipose tissue. In order to better understand the regulation mechanism of the DGAT1 in the intramuscular fat deposition, the global gene expression profiling was performed in gastrocnemius muscle between DGAT1 transgenic mice and wild-type mice by microarray. 281 differentially expressed transcripts were identified with at least 1.5-fold change and the p value < 0.05. 169 transcripts were upregulated and 112 transcripts were downregulated. Ten genes (SREBF1, DUSP1, PLAGL1, FKBP5, ZBTB16, PPP1R3C, CDC14A, GLUL, PDK4, and UCP3 were selected to validate the reliability of the chip’s results by the real-time PCR. The finding of RT-PCR was consistent with the gene chip. Seventeen signal pathways were analyzed using KEGG pathway database and the pathways concentrated mainly on the G-protein coupled receptor protein signaling pathway, signal transduction, oxidation-reduction reaction, olfactory receptor activity, protein binding, and zinc ion binding. This study implied a function role of DGAT1 in the synthesis of TAG, insulin resistance, and IMF deposition.

  13. Bone marrow-derived mesenchymal stem cells expressing the Shh transgene promotes functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Jia, Yijia; Wu, Dou; Zhang, Ruiping; Shuang, Weibing; Sun, Jiping; Hao, Haihu; An, Qijun; Liu, Qiang

    2014-06-24

    Spinal cord injury (SCI) is one of the most disabling diseases. Cell-based gene therapy is becoming a major focus for the treatment of SCI. Bone marrow-derived mesenchymal stem cells (BMSCs) are a promising stem cell type useful for repairing SCI. However, the effects of BMSCs transplants are likely limited because of low transplant survival after SCI. Sonic hedgehog (Shh) is a multifunctional growth factor which can facilitate neuronal and BMSCs survival, promote axonal growth, prevent activation of the astrocyte lineage, and enhance the delivery of neurotrophic factors in BMSCs. However, treatment of SCI with Shh alone also has limited effects on recovery, because the protein is cleared quickly. In this study, we investigated the use of BMSCs overexpressing the Shh transgene (Shh-BMSCs) in the treatment of rats with SCI, which could stably secrete Shh and thereby enhance the effects of BMSCs, in an attempt to combine the advantages of Shh and BMSCs and so to promote functional recovery. After Shh-BMSCs treatment of SCI via the subarachnoid, we detected significantly greater damage recovery compared with that seen in rats treated with phosphate-buffered saline (PBS) and BMSCs. Use of Shh-BMSCs increased the expression and secretion of Shh, basic fibroblast growth factor (bFGF) and vascular endothelial growth factor (VEGF), improved the behavioral function, enhanced the BMSCs survival, promoted the expression level of neurofilament 200 (NF200), and reduced the expression of glial fibrillary acidic protein (GFAP). Thus, our results indicated that Shh-BMSCs enhanced recovery of neurological function after SCI in rats and could be a potential valuable therapeutic intervention for SCI in humans. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  14. Benzo[a]pyrene-enhanced mutagenesis by asbestos in the lung of lambda-lacI transgenic rats.

    Science.gov (United States)

    Loli, P; Topinka, J; Georgiadis, P; Dusinská, M; Hurbánková, M; Kováciková, Z; Volkovová, K; Wolff, T; Oesterle, D; Kyrtopoulos, S A

    2004-09-03

    To study the suspected mechanism of the interaction between tobacco smoking and asbestos exposure in the modulation of cancer risk, the mutagenic potential of asbestos in combination with the tobacco smoke carcinogen benzo[a]pyrene (B[a]P) was examined in vivo in the rat lung. B[a]P was administered intratracheally in one set of experiments, or by two daily intraperitoneal injections in another set of experiments, to lambdalacI transgenic rats, together with 1, 2 or 4 x 2 mg amosite in one experiment. In the first experiment, the combined action of amosite and B[a]P caused a synergistic (superadditive) increase of mutation frequency in the lung, as compared to groups treated only with asbestos or B[a]P. In the second experiment, i.p. treatment with B[a]P did not significantly alter the mutation frequency induced by amosite, neither after 4 nor after 16 weeks of exposure. The B[a]P-DNA adduct levels were unaffected by amosite co-treatment in both experiments. We assume that the synergistic increase of mutation frequency after intratracheal treatment was due to the mitogenic activities of B[a]P and of amosite. In conclusion, our findings indicate that a weak and delayed mutagenic effect of amosite in rat lung observed in another study was strongly enhanced by the concomitant action of B[a]P. The striking enhancement effect of B[a]P may provide a basis for understanding the suspected synergism of smoking on asbestos carcinogenesis.

  15. Palmitate attenuates osteoblast differentiation of fetal rat calvarial cells

    Energy Technology Data Exchange (ETDEWEB)

    Yeh, Lee-Chuan C.; Ford, Jeffery J. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); Lee, John C. [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States); Adamo, Martin L., E-mail: adamo@biochem.uthscsa.edu [Department of Biochemistry, The University of Texas Health Science Center at San Antonio, TX (United States); The Sam and Ann Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, TX (United States)

    2014-07-18

    Highlights: • Palmitate inhibits osteoblast differentiation. • Fatty acid synthase. • PPARγ. • Acetyl Co-A carboxylase inhibitor TOFA. • Fetal rat calvarial cell culture. - Abstract: Aging is associated with the accumulation of ectopic lipid resulting in the inhibition of normal organ function, a phenomenon known as lipotoxicity. Within the bone marrow microenvironment, elevation in fatty acid levels may produce an increase in osteoclast activity and a decrease in osteoblast number and function, thus contributing to age-related osteoporosis. However, little is known about lipotoxic mechanisms in intramembraneous bone. Previously we reported that the long chain saturated fatty acid palmitate inhibited the expression of the osteogenic markers RUNX2 and osteocalcin in fetal rat calvarial cell (FRC) cultures. Moreover, the acetyl CoA carboxylase inhibitor TOFA blocked the inhibitory effect of palmitate on expression of these two markers. In the current study we have extended these observations to show that palmitate inhibits spontaneous mineralized bone formation in FRC cultures in association with reduced mRNA expression of RUNX2, alkaline phosphatase, osteocalcin, and bone sialoprotein and reduced alkaline phosphatase activity. The effects of palmitate on osteogenic marker expression were inhibited by TOFA. Palmitate also inhibited the mRNA expression of fatty acid synthase and PPARγ in FRC cultures, and as with osteogenic markers, this effect was inhibited by TOFA. Palmitate had no effect on FRC cell proliferation or apoptosis, but inhibited BMP-7-induced alkaline phosphatase activity. We conclude that palmitate accumulation may lead to lipotoxic effects on osteoblast differentiation and mineralization and that increases in fatty acid oxidation may help to prevent these lipotoxic effects.

  16. Rhesus iPSC Safe Harbor Gene-Editing Platform for Stable Expression of Transgenes in Differentiated Cells of All Germ Layers.

    Science.gov (United States)

    Hong, So Gun; Yada, Ravi Chandra; Choi, Kyujoo; Carpentier, Arnaud; Liang, T Jake; Merling, Randall K; Sweeney, Colin L; Malech, Harry L; Jung, Moonjung; Corat, Marcus A F; AlJanahi, Aisha A; Lin, Yongshun; Liu, Huimin; Tunc, Ilker; Wang, Xujing; Palisoc, Maryknoll; Pittaluga, Stefania; Boehm, Manfred; Winkler, Thomas; Zou, Jizhong; Dunbar, Cynthia E

    2017-01-04

    Nonhuman primate (NHP) induced pluripotent stem cells (iPSCs) offer the opportunity to investigate the safety, feasibility, and efficacy of proposed iPSC-derived cellular delivery in clinically relevant in vivo models. However, there is need for stable, robust, and safe labeling methods for NHP iPSCs and their differentiated lineages to study survival, proliferation, tissue integration, and biodistribution following transplantation. Here we investigate the utility of the adeno-associated virus integration site 1 (AAVS1) as a safe harbor for the addition of transgenes in our rhesus macaque iPSC (RhiPSC) model. A clinically relevant marker gene, human truncated CD19 (hΔCD19), or GFP was inserted into the AAVS1 site in RhiPSCs using the CRISPR/Cas9 system. Genetically modified RhiPSCs maintained normal karyotype and pluripotency, and these clones were able to further differentiate into all three germ layers in vitro and in vivo. In contrast to transgene delivery using randomly integrating viral vectors, AAVS1 targeting allowed stable transgene expression following differentiation. Off-target mutations were observed in some edited clones, highlighting the importance of careful characterization of these cells prior to downstream applications. Genetically marked RhiPSCs will be useful to further advance clinically relevant models for iPSC-based cell therapies. Published by Elsevier Inc.

  17. Fumaric Acid Esters Can Block Pro-Inflammatory Actions of Human CRP and Ameliorate Metabolic Disturbances in Transgenic Spontaneously Hypertensive Rats

    Czech Academy of Sciences Publication Activity Database

    Šilhavý, Jan; Zídek, Václav; Mlejnek, Petr; Landa, Vladimír; Šimáková, Miroslava; Strnad, Hynek; Oliyarnyk, O.; Škop, V.; Kazdová, L.; Kurtz, T.; Pravenec, Michal

    2014-01-01

    Roč. 9, č. 7 (2014), e101906 E-ISSN 1932-6203 R&D Projects: GA MZd(CZ) NT14325; GA MŠk(CZ) LH12061; GA MŠk(CZ) LL1204 Institutional support: RVO:67985823 ; RVO:68378050 Keywords : fumaric acid esters * C-reactive protein * transgenic * spontaneously hypertensive rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.234, year: 2014

  18. A transgenic rat expressing human APP with the Swedish Alzheimer's disease mutation

    DEFF Research Database (Denmark)

    Folkesson, Ronnie; Malkiewicz, Katarzyna; Kloskowska, Ewa

    2007-01-01

    protein (APP) containing the Swedish AD mutation. The highest level of expression in the brain is found in the cortex, hippocampus, and cerebellum. Starting after the age of 15 months, the rats show increased tau phosphorylation and extracellular Abeta staining. The Abeta is found predominantly...

  19. Transgenic rescue of defective Cd36 enhances myocardial adenylyl cyclase signaling in spontaneously hypertensive rats

    Czech Academy of Sciences Publication Activity Database

    Klevstig, M.; Manakov, D.; Kašparová, D.; Brabcová, I.; Papoušek, František; Žurmanová, J.; Zídek, Václav; Šilhavý, Jan; Neckář, Jan; Pravenec, Michal; Kolář, František; Nováková, O.; Novotný, J.

    2013-01-01

    Roč. 465, č. 10 (2013), s. 1477-1486 ISSN 0031-6768 R&D Projects: GA MŠk(CZ) LL1204; GA AV ČR(CZ) IAAX01110901; GA ČR(CZ) GAP303/10/0505 Institutional support: RVO:67985823 Keywords : SHR rats * Cd36 * heart * beta-Adrenergic receptors * Adenylyl cyclase * Protein kinase A Subject RIV: ED - Physiology Impact factor: 3.073, year: 2013

  20. Implantation of undifferentiated and pre-differentiated human neural stem cells in the R6/2 transgenic mouse model of Huntington’s disease

    Directory of Open Access Journals (Sweden)

    El-Akabawy Gehan

    2012-08-01

    Full Text Available Abstract Background Cell therapy is a potential therapeutic approach for several neurodegenetative disease, including Huntington Disease (HD. To evaluate the putative efficacy of cell therapy in HD, most studies have used excitotoxic animal models with only a few studies having been conducted in genetic animal models. Genetically modified animals should provide a more accurate representation of human HD, as they emulate the genetic basis of its etiology. Results In this study, we aimed to assess the therapeutic potential of a human striatal neural stem cell line (STROC05 implanted in the R6/2 transgenic mouse model of HD. As DARPP-32 GABAergic output neurons are predominately lost in HD, STROC05 cells were also pre-differentiated using purmorphamine, a hedgehog agonist, to yield a greater number of DARPP-32 cells. A bilateral injection of 4.5x105 cells of either undifferentiated or pre-differentiated DARPP-32 cells, however, did not affect outcome compared to a vehicle control injection. Both survival and neuronal differentiation remained poor with a mean of only 161 and 81 cells surviving in the undifferentiated and differentiated conditions respectively. Only a few cells expressed the neuronal marker Fox3. Conclusions Although the rapid brain atrophy and short life-span of the R6/2 model constitute adverse conditions to detect potentially delayed treatment effects, significant technical hurdles, such as poor cell survival and differentiation, were also sub-optimal. Further consideration of these aspects is therefore needed in more enduring transgenic HD models to provide a definite assessment of this cell line’s therapeutic relevance. However, a combination of treatments is likely needed to affect outcome in transgenic models of HD.

  1. Genotoxicity of phenacetin in the kidney and liver of Sprague-Dawley gpt delta transgenic rats in 26-week and 52-week repeated-dose studies.

    Science.gov (United States)

    Kawamura, Yuji; Hayashi, Hiroyuki; Masumura, Kenichi; Numazawa, Satoshi; Nohmi, Takehiko

    2014-10-03

    Transgenic rat mutation assays can be used to assess genotoxic properties of chemicals in target organs for carcinogenicity. Mutations in transgenes are genetically neutral and accumulate during a treatment period; thus, assays are suitable for assessing the genotoxic risk of chemicals using a repeated-dose treatment paradigm. However, only a limited number of such studies have been conducted. To examine the utility of transgenic rat assays in repeated-dose studies, we fed male and female Sprague-Dawley gpt delta rats with a 0.5% phenacetin-containing diet for 26 and 52 weeks. A long-term feeding of phenacetin is known to induce renal cancer in rats. Phenacetin administration for 52 weeks in males significantly increased gpt (point mutations) mutant frequency (MF) in the kidney, the target organ of carcinogenesis. In the liver, the nontarget organ of carcinogenesis, gpt MFs were significantly elevated in phenacetin treatment groups of both genders during 26- and 52-week treatments. Furthermore, sensitive to P2 interference (Spi(-)deletions) MF increased in the liver of both genders following 52-week treatment. MFs were higher after treatment for 52 weeks than after treatment for 26 weeks. Frequencies of phenacetin-induced mutations were higher in the liver than in the kidney, suggesting that the intensity of genotoxicity does not necessarily correlate with the induction of tumor formation. Results from gpt delta rat assays of repeated-dose treatments are extremely useful to elucidate the relationship between gene mutations and carcinogenesis in the target organ induced by cancer-causing agents. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. Multi-Shell Hybrid Diffusion Imaging (HYDI) at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Science.gov (United States)

    Daianu, Madelaine; Jacobs, Russell E; Weitz, Tara M; Town, Terrence C; Thompson, Paul M

    2015-01-01

    Diffusion weighted imaging (DWI) is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI) and high-angular resolution imaging (HARDI) are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI), composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD) that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA), generalized fractional anisotropy (GFA) and normalized quantitative anisotropy (NQA). We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI). We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  3. Multi-Shell Hybrid Diffusion Imaging (HYDI at 7 Tesla in TgF344-AD Transgenic Alzheimer Rats.

    Directory of Open Access Journals (Sweden)

    Madelaine Daianu

    Full Text Available Diffusion weighted imaging (DWI is widely used to study microstructural characteristics of the brain. Diffusion tensor imaging (DTI and high-angular resolution imaging (HARDI are frequently used in radiology and neuroscience research but can be limited in describing the signal behavior in composite nerve fiber structures. Here, we developed and assessed the benefit of a comprehensive diffusion encoding scheme, known as hybrid diffusion imaging (HYDI, composed of 300 DWI volumes acquired at 7-Tesla with diffusion weightings at b = 1000, 3000, 4000, 8000 and 12000 s/mm2 and applied it in transgenic Alzheimer rats (line TgF344-AD that model the full clinico-pathological spectrum of the human disease. We studied and visualized the effects of the multiple concentric "shells" when computing three distinct anisotropy maps-fractional anisotropy (FA, generalized fractional anisotropy (GFA and normalized quantitative anisotropy (NQA. We tested the added value of the multi-shell q-space sampling scheme, when reconstructing neural pathways using mathematical frameworks from DTI and q-ball imaging (QBI. We show a range of properties of HYDI, including lower apparent anisotropy when using high b-value shells in DTI-based reconstructions, and increases in apparent anisotropy in QBI-based reconstructions. Regardless of the reconstruction scheme, HYDI improves FA-, GFA- and NQA-aided tractography. HYDI may be valuable in human connectome projects and clinical research, as well as magnetic resonance research in experimental animals.

  4. Establishment of mesenchymal stem cells derived from bone marrow and synovium of transgenic rats expressing dual reporter genes

    Science.gov (United States)

    Horie, Masafumi; Sekiya, Ichiro; Muneta, Takeshi; Murakami, Takashi; Kobayashi, Eiji

    2008-02-01

    Mesenchymal stem cells (MSCs) are an attractive cell source for regenerative medicine because they can be harvested in a relatively less invasive manner, easily isolated, and expanded with multipotentiality. Bone marrow seems to be the most commonly used tissue as a source for MSCs at present. However, there are emerging reports to describe that MSCs exist in most mesenchymal tissues. We have recently compared in vivo chondrogenic potential in MSCs derived from various mesenchymal tissues and demonstrated that synovium-MSCs and bone marrow-MSCs possessed greater chondrogenic ability than other mesenchymal tissue-derived MSCs. This indicates that those MSCs are promising cellular sources for cartilage regeneration. As the fate of synovium-MSCs is unclear after transplantation, we herein established MSCs using double transgenic rats expressing either Luciferase/GFP or Luciferase/LacZ. The cellular fate of MSCs could be traced by an in vivo luciferase-based luminescent imaging system, and also followed histologically by green fluorescence and by X-gal staining, respectively. Thus, both synovium-MSCs and bone marrow-MSCs expressing Luciferase/GFP or Luciferase/LacZ provide powerful tools not only for cell tracking in vivo but also for histological analysis, leading to a compelling experimental model of cartilage regeneration with cell therapy.

  5. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    OpenAIRE

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in pr...

  6. MR brain volumetric measurements are predictive of neurobehavioral impairment in the HIV-1 transgenic rat

    Directory of Open Access Journals (Sweden)

    Rafael Casas

    2018-01-01

    Conclusion: The disproportionately delayed striatal growth compared to whole brain between 5 and 9 weeks of age and the role of striatal volume in predicting neurobehavioral deficits suggest an important role of the dopaminergic system in HIV associated neuropathology. This might explain problems with motor coordination and executive decisions in this animal model. Smaller brain and subregional volumes and neurobehavioral deficits were seen as early as 5 weeks of age, suggesting an early brain insult in the Tg rat. Neuroprotective therapy testing in this model should thus target this early stage of development, before brain damage becomes irreversible.

  7. Pulsatile luteinizing hormone and follicle-stimulating hormone secretion and gonadotropin subunit mRNA levels in the ovariectomized GPR-4 transgenic rat.

    Science.gov (United States)

    El Majdoubi, Mohammed; Paruthiyil, Sreenivasan; Weiner, Richard I

    2003-12-01

    Genetic targeting of the cAMP-specific phosphodiesterase 4D1 (PDE4D1) to gonadotropin-releasing hormone (GnRH) neurons in the GPR-4 transgenic rat resulted in decreased luteinizing hormone (LH) pulse frequency in castrated female and male rats. A similar decrease in the intrinsic GnRH pulse frequency was observed in GT1 GnRH cells expressing the PDE4D1 phosphodiesterase. We have extended these findings in ovariectomized (OVX) GPR-4 rats by asking what effect transgene expression had on pulsatile LH and follicle-stimulating hormone (FSH) secretion, plasma and pituitary levels of LH and FSH, and levels of the alpha-glycoprotein hormone subunit (alpha-GSU), LH-beta and FSH-beta subunit mRNAs. In OVX GPR-4 rats the LH pulse frequency but not pulse amplitude was decreased by 50% compared to wild-type littermate controls. Assaying the same samples for FSH, the FSH pulse frequency and amplitude were unchanged. The plasma and anterior pituitary levels of LH in the GPR-4 rats were significantly decreased by approximately 45%, while the plasma but not anterior pituitary level of FSH was significantly decreased by 25%. As measured by real-time RT-PCR, the mRNA levels for the alpha-GSU in the GPR-4 rats were significantly decreased by 41%, the LH-beta subunit by 38% and the FSH-beta subunit by 28%. We conclude that in the castrated female GPR-4 rats the decreased GnRH pulse frequency results in decreased levels of LH and FSH and in the alpha- and beta-subunit mRNA levels. Copyright 2003 S. Karger AG, Basel

  8. Transgenic Rat Model of Huntington’s Disease: A Histopathological Study and Correlations with Neurodegenerative Process in the Brain of HD Patients

    Directory of Open Access Journals (Sweden)

    Yvona Mazurová

    2014-01-01

    Full Text Available Rats transgenic for Huntington’s disease (tgHD51 CAG rats, surviving up to two years, represent an animal model of HD similar to the late-onset form of human disease. This enables us to follow histopathological changes in course of neurodegenerative process (NDP within the striatum and compare them with postmortem samples of human HD brains. A basic difference between HD pathology in human and tgHD51 rats is in the rate of NDP progression that originates primarily from slow neuronal degeneration consequently resulting in lesser extent of concomitant reactive gliosis in the brain of tgHD51 rats. Although larger amount of striatal neurons displays only gradual decrease in their size, their number is significantly reduced in the oldest tgHD51 rats. Our quantitative analysis proved that the end of the first year represents the turn in the development of morphological changes related to the progression of NDP in tgHD51 rats. Our data also support the view that all types of CNS glial cells play an important, irreplaceable role in NDP. To the best of our knowledge, our findings are the first to document that tgHD51 CAG rats can be used as a valid animal model for detailed histopathological studies related to HD in human.

  9. Development of diabetes does not alter behavioral and molecular circadian rhythms in a transgenic rat model of type 2 diabetes mellitus.

    Science.gov (United States)

    Qian, Jingyi; Thomas, Anthony P; Schroeder, Analyne M; Rakshit, Kuntol; Colwell, Christopher S; Matveyenko, Aleksey V

    2017-08-01

    Metabolic state and circadian clock function exhibit a complex bidirectional relationship. Circadian disruption increases propensity for metabolic dysfunction, whereas common metabolic disorders such as obesity and type 2 diabetes (T2DM) are associated with impaired circadian rhythms. Specifically, alterations in glucose availability and glucose metabolism have been shown to modulate clock gene expression and function in vitro; however, to date, it is unknown whether development of diabetes imparts deleterious effects on the suprachiasmatic nucleus (SCN) circadian clock and SCN-driven outputs in vivo. To address this question, we undertook studies in aged diabetic rats transgenic for human islet amyloid polypeptide, an established nonobese model of T2DM (HIP rat), which develops metabolic defects closely recapitulating those present in patients with T2DM. HIP rats were also cross-bred with a clock gene reporter rat model (Per1:luciferase transgenic rat) to permit assessment of the SCN and the peripheral molecular clock function ex vivo. Utilizing these animal models, we examined effects of diabetes on 1 ) behavioral circadian rhythms, 2 ) photic entrainment of circadian activity, 3 ) SCN and peripheral tissue molecular clock function, and 4 ) melatonin secretion. We report that circadian activity, light-induced entrainment, molecular clockwork, as well as melatonin secretion are preserved in the HIP rat model of T2DM. These results suggest that despite the well-characterized ability of glucose to modulate circadian clock gene expression acutely in vitro, SCN clock function and key behavioral and physiological outputs appear to be preserved under chronic diabetic conditions characteristic of nonobese T2DM. Copyright © 2017 the American Physiological Society.

  10. Differential effects of amlodipine and atorvastatin treatment and their combination on atherosclerosis in ApoE*3-Leiden transgenic mice

    NARCIS (Netherlands)

    Delsing, D.J.; Jukema, J.W.; van de Wiel, M.A.; Emeis, J.; van der Laarse, A.; Havekes, L.M.; Princen, H.M.G.

    2003-01-01

    This study was designed to investigate the potential antiatherosclerotic effects of the calcium antagonist amlodipine as compared with the HMG-CoA reductase inhibitor atorvastatin and the combination of both in ApoE*3-Leiden transgenic mice. Four groups of 15 ApoE*3-Leiden mice were put on a

  11. Transgenic mouse lines expressing rat AH receptor variants - A new animal model for research on AH receptor function and dioxin toxicity mechanisms

    International Nuclear Information System (INIS)

    Pohjanvirta, Raimo

    2009-01-01

    Han/Wistar (Kuopio; H/W) rats are exceptionally resistant to 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) toxicity mainly because of their mutated aryl hydrocarbon receptor (AHR) gene. In H/W rats, altered splicing of the AHR mRNA generates two AHR proteins: deletion (DEL) and insertion (INS) variants, with the INS isoform being predominantly expressed. To gain further insight into their functional properties, cDNAs of these and rat wild-type (rWT) isoform were transferred into C57BL/6J-derived mice by microinjection. The endogenous mouse AHR was eliminated by selective crossing with Ahr-null mice. A single mouse line was obtained for each of the three constructs. The AHR mRNA levels in tissues were generally close to those of C57BL/6 mice in INS and DEL mice and somewhat higher in rWT mice; in testis, however, all 3 constructs exhibited marked overexpression. The transgenic mouse lines were phenotypically normal except for increased testis weight. Induction of drug-metabolizing enzymes by TCDD occurred similarly to that in C57BL/6 mice, but there tended to be a correlation with AHR concentrations, especially in testis. In contrast to C57BL/6 mice, the transgenics did not display any major gender difference in susceptibility to the acute lethality and hepatotoxicity of TCDD; rWT mice were highly sensitive, DEL mice moderately resistant and INS mice highly resistant. Co-expression of mouse AHR and rWT resulted in augmented sensitivity to TCDD and abolished the natural resistance of female C57BL/6 mice, whereas mice co-expressing mouse AHR and INS were resistant. Thus, these transgenic mouse lines provide a novel promising tool for molecular studies on dioxin toxicity and AHR function.

  12. Safety assessment of transgenic Bacillus thuringiensis rice T1c-19 in Sprague-Dawley rats from metabonomics and bacterial profile perspectives.

    Science.gov (United States)

    Cao, Sishuo; He, Xiaoyun; Xu, Wentao; Luo, YunBo; Yuan, Yanfang; Liu, Pengfei; Cao, Bo; Shi, Hui; Huang, Kunlun

    2012-03-01

    Bacillus thuringiensis rice is facing commercialization as the main food source in the near future. The unintended effects of genetically modified (GM) organisms are the most important barriers to their promotion. We aimed to establish a new in vivo evaluation model for genetically modified foods by using metabonomics and bacterial profile approaches. T1c-19 rice flour or its transgenic parent MH63 was used at 70% wt/wt to produce diets that were fed to rats for ∼ 90 days. Urine metabolite changes were detected using (1)H NMR. Denaturing gradient gel electrophoresis and real-time polymerase chain reaction (RT-PCR) were used to detect the bacterial profiles between the two groups. The metabonomics was analyzed for metabolite changes in rat urine, when compared with the non-GM rice group, where rats were fed a GM rice diet. Several metabolites correlated with rat age and sex but not with GM rice diet. Significant biological differences were not identified between the GM rice diet and the non-GM rice diet. The bacteria related to rat urine metabolites were also discussed. The results from metabonomics and bacterial profile analyses were comparable with the results attained using the traditional method. Because metabonomics and bacterial profiling offer noninvasive, dynamic approaches for monitoring food safety, they provide a novel process for assessing the safety of GM foods. Copyright © 2012 Wiley Periodicals, Inc.

  13. Human cyclin T1 expression ameliorates a T-cell-specific transcriptional limitation for HIV in transgenic rats, but is not sufficient for a spreading infection of prototypic R5 HIV-1 strains ex vivo

    Directory of Open Access Journals (Sweden)

    Littman Dan R

    2009-01-01

    Full Text Available Abstract Background Cells derived from native rodents have limits at distinct steps of HIV replication. Rat primary CD4 T-cells, but not macrophages, display a profound transcriptional deficit that is ameliorated by transient trans-complementation with the human Tat-interacting protein Cyclin T1 (hCycT1. Results Here, we generated transgenic rats that selectively express hCycT1 in CD4 T-cells and macrophages. hCycT1 expression in rat T-cells boosted early HIV gene expression to levels approaching those in infected primary human T-cells. hCycT1 expression was necessary, but not sufficient, to enhance HIV transcription in T-cells from individual transgenic animals, indicating that endogenous cellular factors are critical co-regulators of HIV gene expression in rats. T-cells from hCD4/hCCR5/hCycT1-transgenic rats did not support productive infection of prototypic wild-type R5 HIV-1 strains ex vivo, suggesting one or more significant limitation in the late phase of the replication cycle in this primary rodent cell type. Remarkably, we identify a replication-competent HIV-1 GFP reporter strain (R7/3 YU-2 Env that displays characteristics of a spreading, primarily cell-to-cell-mediated infection in primary T-cells from hCD4/hCCR5-transgenic rats. Moreover, the replication of this recombinant HIV-1 strain was significantly enhanced by hCycT1 transgenesis. The viral determinants of this so far unique replicative ability are currently unknown. Conclusion Thus, hCycT1 expression is beneficial to de novo HIV infection in a transgenic rat model, but additional genetic manipulations of the host or virus are required to achieve full permissivity.

  14. Bone-derived mesenchymal stromal cells from HIV transgenic mice exhibit altered proliferation, differentiation capacity and paracrine functions along with impaired therapeutic potential in kidney injury

    Energy Technology Data Exchange (ETDEWEB)

    Cheng, Kang; Rai, Partab; Lan, Xiqian; Plagov, Andrei; Malhotra, Ashwani [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States); Gupta, Sanjeev [Departments of Medicine and Pathology, Marion Bessin Liver Research Center, Diabetes Center, Cancer Center, Ruth L. and David S. Gottesman Institute for Stem Cell and Regenerative Medicine Research, Institute for Clinical and Translational Research, Albert Einstein College of Medicine, Bronx, NY (United States); Singhal, Pravin C., E-mail: psinghal@nshs.edu [Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhassett, NY (United States)

    2013-08-15

    Mesenchymal stem cells (MSCs) secrete paracrine factors that could be cytoprotective and serve roles in immunoregulation during tissue injury. Although MSCs express HIV receptors, and co-receptors, and are susceptible to HIV infection, whether HIV-1 may affect biological properties of MSCs needs more study. We evaluated cellular proliferation, differentiation and paracrine functions of MSCs isolated from compact bones of healthy control mice and Tg26 HIV-1 transgenic mice. The ability of MSCs to protect against cisplatin toxicity was studied in cultured renal tubular cells as well as in intact mice. We successfully isolated MSCs from healthy mice and Tg26 HIV-1 transgenic mice and found the latter expressed viral Nef, Vpu, NL4-3 and Vif genes. The proliferation and differentiation of Tg26 HIV-1 MSCs was inferior to MSCs from healthy mice. Moreover, transplantation of Tg26 HIV-1 MSCs less effectively improved outcomes compared with healthy MSCs in mice with acute kidney injury. Also, Tg26 HIV-1 MSCs secreted multiple cytokines, but at significantly lower levels than healthy MSCs, which resulted in failure of conditioned medium from these MSCs to protect cultured renal tubular cells from cisplatin toxicity. Therefore, HIV-1 had adverse biological effects on MSCs extending to their proliferation, differentiation, function, and therapeutic potential. These findings will help in advancing mechanistical insight in renal injury and repair in the setting of HIV-1 infection. -- Highlights: •MSCs isolated from HIV mice displayed HIV genes. •MSCs isolated from HIV mice exhibited attenuated growth and paracrine functions. •AKI mice with transplanted HIV-MSC displayed poor outcome. •HIV-1 MSC secreted multiple cytokines but at a lower level.

  15. Differential responses of the promoters from nearly identical paralogs of loblolly pine (Pinus taeda L.) ACC oxidase to biotic and abiotic stresses in transgenic Arabidopsis thaliana.

    Science.gov (United States)

    Yuan, Shenghua; Dean, Jeffrey F D

    2010-09-01

    Promoters from an ACC oxidase gene (PtACO1) and its nearly identical paralog (NIP) (PtACO2) of loblolly pine (Pinus taeda L.) were recovered from genomic DNA using PCR amplification. Transgenic Arabidopsis plants harboring genetic constructs from which beta-glucuronidase (GUS) expression was driven by the full-length (pACO1:GUS, pACO2:GUS) or truncated (pACO1-1.2:GUS, pACO2-1.2:GUS) loblolly pine ACC oxidase gene promoters displayed distinctive patterns of expression for the different promoter constructs. Both full-length promoter constructs, but not those using truncated promoters, responded to indole-3-acetic acid (IAA) and wounding. Both pACO1:GUS and pACO1-1.2:GUS responded to pathogen attack, while neither version of the pACO2 promoter responded to infection. In the inflorescence stalks, the full-length pACO1 promoter construct, but not the truncated pACO1-1.2:GUS or either pACO2 construct, responded to bending stress. When flowering transgenic Arabidopsis plants were placed in a horizontal position for 48 h, expression from pACO2:GUS, but not the other constructs, was induced on the underside of shoots undergoing gravitropic reorientation. The expression pattern for the pACO2:GUS construct in transgenic Arabidopsis was consistent with what might be expected for a gene promoter involved in the compression wood response in loblolly pine. Although near complete sequence identity between PtACO1 and PtACO2 transcripts prevented quantitation of specific gene products, the promoter expression analyses presented in this study provide strong evidence that the two ACC oxidase genes are likely differentially expressed and responded to different external stimuli in pine. These results are discussed with respect to the potential functional differences between these two genes in loblolly pine.

  16. Decreased cardiac SERCA2 expression, SR Ca uptake, and contractile function in hypothyroidism are attenuated in SERCA2 overexpressing transgenic rats.

    Science.gov (United States)

    Vetter, Roland; Rehfeld, Uwe; Reissfelder, Christoph; Fechner, Henry; Seppet, Enn; Kreutz, Reinhold

    2011-03-01

    The sarco/endoplasmic reticulum (SR) Ca(2+)-ATPase SERCA2a has a key role in controlling cardiac contraction and relaxation. In hypothyroidism, decreased expression of the thyroid hormone (TH)-responsive SERCA2 gene contributes to slowed SR Ca(2+) reuptake and relaxation. We investigated whether cardiac expression of a TH-insensitive SERCA2a cDNA minigene can rescue SR Ca(2+) handling and contractile function in female SERCA2a-transgenic rats (TG) with experimental hypothyroidism. Wild-type rats (WT) and TG were rendered hypothyroid by 6-N-propyl-2-thiouracil treatment for 6 wk; control rats received no treatment. In vivo measured left ventricular (LV) hemodynamic parameters were compared with SERCA2a expression and function in LV tissue. Hypothyroidism decreased LV peak systolic pressure, dP/dt(max), and dP/dt(min) in both WT and TG. However, loss of function was less in TG. Thus slowed relaxation in hypothyroidism was found to be 1.5-fold faster in TG compared with WT (P hypothyroid TG (P hypothyroid WT), and the hypothyroidism-caused decline of LV SERCA2a mRNA expression in TG by -24% was markedly less than the decrease of -49% in WT (P hypothyroid rat heart. However, SR Ca(2+) uptake and in vivo heart function were only partially rescued.

  17. Differentiated analysis of orthodontic tooth movement in rats with an improved rat model and three-dimensional imaging.

    Science.gov (United States)

    Kirschneck, Christian; Proff, Peter; Fanghaenel, Jochen; Behr, Michael; Wahlmann, Ulrich; Roemer, Piero

    2013-12-01

    Rat models currently available for analysis of orthodontic tooth movement often lack differentiated, reliable and precise measurement systems allowing researchers to separately investigate the individual contribution of tooth tipping, body translation and root torque to overall displacement. Many previously proposed models have serious limitations such as the rather inaccurate analysis of the effects of orthodontic forces on rat incisors. We therefore developed a differentiated measurement system that was used within a rat model with the aim of overcoming the limitations of previous studies. The first left upper molar and the upper incisors of 24 male Wistar rats were subjected to a constant orthodontic force of 0.25 N by means of a NiTi closed coil spring for up to four weeks. The extent of the various types of tooth movement was measured optometrically with a CCD microscope camera and cephalometrically by means of cone beam computed tomography (CBCT). Both types of measurement proved to be reliable for consecutive measurements and the significant tooth movement induced had no harmful effects on the animals. Movement kinetics corresponded to known physiological processes and tipping and body movement equally contributed to the tooth displacement. The upper incisors of the rats were significantly deformed and their natural eruption was effectively halted. The results showed that our proposed measurement systems used within a rat model resolved most of the inadequacies of previous studies. They are reliable, precise and physiological tools for the differentiated analysis of orthodontic tooth movement while simultaneously preserving animal welfare. Copyright © 2013 Elsevier GmbH. All rights reserved.

  18. Home-cage anxiety levels in a transgenic rat model for Spinocerebellar ataxia type 17 measured by an approach-avoidance task: The light spot test.

    Science.gov (United States)

    Kyriakou, Elisavet I; Nguyen, Huu Phuc; Homberg, Judith R; Van der Harst, Johanneke E

    2017-08-18

    Measuring anxiety in a reliable manner is essential for behavioural phenotyping of rodent models such as the rat model for Spinocerebellar ataxia type 17 (SCA17) where anxiety is reported in patients. An automated tool for assessing anxiety within the home cage can minimize human intervention, stress of handling, transportation and novelty. We applied the anxiety test "light spot" (LS) (white led directed at the food-hopper) to our transgenic SCA17 rat model in the PhenoTyper 4500 ® to extend the knowledge of this automated tool for behavioural phenotyping and to verify an anxiety-like phenotype at three different disease stages for use in future therapeutic studies. Locomotor activity was increased in SCA17 rats at 6 and 9 months during the first 15min of the LS, potentially reflecting increased risk assessment. Both genotypes responded to the test with lower duration in the LS zone and higher time spent inside the shelter compared to baseline. We present the first data of a rat model subjected to the LS. The LS can be considered more biologically relevant than a traditional test as it measures anxiety in a familiar situation. The LS successfully evoked avoidance and shelter-seeking in rats. SCA17 rats showed a stronger approach-avoidance conflict reflected by increased activity in the area outside the LS. This home cage test, continuously monitoring pre- and post-effects, provides the opportunity for in-depth analysis, making it a potentially useful tool for detecting subtle or complex anxiety-related traits in rodents. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Differential Analysis of Protein Expression in RNA-Binding-Protein Transgenic and Parental Rice Seeds Cultivated under Salt Stress

    Science.gov (United States)

    2015-01-01

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds. PMID:24410502

  20. Differential analysis of protein expression in RNA-binding-protein transgenic and parental rice seeds cultivated under salt stress.

    Science.gov (United States)

    Nakamura, Rika; Nakamura, Ryosuke; Adachi, Reiko; Hachisuka, Akiko; Yamada, Akiyo; Ozeki, Yoshihiro; Teshima, Reiko

    2014-02-07

    Transgenic plants tolerant to various environmental stresses are being developed to ensure a consistent food supply. We used a transgenic rice cultivar with high saline tolerance by introducing an RNA-binding protein (RBP) from the ice plant (Mesembryanthemum crystallinum); differences in salt-soluble protein expression between nontransgenic (NT) and RBP rice seeds were analyzed by 2D difference gel electrophoresis (2D-DIGE), a gel-based proteomic method. To identify RBP-related changes in protein expression under salt stress, NT and RBP rice were cultured with or without 200 mM sodium chloride. Only two protein spots differed between NT and RBP rice seeds cultured under normal conditions, one of which was identified as a putative abscisic acid-induced protein. In NT rice seeds, 91 spots significantly differed between normal and salt-stress conditions. Two allergenic proteins of NT rice seeds, RAG1 and RAG2, were induced by high salt. In contrast, RBP rice seeds yielded seven spots and no allergen spots with significant differences in protein expression between normal and salt-stress conditions. Therefore, expression of fewer proteins was altered in RBP rice seeds by high salt than those in NT rice seeds.

  1. Dopaminergic differentiation of human neural stem cells mediated by co-cultured rat striatal brain slices

    DEFF Research Database (Denmark)

    Anwar, Mohammad Raffaqat; Andreasen, Christian Maaløv; Lippert, Solvej Kølvraa

    2008-01-01

    differentiation, we co-cultured cells from a human neural forebrain-derived stem cell line (hNS1) with rat striatal brain slices. In brief, coronal slices of neonatal rat striatum were cultured on semiporous membrane inserts placed in six-well trays overlying monolayers of hNS1 cells. After 12 days of co......Properly committed neural stem cells constitute a promising source of cells for transplantation in Parkinson's disease, but a protocol for controlled dopaminergic differentiation is not yet available. To establish a setting for identification of secreted neural compounds promoting dopaminergic...

  2. Cognition enhancing effect of the aqueous extract of Cinnamomum zeylanicum on non-transgenic Alzheimer's disease rat model: Biochemical, histological, and behavioural studies.

    Science.gov (United States)

    Madhavadas, Sowmya; Subramanian, Sarada

    2017-11-01

    Several dietary supplements are actively being tested for their dual role of alleviating the metabolic perturbations and restricting the consequent cognitive dysfunctions seen in neurodegenerative disorders such as Alzheimer's disease (AD). The aim of the current study was to assess the influence of aqueous extract of cinnamon (CE) on the monosodium glutamate-induced non-transgenic rat model of AD (NTAD) established with insulin resistance, hyperglycaemia, neuronal loss, and cognitive impairment at a very early stage of life. The experimental design included oral administration of CE (50 mg/kg body weight) for 20 weeks to 2-month and 10-month-old NTAD rats. Following the treatments, the animals attained 7 and 15 months of age, respectively. They were then subjected to behavioural testing, biochemical analysis, and stereology experiments. The results demonstrated that CE treatment improved the insulin sensitivity, increased phosphorylated glycogen synthase kinase-3β (pGSK3β), inhibited the cholinesterase activity, and improved the learning ability in NTAD rats. Histological evaluation has shown an increase in neuron count in the DG sub-field of hippocampus upon treatment with CE. These beneficial effects of CE are suggestive of considering cinnamon as a dietary supplement in modulating the metabolic changes and cognitive functions.

  3. Identification of Cells at Early and Late Stages of Polarization During Odontoblast Differentiation Using pOBCol3.6GFP and pOBCol2.3GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Aguila, H. Leonardo; Mina, Mina

    2010-01-01

    Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stage of differentiation along a lineage. In the present study we used primary cell cultures derived from the dental pulp from pOBCol3.6GFP and pOBCol2.3GFP transgenic mice as a model to develop markers for early stages of odontoblast differentiation from progenitor cells. We analyzed the temporal and spatial expression of 2.3-GFP and 3.6-GFP during in vitro mineralization. Using FACS to separate cells based on GFP expression, we obtained relatively homogenous sub-populations of cells and analyzed their dentinogenic potentials and their progression into odontoblasts. Our observations showed that these transgenes were activated before the onset of matrix deposition and in cells at different stages of polarization. The 3.6-GFP transgene was activated in cells in early stages of polarization whereas the 2.3-GFP transgene was activated at a later stage of polarization just before or at the time of formation of secretory odontoblast. PMID:20728593

  4. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...... delivery to the neonatal rat and minipig striatum. The efficiency of GFP expression and the phenotype of GFP-positive cells were assessed within the forebrain at different time points up to 12 months after surgery. Both rAAV1-GFP and rAAV5-GFP delivery resulted in transduction of the striatum as well...

  5. Transgen kunst

    DEFF Research Database (Denmark)

    2007-01-01

    Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07......Oversættelse af kunstneren Eduardo Kac' tekst "Transgenic Art" i Passepartout #27. Interfacekulturens æstetik. Udgivelsesdato: 28.04.07...

  6. Reduced corporal fibrosis to protect erectile function by inhibiting the Rho-kinase/LIM-kinase/cofilin pathway in the aged transgenic rat harboring human tissue kallikrein 1

    Directory of Open Access Journals (Sweden)

    Kai Cui

    2017-01-01

    Full Text Available Our previous studies have demonstrated that erectile function was preserved in aged transgenic rats (TGR harboring the human tissue kallikrein 1 (hKLK1, while the molecular level of hKLK1 on corporal fibrosis to inhibit age-related erectile dysfunction (ED is poorly understood. Male wild-type Sprague-Dawley rats (WTR and TGR harboring the hKLK1 gene were fed to 4- or 18-month-old and divided into three groups: young WTR (yWTR as the control, aged WTR (aWTR, and aged TGR (aTGR. Erectile function of all rats was assessed by cavernous nerve electrostimulation method. Masson′s trichrome staining was used to evaluate corporal fibrosis in the corpus cavernosum. We found that the erectile function of rats in the aWTR group was significantly lower than that of other two groups. Masson′s trichrome staining revealed that compared with those of the yWTR and aTGR groups, the ratio of smooth muscle cell (SMC/collagen (C was significantly lower in the aWTR group. Immunohistochemistry and Western blotting analysis were performed, and results demonstrated that expression of α-SMA was lower, while expressions of transforming growth factor-β 1 (TGF-β1, RhoA, ROCK1, p-MYPT1, p-LIMK2, and p-cofilin were higher in the aWTR group compared with those in other two groups. However, LIMK2 and cofilin expressions did not differ among three groups. Taken together, these results indicated that the RhoA/ROCK1/LIMK/cofilin pathway may be involved in the corporal fibrosis caused by advanced age, and hKLK1 may reduce this corporal fibrosis by inhibiting the activation of this pathway to ameliorate age-related ED.

  7. Photoreceptor Differentiation following Transplantation of Allogeneic Retinal Progenitor Cells to the Dystrophic Rhodopsin Pro347Leu Transgenic Pig

    DEFF Research Database (Denmark)

    Klassen, H; Kiilgaard, Jens Folke; Warfvinge, K

    2012-01-01

    of allogeneic porcine RPCs without immune suppression in the setting of photoreceptor dystrophy. The expression of multiple photoreceptor markers by grafted cells included the rod outer segment-specific marker ROM-1. Further evidence of photoreceptor differentiation included the presence of numerous...... be obtained from cultured RPCs following transplantation. Strategies for further progress in this area, together with possible functional implications, are discussed....

  8. [Sodium butyrate induces rat hepatic oval cells differentiating into mature hepatocytes in vitro].

    Science.gov (United States)

    Wang, Ping; Jia, Ji-Dong; Tang, Shu-Zhen; Yan, Zhong-Yu; You, Hong; Cong, Min; Wang, Bao-En; Chen, Li; An, Wei

    2004-12-01

    To elucidate the effects of sodium butyrate on rat hepatic oval cell differentiation in vitro. Hepatic oval cells were isolated from rats fed with a choline-deficient diet supplemented with 0.1% (w/w) ethonine for 4 to 6 weeks. The cultured hepatic oval cells were identified by immunohistochemistry and reverse transcription-polymerase chain reaction (RT-PCR). After hepatic oval cells were treated with sodium butyrate, the morphological changes were studied through Giemsa staining and the albumin expression level was tested by Western blot. Immunohistochemical results showed the isolated cells were positive for both mature hepatocyte marker albumin and bile duct cell marker cytokeratin-19. Furthermore, RT-PCR results showed that the cells expressed stem cell marker c-kit, but not hematopoietic stem cell marker CD34. In short, the isolated cells were rat hepatic oval cells. 0.75 mmol/L sodium butyrate induced obvious phenotype changes of hepatic oval cells, including enlargement of the oval cells, a decrease in nucleus to cytoplasm ratio, and a 50% increase in the number of binucleated cells. Western blot results showed that 0.75 mmol/L sodium butyrate markedly raised the expression of albumin. Sodium butyrate, a differentiation promoting agent, can induce rat hepatic oval cells (liver progenitor cells) to differentiate into mature hepatocytes in vitro.

  9. Platelet-derived growth factor BB stimulates differentiation of rat immature Leydig cells.

    Science.gov (United States)

    Wang, Yiyan; Li, Xiaoheng; Ge, Fei; Yuan, Kaiming; Su, Zhijian; Wang, Guimin; Lian, Qingquan; Ge, Ren-Shan

    2018-01-01

    Platelet-derived growth factor (PDGF) is one family of growth factors that regulate cell growth and differentiation. Rat Leydig cells express PDGF-β receptor (PDGFRB) during pubertal development. However, the mechanism of PDGF in the regulation of Leydig cell development is unclear. In the present study, rat immature Leydig cells were isolated from the testes of 35-day-old Sprague-Dawley rats and treated with 1 and 10 ng/mL of PDGF-BB. After 24 h of treatment, these cells were harvested for genomics profiling and the medium steroids were measured. 1 and 10 ng/mL PDGF-BB significantly increased androgen production by rat immature Leydig cells. Genomics profiling analysis showed that the expression levels of steroidogenic acute regulatory protein ( Star ) were increased by 2-fold. Further analysis showed that Fos expression level was increased 2- and 5-fold by 1 and 10 ng/mL PDGF-BB, respectively. In conclusion, PDGF-BB stimulated the differentiation of rat immature Leydig cells via regulating Star . © 2018 Society for Endocrinology.

  10. Decreased gonadotropin-releasing hormone neuronal activity is associated with decreased fertility and dysregulation of food intake in the female GPR-4 transgenic rat.

    Science.gov (United States)

    Gomez, Francisca; la Fleur, Susanne E; Weiner, Richard I; Dallman, Mary F; El Majdoubi, Mohammed

    2005-09-01

    Expression of a cAMP-specific phosphodiesterase in GnRH neurons in the GPR-4 transgenic rat resulted in decreased LH levels and pulse frequency and diminished fertility. We have characterized changes in fertility, adiposity, and reproductive and metabolic hormones with age. Although LH levels were decreased in 3-, 6-, and 9-month-old GPR-4 females relative to wild-type (WT) controls, GPR-4 females did not become anovulatory until 6 months of age. No differences were observed in FSH, estradiol, or androstenedione levels in 3-, 6-, or 9-month-old GPR-4 and WT females. At 9 months of age, GPR-4 females had significantly increased abdominal and sc fat depot weights that were associated with increased leptin and insulin levels not observed in WT females. We tested the hypothesis that metabolic changes observed at 9 months of age were the result of dysregulation of the mechanisms controlling energy balance. Two-month-old female GPR-4 rats placed on a high-energy diet gained weight at a rate significantly greater than WT females and, after 24 d, developed the same metabolic phenotype observed in 9-month-old GRP-4 females (increased abdominal and sc fat associated with elevated leptin and insulin concentrations). Overeating did not correlate with changes in estradiol or androstenedione levels. We conclude that decreased GnRH neuronal activity is closely associated with decreased reproductive function and dysregulation of food intake.

  11. Sub-chronic (13-week) oral toxicity study in rats with recombinant human lactoferrin produced in the milk of transgenic cows.

    Science.gov (United States)

    Appel, M J; van Veen, H A; Vietsch, H; Salaheddine, M; Nuijens, J H; Ziere, B; de Loos, F

    2006-07-01

    The oral toxicity of recombinant human lactoferrin (rhLF) produced in the milk of transgenic cows was investigated in Wistar rats by daily administration via oral gavage for 13 consecutive weeks, 7 days per week. The study used four groups of 20 rats/sex/dose. The control group received physiological saline and the three test groups received daily doses of 200, 600 and 2000 mg of rhLF per kg body weight. Clinical observations, growth, food consumption, food conversion efficiency, water consumption, neurobehavioural testing, ophthalmoscopy, haematology, clinical chemistry, renal concentration test, urinalysis, organ weights and gross examination at necropsy and microscopic examination of various organs and tissues were used as criteria for detecting the effects of treatment. Overall, no treatment-related, toxicologically significant changes were observed. The few findings that may be related to the treatment (lower cholesterol in high-dose females, lower urinary pH in high-dose males and females and very slightly higher kidney weight in high-dose females) were considered of no toxicological significance. Based on the absence of treatment-related, toxicologically relevant changes, the no-observed-adverse-effect level (NOAEL) was considered to be at least 2000 mg/kg body weight/day.

  12. Leptin signal transduction underlies the differential metabolic response of LEW and WKY rats to cafeteria diet.

    Science.gov (United States)

    Martínez-Micaelo, N; González-Abuín, N; Ardévol, A; Pinent, M; Petretto, E; Behmoaras, J; Blay, M

    2016-01-01

    Although the effect of genetic background on obesity-related phenotypes is well established, the main objective of this study is to determine the phenotypic responses to cafeteria diet (CAF) of two genetically distinct inbred rat strains and give insight into the molecular mechanisms that might be underlying. Lewis (LEW) and Wistar-Kyoto (WKY) rats were fed with either a standard or a CAF diet. The effects of the diet and the strain in the body weight gain, food intake, respiratory quotient, biochemical parameters in plasma as well as in the expression of genes that regulate leptin signalling were determined. Whereas CAF diet promoted weight gain in LEW and WKY rats, as consequence of increased energy intake, metabolic management of this energy surplus was significantly affected by genetic background. LEW and WKY showed a different metabolic profile, LEW rats showed hyperglycaemia, hypertriglyceridemia and high FFA levels, ketogenesis, high adiposity index and inflammation, but WKY did not. Leptin signalling, and specifically the LepRb-mediated regulation of STAT3 activation and Socs3 gene expression in the hypothalamus were inversely modulated by the CAF diet in LEW (upregulated) and WKY rats (downregulated). In the present study, we show evidence of gene-environment interactions in obesity exerted by differential phenotypic responses to CAF diet between LEW and WKY rats. Specifically, we found the leptin-signalling pathway as a divergent point between the strain-specific adaptations to diet. © 2016 Society for Endocrinology.

  13. Extra-prostatic Transgene-associated Neoplastic Lesions in Transgenic Adenocarcinoma of the Mouse Prostate (TRAMP) Mice

    Science.gov (United States)

    Berman-Booty, Lisa D.; Thomas-Ahner, Jennifer M.; Bolon, Brad; Oglesbee, Michael J.; Clinton, Steven K.; Kulp, Samuel K.; Chen, Ching-Shih; La Perle, Krista

    2014-01-01

    Male transgenic adenocarcinoma of the mouse prostate (TRAMP) mice are frequently used in prostate cancer research because their prostates consistently develop a series of pre-neoplastic and neoplastic lesions. Disease progression in TRAMP mouse prostates culminates in metastatic, poorly differentiated carcinomas with neuroendocrine features. The androgen dependence of the rat probasin promoter largely limits transgene expression to the prostatic epithelium. However, extra-prostatic transgene-positive lesions have been described in TRAMP mice, including renal tubulo-acinar carcinomas, neuroendocrine carcinomas of the urethra, and phyllodes-like tumors of the seminal vesicle. Here we describe the histologic and immunohistochemical features of two novel extra-prostatic lesions in TRAMP mice: primary anaplastic tumors of uncertain cell origin in the midbrain, and poorly differentiated adenocarcinomas of the submandibular salivary gland. These newly characterized tumors apparently result from transgene expression in extra-prostatic locations rather than representing metastatic prostate neoplasms because lesions were identified in both male and female mice as well as in male TRAMP mice without histologically apparent prostate tumors. In this paper we also calculate the incidences of the urethral carcinomas and renal tubulo-acinar carcinomas, further elucidate the biological behavior of the urethral carcinomas, and demonstrate the critical importance of complete necropsies even when evaluating presumably well characterized phenotypes in genetically engineered mice. PMID:24742627

  14. Astrocytes and Müller Cell Alterations During Retinal Degeneration in a Transgenic Rat Model of Retinitis Pigmentosa

    Science.gov (United States)

    Fernández-Sánchez, Laura; Lax, Pedro; Campello, Laura; Pinilla, Isabel; Cuenca, Nicolás

    2015-01-01

    Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes, and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer (GCL) of P23H vs. SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina. PMID:26733810

  15. Astrocytes and Müller cells changes during retinal degeneration in a transgenic rat model of retinitis pigmentosa.

    Directory of Open Access Journals (Sweden)

    Laura eFernández-Sánchez

    2015-12-01

    Full Text Available Purpose: Retinitis pigmentosa includes a group of progressive retinal degenerative diseases that affect the structure and function of photoreceptors. Secondarily to the loss of photoreceptors, there is a reduction in retinal vascularization, which seems to influence the cellular degenerative process. Retinal macroglial cells, astrocytes and Müller cells provide support for retinal neurons and are fundamental for maintaining normal retinal function. The aim of this study was to investigate the evolution of macroglial changes during retinal degeneration in P23H rats. Methods: Homozygous P23H line-3 rats aged from P18 to 18 months were used to study the evolution of the disease, and SD rats were used as controls. Immunolabeling with antibodies against GFAP, vimentin, and transducin were used to visualize macroglial cells and cone photoreceptors. Results: In P23H rats, increased GFAP labeling in Müller cells was observed as an early indicator of retinal gliosis. At 4 and 12 months of age, the apical processes of Müller cells in P23H rats clustered in firework-like structures, which were associated with ring-like shaped areas of cone degeneration in the outer nuclear layer. These structures were not observed at 16 months of age. The number of astrocytes was higher in P23H rats than in the SD matched controls at 4 and 12 months of age, supporting the idea of astrocyte proliferation. As the disease progressed, astrocytes exhibited a deteriorated morphology and marked hypertrophy. The increase in the complexity of the astrocytic processes correlated with greater connexin 43 expression and higher density of connexin 43 immunoreactive puncta within the ganglion cell layer of P23H versus SD rat retinas. Conclusions: In the P23H rat model of retinitis pigmentosa, the loss of photoreceptors triggers major changes in the number and morphology of glial cells affecting the inner retina.

  16. Aging-associated changes in oxidative stress, cell proliferation, and apoptosis are prevented in the prostate of transgenic rats overexpressing regucalcin.

    Science.gov (United States)

    Vaz, Cátia V; Marques, Ricardo; Maia, Cláudio J; Socorro, Sílvia

    2015-12-01

    Regucalcin (RGN) is a calcium (Ca(2+))-binding protein that displays a characteristic downregulated expression with aging in several tissues. Besides its role in regulating intracellular Ca(2+) homeostasis, RGN has been associated with the control of oxidative stress, cell proliferation, and apoptosis. Thus, the diminished expression of RGN with aging may contribute to the age-associated deterioration of cell function. In the present study, we hypothesized that the maintenance of high expression levels of RGN may prevent age-related alterations in the processes mentioned previously. First, we confirmed that RGN expression is significantly diminished in the prostate of 8-, 9-, 12-, and 24-months wild-type rats. Then, the effect of aging on lipid peroxidation, antioxidant defenses, cell proliferation, and apoptosis in the prostate of wild-type controls and transgenic rats overexpressing RGN (Tg-RGN) was investigated. The activity of glutathione and the antioxidant capacity were increased in Tg-RGN rats in response to the age-associated increase in thiobarbituric acid reactive substances levels, an effect not seen in wild type. Overexpression of RGN also counteracted the effect of aging increasing prostate cell proliferation. In contrast to wild-type animals, the prostate weight of Tg-RGN did not change with aging and was underpinned by the diminished expression of stem cell factor and c-kit, and increased expression of p53. In addition, aged Tg-RGN animals displayed increased expression (activity) of apoptosis regulators, therefore not showing the age-induced resistance to apoptosis observed in wild type. Altogether, these findings indicate the protective role of RGN against the development of age-related pathologies, such as, for example, prostate cancer. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Intra-articular Injected synovial stem cells differentiate into meniscal cells directly and promote meniscal regeneration without mobilization to distant organs in rat massive meniscal defect.

    Science.gov (United States)

    Horie, Masafumi; Sekiya, Ichiro; Muneta, Takeshi; Ichinose, Shizuko; Matsumoto, Kenji; Saito, Hirohisa; Murakami, Takashi; Kobayashi, Eiji

    2009-04-01

    Osteoarthritis in the knees, which can be caused by meniscal defect, constitutes an increasingly common medical problem. Repair for massive meniscal defect remains a challenge owing to a lack of cell kinetics for the menisci precursors in knee joint. The synovium plays pivotal roles during the natural course of meniscal healing and contains mesenchymal stem cells (MSCs) with high chondrogenic potential. Here, we investigated whether intra-articular injected synovium-MSCs enhanced meniscal regeneration in rat massive meniscal defect. To track the injected cells, we developed transgenic rats expressing dual luciferase (Luc) and LacZ. The cells derived from synovium of the rats demonstrated colony-forming ability and multipotentiality, both characteristics of MSCs. Hierarchical clustering analysis revealed that gene expression of meniscal cells was closer to that of synovium-MSCs than to that of bone marrow-MSCs. Two to 8 weeks after five million Luc/LacZ+ synovium-MSCs were injected into massive meniscectomized knee of wild-type rat, macroscopically, the menisci regenerated much better than it did in the control group. After 12 weeks, the regenerated menisci were LacZ positive, produced type 2 collagen, and showed meniscal features by transmission electron microscopy. In in-vivo luminescence analysis, photons increased in the meniscus-resected knee over a 3-day period, then decreased without detection in all other organs. LacZ gene derived from MSCs could not be detected in other organs except in synovium by real-time PCR. Synovium-MSCs injected into the massive meniscectomized knee adhered to the lesion, differentiated into meniscal cells directly, and promoted meniscal regeneration without mobilization to distant organs.

  18. Mechanisms of Cdc42-mediated rat MSC differentiation on micro/nano-textured topography.

    Science.gov (United States)

    Li, Guangwen; Song, Yanyan; Shi, Mengqi; Du, Yuanhong; Wang, Wei; Zhang, Yumei

    2017-02-01

    Micro/nano-textured titanium surface topography promotes osteoblast differentiation and the Wnt/β-catenin signaling pathway. However, the response of rat bone mesenchymal stem cells (MSCs) to micro/nano-textured topography, and the underlying mechanisms of its effects, are not well understood. We hypothesized that cell division cycle 42 protein (Cdc42), a key member of the Rho GTPases family, may regulate rat MSCs morphology and osteogenic differentiation by micro/nano-textured topography, and that crosstalk between Cdc42 and Wnt/β-catenin is the underlying mechanism. To confirm the hypothesis, we first tested rat MSCs' morphology, cytoskeleton, and osteogenic differentiation on micro/nano-textured topography. We then examined the cells' Wnt pathway and Cdc42 signaling activity. The results show that micro/nano-textured topography enhances MSCs' osteogenic differentiation. In addition, the cells' morphology and cytoskeletal reorganization were dramatically different on smooth surfaces and micropitted/nanotubular topography. Ligands of the canonical Wnt pathway, as well as accumulation of β-catenin in the nucleus, were up-regulated by micro/nano-textured topography. Cdc42 protein expression was markedly increased under these conditions; conversely, Cdc42 silencing significantly depressed the enhancement of MSCs osteogenic differentiation by micro/nano-textured topography. Moreover, Cdc42si attenuated p-GSK3β activation and resulted in β-catenin cytoplasmic degradation on the micro/nano-textured topography. Our results indicate that Cdc42 is a key modulator of rat MSCs morphology and cytoskeletal reorganization, and that crosstalk between Cdc42 and Wnt/β-catenin signaling though GSK3β regulates MSCs osteogenic differentiation by implant topographical cues. Topographical modification at micro- and nanoscale is widely applied to enhance the tissue integration properties of biomaterials. However, the response of bone mesenchymal stem cells (MSCs) to the micro

  19. Prenatal diagnosis by isoenzymic differentiation of Treacher Collins' syndrome induced by retinoids in rats

    DEFF Research Database (Denmark)

    Granström, G; Kirkeby, S

    1990-01-01

    A series of branchial arch malformations was induced in 618 embryos from 72 pregnant rats by a single intraperitoneal injection of 10 mg/kg etretinate at 8.5 days of gestation. The litters developed several malformations, including microtia, low set and dorsally placed outer ears, defective middle...... ear ossicles, short cochleas, defectively differentiated Meckel's cartilages, micrognathia, rudimentary malar bones, lateral facial clefts, fistulas and skin tags, all of which were similar to Treacher Collins' syndrome in man. The defects were accompanied by a pathological differentiation pattern...

  20. Effects of Dendrobium officinale polysaccharide on adipogenic differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Yinjuan ZHAO

    Full Text Available Abstract This study investigated the effect of Dendrobium officinale polysaccharide (DOP on the adipogenic differentiation of rat bone marrow mesenchymal stem cells (BMSCs. DOP was extracted fresh Dendrobium officinale. Rat BMSCs were prepared, and then were treated with 0 (control, 50, 100, 200, 400, 800 μg/mL DOP, respectively. The cell viability was determined by MTT assay. The adipogenic differentiation was quantitatively analyzed by oil red O staining assay. The mRNA expressions of adipogenic differentiation related gene peroxisome proliferator-activated receptor gamma (PPARG, lipoprotein lipase (LPL and fatty acid binding protein 4 (FABP4 were detected by RT-PCR. Results showed that, DOP with 0-800 μg/mL concentration had no significant toxicity to BMSCs. 200-800 μg/mL DOP could obviously inhibit the adipogenic differentiation of BMSCs. Compared with control group, the expression levels of PPARG, LPL and FABP4 mRNA 200, 400 and 800 μg/mL DOP groups were significantly decreased (P < 0.05 or P < 0.01. DOP can inhibit the adipogenic differentiation of BMSCs, which may be related with its down-regulation of PPARG, LPL and FABP4 expressions in BMSCs.

  1. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease.

    Science.gov (United States)

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2017-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/-)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/-)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/-) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/-) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/-) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD. © The Author(s) 2015.

  2. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease

    Science.gov (United States)

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio

    2015-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/−)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/−)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this report, we show that pre-synaptic mitochondria from Tg(+/−) rats evidence a decreased respiratory control ratio and spare respiratory capacity associated with deficits in complex I enzymatic activity. Cognitive impairments were prevented and bioenergetic deficits partially reversed when Tg(+/−) rats were fed a nutritionally complete diet from weaning to 6-month-old supplemented with pyrroloquinoline quinone, a mitochondrial biogenesis stimulator with antioxidant and neuroprotective effects. These results provide evidence that, as described in AD brain and not proven in Tg mice models with AD-like phenotype, the mitochondrial bioenergetic capacity of synaptosomes is not conserved in the Tg(+/−) rats. This animal model may be suitable for understanding the basic biochemical mechanisms involved in early AD. PMID:26661224

  3. Pmch-deficiency in rats is associated with normal adipocyte differentiation and lower sympathetic adipose drive.

    Directory of Open Access Journals (Sweden)

    Joram D Mul

    Full Text Available The orexigenic neuropeptide melanin-concentrating hormone (MCH, a product of Pmch, is an important mediator of energy homeostasis. Pmch-deficient rodents are lean and smaller, characterized by lower food intake, body-, and fat mass. Pmch is expressed in hypothalamic neurons that ultimately are components in the sympathetic nervous system (SNS drive to white and interscapular brown adipose tissue (WAT, iBAT, respectively. MCH binds to MCH receptor 1 (MCH1R, which is present on adipocytes. Currently it is unknown if Pmch-ablation changes adipocyte differentiation or sympathetic adipose drive. Using Pmch-deficient and wild-type rats on a standard low-fat diet, we analyzed dorsal subcutaneous and perirenal WAT mass and adipocyte morphology (size and number throughout development, and indices of sympathetic activation in WAT and iBAT during adulthood. Moreover, using an in vitro approach we investigated the ability of MCH to modulate 3T3-L1 adipocyte differentiation. Pmch-deficiency decreased dorsal subcutaneous and perirenal WAT mass by reducing adipocyte size, but not number. In line with this, in vitro 3T3-L1 adipocyte differentiation was unaffected by MCH. Finally, adult Pmch-deficient rats had lower norepinephrine turnover (an index of sympathetic adipose drive in WAT and iBAT than wild-type rats. Collectively, our data indicate that MCH/MCH1R-pathway does not modify adipocyte differentiation, whereas Pmch-deficiency in laboratory rats lowers adiposity throughout development and sympathetic adipose drive during adulthood.

  4. Differential RNA Expression Profile of Skeletal Muscle Induced by Experimental Autoimmune Myasthenia Gravis in Rats

    Directory of Open Access Journals (Sweden)

    Henry Kaminski

    2016-11-01

    Full Text Available The differential susceptibility of skeletal muscle by myasthenia gravis (MG is not well understood. We utilized RNA expression profiling of extraocular muscle (EOM, diaphragm (DIA, and extensor digitorum (EDL of rats with experimental autoimmune MG (EAMG to evaluate the hypothesis that muscles respond differentially to injury produced by EAMG. EAMG was induced in female Lewis rats by immunization with acetylcholine receptor purified from the electric organ of the Torpedo. Six weeks later after rats had developed weakness and serum antibodies directed against the AChR, animals underwent euthanasia and RNA profiling performed on DIA, EDL, and EOM. Profiling results were validated by qPCR. Across the three muscles between the experiment and control groups, three hundred and fifty-nine probes (1.16% with greater than 2 fold changes in expression in 7 of 9 series pairwise comparisons from 31,090 probes were identified with approximately two-thirds being increased. The three muscles shared 16 genes with increased expression and 6 reduced expression. Functional annotation demonstrated that these common expression changes fell predominantly into categories of metabolism, stress response, and signaling. Evaluation of specific gene function indicated that EAMG led to a change to oxidative metabolism. Genes related to muscle regeneration and suppression of immune response were activated. Evidence of a differential immune response among muscles was not evident. Each muscle had a distinct RNA profile but with commonality in gene categories expressed that are focused on muscle repair, moderation of inflammation, and oxidative metabolism.

  5. Synaptosomal bioenergetic defects are associated with cognitive impairment in a transgenic rat model of early Alzheimer's disease

    OpenAIRE

    Martino Adami, Pamela V; Quijano, Celia; Magnani, Natalia; Galeano, Pablo; Evelson, Pablo; Cassina, Adriana; Do Carmo, Sonia; Leal, María C; Castaño, Eduardo M; Cuello, A Claudio; Morelli, Laura

    2015-01-01

    Synaptic bioenergetic deficiencies may be associated with early Alzheimer's disease (AD). To explore this concept, we assessed pre-synaptic mitochondrial function in hemizygous (+/−)TgMcGill-R-Thy1-APP rats. The low burden of Aβ and the wide array of behavioral and cognitive impairments described in 6-month-old hemizygous TgMcGill-R-Thy1-APP rats (Tg(+/−)) support their use to investigate synaptic bioenergetics deficiencies described in subjects with early Alzheimer's disease (AD). In this re...

  6. Fluorescent visualisation of the hypothalamic oxytocin neurones activated by cholecystokinin-8 in rats expressing c-fos-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 fusion transgenes.

    Science.gov (United States)

    Katoh, A; Shoguchi, K; Matsuoka, H; Yoshimura, M; Ohkubo, J-I; Matsuura, T; Maruyama, T; Ishikura, T; Aritomi, T; Fujihara, H; Hashimoto, H; Suzuki, H; Murphy, D; Ueta, Y

    2014-05-01

    The up-regulation of c-fos gene expression is widely used as a marker of neuronal activation elicited by various stimuli. Anatomically precise observation of c-fos gene products can be achieved at the RNA level by in situ hybridisation or at the protein level by immunocytochemistry. Both of these methods are time and labour intensive. We have developed a novel transgenic rat system that enables the trivial visualisation of c-fos expression using an enhanced green fluorescent protein (eGFP) tag. These rats express a transgene consisting of c-fos gene regulatory sequences that drive the expression of a c-fos-eGFP fusion protein. In c-fos-eGFP transgenic rats, robust nuclear eGFP fluorescence was observed in osmosensitive brain regions 90 min after i.p. administration of hypertonic saline. Nuclear eGFP fluorescence was also observed in the supraoptic nucleus (SON) and paraventricular nucleus (PVN) 90 min after i.p. administration of cholecystokinin (CCK)-8, which selectively activates oxytocin (OXT)-secreting neurones in the hypothalamus. In double transgenic rats that express c-fos-eGFP and an OXT-monomeric red fluorescent protein 1 (mRFP1) fusion gene, almost all mRFP1-positive neurones in the SON and PVN expressed nuclear eGFP fluorescence 90 min after i.p. administration of CCK-8. It is possible that not only a plane image, but also three-dimensional reconstruction image may identify cytoplasmic vesicles in an activated neurone at the same time. © 2014 British Society for Neuroendocrinology.

  7. Weight loss by calorie restriction versus bariatric surgery differentially regulates the HPA axis in male rats

    Science.gov (United States)

    Grayson, Bernadette E.; Hakala-Finch, Andrew P.; Kekulawala, Melani; Laub, Holly; Egan, Ann E.; Ressler, Ilana B.; Woods, Stephen C.; Herman, James P.; Seeley, Randy J.; Benoit, Stephen C.; Ulrich-Lai, Yvonne M.

    2015-01-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in 5 groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n=7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n=11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n=11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n=11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n=12). Compared to Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentrations and increased hypothalamic corticotropin releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results suggest that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches. PMID:25238021

  8. Assessment of motor function, sensory motor gating and recognition memory in a novel BACHD transgenic rat model for Huntington disease

    NARCIS (Netherlands)

    Abada, Yah-se K.; Nguyen, Huu Phuc; Schreiber, Rudy; Ellenbroek, Bart

    2013-01-01

    Rationale: Huntington disease (HD) is frequently first diagnosed by the appearance of motor symptoms; the diagnosis is subsequently confirmed by the presence of expanded CAG repeats (> 35) in the HUNTINGTIN (HTT) gene. A BACHD rat model for HD carrying the human full length mutated HTT with 97

  9. Intrapulmonary activation of the angiotensin-converting enzyme type 2/angiotensin 1-7/G-protein-coupled Mas receptor axis attenuates pulmonary hypertension in Ren-2 transgenic rats exposed to chronic hypoxia.

    Science.gov (United States)

    Hampl, V; Herget, J; Bíbová, J; Baňasová, A; Husková, Z; Vaňourková, Z; Jíchová, Š; Kujal, P; Vernerová, Z; Sadowski, J; Červenka, L

    2015-01-01

    The present study was performed to evaluate the role of intrapulmonary activity of the two axes of the renin-angiotensin system (RAS): vasoconstrictor angiotensin-converting enzyme (ACE)/angiotensin II (ANG II)/ANG II type 1 receptor (AT₁) axis, and vasodilator ACE type 2 (ACE2)/angiotensin 1-7 (ANG 1-7)/Mas receptor axis, in the development of hypoxic pulmonary hypertension in Ren-2 transgenic rats (TGR). Transgene-negative Hannover Sprague-Dawley (HanSD) rats served as controls. Both TGR and HanSD rats responded to two weeks´ exposure to hypoxia with a significant increase in mean pulmonary arterial pressure (MPAP), however, the increase was much less pronounced in the former. The attenuation of hypoxic pulmonary hypertension in TGR as compared to HanSD rats was associated with inhibition of ACE gene expression and activity, inhibition of AT₁receptor gene expression and suppression of ANG II levels in lung tissue. Simultaneously, there was an increase in lung ACE2 gene expression and activity and, in particular, ANG 1-7 concentrations and Mas receptor gene expression. We propose that a combination of suppression of ACE/ANG II/AT₁receptor axis and activation of ACE2/ANG 1-7/Mas receptor axis of the RAS in the lung tissue is the main mechanism explaining attenuation of hypoxic pulmonary hypertension in TGR as compared with HanSD rats.

  10. Sperm parameters and epididymis function in transgenic rats overexpressing the Ca2+-binding protein regucalcin: a hidden role for Ca2+ in sperm maturation?

    Science.gov (United States)

    Correia, S; Oliveira, P F; Guerreiro, P M; Lopes, G; Alves, M G; Canário, A V M; Cavaco, J E; Socorro, Sílvia

    2013-09-01

    Sperm undergo maturation acquiring progressive motility and the ability to fertilize oocytes through exposure to the components of the epididymal fluid (EF). Although the establishment of a calcium (Ca(2+)) gradient along the epididymis has been described, its direct effects on epididymal function remain poorly explored. Regucalcin (RGN) is a Ca(2+)-binding protein, regulating the activity of Ca(2+)-channels and Ca(2+)-ATPase, for which a role in male reproductive function has been suggested. This study aimed at comparing the morphology, assessed by histological analysis, and function of epididymis, by analysis of sperm parameters, antioxidant potential and Ca(2+) fluxes, between transgenic rats overexpressing RGN (Tg-RGN) and their wild-type littermates. Tg-RGN animals displayed an altered morphology of epididymis and lower sperm counts and motility. Tissue incubation with (45)Ca(2+) showed also that epididymis of Tg-RGN displayed a diminished rate of Ca(2+)-influx, indicating unbalanced Ca(2+) concentrations in the epididymal lumen. Sperm viability and the frequency of normal sperm, determined by the one-step eosin-nigrosin staining technique and the Diff-Quik staining method, respectively, were higher in Tg-RGN. Moreover, sperm of Tg-RGN rats showed a diminished incidence of tail defects. Western blot analysis demonstrated the presence of RGN in EF as well as its higher expression in the corpus region. The results presented herein demonstrated the importance of maintaining Ca(2+)-levels in the epididymal lumen and suggest a role for RGN in sperm maturation. Overall, a new insight into the molecular mechanisms driving epididymal sperm maturation was obtained, which could be relevant to development of better approaches in male infertility treatment and contraception.

  11. Differential expression of parvalbumin interneurons in neonatal phencyclidine treated rats and socially isolated rats

    DEFF Research Database (Denmark)

    Kaalund, Sanne Simone; Riise, Jesper; Broberg, Brian

    2013-01-01

    fractionator, we counted neurons, PV(+) interneurons, and glial cells in the medial prefrontal cortex (mPFC) and hippocampus (HPC). In addition, we quantified the mRNA level of parvalbumin in the mPFC. There was a statistically significant reduction in the number of PV(+) interneurons (p = 0.021) and glial...... cells (p = 0.024) in the mPFC of neonatal phencyclidine rats. We observed no alterations in the total number of neurons, hippocampal PV(+) interneurons, parvalbumin mRNA expression or volume of the mPFC or HPC in the two models. Thus, as the total number of neurons remains unchanged following...

  12. In vitro differentiation of rat spermatogonia into round spermatids in tissue culture.

    Science.gov (United States)

    Reda, A; Hou, M; Winton, T R; Chapin, R E; Söder, O; Stukenborg, J-B

    2016-09-01

    Do the organ culture conditions, previously defined for in vitro murine male germ cell differentiation, also result in differentiation of rat spermatogonia into post-meiotic germ cells exhibiting specific markers for haploid germ cells? We demonstrated the differentiation of rat spermatogonia into post-meiotic cells in vitro, with emphasis on exhibiting, protein markers described for round spermatids. Full spermatogenesis in vitro from immature germ cells using an organ culture technique in mice was first reported 5 years ago. However, no studies reporting the differentiation of rat spermatogonia into post-meiotic germ cells exhibiting the characteristic protein expression profile or into functional sperm have been reported. Organ culture of testicular fragments of 5 days postpartum (dpp) neonatal rats was performed for up to 52 days. Evaluation of microscopic morphology, testosterone levels, mRNA and protein expression as measured by RT-qPCR and immunostaining were conducted to monitor germ cell differentiation in vitro. Potential effects of melatonin, Glutamax® medium, retinoic acid and the presence of epidydimal fat tissue on the spermatogenic process were evaluated. A minimum of three biological replicates were performed for all experiments presented in this study. One-way ANOVA, ANOVA on ranks and student's t-test were applied to perform the statistical analysis. Male germ cells, present in testicular tissue pieces grown from 5 dpp rats, exhibited positive protein expression for Acrosin and Crem (cAMP (cyclic adenosine mono phosphate) response element modulator) after 52 days of culture in vitro. Intra-testicular testosterone production could be observed after 3 days of culture, while when epididymal fat tissue was added, spontaneous contractility of cultured seminiferous tubules could be observed after 21 days. However, no supportive effect of the supplementation with any factor or the co-culturing with epididymal fat tissue on germ cell differentiation in

  13. Stress Alters the Discriminative Stimulus and Response Rate Effects of Cocaine Differentially in Lewis and Fischer Inbred Rats

    Directory of Open Access Journals (Sweden)

    Therese A. Kosten

    2012-03-01

    Full Text Available Stress enhances the behavioral effects of cocaine, perhaps via hypothalamic-pituitary-adrenal (HPA axis activity. Yet, compared to Fischer 344 (F344 rats, Lewis rats have hyporesponsive HPA axis function and more readily acquire cocaine self-administration. We hypothesized that stress would differentially affect cocaine behaviors in these strains. The effects of three stressors on the discriminative stimulus and response rate effects of cocaine were investigated. Rats of both strains were trained to discriminate cocaine (10 mg/kg from saline using a two-lever, food-reinforced (FR10 procedure. Immediately prior to cumulative dose (1, 3, 10 mg/kg cocaine test sessions, rats were restrained for 15-min, had 15-min of footshock in a distinct context, or were placed in the shock-paired context. Another set of F344 and Lewis rats were tested similarly except they received vehicle injections to test if stress substituted for cocaine. Most vehicle-tested rats failed to respond after stressor exposures. Among cocaine-tested rats, restraint stress enhanced cocaine’s discriminative stimulus effects in F344 rats. Shock and shock-context increased response rates in Lewis rats. Stress-induced increases in corticosterone levels showed strain differences but did not correlate with behavior. These data suggest that the behavioral effects of cocaine can be differentially affected by stress in a strain-selective manner.

  14. Crucial role of Notch signaling in osteogenic differentiation of periodontal ligament stem cells in osteoporotic rats.

    Science.gov (United States)

    Li, Ying; Li, S Q; Gao, Y M; Li, Jin; Zhang, Bin

    2014-06-01

    Estrogen deficiency-induced osteoporosis typically occurs in postmenopausal women and has been strongly associated with periodontal diseases. Periodontal ligament stem cells (PDLSCs) isolated from the periodontal ligament can differentiate into many types of specialized cells, including osteoblast-like cells that contribute to periodontal tissue repair. The Notch signaling pathway is highly conserved and associated with self-renewal potential and cell-fate determination. Recently, several studies have focused on the relationship between Notch signaling and osteogenic differentiation. However, the precise mechanisms underlying this relationship are largely unknown. We have successfully isolated PDLSCs from both ovariectomized (OVX) and sham-operated rats. Both the mRNA and protein levels of Notch1 and Jagged1 were upregulated when PDLSCs were cultured in osteogenic induction media. Mineralization assays showed decreased calcium deposits in OVX-PDLSCs treated with a γ-secretase inhibitor compared with control cells. Thus Notch signaling is important in maintaining the osteogenic differentiation of PDLSCs in osteoporotic rats, which help in the development of a potential therapeutic strategy for periodontal disease in postmenopausal women. © 2014 International Federation for Cell Biology.

  15. Nogo-A-deficient transgenic rats show deficits in higher cognitive functions, decreased anxiety and altered circadian activity patterns

    Directory of Open Access Journals (Sweden)

    Tomas ePetrasek

    2014-03-01

    Full Text Available Decreased levels of Nogo-A dependent signaling have been shown to affect behavior and cognitive functions. In Nogo-A knockout and knock-down laboratory rodents, behavioral alterations were observed, possibly corresponding with human neuropsychiatric diseases of neurodevelopmental origin, particularly schizophrenia. This study offers further insight into behavioral manifestations of Nogo-A knockdown in laboratory rats, focusing on spatial and non-spatial cognition, anxiety levels, circadian rhythmicity and activity patterns. Demonstrated is an impairment of cognitive functions and behavioral flexibility in a spatial active avoidance task, while non-spatial memory in a step-through avoidance task was spared. No signs of anhedonia, typical for schizophrenic patients, were observed in the animals. Some measures indicated lower anxiety levels in the Nogo-A deficient group. Circadian rhythmicity in locomotor activity was preserved in the Nogo-A-knockout rats and their circadian period (tau did not differ from controls. However, daily activity patterns were slightly altered in the knockdown animals. We conclude that a reduction of Nogo-A levels induces changes in CNS development, manifested as subtle alterations in cognitive functions, emotionality and activity patterns.

  16. Recombinant human antithrombin expressed in the milk of non-transgenic goats exhibits high efficiency on rat DIC model.

    Science.gov (United States)

    Yang, Hai; Li, Qing-Wang; Han, Zeng-Sheng; Hu, Jian-Hong; Li, Wen-Ye; Liu, Zhi-Bin

    2009-11-01

    Plasma-derived antithrombin (pAT) is often used for the treatments of disseminated intravascular coagulation (DIC) patients. In this paper, the recombinant adenovirus vector encoding human antithrombin (AT) cDNA was constructed and directly infused into the mammary gland of two goats. The recombinant human antithrombin (rhAT) was purified by heparin affinity chromatography from the goat milk, and then used in the treatment of thirty lipopolysaccharide (LPS) induced DIC rats. A high expression level of rhAT up to 2.8 g/l was obtained in the milk of goats. After purification, the recovery rate and the purity of the rhAT were up to 54.7 +/- 3.2% and 96.2 +/- 2.7%, respectively. In blood of the DIC rat model treated with rhAT, the levels of antithrombin and thrombin-antithrombin (TAT) were augmented significantly; meanwhile the consumption of fibrinogen and platelet was reduced significantly, and the increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) concentration was restrained modest and non-significant. For the above DIC indexes, there were no differences between pAT and rhAT (P > 0.05). Our results demonstrated that the way we established is a pragmatic tool for large-scale production of rhAT, and the rhAT produced with this method has potential as a substitute for pAT in the therapy of DIC patients.

  17. Integration of H-2Z1, a somatosensory cortex-expressed transgene, interferes with the expression of the Satb1 and Tbc1d5 flanking genes and affects the differentiation of a subset of cortical interneurons.

    Science.gov (United States)

    Narboux-Nême, Nicolas; Goïame, Rosette; Mattéi, Marie-Geneviève; Cohen-Tannoudji, Michel; Wassef, Marion

    2012-05-23

    H-2Z1 is an enhancer trap transgenic mouse line in which the lacZ reporter delineates the somatosensory area of the cerebral cortex where it is expressed in a subset of layer IV neurons. In the search of somatosensory specific genes or regulatory sequences, we mapped the H-2Z1 transgene insertion site to chromosome 17, 100 and 460 kb away from Tbc1d5 and Satb1 flanking genes. We show here that insertion of the H-2Z1 transgene results in three distinct outcomes. First, a genetic background-sensitive expression of lacZ in several brain and body structures. While four genes in a 1 Mb region around the insertion are expressed in the barrel cortex, H-2Z1 expression resembles more that of its two direct neighbors. Moreover, H-2Z1 closely reports most of the body and brain expression sites of the Satb1 chromatin remodeling gene including tooth buds, thymic epithelium, pontine nuclei, fastigial cerebellar nuclei, and cerebral cortex. Second, the H-2Z1 transgene causes insertional mutagenesis of Tbc1d5 and Satb1, leading to a strong decrease in their expressions. Finally, insertion of H-2Z1 affects the differentiation of a subset of cortical GABAergic interneurons, a possible consequence of downregulation of Satb1 expression. Thus, the H-2Z1 "somatosensory" transgene is inserted in the regulatory landscape of two genes highly expressed in the developing somatosensory cortex and reports for a subdomain of their expression profiles. Together, our data suggest that regulation of H-2Z1 expression results from local and remote genetic interactions.

  18. Adipose stem cells differentiated chondrocytes regenerate damaged cartilage in rat model of osteoarthritis.

    Science.gov (United States)

    Latief, Noreen; Raza, Fahad Ali; Bhatti, Fazal-Ur-Rehman; Tarar, Moazzam Nazir; Khan, Shaheen N; Riazuddin, Sheikh

    2016-05-01

    Transplantation of mesenchymal stem cells (MSCs) or autologous chondrocytes has been shown to repair damages to articular cartilage due to osteoarthritis (OA). However, survival of transplanted cells is considerably reduced in the osteoarthritic environment and it affects successful outcome of the transplantation of the cells. Differentiated chrondroytes derived from adipose stem cells have been proposed as an alternative source and our study investigated this possibility in rats. We investigated the regenerative potential of ADSCs and DCs in osteoarthritic environment in the repair of cartilage in rats. We found that ADSCs maintained fibroblast morphology in vitro and also expressed CD90 and CD29. Furthermore, ADSCs differentiated into chondrocytes, accompanied by increased level of proteoglycans and expression of chondrocytes specific genes, such as, Acan, and Col2a1. Histological examination of transplanted knee joints showed regeneration of cartilage tissue compared to control OA knee joints. Increase in gene expression for Acan, Col2a1 with concomitant decrease in the expression of Col1a1 suggested formation of hyaline like cartilage. A significant increase in differentiation index was observed in DCs and ADSCs transplanted knee joints (P = 0.0110 vs. P = 0.0429) when compared to that in OA control knee joints. Furthermore, transplanted DCs showed increased proliferation along with reduction in apoptosis as compared to untreated control. In conclusion, DCs showed better survival and regeneration potential as compared with ADSCs in rat model of OA and thus may serve a better option for regeneration of osteoarthritic cartilage. © 2016 International Federation for Cell Biology.

  19. Leptin differentially increases sympathetic nerve activity and its baroreflex regulation in female rats: role of oestrogen

    Science.gov (United States)

    Shi, Zhigang; Brooks, Virginia L

    2015-01-01

    in ovariectomized rats, but its effects were normalized with 4 days of oestrogen treatment. Bilateral nanoinjection of SHU9119 into the paraventricular nucleus of the hypothalamus (PVN), to block α-melanocyte-stimulating hormone (α-MSH) type 3 and 4 receptors, decreased LSNA in leptin-treated pro-oestrus but not dioestrus rats. Unlike leptin, i.c.v. insulin infusion increased basal and baroreflex control of LSNA and HR similarly in pro-oestrus and dioestrus rats; these responses did not differ from those in male rats. We conclude that, in female rats, leptin's stimulatory effects on SNA are differentially enhanced by oestrogen, at least in part via an increase in α-MSH activity in the PVN. These data further suggest that the actions of leptin and insulin to increase the activity of various sympathetic nerves occur via different neuronal pathways or cellular mechanisms. These results may explain the poor correlation in females of SNA with adiposity, or of MAP with leptin. PMID:25398524

  20. Potential subchronic food safety of the stacked trait transgenic maize GH5112E-117C in Sprague-Dawley rats.

    Science.gov (United States)

    Han, Shiwen; Zou, Shiying; He, Xiaoyun; Huang, Kunlun; Mei, Xiaohong

    2016-08-01

    The food safety of stacked trait genetically modified (GM) maize GH5112E-117C containing insect-resistance gene Cry1Ah and glyphosate-resistant gene G2-aroA was evaluated in comparison to non-GM Hi-II maize fed to Sprague-Dawley rats during a 90-day subchronic feeding study. Three different dietary concentrations (12.5, 25 and 50 %, w/w) of the GM maize were used or its corresponding non-GM maize. No biologically significant differences in the animals' clinical signs, body weights, food consumption, hematology, clinical chemistry, organ weights and histopathology were found between the stacked trait GM maize groups, and the non-GM maize groups. The results of the 90-day subchronic feeding study demonstrated that the stacked trait GM maize GH5112E-117C is as safe as the conventional non-GM maize Hi-II.

  1. Quantification of epithelial cell differentiation in mammary glands and carcinomas from DMBA- and MNU-exposed rats.

    Directory of Open Access Journals (Sweden)

    Deepak Sharma

    Full Text Available Rat mammary carcinogenesis models have been used extensively to study breast cancer initiation, progression, prevention, and intervention. Nevertheless, quantitative molecular data on epithelial cell differentiation in mammary glands of untreated and carcinogen-exposed rats is limited. Here, we describe the characterization of rat mammary epithelial cells (RMECs by multicolor flow cytometry using antibodies against cell surface proteins CD24, CD29, CD31, CD45, CD49f, CD61, Peanut Lectin, and Thy-1, intracellular proteins CK14, CK19, and FAK, along with phalloidin and Hoechst staining. We identified the luminal and basal/myoepithelial populations and actively dividing RMECs. In inbred rats susceptible to mammary carcinoma development, we quantified the changes in differentiation of the RMEC populations at 1, 2, and 4 weeks after exposure to mammary carcinogens DMBA and MNU. DMBA exposure did not alter the percentage of basal or luminal cells, but upregulated CD49f (Integrin α6 expression and increased cell cycle activity. MNU exposure resulted in a temporary disruption of the luminal/basal ratio and no CD49f upregulation. When comparing DMBA- or MNU-induced mammary carcinomas, the RMEC differentiation profiles are indistinguishable. The carcinomas compared with mammary glands from untreated rats, showed upregulation of CD29 (Integrin β1 and CD49f expression, increased FAK (focal adhesion kinase activation especially in the CD29hi population, and decreased CD61 (Integrin β3 expression. This study provides quantitative insight into the protein expression phenotypes underlying RMEC differentiation. The results highlight distinct RMEC differentiation etiologies of DMBA and MNU exposure, while the resulting carcinomas have similar RMEC differentiation profiles. The methodology and data will enhance rat mammary carcinogenesis models in the study of the role of epithelial cell differentiation in breast cancer.

  2. Gravity, a regulation factor in the differentiation of rat bone marrow mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Wan Yu-Min

    2009-09-01

    Full Text Available Abstract Background Stem cell therapy has emerged as a potential therapeutic option for tissue engineering and regenerative medicine, but many issues remain to be resolved, such as the amount of seed cells, committed differentiation and the efficiency. Several previous studies have focused on the study of chemical inducement microenvironments. In the present study, we investigated the effects of gravity on the differentiation of bone marrow mesenchymal stem cells (BMSCs into force-sensitive or force-insensitive cells. Methods and results Rat BMSCs (rBMSCs were cultured under hypergravity or simulated microgravity (SMG conditions with or without inducement medium. The expression levels of the characteristic proteins were measured and analyzed using immunocytochemical, RT-PCR and Western-blot analyses. After treatment with 5-azacytidine and hypergravity, rBMSCs expressed more characteristic proteins of cardiomyocytes such as cTnT, GATA4 and β-MHC; however, fewer such proteins were seen with SMG. After treating rBMSCs with osteogenic inducer and hypergravity, there were marked increases in the expression levels of ColIA1, Cbfa1 and ALP. Reverse results were obtained with SMG. rBMSCs treated with adipogenic inducer and SMG expressed greater levels of PPARgamma. Greater levels of Cbfa1- or cTnT-positive cells were observed under hypergravity without inducer, as shown by FACS analysis. These results indicate that hypergravity induces differentiation of rBMSCs into force-sensitive cells (cardiomyocytes and osteoblasts, whereas SMG induces force-insensitive cells (adipocytes. Conclusion Taken together, we conclude that gravity is an important factor affecting the differentiation of rBMSCs; this provides a new avenue for mechanistic studies of stem cell differentiation and a new approach to obtain more committed differentiated or undifferentiated cells.

  3. Arachidonate metabolism increases as rat alveolar type II cells differentiate in vitro

    International Nuclear Information System (INIS)

    Lipchik, R.J.; Chauncey, J.B.; Paine, R.; Simon, R.H.; Peters-Golden, M.

    1990-01-01

    Rat type II alveolar epithelial cells are known to undergo morphological and functional changes when maintained in culture for several days. Having previously demonstrated that these cells can deacylate free arachidonic acid (AA) and metabolize it to products of the cyclooxygenase pathway, the present study was undertaken to determine whether in vitro differentiation was accompanied by alterations in the availability and metabolism of AA. We assessed the constitutive and ionophore A23187-induced deacylation and metabolism of endogenous AA, as well as the metabolism of exogenously supplied AA, in primary cultures of rat type II cells at days 2, 4, and 7 after isolation. Levels of free endogenous AA were increased at day 4, whereas eicosanoid synthesis, predominantly prostaglandin E2 and prostacyclin, increased markedly only at day 7. A similar time course of augmentation of prostanoid release was seen in response to exogenous AA. Type II cells cultured on fibronectin, intended to hasten cell flattening and spreading, demonstrated accelerated increases in available free AA in response to A23187; cells cultured on basement membrane derived from Engelbreth-Holm-Swarm mouse sarcoma, known to maintain the type II phenotype, exhibited diminished levels of available free AA. From these findings, we conclude that alterations in arachidonate metabolism are linked to alterations in cellular phenotype. The potentiation of eicosanoid synthesis accompanying in vitro differentiation suggests a possible role for the alveolar epithelium in the modulation of inflammation and fibrosis in the distal lung

  4. Electrophysiological and morphological properties of neurons in the prepositus hypoglossi nucleus that express both ChAT and VGAT in a double-transgenic rat model.

    Science.gov (United States)

    Saito, Yasuhiko; Zhang, Yue; Yanagawa, Yuchio

    2015-04-01

    Although it has been proposed that neurons that contain both acetylcholine (ACh) and γ-aminobutyric acid (GABA) are present in the prepositus hypoglossi nucleus (PHN), these neurons have not been characterized because of the difficulty in identifying them. In the present study, PHN neurons that express both choline acetyltransferase and the vesicular GABA transporter (VGAT) were identified using double-transgenic rats, in which the cholinergic and inhibitory neurons express the fluorescent proteins tdTomato and Venus, respectively. To characterize the neurons that express both tdTomato and Venus (D+ neurons), the afterhyperpolarization (AHP) profiles and firing patterns of these neurons were investigated via whole-cell recordings of brainstem slice preparations. Regarding the three AHP profiles and four firing patterns that the D+ neurons exhibited, an AHP with an afterdepolarization and a firing pattern that exhibited a delay in the generation of the first spike were the preferential properties of these neurons. In the three morphological types classified, the multipolar type that exhibited radiating dendrites was predominant among the D+ neurons. Immunocytochemical analysis revealed that the VGAT-immunopositive axonal boutons that expressed tdTomato were primarily located in the dorsal cap of inferior olive (IO) and the PHN. Although the PHN receives cholinergic inputs from the pedunculopontine tegmental nucleus and laterodorsal tegmental nucleus, D+ neurons were absent from these brain areas. Together, these results suggest that PHN neurons that co-express ACh and GABA exhibit specific electrophysiological and morphological properties, and innervate the dorsal cap of the IO and the PHN. © 2015 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  5. The effect of Emdogain on the growth and differentiation of rat bone marrow cells.

    Science.gov (United States)

    van den Dolder, J; Vloon, A P G; Jansen, J A

    2006-10-01

    The major extracellular matrix (ECM) proteins in developing enamel can induce and maintain the formation and mineralization of other skeletal hard tissue, such as bone. Therefore, dental matrix proteins are ideal therapeutic agents when direct formation of functional bone is required for a successful clinical outcome. Emdogain (EMD) consists of enamel matrix proteins which are known to stimulate bone formation. However, only a few studies in the literature have reported the effect of EMD on osteoblast-like cells in vitro. In this study, rat bone marrow cells, obtained from the femora of Wistar rats, were precultured for 7 d in osteogenic medium. Then, the cells were harvested and seeded in 24-well plates at a concentration of 20,000 cells/well. The wells were either precoated with 100 microg/ml EMD, or left uncoated. The seeded cells were cultured in osteogenic medium for 32 d and analysed for cell attachment (by using the Live and Dead assay), cell growth (by determining DNA content) and cell differentiation (by measuring alkaline phosphatase activity and calcium content, and by using scanning electron microscopy and the reverse transcription-polymerase chain reaction). The results showed that at the 4-h time point of the experiment, more cells were attached to EMD-negative wells, but this effect was no longer apparent at 24 h. DNA analysis revealed that both groups showed a similar linear trend of cell growth. No differences in alkaline phosphatase activity or calcium content were observed, and no differences in gene expression (osteocalcin, alkaline phosphatase and collagen type I) were found between the groups. Based on our results, we conclude that EMD had no significant effect on the cell growth and differentiation of rat bone marrow cells.

  6. Differential effects of fasting vs food restriction on liver thyroid hormone metabolism in male rats.

    Science.gov (United States)

    de Vries, E M; van Beeren, H C; Ackermans, M T; Kalsbeek, A; Fliers, E; Boelen, A

    2015-01-01

    A variety of illnesses that leads to profound changes in the hypothalamus-pituitary-thyroid (HPT) are axis collectively known as the nonthyroidal illness syndrome (NTIS). NTIS is characterized by decreased tri-iodothyronine (T3) and thyroxine (T4) and inappropriately low TSH serum concentrations, as well as altered hepatic thyroid hormone (TH) metabolism. Spontaneous caloric restriction often occurs during illness and may contribute to NTIS, but it is currently unknown to what extent. The role of diminished food intake is often studied using experimental fasting models, but partial food restriction might be a more physiologically relevant model. In this comparative study, we characterized hepatic TH metabolism in two models for caloric restriction: 36 h of complete fasting and 21 days of 50% food restriction. Both fasting and food restriction decreased serum T4 concentration, while after 36-h fasting serum T3 also decreased. Fasting decreased hepatic T3 but not T4 concentrations, while food restriction decreased both hepatic T3 and T4 concentrations. Fasting and food restriction both induced an upregulation of liver D3 expression and activity, D1 was not affected. A differential effect was seen in Mct10 mRNA expression, which was upregulated in the fasted rats but not in food-restricted rats. Other metabolic pathways of TH, such as sulfation and UDP-glucuronidation, were also differentially affected. The changes in hepatic TH concentrations were reflected by the expression of T3-responsive genes Fas and Spot14 only in the 36-h fasted rats. In conclusion, limited food intake induced marked changes in hepatic TH metabolism, which are likely to contribute to the changes observed during NTIS. © 2015 Society for Endocrinology.

  7. Effects of strontium on proliferation and differentiation of rat bone marrow mesenchymal stem cells

    Energy Technology Data Exchange (ETDEWEB)

    Li, Yunfeng; Li, Jihua; Zhu, Songsong; Luo, En; Feng, Ge; Chen, Qianming [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China); Hu, Jing, E-mail: drhu@vip.sohu.com [State Key Laboratory of Oral Diseases, West China College of Stomatology, Sichuan University, No. 14, Section 3, Southern Renmin Road, Chengdu 610041 (China)

    2012-02-24

    Highlights: Black-Right-Pointing-Pointer Strontium ranelate (SrR) inhibits proliferation of BMMSCs. Black-Right-Pointing-Pointer SrR increases osteoblastic but decreases adipocytic differentiation of BMMSCs. Black-Right-Pointing-Pointer SrR increases expression of Runx2, BSP and OCN by BMMSCs in osteogenic medium. Black-Right-Pointing-Pointer SrR decreases expression of PPAR{gamma}, aP2/ALBP and LPL by BMMSCs in adipogenic medium. -- Abstract: Strontium ranelate (SrR) was an effective anti-osteoporotic drug to increase bone formation and decrease bone resorption. However, reports about the effect of SR on osteoblastic and adipocytic differentiation from bone marrow mesenchymal stem cells (BMMSCs) are limited. The purpose of this study is to evaluate whether SrR affects the ability of BMMSCs to differentiate into osteoblasts or adipocytes. Rat BMMSCs were identified by flow cytometry and exposed to SR (0.1 and 1.0 mM Sr{sup 2+}) under osteogenic or adipogenic medium for 1 and 2 weeks. The proliferation and differentiation of BMMSCs were analyzed by MTT, alkaline phosphatase (ALP), Oil red O staining, quantitative real-time RT-PCR and Western blot assays. SrR significantly inhibited the proliferation, increased osteoblastic but decreased adipocytic differentiation of rat BMMSCs dose-dependently. In osteogenic medium, SrR increased the expression of ALP, the mRNA levels of Cbfa1/Runx2, bone sialoprotein, and osteocalcin by RT-PCR, and the protein levels of Cbfa1/Runx2 by Western blot. In adipogenic medium, SrR decreased the mRNA levels of PPAR{gamma}2, adipocyte lipid-binding protein 2 (aP2/ALBP), and lipoprotein lipase (LPL) by RT-PCR, and the protein expression of PPAR{gamma} in Western blot analysis. These results indicated that the effects of SrR to promote osteoblastic but inhibit adipocytic differentiation of BMMSCs might contribute to its effect on osteoporosis treatment.

  8. Endocrine and cardiovascular rhythms differentially adapt to chronic phase-delay shifts in rats.

    Science.gov (United States)

    Zeman, Michal; Molcan, Lubos; Herichova, Iveta; Okuliarova, Monika

    2016-01-01

    Disturbances in regular circadian oscillations can have negative effects on cardiovascular function, but epidemiological data are inconclusive and new data from animal experiments elucidating critical biological mechanisms are needed. To evaluate the consequences of chronic phase shifts of the light/dark (LD) cycle on hormonal and cardiovascular rhythms, two experiments were performed. In Experiment 1, male rats were exposed to either a regular 12:12 LD cycle (CONT) or rotating 8-h phase-delay shifts of LD every second day (SHIFT) for 10 weeks. During this period, blood pressure (BP) was monitored weekly, and daily rhythms of melatonin, corticosterone, leptin and testosterone were evaluated at the end of the experiment. In Experiment 2, female rats were exposed to the identical shifted LD schedule for 12 weeks, and daily rhythms of BP, heart rate (HR) and locomotor activity were recorded using telemetry. Preserved melatonin rhythms were found in the pineal gland, plasma, heart and kidney of SHIFT rats with damped amplitude in the plasma and heart, suggesting that the central oscillator can adapt to chronic phase-delay shifts. In contrast, daily rhythms of corticosterone, testosterone and leptin were eliminated in SHIFT rats. Exposure to phase shifts did not lead to increased body weight and elevated BP. However, a shifted LD schedule substantially decreased the amplitude and suppressed the circadian power of the daily rhythms of BP and HR, implying weakened circadian control of physiological and behavioural processes. The results demonstrate that endocrine and cardiovascular rhythms can differentially adapt to chronic phase-delay shifts, promoting internal desynchronization between central and peripheral oscillators, which in combination with other negative environmental stimuli may result in negative health effects.

  9. Identification of the Differential Expression Profiles of Serum and Tissue Proteins During Rat Hepatocarcinogenesis.

    Science.gov (United States)

    Sheng, Xia; Huang, Tao; Qin, Jianmin; Yang, Lin; Sa, Zhong-Qiu; Li, Qi

    2018-01-01

    The pathogenesis of hepatocellular carcinoma is complex and not fully known yet. This study aims to screen and identify the differentially expressed proteins in peripheral blood and liver tissue samples from rat hepatocellular carcinoma and to further clarify the pathogenesis and discover the specific tumor markers and molecular targets of hepatocellular carcinoma. The hepatocellular carcinoma model of Wistar rats were induced by chemical carcinogen. The serum and liver tissue samples were obtained after induction for 2, 4, 8, 14, 18, and 21 weeks. The results showed that the clusterin (IPI00198667), heat shock protein a8 (IPI00208205), and N-myc downstream-regulated gene-2 (IPI00382069) being closely related to hepatocarcinogenesis were eventually identified from the 30 different proteins. As the time progressed, the serum levels of clusterin and heat shock protein a8 increased gradually during induced liver cancer in rats. However, the serum N-myc downstream-regulated gene 2 level in induced liver cancer in rats underwent biphasic changes, and the serum N-myc downstream-regulated gene 2 level decreased at the 8th week, increased at the 14th week, and then decreased significantly. Statistical difference occurred in protein expression of clusterin and heat shock protein a8 in liver tissues at the different time points. In the liver tissues, the N-myc downstream-regulated gene 2 level decreased gradually at the 8th week, increased gradually at the 14th week, and then decreased significantly after 14 weeks. The study demonstrated that heat shock protein a8, clusterin, and N-myc downstream-regulated gene 2 participated in the process of abnormal cell division, proliferation, and carcinogenesis of liver cells during hepatocarcinogenesis.

  10. Perinatal exposure to xenoestrogens impairs mammary gland differentiation and modifies milk composition in Wistar rats.

    Science.gov (United States)

    Kass, Laura; Altamirano, Gabriela A; Bosquiazzo, Verónica L; Luque, Enrique H; Muñoz-de-Toro, Mónica

    2012-06-01

    The current study examined the consequences of perinatal (gestation+lactation) exposure to Bisphenol A (BPA) or diethylstilbestrol (DES) on F1 mammary gland (MG) differentiation. BPA (0, 0.7 or 64 μg/kg bw/day) or DES (6 μg/kg bw/day) was administered in the drinking water of F0 rats from gestational day 9 (GD9) until weaning. F1 females were bred, MG samples obtained on GD18 and GD21, and, during lactation, milk yield and milk protein composition were assessed. On GD18, there was a decrease in α-lactalbumin and β-casein levels that was accompanied by reduced prolactin receptor and Stat5a/b expression. On GD21, delayed histological MG differentiation was observed. β-Casein levels remained decreased on GD21 and in milk samples. Moreover, the BPA- and DES-exposed groups had an altered milk yield pattern during lactation. The long-lasting effects of perinatal exposure to low doses of xenoestrogens included delayed MG differentiation, altered milk yield and modified milk composition. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Rat Dlx5 is expressed in the subventricular zone and promotes neuronal differentiation

    Directory of Open Access Journals (Sweden)

    H.F. Shu

    2010-02-01

    Full Text Available The molecular mechanisms and potential clinical applications of neural precursor cells have recently been the subject of intensive study. Dlx5, a homeobox transcription factor related to the distal-less gene in Drosophila, was shown to play an important role during forebrain development. The subventricular zone (SVZ in the adult brain harbors the largest abundance of neural precursors. The anterior SVZ (SVZa contains the most representative neural precursors in the SVZ. Further research is necessary to elucidate how Dlx5-related genes regulate the differentiation of SVZa neural precursors. Here, we employed immunohistochemistry and molecular biology techniques to study the expression of Dlx5 and related homeobox genes Er81 and Islet1 in neonatal rat brain and in in vitro cultured SVZa neural precursors. Our results show that Dlx5 and Er81 are also highly expressed in the SVZa, rostral migratory stream, and olfactory bulb. Islet1 is only expressed in the striatum. In cultured SVZa neural precursors, Dlx5 mRNA expression gradually decreased with subsequent cell passages and was completely lost by passage four. We also transfected a Dlx5 recombinant plasmid and found that Dlx5 overexpression promoted neuronal differentiation of in vitro cultured SVZa neural precursors. Taken together, our data suggest that Dlx5 plays an important role during neuronal differentiation.

  12. Effects of expansive force on the differentiation of midpalatal suture cartilage in rats.

    Science.gov (United States)

    Takahashi, I; Mizoguchi, I; Nakamura, M; Sasano, Y; Saitoh, S; Kagayama, M; Mitani, H

    1996-04-01

    In an attempt to clarify the effects of biomechanical tensional force on chondrogenic and osteogenic differentiation of secondary cartilage, the midpalatal sutures of 4-week-old Wistar male rats were expanded by orthodontic wires which applied 20 g force for 4, 7, 10, and 14 days. The differentiation pathways in the midpalatal suture cartilage were examined by immunohistochemistry for osteocalcin, type I and type II collagen, and von Kossa histochemistry. Although the midpalatal sutures of the control animals consisted mainly of two separate secondary cartilages with mesenchyme-like cells at their midlines, type I collagen-rich fibrous tissue began to appear at day 4 and increased at the midline of the cartilage with days of experiment. At the end of the experiment, type I collagen-rich and calcified bone matrix appeared at the boundary between the precartilaginous and the cartilaginous cell layers. Most of the cartilaginous tissues were separated from each other and the midpalatal suture was replaced by osteocalcin-positive intramembranous bone and fibrous sutural tissue. These results strongly suggest that tensional force changed the phenotypic expression of collagenous components in secondary cartilage, which may reflect the differentiation pathway of osteochondro progenitor cells.

  13. Alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats.

    Science.gov (United States)

    Sun, Hongli; Su, Qian; Zhang, Huifang; Liu, Weimin; Zhang, Huiping; Ding, Ding; Zhu, Zhongliang; Li, Hui

    2015-06-01

    To clarify the alterations of proliferation and differentiation of hippocampal cells in prenatally stressed rats. We investigated the impact of prenatal restraint stress on the hipocampal cell proliferation in the progeny with 5-bromo-2'-deoxyuridine (BrdU), which is a marker of proliferating cells and their progeny. In addition, we observed the differentiation of neural stem cells (NSCs) with double labeling of BrdU/neurofilament (NF), BrdU/glial fibrillary acidic protein (GFAP) in the hipocampus. Prenatal stress (PS) increased cell proliferation in the dentate gyrus (DG) only in female and neuron differentiation of newly divided cells in the DG and CA4 in both male and female. Moreover, the NF and GFAP-positive cells, but not the BrdU-positive cells, BrdU/NF and BrdU/GFAP-positive cells, were found frequently in the CA3 and CA1 in the offspring of each group. These results possibly suggest a compensatory adaptive response to neuronal damage or loss in hippocampus induced by PS. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  14. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats.

    Science.gov (United States)

    Muñoz-Castañeda, Juan R; Herencia, Carmen; Pendón-Ruiz de Mier, Maria Victoria; Rodriguez-Ortiz, Maria Encarnación; Diaz-Tocados, Juan M; Vergara, Noemi; Martínez-Moreno, Julio M; Salmerón, Maria Dolores; Richards, William G; Felsenfeld, Arnold; Kuro-O, Makoto; Almadén, Yolanda; Rodríguez, Mariano

    2017-09-01

    In renal failure, hyperphosphatemia occurs despite a marked elevation in serum fibroblast growth factor (FGF)-23. Abnormal regulation of the FGFR1-Klotho receptor complex may cause a resistance to the phosphaturic action of FGF23. The purpose of the present study was to investigate the regulation of renal Klotho and FGF receptor (FEFR)-1 in healthy and uremic rats induced by 5/6 nephrectomy. In normal rats, the infusion of rat recombinant FGF23 enhanced phosphaturia and increased renal FGFR1 expression; however, Klotho expression was reduced. Uremic rats on a high-phosphate (HP) diet presented hyperphosphatemia with marked elevation of FGF23 and an increased fractional excretion of phosphate (P) that was associated with a marked reduction of Klotho expression and an increase in FGFR1. After neutralization of FGF23 by anti-FGF23 administration, phosphaturia was still abundant, Klotho expression remained low, and the FGFR1 level was reduced. These results suggest that the expression of renal Klotho is modulated by phosphaturia, whereas the FGFR1 expression is regulated by FGF23. Calcitriol (CTR) administration prevented a decrease in renal Klotho expression. In HEK293 cells HP produced nuclear translocation of β-catenin, together with a reduction in Klotho. Wnt/β-catenin inhibition with Dkk-1 prevented the P-induced down-regulation of Klotho. The addition of CTR to HP medium was able to recover Klotho expression. In summary, high FGF23 levels increase FGFR1, whereas phosphaturia decreases Klotho expression through the activation of Wnt/β-catenin pathway.-Muñoz-Castañeda, J. R., Herencia, C., Pendón-Ruiz de Mier, M. V., Rodriguez-Ortiz, M. E., Diaz-Tocados, J. M., Vergara, N., Martínez-Moreno, J. M., Salmerón, M. D., Richards, W. G., Felsenfeld, A., Kuro-O, M., Almadén, Y., Rodríguez, M. Differential regulation of renal Klotho and FGFR1 in normal and uremic rats. © FASEB.

  15. Effect of hypothyroidism in the thyroidectomized rats on immunophenotypic characteristics and differentiation capacity of adipose tissue derived stem cells.

    Science.gov (United States)

    Simsek, T; Duruksu, G; Okçu, A; Aksoy, A; Erman, G; Utkan, Z; Cantürk, Z; Karaöz, E

    2014-01-01

    Thyroid hormones influence multiple physiological functions, like growth, differentiation, protein synthesis and metabolic rate. The hypothyroid state is a complex hormonal dysfunction rather than a single hormonal defect. The relation between hypothyroidism after thyroidectomy and stem cells is not clear. This study was designed to investigate the effect of thyroidectomy on the proliferation, telomerase enzyme activities, immunophenotypic properties and differentiation potentials of adipose tissue-derived (AT-) stem cells (SCs). AT-SCs after 60 and 120 days of thyroidectomized (Tx) rats were compared to normal rats by flow cytometry and immunocytochemistry analyses, and their telomerase activities were estimated. The telomerase activity was found to be positive for AT-SCs of Tx rats of both 60 and 120 days used in this study, but a decrease was noticed in the cells with the long-term exposure to hypothyroidism. This might indicate the decrease in the regenerative ability of the AT-SCs after 120 days of Tx compared to cells after 60 days of Tx. Both cell lines were induced to differentiate into adipogenic, osteogenic and neurogenic cell lineages, but osteogenic marker expression was not detected in the undifferentiated AT-SCs of the Tx rats. Osteogenic differentiation was also failed in stem cells derived from Tx rats, shown by Alizarin red S staining and alkaline phosphates enzyme assays. These results suggest that hypothyroidism affected SCs, altered stem cell characteristics, like telomerase activity and loss of in vitro bone formation, but not adipogenic or neurogenic differentiation ability. Hypothyroidism after Tx affects the osteogenic differentiation capacity of stem cells, which might be one of the factors of bone loss due to postnatal hypothyroidism.

  16. Differential effects of dietary flavonoids on drug metabolizing and antioxidant enzymes in female rat

    DEFF Research Database (Denmark)

    Breinholt, V.; Lauridsen, S.T.; Dragsted, L.O.

    1999-01-01

    1. Gavage administration of the natural flavonoids tangeretin, chrysin, apigenin, naringenin, genistein and quercetin for 2 consecutive weeks to the female rat resulted in differential effects on selected phase 1 and 2 enzymes in liver, colon and heart as well as antioxidant enzymes in red brood......, genistein, tangeretin and BNF. 5. The observed effects of chrysin, quercetin and genistein on antioxidant enzymes, concurrently with a protection against oxidative stress, suggest a feedback mechanism on the antioxidant enzymes triggered by the flavonoid antioxidants. 6. Despite the use of high flavonoid...... doses, which by far exceed the human exposure levels, the effect on drug metabolizing and antioxidant enzymes was still very minor. The role of singly administered flavonoids in the protection against cancer and heart disease is thus expected to be limited....

  17. Bone morphogenic protein-2 regulates the myogenic differentiation of PMVECs in CBDL rat serum-induced pulmonary microvascular remodeling

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chang; Chen, Lin; Zeng, Jing; Cui, Jian; Ning, Jiao-nin [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Wang, Guan-song [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Belguise, Karine; Wang, Xiaobo [Université P. Sabatier Toulouse III and CNRS, LBCMCP, 31062 Toulouse Cedex 9 (France); Qian, Gui-sheng [Institute of Respiratory Disease, Xinqiao Hospital, The Third Military Medical University, Chongqing 400037 (China); Lu, Kai-zhi [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China); Yi, Bin, E-mail: yibin1974@163.com [Department of Anesthesia, Southwest Hospital, The Third Military Medical University, Chongqing 400038 (China)

    2015-08-01

    Hepatopulmonary syndrome (HPS) is characterized by an arterial oxygenation defect induced by intrapulmonary vasodilation (IPVD) that increases morbidity and mortality. In our previous study, it was determined that both the proliferation and the myogenic differentiation of pulmonary microvascular endothelial cells (PMVECs) play a key role in the development of IPVD. However, the molecular mechanism underlying the relationship between IPVD and the myogenic differentiation of PMVECs remains unknown. Additionally, it has been shown that bone morphogenic protein-2 (BMP2), via the control of protein expression, may regulate cell differentiation including cardiomyocyte differentiation, neuronal differentiation and odontoblastic differentiation. In this study, we observed that common bile duct ligation (CBDL)-rat serum induced the upregulation of the expression of several myogenic proteins (SM-α-actin, calponin, SM-MHC) and enhanced the expression levels of BMP2 mRNA and protein in PMVECs. We also observed that both the expression levels of Smad1/5 and the activation of phosphorylated Smad1/5 were significantly elevated in PMVECs following exposure to CBDL-rat serum, which was accompanied by the down-regulation of Smurf1. The blockage of the BMP2/Smad signaling pathway with Noggin inhibited the myogenic differentiation of PMVECs, a process that was associated with relatively low expression levels of both SM-α-actin and calponin in the setting of CBDL-rat serum exposure, although SM-MHC expression was not affected. These findings suggested that the BMP2/Smad signaling pathway is involved in the myogenic differentiation of the PMVECs. In conclusion, our data highlight the pivotal role of BMP2 in the CBDL-rat serum-induced myogenic differentiation of PMVECs via the activation of both Smad1 and Smad5 and the down-regulation of Smurf1, which may represent a potential therapy for HPS-induced pulmonary vascular remodeling. - Highlights: • CBDL-rat serum promotes the myogenic

  18. Clonal characterization of rat muscle satellite cells: proliferation, metabolism and differentiation define an intrinsic heterogeneity.

    Directory of Open Access Journals (Sweden)

    Carlo A Rossi

    2010-01-01

    Full Text Available Satellite cells (SCs represent a distinct lineage of myogenic progenitors responsible for the postnatal growth, repair and maintenance of skeletal muscle. Distinguished on the basis of their unique position in mature skeletal muscle, SCs were considered unipotent stem cells with the ability of generating a unique specialized phenotype. Subsequently, it was demonstrated in mice that opposite differentiation towards osteogenic and adipogenic pathways was also possible. Even though the pool of SCs is accepted as the major, and possibly the only, source of myonuclei in postnatal muscle, it is likely that SCs are not all multipotent stem cells and evidences for diversities within the myogenic compartment have been described both in vitro and in vivo. Here, by isolating single fibers from rat flexor digitorum brevis (FDB muscle we were able to identify and clonally characterize two main subpopulations of SCs: the low proliferative clones (LPC present in major proportion (approximately 75% and the high proliferative clones (HPC, present instead in minor amount (approximately 25%. LPC spontaneously generate myotubes whilst HPC differentiate into adipocytes even though they may skip the adipogenic program if co-cultured with LPC. LPC and HPC differ also for mitochondrial membrane potential (DeltaPsi(m, ATP balance and Reactive Oxygen Species (ROS generation underlying diversities in metabolism that precede differentiation. Notably, SCs heterogeneity is retained in vivo. SCs may therefore be comprised of two distinct, though not irreversibly committed, populations of cells distinguishable for prominent differences in basal biological features such as proliferation, metabolism and differentiation. By these means, novel insights on SCs heterogeneity are provided and evidences for biological readouts potentially relevant for diagnostic purposes described.

  19. Age at developmental cortical injury differentially Alters corpus callosum volume in the rat

    Directory of Open Access Journals (Sweden)

    Rosen Glenn D

    2007-11-01

    Full Text Available Abstract Background Freezing lesions to developing rat cortex induced between postnatal day (P one and three (P1 – 3 lead to malformations similar to human microgyria, and further correspond to reductions in brain weight and cortical volume. In contrast, comparable lesions on P5 do not produce microgyric malformations, nor the changes in brain weight seen with microgyria. However, injury occurring at all three ages does lead to rapid auditory processing deficits as measured in the juvenile period. Interestingly, these deficits persist into adulthood only in the P1 lesion case 1. Given prior evidence that early focal cortical lesions induce abnormalities in cortical morphology and connectivity 1234, we hypothesized that the differential behavioral effects of focal cortical lesions on P1, P3 or P5 may be associated with underlying neuroanatomical changes that are sensitive to timing of injury. Clinical studies indicate that humans with perinatal brain injury often show regional reductions in corpus callosum size and abnormal symmetry, which frequently correspond to learning impairments 567. Therefore, in the current study the brains of P1, 3 or 5 lesion rats, previously evaluated for brain weight, and cortical volume changes and auditory processing impairments (P21-90, were further analyzed for changes in corpus callosum volume. Results Results showed a significant main effect of Treatment on corpus callosum volume [F (1,57 = 10.2, P Conclusion Decrements in corpus callosum volume in the P1 and 3 lesion groups are consistent with the reductions in brain weight and cortical volume previously reported for microgyric rats 18. Current results suggest that disruption to the cortical plate during early postnatal development may lead to more widely dispersed neurovolumetric anomalies and subsequent behavioral impairments 1, compared with injury that occurs later in development. Further, these results suggest that in a human clinical setting decreased

  20. Fluoxetine Dose and Administration Method Differentially Affect Hippocampal Plasticity in Adult Female Rats

    Directory of Open Access Journals (Sweden)

    Jodi L. Pawluski

    2014-01-01

    Full Text Available Selective serotonin reuptake inhibitor medications are one of the most common treatments for mood disorders. In humans, these medications are taken orally, usually once per day. Unfortunately, administration of antidepressant medications in rodent models is often through injection, oral gavage, or minipump implant, all relatively stressful procedures. The aim of the present study was to investigate how administration of the commonly used SSRI, fluoxetine, via a wafer cookie, compares to fluoxetine administration using an osmotic minipump, with regards to serum drug levels and hippocampal plasticity. For this experiment, adult female Sprague-Dawley rats were divided over the two administration methods: (1 cookie and (2 osmotic minipump and three fluoxetine treatment doses: 0, 5, or 10 mg/kg/day. Results show that a fluoxetine dose of 5 mg/kg/day, but not 10 mg/kg/day, results in comparable serum levels of fluoxetine and its active metabolite norfluoxetine between the two administration methods. Furthermore, minipump administration of fluoxetine resulted in higher levels of cell proliferation in the granule cell layer (GCL at a 5 mg dose compared to a 10 mg dose. Synaptophysin expression in the GCL, but not CA3, was significantly lower after fluoxetine treatment, regardless of administration method. These data suggest that the administration method and dose of fluoxetine can differentially affect hippocampal plasticity in the adult female rat.

  1. Fat intake leads to differential response of rat adipocytes to glucose, insulin and ascorbic acid.

    Science.gov (United States)

    Garcia-Diaz, Diego F; Campion, Javier; Arellano, Arianna V; Milagro, Fermin I; Moreno-Aliaga, Maria J; Martinez, J Alfredo

    2012-04-01

    Antioxidant-based treatments have emerged as novel and interesting approaches to counteract fat accumulation in obesity and associated metabolic disturbances. Adipocytes from rats that were fed on chow or high-fat diet (HFD) for 50 d were isolated (primary adipocytes) and incubated (72 h) on low (LG; 5.6 mmol/L) or high (HG; 25 mmol/L) glucose levels, in the presence or absence of 1.6 nmol/L insulin and 200 μmol/L vitamin C (VC). Adipocytes from HFD-fed animals presented lower insulin-induced glucose uptake, lower lactate and glycerol release, and lower insulin-induced secretion of some adipokines as compared with controls. HG treatment restored the blunted response to insulin regarding apelin secretion in adipocytes from HFD-fed rats. VC treatment inhibited the levels of nearly all variables, irrespective of the adipocytes' dietary origin. The HG treatment reduced adipocyte viability, and VC protected from this toxic effect, although more drastically in control adipocytes. Summing up, in vivo chow or HFD intake determines a differential response to insulin and glucose treatments that appears to be dependent on the insulin-resistance status of the adipocytes, while VC modifies some responses from adipocytes independently of the previous dietary intake of the animals.

  2. Possible mechanisms behind the differential effects of soy protein and casein feedings on colon cancer biomarkers in the rat

    NARCIS (Netherlands)

    Vis, E.H.; Geerse, G.J.; Klaassens, E.S.; Boekel, van M.A.J.S.; Alink, G.M.

    2005-01-01

    In the present studies, several hypotheses were tested to explain previously reported differential effects of soy and casein on colon cancer biomarkers like cell proliferation, fecal fat, fecal bile acid, alkaline phosphatase, and magnesium excretion in rats. In Study 1, the effect of methionine, a

  3. The regulation of the proliferation and differentiation of rat Leydig cell precursor cells after EDS administration or daily HCG treatment

    NARCIS (Netherlands)

    Teerds, K. J.; de rooij, D. G.; Rommerts, F. F.; Wensing, C. J.

    1988-01-01

    The proliferation and differentiation of possible Leydig cell precursors in adult rats were studied after destruction of the existing Leydig cells with EDS or after daily treatment with hCG. After 2 days with either treatment, a 12- to 16-fold increase in the number of [3H]thymidine-incorporating

  4. The effect of hypothyroidism on Sertoli cell proliferation and differentiation and hormone levels during testicular development in the rat

    NARCIS (Netherlands)

    van Haaster, L. H.; de Jong, F. H.; Docter, R.; de rooij, D. G.

    1992-01-01

    In this study we show that 6-propyl-2-thiouracil (PTU) treatment of Wistar rats from birth up to day 26 p.p. retards the morphological differentiation of Sertoli cells, and prolongs the proliferation of these cells up to day 30. Sertoli cell numbers per testis, determined at day 36, were increased

  5. Transcriptome differentiation along the dorso-ventral axis in laser-captured microdissected rat hippocampal granular cell layer

    DEFF Research Database (Denmark)

    Christensen, T.; Bisgaard, C.F.; Nielsen, Henrik Bjørn

    2010-01-01

    -related behaviors. Based on such findings our aim was to investigate the molecular differentiation along the dorso-ventral axis of the hippocampal granular cell layer of the rat dentate gyrus. Homogeneous isolation of this specific area was performed by laser-capture microdissection and Illumina microarray chips...

  6. An immunohistochemical approach to differentiate hepatic lipidosis from hepatic phospholipidosis in rats.

    Science.gov (United States)

    Obert, Leslie A; Sobocinski, Gregg P; Bobrowski, Walter F; Metz, Alan L; Rolsma, Mark D; Altrogge, Douglas M; Dunstan, Robert W

    2007-08-01

    Hepatocellular vacuolation can be a diagnostic challenge since cytoplasmic accumulations of various substances (lipid, water, phospholipids, glycogen, and plasma) can have a similar morphology. Cytoplasmic accumulation of phospholipids following administration of cationic amphiphilic drugs (CAD) can be particularly difficult to differentiate from nonphosphorylated lipid accumulations at the light microscopic level. Histochemical methods (Sudan Black, Oil Red-O, Nile Blue, etc.) can be used to identify both nonphosphorylated and/or phosphorylated lipid accumulations, but these techniques require non-paraffin-embedded tissue and are only moderately sensitive. Thus, electron microscopy is often utilized to achieve a definitive diagnosis based upon the characteristic morphologic features of phospholipid accumulations; however, this is a low throughput and labor intense procedure. In this report, we describe the use of immunohistochemical staining for LAMP-2 (a lysosome-associated protein) and adipophilin (a protein that forms the membrane around non-lysosomal lipid droplets) to differentiate phospholipidosis and lipidosis, respectively in the livers of rats. This staining procedure can be performed on formalin-fixed paraffin embedded tissues, is more sensitive than histochemistry, and easier to perform than ultrastructural evaluation.

  7. Effects of barium titanate nanoparticles on proliferation and differentiation of rat mesenchymal stem cells.

    Science.gov (United States)

    Ciofani, Gianni; Ricotti, Leonardo; Canale, Claudio; D'Alessandro, Delfo; Berrettini, Stefano; Mazzolai, Barbara; Mattoli, Virgilio

    2013-02-01

    Nanomaterials hold great promise in the manipulation and treatments of mesenchymal stem cells, since they allow the modulation of their properties and differentiation. However, systematic studies have to be carried out in order to assess their potential toxicological effects. The present study reports on biocompatibility evaluation of glycol-chitosan coated barium titanate nanoparticles (BTNPs) on rat mesenchymal stem cells (MSCs). BTNPs are a class of ceramic systems which possess interesting features for biological applications thanks to their peculiar dielectric and piezoelectric properties. Viability was evaluated up to 5 days of incubation (concentrations in the range 0-100 μg/ml) both quantitatively and qualitatively with specific assays. Interactions cells/nanoparticles were further investigated with analysis of the cytoskeleton conformation, with SEM and TEM imaging, and with AFM analysis. Finally, differentiation in adipocytes and osteocytes was achieved in the presence of high doses of BTNPs, thus highlighting the safety of these nanostructures towards mesenchymal stem cells. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Differential responsiveness of obese (fa/fa) and lean (Fa/Fa) Zucker rats to cytokine-induced anorexia.

    Science.gov (United States)

    Plata-Salamán, C R; Vasselli, J R; Sonti, G

    1997-01-01

    Pathophysiological and pharmacological concentrations of tumor necrosis factor-alpha (TNF-alpha) and interleukin-1 beta (IL-1 beta) in the cerebrospinal fluid (CSF) induce anorexia in normal rats. Obesity in humans and rodents is associated with increased TNF-alpha messenger RNA and protein levels in various cell types. This suggests that obese individuals may have differential regulation of cytokine production and dissimilar responsiveness to cytokines. In the present study, we investigated the effects of the intracerebroventricular (ICV) microinfusion of TNF-alpha (50, 100, and 500 ng/rat), IL-1 beta (1.0, 4.0, and 8.0 ng), and TNF-alpha (100 ng) plus IL-1 beta (1.0 ng) on obese (fa/fa) and lean (Fa/Fa) Zucker rats. The results show that: TNF-alpha and IL-1 beta, and the concomitant administration of TNF-alpha and IL-1 beta decreased the short-term (4 hours), nighttime (12 hours), and total daily food intakes in obese and lean rats; IL-1 beta was more potent relative to TNF-alpha; obese rats showed greater responsiveness to IL-1 beta: 8.0 ng IL-1 beta, for example, decreased the 12-hour food intake by 52% in obese and 22% in lean rats. On the other hand, obese and lean rats did not exhibit a significantly different responsiveness to the anorexia induced by 50, 100, or 500 ng TNF-alpha at the 4-hour period; and the concomitant ICV administration of TNF-alpha and IL-1 beta induced anorexia with additive (4-hour period) or synergistic (12-hour and 24-hour periods) effects in obese rats. The effect of TNF-alpha plus IL-1 beta in lean rats was greater than additive for the 12-hour and 24-hour periods. The difference in suppression of total daily food intake by TNF-alpha plus IL-1 beta in obese (-43%) versus lean (-23%) rats was significantly different (p < 0.01). The results show that obese (fa/fa) and lean (Fa/Fa) Zucker rats have differential responsiveness to the ICV microinfusion of two different classes of cytokines.

  9. BACE1 elevation is involved in amyloid plaque development in the triple transgenic model of Alzheimer's disease: differential Aβ antibody labeling of early-onset axon terminal pathology.

    Science.gov (United States)

    Cai, Yan; Zhang, Xue-Mei; Macklin, Lauren N; Cai, Huaibin; Luo, Xue-Gang; Oddo, Salvatore; Laferla, Frank M; Struble, Robert G; Rose, Gregory M; Patrylo, Peter R; Yan, Xiao-Xin

    2012-02-01

    β-amyloid precursor protein (APP) and presenilins mutations cause early-onset familial Alzheimer's disease (FAD). Some FAD-based mouse models produce amyloid plaques, others do not. β-Amyloid (Aβ) deposition can manifest as compact and diffuse plaques; it is unclear why the same Aβ molecules aggregate in different patterns. Is there a basic cellular process governing Aβ plaque pathogenesis? We showed in some FAD mouse models that compact plaque formation is associated with a progressive axonal pathology inherent with increased expression of β-secretase (BACE1), the enzyme initiating the amyloidogenic processing of APP. A monoclonal Aβ antibody, 3D6, visualized distinct axon terminal labeling before plaque onset. The present study was set to understand BACE1 and axonal changes relative to diffuse plaque development and to further characterize the novel axonal Aβ antibody immunoreactivity (IR), using triple transgenic AD (3xTg-AD) mice as experimental model. Diffuse-like plaques existed in the forebrain in aged transgenics and were regionally associated with increased BACE1 labeled swollen/sprouting axon terminals. Increased BACE1/3D6 IR at axon terminals occurred in young animals before plaque onset. These axonal elements were also co-labeled by other antibodies targeting the N-terminal and mid-region of Aβ domain and the C-terminal of APP, but not co-labeled by antibodies against the Aβ C-terminal and APP N-terminal. The results suggest that amyloidogenic axonal pathology precedes diffuse plaque formation in the 3xTg-AD mice, and that the early-onset axonal Aβ antibody IR in transgenic models of AD might relate to a cross-reactivity of putative APP β-carboxyl terminal fragments.

  10. [Effects of aromatase inhibitor on sexual differentiation of SDN-POA in rats].

    Science.gov (United States)

    Ohe, E

    1994-03-01

    The sexually dimorphic nucleus of the preoptic area (SDN-POA) of male rats is larger than that of females, the difference being caused by the perinatal effect of estrogen converted from androgen. To investigate the role of estrogen formation in the SDN-POA during the critical period of this sexual differentiation, CGS16949A (0.5 mg/kg, sc) was injected into the mothers in the late gestational age(F) or into neonates for 14 days from birth(N). Animals were sacrificed on the 20th. day of gestation and 7 days after birth, and fetal and neonatal brain aromatase activities (AA) as well as serum levels of testosterone(T) and corticosterone(B) were measured. On the 30th day after birth, the offspring of treated mothers and neonatally treated rats were sacrificed and the cross-sectional areas of the SDN-POA were evaluated by image processor NEXUS 6800. In group F, CGS16949A markedly suppressed brain AA in vitro (fetal hypothalamus: IC50 1.4nM) and in vivo in both the hypothalamus and amygdala. However, the levels of T and B did not show any significant change in group F. The same depression of AA was also observed in group N on the 7th day after birth. In CGS-treated males in groups F and N, the SDN-POA area markedly decreased to that of control females. The area in males in group F was not significantly different from that in females. These results suggest that estrogen converted from androgen plays a dominant role in the development of sexual dimorphism of the SDN-POA, and that the brain AA in the pre- and postnatal period is important in this process.

  11. Differential expression of the Kv1 voltage-gated potassium channel family in the rat nephron.

    Science.gov (United States)

    Carrisoza-Gaytán, Rolando; Salvador, Carolina; Diaz-Bello, Beatriz; Escobar, Laura I

    2014-10-01

    Several potassium (K(+)) channels contribute to maintaining the resting membrane potential of renal epithelial cells. Apart from buffering the cell membrane potential and cell volume, K(+) channels allow sodium reabsorption in the proximal tubule (PT), K(+) recycling and K(+) reabsorption in the thick ascending limb (TAL) and K(+) secretion and K(+) reabsorption in the distal convoluted tubule (DCT), connecting tubule (CNT) and collecting duct. Previously, we identified Kv.1.1, Kv1.3 and Kv1.6 channels in collecting ducts of the rat inner medulla. We also detected intracellular Kv1.3 channel in the acid secretory intercalated cells, which is trafficked to the apical membrane in response to dietary K(+) to function as a secretory K(+) channel. In this work we sought to characterize the expression of all members of the Kv1 family in the rat nephron. mRNA and protein expression were detected for all Kv1 channels. Immunoblots identified differential expression of each Kv1 in the cortex, outer and inner medulla. Immunofluorescence labeling detected Kv1.5 in Bowman´s capsule and endothelial cells and Kv1.7 in podocytes, endothelial cells and macula densa in glomeruli; Kv1.4, Kv1.5 and Kv1.7 in PT; Kv1.2, Kv1.4 and Kv1.6 in TAL; Kv1.1, Kv1.4 and Kv1.6 in DCT and CNT and Kv1.3 in DCT, and all the Kv1 family in the cortical and medullary collecting ducts. Recently, some hereditary renal syndromes have been attributed to mutations in K(+) channels. Our results expand the repertoire of K(+) channels that contribute to K(+) homeostasis to include the Kv1 family.

  12. Identification of genes differentially expressed between benign and osteopontin transformed rat mammary epithelial cells

    Directory of Open Access Journals (Sweden)

    Rudland Philip S

    2009-02-01

    Full Text Available Abstract Background Osteopontin is a secreted, integrin-binding and phosphorylated acidic glycoprotein which has an important role in tumor progression. Findings In this study, we have utilized suppressive subtractive hybridization (SSH to evaluate OPN regulated gene expression, using the Rama 37 benign non-invasive rat mammary cell line and a subclone, Rama 37-OPN. Rama 37-OPN was produced by stably transfecting Rama 37 with an OPN expression vector and it demonstrates increased malignant properties in vitro. Sequence and expression array analysis of the respective cDNA libraries of over 1600 subtracted cDNA fragments revealed 982 ESTs, 45 novel sequences and 659 known genes. The known up-regulated genes in the Rama 37-OPN library code for proteins with a variety of functions including those involved in metabolism, cell adhesion and migration, signal transduction and in apoptosis. Four of the most differentially expressed genes between the benign and in vitro malignant rat mammary cell lines are tumor protein translationally controlled I (TPTI, aryl hydrocarbon receptor nuclear translocator (ARNT, ataxia telangiectasia mutated (ATM and RAN GTPase (RAN. The largest difference (ca 10,000 fold between the less aggressively (MCF-7, ZR-75 and more aggressively malignant (MDA MB 231, MDA MB 435S human breast cancer cell lines is that due to RAN, the next is that due to osteopontin itself. Conclusion The results suggest that enhanced properties associated with the malignant state in vitro induced by osteopontin may be due to, in part, overexpression of RAN GTPase and these biological results are the subject of a subsequent publication 1.

  13. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  14. Differentiated bronchiolar epithelium in alveolar ducts of rats exposed to ozone for 20 months

    Energy Technology Data Exchange (ETDEWEB)

    Pinkerton, K.E.; Dodge, D.E.; Cederdahl-Demmler, J.; Wong, V.J.; Peake, J.; Haselton, C.J.; Mellick, P.W.; Singh, G.; Plopper, C.G. (Univ. of California, Davis (United States))

    1993-03-01

    The effects of exposure to 1.0 ppm of ozone for twenty months were studied in male Fischer 344 rats. Light microscopic, morphometric, and immunohistological approaches were used to determine the distribution and degree of differentiation of ciliated and nonciliated bronchiolar epithelial (Clara) cells lining alveolar ducts of the central acinus, a primary target of ozone-induced lung injury. Alveolar duct pathways extending beyond the level of the most proximal alveolar outpocketing of terminal bronchioles were isolated in longitudinal profile. The distance that ciliated and nonciliated bronchiolar epithelial (Clara) cells projected down each alveolar duct pathway was determined by placing concentric arcs radiating outward from a single reference point at the level of the first alveolar outpocketing. A high degree of heterogeneity in the magnitude of bronchiolar epithelial cell extension into alveolar ducts was noted for each isolation and animal. Age-matched control animals also demonstrated variation in the degree of bronchiolar epithelial cell extension down alveolar ducts. In animals exposed to ozone, a striking similarity was noted by scanning electron microscopy in the surface characteristics of cells lining both terminal bronchioles and alveolar ducts. The presence of Clara cell secretory protein in cells of bronchioles and alveolar ducts was also detected immunohistochemically and visualized using confocal laser scanning microscopy in the reflectance mode. Well-differentiated ciliated and nonciliated bronchiolar epithelial cells were found lining alveolar septal tips and alveoli up to a depth of 1,000 mu into the pulmonary acinus after 20 months of exposure to ozone. No evidence of inflammation was present in alveolar ducts, suggesting that epithelial cell transformations in alveolar ducts is a natural consequence of lifetime exposures to oxidant gases.

  15. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic...

  16. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  17. Safeguarding Stem Cell-Based Regenerative Therapy against Iatrogenic Cancerogenesis: Transgenic Expression of DNASE1, DNASE1L3, DNASE2, DFFB Controlled By POLA1 Promoter in Proliferating and Directed Differentiation Resisting Human Autologous Pluripotent Induced Stem Cells Leads to their Death.

    Science.gov (United States)

    Malecki, Marek; LaVanne, Christine; Alhambra, Dominique; Dodivenaka, Chaitanya; Nagel, Sarah; Malecki, Raf

    2013-07-22

    The worst possible complication of using stem cells for regenerative therapy is iatrogenic cancerogenesis. The ultimate goal of our work is to develop a self-triggering feedback mechanism aimed at causing death of all stem cells, which resist directed differentiation, keep proliferating, and can grow into tumors. The specific aim was threefold: (1) to genetically engineer the DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter; (2) to bioengineer anti-SSEA-4 antibody guided vectors delivering transgenes to human undifferentiated and proliferating pluripotent stem cells; (3) to cause death of proliferating and directed differentiation resisting stem cells by transgenic expression of the human recombinant the DNases (hrDNases). The DNA constructs for the human, recombinant DNASE1, DNASE1L3, DNASE2, DFFB controlled by POLA promoter were genetically engineered. The vectors targeting specifically SSEA-4 expressing stem cells were bioengineered. The healthy volunteers' bone marrow mononuclear cells (BMMCs) were induced into human, autologous, pluripotent stem cells with non-integrating plasmids. Directed differentiation of the induced stem cells into endothelial cells was accomplished with EGF and BMP. The anti-SSEA 4 antibodies' guided DNA vectors delivered the transgenes for the human recombinant DNases' into proliferating stem cells. Differentiation of the pluripotent induced stem cells into the endothelial cells was verified by highlighting formation of tight and adherens junctions through transgenic expression of recombinant fluorescent fusion proteins: VE cadherin, claudin, zona occludens 1, and catenin. Proliferation of the stem cells was determined through highlighting transgenic expression of recombinant fluorescent proteins controlled by POLA promoter, while also reporting expression of the transgenes for the hrDNases. Expression of the transgenes for the DNases resulted in complete collapse of the chromatin

  18. Methylcobalamin promotes the differentiation of Schwann cells and remyelination in lysophosphatidylcholine-induced demyelination of the rat sciatic nerve

    Directory of Open Access Journals (Sweden)

    Shunsuke eNishimoto

    2015-08-01

    Full Text Available Schwann cells (SCs are constituents of the peripheral nervous system. The differentiation of SCs in injured peripheral nerves is critical for regeneration after injury. Methylcobalamin (MeCbl is a vitamin B12 analog that is necessary for the maintenance of the peripheral nervous system. In this study, we estimated the effect of MeCbl on SCs. We showed that MeCbl downregulated the activity of Erk1/2 and promoted the expression of the myelin basic protein in SCs. In a dorsal root ganglion neuron–SC coculture system, myelination was promoted by MeCbl. In a focal demyelination rat model, MeCbl promoted remyelination and motor and sensory functional regeneration. MeCbl promoted the in vitro differentiation of SCs and in vivo myelination in a rat demyelination model and may be a novel therapy for several types of nervous disorders.

  19. In vitro effects of fetal rat cerebrospinal fluid on viability and neuronal differentiation of PC12 cells

    Directory of Open Access Journals (Sweden)

    Nabiuni Mohammad

    2012-06-01

    Full Text Available Abstract Background Fetal cerebrospinal fluid (CSF contains many neurotrophic and growth factors and has been shown to be capable of supporting viability, proliferation and differentiation of primary cortical progenitor cells. Rat pheochromocytoma PC12 cells have been widely used as an in vitro model of neuronal differentiation since they differentiate into sympathetic neuron-like cells in response to growth factors. This study aimed to establish whether PC12 cells were responsive to fetal CSF and therefore whether they might be used to investigate CSF physiology in a stable cell line lacking the time-specific response patterns of primary cells previously described. Methods In vitro assays of viability, proliferation and differentiation were carried out after incubation of PC12 cells in media with and without addition of fetal rat CSF. An MTT tetrazolium assay was used to assess cell viability and/or cell proliferation. Expression of neural differentiation markers (MAP-2 and β-III tubulin was determined by immunocytochemistry. Formation and growth of neurites was measured by image analysis. Results PC12 cells differentiate into neuronal cell types when exposed to bFGF. Viability and cell proliferation of PC12 cells cultured in CSF-supplemented medium from E18 rat fetuses were significantly elevated relative to the control group. Neuronal-like outgrowths from cells appeared following the application of bFGF or CSF from E17 and E19 fetuses but not E18 or E20 CSF. Beta-III tubulin was expressed in PC12 cells cultured in any media except that supplemented with E18 CSF. MAP-2 expression was found in control cultures and in those with E17 and E19 CSF. MAP2 was located in neurites except in E17 CSF when the whole cell was positive. Conclusions Fetal rat CSF supports viability and stimulates proliferation and neurogenic differentiation of PC12 cells in an age-dependent way, suggesting that CSF composition changes with age. This feature may be important

  20. Identification of genes differentially regulated in rat alveolar bone wound healing by subtractive hybridization.

    Science.gov (United States)

    Ohira, T; Myokai, F; Shiomi, N; Yamashiro, K; Yamamoto, T; Murayama, Y; Arai, H; Nishimura, F; Takashiba, S

    2004-07-01

    Periodontal healing requires the participation of regulatory molecules, cells, and scaffold or matrix. Here, we hypothesized that a certain set of genes is expressed in alveolar bone wound healing. Reciprocal subtraction gave 400 clones from the injured alveolar bone of Wistar rats. Identification of 34 genes and analysis of their expression in injured tissue revealed several clusters of unique gene regulation patterns, including the up-regulation at 1 wk of cytochrome c oxidase regulating electron transfer and energy metabolism, presumably occurring at the site of inflammation; up-regulation at 2.5 wks of pro-alpha-2 type I collagen involving the formation of a connective tissue structure; and up-regulation at 1 and 2 wks and down-regulation at 2.5 and 4 wks of ubiquitin carboxyl-terminal hydrolase l3 involving cell cycle, DNA repair, and stress response. The differential expression of genes may be associated with the processes of inflammation, wound contraction, and formation of a connective tissue structure.

  1. Differential Expression of Sirtuin Family Members in the Developing, Adult, and Aged Rat Brain

    Directory of Open Access Journals (Sweden)

    Elena eSidorova-Darmos

    2014-12-01

    Full Text Available The sirtuins are NAD+-dependent protein deacetylases and/or ADP-ribosyltransferases that play roles in metabolic homeostasis, stress response and potentially aging. This enzyme family resides in different subcellular compartments, and acts on a number of different targets in the nucleus, cytoplasm and in the mitochondria. Despite their recognized ability to regulate metabolic processes, the roles played by specific sirtuins in the brain - the most energy demanding tissue in the body - remains less well investigated and understood. In the present study, we examined the regional mRNA and protein expression patterns of individual sirtuin family members in the developing, adult, and aged rat brain. Our results show that while each sirtuin is expressed in the brain at each of these different stages, they display unique spatial and temporal expression patterns within the brain. Further, for specific members of the family, the protein expression profile did not coincide with their respective mRNA expression profile. Moreover, using primary cultures enriched for neurons and astrocytes respectively, we found that specific sirtuin members display preferential neural lineage expression. Collectively, these results provide the first composite illustration that sirtuin family members display differential expression patterns in the brain, and provide evidence that specific sirtuins could potentially be targeted to achieve cell-type selective effects within the brain.

  2. Effects of hypoxia on osteogenic differentiation of rat bone marrow mesenchymal stem cells.

    Science.gov (United States)

    Wang, Yating; Li, Juan; Wang, Yanmin; Lei, Lei; Jiang, Chunmiao; An, Shu; Zhan, Yuxiang; Cheng, Qian; Zhao, Zhihe; Wang, Jun; Jiang, Lingyong

    2012-03-01

    Bone reconstruction is essential in orthodontic treatment that caters to the correction of malocclusion by bone reconstruction. Mesenchymal stem cells (MSCs) have been demonstrated a great potency of osteogenesis. The aim of this study was to investigate the effect of hypoxia on the rat bone marrow MSCs (rBMSCs) in vitro during osteogenesis. In this study, we found that temporary exposure of rBMSCs after osteogenic induction for 7 days to hypoxia (2% oxygen) led to a marked decrease in ALPase activity and the expression of osteocalcin and Runt related transcription factor 2/core binding factor a1 (Runx2/Cbfa1). Meanwhile, we found that exposure to hypoxia led to an early and transient increase in the level of phosphorylated ERK1/2 but had no obvious effects on mitogen-activated protein kinase (p38 MAPK) level. Based on these results, we concluded that hypoxia could inhibit osteogenic differentiation of rBMSCs possibly through MEK-ERK 1/2, while p38 MAPK may not participate in this regulation. Further exploration into the mechanisms of hypoxia on osteogenesis would surely provide reliable evidence for clinical practice.

  3. Exogenous nitric oxide stimulates the odontogenic differentiation of rat dental pulp stem cells.

    Science.gov (United States)

    Sonoda, Soichiro; Mei, Yu-Feng; Atsuta, Ikiru; Danjo, Atsushi; Yamaza, Haruyoshi; Hama, Shion; Nishida, Kento; Tang, Ronghao; Kyumoto-Nakamura, Yukari; Uehara, Norihisa; Kukita, Toshio; Nishimura, Fusanori; Yamaza, Takayoshi

    2018-02-21

    Nitric oxide (NO) is thought to play a pivotal regulatory role in dental pulp tissues under both physiological and pathological conditions. However, little is known about the NO functions in dental pulp stem cells (DPSCs). We examined the direct actions of a spontaneous NO gas-releasing donor, NOC-18, on the odontogenic capacity of rat DPSCs (rDPSCs). In the presence of NOC-18, rDPSCs were transformed into odontoblast-like cells with long cytoplasmic processes and a polarized nucleus. NOC-18 treatment increased alkaline phosphatase activity and enhanced dentin-like mineralized tissue formation and the expression levels of several odontoblast-specific genes, such as runt related factor 2, dentin matrix protein 1 and dentin sialophosphoprotein, in rDPSCs. In contrast, carboxy-PTIO, a NO scavenger, completely suppressed the odontogenic capacity of rDPSCs. This NO-promoted odontogenic differentiation was activated by tumor necrosis factor-NF-κB axis in rDPSCs. Further in vivo study demonstrated that NOC-18-application in a tooth cavity accelerated tertiary dentin formation, which was associated with early nitrotyrosine expression in the dental pulp tissues beneath the cavity. Taken together, the present findings indicate that exogenous NO directly induces the odontogenic capacity of rDPSCs, suggesting that NO donors might offer a novel host DPSC-targeting alternative to current pulp capping agents in endodontics.

  4. Pregnancy Differentially Regulates the Collagens Types I and III in Left Ventricle from Rat Heart

    Directory of Open Access Journals (Sweden)

    Sarai Limon-Miranda

    2014-01-01

    Full Text Available The pathologic cardiac remodeling has been widely documented; however, the physiological cardiac remodeling induced by pregnancy and its reversion in postpartum are poorly understood. In the present study we investigated the changes in collagen I (Col I and collagen III (Col III mRNA and protein levels in left ventricle from rat heart during pregnancy and postpartum. Col I and Col III mRNA expression in left ventricle samples during pregnancy and postpartum were analyzed by using quantitative PCR. Data obtained from gene expression show that Col I and Col III in left ventricle are upregulated during pregnancy with reversion in postpartum. In contrast to gene expression, the protein expression evaluated by western blot showed that Col I is downregulated and Col III is upregulated in left ventricle during pregnancy. In conclusion, the pregnancy differentially regulates collagens types I and III in heart; this finding could be an important molecular mechanism that regulates the ventricular stiffness in response to blood volume overload present during pregnancy which is reversed in postpartum.

  5. Primary rat Sertoli and interstitial cells exhibit a differential response to cadmium

    Energy Technology Data Exchange (ETDEWEB)

    Clough, S.R.; Welsh, M.J.; Payne, A.H.; Brown, C.D.; Brabec, M.J. (Eastern Michigan Univ., Ypsilanti (USA))

    1990-01-01

    Two cell types central to the support of spermatogenesis, the Sertoli cell and the interstitial (Leydig) cell, were isolated from the same cohort of young male rats and challenged with cadmium chloride to compare their susceptibility to the metal. Both cell types were cultured under similar conditions, and similar biochemical endpoints were chosen to minimize experimental variability. These endpoints include the uptake of 109Cd, reduction of the vital tetrazolium dye MTT, incorporation of 3H-leucine, change in heat-stable cadmium binding capacity, and production of lactate. Using these parameters, it was observed that the Sertoli cell cultures were adversely affected in a dose-and time-dependent manner, while the interstitial cell cultures, treated with identical concentrations of CdCl2, were less affected. The 72-hr LC50's for Sertoli cells and interstitial cells were 4.1 and 19.6 microM CdCl2, respectively. Thus, different cell populations within the same tissue may differ markedly in susceptibility to a toxicant. These in vitro data suggest that the Sertoli cell, in relation to the interstitium, is particularly sensitive to cadmium. Because the Sertoli cell provides functional support for the seminiferous epithelium, the differential sensitivity of this cell type may, in part, explain cadmium-induced testicular dysfunction, particularly at doses that leave the vascular epithelium intact.

  6. Primary Culture of Choroid Plexuses from Neonate Rats Containing Progenitor Cells Capable of Differentiation

    Directory of Open Access Journals (Sweden)

    Sheng-Li Huang

    2013-12-01

    Full Text Available Background: The choroid plexuses, which could secrete a number of neurotrophins, have recently been used in transplantation in central nervous system diseases. Aims: To study the mechanism of nerve regeneration in the central nervous system by grafting choroid plexus tissues. Study Design: Animal experimentation. Methods: The choroid plexuses from the lateral ventricles of neonatal rats were cultured in adherent culture, and immunocytochemical methods were used to analyse the progenitor cells on days 2, 6, and 10 after seeding. Results: Expression of both nestin and glial fibrillary acidic protein was observed in small cell aggregates on day 2 in primary culture. Most of the nestin-positive cells on day 6 were immunoreactive to glial fibrillary acidic protein antibody. No cells expressing nestin or glial fibrillary acidic protein were seen on day 10. Conclusion: These experimental results indicate that the choroid plexus contains a specific cell population – progenitor cells. Under in vitro experimental conditions, the progenitor cells differentiated into choroid plexus epithelial cells but did not form neurons or astrocytes.

  7. Hypoxia inhibits the growth, differentiation and bone-forming capacity of rat osteoblasts

    International Nuclear Information System (INIS)

    Utting, J.C.; Robins, S.P.; Brandao-Burch, A.; Orriss, I.R.; Behar, J.; Arnett, T.R.

    2006-01-01

    We investigated the effect of hypoxia on rat osteoblast function in long-term primary cultures. Reduction of pO 2 from 20% to 5% and 2% decreased formation of mineralized bone nodules 1.7-fold and 11-fold, respectively. When pO 2 was reduced further to 0.2%, bone nodule formation was almost abolished. The inhibitory effect of hypoxia on bone formation was partly due to decreased osteoblast proliferation, as measured by 3 H-thymidine incorporation. Hypoxia also sharply reduced osteoblast alkaline phosphatase (ALP) activity and expression of mRNAs for ALP and osteocalcin, suggesting inhibition of differentiation to the osteogenic phenotype. Hypoxia did not increase the apoptosis of osteoblasts but induced a reversible state of quiescence. Transmission electron microscopy revealed that collagen fibrils deposited by osteoblasts cultured in 2% O 2 were less organized and much less abundant than in 20% O 2 cultures. Furthermore, collagen produced by hypoxic osteoblasts contained a lower percentage of hydroxylysine residues and exhibited an increased sensitivity to pepsin degradation. These data demonstrate the absolute oxygen requirement of osteoblasts for successful bone formation and emphasize the importance of the vasculature in maintaining bone health. We recently showed that hypoxia also acts in a reciprocal manner as a powerful stimulator of osteoclast formation. Considered together, our results help to explain the bone loss that occurs at the sites of fracture, tumors, inflammation and infection, and in individuals with vascular disease or anemia

  8. Ectopic expression of the p23 silencing suppressor of Citrus tristeza virus differentially modifies viral accumulation and tropism in two transgenic woody hosts.

    Science.gov (United States)

    Fagoaga, Carmen; Pensabene-Bellavia, Giovanni; Moreno, Pedro; Navarro, Luís; Flores, Ricardo; Peña, Leandro

    2011-12-01

    Citrus tristeza virus (CTV), a phloem-restricted closterovirus infecting citrus, encodes three different silencing suppressors (p25, p20 and p23), one of which (p23) is a pathogenicity determinant that induces aberrations resembling CTV symptoms when expressed ectopically in transgenic citrus hosts. In this article, the effect of p23 ectopic expression on virus infection was examined in sweet orange (SwO), a highly susceptible host, and sour orange (SO), which severely restricts CTV cell-to-cell movement. Transgenic plants of both species ectopically expressing p23, or transformed with an empty vector, were graft inoculated with the mild CTV isolate T385 or with CTV-BC1/GFP, a clonal strain derived from the severe isolate T36 carrying the gene for the green fluorescent protein (GFP). CTV distribution in infected tissues was assessed by direct tissue blot immunoassay and fluorescence emission, and virus accumulation was estimated by quantitative real-time reverse transcriptase-polymerase chain reaction. CTV accumulation in p23-expressing and control SwO plants was similar, whereas the viral load in transgenic SO expressing p23 was 10-10(5) times higher than in the cognate control plants. Although few infection foci composed of a single cell were observed in the phloem of CTV-infected control SO, the number of foci in p23-expressing plants was higher and usually comprised two to six cells, indicating viral cell-to-cell movement. CTV was detected in mesophyll protoplasts and cells from infected SO and SwO expressing p23, but not in similar protoplasts and cells from infected control plants. Our results show that the ectopic expression of p23 enables CTV to escape from the phloem and, in addition, facilitates systemic infection of the resistant SO host. This is the first report of a viral-encoded protein that enhances virus accumulation and distribution in woody hosts. © 2011 The Authors. Molecular Plant Pathology © 2011 BSPP and Blackwell Publishing Ltd.

  9. Differential effects of hypercaloric choice diets on insulin sensitivity in rats

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariëtte T.; Fliers, Eric; Kalsbeek, Andries; Serlie, Mireille J.; la Fleur, Susanne E.

    2017-01-01

    We showed previously that rats on a free-choice high-fat, high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar

  10. Differential effects of hyper caloric choice diets on insulin sensitivity in rats

    NARCIS (Netherlands)

    Diepenbroek, Charlene; Eggels, Leslie; Ackermans, Mariette T; Fliers, Eric; Kalsbeek, A.; Serlie, Mireille J; La Fleur, S.E.

    2017-01-01

    We previously showed that rats on a free-choice high-fat-high-sugar (fcHFHS) diet become rapidly obese and develop glucose intolerance within a week. Interestingly, neither rats on a free-choice high-fat diet (fcHF), although equally obese and hyperphagic, nor rats on a free-choice high-sugar (fcHS)

  11. Differential expression of glutamic acid decarboxylase in rat and human islets

    DEFF Research Database (Denmark)

    Petersen, J S; Russel, S; Marshall, M O

    1993-01-01

    The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat isl...

  12. Effects of Human Alpha-Synuclein A53T-A30P Mutations on SVZ and Local Olfactory Bulb Cell Proliferation in a Transgenic Rat Model of Parkinson Disease

    Directory of Open Access Journals (Sweden)

    Faustine Lelan

    2011-01-01

    Full Text Available A transgenic Sprague Dawley rat bearing the A30P and A53T α-synuclein (α-syn human mutations under the control of the tyrosine hydroxylase promoter was generated in order to get a better understanding of the role of the human α-syn mutations on the neuropathological events involved in the progression of the Parkinson’s disease (PD. This rat displayed olfactory deficits in the absence of motor impairments as observed in most early PD cases. In order to investigate the role of the mutated α-syn on cell proliferation, we focused on the subventricular zone (SVZ and the olfactory bulbs (OB as a change of the proliferation could affect OB function. The effect on OB dopaminergic innervation was investigated. The human α-syn co-localized in TH-positive OB neurons. No human α-syn was visualized in the SVZ. A significant increase in resident cell proliferation in the glomerular but not in the granular layers of the OB and in the SVZ was observed. TH innervation was significantly increased within the glomerular layer without an increase in the size of the glomeruli. Our rat could be a good model to investigate the role of human mutated α-syn on the development of olfactory deficits.

  13. Suppression of Her2/Neu mammary tumor development in mda-7/IL-24 transgenic mice.

    Science.gov (United States)

    Li, You-Jun; Liu, Guodong; Xia, Lei; Xiao, Xiao; Liu, Jeff C; Menezes, Mitchell E; Das, Swadesh K; Emdad, Luni; Sarkar, Devanand; Fisher, Paul B; Archer, Michael C; Zacksenhaus, Eldad; Ben-David, Yaacov

    2015-11-10

    Melanoma differentiation associated gene-7/interleukin-24 (mda-7/IL-24) encodes a tumor suppressor gene implicated in the growth of various tumor types including breast cancer. We previously demonstrated that recombinant adenovirus-mediated mda-7/IL-24 expression in the mammary glands of carcinogen-treated (methylnitrosourea, MNU) rats suppressed mammary tumor development. Since most MNU-induced tumors in rats contain activating mutations in Ha-ras, which arenot frequently detected in humans, we presently examined the effect of MDA-7/IL-24 on Her2/Neu-induced mammary tumors, in which the RAS pathway is induced. We generated tet-inducible MDA-7/IL-24 transgenic mice and crossed them with Her2/Neu transgenic mice. Triple compound transgenic mice treated with doxycycline exhibited a strong inhibition of tumor development, demonstrating tumor suppressor activity by MDA-7/IL-24 in immune-competent mice. MDA-7/IL-24 induction also inhibited growth of tumors generated following injection of Her2/Neu tumor cells isolated from triple compound transgenic mice that had not been treated with doxycycline, into the mammary fat pads of isogenic FVB mice. Despite initial growth suppression, tumors in triple compound transgenic mice lost mda-7/IL-24 expression and grew, albeit after longer latency, indicating that continuous presence of this cytokine within tumor microenvironment is crucial to sustain tumor inhibitory activity. Mechanistically, MDA-7/IL-24 exerted its tumor suppression effect on HER2+ breast cancer cells, at least in part, through PERP, a member of PMP-22 family with growth arrest and apoptosis-inducing capacity. Overall, our results establish mda-7/IL-24 as a suppressor of mammary tumor development and provide a rationale for using this cytokine in the prevention/treatment of human breast cancer.

  14. Evaluation of the effects of ethinylestradiol on sexual differentiation in the olvas-GFP/STII-YI medaka (transgenic Oryzias latipes) strain as estimated by proliferative activity of germ cells

    Energy Technology Data Exchange (ETDEWEB)

    Hano, Takeshi [National Research Institute of Fisheries and Environment of Inland Sea, Fisheries Research Agency, 2-17-5 Maruishi, Hatsukaichi, Hiroshima 739-0452 (Japan); Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Oshima, Yuji, E-mail: yoshima@agr.kyushu-u.ac.jp [Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan); Kinoshita, Masato [Division of Applied Biosciences, Graduate School of Agriculture, Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tanaka, Minoru [Laboratory of Molecular Genetics for Reproduction, National Institute for Basic Biology, Nishigonaka 38, Myodaiji, Okazaki 444-8585 Aichi (Japan); Mishima, Noriko; Wakamatsu, Yuko; Ozato, Kenjiro [Laboratory of Freshwater Fish Stocks, Bioscience and Biotechnology Center, Nagoya University Furo-cho, Chikusa-ku, Nagoya 464-8601 (Japan); Shimasaki, Yohei; Honjo, Tsuneo [Laboratory of Marine Environmental Science, Faculty of Agriculture, Kyushu University, Hakozaki 6-10-1, Higashi-ku, Fukuoka 812-8581 (Japan)

    2011-08-15

    We evaluated the effects of 17(-ethinylestradiol (EE{sub 2}) on sexual differentiation in transgenic olvas-GFP/STII-YI medaka (Oryzias latipes) in terms of the proliferative activity of germ cells. This strain contains the green fluorescent protein (GFP) gene fused to the regulatory region of the medaka vasa gene, and germ cell-specific expression of GFP can be visualized in living (transparent) individuals. From 0 days post-hatch (0 dph) onwards, juveniles were exposed to graded concentrations of EE{sub 2} (25.2-1710 ng/L) for 35 days. The gonads of live specimens were monitored by measuring their size and calculating their GFP-fluorescence area. GFP-fluorescent area in control females was about 10 times that in control males at 10 days posthatch (dph) whereas the gonadal size of 10 dph males that had been exposed to 158 ng/L of EE{sub 2} significantly increased up to twice the size of control males, indicating that abnormal sexual differentiation towards female might occur in these individuals. Histological examination and identification of the sex-linked marker SL1 indicated that male to female sex reversal occurred at EE{sub 2} exposure {>=}45.1 ng/L at 35 dph. These results suggest that observation of proliferative activity of germ cells in the olvas-GFP/STII-YI strain could be applied to facilitated screening fish model to detect adverse effects on sexual differentiation as early as 10 dph juveniles.

  15. Isoflurane and ketamine:xylazine differentially affect intraocular pressure-associated scotopic threshold responses in Sprague-Dawley rats.

    Science.gov (United States)

    Choh, Vivian; Gurdita, Akshay; Tan, Bingyao; Feng, Yunwei; Bizheva, Kostadinka; McCulloch, Daphne L; Joos, Karen M

    2017-10-01

    Amplitudes of electroretinograms (ERG) are enhanced during acute, moderate elevation of intraocular pressure (IOP) in rats anaesthetised with isoflurane. As anaesthetics alone are known to affect ERG amplitudes, the present study compares the effects of inhalant isoflurane and injected ketamine:xylazine on the scotopic threshold response (STR) in rats with moderate IOP elevation. Isoflurane-anaesthetised (n = 9) and ketamine:xylazine-anaesthetised (n = 6) rats underwent acute unilateral IOP elevation using a vascular loop anterior to the equator of the right eye. STRs to a luminance series (subthreshold to -3.04 log scotopic cd s/m 2 ) were recorded from each eye of Sprague-Dawley rats before, during, and after IOP elevation. Positive STR (pSTR) amplitudes for all conditions were significantly smaller (p = 0.0001) for isoflurane- than for ketamine:xylazine-anaesthetised rats. In addition, ketamine:xylazine was associated with a progressive increase in pSTR amplitudes over time (p = 0.0028). IOP elevation was associated with an increase in pSTR amplitude (both anaesthetics p ketamine:xylazine and isoflurane were similar (66.3 ± 35.5 vs. 54.2 ± 24.1 µV, respectively). However, the fold increase in amplitude during IOP elevation was significantly higher in the isoflurane- than in the ketamine:xylazine-anaesthetised rats (16.8 ± 29.7x vs. 2.1 ± 2.7x, respectively, p = 0.0004). The anaesthetics differentially affect the STRs in the rat model with markedly reduced amplitudes with isoflurane compared to ketamine:xylazine. However, the IOP-associated enhancement is of similar absolute magnitude for the two anaesthetics, suggesting that IOP stress and anaesthetic effects operate on separate retinal mechanisms.

  16. Weight loss by calorie restriction versus bariatric surgery differentially regulates the hypothalamo-pituitary-adrenocortical axis in male rats.

    Science.gov (United States)

    Grayson, Bernadette E; Hakala-Finch, Andrew P; Kekulawala, Melani; Laub, Holly; Egan, Ann E; Ressler, Ilana B; Woods, Stephen C; Herman, James P; Seeley, Randy J; Benoit, Stephen C; Ulrich-Lai, Yvonne M

    2014-12-01

    Behavioral modifications for the treatment of obesity, including caloric restriction, have notoriously low long-term success rates relative to bariatric weight-loss surgery. The reasons for the difference in sustained weight loss are not clear. One possibility is that caloric restriction alone activates the stress-responsive hypothalamo-pituitary-adrenocortical (HPA) axis, undermining the long-term maintenance of weight loss, and that this is abrogated after bariatric surgery. Accordingly, we compared the HPA response to weight loss in five groups of male rats: (1) high-fat diet-induced obese (DIO) rats treated with Roux-en-Y gastric bypass surgery (RYGB, n = 7), (2) DIO rats treated with vertical sleeve gastrectomy (VSG, n = 11), (3) DIO rats given sham surgery and subsequently restricted to the food intake of the VSG/RYGB groups (Pair-fed, n = 11), (4) ad libitum-fed DIO rats given sham surgery (Obese, n = 11) and (5) ad libitum chow-fed rats given sham surgery (Lean, n = 12). Compared with Lean controls, food-restricted rats exhibited elevated morning (nadir) non-stress plasma corticosterone concentration and increased hypothalamic corticotropin-releasing hormone and vasopressin mRNA expression, indicative of basal HPA activation. This was largely prevented when weight loss was achieved by bariatric surgery. DIO increased HPA activation by acute (novel environment) stress and this was diminished by bariatric surgery-, but not pair-feeding-, induced weight loss. These results indicate that the HPA axis is differentially affected by weight loss from caloric restriction versus bariatric surgery, and this may contribute to the differing long-term effectiveness of these two weight-loss approaches.

  17. Generation of Five Human Lactoferrin Transgenic Cloned Goats Using Fibroblast Cells and Their Methylation Status of Putative Differential Methylation Regions of IGF2R and H19 Imprinted Genes

    NARCIS (Netherlands)

    Meng, L.; Wan, Y.; Sun, Y.; Zhang, Y.; Wang, Z.; Song, Y.; Wang, F.

    2013-01-01

    Background - Somatic cell nuclear transfer (SCNT) is a promising technique to produce transgenic cloned mammalian, including transgenic goats which may produce Human Lactoferrin (hLF). However, success percentage of SCNT is low, because of gestational and neonatal failure of transgenic embryos.

  18. Diet, age, and prior injury status differentially alter behavioral outcomes following concussion in rats.

    Science.gov (United States)

    Mychasiuk, Richelle; Hehar, Harleen; van Waes, Linda; Esser, Michael J

    2015-01-01

    Mild traumatic brain injury (mTBI) or concussion affects a large portion of the population and although many of these individuals recover completely, a small subset of people experience lingering symptomology and poor outcomes. Little is known about the factors that affect individual susceptibility or resilience to poor outcomes after mTBI and there are currently no biomarkers to delineate mTBI diagnosis or prognosis. Based upon the growing literature associated with caloric intake and altered neurological aging and the ambiguous link between repetitive mTBI and progressive neurodegeneration, the current study was designed to examine the effect of a high fat diet (HFD), developmental age, and repetitive mTBI on behavioral outcomes following a mTBI. In addition, telomere length was examined before and after experimental mTBI. Sprague Dawley rats were maintained on a HFD or standard rat chow throughout life (including the prenatal period) and then experienced an mTBI/concussion at P30, P30 and P60, or only at P60. Behavioral outcomes were examined using a test battery that was administered between P61-P80 and included; beam-walking, open field, elevated plus maze, novel context mismatch, Morris water task, and forced swim task. Animals with a P30 mTBI often demonstrated lingering symptomology that was still present during testing at P80. Injuries at P30 and P60 rarely produced cumulative effects, and in some tests (i.e., beam walking), the first injury may have protected the brain from the second injury. Exposure to the high fat diet exacerbated many of the behavioral deficits associated with concussion. Finally, telomere length was shortened following mTBI and was influenced by the animal's dietary intake. Diet, age at the time of injury, and the number of prior concussion incidents differentially contribute to behavioral deficits and may help explain individual variations in susceptibility and resilience to poor outcomes following an mTBI. Copyright © 2014

  19. The CMV early enhancer/chicken beta actin (CAG) promoter can be used to drive transgene expression during the differentiation of murine embryonic stem cells into vascular progenitors

    DEFF Research Database (Denmark)

    Alexopoulou, Annika N; Couchman, John R; Whiteford, James

    2008-01-01

    BACKGROUND: Mouse embryonic stem cells cultured in vitro have the ability to differentiate into cells of the three germ layers as well as germ cells. The differentiation mimics early developmental events, including vasculogenesis and early angiogenesis and several differentiation systems are being...... used to identify factors that are important during the formation of the vascular system. Embryonic stem cells are difficult to transfect, while downregulation of promoter activity upon selection of stable transfectants has been reported, rendering the study of proteins by overexpression difficult....... RESULTS: CCE mouse embryonic stem cells were differentiated on collagen type IV for 4-5 days, Flk1+ mesodermal cells were sorted and replated either on collagen type IV in the presence of VEGFA to give rise to endothelial cells and smooth muscle cells or in collagen type I gels for the formation...

  20. Transgenic expression of CD36 in the spontaneously hypertensive rat is associated with amelioration of metabolic disturbances but has no effect on hypertension

    Czech Academy of Sciences Publication Activity Database

    Pravenec, Michal; Landa, Vladimír; Zídek, Václav; Musilová, Alena; Kazdová, L.; Qi, N.; Wang, J.; St. Lezin, E. S.; Kurtz, T. W.

    2003-01-01

    Roč. 52, č. 6 (2003), s. 681-688 ISSN 0862-8408 R&D Projects: GA ČR GA305/00/1646; GA ČR GA301/00/1636; GA MZd NB4904 Grant - others:HHMI(US) 55000331 Institutional research plan: CEZ:AV0Z5011922 Keywords : Cd36 * dyslipidemia * transgenic SHR Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 0.939, year: 2003

  1. Andrographolide Promotes Neural Differentiation of Rat Adipose Tissue-Derived Stromal Cells through Wnt/β-Catenin Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Yan Liang

    2017-01-01

    Full Text Available Adipose tissue-derived stromal cells (ADSCs are a high-yield source of pluripotent stem cells for use in cell-based therapies. We explored the effect of andrographolide (ANDRO, one of the ingredients of the medicinal herb extract on the neural differentiation of rat ADSCs and associated molecular mechanisms. We observed that rat ADSCs were small and spindle-shaped and expressed multiple stem cell markers including nestin. They were multipotent as evidenced by adipogenic, osteogenic, chondrogenic, and neural differentiation under appropriate conditions. The proportion of cells exhibiting neural-like morphology was higher, and neurites developed faster in the ANDRO group than in the control group in the same neural differentiation medium. Expression levels of the neural lineage markers MAP2, tau, GFAP, and β-tubulin III were higher in the ANDRO group. ANDRO induced a concentration-dependent increase in Wnt/β-catenin signaling as evidenced by the enhanced expression of nuclear β-catenin and the inhibited form of GSK-3β (pSer9. Thus, this study shows for the first time how by enhancing the neural differentiation of ADSCs we expect that ANDRO pretreatment may increase the efficacy of adult stem cell transplantation in nervous system diseases, but more exploration is needed.

  2. Possible promotion of neuronal differentiation in fetal rat brain neural progenitor cells after sustained exposure to static magnetism.

    Science.gov (United States)

    Nakamichi, Noritaka; Ishioka, Yukichi; Hirai, Takao; Ozawa, Shusuke; Tachibana, Masaki; Nakamura, Nobuhiro; Takarada, Takeshi; Yoneda, Yukio

    2009-08-15

    We have previously shown significant potentiation of Ca(2+) influx mediated by N-methyl-D-aspartate receptors, along with decreased microtubules-associated protein-2 (MAP2) expression, in hippocampal neurons cultured under static magnetism without cell death. In this study, we investigated the effects of static magnetism on the functionality of neural progenitor cells endowed to proliferate for self-replication and differentiate into neuronal, astroglial, and oligodendroglial lineages. Neural progenitor cells were isolated from embryonic rat neocortex and hippocampus, followed by culture under static magnetism at 100 mT and subsequent determination of the number of cells immunoreactive for a marker protein of particular progeny lineages. Static magnetism not only significantly decreased proliferation of neural progenitor cells without affecting cell viability, but also promoted differentiation into cells immunoreactive for MAP2 with a concomitant decrease in that for an astroglial marker, irrespective of the presence of differentiation inducers. In neural progenitors cultured under static magnetism, a significant increase was seen in mRNA expression of several activator-type proneural genes, such as Mash1, Math1, and Math3, together with decreased mRNA expression of the repressor type Hes5. These results suggest that sustained static magnetism could suppress proliferation for self-renewal and facilitate differentiation into neurons through promoted expression of activator-type proneural genes by progenitor cells in fetal rat brain.

  3. Differential and analytical subfractionation of rat liver components internalizing insulin and prolactin

    International Nuclear Information System (INIS)

    Bergeron, J.J.; Searle, N.; Khan, M.N.; Posner, B.I.

    1986-01-01

    Receptor-mediated endocytosis of 125 I-insulin and 125 I-prolactin into liver parenchymal cells has been studied by quantitative subcellular fractionation. Differential centrifugation yielded three particulate fractions, N (nuclear), ML (large granule), and P (microsomes), and a final supernatant (S). Quantitative differences in the extent and rates of accumulation of 125 I-insulin and 125 I-prolactin into the fractions were observed. The acidotropic agent chloroquine and the microtubule disrupting agent colchicine were administered separately to rats. The agents increased significantly the T 1/2 of hormone clearance from the liver and augmented the accumulation of both ligands in the low-speed ML fraction. However, differences in the rates of accumulation of insulin and prolactin into all cell fractions were still maintained. Analytical centrifugation of each of the particulate fractions was carried out in order to determine if different endocytic components were specific to insulin or prolactin internalization. This was not the case. An ''early'' endosomal component of density 1.11 was identified in microsomes. A ''late'' endosome of density 1.10 was identified in the large granule (ML) fraction. Both endosomal components appeared to accumulate insulin and prolactin but at different rates. Marker enzyme analysis identified the presumed plasma membrane component in microsomes (density approximately 1.155). This component showed a significant difference in the rate of loss of 125 I-insulin (T 1/2 approximately 4.1 min) as compared to that of 125 I-prolactin (T 1/2 approximately 12.7 min). A further difference in the handling of the ligands was observed in early endosomes

  4. Postnatal hyperoxia exposure differentially affects hepatocytes and liver haemopoietic cells in newborn rats.

    Directory of Open Access Journals (Sweden)

    Guya Diletta Marconi

    Full Text Available Premature newborns are frequently exposed to hyperoxic conditions and experimental data indicate modulation of liver metabolism by hyperoxia in the first postnatal period. Conversely, nothing is known about possible modulation of growth factors and signaling molecules involved in other hyperoxic responses and no data are available about the effects of hyperoxia in postnatal liver haematopoiesis. The aim of the study was to analyse the effects of hyperoxia in the liver tissue (hepatocytes and haemopoietic cells and to investigate possible changes in the expression of Vascular Endothelial Growth Factor (VEGF, Matrix Metalloproteinase 9 (MMP-9, Hypoxia-Inducible Factor-1α (HIF-1α, endothelial Nitric Oxide Synthase (eNOS, and Nuclear Factor-kB (NF-kB. Experimental design of the study involved exposure of newborn rats to room air (controls, 60% O2 (moderate hyperoxia, or 95% O2 (severe hyperoxia for the first two postnatal weeks. Immunohistochemical and Western blot analyses were performed. Severe hyperoxia increased hepatocyte apoptosis and MMP-9 expression and decreased VEGF expression. Reduced content in reticular fibers was found in moderate and severe hyperoxia. Some other changes were specifically produced in hepatocytes by moderate hyperoxia, i.e., upregulation of HIF-1α and downregulation of eNOS and NF-kB. Postnatal severe hyperoxia exposure increased liver haemopoiesis and upregulated the expression of VEGF (both moderate and severe hyperoxia and eNOS (severe hyperoxia in haemopoietic cells. In conclusion, our study showed different effects of hyperoxia on hepatocytes and haemopoietic cells and differential involvement of the above factors. The involvement of VEGF and eNOS in the liver haemopoietic response to hyperoxia may be hypothesized.

  5. Anxiety response and restraint-induced stress differentially affect ethanol intake in female adolescent rats.

    Science.gov (United States)

    Acevedo, María Belén; Fabio, Maria Carolina; Fernández, Macarena Soledad; Pautassi, Ricardo Marcos

    2016-10-15

    Anxiety disorders are more likely to occur in women than in men, usually emerge during adolescence and exhibit high comorbidity with alcohol use disorders (AUD). Adolescents with high levels of anxiety or heightened reactivity to stress may be at-risk for developing AUD. An approach to analyze if high levels of inborn anxiety predict greater ethanol drinking is to assess the latter variable in subjects classified as high- or low-anxiety responders. The present study assessed ethanol drinking in adolescent, female Wistar, rats classified as high-, low- or average-anxiety responders and exposed or not to restraint stress (RS, Exp. 1). Classification was made through a multivariate index derived from testing anxiety responses in an elevated plus maze and a light-dark box tests. RS was applied after animals had been initiated to ethanol drinking. Intake of sweetened ethanol was unaffected by level of anxiety response. Adolescents with high levels of inborn anxiety exhibited significantly higher intake of unsweetened ethanol than counterparts with standard levels of anxiety, yet this effect was inhibited by RS exposure. Experiment 2 assessed FOS immunoreactivity after RS. Stress induced a significant increase in FOS immunoreactivity at the paraventricular nucleus, yet this effect was unaffected by level of anxiety response. Female adolescents with high levels of basal anxiety may be at-risk for exhibiting increased predisposition for ethanol intake and preference. The study also indicates that stress may exert differential effects on adolescent ethanol intake as a function of the level of anxiety response. Copyright © 2016 IBRO. Published by Elsevier Ltd. All rights reserved.

  6. Differential scanning calorimetric study of antibiotic distamycin A binding with chromatin within isolated rat liver nuclei.

    Science.gov (United States)

    Prusov, Andrey N; Kolomijtseva, Galina Ya; Smirnova, Tatiana A

    2017-12-01

    Natural oligopeptide antibiotic distamycin A (Dst) biosynthesized by Streptomyces distallicus is traditionally used in medical practice as an anti-inflammatory and antitumour drug. Dst was investigated for its effect on the structural components of native chromatin directly within isolated rat liver nuclei in the presence of physiologically significant cations (magnesium or spermine and spermidine). Differential scanning calorimetry (DSC) was used to study the Dst action at molar ratio Dst/DNA = 0.1 and 0.15 mM Dst on the melting profile of nuclei suspension in different conditions. Results showed that the thermodynamic parameters of control nuclei in the presence of polyamines or Mg 2+  were different. The incubation of nuclei with Dst raised transition temperatures of relaxed (peak II) and topologically constrained DNA (peak III) by 6-8 °C and decreased by 2-4 °C that of core-histones (peak I). The total excess transition enthalpy (ΔH exc ) in buffer with polyamines (24.7 kJ/mol DNA nucleotides) increased by1.5 times versus control but in buffer with Mg 2+ , the value of ΔH exc (35.8 kJ/mol DNA nucleotides) remained unchanged. The association of Dst with chromatin in the nucleus weakens histone-DNA contacts and causes additional strengthening of interaction between two complementary DNA chains. Our results contribute towards validation of DSC to test drug ability to modulate chromatin structure in the physiological environment and to clarify the mechanism of these modulations.

  7. Comparative proteomics analysis of differentially expressed phosphoproteins in adult rat ventricular myocytes subjected to diazoxide preconditioning.

    Science.gov (United States)

    Li, Hong; Xiao, Ying-Bin; Gao, Yu-Qi; Yang, Tian-De

    2006-01-01

    Mitochondrial ATP sensitive potassium channels (mitoK(ATP) channels) are involved in the cardioprotection afforded by ischemic preconditioning (IPC) and diazoxide, a selective mitoK(ATP) channel opener. The activation of some kinases, including phoshoprotein kinase (PKC)-epsilon and mitogen-activating protein kinases (MAPK), is involved in signal conduction of preconditioning downstream from mitoK(ATP) channel opening. Diazoxide can open mitoK(ATP) channels and activate PKC-epsilon, which will phosphorylate some substrate proteins. These proteins that exhibit altered post-translational modification via phosphorylation due to diazoxide pretreatment may be the target molecules and play an important role in cellular protection after mitoK(ATP) channel opening. To analyze and identify the phosphoproteins associated with diazoxide preconditioning, phosphoprotein enrichment and comparative two-dimensional gel electrophoresis (2D-GE) were used. Cultured adult rat ventricular myocytes were pretreated in the presence and absence of 100 micronol/1l diazoxide for 10 min and enriched phosphoproteins from control myocytes and those pretreated with 100 micromol/l diazoxide were separated by 2D-GE and stained with a silver staining kit. Phosphoproteins of interest were further identified by matrix-assisted laser desorption ionization tandem mass spectrometry (MALDI-TOF MS). Eight protein spots with different abundance were found, of which six differentially expressed proteins were identified by MALDI-TOF MS. They included 94 kDa glucose-regulated protein, calpactin I heavy chain, chaperonin containing TCP-1 zeta subunit, hypothetical protein XP_346548, ferritin light chain and ferritin light chain 2. These findings provide new clues to understanding the mechanism of ischemic preconditioning in cardiomyocytes downstream from mitoK(ATP) channel opening.

  8. Gene-manipulated embryonic stem cells for rat transgenesis.

    Science.gov (United States)

    Kawamata, Masaki; Ochiya, Takahiro

    2011-06-01

    Embryonic stem cells (ESCs) are derived from blastocysts and are capable of differentiating into whole tissues and organs. Transplantation of ESCs into recipient blastocysts leads to the generation of germline-competent chimeras in mice. Transgenic, knockin, and knockout gene manipulations are available in mouse ESCs, enabling the production of genetically modified animals. Rats have important advantages over mice as an experimental system for physiological and pharmacological investigations. However, in contrast to mouse ESCs, rat ESCs were not established until 2008 because of the difficulty of maintaining pluripotency. Although the use of signaling inhibitors has allowed the generation of rat ESCs, the production of genetically modified rats has been difficult due to problems in rat ESCs after gene introduction. In this review, we will focus on some well-documented examples of gene manipulation in rat ESCs.

  9. Vanillin Differentially Affects Azoxymethane-Injected Rat Colon Carcinogenesis and Gene Expression

    OpenAIRE

    Ho, Ket Li; Chong, Pei Pei; Yazan, Latifah Saiful; Ismail, Maznah

    2012-01-01

    Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rat...

  10. Aluminum trichloride inhibits osteoblastic differentiation through inactivation of Wnt/β-catenin signaling pathway in rat osteoblasts.

    Science.gov (United States)

    Cao, Zheng; Fu, Yang; Sun, Xudong; Zhang, Qiuyue; Xu, Feibo; Li, Yanfei

    2016-03-01

    Exposure to aluminum (Al) suppresses bone formation. Osteoblastic differentiation plays a key role in the process of bone formation. However, the effect of Al on osteoblastic differentiation is still controversial, and the mechanism remains unclear. To investigate the effect of Al on osteoblastic differentiation and whether Wnt signaling pathway was involved in it, the primary rat osteoblasts were exposed to 1/40 IC50, 1/20 IC50 and 1/10 IC50 of aluminum trichloride (AlCl3) for 24h, respectively. The activity analysis of alkaline phosphate, qRT-PCR analysis of type I collagen, alkaline phosphate, Wnt3a and Dkk-1, Western blot analysis of p-GSK3β, GSK3β and β-catenin protein and Immunofluorescence staining for β-catenin suggested that AlCl3 inhibited osteoblastic differentiation and Wnt/β-catenin pathway. Moreover, we found exogenous Wnt3a application reversed the inhibitory effect of AlCl3 on osteoblastic differentiation, accompanied by activating the Wnt/β-catenin pathway. Taken together, these findings suggest that AlCl3 inhibites osteoblastic differentiation through inactivation of Wnt/β-catenin pathway in osteoblasts. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Morinda citrifolia (Noni Juice Augments Mammary Gland Differentiation and Reduces Mammary Tumor Growth in Mice Expressing the Unactivated c-erbB2 Transgene

    Directory of Open Access Journals (Sweden)

    William P. Clafshenkel

    2012-01-01

    Full Text Available Morinda citrifolia (noni is reported to have many beneficial properties, including on immune, inflammatory, quality of life, and cancer endpoints, but little is known about its ability to prevent or treat breast cancer. To test its anticancer potential, the effects of Tahitian Noni Juice (TNJ on mammary carcinogenesis were examined in MMTV-neu transgenic mice. Mammary tumor latency, incidence, multiplicity, and metastatic incidence were unaffected by TNJ treatment, which suggests that it would not increase or decrease breast cancer risk in women taking TNJ for its other benefits. However, noni may be useful to enhance treatment responses in women with existing HER2/neu breast cancer since TNJ resulted in significant reductions in tumor weight and volume and in longer tumor doubling times in mice. Remarkably, its ability to inhibit the growth of this aggressive form of cancer occurred with the mouse equivalent of a recommended dose for humans (<3 oz/day. A 30-day treatment with TNJ also induced significant changes in mammary secondary ductule branching and lobuloalveolar development, serum progesterone levels, and estrous cycling. Additional studies investigating TNJ-induced tumor growth suppression and modified reproductive responses are needed to characterize its potential as a CAM therapy for women with and without HER2+ breast cancer.

  12. Differential effects of vitamin D receptor activators on aortic calcification and pulse wave velocity in uraemic rats.

    Science.gov (United States)

    Noonan, William; Koch, Kristin; Nakane, Masaki; Ma, Junli; Dixon, Doug; Bolin, Antoinette; Reinhart, Glenn

    2008-12-01

    Vascular calcification is associated with an increase in cardiovascular mortality in stage 5 chronic kidney disease. To determine if vitamin D receptor activators (VDRAs) have differential effects in the pathogenesis of aortic calcification, we assessed the effects of paricalcitol and doxercalciferol in vivo using 5/6 nephrectomized (NX) rats. To quantify the functional consequences of vascular calcification, pulse wave velocity (PWV), an aortic compliance index, was measured. NX rats were fed a diet containing 0.9% phosphorous and 0.6% calcium 4 weeks prior to and throughout the study. On Day 0, rats received vehicle or VDRA (0.083, 0.167 and 0.333 microg/kg, i.p.) three times per week for 6 weeks. At Day 0 and Weeks 2 and 6, blood was drawn and PWV was measured by Doppler ultrasound. VDRAs (0.167 and 0.333 microg/kg) consistently lowered PTH at Weeks 2 and 6. All doses of paricalcitol increased serum calcium at Week 6 but not at Week 2, while the two higher doses of doxercalciferol increased serum calcium at both Weeks 2 and 6. Treatment with paricalcitol (0.333 microg/kg) increased serum phosphorus at Weeks 2 and 6; these changes were not different from those observed in 5/6 NX rats. All doses of doxercalciferol increased serum phosphorus at Week 6. Paricalcitol had no effect on Ca x P; however, the two highest doses of doxercalciferol increased Ca x P at Weeks 2 and 6 above that observed in the 5/6 NX vehicle-treated group. There were no differences in aortic calcium and phosphorus contents at the end of 6 weeks among SHAM-, 5/6 NX- and paricalcitol-treated rats. However, treatment with the two higher doses of doxercalciferol caused a significant elevation in aortic calcium and phosphorus contents. Measurements of PWV demonstrated differential effects of VDRAs on vascular compliance. Paricalcitol produced no effects on PWV, while the two highest doses of doxercalciferol increased PWV at Week 6. In uraemic rats with established secondary hyperparathyroidism, we

  13. Differential induction and spread of tau pathology in young PS19 tau transgenic mice following intracerebral injections of pathological tau from Alzheimer’s disease or corticobasal degeneration brains

    Science.gov (United States)

    Boluda, Susana; Iba, Michiyo; Zhang, Bin; Raible, Kevin M.; Lee, Virginia M-Y.; Trojanowski, John Q.

    2015-01-01

    Filamentous tau pathologies are hallmark lesions of several neurodegenerative tauopathies including Alzheimer’s disease (AD) and corticobasal degeneration (CBD) which show cell type-specific and topographically distinct tau inclusions. Growing evidence supports templated transmission of tauopathies through functionally interconnected neuroanatomical pathways suggesting that different self-propagating strains of pathological tau could account for the diverse manifestations of neurodegenerative tauopathies. Here, we describe the rapid and distinct cell type-specific spread of pathological tau following intracerebral injections of CBD or AD brain extracts enriched in pathological tau (designated CBD-Tau and AD-Tau, respectively) in young human mutant P301S tau transgenic (Tg) mice (line PS19) ~6–9 months before they show onset of mutant tau transgene-induced tau pathology. At 1 month post-injection of CBD-Tau, tau inclusions developed predominantly in oligodendrocytes of the fimbria and white matter near the injection sites with infrequent intraneuronal tau aggregates. In contrast, injections of AD-Tau in young PS19 mice induced tau pathology predominantly in neuronal perikarya with little or no oligodendrocyte involvement 1 month post-injection. With longer post-injection survival intervals of up to 6 months, CBD-Tau- and AD-Tau-induced tau pathology spread to different brain regions distant from the injection sites while maintaining the cell type-specific pattern noted above. Finally, CA3 neuron loss was detected 3 months post-injection of AD-Tau but not CBD-Tau. Thus, AD-Tau and CBD-Tau represent specific pathological tau strains that spread differentially and may underlie distinct clinical and pathological features of these two tauopathies. Hence, these strains could become targets to develop disease-modifying therapies for CBD and AD. PMID:25534024

  14. Ethanol extract of Oenanthe javanica increases cell proliferation and neuroblast differentiation in the adolescent rat dentate gyrus

    Directory of Open Access Journals (Sweden)

    Bai Hui Chen

    2015-01-01

    Full Text Available Oenanthe javanica is an aquatic perennial herb that belongs to the Oenanthe genus in Apiaceae family, and it displays well-known medicinal properties such as protective effects against glutamate-induced neurotoxicity. However, few studies regarding effects of Oenanthe javanica on neurogenesis in the brain have been reported. In this study, we examined the effects of a normal diet and a diet containing ethanol extract of Oenanthe javanica on cell proliferation and neuroblast differentiation in the subgranular zone of the hippocampal dentate gyrus of adolescent rats using Ki-67 (an endogenous marker for cell proliferation and doublecortin (a marker for neuroblast. Our results showed that Oenanthe javanica extract significantly increased the number of Ki-67-immunoreactive cells and doublecortin-immunoreactive neuroblasts in the subgranular zone of the dentate gyrus in the adolescent rats. In addition, the immunoreactivity of brain-derived neurotrophic factor was significantly increased in the dentate gyrus of the Oenanthe javanica extract-treated group compared with the control group. However, we did not find that vascular endothelial growth factor expression was increased in the Oenanthe javanica extract-treated group compared with the control group. These results indicate that Oenanthe javanica extract improves cell proliferation and neuroblast differentiation by increasing brain-derived neurotrophic factor immunoreactivity in the rat dentate gyrus.

  15. Differential effect of NMDA and AMPA receptor blockade on protein synthesis in the rat infarct borderzone

    DEFF Research Database (Denmark)

    Christensen, Thomas; Bruhn, T; Frank, L

    1996-01-01

    We investigated whether the known neuroprotective effects of two selective glutamate receptor antagonists, the NMDA antagonist MK-801 and the AMPA antagonist NBQX, are reflected in the regional cerebral protein synthesis rates (CPSR) in rats with middle cerebral artery occlusion (MCAO). Rats...

  16. Differential susceptibility of rats and guinea pigs to the ototoxic effects of ethyl benzene

    NARCIS (Netherlands)

    Cappaert, N.L.M.; Klis, S.F.L.; Muijser, H.; Kulig, B.M.; Ravensberg, L.C.; Smoorenburg, G.F.

    2002-01-01

    The present study was designed to compare the ototoxic effects of volatile ethyl benzene in guinea pigs and rats. Rats showed deteriorated auditory thresholds in the mid-frequency range, based on electrocochleography, after 550-ppm ethyl benzene (8 h/day, 5 days). Outer hair cell (OHC) loss was

  17. Molecular Analyses of Transgenic Plants.

    Science.gov (United States)

    Trijatmiko, Kurniawan Rudi; Arines, Felichi Mae; Oliva, Norman; Slamet-Loedin, Inez Hortense; Kohli, Ajay

    2016-01-01

    One of the major challenges in plant molecular biology is to generate transgenic plants that express transgenes stably over generations. Here, we describe some routine methods to study transgene locus structure and to analyze transgene expression in plants: Southern hybridization using DIG chemiluminescent technology for characterization of transgenic locus, SYBR Green-based real-time RT-PCR to measure transgene transcript level, and protein immunoblot analysis to evaluate accumulation and stability of transgenic protein product in the target tissue.

  18. Comparison of Sirtuin 3 Levels in ALS and Huntington’s Disease—Differential Effects in Human Tissue Samples vs. Transgenic Mouse Models

    Directory of Open Access Journals (Sweden)

    Eva Buck

    2017-05-01

    Full Text Available Neurodegenerative diseases are characterized by distinct patterns of neuronal loss. In amyotrophic lateral sclerosis (ALS upper and lower motoneurons degenerate whereas in Huntington’s disease (HD medium spiny neurons in the striatum are preferentially affected. Despite these differences the pathophysiological mechanisms and risk factors are remarkably similar. In addition, non-neuronal features, such as weight loss implicate a dysregulation in energy metabolism. Mammalian sirtuins, especially the mitochondrial NAD+ dependent sirtuin 3 (SIRT3, regulate mitochondrial function and aging processes. SIRT3 expression depends on the activity of the metabolic master regulator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α, a modifier of ALS and HD in patients and model organisms. This prompted us to systematically probe Sirt3 mRNA and protein levels in mouse models of ALS and HD and to correlate these with patient tissue levels. We found a selective reduction of Sirt3 mRNA levels and function in the cervical spinal cord of end-stage ALS mice (superoxide dismutase 1, SOD1G93A. In sharp contrast, a tendency to increased Sirt3 mRNA levels was found in the striatum in HD mice (R6/2. Cultured primary neurons express the highest levels of Sirt3 mRNA. In primary cells from PGC-1α knock-out (KO mice the Sirt3 mRNA levels were highest in astrocytes. In human post mortem tissue increased mRNA and protein levels of Sirt3 were found in the spinal cord in ALS, while Sirt3 levels were unchanged in the human HD striatum. Based on these findings we conclude that SIRT3 mediates the different effects of PGC-1α during the course of transgenic (tg ALS and HD and in the human conditions only partial aspects Sirt3 dysregulation manifest.

  19. Adeno-associated viral vector serotypes 1 and 5 targeted to the neonatal rat and pig striatum induce widespread transgene expression in the forebrain

    DEFF Research Database (Denmark)

    Kornum, Birgitte R; Stott, Simon R W; Mattsson, Bengt

    2010-01-01

    Viral vector-mediated gene transfer has emerged as a powerful means to target transgene expression in the central nervous system. Here we characterized the efficacy of serotypes 1 and 5 recombinant adeno-associated virus (rAAV) vectors encoding green fluorescent protein (GFP) after stereotaxic....... Our results show that striatal delivery of rAAV5 vectors in the neonatal brain represents a useful tool to express genes of interest both in the basal ganglia and the neocortex. Furthermore, we apply, for the first time, viral vector-mediated gene transfer to the pig brain providing the opportunity...

  20. Human induced pluripotent stem cells differentiation into oligodendrocyte progenitors and transplantation in a rat model of optic chiasm demyelination.

    Directory of Open Access Journals (Sweden)

    Alireza Pouya

    Full Text Available BACKGROUND: This study aims to differentiate human induced pluripotent stem cells (hiPSCs into oligodendrocyte precursors and assess their recovery potential in a demyelinated optic chiasm model in rats. METHODOLOGY/PRINCIPAL FINDINGS: We generated a cell population of oligodendrocyte progenitors from hiPSCs by using embryoid body formation in a defined medium supplemented with a combination of factors, positive selection and mechanical enrichment. Real-time polymerase chain reaction and immunofluorescence analyses showed that stage-specific markers, Olig2, Sox10, NG2, PDGFRα, O4, A2B5, GalC, and MBP were expressed following the differentiation procedure, and enrichment of the oligodendrocyte lineage. These results are comparable with the expression of stage-specific markers in human embryonic stem cell-derived oligodendrocyte lineage cells. Transplantation of hiPSC-derived oligodendrocyte progenitors into the lysolecithin-induced demyelinated optic chiasm of the rat model resulted in recovery from symptoms, and integration and differentiation into oligodendrocytes were detected by immunohistofluorescence staining against PLP and MBP, and measurements of the visual evoked potentials. CONCLUSIONS/SIGNIFICANCE: These results showed that oligodendrocyte progenitors generated efficiently from hiPSCs can be used in future biomedical studies once safety issues have been overcome.

  1. Intramyocardial implantation of differentiated rat bone marrow mesenchymal stem cells enhanced by TGF-β1 improves cardiac function in heart failure rats

    Energy Technology Data Exchange (ETDEWEB)

    Lv, Y. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China); Liu, B. [Department of Pathology, the First Affiliated Hospital of Hebei North University, Zhangjiakou, Hebei (China); Wang, H.P. [Department of Histology and Embryology, Hebei North University, Zhangjiakou, Hebei (China); Zhang, L. [Department of Histology and Embryology, Hebei Medical University, Shijiazhuang, Hebei (China)

    2016-05-31

    The present study tested the hypotheses that i) transforming growth factor beta 1 (TGF-β1) enhances differentiation of rat bone marrow mesenchymal stem cells (MSCs) towards the cardiomyogenic phenotype and ii) intramyocardial implantation of the TGF-β1-treated MSCs improves cardiac function in heart failure rats. MSCs were treated with different concentrations of TGF-β1 for 72 h, and then morphological characteristics, surface antigens and mRNA expression of several transcription factors were assessed. Intramyocardial implantation of these TGF-β1-treated MSCs to infarcted heart was also investigated. MSCs were initially spindle-shaped with irregular processes. On day 28 after TGF-β1 treatment, MSCs showed fusiform shape, orientating parallel with one another, and were connected with adjoining cells forming myotube-like structures. Immunofluorescence revealed the expression of cardiomyocyte-specific proteins, α-sarcomeric actin and troponin T, in these cells. The mRNA expression of GATA4 and Nkx2.5 genes was slightly increased on day 7, enhanced on day 14 and decreased on day 28 while α-MHC gene was not expressed on day 7, but expressed slightly on day 14 and enhanced on day 28. Transmission electron microscopy showed that the induced cells had myofilaments, z line-like substances, desmosomes, and gap junctions, in contrast with control cells. Furthermore, intramyocardial implantation of TGF-β1-treated MSCs to infarcted heart reduced scar area and increased the number of muscle cells. This structure regeneration was concomitant with the improvement of cardiac function, evidenced by decreased left ventricular end-diastolic pressure, increased left ventricular systolic pressure and increased maximal positive pressure development rate. Taken together, these results indicate that intramyocardial implantation of differentiated MSCs enhanced by TGF-β1 improved cardiac function in heart failure rats.

  2. Differential expression of glutamic acid decarboxylase in rat and human islets

    DEFF Research Database (Denmark)

    Petersen, J S; Russel, S; Marshall, M O

    1993-01-01

    islets, whereas only GAD64 mRNA was detected in human islets. Immunocytochemical analysis of rat and human pancreatic sections or isolated islets with antibodies to GAD64 and GAD67 in combination with antibodies to insulin, glucagon, or SRIF confirmed that a GAD64 and GAD67 expression were beta......The GABA synthesizing enzyme GAD is a prominent islet cell autoantigen in type I diabetes. The two forms of GAD (GAD64 and GAD67) are encoded by different genes in both rats and humans. By in situ hybridization analysis of rat and human pancreases, expression of both genes was detected in rat...... as observed in vivo, whereas GAD67 was localized not only to the beta-cells but also in the alpha-cells and delta-cells. A small but distinct fraction of GAD positive cells in these monolayer cultures did not accumulate GABA immunoreactivity, which may indicate cellular heterogeneity with respect to GABA...

  3. MECHANISMS OF MANGANESE-INDUCED RAT PHEOCHROMOCYTOMA (PC12) CELL DEATH AND CELL DIFFERENTIATION. (R826248)

    Science.gov (United States)

    Mn is a neurotoxin that leads to a syndrome resembling Parkinson's disease after prolonged exposure to high concentrations. Our laboratory has been investigating the mechanism by which Mn induces neuronal cell death. To accomplish this, we have utilized rat pheochromocytom...

  4. Toxicity assessment of transgenic papaya ringspot virus of 823-2210 line papaya fruits.

    Science.gov (United States)

    Lin, Hsin-Tang; Yen, Gow-Chin; Huang, Ting-Tzu; Chan, Lit-Fu; Cheng, Ying-Huey; Wu, Jhaol-Huei; Yeh, Shyi-Dong; Wang, Sheng-Yang; Liao, Jiunn-Wang

    2013-02-20

    The transgenic papaya is a valuable strategy for creating plants resistant to papaya ringspot virus (PRSV) infection and increasing production. This study was further performed to evaluate the comparative toxicity effects of the newly developed transgenic line of the fruits of two backcross transgenic papaya lines (2210 and 823) and one hybrid line (823-2210) and compare to their parent non-transgenic (TN-2) counterparts. The stability analysis of coat protein (CP) of PRSV was investigated using the digestion stability assays in simulated gastric fluid (SGF), simulated intestinal fluid (SIF), and bile salts to detect the CP fragments. Results revealed that the CP fragments were rapidly hydrolyzed in SGF and were undetectable in organs and gastrointestinal contents in rats. For the genotoxicity, three in vitro assays were conducted and exhibited that non-transgenic and backcross transgenic papaya fruits were negative. Moreover, a repeated animal feeding study was conducted by feeding 2 g/kg of body weight (bw) of non-transgenic and backcross transgenic papaya fruits for 28 days in rats. There were no biological or toxicological significances between non-transgenic and backcross transgenic papaya fruits in rats. The results demonstrated that the backcross transgenic papaya fruit can be recognized as an equivalent substitution for traditional papaya in food safety.

  5. Nanoparticle-mediated transcriptional modification enhances neuronal differentiation of human neural stem cells following transplantation in rat brain.

    Science.gov (United States)

    Li, Xiaowei; Tzeng, Stephany Y; Liu, Xiaoyan; Tammia, Markus; Cheng, Yu-Hao; Rolfe, Andrew; Sun, Dong; Zhang, Ning; Green, Jordan J; Wen, Xuejun; Mao, Hai-Quan

    2016-04-01

    Strategies to enhance survival and direct the differentiation of stem cells in vivo following transplantation in tissue repair site are critical to realizing the potential of stem cell-based therapies. Here we demonstrated an effective approach to promote neuronal differentiation and maturation of human fetal tissue-derived neural stem cells (hNSCs) in a brain lesion site of a rat traumatic brain injury model using biodegradable nanoparticle-mediated transfection method to deliver key transcriptional factor neurogenin-2 to hNSCs when transplanted with a tailored hyaluronic acid (HA) hydrogel, generating larger number of more mature neurons engrafted to the host brain tissue than non-transfected cells. The nanoparticle-mediated transcription activation method together with an HA hydrogel delivery matrix provides a translatable approach for stem cell-based regenerative therapy. Copyright © 2016 Elsevier Ltd. All rights reserved.

  6. Advances in transgenic animal models and techniques.

    Science.gov (United States)

    Ménoret, Séverine; Tesson, Laurent; Remy, Séverine; Usal, Claire; Ouisse, Laure-Hélène; Brusselle, Lucas; Chenouard, Vanessa; Anegon, Ignacio

    2017-10-01

    On May 11th and 12th 2017 was held in Nantes, France, the international meeting "Advances in transgenic animal models and techniques" ( http://www.trm.univ-nantes.fr/ ). This biennial meeting is the fifth one of its kind to be organized by the Transgenic Rats ImmunoPhenomic (TRIP) Nantes facility ( http://www.tgr.nantes.inserm.fr/ ). The meeting was supported by private companies (SONIDEL, Scionics computer innovation, New England Biolabs, MERCK, genOway, Journal Disease Models and Mechanisms) and by public institutions (International Society for Transgenic Technology, University of Nantes, INSERM UMR 1064, SFR François Bonamy, CNRS, Région Pays de la Loire, Biogenouest, TEFOR infrastructure, ITUN, IHU-CESTI and DHU-Oncogeffe and Labex IGO). Around 100 participants, from France but also from different European countries, Japan and USA, attended the meeting.

  7. Osthole Stimulated Neural Stem Cells Differentiation into Neurons in an Alzheimer's Disease Cell Model via Upregulation of MicroRNA-9 and Rescued the Functional Impairment of Hippocampal Neurons in APP/PS1 Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Shao-Heng Li

    2017-06-01

    Full Text Available Alzheimer's disease (AD is the most serious neurodegenerative disease worldwide and is characterized by progressive cognitive impairment and multiple neurological changes, including neuronal loss in the brain. However, there are no available drugs to delay or cure this disease. Consequently, neuronal replacement therapy may be a strategy to treat AD. Osthole (Ost, a natural coumarin derivative, crosses the blood-brain barrier and exerts strong neuroprotective effects against AD in vitro and in vivo. Recently, microRNAs (miRNAs have demonstrated a crucial role in pathological processes of AD, implying that targeting miRNAs could be a therapeutic approach to AD. In the present study, we investigated whether Ost could enhance cell viability and prevent cell death in amyloid precursor protein (APP-expressing neural stem cells (NSCs as well as promote APP-expressing NSCs differentiation into more neurons by upregulating microRNA (miR-9 and inhibiting the Notch signaling pathway in vitro. In addition, Ost treatment in APP/PS1 double transgenic (Tg mice markedly restored cognitive functions, reduced Aβ plague production and rescued functional impairment of hippocampal neurons. The results of the present study provides evidence of the neurogenesis effects and neurobiological mechanisms of Ost against AD, suggesting that Ost is a promising drug for treatment of AD or other neurodegenerative diseases.

  8. Fringe Controls Naïve CD4+T Cells Differentiation through Modulating Notch Signaling in Asthmatic Rat Models

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4+T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4+T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4+T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4+T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma. PMID:23071776

  9. Fringe controls naïve CD4(+)T cells differentiation through modulating notch signaling in asthmatic rat models.

    Science.gov (United States)

    Gu, Wen; Xu, Weiguo; Ding, Tao; Guo, Xuejun

    2012-01-01

    The ability of Notch signaling to regulate T helper cell development and differentiation has been widely accepted. Fringe, O-fucose-β1,3-N-acetylglucosaminyltransferases modulate Notch receptor expression and promote the Notch signaling pathway through receptor-ligand binding. In this study, we assayed the expression levels of three Fringe homologs in naive CD4(+)T cells in asthmatic rats. We found that Radical Fringe (Rfng) was highly expressed, whereas both Lunatic Fringe (Lfng) and Manic Fringe (Mfng) were expressed at low levels. Down-regulation of Rfng using siRNA, and overexpression of Lfng or Mfng enhanced Th1 subset lineages and diminished Th2 subset lineages. Notch signaling was more activated in asthmatic naïve CD4(+)T cells than in control cells, and Lfng, but not Mfng or Rfng, partly inhibited Notch signaling in asthmatic naïve CD4(+)T lymphocytes. Lfng overexpression resulted in significantly decreased Th2 cytokine production in asthma, which was the same effect as the GSI (γ-secretase inhibitor) treatment alone, but had an increased effect on Th1 cytokines than GSI treatment. Collectively, these data identify the essential role of Fringe modulating naïve CD4(+)T cells differentiation through Notch signaling. Lfng regulated Th2 cells differentiation via a Notch-dependent manner and Th1 cells differentiation via a Notch-independent manner. Fringe could be a therapeutic strategy for the management and prevention of allergic asthma.

  10. Sweetener Intake by Rats Selectively Bred for Differential Saccharin Intake: Sucralose, Stevia, and Acesulfame Potassium.

    Science.gov (United States)

    Dess, Nancy K; Dobson, Kiana; Roberts, Brandon T; Chapman, Clinton D

    2017-06-01

    Behavioral responses to sweeteners have been used to study the evolution, mechanisms, and functions of taste. Occidental low and high saccharin consuming rats (respectively, LoS and HiS) have been selectively outbred on the basis of saccharin intake and are a valuable tool for studying variation among individuals in sweetener intake and its correlates. Relative to HiS rats, LoS rats consume smaller amounts of all nutritive and nonnutritive sweeteners tested to date, except aspartame. The lines also differ in intake of the commercial product Splenda; the roles of sucralose and saccharides in the difference are unclear. The present study extends prior work by examining intake of custom mixtures of sucralose, maltodextrin, and sugars and Splenda by LoS and HiS rats (Experiment 1A-1D), stevia and a constituent compound (rebaudioside A; Experiment 2A-2E), and acesulfame potassium tested at several concentrations or with 4 other sweeteners at one concentration each (Experiment 3A-3B). Results indicate that aversive side tastes limit intake of Splenda, stevia, and acesulfame potassium, more so among LoS rats than among HiS rats. In addition, regression analyses involving 5 sweeteners support the idea that both sweetness and bitterness are needed to account for intake of nonnutritive sweeteners, more so among LoS rats. These findings contribute to well developed and emerging literatures on sweetness and domain-general processes related to gustation. © The Author 2017. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Electrophysiological effects of kainic acid on vasopressin-enhanced green fluorescent protein and oxytocin-monomeric red fluorescent protein 1 neurones isolated from the supraoptic nucleus in transgenic rats.

    Science.gov (United States)

    Ohkubo, J; Ohbuchi, T; Yoshimura, M; Maruyama, T; Ishikura, T; Matsuura, T; Suzuki, H; Ueta, Y

    2014-01-01

    The supraoptic nucleus (SON) contains two types of magnocellular neurosecretory cells: arginine vasopressin (AVP)-producing and oxytocin (OXT)-producing cells. We recently generated and characterised two transgenic rat lines: one expressing an AVP-enhanced green fluorescent protein (eGFP) and the other expressing an OXT-monomeric red fluorescent protein 1 (mRFP1). These transgenic rats enable the visualisation of AVP or OXT neurones in the SON. In the present study, we compared the electrophysiological responses of AVP-eGFP and OXT-mRFP1 neurones to glutamic acid in SON primary cultures. Glutamate mediates fast synaptic transmission through three classes of ionotrophic receptors: the NMDA, AMPA and kainate receptors. We investigated the contributions of the three classes of ionotrophic receptors in glutamate-induced currents. Three different antagonists were used, each predominantly selective for one of the classes of ionotrophic receptor. Next, we focused on the kainate receptors (KARs). We examined the electrophysiological effects of kainic acid (KA) on AVP-eGFP and OXT-mRFP1 neurones. In current clamp mode, KA induced depolarisation and increased firing rates. These KA-induced responses were inhibited by the non-NMDA ionotrophic receptor antagonist 6-cyano-7-nitroquinoxaline-2,3(1H4H)-dione in both AVP-eGFP and OXT-mRFP1 neurones. In voltage clamp mode, the application of KA evoked inward currents in a dose-dependent manner. The KA-induced currents were significantly larger in OXT-mRFP1 neurones than in AVP-eGFP neurones. This significant difference in KA-induced currents was abolished by the GluK1-containing KAR antagonist UBP302. At high concentrations (250-500 μm), the specific GluK1-containing KAR agonist (RS)-2-amino-3-(3-hydroxy-5-tert-butylisoxazol-4-yl) propanoic acid (ATPA) induced significantly larger currents in OXT-mRFP1 neurones than in AVP-eGFP neurones. Furthermore, the difference between the AVP-eGFP and OXT-mRFP1 neurones in the ATPA currents

  12. Administration of 4-(α-L-Rhamnosyloxy-benzyl Isothiocyanate Delays Disease Phenotype in SOD1G93A Rats: A Transgenic Model of Amyotrophic Lateral Sclerosis

    Directory of Open Access Journals (Sweden)

    Maria Galuppo

    2015-01-01

    Full Text Available 4-(α-L-Rhamnosyloxy-benzyl glucosinolate (glucomoringin, GMG is a compound found in Moringa oleifera seeds. Myrosinase-catalyzed hydrolysis at neutral pH of GMG releases the biologically active compound 4-(α-L-rhamnosyloxy-benzyl isothiocyanate (GMG-ITC. The present study was designed to test the potential therapeutic effectiveness of GMG-ITC to counteract the amyotrophic lateral sclerosis (ALS using SOD1tg rats, which physiologically develops SOD1G93A at about 16 weeks of life, and can be considered a genetic model of disease. Rats were treated once a day with GMG (10 mg/Kg bioactivated with myrosinase (20 µL/rat via intraperitoneal (i.p. injection for two weeks before disease onset and the treatment was prolonged for further two weeks before the sacrifice. Immune-inflammatory markers as well as apoptotic pathway were investigated to establish whether GMG-ITC could represent a new promising tool in clinical practice to prevent ALS. Achieved data display clear differences in molecular and biological profiles between treated and untreated SOD1tg rats leading to guessing that GMG-ITC can interfere with the pathophysiological mechanisms at the basis of ALS development. Therefore, GMG-ITC produced from myrosinase-catalyzed hydrolysis of pure GMG could be a candidate for further studies aimed to assess its possible use in clinical practice for the prevention or to slow down this disease.

  13. Omega-3 Fatty Acids Supplementation Differentially Modulates the SDF-1/CXCR-4 Cell Homing Axis in Hypertensive and Normotensive Rats.

    Science.gov (United States)

    Halmenschlager, Luiza; Lehnen, Alexandre Machado; Marcadenti, Aline; Markoski, Melissa Medeiros

    2017-08-01

    We assessed the effect of acute and chronic dietary supplementation of ω-3 on lipid metabolism and cardiac regeneration, through its influence on the Stromal Derived Factor-1 (SDF-1) and its receptor (CXCR4) axis in normotensive and hypertensive rats. Male Wistar Kyoto (WKY) and spontaneously hypertensive rats (SHR) were allocated in eight groups (of eight animals each), which received daily orogastric administration of ω-3 (1 g) for 24 h, 72 h or 2 weeks. Blood samples were collected for the analysis of the lipid profile and SDF-1 systemic levels (ELISA). At the end of the treatment period, cardiac tissue was collected for CXCR4 expression analysis (Western blot). The use of ω-3 caused a reduction in total cholesterol levels ( p = 0.044), and acutely activated the SDF-1/CXCR4 axis in normotensive animals ( p = 0.037). In the presence of the ω-3, after 72 h, SDF-1 levels decreased in WKY and increased in SHR ( p = 0.017), and tissue expression of the receptor CXCR4 was higher in WKY than in SHR ( p = 0.001). The ω-3 fatty acid supplementation differentially modulates cell homing mediators in normotensive and hypertensive animals. While WKY rats respond acutely to omega-3 supplementation, showing increased release of SDF-1 and CXCR4, SHR exhibit a weaker, delayed response.

  14. Differential role of gonadal hormones on kainic acid-induced neurodegeneration in medial amygdaloid nucleus of female and male rats.

    Science.gov (United States)

    Pereno, G L; Beltramino, C A

    2009-10-20

    Sex hormones contribute to modulating brain functions throughout the life span. It has been suggested that estrogen prevents neuronal loss in different areas of the CNS such as the hippocampus. However there are less consistent data on its effects on the amygdala. Kainic acid (KA) is used to produce seizures that mimic those of temporal lobe epilepsy in humans. At high doses in animal models, KA induces neurotoxicity, particularly in the medial amygdaloid nuclei (MeA). It is uncertain whether the gonadal hormones are protective or not against this neurotoxicity in the MeA. Here we show that a single dose of KA induces neurodegeneration in the subnuclei of the MeA of rats with different degrees of intensity in males and females. A differential neuroprotective effect of the gonadal hormones was also observed. In diestrous rats, massive neuronal death similar to that in the ovariectomized females was detected. MeA neurons of proestrous rats, like the ovariectomized treated with estrogen, were significantly less affected by the KA. Testosterone produced a mild neuroprotective action, but dihydrotestosterone did not protect. A similar pattern was observed in all male groups. Together, the results indicate that estrogen protects MeA neurons from KA neurotoxicity. Androgens are only partially neuroprotective, with this effect being found only in testosterone, probably through its conversion to estrogen by aromatase.

  15. 4-Vinylcyclohexene Diepoxide (VCD) Inhibits Mammary Epithelial Differentiation and Induces Fibroadenoma Formation in Female Sprague Dawley Rats

    Science.gov (United States)

    Wright, Laura E.; Frye, Jennifer B.; Lukefahr, Ashley L.; Marion, Samuel L.; Hoyer, Patricia B.; Besselsen, David G.; Funk, Janet L.

    2011-01-01

    4-Vinylcyclohexene diepoxide (VCD), an occupational chemical that targets ovarian follicles and accelerates ovarian failure in rodents, was used to test the effect of early-onset reproductive senescence on mammary fibroadenoma formation. One-month female Sprague Dawley rats were dosed with VCD (80 mg/kg or 160 mg/kg) and monitored for 22 months for persistent estrus and tumor development. Only high-dose VCD treatment accelerated the onset of persistent estrus relative to controls. However, both doses of VCD accelerated mammary tumor onset by 5 months, increasing incidence to 84% (vs. 38% in controls). Tumor development was independent of time in persistent estrus, 17β-estradiol, androstenedione and prolactin. Delay in VCD administration until after completion of mammary epithelial differentiation (3 months) did not alter tumor formation despite acceleration of ovarian senescence. VCD administration to 1-month rats acutely decreased mammary alveolar bud number and expression of β-casein, suggesting that VCD’s tumorigenic effect requires exposure during mammary epithelial differentiation. PMID:21621605

  16. Aging in Rats Differentially Affects Markers of Transcriptional and Translational Capacity in Soleus and Plantaris Muscle

    Directory of Open Access Journals (Sweden)

    Christopher B. Mobley

    2017-07-01

    Full Text Available Alterations in transcriptional and translational mechanisms occur during skeletal muscle aging and such changes may contribute to age-related atrophy. Herein, we examined markers related to global transcriptional output (i.e., myonuclear number, total mRNA and RNA pol II levels, translational efficiency [i.e., eukaryotic initiation and elongation factor levels and muscle protein synthesis (MPS levels] and translational capacity (ribosome density in the slow-twitch soleus and fast-twitch plantaris muscles of male Fischer 344 rats aged 3, 6, 12, 18, and 24 months (n = 9–10 per group. We also examined alterations in markers of proteolysis and oxidative stress in these muscles (i.e., 20S proteasome activity, poly-ubiquinated protein levels and 4-HNE levels. Notable plantaris muscle observations included: (a fiber cross sectional area (CSA was 59% (p < 0.05 and 48% (p < 0.05 greater in 12 month vs. 3 month and 24 month rats, respectively, suggesting a peak lifetime value near 12 months and age-related atrophy by 24 months, (b MPS levels were greatest in 18 month rats (p < 0.05 despite the onset of atrophy, (c while regulators of ribosome biogenesis [c-Myc and upstream binding factor (UBF protein levels] generally increased with age, ribosome density linearly decreased from 3 months of age and RNA polymerase (Pol I protein levels were lowest in 24 month rats, and d 20S proteasome activity was robustly up-regulated in 6 and 24 month rats (p < 0.05. Notable soleus muscle observations included: (a fiber CSA was greatest in 6 month rats and was maintained in older age groups, and (b 20S proteasome activity was modestly but significantly greater in 24 month vs. 3/12/18 month rats (p < 0.05, and (c total mRNA levels (suggestive of transcriptional output trended downward in older rats despite non-significant between-group differences in myonuclear number and/or RNA Pol II protein levels. Collectively, these findings suggest that plantaris, not soleus

  17. Behaviors and Numerical Simulations of Malaria Dynamic Models with Transgenic Mosquitoes

    OpenAIRE

    Liu, Xiongwei; Xu, Junjun; Wang, Xiao; Cheng, Lizhi

    2013-01-01

    The release of transgenic mosquitoes to interact with wild ones is a promising method for controlling malaria. How to effectively release transgenic mosquitoes to prevent malaria is always a concern for researchers. This paper investigates two methods of releasing transgenic mosquitoes and proposes two epidemic models involving malaria patients, anopheles, wild mosquitoes, and transgenic mosquitoes based on system of continuous differential equations. A basic reproduction number ${\\mathbf{R}}...

  18. The endocannabinoid transport inhibitor AM404 differentially modulates recognition memory in rats depending on environmental aversiveness

    Science.gov (United States)

    Campolongo, Patrizia; Ratano, Patrizia; Manduca, Antonia; Scattoni, Maria L.; Palmery, Maura; Trezza, Viviana; Cuomo, Vincenzo

    2012-01-01

    Cannabinoid compounds may influence both emotional and cognitive processes depending on the level of environmental aversiveness at the time of drug administration. However, the mechanisms responsible for these responses remain to be elucidated. The present experiments investigated the effects induced by the endocannabinoid transport inhibitor AM404 (0.5–5 mg/kg, i.p.) on both emotional and cognitive performances of rats tested in a Spatial Open Field task and subjected to different experimental settings, named High Arousal (HA) and Low Arousal (LA) conditions. The two different experimental conditions influenced emotional reactivity independently of drug administration. Indeed, vehicle-treated rats exposed to the LA condition spent more time in the center of the arena than vehicle-treated rats exposed to the HA context. Conversely, the different arousal conditions did not affect the cognitive performances of vehicle-treated animals such as the capability to discriminate a spatial displacement of the objects or an object substitution. AM404 administration did not alter locomotor activity or emotional behavior of animals exposed to both environmental conditions. Interestingly, AM404 administration influenced the cognitive parameters depending on the level of emotional arousal: it impaired the capability of rats exposed to the HA condition to recognize a novel object while it did not induce any impairing effect in rats exposed to the LA condition. These findings suggest that drugs enhancing endocannabinoid signaling induce different effects on recognition memory performance depending on the level of emotional arousal induced by the environmental conditions. PMID:22454620

  19. Responses to cholinergic agonists of rats selectively bred for differential sensitivity to ethanol.

    Science.gov (United States)

    de Fiebre, C M; Romm, E; Collins, J T; Draski, L J; Deitrich, R A; Collins, A C

    1991-03-01

    Alcoholics are almost invariably heavy users of tobacco. Both alcoholism and smoking appear to be influenced by genetic factors but it is not known whether the same or different genes regulate the abuse of ethanol and nicotine. Recent studies have demonstrated that the long-sleep (LS) and short-sleep (SS) mouse lines, which were selectively bred for differences in ethanol-induced anesthesia ("sleep-time"), also differ in several effects of nicotine and the muscarinic agonist, oxotremorine. In order to determine whether or not these differences are due to chance, the relative sensitivities of rat lines which were selectively bred for differences in ethanol-induced sleep-time were determined. The high alcohol sensitivity (HAS) rat line was more sensitive to the locomotor and body temperature depressant effects of nicotine than was the low alcohol sensitivity (LAS) rat line. The control line (CAS) was intermediate in sensitivity. The rat lines did not differ in sensitivity to oxotremorine's hypothermia-producing effects. The numbers and affinities of two classes of brain nicotinic receptors were measured in eight brain regions. No differences among the rat lines were detected. These results suggest that ethanol elicits some of its depressant actions via an effect on brain nicotinic systems, but the differences in sensitivity to ethanol and nicotine are probably not due to differences in the number of brain nicotinic receptors. Perhaps this interaction explains the high correlation between alcoholism and smoking in humans.

  20. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma.

    Science.gov (United States)

    Shakeri, Farzaneh; Soukhtanloo, Mohammad; Boskabady, Mohammad Hossein

    2017-02-01

    The effects of Curcuma longa ( C. longa ) and curcumin on total and differential WBC count and oxidant, antioxidant biomarkers, in rat model of asthma were evaluated. Total and differential WBC count in the blood, NO 2 , NO 3 , MDA, SOD, CAT and thiol levels in serum were examined in control, asthma, Asthmatic rats treated with C. longa (0.75, 1.50, and 3.00 mg/ml), curcumin (0.15, 0.30, and 0.60 mg/ml), and dexamethasone (1.25 μg/ml) rats. Total and most differential WBC count, NO 2 , NO 3 and MDA were increased but lymphocytes, SOD, CAT and thiol were decreased in asthmatic animals compared to controls ( P longa and curcumin compared to asthmatic group ( P longa and curcumin ( P longa extract and its constituent curcumin in animal model of asthma was observed which suggest a therapeutic potential for the plant and its constituent on asthma.

  1. [Effect of electroacupuncture on differentiation and proliferation of hippocampal nerve stem cells in splenic asthenia pedo-rats].

    Science.gov (United States)

    Zhuo, Yuan-yuan; Yang, Zhuo-xin; Wu, Jia-man

    2011-10-01

    To observe the effect of electroacupuncture (EA) on the differentiation and proliferation of nerve stem cells in the hippocampal dentate gyrus (DG) in splenic asthenia pedo-rats so as to study its central mechanism. A total of 72 SD male rats were randomly assigned to normal control group (n=24), model group (n=24) and EA group (n=24) which were further divided into 7 d, 14 d, 28 d and 49 d time-points (n=6). Splenic asthenia model was established by intraperitoneal injection of reserpine and gavage of Dahuang (Radix et Rhizoma Rhei) fluid. EA was applied to bilateral "Zusanli" (ST 36) and "Sanyinjiao" (SP 6) for 20 min, once daily for 7, 14, 28 and 49 days respectively. Brdu, Nestin, glial fibrillary acidic protein (GFAP), and neuron-specific enolase (NSE) expression in the DG of hippocampus were detected by immunohistochemistry double staining. Compared with the normal control group, the numbers of Brdu, Brdu/GFAP, Brdu/NSE Immunoreactive (IR) positive cells in the DG of hippocampus on day 7 and 14, and that of Brdu/Nestin IR-positive cells on day 7 were decreased considerably in the model group (P 0.05). EA of ST 36 and SP 6 can effectively suppress splenic asthenia syndrome-induced decrease of the numbers of Brdu, Brdu/GFAP, Brdu/Nestin and Brdu/NSE IR-positive cells in the DG of hippocampus at the early stage in the splenic asthenia rats, which may contribute to its effect in improving splenic asthenia symptoms in clinic by promoting the proliferation and differentiation of some nerve stem cells in the hippocampus.

  2. Effects of environmentally differential rearing upon maze performance in prenatally irradiated microcephalic rats

    International Nuclear Information System (INIS)

    Seo, M.L.; Inouye, M.; Kiyono, S.; Shibagaki, M.

    1982-01-01

    Pregnant rats received 100 rads of X-irradiation on day 17 of gestation. Control pregnant rats were sham-irradiated on the same gestation day. The male offspring were reared under environmentally enriched, standard colony, and impoverished conditions for 30 days after weaning. Then the Hebb-Williams maze test was carried out. All the prenatally X-irradiated rats were microcephalic: their mean cerebral wet weight was 15.5% less than controls. The effect of X-irradiation was not significant in error scores and running times, whereas the effect of environment was significant in these items; initial and total error scores and running times were decreased in enriched groups compared to impoverished groups in controls as well as in X-irradiated animals

  3. [Construction and preliminary screening of a forward-subtracted cDNA library for differentially expressed genes in rat liver of prothrombotic state].

    Science.gov (United States)

    Fang, Ding-Zhi; Liu, Bing-Wen; Shen, Tao; Bai, Huai

    2005-11-01

    To construct and preliminarily screen the forward-subtracted cDNA library of differentially expressed genes in rat liver of prothrombotic state (PTS). The forward-subtracted cDNA library for differentially expressed genes in rat liver of PTS was constructed by suppression subtractive hybridization using cDNAs synthesized from mRNA of PTS rat as Tester and cDNAs from mRNA of control rat as Driver. The products from the last PCR amplification of suppression subtractive hybridization were inserted into a T/A plasmid vectors to transform the Escherichia coli JM109 cells. To produce the library, the transformed cells were incubated at 37 C overnight on a LB agar plate containing ampicillin (50 microg/ml), IPTG and X-gal. Forward-subtracted cDNA probes and reverse-subtracted cDNA probes were prepared by nested PCR amplification, which were labeled with HRP. Positive clones were selected by differential screening in which forward-subtracted and reverse-subtracted cDNA probes were separately hybridized with the membranes slot-blotted by plasmid DNAs amplified and isolated from the library. Inserts in the positive clones were submitted to DNA sequencing. Nucleic acid sequence homology search was performed against the GenBank DNA database (non-redundant, and non-mouse and non-human EST entries) using the Standard nucleotide-nucleotide BLAST [blastn] program via a network connection to the National Center for Biotechnology information. The forward-subtracted cDNA library for differentially expressed genes in rat liver of PTS was successfully constructed. Two differentially expressed cDNA fragments were found after preliminary screening. The forward-subtracted cDNA library for differentially expressed genes in rat liver of PTS was successfully constructed in the present study.

  4. Moderate and severe perinatal asphyxia induces differential effects on cocaine sensitization in adult rats.

    Science.gov (United States)

    Galeano, Pablo; Romero, Juan Ignacio; Luque-Rojas, María Jesús; Suárez, Juan; Holubiec, Mariana Inés; Bisagno, Verónica; Santín, Luis Javier; De Fonseca, Fernando Rodríguez; Capani, Francisco; Blanco, Eduardo

    2013-09-01

    Perinatal asphyxia (PA) increases the likelihood of suffering from dopamine-related disorders, such as ADHD and schizophrenia. Since dopaminergic transmission plays a major role in cocaine sensitization, the purpose of this study was to determine whether PA could be associated with altered behavioral sensitization to cocaine. To this end, adult rats born vaginally (CTL), by caesarean section (C+), or by C+ with 15 min (PA15, moderate PA) or 19 min (PA19, severe PA) of global anoxia were repeatedly administered with cocaine (i.p., 15 mg/kg) and then challenged with cocaine (i.p., 15 mg/kg) after a 5-day withdrawal period. In addition, c-Fos, FosB/ΔFosB, DAT, and TH expression were assessed in dorsal (CPu) and ventral (NAcc) striatum. Results indicated that PA15 rats exhibited an increased locomotor sensitization to cocaine, while PA19 rats displayed an abnormal acquisition of locomotor sensitization and did not express a sensitized response to cocaine. c-Fos expression in NAcc, but not in CPu, was associated with these alterations in cocaine sensitization. FosB/ΔFosB expression was increased in all groups and regions after repeated cocaine administration, although it reached lower expression levels in PA19 rats. In CTL, C+, and PA15, but not in PA19 rats, the expression of TH in NAcc was reduced in groups repeatedly treated with cocaine, independently of the challenge test. Furthermore, this reduction was more pronounced in PA15 rats. DAT expression remained unaltered in all groups and regions studied. These results suggest that moderate PA may increase the vulnerability to drug abuse and in particular to cocaine addiction. Copyright © 2013 Wiley Periodicals, Inc.

  5. Differential effects of modafinil on memory in naïve and memory-impaired rats.

    Science.gov (United States)

    Garcia, Vanessa Athaíde; Souza de Freitas, Betânia; Busato, Stefano Boemler; D'avila Portal, Bernardo Chaves; Piazza, Francisco Correa; Schröder, Nadja

    2013-12-01

    Modafinil is a wake-promoting drug and has been approved for the treatment of excessive daytime sleepiness in narcolepsy and obstructive sleep apnea. Modafinil was shown to improve learning and memory in rodents, and to reverse memory deficits induced by sleep deprivation or stress. However, depending on the memory paradigm used, modafinil might also impair memory. We aimed to investigate the effects of modafinil on memory consolidation and retrieval for object recognition and inhibitory avoidance in naïve adult rats. We also investigated whether acute or chronic administration of modafinil would reverse memory deficits induced by iron overload, a model of memory impairment related to neurodegenerative disorders. Adult naïve rats received modafinil (0.0, 0.75, 7.5 or 75 mg/kg) either immediately after training or 1 h prior to testing in object recognition or inhibitory avoidance. Iron-treated rats received modafinil immediately after training in object recognition. In order to investigate the effects of chronic modafinil, iron-treated rats received daily injections of modafinil for 17 days, and 24 h later they were trained in object recognition or inhibitory avoidance. Acute modafinil does not affect memory consolidation or retrieval in naive rats. A single injection of modafinil at the highest dose was able to recover recognition memory in iron-treated rats. Chronic modafinil completely recovered iron-induced recognition memory and emotional memory deficits. Additional preclinical and clinical studies are necessary in order to support the applicability of modafinil in recovering memory impairment associated with neurodegenerative disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  6. Social instability stress differentially affects amygdalar neuron adaptations and memory performance in adolescent and adult rats

    Directory of Open Access Journals (Sweden)

    Sheng-Feng eTsai

    2014-02-01

    Full Text Available Adolescence is a time of developmental changes and reorganization in the brain. It has been hypothesized that stress has a greater neurological impact on adolescents than on adults. However, scientific evidence in support of this hypothesis is still limited. We treated adolescent (4-week-old and adult (8-week-old rats with social instability stress for five weeks and compared the subsequent structural and functional changes to amygdala neurons. In the stress-free control condition, the adolescent group showed higher fear-potentiated startle responses, larger dendritic arborization, more proximal dendritic spine distribution and lower levels of truncated TrkB than the adult rats. Social instability stress exerted opposite effects on fear-potentiated startle responses in these two groups, i.e., the stress period appeared to hamper the performance in adolescents but improved it in adult rats. Furthermore, whilst the chronic social stress applied to adolescent rats reduced their dendritic field and spine density in basal and lateral amygdala neurons, the opposite stress effects on neuron morphology were observed in the adult rats. Moreover, stress in adolescence suppressed the amygdala expression of synaptic proteins, i.e., full-length TrkB and SNAP-25, whereas, in the adult rats, chronic stress enhanced full-length and truncated TrkB expressions in the amygdala. In summary, chronic social instability stress hinders amygdala neuron development in the adolescent brain, while mature neurons in the amygdala are capable of adapting to the stress. The stress induced age-dependent effects on the fear-potentiated memory may occur by altering the BDNF-TrkB signaling and neuroplasticity in the amygdala.

  7. Effects of reinforcer magnitude on responding under differential-reinforcement-of-low-rate schedules of rats and pigeons.

    Science.gov (United States)

    Doughty, Adam H; Richards, Jerry B

    2002-07-01

    Experiment I investigated the effects of reinforcer magnitude on differential-reinforcement-of-low-rate (DRL) schedule performance in three phases. In Phase 1, two groups of rats (n = 6 and 5) responded under a DRI. 72-s schedule with reinforcer magnitudes of either 30 or 300 microl of water. After acquisition, the water amounts were reversed for each rat. In Phase 2, the effects of the same reinforcer magnitudes on DRL 18-s schedule performance were examined across conditions. In Phase 3, each rat responded unider a DR1. 18-s schedule in which the water amotnts alternated between 30 and 300 microl daily. Throughout each phase of Experiment 1, the larger reinforcer magnitude resulted in higher response rates and lower reinforcement rates. The peak of the interresponse-time distributions was at a lower value tinder the larger reinforcer magnitude. In Experiment 2, 3 pigeons responded under a DRL 20-s schedule in which reinforcer magnitude (1-s or 6-s access to grain) varied iron session to session. Higher response rates and lower reinforcement rates occurred tinder the longer hopper duration. These results demonstrate that larger reinforcer magnitudes engender less efficient DRL schedule performance in both rats and pigeons, and when reinforcer magnitude was held constant between sessions or was varied daily. The present results are consistent with previous research demonstrating a decrease in efficiency as a function of increased reinforcer magnituide tinder procedures that require a period of time without a specified response. These findings also support the claim that DRI. schedule performance is not governed solely by a timing process.

  8. Differential mesocorticolimbic responses to palatable food in binge eating prone and binge eating resistant female rats.

    Science.gov (United States)

    Sinclair, Elaine B; Culbert, Kristen M; Gradl, Dana R; Richardson, Kimberlei A; Klump, Kelly L; Sisk, Cheryl L

    2015-12-01

    Binge eating is a key symptom of many eating disorders (e.g. binge eating disorder, bulimia nervosa, anorexia nervosa binge/purge type), yet the neurobiological underpinnings of binge eating are poorly understood. The mesocorticolimbic reward circuit, including the nucleus accumbens and the medial prefrontal cortex, is likely involved because this circuit mediates the hedonic value and incentive salience of palatable foods (PF). Here we tested the hypothesis that higher propensity for binge eating is associated with a heightened response (i.e., Fos induction) of the nucleus accumbens and medial prefrontal cortex to PF, using an animal model that identifies binge eating prone (BEP) and binge eating resistant (BER) rats. Forty adult female Sprague-Dawley rats were given intermittent access to PF (high fat pellets) 3×/week for 3 weeks. Based on a pattern of either consistently high or consistently low PF consumption across these feeding tests, 8 rats met criteria for categorization as BEP, and 11 rats met criteria for categorization as BER. One week after the final feeding test, BEP and BER rats were either exposed to PF in their home cages or were given no PF in their home cages for 1h prior to perfusion, leading to three experimental groups for the Fos analysis: BEPs given PF, BERs given PF, and a No PF control group. The total number of Fos-immunoreactive (Fos-ir) cells in the nucleus accumbens core and shell, and the cingulate, prelimbic, and infralimbic regions of the medial prefrontal cortex was estimated by stereological analysis. PF induced higher Fos expression in the nucleus accumbens shell and core and in the prelimbic and infralimbic cortex of BEP rats compared to No PF controls. Throughout the nucleus accumbens and medial prefrontal cortex, PF induced higher Fos expression in BEP than in BER rats, even after adjusting for differences in PF intake. Differences in the neural activation pattern between BEP and BER rats were more robust in prefrontal cortex

  9. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  10. HuCNS-SC Human NSCs Fail to Differentiate, Form Ectopic Clusters, and Provide No Cognitive Benefits in a Transgenic Model of Alzheimer's Disease

    Directory of Open Access Journals (Sweden)

    Samuel E. Marsh

    2017-02-01

    Full Text Available Transplantation of neural stem cells (NSCs can improve cognition in animal models of Alzheimer's disease (AD. However, AD is a protracted disorder, and prior studies have examined only short-term effects. We therefore used an immune-deficient model of AD (Rag-5xfAD mice to examine long-term transplantation of human NSCs (StemCells Inc.; HuCNS-SCs. Five months after transplantation, HuCNS-SCs had engrafted and migrated throughout the hippocampus and exhibited no differences in survival or migration in response to β-amyloid pathology. Despite robust engraftment, HuCNS-SCs failed to terminally differentiate and over a quarter of the animals exhibited ectopic human cell clusters within the lateral ventricle. Unlike prior short-term experiments with research-grade HuCNS-SCs, we also found no evidence of improved cognition, no changes in brain-derived neurotrophic factor, and no increase in synaptic density. These data, while disappointing, reinforce the notion that individual human NSC lines need to be carefully assessed for efficacy and safety in appropriate long-term models.

  11. Differential gene expression from microarray analysis distinguishes woven and lamellar bone formation in the rat ulna following mechanical loading.

    Directory of Open Access Journals (Sweden)

    Jennifer A McKenzie

    Full Text Available Formation of woven and lamellar bone in the adult skeleton can be induced through mechanical loading. Although much is known about the morphological appearance and structural properties of the newly formed bone, the molecular responses to loading are still not well understood. The objective of our study was to use a microarray to distinguish the molecular responses between woven and lamellar bone formation induced through mechanical loading. Rat forelimb loading was completed in a single bout to induce the formation of woven bone (WBF loading or lamellar bone (LBF loading. A set of normal (non-loaded rats were used as controls. Microarrays were performed at three timepoints after loading: 1 hr, 1 day and 3 days. Confirmation of microarray results was done for a select group of genes using quantitative real-time PCR (qRT-PCR. The micorarray identified numerous genes and pathways that were differentially regulated for woven, but not lamellar bone formation. Few changes in gene expression were evident comparing lamellar bone formation to normal controls. A total of 395 genes were differentially expressed between formation of woven and lamellar bone 1 hr after loading, while 5883 and 5974 genes were differentially expressed on days 1 and 3, respectively. Results suggest that not only are the levels of expression different for each type of bone formation, but that distinct pathways are activated only for woven bone formation. A strong early inflammatory response preceded an increase in angiogenic and osteogenic gene expression for woven bone formation. Furthermore, at later timepoints there was evidence of bone resorption after WBF loading. In summary, the vast coverage of the microarray offers a comprehensive characterization of the early differences in expression between woven and lamellar bone formation.

  12. Analysis of gene expression changes in relation to toxicity and tumorigenesis in the livers of Big Blue transgenic rats fed comfrey (Symphytum officinale)

    OpenAIRE

    Mei Nan; Guo Lei; Zhang Lu; Shi Leming; Sun Yongming; Fung Chris; Moland Carrie L; Dial Stacey L; Fuscoe James C; Chen Tao

    2006-01-01

    Abstract Background Comfrey is consumed by humans as a vegetable and a tea, and has been used as an herbal medicine for more than 2000 years. Comfrey, however, is hepatotoxic in livestock and humans and carcinogenic in experimental animals. Our previous study suggested that comfrey induces liver tumors by a genotoxic mechanism and that the pyrrolizidine alkaloids in the plant are responsible for mutation induction and tumor initiation in rat liver. Results In this study, we identified comfrey...

  13. Mixed Effects Modeling Using Stochastic Differential Equations: Illustrated by Pharmacokinetic Data of Nicotinic Acid in Obese Zucker Rats.

    Science.gov (United States)

    Leander, Jacob; Almquist, Joachim; Ahlström, Christine; Gabrielsson, Johan; Jirstrand, Mats

    2015-05-01

    Inclusion of stochastic differential equations in mixed effects models provides means to quantify and distinguish three sources of variability in data. In addition to the two commonly encountered sources, measurement error and interindividual variability, we also consider uncertainty in the dynamical model itself. To this end, we extend the ordinary differential equation setting used in nonlinear mixed effects models to include stochastic differential equations. The approximate population likelihood is derived using the first-order conditional estimation with interaction method and extended Kalman filtering. To illustrate the application of the stochastic differential mixed effects model, two pharmacokinetic models are considered. First, we use a stochastic one-compartmental model with first-order input and nonlinear elimination to generate synthetic data in a simulated study. We show that by using the proposed method, the three sources of variability can be successfully separated. If the stochastic part is neglected, the parameter estimates become biased, and the measurement error variance is significantly overestimated. Second, we consider an extension to a stochastic pharmacokinetic model in a preclinical study of nicotinic acid kinetics in obese Zucker rats. The parameter estimates are compared between a deterministic and a stochastic NiAc disposition model, respectively. Discrepancies between model predictions and observations, previously described as measurement noise only, are now separated into a comparatively lower level of measurement noise and a significant uncertainty in model dynamics. These examples demonstrate that stochastic differential mixed effects models are useful tools for identifying incomplete or inaccurate model dynamics and for reducing potential bias in parameter estimates due to such model deficiencies.

  14. Differential expression of melanopsin mRNA and protein in the Brown Norwegian rats

    DEFF Research Database (Denmark)

    Hannibal, Jens; Georg, Birgitte; Fahrenkrug, Jan

    2012-01-01

    and negative masking behaviour. Previous studies have demonstrated that melanopsin expression in albino rats is regulated by light and darkness. The present study was undertaken to study the influence of light and darkness during the circadian day and after extended periods of constant light and darkness...

  15. Prefrontal Cortex and Neostriatum Self-Stimulation In the Rat : Differential Effects Produced by Apomorphine

    NARCIS (Netherlands)

    Mora, F.; Phillips, A.G.; Koolhaas, J.M.; Rolls, E.T.

    1976-01-01

    In a dose-response experiment, the effects of intraperitoneal injections of the dopamine receptor agonist, apomorphine (0.075, 0.15, 0.3, 0.6 and 1.2 mg/kg) were studied on self-stimulation elicited from electrodes implanted in the medial and sulcal prefrontal cortex and caudate-putamen in the rat.

  16. Differential changes in atrial natriuretic peptide and vasopressin receptor bindings in kidney of spontaneously hypertensive rat

    International Nuclear Information System (INIS)

    Ogura, T.; Mitsui, T.; Yamamoto, I.; Katayama, E.; Ota, Z.; Ogawa, N.

    1987-01-01

    To elucidate the role of atrial natriuretic peptide (ANP) and vasopressin (VP) in a hypertensive state, ANP and VP receptor bindings in spontaneously hypertensive rat (SHR) kidney were analyzed using the radiolabeled receptor assay (RRA) technique. Systolic blood pressure of SHR aged 12 weeks was statistically higher than that of age-matched Wistar Kyoto (WKY) rats. Maximum binding capacity (Bmax) of [ 125 I]-ANP binding to the SHR kidney membrane preparations was statistically lower than that of WKY rats, but dissociation constant (Kd) was not significantly different. On the other hand, Bmax of [ 3 H]-VP binding to the SHR kidney membrane preparations was statistically higher than that of WKY rats, but Kd were similar. Since the physiological action of ANP is natriuresis and VP is the most important antidiuretic hormone in mammalia, these opposite changes of ANP and VP receptor bindings in SHR kidney suggested that these peptides may play an important role in the pathophysiology of the hypertensive state, although it has not been confirmed as yet

  17. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown that...

  18. Prenatal diagnosis by isoenzymic differentiation of Treacher Collins' syndrome induced by retinoids in rats

    DEFF Research Database (Denmark)

    Granström, G; Kirkeby, S

    1990-01-01

    A series of branchial arch malformations was induced in 618 embryos from 72 pregnant rats by a single intraperitoneal injection of 10 mg/kg etretinate at 8.5 days of gestation. The litters developed several malformations, including microtia, low set and dorsally placed outer ears, defective middle...

  19. Differential gene expression in rat colon by dietary heme and calcium

    NARCIS (Netherlands)

    Meer - van Kraaij, van der C.; Kramer, E.H.M.; Jonker - Termont, D.; Katan, M.B.; Meer, van der R.; Keijzer, J.

    2005-01-01

    Dietary heme and calcium are alleged modulators of colon cancer risk. Little is known about the molecular and cellular changes in the colon epithelium that are induced by consumption of these unabsorbed nutrients. In this nutrigenomics study, we fed rats high- and low-calcium diets with or without

  20. Chronic stress and social housing differentially affect neurogenesis in male and female rats

    NARCIS (Netherlands)

    Westenbroek, Christel; Boer, Johan A. den; Veenhuis, Maarten; Horst, Gert J. ter

    2004-01-01

    Stress plays an important role in the development of affective disorders. Women show a higher prevalence for these disorders than men. The course of a depression is thought to be positively influenced by social support. We have used a chronic stress model in which rats received foot-shocks daily for

  1. Differential cardiac effects in rats exposed to atmospheric smog generated from isoprene versus toluene

    Science.gov (United States)

    The results of this study demonstrate that atmospheric smog generated from both isoprene and toluene cause cardiac effects in rats. In addition, it appears that smog from toluene is more toxic in terms of cardiac arrhythmogenicity. Smog, which is a comple...

  2. Feeding and temperature responses to intravenous leptin infusion are differential predictors of obesity in rats

    NARCIS (Netherlands)

    Ruffin, M.; Adage, T; Kuipers, F; Strubbe, J H; Scheurink, A J W; van Dijk, G; Ruffin, Marie-Pierre

    2004-01-01

    Obesity is frequently associated with leptin resistance. The present study investigated whether leptin resistance in rats is present before obesity develops, and thus could underlie obesity induced by 16 wk exposure to a liquid, palatable, high-energy diet (HED). Before HED exposure, male Wistar

  3. Dietary Whey and Casein Differentially Affect Energy Balance, Gut Hormones, Glucose Metabolism, and Taste Preference in Diet-Induced Obese Rats.

    Science.gov (United States)

    Pezeshki, Adel; Fahim, Andrew; Chelikani, Prasanth K

    2015-10-01

    -like peptide 1 concentrations were greater in WH than in CA or WHCA rats. The improvements in glucose tolerance were greater in WH than in WHCA rats. The plasma membrane glucose transporter 4 (GLUT4)-to-total GLUT4 ratio in skeletal muscle was greater in CA and WHCA rats than in CO rats; other markers of glucose and energy metabolism in the adipose and cardiac tissues did not differ. In Expt. 2, during 4 conditioning trials, daily food intake was decreased in WH, CA, and WHCA rats by 26-37%, 30-43%, and 23-33%, respectively, compared with CO rats. Preferences for WH and CA rats were 45% and 31% lower, respectively, than those for CO rats, but that for WHCA rats did not differ. Together, these data demonstrate that in obese rats, whey, casein, and their combination improve energy balance through differential effects on food intake, taste preference, energy expenditure, glucose tolerance, and gut hormone secretion. © 2015 American Society for Nutrition.

  4. Hypothyroidism and oxidative stress: differential effect on the heart of virgin and pregnant rats.

    Science.gov (United States)

    Carmona, Y V; Coria, M J; Oliveros, L B; Gimenez, M S

    2014-01-01

    The present study investigates the effects of hypothyroidism on both the redox state and the thyroid hormone receptors expression in the heart ventricle of virgin and pregnant rats.Hypothyroid state was induced by 6-n-propyl-2-thiouracil in drinking water given to Wistar rats starting 8 days before mating until day 21 of pregnancy or for 30 days in virgin rats. Serum paraoxonase-1 (PON-1) activity, serum and heart nitrites, and thiobarbituric acid-reactive substances (TBARS) were analyzed. Heart protein oxidation, as carbonyls, and copper-zinc superoxide dismutase (CuZnSOD), glutathione peroxidase (GPx), and catalase (CAT) activities, were determined. In addition, heart expressions of NADPH oxidase (NOX-2), CAT, SOD, GPx, and thyroid receptors (TRα and TRβ) mRNA were assessed by RT-PCR. Inducible and endothelial Nitric Oxide Synthase (iNOS and eNOS) were determined by Western blot. Hypothyroidism in the heart of virgin rats decreased TRα and TRβ expressions, and induced oxidative stress, leading to a decrease of nitrites and an increase of carbonyls, NOX-2 mRNA, and GPx activity. A decreased PON-1 activity suggested low protection against oxidative stress in blood circulation. Pregnancy reduced TRα and TRβ mRNA expressions and induced oxidative stress by increasing nitrite and TBARS levels, SOD and CAT activities and NOX-2, eNOS and iNOS expressions, while hypothyroidism, emphasized the decreases of TRα mRNA levels and did not alter the redox state in the heart. TR expressions and redox balance of rat hearts depend on the physiological state. Pregnancy per se seems to protect the heart against oxidative stress induced by hypothyroidism. Supporting Information for this article is available online at http://www.thieme-connect.de/ejournals/toc/hmr. © Georg Thieme Verlag KG Stuttgart · New York.

  5. Differential expression of CART in feeding and reward circuits in binge eating rat model.

    Science.gov (United States)

    Bharne, Ashish P; Borkar, Chandrashekhar D; Subhedar, Nishikant K; Kokare, Dadasaheb M

    2015-09-15

    Binge eating (BE) disrupts feeding and subverts reward mechanism. Since cocaine- and amphetamine-regulated transcript peptide (CART) mediates satiety as well as reward, its role in BE justifies investigation. To induce BE, rats were provided restricted access to high fat sweet palatable diet (HFSPD) for a period of 4 weeks. Immunoreactivity profile of the CART elements, and accompanying neuroplastic changes were studied in satiety- and reward-regulating brain nuclei. Further, we investigated the effects of CART, CART-antibody or rimonabant on the intake of normal chow or HFSPD. Rats fed on HFSPD showed development of BE-like phenotype as reflected by significant consumption of HFSPD in short time frame, suggestive of dysregulated satiety mechanisms. At the mid-point during BE, CART-immunoreactivity was significantly increased in hypothalamic arcuate (ARC), lateral (LH), nucleus accumbens shell (AcbSh) and paraventricular nucleus of thalamus (PVT). However, for next 22-h post-binge time-period, the animals showed no interest in food, and low CART expression. Pre-binge treatment with rimonabant, a drug recommended for the treatment of BE, produced anorexia, increased CART expression in ARC and LH, but not in AcbSh and PVT. Higher dose of CART was required to produce anorexia in binged rats. While neuronal tracing studies confirmed CART fiber connectivity from ARC and LH to AcbSh, increase in CART and synaptophysin immunostaining in this pathway in BE rats suggested strengthening of the CART connectivity. We conclude that CART bearing ARC-LH-PVT-AcbSh reward circuit may override the satiety signaling in ARC-PVN pathway in BE rats. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Characterization of differential cocaine metabolism in mouse and rat through metabolomics-guided metabolite profiling.

    Science.gov (United States)

    Yao, Dan; Shi, Xiaolei; Wang, Lei; Gosnell, Blake A; Chen, Chi

    2013-01-01

    Rodent animal models have been widely used for studying neurologic and toxicological events associated with cocaine abuse. It is known that the mouse is more susceptible to cocaine-induced hepatotoxicity (CIH) than the rat. However, the causes behind this species-dependent sensitivity to cocaine have not been elucidated. In this study, cocaine metabolism in the mouse and rat was characterized through LC-MS-based metabolomic analysis of urine samples and were further compared through calculating the relative abundance of individual cocaine metabolites. The results showed that the levels of benzoylecgonine, a major cocaine metabolite from ester hydrolysis, were comparable in the urine from the mice and rats treated with the same dose of cocaine. However, the levels of the cocaine metabolites from oxidative metabolism, such as N-hydroxybenzoylnorecgonine and hydroxybenzoylecgonine, differed dramatically between the two species, indicating species-dependent cocaine metabolism. Subsequent structural analysis through accurate mass analysis and LC-MS/MS fragmentation revealed that N-oxidation reactions, including N-demethylation and N-hydroxylation, are preferred metabolic routes in the mouse, while extensive aryl hydroxylation reactions occur in the rat. Through stable isotope tracing and in vitro enzyme reactions, a mouse-specific α-glucoside of N-hydroxybenzoylnorecgonine and a group of aryl hydroxy glucuronides high in the rat were identified and structurally elucidated. The differences in the in vivo oxidative metabolism of cocaine between the two rodent species were confirmed by the in vitro microsomal incubations. Chemical inhibition of P450 enzymes further revealed that different P450-mediated oxidative reactions in the ecgonine and benzoic acid moieties of cocaine contribute to the species-dependent biotransformation of cocaine.

  7. Neurotropin® Accelerates the Differentiation of Schwann Cells and Remyelination in a Rat Lysophosphatidylcholine-Induced Demyelination Model

    Directory of Open Access Journals (Sweden)

    Hozo Matsuoka

    2018-02-01

    Full Text Available Neurotropin® (NTP, a non-protein extract of inflamed rabbit skin inoculated with vaccinia virus, is clinically used for the treatment of neuropathic pain in Japan and China, although its effect on peripheral nerve regeneration remains to be elucidated. The purpose of this study was to investigate the effects of NTP on Schwann cells (SCs in vitro and in vivo, which play an important role in peripheral nerve regeneration. In SCs, NTP upregulated protein kinase B (AKT activity and Krox20 and downregulated extracellular signal-regulated kinase1/2 activity under both growth and differentiation conditions, enhanced the expression of myelin basic protein and protein zero under the differentiation condition. In a co-culture of dorsal root ganglion neurons and SCs, NTP accelerated myelination of SCs. To further investigate the influence of NTP on SCs in vivo, lysophosphatidylcholine was injected into the rat sciatic nerve, leading to the focal demyelination. After demyelination, NTP was administered systemically with an osmotic pump for one week. NTP improved the ratio of myelinated axons and motor, sensory, and electrophysiological function. These findings reveal novel effects of NTP on SCs differentiation in vitro and in vivo, and indicate NTP as a promising treatment option for peripheral nerve injuries and demyelinating diseases.

  8. MEF2C enhances dopaminergic neuron differentiation of human embryonic stem cells in a parkinsonian rat model.

    Directory of Open Access Journals (Sweden)

    Eun-Gyung Cho

    Full Text Available Human embryonic stem cells (hESCs can potentially differentiate into any cell type, including dopaminergic neurons to treat Parkinson's disease (PD, but hyperproliferation and tumor formation must be avoided. Accordingly, we use myocyte enhancer factor 2C (MEF2C as a neurogenic and anti-apoptotic transcription factor to generate neurons from hESC-derived neural stem/progenitor cells (NPCs, thus avoiding hyperproliferation. Here, we report that forced expression of constitutively active MEF2C (MEF2CA generates significantly greater numbers of neurons with dopaminergic properties in vitro. Conversely, RNAi knockdown of MEF2C in NPCs decreases neuronal differentiation and dendritic length. When we inject MEF2CA-programmed NPCs into 6-hydroxydopamine-lesioned parkinsonian rats in vivo, the transplanted cells survive well, differentiate into tyrosine hydroxylase-positive neurons, and improve behavioral deficits to a significantly greater degree than non-programmed cells. The enriched generation of dopaminergic neuronal lineages from hESCs by forced expression of MEF2CA in the proper context may prove valuable in cell-based therapy for CNS disorders such as PD.

  9. Omega-3 Polyunsaturated Fatty Acids Enhance Neuronal Differentiation in Cultured Rat Neural Stem Cells

    Directory of Open Access Journals (Sweden)

    Masanori Katakura

    2013-01-01

    Full Text Available Polyunsaturated fatty acids (PUFAs can induce neurogenesis and recovery from brain diseases. However, the exact mechanisms of the beneficial effects of PUFAs have not been conclusively described. We recently reported that docosahexaenoic acid (DHA induced neuronal differentiation by decreasing Hes1 expression and increasing p27kip1 expression, which causes cell cycle arrest in neural stem cells (NSCs. In the present study, we examined the effect of eicosapentaenoic acid (EPA and arachidonic acid (AA on differentiation, expression of basic helix-loop-helix transcription factors (Hes1, Hes6, and NeuroD, and the cell cycle of cultured NSCs. EPA also increased mRNA levels of Hes1, an inhibitor of neuronal differentiation, Hes6, an inhibitor of Hes1, NeuroD, and Map2 mRNA and Tuj-1-positive cells (a neuronal marker, indicating that EPA induced neuronal differentiation. EPA increased the mRNA levels of p21cip1 and p27kip1, a cyclin-dependent kinase inhibitor, which indicated that EPA induced cell cycle arrest. Treatment with AA decreased Hes1 mRNA but did not affect NeuroD and Map2 mRNA levels. Furthermore, AA did not affect the number of Tuj-1-positive cells or cell cycle progression. These results indicated that EPA could be involved in neuronal differentiation by mechanisms alternative to those of DHA, whereas AA did not affect neuronal differentiation in NSCs.

  10. Promoting effect of small molecules in cardiomyogenic and neurogenic differentiation of rat bone marrow-derived mesenchymal stem cells

    Directory of Open Access Journals (Sweden)

    Khanabdali R

    2015-12-01

    Full Text Available Ramin Khanabdali,1 Anbarieh Saadat,1 Maizatul Fazilah,1 Khairul Fidaa’ Khairul Bazli,1 Rida-e-Maria Qazi,2 Ramla Sana Khalid,2 Durriyyah Sharifah Hasan Adli,1 Soheil Zorofchian Moghadamtousi,1 Nadia Naeem,2 Irfan Khan,2 Asmat Salim,2 ShamsulAzlin Ahmad Shamsuddin,1 Gokula Mohan1 1Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur, Malaysia; 2Dr Panjwani Center for Molecular Medicine and Drug Research, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan Abstract: Small molecules, growth factors, and cytokines have been used to induce differentiation of stem cells into different lineages. Similarly, demethylating agents can trigger differentiation in adult stem cells. Here, we investigated the in vitro differentiation of rat bone marrow mesenchymal stem cells (MSCs into cardiomyocytes by a demethylating agent, zebularine, as well as neuronal-like cells by β-mercaptoethanol in a growth factor or cytokines-free media. Isolated bone marrow-derived MSCs cultured in Dulbecco’s Modified Eagle’s Medium exhibited a fibroblast-like morphology. These cells expressed positive markers for CD29, CD44, and CD117 and were negative for CD34 and CD45. After treatment with 1 µM zebularine for 24 hours, the MSCs formed myotube-like structures after 10 days in culture. Expression of cardiac-specific genes showed that treated MSCs expressed significantly higher levels of cardiac troponin-T, Nkx2.5, and GATA-4 compared with untreated cells. Immunocytochemical analysis showed that differentiated cells also expressed cardiac proteins, GATA-4, Nkx 2.5, and cardiac troponin-T. For neuronal differentiation, MSCs were treated with 1 and 10 mM β-mercaptoethanol overnight for 3 hours in complete and serum-free Dulbecco’s Modified Eagle’s Medium, respectively. Following overnight treatment, neuron-like cells with axonal and dendritic-like projections originating from the

  11. Differential regulation of renal prostaglandin receptor mRNAs by dietary salt intake in the rat

    DEFF Research Database (Denmark)

    Jensen, B L; Mann, Birgitte; Skøtt, O

    1999-01-01

    and cells by ribonuclease protection assay and reverse transcription-polymerase chain reaction analysis. Functional correlates were studied by measurement of PGE2-induced cAMP formation and renin secretion in juxtaglomerular (JG) cells isolated from animals on various salt intakes. RESULTS: EP1 and EP3......BACKGROUND: In this study, we tested the hypothesis that prostaglandin (PG) receptor expression in the rat kidney is subject to physiological regulation by dietary salt intake. METHODS: Rats were fed diets with 0.02 or 4% NaCl for two weeks. PG receptor expression was assayed in kidney regions...... did not affect the expression of EP1 or IP receptors, whereas EP4 transcripts in glomeruli were increased twofold by salt deprivation. Consistent with this, we found that PGE2-evoked cAMP production and renin secretion by JG cells from salt-deprived animals were significantly higher compared...

  12. Effects of an induced adenosine deaminase deficiency on T-cell differentiation in the rat

    International Nuclear Information System (INIS)

    Barton, R.W.

    1985-01-01

    Inherited deficiency of the enzyme adenosine deaminase (ADA) has been found in a significant proportion of patients with severe combined immunodeficiency disease and inherited defect generally characterized by a deficiency of both B and T cells. Two questions are central to understanding the pathophysiology of this disease: (1) at what stage or stages in lymphocyte development are the effects of the enzyme deficiency manifested; (2) what are the biochemical mechanisms responsible for the selective pathogenicity of the lymphoid system. We have examined the stage or stages of rat T-cell development in vivo which are affected by an induced adenosine deaminase deficiency using the ADA inhibitors, erythro-9-(2-hydroxy-3-nonyl)adenine (EHNA) and 2'-deoxycoformycin (DCF). In normal rats given daily administration of an ADA inhibitor, cortical thymocytes were markedly depleted; peripheral lymphocytes and pluripotent hemopoietic stem cells (CFU-S) all were relatively unaffected. Since a deficiency of ADA affects lymphocyte development, the regeneration of cortical and medullary thymocytes and their precursors after sublethal irradiation was used as a model of lymphoid development. By Day 5 after irradiation the thymus was reduced to 0.10-0.5% of its normal size; whereas at Days 9 and 14 the thymus was 20-40% and 60-80% regenerated, respectively. When irradiated rats were given daily parenteral injections of the ADA inhibitor plus adenosine or deoxyadenosine, thymus regeneration at Days 9 and 14 was markedly inhibited, whereas the regeneration of thymocyte precursors was essentially unaffected. Thymus regeneration was at least 40-fold lower than in rats given adenosine or deoxyadenosine alone. Virtually identical results were obtained with both ADA inhibitors, EHNA and DCF

  13. Differential Postnatal Expression of Neuronal Maturation Markers in the Dentate Gyrus of Mice and Rats

    Directory of Open Access Journals (Sweden)

    Tijana Radic

    2017-11-01

    Full Text Available The dentate gyrus (DG is a unique structure of the hippocampus that is distinguished by ongoing neurogenesis throughout the lifetime of an organism. The development of the DG, which begins during late gestation and continues during the postnatal period, comprises the structural formation of the DG as well as the establishment of the adult neurogenic niche in the subgranular zone (SGZ. We investigated the time course of postnatal maturation of the DG in male C57BL/6J mice and male Sprague-Dawley rats based on the distribution patterns of the immature neuronal marker doublecortin (DCX and a marker for mature neurons, calbindin (CB. Our findings demonstrate that the postnatal DG is marked by a substantial maturation with a high number of DCX-positive granule cells (GCs during the first two postnatal weeks followed by a progression toward more mature patterns and increasing numbers of CB-positive GCs within the subsequent 2 weeks. The most substantial shift in maturation of the GC population took place between P7 and P14 in both mice and rats, when young, immature DCX-positive GCs became confined to the innermost part of the GC layer (GCL, indicative of the formation of the SGZ. These results suggest that the first month of postnatal development represents an important transition phase during which DG neurogenesis and the maturation course of the GC population becomes analogous to the process of adult neurogenesis. Therefore, the postnatal DG could serve as an attractive model for studying a growing and functionally maturing neural network. Direct comparisons between mice and rats revealed that the transition from immature DCX-positive to mature CB-positive GCs occurs more rapidly in the rat by approximately 4–6 days. The remarkable species difference in the speed of maturation on the GC population level may have important implications for developmental and neurogenesis research in different rodent species and strains.

  14. Attribution and expression of incentive salience are differentially signaled by ultrasonic vocalizations in rats.

    Directory of Open Access Journals (Sweden)

    Juan C Brenes

    Full Text Available During Pavlovian incentive learning, the affective properties of rewards are thought to be transferred to their predicting cues. However, how rewards are represented emotionally in animals is widely unknown. This study sought to determine whether 50-kHz ultrasonic vocalizations (USVs in rats may signal such a state of incentive motivation to natural, nutritional rewards. To this end, rats learned to anticipate food rewards and, across experiments, the current physiological state (deprived vs. sated, the type of learning mechanism recruited (Pavlovian vs. instrumental, the hedonic properties of UCS (low vs. high palatable food, and the availability of food reward (continued vs. discontinued were manipulated. Overall, we found that reward-cues elicited 50-kHz calls as they were signaling a putative affective state indicative of incentive motivation in the rat. Attribution and expression of incentive salience, however, seemed not to be an unified process, and could be teased apart in two different ways: 1 under high motivational state (i.e., hunger, the attribution of incentive salience to cues occurred without being expressed at the USVs level, if reward expectations were higher than the outcome; 2 in all experiments when food rewards were devalued by satiation, reward cues were still able to elicit USVs and conditioned anticipatory activity although reward seeking and consumption were drastically weakened. Our results suggest that rats are capable of representing rewards emotionally beyond apparent, immediate physiological demands. These findings may have translational potential in uncovering mechanisms underlying aberrant and persistent motivation as observed in drug addiction, gambling, and eating disorders.

  15. Oxytocin Differentially Affects Sucrose Taking and Seeking in Male and Female Rats

    OpenAIRE

    Zhou, Luyi; Ghee, Shannon M.; See, Ronald E.; Reichel, Carmela M.

    2015-01-01

    Oxytocin has a modulatory role in natural and drug reward processes. While the role of oxytocin in pair bonding and reproduction has been extensively studied, sex differences in conditioned and unconditioned behavioral responses to oxytocin treatment have not been fully characterized. Here, we determined whether male and female rats would show similar dose response curves in response to acute oxytocin on measures of locomotor activity, sucrose seeking, and sucrose intake. Male and freely cycl...

  16. Differential effects of bisphenol A and diethylstilbestrol on human, rat and mouse fetal leydig cell function.

    Directory of Open Access Journals (Sweden)

    Thierry N'Tumba-Byn

    Full Text Available Endocrine disruptors (ED have been incriminated in the current increase of male reproductive alterations. Bisphenol A (BPA is a widely used weak estrogenic environmental ED and it is debated whether BPA concentrations within the average internal exposure are toxic. In the present study we investigated the effects of 10(-12 to 10(-5 M BPA concentrations on fetal Leydig cell function, as fetal life is a critical period of sensitivity to ED effects on male reproductive function. To this aim, fetal testes from human at 6.5-10.5 gestational weeks (GW or from rat and mouse at a comparable critical period of development (14.5 days post-coitum (dpc for rat and 12.5 dpc for mouse were explanted and cultured using our validated organotypic culture system in the presence or absence of BPA for 1-3 days. BPA concentrations as low as 10(-8 M reduced testosterone secretion by human testes from day 1 of culture onwards, but not by mouse and rat testes where concentrations equal to 10(-5 M BPA were required. Similarly, 10(-8 M BPA reduced INSL3 mRNA levels only in human cultured testes. On the contrary, 10(-5 and 10(-6 M diethylstilbestrol (DES, a classical estrogenic compound, affected testosterone secretion only in rat and mouse testis cultures, but not in human testis cultures. Lastly, contrarily to the DES effect, the negative effect of BPA on testosterone produced by the mouse fetal testis was maintained after invalidation of estrogen receptor α (ERα. In conclusion, these results evidenced i a deleterious effect of BPA on fetal Leydig cells function in human for concentrations from 10(-8 M upwards, ii species-specific differences raising concerns about extrapolation of data from rodent studies to human risk assessment, iii a specific signaling pathway for BPA which differs from the DES one and which does not involve ERα.

  17. Vanillin Differentially Affects Azoxymethane-Injected Rat Colon Carcinogenesis and Gene Expression

    Science.gov (United States)

    Ho, Ket Li; Chong, Pei Pei; Yazan, Latifah Saiful

    2012-01-01

    Abstract Vanillin is the substance responsible for the flavor and smell of vanilla, a widely used flavoring agent. Previous studies reported that vanillin is a good antimutagen and anticarcinogen. However, there are also some contradicting findings showing that vanillin was a comutagen and cocarcinogen. This study investigated whether vanillin is an anticarcinogen or a cocarcinogen in rats induced with azoxymethane (AOM). Rats induced with AOM will develop aberrant crypt foci (ACF). AOM-challenged rats were treated with vanillin orally and intraperitoneally at low and high concentrations and ACF density, multiplicity, and distribution were observed. The gene expression of 14 colorectal cancer-related genes was also studied. Results showed that vanillin consumed orally had no effect on ACF. However, high concentrations (300 mg/kg body weight) of vanillin administered through intraperitoneal injection could increase ACF density and ACF multiplicity. ACF were mainly found in the distal colon rather than in the mid-section and proximal colon. The expression of colorectal cancer biomarkers, protooncogenes, recombinational repair, mismatch repair, and cell cycle arrest, and tumor suppressor gene expression were also affected by vanillin. Vanillin was not cocarcinogenic when consumed orally. However, it was cocarcinogenic when being administered intraperitoneally at high concentration. Hence, the use of vanillin in food should be safe but might have cocarcinogenic potential when it is used in high concentration for therapeutic purposes. PMID:23216109

  18. Prenatal-choline supplementation differentially modulates timing of auditory and visual stimuli in aged rats.

    Science.gov (United States)

    Cheng, Ruey-Kuang; Scott, Allison C; Penney, Trevor B; Williams, Christina L; Meck, Warren H

    2008-10-27

    Choline supplementation of the maternal diet has a long-term facilitative effect on the interval-timing ability and temporal memory of the offspring. Here, we examined whether prenatal-choline supplementation has modality-specific effects on duration discrimination in aged (20 mo) male rats. Adult offspring of rats that were given sufficient choline in their chow (CON: 1.1 g/kg) or supplemental choline added to their drinking water (SUP: 3.5 g/kg) during embryonic days (ED) 12-17 were trained and tested on a two-modality (auditory and visual signals) duration bisection procedure (2 s vs. 8 s). Intensity (high vs. low) of the auditory and visual timing signals was systematically manipulated across test sessions such that all combinations of signal intensity by modality were tested. Psychometric response functions indicated that prenatal-choline supplementation systematically increased sensitivity to auditory signals relative to visual signals, thereby magnifying the modality effect that sounds are judged to be longer than lights of equivalent duration. In addition, sensitivity to signal duration was greater in rats given prenatal-choline supplementation, particularly at low intensities of both the auditory and visual signals. Overall, these results suggest that prenatal-choline supplementation impacts interval timing by enhancing the differences in temporal integration between auditory and visual stimuli in aged subjects.

  19. Pair housing differentially affects motivation to self-administer cocaine in male and female rats.

    Science.gov (United States)

    Westenbroek, Christel; Perry, Adam N; Becker, Jill B

    2013-09-01

    Female rats exhibit greater intake and motivation to self-administer cocaine. In females but not males, isolation by itself is a stressor, which could lead to increased drug intake. Therefore, we hypothesized that social housing would buffer against stress and reduce the motivation to self-administer cocaine primarily in females. Male and female Sprague-Dawley rats were housed individually or in same-sex pairs. The individually housed rats and one of each pair were allowed to self-administer (SA) a low dose of cocaine (0.2 mg/kg/inf) on a fixed ratio (FR1) schedule for one week. Motivation for cocaine SA was measured for an additional 2 weeks on a progressive ratio schedule. Isolated females had greater cocaine-intake on the FR1 schedule and greater motivation to take cocaine than males. Pair-housing in females, but not males, attenuated the motivation to take cocaine. Isolated females, but not males, showed escalation of their motivation to take cocaine, which was attenuated by pair housing of females. Concluding, the motivation to take cocaine escalates in females but not males, and pair-housing of females attenuates this escalation. Copyright © 2013 Elsevier B.V. All rights reserved.

  20. Differential expression of microRNA in the lungs of rats with pulmonary arterial hypertension.

    Science.gov (United States)

    Xiao, Tingting; Xie, Lijian; Huang, Min; Shen, Jie

    2017-02-01

    Pulmonary arterial hypertension (PAH) is a chronic disorder of the small pulmonary arteries, and the efficacy of the therapies and the prognosis remain poor. The pathobiology of PAH is complex, and needs to be elucidated by multiple approaches. The present study used a monocrotaline‑induced PAH rat model to perform a comprehensive microRNA (miRNA) microarray screening in the lungs and identified 16 downregulated miRNAs in the lungs from PAH rats. High‑enrichment gene ontology (GO) analysis identified several sets of genes, and established the miRNA‑mRNA network by outlining the interactions of miRNA and GO‑associated genes. Three downregulated miRNAs [miRNA 125‑3p (miR‑125‑3p), miR‑148‑3p and miR‑193] displayed the most marked regulatory function, and miR‑148‑3p and miR‑193 were observed to have the highest number of target mRNAs. Signaling pathway analysis demonstrated 26 signal transduction pathways, with MAPK, TGF‑β and cell cycle signaling as the most prominent. In addition, 342 genes were identified as the potential targets of these 16 miRNAs. Thus, a set of miRNAs in the lungs from rats with PAH and novel associations between biological events and PAH pathogenesis were identified, providing potential therapeutic targets for this disorder.

  1. Engraftment of mouse embryonic stem cells differentiated by default leads to neuroprotection, behaviour revival and astrogliosis in parkinsonian rats.

    Directory of Open Access Journals (Sweden)

    Debasmita Tripathy

    Full Text Available We report here protection against rotenone-induced behavioural dysfunction, striatal dopamine depletion and nigral neuronal loss, following intra-striatal transplantation of neurons differentiated from murine embryonic stem cells (mES. mES maintained in serum free medium exhibited increase in neuronal, and decrease in stem cell markers by 7th and 10th days as revealed by RT-PCR and immunoblot analyses. Tyrosine hydroxylase, NURR1, PITX3, LMX1b and c-RET mRNA showed a significant higher expression in differentiated cells than in mES. Dopamine level was increased by 3-fold on 10th day as compared to 7 days differentiated cells. Severity of rotenone-induced striatal dopamine loss was attenuated, and amphetamine-induced unilateral rotations were significantly reduced in animals transplanted with 7 days differentiated cells, but not in animals that received undifferentiated ES transplant. However, the ratio of contralateral to ipsilateral swings in elevated body swing test was significantly reduced in both the transplanted groups, as compared to control. Striatal grafts exhibited the presence of tyrosine hydroxylase positive cells, and the percentage of dopaminergic neurons in the substantia nigra was also found to be higher in the ipsilateral side of 7 days and mES grafted animals. Increased expression of CD11b and IBA-1, suggested a significant contribution of these microglia-derived factors in controlling the limited survival of the grafted cells. Astrocytosis in the grafted striatum, and significant increase in the levels of glial cell line derived neurotrophic factor may have contributed to the recovery observed in the hemiparkinsonian rats following transplantation.

  2. Relationship between impulsivity, hyperactivity and working memory: a differential analysis in the rat

    Directory of Open Access Journals (Sweden)

    Dellu-Hagedorn Françoise

    2006-03-01

    Full Text Available Abstract Background Impulsivity is a behavioural trait that comprises several distinct processes. It is a key feature of many psychopathologies such as mania, addictive disorders or attention deficit-hyperactivity disorders. To date, the aspects of impulsiveness involved in these pathologies have not yet been explicitly defined. In these disorders, sensation or drug seeking and cognitive deficits are closely related, but the nature of these relationships remains largely unknown. A new animal model of impulsiveness based on spontaneous inter-individual differences is proposed here to help clarify the relationship between characteristic aspects of impulsive-related pathologies. Methods Rats were divided into sub-groups according to their scores in three operant tasks with varying degrees of behavioural inhibition, timing and motor vs. cognitive impulsivity demands. These tasks included a fixed consecutive number schedule (ability to complete an action to receive a reinforcer, a multiple fixed-interval/extinction schedule of reinforcement (high level of responding, and a delayed reward task (delay discounting. In addition, measurements of locomotor responses to novelty and to amphetamine in a circular corridor, and working memory in an 8-arm radial maze were obtained. Results Substantial behavioural inter-individual differences were observed in each task, whereas few inter-task relationships were found. Impulsive rats, as defined in a task requiring inhibition of premature responses, presented a higher increase in amphetamine-induced locomotion. Reduced working memory performance was only observed in hyperactive rats in an extinction schedule. Conclusion This novel approach shows that distinct aspects of impulsiveness and hyperactivity can be expressed based on large inter-individual differences that vary from poorly to highly adapted behaviours ones in a normal population of rats. Inhibitory deficit was related to a higher response to

  3. Growth factor transgenes interactively regulate articular chondrocytes.

    Science.gov (United States)

    Shi, Shuiliang; Mercer, Scott; Eckert, George J; Trippel, Stephen B

    2013-04-01

    Adult articular chondrocytes lack an effective repair response to correct damage from injury or osteoarthritis. Polypeptide growth factors that stimulate articular chondrocyte proliferation and cartilage matrix synthesis may augment this response. Gene transfer is a promising approach to delivering such factors. Multiple growth factor genes regulate these cell functions, but multiple growth factor gene transfer remains unexplored. We tested the hypothesis that multiple growth factor gene transfer selectively modulates articular chondrocyte proliferation and matrix synthesis. We tested the hypothesis by delivering combinations of the transgenes encoding insulin-like growth factor I (IGF-I), fibroblast growth factor-2 (FGF-2), transforming growth factor beta1 (TGF-β1), bone morphogenetic protein-2 (BMP-2), and bone morphogenetic protien-7 (BMP-7) to articular chondrocytes and measured changes in the production of DNA, glycosaminoglycan, and collagen. The transgenes differentially regulated all these chondrocyte activities. In concert, the transgenes interacted to generate widely divergent responses from the cells. These interactions ranged from inhibitory to synergistic. The transgene pair encoding IGF-I and FGF-2 maximized cell proliferation. The three-transgene group encoding IGF-I, BMP-2, and BMP-7 maximized matrix production and also optimized the balance between cell proliferation and matrix production. These data demonstrate an approach to articular chondrocyte regulation that may be tailored to stimulate specific cell functions, and suggest that certain growth factor gene combinations have potential value for cell-based articular cartilage repair. Copyright © 2012 Wiley Periodicals, Inc.

  4. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles

    Directory of Open Access Journals (Sweden)

    Xiaoxia Gao

    2018-01-01

    Full Text Available The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS (with depression and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  5. Deciphering the Differential Effective and Toxic Responses of Bupleuri Radix following the Induction of Chronic Unpredictable Mild Stress and in Healthy Rats Based on Serum Metabolic Profiles.

    Science.gov (United States)

    Gao, Xiaoxia; Liang, Meili; Fang, Yuan; Zhao, Fang; Tian, Junsheng; Zhang, Xiang; Qin, Xuemei

    2017-01-01

    The petroleum ether fraction of Bupleuri Radix which is contained in the traditional Chinese medicine prescription of Xiaoyaosan (XYS) may have a therapeutic effect in depressed subjects based on the results of our previous study. It has been reported that Bupleuri Radix can cause liver toxicity following overdosing or long-term use. Therefore, this study aimed to decipher the differential effective and toxic responses of Bupleuri Radix in chronic unpredictable mild stress (CUMS) (with depression) and healthy rats based on serum metabolic profiles. Serum metabolic profiles were obtained using the UHPLC- Q Exactive Orbitrap-MS technique. Our results demonstrated that the petroleum ether fraction of Bupleuri Radix (PBR) produces an antidepressant effect through regulating glycometabolism, amino acid metabolism, sphingolipid metabolism, glycerophospholipid metabolism, and fatty acid metabolism. It also induces more severe toxic reactions in the liver or kidney in healthy rats than in CUMS rats, which exhibited a comparatively mild drug-induced toxic reaction. The altered lysine degradation, sphingolipid metabolism, glycerophospholipid metabolism, fatty acid metabolism, and bile acid metabolism could be at least partly responsible for the PBR toxic responses in healthy rats. The differential effective and toxic response of PBR in CUMS rats and healthy rats provide a new standard for the more rational and safer application of clinical drugs in the future.

  6. Differential effect of adrenocorticosteroids on 11 beta-hydroxysteroid dehydrogenase bioactivity at the anterior pituitary and hypothalamus in rats.

    Science.gov (United States)

    Idrus, R B; Mohamad, N B; Morat, P B; Saim, A; Abdul Kadir, K B

    1996-08-01

    11 beta-Hydroxysteroid dehydrogenase (11 beta-OHSD) is a microsomal enzyme that catalyzes the dehydrogenation of cortisol (F) to cortisone (E) in man and corticosterone (B) to 11-dehydrocorticosterone (A) in rats. 11 beta-OHSD has been identified in a wide variety of tissues. The differential distribution of 11 beta-OHSD suggests that this enzyme has locally defined functions that vary from region to region. The aim of this study was to investigate the effects of the glucocorticoids B and dexamethasone (DM), the mineralocorticoid deoxycorticosterone (DOC), and the inhibitors of 11 beta-OHSD glycyrrhizic acid (Gl) and glycyrrhetinic acid (GE) on 11 beta-OHSD bioactivity at the hypothalamus (HT) and anterior pituitary (AP). Male Wistar rats were treated with GI or were adrenalectomized (ADX) and treated with either B, DM, or DOC for 7 days. All treatments were in vivo except GE, which was used in vitro. At the end of treatment, homogenates of HT and AP were assayed for 11 beta-OHSD bioactivity, expressed as the percentage conversion of B to A in the presence of NADP, 11 beta-OHSD bioactivity is significantly higher (P < 0.0001) in the AP compared with the HT. Adrenalectomy significantly increased the enzyme activity in the AP (P < 0.05), an effect reversed by B or DM. ADX rats treated with DOC showed decreased enzyme activity in the AP (P < 0.001) but increased the activity in the HT (P < 0.0001). Gl increased activity in both HT and AP, whereas GE decreased activity significantly. We conclude that the modulation of 11 beta-OHSD is both steroid specific and tissue specific.

  7. Effect of /sup 60/Co. gamma. radiation on the stem and differentiating spermatogonia of the postpuberal rat

    Energy Technology Data Exchange (ETDEWEB)

    Erickson, B.H.

    1976-12-01

    Previous descriptions of the radioresponse of rodent spermatogonia have relied on schemes of spermatogonial proliferation and differentiation that were either incomplete or inaccurate. This study was undertaken, therefore, to interpret the radioresponse of rat spermatogonia after a currently accepted pattern for their renewal and evolution. Rats were irradiated with /sup 60/Co ..gamma.. radiation at doses varying from 12 to 600 rad at 30 rad/min. Tubules were isolated from Zenker-fixed testes and evaluated according to the method of Huckins (Anat. Rec. 169, 533 (1971)). Stem spermatogonial number was little affected by doses up to 200 rad, and the dose-response curve for this criterion yielded a D/sub 0/ of 373 +- 37 rad and an extrapolation number (n) of 2.1 +- 0.3. Stem-cell mitosis, as reflected by counts of type A/sub 1/ spermatogonia, was, however, substantially affected by a dose of 12 rad and was characterized by a D/sub 0/ of 148 +- 8 rad and an n of 0.5 +- 0.1. The dose required to produce a measurable effect increased as the spermatogonium attained higher states of differentiation. D/sub 0/ and n varied from 139 +- 24 rad and 1.2 +- 0.9, respectively, for type A/sub 1/ to 215 +- 14 rad and 2 +- 0.4 for type A/sub 4/. Due to the extreme lability of its mitosis, the stem spermatogonium appeared to be the weakest link in the chain leading to the spermatozoon.

  8. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence

    Directory of Open Access Journals (Sweden)

    M Lehnert

    2009-08-01

    Full Text Available Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL is comprised only of two fiber types after birth, type slow-oxidative (SO and type SDH-intermediate (SDHINT, the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing crosssectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05. At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05. These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  9. The histochemical profile of the rat extensor digitorum longus muscle differentiates after birth and dedifferentiates in senescence.

    Science.gov (United States)

    Lehnert, M; Laurer, H; Maier, B; Frank, J; Marzi, I; Steudel, W-I; Mautes, A

    2007-01-01

    Age dependent motor unit dedifferentiation is a key component of impaired muscle function in advanced age. Here, we tested the hypothesis that rat muscle histochemical profile during the lifespan of an individual has an age-specific pattern since comprehensive longitudinal studies of muscle differentiation after birth and dedifferentiation in advanced age are scarce. Our results show that extensor digitorum longus muscle (EDL) is comprised only of two fiber types after birth, type slow-oxidative (SO) and type SDH-intermediate (SDH-INT), the latter being indicative for the presence of polyneuronal innervation. In contrast to the constantly growing cross-sectional area of the muscle fibers, a dramatic decrease in SDH-INT proportion occurs between day 14 and 21 after birth resulting in a complete loss of fiber type SDH-INT at the age of 90 days (p<0.05). At the age of 270 days, the fiber type composition of rat EDL dedifferentiates as shown by the reappearance of the SDH-INT type with a further increase at the age of 540 days (p<0.05). These changes in histochemical fiber type spectra are brought about by fiber type conversion within the fast twich fibers. The findings of the present study provide further evidence that fiber type conversion is a basic mechanism leading to motor unit differentiation and dedifferentiation during ontogenesis. Fiber type conversion shows a distinct time specific pattern and is also characteristic for motor unit regeneration after peripheral nerve repair. Factors that influence fiber type conversion and thereby motor unit organization may provide a future therapeutic option to enhance the regenerative capacity of motor units.

  10. Tail-pinch stress and REM sleep deprivation differentially affect sensorimotor gating function in modafinil-treated rats.

    Science.gov (United States)

    Liu, Yia-Ping; Tung, Che-Se; Chuang, Chia-Hsin; Lo, Shih-Mao; Ku, Yu-Chi

    2011-05-16

    Prepulse inhibition (PPI) is a phenomenon in which a mild stimulus attenuates a cross-modality startle response to later intense stimulation. PPI is thought to index the central inhibitory mechanism through which behavioural responses are filtered. The present study compared the effects of two stress paradigms on the acoustic startle response (ASR) and on PPI in a rat model. The tail-pinch (TP) method produces an acute and immediate stressful condition, whereas rapid eye movement (REM) sleep deprivation (REMSD) leads to a more persistent and long-term stress. Our results demonstrated that in rats, TP stress reduced the size of the ASR, and REMSD impaired PPI. The wake-promoting agent modafinil (MOD) had no effect on PPI if given alone. However, MOD reduced the ASR and PPI under TP stress, whereas only PPI was reduced by MOD after 96 h of REMSD. These results suggest that distinct stress paradigms differentially mediated sensorimotor gating abilities in terms of either responsiveness to the stimulus or information-filtering capabilities. Copyright © 2010 Elsevier B.V. All rights reserved.

  11. Resveratrol exhibits differential protective effects on fast- and slow-twitch muscles in streptozotocin-induced diabetic rats.

    Science.gov (United States)

    Chang, Chih-Chun; Yang, Meng-Hsuan; Tung, Hung-Chun; Chang, Chieh-Yu; Tsai, Yu-Lin; Huang, Jiung-Pang; Yen, Tzung-Hai; Hung, Li-Man

    2014-01-01

    This study aimed to investigate the differential protective effect of resveratrol (RSV) on oxidative stress and metabolic signaling pathways in fast- and slow-twitch skeletal muscles of rats with diabetes. Diabetic rats were induced by streptozotocin (STZ) for 2 weeks and then administered with RSV (1, 10 and 100 μg/kg per day) for 1 week. We determined oxidative stress and protein expression by lucigenin-mediated chemiluminescence and Western immunoblot. The superoxide anion production and copper-zinc superoxide dismutase (CuZnSOD) protein level were increased in fast-twitch muscle than in slow-twitch muscle of diabetes. The Akt and glycogen synthase kinase 3 (GSK-3) phosphorylations were reduced in both fast- and slow-twitch muscles of diabetes. Oxidative stress and GSK-3 dephosphorylation were corrected by RSV treatment in both fast- and slow-twitch muscles of diabetes. Furthermore, RSV treatment downregulated CuZnSOD protein level in diabetic fast-twitch muscle. In diabetic slow-twitch muscle, RSV treatment elevated manganese SOD (MnSOD) and phosphorylated Akt protein levels and reduced acetyl-CoA carboxylase (ACC) phosphorylation. Our results suggested that fast-twitch muscle incurred more oxidative stress, whereas slow-twitch muscle altered metabolic signaling molecules activities under diabetic status. The antidiabetic effect of RSV on fast- and slow-twitch skeletal muscles was mediated by different antioxidative and metabolic signals. © 2013 Ruijin Hospital, Shanghai Jiaotong University School of Medicine and Wiley Publishing Asia Pty Ltd.

  12. Differential role of TNF-alpha and IFN-gamma in the brain of rats with chronic relapsing autoimmune encephalomyelitis.

    Science.gov (United States)

    Tanuma, N; Shin, T; Kogure, K; Matsumoto, Y

    1999-04-01

    To elucidate the mechanisms of relapses of the clinical signs in experimental autoimmune encephalomyelitis (EAE), the cytokine profile of chronic relapsing EAE (CR-EAE) in rats was determined by competitive polymerase chain reaction (PCR). By immunization with guinea pig spinal cord homogenate and treatment with low-dose cyclosporin A (CsA), rats developed two attacks of EAE with remission in between. Cytokine analysis revealed that the level of TNF-alpha mRNA increased at the first and second attacks with transient disappearance at the remission phase. In contrast, the level of IFN-gamma mRNA was suppressed at the first attack by CsA and peaked at the second attack. Intraventricular administration of IFN-gamma prior to onset of disease signs induced more relapses, or a severe lethal form. In addition, the intraventricular injection of TNF-alpha caused the persistence of the clinical signs. These findings suggest that TNF-alpha contributes to the first and second attacks of CR-EAE, while IFN-gamma is not required for the first attack but is closely related to the relapse of the disease. With regard to anti-inflammatory cytokines, the levels of both TGF-beta1 and IL-10 mRNA at the second attack were higher than those at the first attack. Taken together, differential involvement of TNF-alpha and IFN-gamma is closely associated with the clinical features of CR-EAE.

  13. Primary Screening for Proteins Differentially Expressed in the Myocardium of a Rat Model of Acute Methamphetamine Intoxication

    Directory of Open Access Journals (Sweden)

    Guoqiang Qu

    2016-01-01

    Full Text Available The mechanism of myocardial injury induced by the cardiovascular toxicity of methamphetamine (MA has been shown to depend on alterations in myocardial proteins caused by MA. Primary screening of the expression of myocardial proteins in a rat model of MA intoxication was achieved by combining two-dimensional electrophoresis and mass spectrometry analyses, which revealed a total of 100 differentially expressed proteins. Of these, 13 displayed significantly altered expression. Moreover, Western blotting and real-time reverse transcription quantitative polymerase chain reaction analyses of several relative proteins demonstrated that acute MA intoxication lowers protein expression and mRNA transcription of aldehyde dehydrogenase-2 and NADH dehydrogenase (ubiquinone 1 alpha subcomplex subunit 10. In contrast, MA intoxication elevated the protein expression and mRNA transcription of heat shock protein family B (small member 1. By combining behavioral assessments of experimental rat models with the histological and pathological changes evident in cardiomyocytes, a mechanism accounting for MA myocardial toxicity was suggested. MA alters the regulation of gene transcription and the subsequent expression of certain proteins that participate in myocardial respiration and in responding to oxidative stress, resulting in myocardial dysfunction and structural changes that affect the functioning of the cardiovascular system.

  14. Differential uptake of FDG and DG during post-ischaemic reperfusion in the isolated, perfused rat heart

    Energy Technology Data Exchange (ETDEWEB)

    Garlick, P.B.; Medina, R.A.; Southworth, R.; Marsden, P.K. [Department of Radiological Sciences, Guy' s, King' s and St. Thomas' School of Medicine, London (United Kingdom)

    1999-10-01

    Fluorine-18 2-fluoro-2-deoxyglucose (FDG) and 2-deoxyglucose (DG) are widely used as tracers of glucose uptake in the myocardium. Although there is agreement that the two analogues behave similarly to glucose under control conditions, there is growing evidence that some interventions (e.g. insulin stimulation or ischaemia/reperfusion) cause differential changes in their behaviour. The addition of a two-surface coil nuclear magnetic resonance (NMR) probe and a dual-perfusion cannula to our recently developed PET and NMR dual-acquisition (PANDA) system allows us to collect PET (FDG) images and phosphorus-31 NMR (2-deoxyglucose-6-phosphate) spectra simultaneously from each independently perfused coronary bed of the heart. We have used this technique to study the effect of regional ischaemia/reperfusion on FDG and DG uptake in the isolated, perfused rat heart. During control perfusion, FDG uptake was almost identical in both coronary beds. When one coronary bed was made ischaemic, FDG uptake ceased on that side but continued on the control side. Reperfusion failed to restore FDG uptake. In contrast, NMR spectra showed that, during reperfusion, the uptake and phosphorylation of DG did not differ between the two coronary beds. The results thus demonstrate that regional myocardial ischaemia/reperfusion has different effects on the uptake of FDG and DG in the isolated, perfused rat heart. (orig.)

  15. Differential effects of calorie restriction and involuntary wheel running on body composition and bone structure in diet-induced obese rats

    Science.gov (United States)

    Weight reduction is recommended to reduce obesity-related health disorders. This study investigated the differential effects of weight reduction through caloric restriction and/or physical activity on bone structure and molecular characteristics of bone metabolism in an obese rat model. We tested th...

  16. Transgene mus som sygdomsmodeller

    DEFF Research Database (Denmark)

    Schuster, Mikkel Bruhn; Porse, Bo Torben

    2003-01-01

    Transgenic animal models have proven to be useful tools in understanding both basic biology and the events associated with disease. Recent technical advances in the area of genomic manipulation in combination with the availability of the human and murine genomic sequences now allow the precise...... tailoring of the mouse genome. In this review we describe a few systems in which transgenic animal models have been employed for the purpose of studying the etiology of human diseases. Udgivelsesdato: 2003-Feb-17...

  17. Weeding with transgenes.

    Science.gov (United States)

    Duke, Stephen O

    2003-05-01

    Transgenes promise to reduce insecticide and fungicide use but relatively little has been done to significantly reduce herbicide use through genetic engineering. Recently, three strategies for transgene utilization have been developed that have the potential to change this. These are the improvement of weed-specific biocontrol agents, enhancement of crop competition or allelopathic traits, and production of cover crops that will self-destruct near the time of planting. Failsafe risk mitigation technologies are needed for most of these strategies.

  18. THE TRIAL OF TRANSGENICS

    Directory of Open Access Journals (Sweden)

    Antonio f. Díaz García

    2015-04-01

    Full Text Available This paper discloses the uncertainty with which transgenic uses are authorized.  It provides a list of reasons showing that there is no absolute proof of the benefits of transgenic use.  Moreover it discusses the need to provide more credibility to safety studies and reports on results of various tests of GMOs.  Finally it proposes the establishment of higher penalties for specialists that omit relevant information in their studies and reports on this matter.

  19. Differential effects of psychomotor stimulants on attentional performance in rats: nicotine, amphetamine, caffeine and methylphenidate.

    Science.gov (United States)

    Bizarro, L; Patel, S; Murtagh, C; Stolerman, I P

    2004-05-01

    Nicotine can improve attentional performance in the rat as assessed by a modified five-choice serial reaction time task (5-CSRTT), but it is not known if the effect is shared with other psychomotor stimulants. This study compared the effects of nicotine, amphetamine, caffeine and methylphenidate on performance in the 5-CSRTT and determined whether presenting stimuli at unpredictable times by using variable inter-trial intervals (ITI) influenced the sensitivity of the task to the drugs. One group of male hooded rats was trained to obtain food reinforcers by nose-poking in response to 1 s light stimuli presented randomly in one of five apertures, with fixed ITI; for a second group of rats, ITI varied randomly (n=12 per group). As observed previously, nicotine (tested in doses of 0.05-0.2 mg/kg) produced dose-related improvements in accuracy, reduced omission errors and response latencies, but increased anticipatory responding. Amphetamine (0.1-0.8 mg/kg) and methylphenidate (2.5-10 mg/kg) increased accuracy and reduced response latency, and decreased anticipatory responding. Caffeine (2.5-20 mg/kg) did not improve performance except at a small dose that decreased omission errors only. Training at different levels of stimulus predictability influenced performance in the undrugged state but had little impact on profiles of responses to the drugs. The findings with methylphenidate support the potential value of the 5-CSRTT for testing drugs that may be useful in the treatment of attention deficit hyperactivity disorder.

  20. Neurotensin releases norepinephrine differentially from perfused hypothalamus of sated and fasted rat

    International Nuclear Information System (INIS)

    Lee, T.F.; Rezvani, A.H.; Hepler, J.R.; Myers, R.D.

    1987-01-01

    The central injection of neurotensin (NT) has been reported to attenuate the intake of food in the fasted animal. To determine whether endogenous norepinephrine (NE) is involved in the satiating effect of NT, the in vivo activity of NE in circumscribed sites in the hypothalamus of the unanesthetized rat was examined. Bilateral guide tubes for push-pull perfusion were implanted stereotaxically to rest permanently above one of several intended sites of perfusion, which included the paraventricular nucleus (PVN), ventromedial nucleus (VMN), and the lateral hypothalamic (LH) area. After endogenous stores of NE at a specific hypothalamic locus were radiolabeled by microinjection of 0.02-0.5 μCi of [ 3 H]NE, an artificial cerebrospinal fluid was perfused at the site at a rate of 20 μl/min over successive intervals of 5.0 min. When 0.05 or 0.1 μg/μl NT was added to the perfusate, the peptide served either to enhance or educe the local release of NE at 50% of the sites of perfusion. In these experiments, the circumscribed effect of NT on the characteristics of catecholamine efflux depended entirely on the state of hunger or satiety of the rat. That is, when NT was perfused in the fully satiated rat, NE release was augmented within the PVn or VMN; conversely, NE release was inhibited in the LH. in the animal fasted for 18-22 h, NT exerted an opposite effect on the activity of NE within the same anatomical loci in that the efflux of NE was enhanced in the LH but attenuated or unaffected in the PVN or VMN. Taken together, these observations provide experimental support for the view-point that NT could act as a neuromodulator of the activity of hypothalamic noradrenergic neurons that are thought to play a functional role in the regulation of food intake

  1. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Richardson, Jason R. [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States); Heck, Diane E. [Environmental Science, School of Health Sciences and Practice, New York Medical College, Valhalla, NY (United States); Laskin, Debra L. [Pharmacology and Toxicology, Rutgers University-Ernest Mario School of Pharmacy, Piscataway, NJ (United States); Laskin, Jeffrey D., E-mail: jlaskin@eohsi.rutgers.edu [Environmental and Occupational Medicine, Rutgers University-Robert Wood Johnson Medical School, Piscataway, NJ (United States)

    2014-08-15

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage.

  2. Differential metabolism of 4-hydroxynonenal in liver, lung and brain of mice and rats

    International Nuclear Information System (INIS)

    Zheng, Ruijin; Dragomir, Ana-Cristina; Mishin, Vladimir; Richardson, Jason R.; Heck, Diane E.; Laskin, Debra L.; Laskin, Jeffrey D.

    2014-01-01

    The lipid peroxidation end-product 4-hydroxynonenal (4-HNE) is generated in tissues during oxidative stress. As a reactive aldehyde, it forms Michael adducts with nucleophiles, a process that disrupts cellular functioning. Liver, lung and brain are highly sensitive to xenobiotic-induced oxidative stress and readily generate 4-HNE. In the present studies, we compared 4-HNE metabolism in these tissues, a process that protects against tissue injury. 4-HNE was degraded slowly in total homogenates and S9 fractions of mouse liver, lung and brain. In liver, but not lung or brain, NAD(P)+ and NAD(P)H markedly stimulated 4-HNE metabolism. Similar results were observed in rat S9 fractions from these tissues. In liver, lung and brain S9 fractions, 4-HNE formed protein adducts. When NADH was used to stimulate 4-HNE metabolism, the formation of protein adducts was suppressed in liver, but not lung or brain. In both mouse and rat tissues, 4-HNE was also metabolized by glutathione S-transferases. The greatest activity was noted in livers of mice and in lungs of rats; relatively low glutathione S-transferase activity was detected in brain. In mouse hepatocytes, 4-HNE was rapidly taken up and metabolized. Simultaneously, 4-HNE-protein adducts were formed, suggesting that 4-HNE metabolism in intact cells does not prevent protein modifications. These data demonstrate that, in contrast to liver, lung and brain have a limited capacity to metabolize 4-HNE. The persistence of 4-HNE in these tissues may increase the likelihood of tissue injury during oxidative stress. - Highlights: • Lipid peroxidation generates 4-hydroxynonenal, a highly reactive aldehyde. • Rodent liver, but not lung or brain, is efficient in degrading 4-hydroxynonenal. • 4-hydroxynonenal persists in tissues with low metabolism, causing tissue damage

  3. Differential inhibition of ketogenesis by malonyl-CoA in mitochondria from fed and starved rats.

    Science.gov (United States)

    Cook, G A; Otto, D A; Cornell, N W

    1980-01-01

    Rates of ketogenesis in mitochondria from fed or starved rats were identical at optimal substrate concentrations, but responded differently to inhibition by malonyl-CoA. Kinetic data suggest that the K1 for malonyl-CoA is greater in the starved animal. These results indicate that, for the regulation of ketogenesis in the starved state, the lower sensitivity of carnitine palmitoyltransferase to inhibition by malonyl-CoA may be more important than the concentration of malonyl-CoA. PMID:7236248

  4. Differential effects of B7-1 blockade in the rat experimental autoimmune encephalomyelitis model

    DEFF Research Database (Denmark)

    Gallon, L; Chandraker, A; Issazadeh-Navikas, Shohreh

    1997-01-01

    Blocking the CD28-B7 T cell costimulatory activation pathway protects animals from developing experimental autoimmune encephalomyelitis (EAE). In the mouse EAE model, selective blockade of B7-1 by specific mAbs has been shown to protect animals from EAE. In the Lewis rat model, we have shown...... and either CTLA4Ig or CTLA4IgY100F protected recipients from disease. In vitro studies confirmed the in vivo observations and showed that primed lymph node cells from protected animals had decreased proliferative responses to myelin basic protein as compared with controls, while lymphocytes from animals...

  5. Differential Effects of Psychological and Physical Stress on the Sleep Pattern in Rats

    OpenAIRE

    Cui, Ranji; Li, Bingjin; Suemaru, Katsuya; Araki, Hiroaki

    2007-01-01

    In the present study, we investigated the acute effects of 2 different kinds of stress, namely physical stress (foot shock) and psychological stress (non-foot shock) induced by the communication box method, on the sleep patterns of rats. The sleep patterns were recorded for 6 h immediately after 1 h of stress. Physical and psychological stress had almost opposite effects on the sleep patterns: In the physical stress group, hourly total rapid eye movement (REM) sleep and total non-REM sleep we...

  6. Ibuprofen Differentially Affects Supraspinatus Muscle and Tendon Adaptations to Exercise in a Rat Model

    Science.gov (United States)

    Rooney, Sarah Ilkhanipour; Baskin, Rachel; Torino, Daniel J.; Vafa, Rameen P.; Khandekar, Pooja S.; Kuntz, Andrew F.; Soslowsky, Louis J.

    2017-01-01

    Background Previous studies have shown that ibuprofen is detrimental to tissue healing following acute injury; however, the effects of ibuprofen when combined with non-injurious exercise are debated. Hypothesis We hypothesized that administration of ibuprofen to rats undergoing a non-injurious treadmill exercise protocol would abolish the beneficial adaptations found with exercise but have no effect on sedentary muscle and tendon properties. Study Design Controlled laboratory study Methods Rats were divided into exercise or cage activity (sedentary) groups and acute (a single bout of exercise followed by 24 hours of rest) and chronic (2 or 8 weeks of repeated exercise) time points. Half of the rats received ibuprofen to investigate the effects of this drug over time when combined with different activity levels (exercise and sedentary). Supraspinatus tendons were used for mechanical testing and histology (organization, cell shape, cellularity), and supraspinatus muscles were used for morphological (fiber CSA, centrally nucleated fibers) and fiber type analysis. Results Chronic intake of ibuprofen did not impair supraspinatus tendon organization or mechanical adaptations (stiffness, modulus, max load, max stress, dynamic modulus, or viscoelastic properties) to exercise. Tendon mechanical properties were not diminished and in some instances increased with ibuprofen. In contrast, total supraspinatus muscle fiber cross-sectional area decreased with ibuprofen at chronic time points, and some fiber type-specific changes were detected. Conclusions Chronic administration of ibuprofen does not impair supraspinatus tendon mechanical properties in a rat model of exercise but does decrease supraspinatus muscle fiber cross-sectional area. Clinically, these findings suggest that ibuprofen does not detrimentally affect regulation of supraspinatus tendon adaptions to exercise but does decrease muscle growth. Individuals should be advised on the risk of decreased muscle hypertrophy

  7. Different locomotor sensitization responses to repeated cocaine injections are associated with differential phosphorylation of GluA1 in the dorsomedial striatum of adult rats.

    Science.gov (United States)

    Kim, Myonghwan; Kim, Wonju; Baik, Ja-Hyun; Yoon, Bong-June

    2013-11-15

    Behavioral sensitization to psychostimulants reflects neural adaptation, which might share a common mechanism with drug addiction. Outbred male rats show different locomotor sensitization responses to cocaine, and cocaine also produces varied addictive progress in humans. We investigated whether differences in the induction of sensitization would affect the long-term persistence of sensitized locomotor activity, and we sought to determine the molecular basis for the variability in sensitization. Male Sprague-Dawley rats that showed sensitized locomotor responses over 5 consecutive daily cocaine injections (SENS) had significantly lower initial locomotor responses to the 1st cocaine exposure than did rats that did not show locomotor sensitization (NONS). Furthermore, rats that underwent 1 month of cocaine withdrawal after 5 repeated cocaine injections also exhibited sensitized or non-sensitized locomotor responses to a challenge injection of cocaine (SENS-C or NONS-C, respectively). This variability was also related to the initial responsiveness to cocaine. We examined the level of phosphorylation of the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropioniate receptor (AMPAR) in the dorsal striatum and found that there were significant differences between the sensitized rats and the non-sensitized rats. pGluA1-Ser831 was increased in the SENS rats during the induction of locomotor sensitization, and pGluA1-Ser845 was increased in the SENS-C rats during the expression of locomotor sensitization. These phosphorylation changes were observed in the dorsomedial striatum (DMS) of adult rats but not in the dorsolateral striatum (DLS) of adults. Our findings suggest that differential phosphorylation of AMPAR might be an important mechanism that contributes to the development of locomotor sensitization to cocaine in adult rats. Copyright © 2013 Elsevier B.V. All rights reserved.

  8. Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma.

    Science.gov (United States)

    Song, Wei-tao; Zhang, Xue-yong; Xia, Xiao-bo

    2015-05-01

    Glaucoma is one of the leading eye diseases resulting in blindness due to the death of retinal ganglion cells. This study aimed to develop novel protocol to promote the differentiation of retinal Müller cells into ganglion cells in vivo in a rat model of glaucoma. The stem cells dedifferentiated from rat retinal Müller cells were randomized to receive transfection with empty lentivirus PGC-FU-GFP or lentivirus PGC-FU-Atoh7-GFP, or no transfection. The stem cells were induced further to differentiate. Ocular hypertension was induced using laser photocoagulation. The eyes were injected with Atoh7 expression vector lentivirus PGC-FU-Atoh7-GFP. Eyeball frozen sections, immunohistochemistry, RT-PCR, Western bolt, and apoptosis assay were performed. We found that the proportion of ganglion cells differentiated from Atoh7-tranfected stem cells was significantly higher than that of the other two groups. The mean intraocular pressure of glaucomatous eyes was elevated significantly compared with those of contralateral eyes. Some retinal Müller cells in the inner nuclear layer entered the mitotic cell cycle in rat chronic ocular hypertension glaucoma model. Atoh7 contributes to the differentiation of retinal Müller cells into retinal ganglion cells in rat model of glaucoma. In conclusion, Atoh7 promotes the differentiation of Müller cells-derived retinal stem cells into retinal ganglion cells in a rat model of glaucoma, thus opening up a new avenue for gene therapy and optic nerve regeneration in glaucoma. © 2015 by the Society for Experimental Biology and Medicine.

  9. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Science.gov (United States)

    Yu, Chuanfei; Li, Yang; Holmes, Andrew; Szafranski, Karol; Faulkes, Chris G; Coen, Clive W; Buffenstein, Rochelle; Platzer, Matthias; de Magalhães, João Pedro; Church, George M

    2011-01-01

    The naked mole-rat (Heterocephalus glaber) is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam), a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m), and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  10. RNA sequencing reveals differential expression of mitochondrial and oxidation reduction genes in the long-lived naked mole-rat when compared to mice.

    Directory of Open Access Journals (Sweden)

    Chuanfei Yu

    Full Text Available The naked mole-rat (Heterocephalus glaber is a long-lived, cancer resistant rodent and there is a great interest in identifying the adaptations responsible for these and other of its unique traits. We employed RNA sequencing to compare liver gene expression profiles between naked mole-rats and wild-derived mice. Our results indicate that genes associated with oxidoreduction and mitochondria were expressed at higher relative levels in naked mole-rats. The largest effect is nearly 300-fold higher expression of epithelial cell adhesion molecule (Epcam, a tumour-associated protein. Also of interest are the protease inhibitor, alpha2-macroglobulin (A2m, and the mitochondrial complex II subunit Sdhc, both ageing-related genes found strongly over-expressed in the naked mole-rat. These results hint at possible candidates for specifying species differences in ageing and cancer, and in particular suggest complex alterations in mitochondrial and oxidation reduction pathways in the naked mole-rat. Our differential gene expression analysis obviated the need for a reference naked mole-rat genome by employing a combination of Illumina/Solexa and 454 platforms for transcriptome sequencing and assembling transcriptome contigs of the non-sequenced species. Overall, our work provides new research foci and methods for studying the naked mole-rat's fascinating characteristics.

  11. Quantitative and temporal differential recovery of articular and muscular limitations of knee joint contractures; results in a rat model.

    Science.gov (United States)

    Trudel, Guy; Laneuville, Odette; Coletta, Elizabeth; Goudreau, Louis; Uhthoff, Hans K

    2014-10-01

    Joint contractures alter the mechanical properties of articular and muscular structures. Reversibility of a contracture depends on the restoration of the elasticity of both structures. We determined the differential contribution of articular and muscular structures to knee flexion contractures during spontaneous recovery. Rats (250, divided into 24 groups) had one knee joint surgically fixed in flexion for six different durations, from 1 to 32 wk, creating joint contractures of various severities. After the fixation was removed, the animals were left to spontaneously recover for 1 to 48 wk. After the recovery periods, animals were killed and the knee extension was measured before and after division of the transarticular posterior muscles using a motorized arthrometer. No articular limitation had developed in contracture of recent onset (≤2 wk of fixation, P > 0.05); muscular limitations were responsible for the majority of the contracture (34 ± 8° and 38 ± 6°, respectively; both P contractures of recent onset (1 and 2 wk of fixation, respectively). Long-lasting contractures (≥4 wk of fixation) presented articular limitations, irreversible in all 12 durations of recovery compared with controls (all 12 P contractures of recent onset were primarily due to muscular structures, and they were reversible during spontaneous recovery. Long-lasting contractures were primarily due to articular structures and were irreversible. Comprehensive temporal and quantitative data on the differential reversibility of mechanically significant alterations in articular and muscular structures represent novel evidence on which to base clinical practice. Copyright © 2014 the American Physiological Society.

  12. Genetic differentiation in geographically close populations of the water rat Nectomys squamipes (Rodentia, Sigmodontinae from the Brazilian Atlantic Forest

    Directory of Open Access Journals (Sweden)

    Maroja L.S.

    2003-01-01

    Full Text Available We examined the genetic structure and the effects of a bottleneck in populations of the water rat Nectomys squamipes, a primary host of Schistosoma mansoni. Eight microsatellite loci were studied in 7 populations from the Sumidouro region of the Brazilian state of Rio de Janeiro. Our data, covering a four-year period during which a bottleneck occurred, revealed substantial variation (6-31 alleles per locus and high levels of both observed (0.718-0.789 and expected (0.748-0.832 heterozygosity. Most populations were in Hardy-Weinberg equilibrium without linkage disequilibrium between loci. Overall average genetic differentiation between populations (estimated with the F ST (q and R ST (r analogues was 0.037 for q and 0.060 for r. There was significant allelic and genotypic differentiation between populations, especially in pairwise comparisons that included the most geographically isolated population. Direct migration estimates showed a low rate of migration, indicating that infected N. squamipes populations had a limited ability to spread S. mansoni. When the pre- and post-bottleneck populations were compared there was no detectable reduction in heterozygosity or allele number, although a significant excess of heterozygosity was detected in the post-bottleneck population.

  13. Nano-scaled hydroxyapatite/silk fibroin sheets support osteogenic differentiation of rat bone marrow mesenchymal cells

    International Nuclear Information System (INIS)

    Tanaka, Toshimitsu; Hirose, Motohiro; Kotobuki, Noriko; Ohgushi, Hajime; Furuzono, Tsutomu; Sato, Junichi

    2007-01-01

    A novel biomaterial that was composed of nano-scaled sintered hydroxyapatite (HAp) and silk fibroin (SF) was fabricated. We cultured rat marrow mesenchymal cells (MMCs) on this biomaterial (nano-HAp/SF sheet), on bare SF sheets, and on tissue culture polystyrene (TCPS) dishes as controls, then evaluated cell adhesion, proliferation, and differentiation of the MMCs. After 1 h of culture, a large number of viable cells were observed on the nano-HAp/SF sheets in comparison to the controls. In addition, after 3 h of culture, the morphology of the cells on the nano-HAp/SF sheets was quite different from that on the SF sheets. MMCs extrude their cytoplasmic processes to nano-HAp particles and are well attached to the sheets. After 14 days of culture, under osteogenic conditions, the alkaline phosphatase (ALP) activity and bone-specific osteocalcin secretion of the cells on nano-HAp/SF sheets were higher than were those on the controls. These results indicated that the surface of the nano-HAp/SF sheets is covered with appropriate HAp crystal for MMC adhesion/proliferation and that the sheets effectively support the osteogenic differentiation of MMCs. Therefore, the nano-HAp/SF sheet is an effective biomaterial that is applicable in bone reconstruction surgery

  14. Differential effects of total and partial sleep deprivation on salivary factors in Wistar rats.

    Science.gov (United States)

    Lasisi, Dr T J; Shittu, S T; Meludu, C C; Salami, A A

    2017-01-01

    Aim of this study was to investigate the effects of sleep deprivation on salivary factors in rats. Animals were randomly assigned into three groups of 6 animals each as control, total sleep deprivation (TSD) and partial sleep deprivation (PSD) groups. The multiple platform method was used to induce partial and total sleep deprivation for 7days. On the 8th day, stimulated saliva samples were collected for the analysis of salivary lag time, flow rate, salivary amylase activity, immunoglobulin A secretion rate and corticosterone levels using ELISA and standard kinetic enzyme assay. Data were analyzed using ANOVA with Dunnett T3 post hoc tests. Salivary flow rate reduced significantly in the TSD group compared with the PSD group as well as the control group (p=0.01). The secretion rate of salivary IgA was significantly reduced in the TSD group compared with the control group (p=0.04). Salivary amylase activity was significantly elevated in the TSD group compared with the PSD group as well as control group (psleep deprivation is associated with reduced salivary flow rate and secretion rate of IgA as well as elevated levels of salivary amylase activity in rats. However, sleep recovery of four hours in the PSD group produced ameliorative effects on the impaired functions of salivary glands. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Differential effects of chronic fluoxetine on the behavior of dominant and subordinate naked mole-rats.

    Science.gov (United States)

    Mongillo, Daniel L; Kosyachkova, Ekaterina A; Nguyen, Tam M; Holmes, Melissa M

    2014-01-01

    Naked mole-rats are eusocial rodents that live in large subterranean colonies with a strict reproductive and social hierarchy. The breeding female (referred to as the queen) and 1 to 3 breeding males are the only reproductive members of the colony. Breeders are socially dominant and all other colony members are non-reproductive subordinates. The effects of manipulating the serotonergic neurotransmitter system on aggression and dominance behaviors are well studied in many species, but not in eusocial rodents like the naked mole-rat. The current study investigated how the serotonergic system influences aggressive/dominant behaviors in this species. To do this, two separate but related experiments were conducted: the effects of fluoxetine hydrochloride (FLX) on status-specific behaviors of subordinates (Experiment 1) and dominant queens (Experiment 2) were evaluated both in-colony and in a social-pairing paradigm. In accordance with our main hypothesis, chronic treatment of FLX attenuated the frequency and duration of aggression in queens, but not subordinates, when paired with an unfamiliar conspecific. Further exploration of pharmacological manipulation on status-specific behaviors of this eusocial species may elucidate the neurobiological mechanisms underlying their unique and rigid social hierarchy. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Differential stability of 28s and 18s rat liver ribosomal ribonucleic acids.

    Science.gov (United States)

    Venkov, P V; Hadjiolov, A A

    1969-10-01

    Rat liver ribosomal RNA (rRNA) free from nuclease contaminants was isolated by a modification of the phenol technique. The 28s and 18s rRNA species were separated by preparative agar-gel electrophoresis. The two rRNA species were heated at different temperatures under various conditions and the amount of undegraded rRNA was determined by analytical agar-gel electrophoresis. The 18s rRNA remained unaltered after heating for up to 10min. at 90 degrees in water, acetate buffer, pH5.0, or phosphate buffer, pH7.0. Under similar or milder conditions 28s rRNA was partially degraded, giving rise to a well-delimited 6s peak and a heterogeneous material located in the zone between 28s and 6s. The dependence of degradation of 28s rRNA on the temperature and the ionic strength of the medium was studied. The greatest extent of degradation of 28s rRNA was observed on heating at 90 degrees in water. It is suggested that the instability of rat liver 28s rRNA is due to two factors: the presence of hidden breaks in the polymer chain and a higher susceptibility of some phosphodiester bonds to thermal hydrolysis.

  17. Oxytocin differentially affects sucrose taking and seeking in male and female rats.

    Science.gov (United States)

    Zhou, Luyi; Ghee, Shannon M; See, Ronald E; Reichel, Carmela M

    2015-04-15

    Oxytocin has a modulatory role in natural and drug reward processes. While the role of oxytocin in pair bonding and reproduction has been extensively studied, sex differences in conditioned and unconditioned behavioral responses to oxytocin treatment have not been fully characterized. Here, we determined whether male and female rats would show similar dose response curves in response to acute oxytocin on measures of locomotor activity, sucrose seeking, and sucrose intake. Male and freely cycling female rats received vehicle or oxytocin (0.1, 0.3, 1, 3mg/kg, IP) injections before behavioral tests designed to assess general motor activity, as well as sucrose self-administration and seeking. Lower doses of oxytocin decreased motor activity in a novel environment in females relative to males. Likewise, lower doses of oxytocin in females decreased responding for sucrose during maintenance of sucrose self-administration and reinstatement to sucrose-conditioned cues. However, sucrose seeking in response to a sucrose prime was only decreased by the highest oxytocin dose in both sexes. In general, oxytocin had similar effects in both sexes. However, females were more sensitive to lower doses of oxytocin than males. These findings are consistent with the notion that oxytocin regulates many of the same behaviors in males and females, but that the effects are typically more profound in females. Therapeutic use of oxytocin should include sex as a factor in determining dose regimens. Copyright © 2015 Elsevier B.V. All rights reserved.

  18. Differential response of risedronate on tibial and mandibular bone quality in glucocorticoid-treated growing rats

    International Nuclear Information System (INIS)

    Fujita, Yuko

    2008-01-01

    Glucocorticoids induce bone loss and retard bone growth in children. In this study we investigated the effect of treatment with risedronate on glucocorticoid -prednisolone-induced decreases in bone density, quality, strength and growth of the tibia and mandible in growing rats. Trabecular and cortical bone structure was measured by peripheral quantitative computed tomography (pQCT) and three-dimensional (3D) micro-computed tomography (micro-CT). Indicators of bone strength were calculated from cortical bone density and the modulus of sections obtained from pQCT analysis. Tibial and mandibular bone sizes were also measured. Prednisolone decreased the bone growth of both tibia and mandible. It also caused deterioration of trabecular and cortical bone structure and strength in the mandible, and in cortical bone in the tibia, but had no effect on trabecular bone in the tibia. Risedronate inhibited the prednisolone-induced decreases in tibial width and mandibular length and height but did not improve the retardation of longitudinal bone growth. Risedronate prevented prednisolone-induced deterioration of trabecular and cortical bone architecture. In the mandible, this protective effect of risedronate was accompanied by an increase in cortical bone density and in bone strength. These findings show that risedronate inhibits prednisolone-induced loss of bone density, structure, decrease in bone strength, and retardation of bone growth in the mandible in young growing rats. (author)

  19. Differential Gene Expression Profile in the Rat Caudal Vestibular Nucleus is Associated with Individual Differences in Motion Sickness Susceptibility.

    Directory of Open Access Journals (Sweden)

    Jun-Qin Wang

    Full Text Available To identify differentially expressed genes associated with motion sickness (MS susceptibility in the rat caudal vestibular nucleus.We identified MS susceptible (MSS and insusceptible (inMSS rats by quantifying rotation-induced MS symptoms: defecation and spontaneous locomotion activity. Microarray analysis was used to screen differentially expressed genes in the caudal vestibular nucleus (CVN after rotation. Plasma stress hormones were identified by radioimmunoassay. Candidate genes were selected by bioinformatics analysis and the microarray results were verified by real-time quantitative-PCR (RT-qPCR methods. By using Elvax implantation, receptor antagonists or recombinant adenovirus targeting the candidate genes were applied to the CVN to evaluate their contribution to MS susceptibility variability. Validity of gene expression manipulation was verified by RT-qPCR and western blot analysis.A total of 304 transcripts were differentially expressed in the MSS group compared with the inMSS group. RT-qPCR analysis verified the expression pattern of candidate genes, including nicotinic cholinergic receptor (nAchR α3 subunit, 5-hydroxytryptamine receptor 4 (5-HT4R, tachykinin neurokinin-1 (NK1R, γ-aminobutyric acid A receptor (GABAAR α6 subunit, olfactory receptor 81 (Olr81 and homology 2 domain-containing transforming protein 1 (Shc1. In MSS animals, the nAchR antagonist mecamylamine significantly alleviated rotation-induced MS symptoms and the plasma β-endorphin response. The NK1R antagonist CP99994 and Olr81 knock-down were effective for the defecation response, while the 5-HT4R antagonist RS39604 and Shc1 over-expression showed no therapeutic effect. In inMSS animals, rotation-induced changes in spontaneous locomotion activity and the plasma β-endorphin level occurred in the presence of the GABAAR antagonist gabazine.Our findings suggested that the variability of the CVN gene expression profile after motion stimulation might be a putative

  20. Neural differentiation of transplanted neural stem cells in a rat model of striatal lacunar infarction: light and electron microscopic observations

    Science.gov (United States)

    Muñetón-Gómez, Vilma C.; Doncel-Pérez, Ernesto; Fernandez, Ana P.; Serrano, Julia; Pozo-Rodrigálvarez, Andrea; Vellosillo-Huerta, Lara; Taylor, Julian S.; Cardona-Gómez, Gloria P.; Nieto-Sampedro, Manuel; Martínez-Murillo, Ricardo

    2012-01-01

    The increased risk and prevalence of lacunar stroke and Parkinson's disease (PD) makes the search for better experimental models an important requirement for translational research. In this study we assess ischemic damage of the nigrostriatal pathway in a model of lacunar stroke evoked by damaging the perforating arteries in the territory of the substantia nigra (SN) of the rat after stereotaxic administration of endothelin-1 (ET-1), a potent vasoconstrictor peptide. We hypothesized that transplantation of neural stem cells (NSCs) with the capacity of differentiating into diverse cell types such as neurons and glia, but with limited proliferation potential, would constitute an alternative and/or adjuvant therapy for lacunar stroke. These cells showed neuritogenic activity in vitro and a high potential for neural differentiation. Light and electron microscopy immunocytochemistry was used to characterize GFP-positive neurons derived from the transplants. 48 h after ET-1 injection, we characterized an area of selective degeneration of dopaminergic neurons within the nigrostriatal pathway characterized with tissue necrosis and glial scar formation, with subsequent behavioral signs of Parkinsonism. Light microscopy showed that grafted cells within the striatal infarction zone differentiated with a high yield into mature glial cells (GFAP-positive) and neuron types present in the normal striatum. Electron microscopy revealed that NSCs-derived neurons integrated into the host circuitry establishing synaptic contacts, mostly of the asymmetric type. Astrocytes were closely associated with normal small-sized blood vessels in the area of infarct, suggesting a possible role in the regulation of the blood brain barrier and angiogenesis. Our results encourage the use of NSCs as a cell-replacement therapy for the treatment of human vascular Parkinsonism. PMID:22876219

  1. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    Energy Technology Data Exchange (ETDEWEB)

    Ham, Young-Mi, E-mail: youngmi_ham@hms.harvard.edu [College of Life Science and Biotechnology, Korea University, Seoul (Korea, Republic of); Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States); Mahoney, Sarah Jane [Department of Cell Biology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-06-10

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors.

  2. Compensation of the AKT signaling by ERK signaling in transgenic mice hearts overexpressing TRIM72

    International Nuclear Information System (INIS)

    Ham, Young-Mi; Mahoney, Sarah Jane

    2013-01-01

    The AKT and ERK signaling pathways are known to be involved in cell hypertrophy, proliferation, survival and differentiation. Although there is evidence for crosstalk between these two signaling pathways in cellulo, there is less evidence for cross talk in vivo. Here, we show that crosstalk between AKT and ERK signaling in the hearts of TRIM72-overexpressing transgenic mice (TRIM72-Tg) with alpha-MHC promoter regulates and maintains their heart size. TRIM72, a heart- and skeletal muscle-specific protein, downregulates AKT-mTOR signaling via IRS-1 degradation and reduces the size of rat cardiomyocytes and the size of postnatal TRIM72-Tg hearts. TRIM72 expression was upregulated by hypertrophic inducers in cardiomyocytes, while IRS-1 was downregulated by IGF-1. TRIM72 specifically regulated IGF-1-dependent AKT-mTOR signaling, resulting in a reduction of the size of cardiomyocytes. Postnatal TRIM72-Tg hearts were smaller than control-treated hearts with inhibition of AKT-mTOR signaling. However, adult TRIM72-Tg hearts were larger than of control despite the suppression of AKT-mTOR signaling. Activation of ERK, PKC-α, and JNK were observed to be elevated in adult TRIM72-Tg, and these signals were mediated by ET-1 via the ET receptors A and B. Altogether, these results suggest that AKT signaling regulates cardiac hypertrophy in physiological conditions, and ERK signaling compensates for the absence of AKT signaling during TRIM72 overexpression, leading to pathological hypertrophy. -- Highlights: • TRIM72 inhibits AKT signaling through ubiquitination of IRS-1 in cardiac cells. • TRIM72 regulates the size of cardiac cells. • TRIM72 regulates size of postnatal TRIM72-overexpressing transgenic mice hearts. • Adult TRIM72-overexpressing transgenic mice hearts showed cardiac dysfunction. • Adult TRIM72 transgenic mice hearts showed higher expression of endothelin receptors

  3. Retinoic acid and cAMP inhibit rat hepatocellular carcinoma cell proliferation and enhance cell differentiation

    Energy Technology Data Exchange (ETDEWEB)

    Ionta, M. [Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas MG (Brazil); Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil); Rosa, M.C.; Almeida, R.B.; Freitas, V.M.; Rezende-Teixeira, P.; Machado-Santelli, G.M. [Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo SP (Brazil)

    2012-05-25

    Hepatocellular carcinoma (HCC) is the third highest cause of cancer death worldwide. In general, the disease is diagnosed at an advanced stage when potentially curative therapies are no longer feasible. For this reason, it is very important to develop new therapeutic approaches. Retinoic acid (RA) is a natural derivative of vitamin A that regulates important biological processes including cell proliferation and differentiation. In vitro studies have shown that RA is effective in inhibiting growth of HCC cells; however, responsiveness to treatment varies among different HCC cell lines. The objective of the present study was to determine if the combined use of RA (0.1 µM) and cAMP (1 mM), an important second messenger, improves the responsiveness of HCC cells to RA treatment. We evaluated the proliferative behavior of an HCC cell line (HTC) and the expression profile of genes related to cancer signaling pathway (ERK and GSK-3β) and liver differentiation [E-cadherin, connexin 26 (Cx26), and connexin 32 (Cx32)]. RA and cAMP were effective in inhibiting the proliferation of HTC cells independently of combined use. However, when a mixture of RA and cAMP was used, the signals concerning the degree of cell differentiation were increased. As demonstrated by Western blot, the treatment increased E-cadherin, Cx26, Cx32 and Ser9-GSK-3β (inactive form) expression while the expression of Cx43, Tyr216-GSK-3β (active form) and phosphorylated ERK decreased. Furthermore, telomerase activity was inhibited along treatment. Taken together, the results showed that the combined use of RA and cAMP is more effective in inducing differentiation of HTC cells.

  4. The differential effects of haloperidol and methamphetamine on time estimation in the rat.

    Science.gov (United States)

    Maricq, A V; Church, R M

    1983-01-01

    Forty rats were trained to make a left lever response if a signal (white noise) was 2.5s and to make a right lever response if the signal was 6.3s. When seven intermediate signal durations, to which responses were not reinforced, were randomly interspersed the probability of a right-lever ('long') response increased as a function of signal duration. Methamphetamine shifted this psychometric function leftward and decreased its slope: haloperidol also decreased the slope but shifted the function rightward. A combination of haloperidol and methamphetamine led to a function similar to the saline control function. The leftward shift probably reflects an increase in the speed of an internal clock, and the rightward shift probably reflects a decrease in its speed. Since methamphetamine releases several catecholamines, including dopamine, and haloperidol blocks dopamine receptors, it is plausible that the horizontal location of the psychometric function (the speed of the clock) is related to the effective level of dopamine.

  5. Differential perturbation of the interstitial cystitis-associated genes of bladder and urethra in rat model.

    Science.gov (United States)

    Choi, Bo-Hwa; You, Sungyong; Park, Chang-Shin; Cho, Eun-Ho; Park, Taeeun D; Kim, Sungsoo; Kim, Young-Ju; Lee, Tack; Kim, Jayoung

    2017-04-18

    Interstitial cystitis (IC) is a chronic bladder dysfunction characterized as urinary frequency, urgency, nocturia, and pelvic pain. The changes in urethra may wind up with the bladder changes in structure and functions, however, the functions of the urethra in IC remains elusive. The aim of this study was to understand the perturbed gene expression in urethra, compared with urinary bladder, associated with the defected urodynamics. Using female IC mimic rats, a comprehensive RNA-sequencing combined with a bioinformatics analysis was performed and revealed that IC-specific genes in bladder or urethra. Gene ontology analysis suggested that the cell adhesion or extracellular matrix regulation, intracellular signaling cascade, cardiac muscle tissue development, and second messenger-mediated signaling might be the most enriched cellular processes in IC context. Further study of the effects of these bladder- or urethra-specific genes may suggest underlying mechanism of lower urinary tract function and novel therapeutic strategies against IC.

  6. Differential stimulation of luminol-enhanced chemiluminescence (CL) and arachidonic acid metabolism in rat peritoneal neutrophils

    Energy Technology Data Exchange (ETDEWEB)

    Sturm, R.J.; Adams, L.M.; Cullinan, C.A.; Berkenkopf, J.W.; Weichman, B.M.

    1986-03-05

    Phorbol 12-myristate, 13-acetate (PMA) induced the production of radical oxygen species (ROS) from rat peritoneal neutrophils as assessed by CL. ROS generation occurred in a time- (maximum at 13.5 min) and dose- (concentration range of 1.7-498 nM) related fashion. However, 166 nM PMA did not induce either cyclooxygenase (CO) or lipoxygenase (LPO) product formation by 20 min post-stimulation. Conversely, A23187, at concentrations between 0.1 and 10 ..mu..M, stimulated both pathways of arachidonic acid metabolism, but had little or no effect upon ROS production. When suboptimal concentrations of PMA (5.5 nM) and A23187 (0.1-1 ..mu..M) were coincubated with the neutrophils, a synergistic ROS response was elicited. However, arachidonic acid metabolism in the presence of PMA was unchanged relative to A12187 alone. Nordihydroguaiaretic acid (NDGA) inhibited both PMA-induced CL (IC/sub 50/ = 0.9 ..mu..M) and A23187-induced arachidonic acid metabolism (IC/sub 50/ = 1.7 ..mu..M and 6.0 ..mu..M for LPO and CO, respectively). The mixed LPO-CO inhibitor, BW755C, behaved in a qualitatively similar manner to NDGA, whereas the CO inhibitors, indomethacin, piroxicam and naproxen had no inhibitory effect on ROS generation at concentrations as high as 100 ..mu..M. These results suggest that NDGA and BW755C may inhibit CL and arachidonic acid metabolism by distinct mechanisms in rat neutrophils.

  7. Vitamin C and E chronic supplementation differentially affect hepatic insulin signaling in rats.

    Science.gov (United States)

    Ali, Mennatallah A; Eid, Rania M H M; Hanafi, Mervat Y

    2018-02-01

    Vitamin C and vitamin E supplementations and their beneficial effects on type 2 diabetes mellitus (T2DM) have been subjected to countless controversial data. Hence, our aim is to investigate the hepatic molecular mechanisms of any diabetic predisposing risk of the chronic administration of different doses of vitamin E or vitamin C in rats. The rats were supplemented with different doses of vitamin C or vitamin E for eight months. Vitamin C and vitamin E increased fasting blood glucose, insulin, and homeostasis model assessment index for insulin resistance (HOMA). Vitamin C disrupted glucose tolerance by attenuating upstream hepatic insulin action through impairing the phosphorylation and activation of insulin receptor and its subsequent substrates; however, vitamin E showed its effect downstream insulin receptor in the insulin signaling pathway, reducing hepatic glucose transporter-2 (GLUT2) and phosphorylated protein kinase (p-Akt). Moreover, both vitamins showed their antioxidant capabilities [nuclear factor-erythroid-2-related factor 2 (Nrf2), total and reduced glutathione] and their negative effect on Wnt pathway [phosphorylated glycogen synthase kinase-3β (p-GSK-3β)], by altering the previously mentioned parameters, inevitably leading to severe reduction of reactive oxygen species (ROS) below the physiological levels. In conclusion, a detrimental effect of chronic antioxidant vitamins supplementation was detected; leading to insulin resistance and impaired glucose tolerance obviously through different mechanisms. Overall, these findings indicate that the conventional view that vitamins promote health benefits and delay chronic illnesses and aging should be modified or applied with caution. Copyright © 2017. Published by Elsevier Inc.

  8. High molecular mass proteomics analyses of left ventricle from rats subjected to differential swimming training

    Directory of Open Access Journals (Sweden)

    Rocha Luiz A O

    2012-09-01

    Full Text Available Abstract Background Regular exercises are commonly described as an important factor in health improvement, being directly related to contractile force development in cardiac cells. In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG and three training groups (TG’s, with low, moderate and high intensity of exercises. In order to evaluate the links between swimming exercise intensity and cardiac adaptation by using high molecular mass proteomics, isogenic Wistar rats were divided into four groups: one control (CG and three training groups (TG’s, with low, moderate and high intensity of exercises. Results Findings here reported demonstrated clear morphologic alterations, significant cellular injury and increased energy supplies at high exercise intensities. α-MyHC, as well proteins associated with mitochondrial oxidative metabolism were shown to be improved. α-MyHC expression increase 1.2 fold in high intensity training group when compared with control group. α-MyHC was also evaluated by real-time PCR showing a clear expression correlation with protein synthesis data increase in 8.48 fold in high intensity training group. Other myofibrillar protein, troponin , appear only in high intensity group, corroborating the cellular injury data. High molecular masses proteins such as MRS2 and NADH dehydrogenase, involved in metabolic pathways also demonstrate increase expression, respectily 1.5 and 1.3 fold, in response to high intensity exercise. Conclusions High intensity exercise demonstrated an increase expression in some high molecular masses myofibrilar proteins, α-MyHC and troponin. Furthermore this intensity also lead a significant increase of other high molecular masses proteins such as MRS2 and NADH dehydrogenase in comparison to low and moderate intensities. However, high intensity exercise also

  9. Differential effects of acute cold and footshock on the sleep of rats.

    Science.gov (United States)

    Palma, B D; Suchecki, D; Tufik, S

    2000-04-07

    Several studies have shown that 1 h of immobilisation stress during the rat's active period results in rebound of paradoxical (PS) and slow wave sleep (SWS). Since the effects of stress on behaviour and physiological parameters vary according to the stimulus, the present study sought to examine the activation of the hypothalamic-pituitary-adrenal (HPA) axis and the sleep pattern of rats submitted to 1 h of footshock, immobilisation or cold, or 18 h of PS deprivation (PSD). Stress sessions began between 0900 and 0930 h. Immediately after the end of the stress session, or at the corresponding time for controls, animals were blood sampled for determination of ACTH and corticosterone (CORT) plasma levels. In Experiment 2, animals were implanted with electrodes for basal and post-stress polysomnographic recording (6 h long). The results showed that all stressors produced an activation of the HPA axis; however, footshock induced the largest ACTH levels, whereas cold resulted in the highest CORT levels. In regard to the sleep data, immobilisation and PSD led to a rebound of SWS (+16.87% and +9.37%, respectively) and PS (+42.45% and +55.25%, respectively). Immobilisation, however, induced an increased number of PS episodes, whereas PSD resulted in longer PS episodes. Cold stress produced an exclusive rebound of SWS (+14.23%) and footshock promoted sustained alertness during the animal's resting period (+47.18%). These results indicate that different stimuli altered the sleep pattern in a distinct manner; and these alterations might be related to the state of the HPA axis activation.

  10. Early ethanol and water consumption: accumulating experience differentially regulates drinking pattern and bout parameters in male alcohol preferring (P) vs. Wistar and Sprague Dawley rats.

    Science.gov (United States)

    Azarov, Alexey V; Woodward, Donald J

    2014-01-17

    Alcohol-preferring (P) rats develop high ethanol intake over several weeks of water/10% ethanol (10E) choice drinking. However, it is not yet clear precisely what components of drinking behavior undergo modification to achieve higher intake. Our concurrent report compared precisely measured daily intake in P vs. non-selected Wistar and Sprague Dawley (SD) rats. Here we analyze their drinking patterns and bouts to clarify microbehavioral components that are common to rats of different genetic backgrounds, vs. features that are unique to each. Under sole-fluid conditions P, Wistar and SD rats all consumed water at a high initial rate followed by a slow maintenance phase, but 10E - in a distinctly different step-like pattern of evenly distributed bouts. During choice period, 10E vs. water patterns for P rat appeared as an overlap of sole-fluid patterns. The SD rat choice patterns resembled sole-fluid patterns but were less regular. Choice patterns in Wistar differed from both P and SD rats, by consisting of intermixed small frequent episodes of drinking both 10E and water. Wistar and SD rats increased choice ethanol intake by elevating the number of bouts. A key finding was that P rat increased choice ethanol intake through a gradual increase of the bout size and duration, but kept bout number constant. This supports the hypothesis that genetic selection modifies microbehavioral machinery controlling drinking bout initiation, duration, and other pattern features. Precision analysis of drinking patterns and bouts allows differentiation between genetic lines, and provides a venue for study of localized circuit and transmitter influences mediating mesolimbic control over ethanol consumption. © 2013 Elsevier Inc. All rights reserved

  11. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    Gene electrotransfer is expanding in clinical use, thus we have searched for an emergency procedure to stop transgene expression in case of serious adverse events. Calcium is cytotoxic at high intracellular levels, so we tested effects of calcium electrotransfer on transgene expression in muscle....... A clinical grade calcium solution (20 µl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...... voltage pulses of 1000 V/cm. Using these parameters, in vivo imaging showed that transgene expression significantly decreased 4 hr after Ca(2+) electrotransfer and was eliminated within 24 hr. Similarly, serum erythropoietin was reduced by 46% at 4 hr and to control levels at 2 days. Histological analyses...

  12. Identification of Secretory Odontoblasts Using DMP1-GFP Transgenic Mice

    Science.gov (United States)

    Balic, Anamaria; Mina, Mina

    2011-01-01

    Terminal differentiation of odontoblasts from dental papilla is a long process involving several intermediate steps and changes in the transcriptional profile and expression of proteins secreted by cells in the odontoblast lineage. Transgenic mouse lines in which GFP expression is under the control of tissue-and stage specific promoters have provided powerful experimental tools for identification and isolation of cells at specific stages of differentiation along a lineage. Our previous studies showed utilization of pOBCol3.6GFP and pOBCol2.3GFP animals for identification of odontoblasts at early and late stages of polarization respectively. In the present study we used the DMP1-GFP transgenic animal as an experimental model to examine its expression during the differentiation of odontoblasts from progenitor cells in vivo and in vitro. Our observations showed that DMP1-GFP transgene is first activated in secretory/functional odontoblasts engaged in secretion of predentin and then transiently expressed at high levels in newly differentiated odontoblasts. Expression of DMP1-GFP was down-regulated in highly differentiated odontoblasts. The temporal and spatial pattern of expression of DMP1-GFP transgene closely mimics the expression of endogenous DMP1. This transgenic animal will facilitate studies of gene expression and biological functions in secretory/functional odontoblasts. PMID:21172466

  13. Effects of Nitric Oxide Production Inhibitor Named, NG-Nitro-L-Arginine Methyl Ester (L-NAME, on Rat Mesenchymal Stem Cells Differentiation

    Directory of Open Access Journals (Sweden)

    E Arfaei

    2010-04-01

    Full Text Available Introduction & Objectives: Recently, the findings of some studies have shown that, nitric oxide (NO probably has an important role in differentiation of mesenchymal stem cells to osteoblasts. The aim of the present investigation was to study the effects of nitric oxide production inhibitor named, NG-nitro-L-arginine methyl ester (L-NAME, on rat mesenchymal stem cells differentiation to osteoblasts in vitro. Materials & Methods: This was an experimental study conducted at Hamedan University of Medical Sciences in 2009, in which rat bone marrow stem cells were isolated in an aseptic condition and cultured in vitro. After third passage, the cells were cultured in osteogenic differentiation medium. To study the effects of L-NAME on osteogenic differentiation, the L-NAME was added to the culture medium at a concentration of 125, 250, and 500 μM in some culture plates. During the culture procedure, the media were replaced with fresh ones, with a three days interval. After 28 days of culturing the mineralized matrix was stained using Alizarian red staining method. The gathered data were analyzed by SPSS software version 12 using one way ANOVA. Results: The findings of this study showed that in the presence of L-NAME, differentiation of bone marrow mesenchymal stem cells to osteoblasts was disordered and matrix mineralization significantly decreased in a dose dependent manner. Conclusion: This study revealed that, inhibition of nitric oxide production using L-NAME can prevent the differentiation of rat bone marrow mesenchymal stem cells to osteoblast. The results imply that NO is an important constituent in differentiation of mesenchymal stem cell to osteoblasts.

  14. Prenatal choline supplementation alters the timing, emotion, and memory performance (TEMP) of adult male and female rats as indexed by differential reinforcement of low-rate schedule behavior

    OpenAIRE

    Cheng, Ruey-Kuang; MacDonald, Christopher J.; Williams, Christina L.; Meck, Warren H.

    2008-01-01

    Choline availability in the maternal diet has a lasting effect on brain and behavior of the offspring. To further delineate the impact of early nutritional status, we examined effects of prenatal-choline supplementation on timing, emotion, and memory performance of adult male and female rats. Rats that were given sufficient choline (CON: 1.1 g/kg) or supplemental choline (SUP: 5.0 g/kg) during embryonic days (ED) 12–17 were trained with a differential reinforcement of low-rate (DRL) schedule ...

  15. N-methyl-D-aspartate receptor activation mediates lung fibroblast proliferation and differentiation in hyperoxia-induced chronic lung disease in newborn rats.

    Science.gov (United States)

    Wang, YanRui; Yue, ShaoJie; Luo, ZiQiang; Cao, ChuanDing; Yu, XiaoHe; Liao, ZhengChang; Wang, MingJie

    2016-10-21

    Previous studies have suggested that endogenous glutamate and its N-methyl-D-aspartate receptors (NMDARs) play important roles in hyperoxia-induced acute lung injury in newborn rats. We hypothesized that NMDAR activation also participates in the development of chronic lung injury after withdrawal of hyperoxic conditions. In order to rule out the anti-inflammatory effects of NMDAR inhibitor on acute lung injury, the efficacy of MK-801 was evaluated in vivo using newborn Sprague-Dawley rats treated starting 4 days after cessation of hyperoxia exposure (on postnatal day 8). The role of NMDAR activation in hyperoxia-induced lung fibroblast proliferation and differentiation was examined in vitro using primary cells derived from the lungs of 8-day-old Sprague-Dawley rats exposed to hyperoxic conditions. Hyperoxia for 3 days induced acute lung injury in newborn rats. The acute injury almost completely disappeared 4 days after cessation of hyperoxia exposure. However, pulmonary fibrosis, impaired alveolarization, and decreased pulmonary compliance were observed on postnatal days 15 and 22. MK-801 treatment during the recovery period was found to alleviate the chronic damage induced by hyperoxia. Four NMDAR 2 s were found to be upregulated in the lung fibroblasts of newborn rats exposed to hyperoxia. In addition, the proliferation and upregulation of alpha-smooth muscle actin and (pro) collagen I in lung fibroblasts were detected in hyperoxia-exposed rats. MK-801 inhibited these changes. NMDAR activation mediated lung fibroblast proliferation and differentiation and played a role in the development of hyperoxia-induced chronic lung damage in newborn rats.

  16. Vitamin D depletion does not affect key aspects of the preeclamptic phenotype in a transgenic rodent model for preeclampsia

    DEFF Research Database (Denmark)

    Andersen, Louise Bjørkholt; Golic, Michaela; Przybyl, Lukasz

    2016-01-01

    -mediated preeclampsia. Adult rat dams, transgenic for human angiotensinogen (hAGT) and mated with male rats transgenic for human renin (hREN), were fed either vitamin D-depleted chow (VDd) or enriched chow (VDh) 2 weeks before mating and during pregnancy. Mean blood pressure was recorded by tail-cuff, and 24-hour urine......Maternal vitamin D deficiency is proposed as a risk factor for preeclampsia in humans. We tested the hypothesis that vitamin D depletion aggravates and high supplementation ameliorates the preeclampsia phenotype in an established transgenic rat model of human renin-angiotensin system...... of the preeclampsia phenotype using the transgenic rodent model of human renin-angiotensin system-mediated pre-eclampsia, plausibly due to altered vitamin D metabolism or excretion in the transgenic rats....

  17. Growth differentiation factor 11 improves neurobehavioral recovery and stimulates angiogenesis in rats subjected to cerebral ischemia/reperfusion.

    Science.gov (United States)

    Ma, Jingxi; Zhang, Lina; Niu, Tengfei; Ai, Chibo; Jia, Gongwei; Jin, Xinhao; Wen, Lan; Zhang, Keming; Zhang, Qinbin; Li, Changqing

    2018-02-09

    The recent suggestion that growth differentiation factor 11 (GDF11) acts as a rejuvenation factor has remained controversial. However, in addition to its role in aging, the relationship between GDF11 and cerebral ischemia is still an important area that needs more investigation. Here we examined effects of GDF11 on angiogenesis and recovery of neurological function in a rat model of stroke. Exogenous recombinant GDF11 (rGDF11) at different doses were directly injected into the tail vein in rats subjected to cerebral ischemia/reperfusion (I/R). Neurobehavioral tests were performed, the proliferation of endothelial cells (ECs) and GDF11 downstream signal activin-like kinase 5 (ALK5) were assessed, and functional microvessels were measured. Results showed that rGDF11 at a dosage of 0.1 mg/kg/day could effectively activate cerebral angiogenesis in vivo. In addition, rGDF11 improved the modified neurological severity scores and the adhesive removal somatosensory test, promoted proliferation of ECs, induced ALK5 and increased vascular surface area and the number of vascular branch points in the peri-infarct cerebral cortex after cerebral I/R. These effects were suppressed by blocking ALK5. Our novel findings shed new light on the role of GDF11. Our results strongly suggest that GDF11 improves neurofunctional recovery from cerebral I/R injury and that this effect is mediated partly through its proangiogenic effect in the peri-infarct cerebral cortex, which is associated with ALK5. Thus, GDF11/ALK5 may represent new therapeutic targets for aiding recovery from stroke. Copyright © 2018 Elsevier Inc. All rights reserved.

  18. Differential proteomics analysis of the analgesic effect of electroacupuncture intervention in the hippocampus following neuropathic pain in rats

    Directory of Open Access Journals (Sweden)

    Gao Yong-Hui

    2012-12-01

    Full Text Available Abstract Background Evidence is building steadily on the effectiveness of acupuncture therapy in pain relief and repeated acupuncture-induced pain relief is accompanied by improvement of hippocampal neural synaptic plasticity. To further test the cellular and molecular changes underlying analgesic effect of acupuncture, the global change of acupuncture associated protein profiles in the hippocampus under neuropathic pain condition was profiled. Methods The chronic constrictive injury (CCI model was established by ligature of the unilateral sciatic nerve in adult Wistar rats. Rats were randomized into normal control (NC group, CCI group, and CCI with electroacupuncture (EA stimulation group. EA was applied to bilateral Zusanli (ST36 and Yanglingquan (GB34 in the EA group. Differentially expressed proteins in the hippocampus in the three groups were identified by two-dimensional gel electrophoresis and matrix-assisted laser desorption/ionization time of flight mass spectrometry. The functional clustering of the identified proteins was analyzed by Mascot software. Results After CCI, the thermal pain threshold of the affected hind footpad was decreased and was reversed gradually by 12 sessions of acupuncture treatment. Following EA, there were 19 hippocampal proteins identified with significant changes in expression (>2-fold, which are involved in metabolic, physiological, and cellular processes. The top three canonical pathways identified were “cysteine metabolism”, “valine, leucine, and isoleucine degradation” and “mitogen-activated protein kinase (MAPK signaling”. Conclusions These data suggest that the analgesic effect of EA is mediated by regulation of hippocampal proteins related to amino acid metabolism and activation of the MAPK signaling pathway.

  19. Identification of Differential Protein Expression in Hepatocellular Carcinoma Induced Wistar Albino Rats by 2D Electrophoresis and MALDI-TOF-MS Analysis.

    Science.gov (United States)

    Vedarethinam, Vadanasundari; Dhanaraj, Karthik; Soundherrajan, Ilavenil; Sivanesan, Ravikumar

    2016-04-01

    Hepato cellular carcinoma (HCC) is a type of malignant tumor. To investigate the proteins in cancer molecular mechanism and its role in HCC, we have used proteomic tools such as 2DE and MALDI-TOF-MS. Our investigation ravels that, plasma α-fetoprotein and carcinoembryonic antigen levels were elevated in DEN induced rats and gradually decreased after the treatment with 1,3BPMU. 2DE and MALDI-TOF-MS tool offers to identify the up and down regulation of proteins in HCC. Proteomic study reveals that, five differentially expressed proteins were identified in DEN induced rats and 1,3BPMU treated rats i.e. three up regulated protein such as T kininogen, NDPKB, PRMT1 (DEN induced rats), RGS19 and PAF (1,3BPMU treated rats) in 3BPMU treated rats, activation of transcription of a single gene from multiple promoters provides flexibility in the controlled gene expression. The regulations of hepatocyte stimulating factor were slow down the proliferation of hepatic cell and uncontrolled hepatic cell growth and also molecular signals strongly argue for a patho-physiological role in liver metastasis to control the cell aggression. This indicates that, anti cancer property of 1,3BPMU can be used as potent anti cancer agent. The present study also shows the proteomic approach helps to elucidate the tumor maker as well as regulatory marker proteins in HCC.

  20. Cytochrome P450 catalyzed metabolism of 1,2-dibromoethane in liver microsomes of differentially induced rats.

    Science.gov (United States)

    Wormhoudt, L W; Ploemen, J H; Commandeur, J N; van Ommen, B; van Bladeren, P; Vermeulen, N P

    1996-01-05

    The cytochrome P450 (P450) catalyzed oxidation of 1,2-dibromoethane (1,2-DBE) to 2-bromoacetaldehyde (2-BA) was measured in liver microsomes of both control and differentially induced rats. 2-BA formation was quantified by derivatization of 2-BA with adenosine (ADO), resulting in the formation of the highly fluorescent 1,N6-ethenoadenosine (epsilon-ADO), which was measured by HPLC. After microsomal incubation with 1,2DBE in the presence of ADO and removal of proteins by denaturation and centrifugation, derivatization by heating 4 h at 65 degrees C appeared necessary to ensure efficient formation of epsilon-ADO. Using this optimized derivatization method to quantitate 2-BA formation, the enzyme kinetics of the P450 catalyzed oxidation of 1,2-DBE to 2-BA were measured in liver microsomes prepared from untreated rats and rats pretreated with phenobarbital (PB), beta-naphtoflavone (beta NF) and pyrazole (PYR). P450 isoenzymes in PYR- and beta NF-induced microsomes showed linear enzyme kinetics while P450 isoenzymes in control and PB-induced microsomes showed non-linear enzyme kinetics. The apparent Vmax- and Km- values for the metabolism of 1,2-DBE to 2-BA were 2.5 nmol/min/mg protein and 144 microns for P450 isoenzymes in PYR-induced microsomes and 773 pmol/min/mg protein and 3.3 mM for P450 isoenzymes in beta NF-induced microsomes, respectively. Due to the non-linear enzyme kinetics of the P450 catalyzed oxidation of 1,2-DBE to 2-BA using control and PB-induced microsomes, no proper Vmax- and Km- values could be calculated. However, from Michaelis-Menten plots it was clear that the affinity of P450 isoenzymes for 1,2-DBE in control and PB-induced microsomes was in the same range when compared to beta NF-induced microsomes and thus much lower than the PYR-induced microsomes.

  1. Calcium electrotransfer for termination of transgene expression in muscle

    DEFF Research Database (Denmark)

    Hojman, Pernille; Spanggaard, Iben; Olsen, Caroline Holkman

    2011-01-01

    . A clinical grade calcium solution (20 μl, 168 mM) was injected into transfected mouse or rat tibialis cranialis muscle. Ca(2+) uptake was quantified using calcium 45 ((45)Ca), and voltage and time between injection and pulsation were varied. Extinction of transgene expression was investigated by using both...

  2. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat.

    Directory of Open Access Journals (Sweden)

    Mickaël Antoine Joseph

    Full Text Available How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM refers to the long-term storage of invariable information whereas Working Memory (WM depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting.

  3. Differential Involvement of the Dentate Gyrus in Adaptive Forgetting in the Rat

    Science.gov (United States)

    Joseph, Mickaël Antoine; Fraize, Nicolas; Ansoud-Lerouge, Jennifer; Sapin, Emilie; Peyron, Christelle; Arthaud, Sébastien; Libourel, Paul-Antoine; Parmentier, Régis; Salin, Paul Antoine; Malleret, Gaël

    2015-01-01

    How does the brain discriminate essential information aimed to be stored permanently from information required only temporarily, and that needs to be cleared away for not saturating our precious memory space? Reference Memory (RM) refers to the long-term storage of invariable information whereas Working Memory (WM) depends on the short-term storage of trial-unique information. Previous work has revealed that WM tasks are very sensitive to proactive interference. In order to prevent such interference, irrelevant old memories must be forgotten to give new ones the opportunity to be stabilized. However, unlike memory, physiological processes underlying this adaptive form of forgetting are still poorly understood. Here, we precisely ask what specific brain structure(s) could be responsible for such process to occur. To answer this question, we trained rats in a radial maze using three paradigms, a RM task and two WM tasks involving or not the processing of interference but strictly identical in terms of locomotion or motivation. We showed that an inhibition of the expression of Zif268 and c-Fos, two indirect markers of neuronal activity and synaptic plasticity, was observed in the dentate gyrus of the dorsal hippocampus when processing such interfering previously stored information. Conversely, we showed that inactivating the dentate gyrus impairs both RM and WM, but improves the processing of interference. Altogether, these results strongly suggest for the first time that the dentate gyrus could be a key structure involved in adaptive forgetting. PMID:26528714

  4. Differential effects of benzodiazepines on phospholipid methylation in hippocampus and cerebellum of rats

    Energy Technology Data Exchange (ETDEWEB)

    Tacconi, M.T.; Salmona, M.

    1988-01-01

    To elucidate the relationship between the occupancy of BDZ binding sites and phospholipid methylation in brain, the authors examined phosphatidylethanolamine-N-methyltransferase (PEMT) activity in synaptosomes of rat hippocampi and cerebella in the presence of BDZ ligands with different modes of action. We found that Ro 5-4864, a specific ligand for peripheral type receptors, increased PL methylation in hippocampal and cerebellar synaptosomes. This effect was directly related to receptor occupancy, since the specific antagonist PK11195 inhibited the rise in PEMT activity induced by Ro 5-4864. Clonazepam, on the other hand, tended to reduce PL production in cerebellum and hippocampus except for hiccocampal (/sup 3/H)-phosphatidyl-N-monomethylethanolamine which was elevated by 40 to 70% at doses ranging from 10/sup -9/ to 10/sup -6/M. When equimolar concentrations of the antagonist Ro 15-1788 were given in association the clonazepam-induced phosphatidyl-N-monomethylethanolamine increase was reduced by 70%. These data support the involvement of structural and functional membrane alterations in the action of BDZ. 20 references, 2 figures, 2 tables.

  5. Differential expression of BK channel isoforms and beta-subunits in rat neuro-vascular tissues

    DEFF Research Database (Denmark)

    Poulsen, Asser Nyander; Wulf, Helle; Hay-Schmidt, Anders

    2009-01-01

    We investigated the expression of splice variants and beta-subunits of the BK channel (big conductance Ca(2+)-activated K(+) channel, Slo1, MaxiK, K(Ca)1.1) in rat cerebral blood vessels, meninges, trigeminal ganglion among other tissues. An alpha-subunit splice variant X1(+24) was found expressed...... (RT-PCR) in nervous tissue only where also the SS4(+81) variant was dominating with little expression of the short form SS4(0). SS4(+81) was present in some cerebral vessels too. The SS2(+174) variant (STREX) was found in both blood vessels and in nervous tissue. In situ hybridization data supported...... the finding of SS4(+81) and SS2(+174) in vascular smooth muscle and trigeminal ganglion. beta-subunits beta2 and beta4 showed high expression in brain and trigeminal ganglion and some in cerebral vessels while beta1 showed highest expression in blood vessels. beta3 was found only in testis and possibly brain...

  6. Differential effects of high-carbohydrate and high-fat diets on hepatic lipogenesis in rats.

    Science.gov (United States)

    Ferramosca, Alessandra; Conte, Annalea; Damiano, Fabrizio; Siculella, Luisa; Zara, Vincenzo

    2014-06-01

    Hepatic fatty acid synthesis is influenced by several nutritional and hormonal factors. In this study, we have investigated the effects of distinct experimental diets enriched in carbohydrate or in fat on hepatic lipogenesis. Male Wistar rats were divided into four groups and fed distinct experimental diets enriched in carbohydrates (70% w/w) or in fat (20 and 35% w/w). Activity and expression of the mitochondrial citrate carrier and of the cytosolic enzymes acetyl-CoA carboxylase and fatty acid synthetase were analyzed through the study with assessments at 0, 1, 2, 4, and 6 weeks. Liver lipids and plasma levels of lipids, glucose, and insulin were assayed in parallel. Whereas the high-carbohydrate diet moderately stimulated hepatic lipogenesis, a strong inhibition of this anabolic pathway was found in animals fed high-fat diets. This inhibition was time-dependent and concentration-dependent. Moreover, whereas the high-carbohydrate diet induced an increase in plasma triglycerides, the high-fat diets determined an accumulation of triglycerides in liver. An increase in the plasmatic levels of glucose and insulin was observed in all cases. The excess of sucrose in the diet is converted into fat that is distributed by bloodstream in the organism in the form of circulating triglycerides. On the other hand, a high amount of dietary fat caused a strong inhibition of lipogenesis and a concomitant increase in the level of hepatic lipids, thereby highlighting, in these conditions, the role of liver as a reservoir of exogenous fat.

  7. Macromolecular metabolism of a differentiated rat keratinocyte culture system following exposure to sulfur mustard

    International Nuclear Information System (INIS)

    Vaughan, F.L.; Zaman, S.; Scavarelli, R.; Bernstein, I.A.

    1988-01-01

    A method for producing a stratified, squamous epithelium in vitro by cultivating rat keratinocytes on nylon membranes has been developed in this laboratory. This epidermal-like culture is being used to obtain a better understanding of the mechanism of skin vesication after topical exposure to the sulfur mustard bis(beta-chloroethyl) sulfide (BCES) dissolved in a selected solvent. Radiolabeled macromolecular precursors (thymidine, uridine, and leucine) have been used to study the effect of BCES on the synthesis of DNA, RNA, and protein, respectively, after topical exposure to the mustard at concentrations of 0.01-500 nmol/cm2 dissolved in 70% dimethyl sulfoxide (DMSO). From these and other studies it has been determined that exposure to even the low concentration of 0.01 nmol BCES/cm2 for 30 min results in significant inhibition of [ 3 H]thymidine incorporation, although complete recovery occurs by 24 h. Significant inhibition of [ 3 H]uridine and [ 14 C]leucine incorporation is observed only after exposure to much higher concentrations of BCES (10-500 nmol/cm2). This suggests a very early lesion in macromolecular metabolism with DNA being the primary target

  8. Adenoviral vector-mediated overexpression of osteoprotegerin accelerates osteointegration of titanium implants in ovariectomized rats.

    Science.gov (United States)

    Yin, G; Chen, J; Wei, S; Wang, H; Chen, Q; Lin, Y; Hu, J; Luo, E

    2015-08-01

    This study investigated the efficacy of human osteoprotegerin (hOPG) transgene to accelerate osteointegration of titanium implant in ovariectomized (OVX) rats. Bone marrow stromal cells transduced with Ad-hOPG-EGFP could sustainedly express hOPG. Osteoclast precursor RAW264.7 cells treated by the hOPG were examined by tartrate-resistant acid phosphatase (TRAP) staining and bone slice resorption assay. The results showed differentiation and function of osteoclasts were significantly suppressed by hOPG in vitro. Ad-hOPG-EGFP was locally administered to the bone defect prior to implant placement in OVX and sham rats. After 3, 7, 28 days of implantation, the femurs were harvested for molecular and histological analyses. Successful transgene expression was confirmed by western blot and cryosectioning. A significant reduction in TRAP+ numbers was detected in Ad-hOPG-EGFP group. Real-time reverse transcriptase-PCR examination revealed that hOPG transgene markedly diminished the expression of cathepsin K and receptor activator for nuclear factor-κ B ligand in vivo. The transgene hOPG modification revealed a marked increasing osteointegration and restored implant stability in OVX rats (POsteoprotegerin gene therapy may be an effective strategy to osteointegration of implants under osteoporotic conditions.

  9. Transgenic mice susceptible to poliovirus.

    OpenAIRE

    Koike, S; Taya, C; Kurata, T; Abe, S; Ise, I; Yonekawa, H; Nomoto, A

    1991-01-01

    Poliovirus-sensitive transgenic mice were produced by introducing the human gene encoding cellular receptors for poliovirus into the mouse genome. Expression of the receptor mRNAs in tissues of the transgenic mice was analyzed by using RNA blot hybridization and the polymerase chain reaction. The human gene is expressed in many tissues of the transgenic mice just as in tissues of humans. The transgenic mice are susceptible to all three poliovirus serotypes, and the mice inoculated with poliov...

  10. Small activating RNA induces myogenic differentiation of rat adipose-derived stem cells by upregulating MyoD

    Directory of Open Access Journals (Sweden)

    Chenghe Wang

    2015-08-01

    Full Text Available ABSTRACTPurpose:RNA activation (RNAa is a mechanism of gene activation triggered by promoter-targeted small double stranded RNAs (dsRNAs, also known as small activating RNAs (saRNAs. Myogenic regulatory factor MyoD is regarded as the master activator of myogenic differentiation cascade by binding to enhancer of muscle specific genes. Stress urinary incontinence (SUI is a condition primarily resulted from urethral sphincter deficiency. It is thus expected that by promoting differentiation of adipose-derived stem cells (ADSCs into myoblasts by activating MyoD gene through RNAa may offer benefits to SUI.Materials and Methods:Rats ADSCs were isolated, proliferated in vitro, and identified by flow cytometry. Purified ADSCs were then transfected with a MyoD saRNA or control transfected. Real-time polymerase chain reaction (RT-PCR and western blotting were used to detect MyoD mRNA and protein expression, respectively. Immunocytochemical staining was applied to determine the expression of desmin protein in transfected cells. Cell viability was measured by using CellTiter 96® AQueous One Solution Cell Proliferation Assay kit.Results:Transfection of a MyoD saRNA (dsMyoD into ADSCs significantly induced the expression of MyoD at both the mRNA and protein levels, and inhibited cell proliferation. Desmin protein expression was detected in dsMyoD treated ADSCs 2 weeks later.Conclusion:Our findings show that RNAa mediated overexpression of MyoD can promote transdifferentiation of ADSCs into myoblasts and may help treat stress urinary incontinence (SUI–a condition primarily resulted from urethral sphincter deficiency.

  11. Transgenic Crops for Herbicide Resistance

    Science.gov (United States)

    Since their introduction in 1995, crops made resistant to the broad-spectrum herbicides glyphosate and glufosinate with transgenes are widely available and used in much of the world. As of 2008, over 80% of the transgenic crops grown world-wide have this transgenic trait. This technology has had m...

  12. Differential uptake of cholesterol and plant sterols by rat erythrocytes in vitro.

    Science.gov (United States)

    Child, P; Kuksis, A

    1982-10-01

    The in vitro uptake of radioactively labeled cholesterol and the plant sterol beta-sitosterol has been examined in rat erythrocytes. From mixed micellar solutions containing egg yolk phospholipid and sodium taurocholate, the erythrocytes showed a nonlinear uptake of the two sterols. The uptake leveled off after about 45 min with the attainment of a 1:1 total sterol-to-phospholipid ratio within the cell membrane, as determined on a mass basis. From solutions containing egg yolk phospholipid, or purified egg yolk phosphatidylcholine, a preference for cholesterol over the plant sterol was observed, increasing with time from a cholesterol/beta-sitosterol uptake ratio of unity (the media ratio) to a maximum of 2 after a 60-min incubation. Correction of the data for nonspecifically bound sterol increased the ratio to a maximum of 5 at the 30-min time point. The increase in the cholesterol/beta-sitosterol uptake ratio with time, following an initial nonspecific association, showed that penetration of the plasma membrane by the sterol was required for the selectivity to be expressed. The presence of lysophosphatidylcholine or bovine serum albumin did not exert any noticeable influence over the extent or selectivity of absorption. Replacement of the egg yolk phospholipid with synthetic dipalmitoyl-phosphatidylcholine led to a loss of the sterol selectivity. No evidence was found to support a selective extraction of sterol from the erythrocyte membrane to account for the observed effects, nor was there any sign of a mass accumulation of phospholipid during the incubation. It is suggested that the media phospholipid influences the membrane permeability toward cholesterol and beta-sitosterol.

  13. Exercise-induced differential changes in gene expression among arterioles of skeletal muscles of obese rats

    Science.gov (United States)

    Padilla, Jaume; Jenkins, Nathan T.; Thorne, Pamela K.; Martin, Jeffrey S.; Rector, R. Scott; Akter, Sadia; Davis, J. Wade

    2015-01-01

    Using next-generation, transcriptome-wide RNA sequencing (RNA-Seq) technology we assessed the effects of exercise training on transcriptional profiles in skeletal muscle arterioles isolated from the soleus and gastrocnemius muscles of Otsuka Long Evans Tokushima Fatty (OLETF) rats that underwent an endurance exercise training program (EX; n = 13), interval sprint training program (SPRINT; n = 14), or remained sedentary (Sed; n = 12). We hypothesized that the greatest effects of exercise would be in the gastrocnemius arterioles. Results show that EX caused the largest number of changes in gene expression in the soleus and white gastrocnemius 2a arterioles with little to no changes in the feed arteries. In contrast, SPRINT caused substantial changes in gene expression in the feed arteries. IPA canonical pathway analysis revealed 18 pathways with significant changes in gene expression when analyzed across vessels and revealed that EX induces increased expression of the following genes in all arterioles examined: Shc1, desert hedgehog protein (Dhh), adenylate cyclase 4 (Adcy4), G protein binding protein, alpha (Gnat1), and Bcl2l1 and decreased expression of ubiquitin D (Ubd) and cAMP response element modulator (Crem). EX increased expression of endothelin converting enzyme (Ece1), Hsp90b, Fkbp5, and Cdcl4b in four of five arterioles. SPRINT had effects on expression of Crem, Dhh, Bcl2l1, and Ubd that were similar to EX. SPRINT also increased expression of Nfkbia, Hspa5, Tubb 2a and Tubb 2b, and Fkbp5 in all five arterioles and increased expression of Gnat1 in all but the soleus second-order arterioles. Many contractile and/or structural protein genes were increased by SPRINT in the gastrocnemius feed artery, but the same genes exhibited decreased expression in red gastrocnemius arterioles. We conclude that training-induced changes in arteriolar gene expression patterns differ by muscle fiber type composition and along the arteriolar tree. PMID:26183477

  14. Differential binding of 3H-imipramine and 3H-mianserin in rat cerebral cortex

    International Nuclear Information System (INIS)

    Dumbrille-Ross, A.; Tang, S.W.; Coscina, D.V.

    1981-01-01

    Drug competition profiles, effect of raphe lesion, and sodium dependency of the binding of two antidepressant drugs 3 H-imipramine and 3 H-mianserin to rat cerebral cortex homogenate were compared to examine whether the drugs bound to a common ''antidepressant receptor.'' Of the neurotransmitters tested, only serotonin displaced binding of both 3 H-imipramine and 3 H-mianserin. 3 H-Mianserin binding was potently displaced by serotonin S 2 antagonists and exhibited a profile similar to that of 3 H-spiperone binding. In the presence of the serotonin S 2 antagonist spiperone, antihistamines (H 1 ) potently displaced 3 H-mianserin binding. 3 H-Imipramine binding was displaced potently by serotonin uptake inhibitors. The order of potency of serotonergic drugs in displacing 3 H-imipramine binding was not similar to their order in displacing 3 H-spiperone or -3H-serotonin binding. Prior midbrain raphe lesions greatly decreased the binding of 3 H-imipramine but did not alter binding of 3 H-mianserin. Binding of 3 H-imipramine but not 3 H-mianserin was sodium dependent. These results show that 3 H-imipramine and 3 H-mianserin bind to different receptors. 3 H-Imipramine binds to a presynaptic serotonin receptor which is probably related to a serotonin uptake recognition site, the binding of which is sodium dependent. 3 H-Mianserin binds to postsynaptic receptors, possibly both serotonin S 2 and histamine H 1 receptors, the binding of which is sodium independent

  15. Extra collagen overlay prolongs the differentiated phenotype in sandwich-cultured rat hepatocytes.

    Science.gov (United States)

    Oorts, Marlies; Keemink, Janneke; Deferm, Neel; Adriaensen, Robin; Richert, Lysiane; Augustijns, Patrick; Annaert, Pieter

    2017-10-25

    Sandwich-cultured rat hepatocytes (SCRH) have become an invaluable in vitro model to study hepatic drug disposition. SCRH are maintained between two layers of extracellular matrix. In this configuration, culture periods of 4days are typically applicable. The aim of the present study was to modify conventional SCRH by applying an additional collagen overlay to prolong the hepatic phenotype in SCRH and thus to extend the applicability of the model. The cultures receiving an extra top layer ('SCRH-plus' cultures) were compared with the conventional SCRH by testing the morphology, cell functionality, metabolic capacity and Mrp2-activity. In the SCRH-plus cultures, cell functionality, evaluated by measuring urea production, was increased from day 5 onwards, compared to conventional cultures. Furthermore, these cells retained the appearance of typical hepatocytes, in contrast with conventional sandwich cultures which showed rapid dedifferentiation. SCRH-plus exhibited significantly improved metabolic clearance mediated by cytochrome P450 3A compared to conventional SCRH whereas UDP-glucuronosyltransferase-mediated metabolism was unaffected. Both conventional SCRH and SCRH-plus showed extensive biliary networks at day 4 of culture. However, from day 4 onwards, a decline in biliary excretion index (BEI) was observed in the conventional SCRH, while BEI values in SCRH-plus cultures did not decrease until day 7. The application of an extra top layer of collagen on the SCRH prolongs their useful life-span to 7days. Therefore, SCRH-plus cultures will broaden the applications of SCRH in terms of long-term toxicity evaluation and when determining metabolism of low turnover compounds. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Regulated expression of transgenes in embryonic stem cell-derived neural cells.

    Science.gov (United States)

    Lorberbaum, David S; Gottlieb, David

    2011-02-01

    Discovery and characterization of gene promoters, enhancers and repressor binding elements is an important research area in neuroscience. Here, the suitability of embryonic stem cells and their neural derivatives as a model system for this research is investigated. Three neural transgenic constructs (from the Mnx1, Fabp7, and tuba1a genes) that have been validated in transgenic mice were inserted into embryonic stem cells as stable transgenes. These transgenic embryonic stem cells were differentiated into neural cultures and the pattern of transgene expression across a series of inducing conditions determined. The pattern of expression matched that predicted from transgenic mouse experiments for each of the three transgenes. The results show that embryonic stem cells and their neural derivatives comprise a promising model for investigating the mechanisms that control cell- and temporal-specific neural gene transcription. Copyright © 2010 Wiley-Liss, Inc.

  17. [Progress on transgenic mosquitoes].

    Science.gov (United States)

    Yang, Pin

    2011-04-30

    The genetically modified mosquitoes have been developed aiming to control mosquito-borne diseases by either reducing population sizes or replacing existing populations with vectors unable to transmit the disease. introduces some progress on the generation of transgenic mosquitoes and their fitness in wild population. This paper

  18. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: https://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  19. Transgenics in Agriculture

    Indian Academy of Sciences (India)

    Home; Journals; Resonance – Journal of Science Education; Volume 6; Issue 2. Transgenics in Agriculture. D Rex Arunraj B Gajendra Babu. Classroom Volume 6 Issue 2 February 2001 pp 83-92. Fulltext. Click here to view fulltext PDF. Permanent link: http://www.ias.ac.in/article/fulltext/reso/006/02/0083-0092 ...

  20. Naringin Stimulates Osteogenic Differentiation of Rat Bone Marrow Stromal Cells via Activation of the Notch Signaling Pathway

    Directory of Open Access Journals (Sweden)

    Guo-yong Yu

    2016-01-01

    Full Text Available Naringin is a major flavonoid found in grapefruit and is an active compound extracted from the Chinese herbal medicine Rhizoma Drynariae. Naringin is a potent stimulator of osteogenic differentiation and has potential application in preventing bone loss. However, the signaling pathway underlying its osteogenic effect remains unclear. We hypothesized that the osteogenic activity of naringin involves the Notch signaling pathway. Rat bone marrow stromal cells (BMSCs were cultured in osteogenic medium containing-naringin, with or without DAPT (an inhibitor of Notch signaling, the effects on ALP activity, calcium deposits, osteogenic genes (ALP, BSP, and cbfa1, adipogenic maker gene PPARγ2 levels, and Notch expression were examined. We found that naringin dose-dependently increased ALP activity and Alizarin red S staining, and treatment at the optimal concentration (50 μg/mL increased mRNA levels of osteogenic genes and Notch1 expression, while decreasing PPARγ2 mRNA levels. Furthermore, treatment with DAPT partly reversed effects of naringin on BMSCs, as judged by decreases in naringin-induced ALP activity, calcium deposits, and osteogenic genes expression, as well as upregulation of PPARγ2 mRNA levels. These results suggest that the osteogenic effect of naringin partly involves the Notch signaling pathway.

  1. Differential visualization of dopamine and norepinephrine uptake sites in rat brain using [3H]mazindol autoradiography

    International Nuclear Information System (INIS)

    Javitch, J.A.; Strittmatter, S.M.; Snyder, S.H.

    1985-01-01

    Mazindol is a potent inhibitor of neuronal dopamine (DA) and norepinephrine (NE) uptake. DA and NE uptake sites in rat brain have been differentially visualized using [ 3 H]mazindol autoradiography. At appropriate concentrations, desipramine (DMI) selectively inhibits [ 3 H]mazindol binding to NE uptake sites without significantly affecting binding to DA uptake sites. The localization of DMI-insensitive specific [ 3 H] mazindol binding, reflecting DA uptake sites, is densest in the caudate-putamen, the nucleus accumbens, the olfactory tubercle, the subthalamic nucleus, the ventral tegmental area, the substantia nigra (SN) pars compacta, and the anterior olfactory nuclei. In contrast, the localization of DMI-sensitive specific [ 3 H]mazindol binding, representing NE uptake sites, is densest in the locus coeruleus, the nucleus of the solitary tract, the bed nucleus of the stria terminalis, the paraventricular and periventricular nuclei of the hypothalamus, and the anteroventral thalamus. The distribution of DMI-insensitive specific [ 3 H]mazindol binding closely parallels that of dopaminergic terminal and somatodendritic regions, while the distribution of DMI-sensitive specific [ 3 H]mazindol binding correlates well with the regional localization of noradrenergic terminals and cell bodies. Injection of 6-hydroxydopamine, ibotenic acid, or colchicine into the SN decreases [ 3 H]mazindol binding to DA uptake sites in the ipsilateral caudate-putamen by 85%. In contrast, ibotenic acid lesions of the caudate-putamen do not reduce [ 3 H]mazindol binding to either the ipsilateral or contralateral caudate-putamen

  2. Differential action for ethanol on baroreceptor reflex control of heart rate and sympathetic efferent discharge in rats

    Energy Technology Data Exchange (ETDEWEB)

    Xin, Z.; Abdel-Rahman, A.R.A.; Wooles, W.R.

    1988-01-01

    The acute effects of ethanol (0.33, 0.66, or 1 g/kg) on baroreflex control of heart rate (HR) and sympathetic efferent discharge (SED) were investigated in rats. The two higher doses of ethanol caused a progressive and significant increase in baseline SED and a slight increase in HR. The findings suggest that the sensitivity of the reflex control of SED was preserved whereas that of HR was impaired after acute ethanol administration. Since these findings were obtained in the same animals, the data suggest that acute ethanol has a differential action on reflex control of SED and HR. Further, the significant increase in SED after moderate and high doses of ethanol suggests an increased central sympathetic tone as recordings were made from preganglionic nerve fibers (splanchnic nerve). The absence of an increase in baseline MAP, in spite of a significant increase in baseline SED following acute ethanol injection, could be explained, at least in part, by an ethanol-evoked reduction in pressor responsiveness to phenylephrine, an ..cap alpha..-adrenergic agonist.

  3. DI(N-BUTYL) PHTHALATE AND DIETHYLHEXYL PHTHALATE IN COMBINATION ALTER SEXUAL DIFFERENTIATION IN A CUMULATIVE MANNER AS A RESULT OF DEPRESSED FETAL TESTOSTERONE PRODUCTION AND INSL3 GENE EXPRESSION IN MALE RATS

    Science.gov (United States)

    Plasticizers di(n-butyl) phthalate (DBP) and diehtylhexyl phthalate (DEHP) have similar modes of action: in utero exposure reduces testosterone (T) production in fetal male rats, inhibits reproductive tract differentiation, and induces reproductive organ malformations. In utero e...

  4. The effect of hydro-ethanolic extract of Curcuma longa rhizome and curcumin on total and differential WBC and serum oxidant, antioxidant biomarkers in rat model of asthma

    Science.gov (United States)

    Shakeri, Farzaneh; Soukhtanloo, Mohammad; Boskabady, Mohammad Hossein

    2017-01-01

    Objective(s): The effects of Curcuma longa (C. longa) and curcumin on total and differential WBC count and oxidant, antioxidant biomarkers, in rat model of asthma were evaluated. Materials and Methods: Total and differential WBC count in the blood, NO2, NO3, MDA, SOD, CAT and thiol levels in serum were examined in control, asthma, Asthmatic rats treated with C. longa (0.75, 1.50, and 3.00 mg/ml), curcumin (0.15, 0.30, and 0.60 mg/ml), and dexamethasone (1.25 μg/ml) rats. Results: Total and most differential WBC count, NO2, NO3 and MDA were increased but lymphocytes, SOD, CAT and thiol were decreased in asthmatic animals compared to controls (Plonga and curcumin compared to asthmatic group (Plonga and curcumin (Plonga extract and its constituent curcumin in animal model of asthma was observed which suggest a therapeutic potential for the plant and its constituent on asthma. PMID:28293392

  5. Differential Sensitivity of Specific Neuronal Populations of the Rat Hypothalamus to Prolactin Action

    Science.gov (United States)

    Sapsford, Tony J.; Kokay, Ilona C.; Östberg, Lovisa; Bridges, Robert S.; Grattan, David R.

    2014-01-01

    Prolactin stimulates dopamine release from neuroendocrine dopaminergic (NEDA) neurons in the hypothalamic arcuate nucleus (ARC) to maintain low levels of serum prolactin. Elevated prolactin levels during pregnancy and lactation may mediate actions in other hypothalamic regions such as the paraventricular nucleus (PVN) and rostral preoptic area (rPOA). We predicted that NEDA neurons would be more sensitive prolactin targets than neurons in other regions because they are required to regulate basal prolactin secretion. Moreover, differences in the accessibility of the ARC to prolactin in blood may influence the responsiveness of this population. Therefore, we compared prolactin-induced signaling in different hypothalamic neuronal populations following either systemic or intracerebroventricular (icv) prolactin administration. Phosphorylation of the signal transduction factor, STAT5 (pSTAT5), was used to identify prolactin-responsive neurons. In response to systemic prolactin, pSTAT5-labeled cells were widely observed in the ARC but absent from the rPOA and PVN. Many of these responsive cells in the ARC were identified as NEDA neurons. The lowest icv prolactin dose (10 ng) induced pSTAT5 in the ARC, but with higher doses (>500 ng) pSTAT5 was detected in numerous regions, including the rPOA and PVN. NEDA neurons were maximally labeled with nuclear pSTAT5 in response to 500 ng prolactin and appeared to be more sensitive than dopaminergic neurons in the rPOA. Subpopulations of oxytocin neurons in the hypothalamus were also found to be differentially sensitive to prolactin. These data suggest that differences in the accessibility of the arcuate nucleus to prolactin, together with intrinsic differences in the NEDA neurons, may facilitate homeostatic feedback regulation of prolactin release. PMID:21953590

  6. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    Energy Technology Data Exchange (ETDEWEB)

    Esquifino, A.I. [Dept. de Bioquimica y Biologia Molecular III, Universidad Complutense, Madrid (Spain); Seara, R.; Fernandez-Rey, E.; Lafuente, A. [Lab. de Toxicologia, Universidad de Vigo, Orense (Spain)

    2001-05-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  7. Alternate cadmium exposure differentially affects the content of gamma-aminobutyric acid (GABA) and taurine within the hypothalamus, median eminence, striatum and prefrontal cortex of male rats

    International Nuclear Information System (INIS)

    Esquifino, A.I.; Seara, R.; Fernandez-Rey, E.; Lafuente, A.

    2001-01-01

    This work examines changes of gamma aminobutyric acid (GABA) and taurine contents in the hypothalamus, striatum and prefrontal cortex of the rat after an alternate schedule of cadmium administration. Age-associated changes were also evaluated, of those before puberty and after adult age. In control rats GABA content decreased with age in the median eminence and in anterior, mediobasal and posterior hypothalamus, prefrontal cortex and the striatum. Taurine content showed similar results with the exception of mediobasal hypothalamus and striatum, where no changes were detected. In pubertal rats treated with cadmium from 30 to 60 days of life, GABA content significantly decreased in all brain regions except in the striatum. When cadmium was administered from day 60 to 90 of life, GABA content was significantly changed in prefrontal cortex only compared with the age matched controls. Taurine content showed similar results in pubertal rats, with the exception of the median eminence and the mediobasal hypothalamus, neither of which showed a change. However, when cadmium was administered to rats from day 60 to 90 of life, taurine content only changed in prefrontal cortex compared with the age matched controls. These results suggest that cadmium differentially affects GABA and taurine contents within the hypothalamus, median eminence, striatum and prefrontal cortex as a function of age. (orig.)

  8. Chronic injection of pansomatostatin agonist ODT8-SST differentially modulates food intake and decreases body weight gain in lean and diet-induced obese rats.

    Science.gov (United States)

    Stengel, Andreas; Coskun, Tamer; Goebel-Stengel, Miriam; Craft, Libbey S; Alsina-Fernandez, Jorge; Wang, Lixin; Rivier, Jean; Taché, Yvette

    2011-04-11

    The aim of this study was to investigate the central actions of the stable pansomatostatin peptide agonist, ODT8-SST on body weight. ODT8-SST or vehicle was acutely (1μg/rat) injected or chronically infused (5μg/rat/d, 14d) intracerebroventricularly and daily food intake, body weight and composition were monitored. In lean rats, neither acute nor chronic ODT8-SST influenced daily food intake while body weight was reduced by 2.2% after acute injection and there was a 14g reduction of body weight gain after 14d compared to vehicle (pfood intake compared to vehicle (+14%, pweight change (-11g, p0.05) compared to vehicle. In DIO rats, ODT8-SST reduced ambulatory (-27%/24h, pweight gain and lean mass independently of food intake which is likely related to growth hormone inhibition. In DIO rats, ODT8-SST reduces lean mass but promotes food intake and fat mass, indicating differential responsiveness to somatostatin under obese conditions. 2011 Elsevier B.V. All rights reserved.

  9. Use of enriched {sup 74}Se and {sup 77}Se in combination with isotope pattern deconvolution to differentiate and determine endogenous and supplemented selenium in lactating rats

    Energy Technology Data Exchange (ETDEWEB)

    Gonzalez Iglesias, H.; Fernandez Sanchez, M.L.; Garcia Alonso, J.I.; Sanz-Medel, A. [University of Oviedo, Department of Physical and Analytical Chemistry, Faculty of Chemistry, Oviedo (Spain)

    2007-10-15

    A quantitative methodology has been developed to differentiate between endogenous and supplemented selenium in lactating rats using two enriched selenium isotopes. Lactating rats were fed for 2 weeks with formula milk containing one enriched Se isotope, {sup 77}Se, as the metabolic tracer. The isotopic composition of selenium in serum and urine samples was then measured by collision cell ICP-MS after the addition of a solution containing another enriched isotope, {sup 74}Se, as quantitation tracer, before analysis. Isotope pattern deconvolution allowed the transformation of measured Se isotopic abundances into concentrations of natural abundance (endogenous) selenium and enriched {sup 77}Se (supplemented) present in the samples. The proposed methodology was validated using serum and urine reference materials spiked with both {sup 77}Se and {sup 74}Se. The obtained results are discussed in terms of selenium exchange and half-life in lactating rats (11-12 days) and selenium levels in serum in comparison with non-supplemented rats and control rats after maternal feeding. (orig.)

  10. Differential feedback regulation of cholesterol 7α-hydroxylase mRNA and transcriptional activity by rat bile acids in primary monolayer cultures of rat hepatocytes

    NARCIS (Netherlands)

    Twisk, J.; Lehmann, E.M.; Princen, H.M.G.

    1993-01-01

    We have used primary monolayer cultures of rat hepatocytes to study the effects of physiological concentrations of various bile acids, commonly found in bile of normal rats, on the mechanism of regulation of cholesterol 7α-hydroxylase and bile acid synthesis. Addition of taurocholic acid, the most

  11. Processing of growth hormone by rat adipocytes in primary culture: differentiation between release of intact hormone and degradative processing.

    Science.gov (United States)

    Roupas, P; Herington, A C

    1987-10-01

    Rat adipocytes in primary culture have been used to study the intracellular processing of GH. These classic target cells for GH have been shown to process GH through two pathways: a nondegradative pathway which resulted in the rapid release of intact GH, and a slower, degradative pathway which involved the degradation of GH and release of degraded ligand. Differentiation between the two pathways was on the basis of differences in their kinetics and temperature dependence. The present study has investigated the relative characteristics of the two pathways further. Incubation of [125I]human GH ([125I]hGH)-preloaded adipocytes with extracellular unlabeled hGH (400 ng/ml) resulted in an increase in the absolute amount of [125I]hGH released. The increased amount of [125I]hGH released was all intact. Extracellular, unlabeled hGH had no effect on the rate or amount of degraded [125I]hGH released. This suggests that the nondegradative pathway is sensitive to the number of internalized hormone-receptor complexes and that GH which is not immediately degraded or stored in the degradative pathway, is redirected and processed via the faster non-degradative pathway. Ammonium chloride (known to inhibit the lysosomal degradation of many polypeptide hormones) markedly inhibited the absolute amount of [125I]hGH released from preloaded adipocytes. This inhibition was due to an effect on the release of degraded [125I]hGH. NH4Cl had no effect on the rate or amount of intact [125I]hGH released. Finally, it was found that dinitrophenol and sodium fluoride (agents known to deplete cellular energy) inhibited the release of degraded GH but not intact GH suggesting that the degradative pathway involves an energy-dependent step, most likely the fusion of hormone-containing vesicles with the lysosomal membrane. The mechanism of release of intact hormone by energy-independent means is not yet known. These data indicate that the processing of GH by cultured rat adipocytes is complex and involves

  12. iPS cell-derived cardiogenicity is hindered by sustained integration of reprogramming transgenes.

    Science.gov (United States)

    Martinez-Fernandez, Almudena; Nelson, Timothy J; Reyes, Santiago; Alekseev, Alexey E; Secreto, Frank; Perez-Terzic, Carmen; Beraldi, Rosanna; Sung, Hoon-Ki; Nagy, Andras; Terzic, Andre

    2014-10-01

    Nuclear reprogramming inculcates pluripotent capacity by which de novo tissue differentiation is enabled. Yet, introduction of ectopic reprogramming factors may desynchronize natural developmental schedules. This study aims to evaluate the effect of imposed transgene load on the cardiogenic competency of induced pluripotent stem (iPS) cells. Targeted inclusion and exclusion of reprogramming transgenes (c-MYC, KLF4, OCT4, and SOX2) was achieved using a drug-inducible and removable cassette according to the piggyBac transposon/transposase system. Pulsed transgene overexpression, before iPS cell differentiation, hindered cardiogenic outcomes. Delayed in counterparts with maintained integrated transgenes, transgene removal enabled proficient differentiation of iPS cells into functional cardiac tissue. Transgene-free iPS cells generated reproducible beating activity with robust expression of cardiac α-actinin, connexin 43, myosin light chain 2a, α/β-myosin heavy chain, and troponin I. Although operational excitation-contraction coupling was demonstrable in the presence or absence of transgenes, factor-free derivatives exhibited an expedited maturing phenotype with canonical responsiveness to adrenergic stimulation. A disproportionate stemness load, caused by integrated transgenes, affects the cardiogenic competency of iPS cells. Offload of transgenes in engineered iPS cells ensures integrity of cardiac developmental programs, underscoring the value of nonintegrative nuclear reprogramming for derivation of competent cardiogenic regenerative biologics. © 2014 American Heart Association, Inc.

  13. BDNF Increases Survival and Neuronal Differentiation of Human Neural Precursor Cells Cotransplanted with a Nanofiber Gel to the Auditory Nerve in a Rat Model of Neuronal Damage

    Directory of Open Access Journals (Sweden)

    Yu Jiao

    2014-01-01

    Full Text Available Objectives. To study possible nerve regeneration of a damaged auditory nerve by the use of stem cell transplantation. Methods. We transplanted HNPCs to the rat AN trunk by the internal auditory meatus (IAM. Furthermore, we studied if addition of BDNF affects survival and phenotypic differentiation of the grafted HNPCs. A bioactive nanofiber gel (PA gel, in selected groups mixed with BDNF, was applied close to the implanted cells. Before transplantation, all rats had been deafened by a round window niche application of β-bungarotoxin. This neurotoxin causes a selective toxic destruction of the AN while keeping the hair cells intact. Results. Overall, HNPCs survived well for up to six weeks in all groups. However, transplants receiving the BDNF-containing PA gel demonstrated significantly higher numbers of HNPCs and neuronal differentiation. At six weeks, a majority of the HNPCs had migrated into the brain stem and differentiated. Differentiated human cells as well as neurites were observed in the vicinity of the cochlear nucleus. Conclusion. Our results indicate that human neural precursor cells (HNPC integration with host tissue benefits from additional brain derived neurotrophic factor (BDNF treatment and that these cells appear to be good candidates for further regenerative studies on the auditory nerve (AN.

  14. Comparative study of transgenic and non-transgenic maize (Zea mays) flours commercialized in Brazil, focussing on proteomic analyses.

    Science.gov (United States)

    Vidal, Nádia; Barbosa, Herbert; Jacob, Silvana; Arruda, Marco

    2015-08-01

    Genetically modified foods are a major concern around the world due to the lack of information concerning their safety and health effects. This work evaluates differences, at the proteomic level, between two types of crop samples: transgenic (MON810 event with the Cry1Ab gene, which confers resistance to insects) and non-transgenic maize flour commercialized in Brazil. The 2-D DIGE technique revealed 99 differentially expressed spots, which were collected in 2-D PAGE gels and identified via mass spectrometry (nESI-QTOF MS/MS). The abundance of protein differences between the transgenic and non-transgenic samples could arise from genetic modification or as a result of an environmental influence pertaining to the commercial sample. The major functional category of proteins identified was related to disease/defense and, although differences were observed between samples, no toxins or allergenic proteins were found. Copyright © 2015 Elsevier Ltd. All rights reserved.

  15. Transgenics in crops

    Science.gov (United States)

    Li, Y.; Wu, Y. H.; McAvoy, R.; Duan, H.

    2001-01-01

    With rapid world population growth and declining availability of fresh water and arable land, a new technology is urgently needed to enhance agricultural productivity. Recent discoveries in the field of crop transgenics clearly demonstrate the great potential of this technology for increasing food production and improving food quality while preserving the environment for future generations. In this review, we briefly discuss some of the recent achievements in crop improvement that have been made using gene transfer technology.

  16. Differential Effects of E2 on MAPK Activity in the Brain and Heart of Aged Female Rats.

    Directory of Open Access Journals (Sweden)

    Elena Pinceti

    Full Text Available Aging and the coincident loss of circulating estrogens at menopause lead to increased risks for neurological and cardiovascular pathologies. Clinical studies show that estrogen therapy (ET can be beneficial in mitigating these negative effects, in both the brain and heart, when it is initiated shortly after the perimenopausal transition. However, this same therapy is detrimental when initiated >10 years postmenopause. Importantly, the molecular mechanisms underlying this age-related switch in ET efficacy are unknown. Estrogen receptors (ERs mediate the neuroprotective and cardioprotective functions of estrogens by modulating gene transcription or, non-genomically, by activating second messenger signaling pathways, such as mitogen activated protein kinases (MAPK. These kinases are critical regulators of cell signaling pathways and have widespread downstream effects. Our hypothesis is that age and estrogen deprivation following menopause alters the expression and activation of the MAPK family members p38 and ERK in the brain and heart. To test this hypothesis, we used a surgically induced model of menopause in 18 month old rats through bilateral ovariectomy (OVX followed by an acute dose of 17β-estradiol (E2 administered at varying time points post-OVX (1 week, 4 weeks, 8 weeks, or 12 weeks. Age and E2 treatment differentially regulated kinase activity in both the brain and heart, and the effects were also brain region specific. MAPK signaling plays an integral role in aging, and the aberrant regulation of those signaling pathways might be involved in age-related disorders. Clinical studies show benefits of ET during early menopause but detrimental effects later, which might be reflective of changes in kinase expression and activation status.

  17. Quantitative Electroencephalography Within Sleep/Wake States Differentiates GABAA Modulators Eszopiclone and Zolpidem From Dual Orexin Receptor Antagonists in Rats

    Science.gov (United States)

    Fox, Steven V; Gotter, Anthony L; Tye, Spencer J; Garson, Susan L; Savitz, Alan T; Uslaner, Jason M; Brunner, Joseph I; Tannenbaum, Pamela L; McDonald, Terrence P; Hodgson, Robert; Yao, Lihang; Bowlby, Mark R; Kuduk, Scott D; Coleman, Paul J; Hargreaves, Richard; Winrow, Christopher J; Renger, John J

    2013-01-01

    Dual orexin receptor antagonists (DORAs) induce sleep by blocking orexin 1 and orexin 2 receptor-mediated activities responsible for regulating wakefulness. DORAs represent a potential alternative mechanism to the current standard of care that includes the γ-aminobutyric acid (GABA)A receptor-positive allosteric modulators, eszopiclone and zolpidem. This work uses an innovative method to analyze electroencephalogram (EEG) spectral frequencies within sleep/wake states to differentiate the effects of GABAA modulators from DORA-22, an analog of the DORA MK-6096, in Sprague–Dawley rats. The effects of low, intermediate, and high doses of eszopiclone, zolpidem, and DORA-22 were examined after first defining each compound's ability to promote sleep during active-phase dosing. The EEG spectral frequency power within specific sleep stages was calculated in 1-Hz intervals from 1 to 100 Hz within each sleep/wake state for the first 4 h after the dose. Eszopiclone and zolpidem produced marked, dose-responsive disruptions in sleep stage-specific EEG spectral profiles compared with vehicle treatment. In marked contrast, DORA-22 exhibited marginal changes in the spectral profile, observed only during rapid eye movement sleep, and only at the highest dose tested. Moreover, while eszopiclone- and zolpidem-induced changes were evident in the inactive period, the EEG spectral responses to DORA-22 were absent during this phase. These results suggest that DORA-22 differs from eszopiclone and zolpidem whereby DORA-22 promotes somnolence without altering the neuronal network EEG activity observed during normal sleep. PMID:23722242

  18. PGF2alpha induced differential expression of genes involved in turnover of extracellular matrix in rat decidual cells

    Directory of Open Access Journals (Sweden)

    Callegari Eduardo A

    2005-01-01

    Full Text Available Abstract In the rat, the decidual tissue is an important component for maternal recognition of pregnancy. Decidualization can be induced by either the implantation of the blastocyst or by artificial stimuli. The process of decidua formation or decidualization, is characterized by growth and differentiation of endometrial stromal cells. Prostaglandin F2alpha (PGF2α has been shown to be involved in inhibition of implantation, alteration of embryo development, induction of luteal regression, and the mediation of pregnancy loss induced by microorganism infections. In order to establish a direct role for PGF2α in decidual function, we have evaluated its effects on the expression of an extensive array of genes using primary decidual cell culture. Upon treatment with PGF2α sixty genes were significantly down-regulated whereas only six genes were up-regulated (from a total of 1176 genes studied. Interestingly, the majority of the genes inhibited by PGF2α are either directly or indirectly involved in the turnover of the extracellular matrix (ECM. Genes such as gelatinase A (MMP2, cathepsin L, tissue inhibitor metalloproteinases 2 (TIMP2 and 3 (TIMP3, plasminogen activator inhibitor1 (PAI1, tissue type plasminogen activator (tPA, urokinase plasminogen activator (tPA, endothelin 1, calponin, carboxypeptidase D and calponin acidic were down regulated. The opposite effect was observed for prostromelysin 53 kDa (proMMP3, plasma proteinase I alpha and alpha 1 antiproteinase, all of which were significantly up-regulated by PGF2α. The results strongly suggest that the abortificient role of elevated levels of PGF2α after implantation is due, in large part, to inhibition of genes involved in the normal turnover of the extracellular matrix necessary for decidual formation.

  19. Differential calcium signaling mediated by voltage-gated calcium channels in rat retinal ganglion cells and their unmyelinated axons.

    Directory of Open Access Journals (Sweden)

    Allison Sargoy

    Full Text Available Aberrant calcium regulation has been implicated as a causative factor in the degeneration of retinal ganglion cells (RGCs in numerous injury models of optic neuropathy. Since calcium has dual roles in maintaining homeostasis and triggering apoptotic pathways in healthy and injured cells, respectively, investigation of voltage-gated Ca channel (VGCC regulation as a potential strategy to reduce the loss of RGCs is warranted. The accessibility and structure of the retina provide advantages for the investigation of the mechanisms of calcium signalling in both the somata of ganglion cells as well as their unmyelinated axons. The goal of the present study was to determine the distribution of VGCC subtypes in the cell bodies and axons of ganglion cells in the normal retina and to define their contribution to calcium signals in these cellular compartments. We report L-type Ca channel α1C and α1D subunit immunoreactivity in rat RGC somata and axons. The N-type Ca channel α1B subunit was in RGC somata and axons, while the P/Q-type Ca channel α1A subunit was only in the RGC somata. We patch clamped isolated ganglion cells and biophysically identified T-type Ca channels. Calcium imaging studies of RGCs in wholemounted retinas showed that selective Ca channel antagonists reduced depolarization-evoked calcium signals mediated by L-, N-, P/Q- and T-type Ca channels in the cell bodies but only by L-type Ca channels in the axons. This differential contribution of VGCC subtypes to calcium signals in RGC somata and their axons may provide insight into the development of target-specific strategies to spare the loss of RGCs and their axons following injury.

  20. Interstitial pO2 in ischemic penumbra and core are differentially affected following transient focal cerebral ischemia in rats.

    Science.gov (United States)

    Liu, Shimin; Shi, Honglian; Liu, Wenlan; Furuichi, Takamitsu; Timmins, Graham S; Liu, Ke Jian

    2004-03-01

    Stroke causes heterogeneous changes in tissue oxygenation, with a region of decreased blood flow, the penumbra, surrounding a severely damaged ischemic core. Treatment of acute ischemic stroke aims to save this penumbra before its irreversible damage by continued ischemia. However, effective treatment remains elusive due to incomplete understanding of processes leading to penumbral death. While oxygenation is central in ischemic neuronal death, it is unclear exactly what actual changes occur in interstitial oxygen tension (pO2) in ischemic regions during stroke, particularly the penumbra. Using the unique capability of in vivo electron paramagnetic resonance (EPR) oximetry to measure localized interstitial pO2, we measured both absolute values, and temporal changes of pO2 in ischemic penumbra and core during ischemia and reperfusion in a rat model. Ischemia rapidly decreased interstitial pO2 to 32% +/- 7.6% and 4% +/- 0.6% of pre-ischemic values in penumbra and core, respectively 1 hour after ischemia. Importantly, whilst reperfusion restored core pO2 close to its pre-ischemic value, penumbral pO2 only partially recovered. Hyperoxic treatment significantly increased penumbral pO2 during ischemia, but not in the core, and also increased penumbral pO2 during reperfusion. These divergent, important changes in pO2 in penumbra and core were explained by combined differences in cellular oxygen consumption rates and microcirculation conditions. We therefore demonstrate that interstitial pO2 in penumbra and core is differentially affected during ischemia and reperfusion, providing new insights to the pathophysiology of stroke. The results support normobaric hyperoxia as a potential early intervention to save penumbral tissue in acute ischemic stroke.

  1. Differential visualization of dopamine and norepinephrine uptake sites in rat brain using [3H]mazindol autoradiography.

    Science.gov (United States)

    Javitch, J A; Strittmatter, S M; Snyder, S H

    1985-06-01

    Mazindol is a potent inhibitor of neuronal dopamine (DA) and norepinephrine (NE) uptake. DA and NE uptake sites in rat brain have been differentially visualized using [3H]mazindol autoradiography. At appropriate concentrations, desipramine (DMI) selectively inhibits [3H]mazindol binding to NE uptake sites without significantly affecting binding to DA uptake sites. The localization of DMI-insensitive specific [3H] mazindol binding, reflecting DA uptake sites, is densest in the caudate-putamen, the nucleus accumbens, the olfactory tubercle, the subthalamic nucleus, the ventral tegmental area, the substantia nigra (SN) pars compacta, and the anterior olfactory nuclei. In contrast, the localization of DMI-sensitive specific [3H]mazindol binding, representing NE uptake sites, is densest in the locus coeruleus, the nucleus of the solitary tract, the bed nucleus of the stria terminalis, the paraventricular and periventricular nuclei of the hypothalamus, and the anteroventral thalamus. The distribution of DMI-insensitive specific [3H]mazindol binding closely parallels that of dopaminergic terminal and somatodendritic regions, while the distribution of DMI-sensitive specific [3H]mazindol binding correlates well with the regional localization of noradrenergic terminals and cell bodies. Injection of 6-hydroxydopamine, ibotenic acid, or colchicine into the SN decreases [3H]mazindol binding to DA uptake sites in the ipsilateral caudate-putamen by 85%. In contrast, ibotenic acid lesions of the caudate-putamen do not reduce [3H]mazindol binding to either the ipsilateral or contralateral caudate-putamen. Thus, the DA uptake sites in the caudate-putamen are located on the presynaptic terminals of dopaminergic axons originating from the SN.

  2. Differential visualization of dopamine and norepinephrine uptake sites in rat brain using (/sup 3/H)mazindol autoradiography

    Energy Technology Data Exchange (ETDEWEB)

    Javitch, J.A.; Strittmatter, S.M.; Snyder, S.H.

    1985-06-01

    Mazindol is a potent inhibitor of neuronal dopamine (DA) and norepinephrine (NE) uptake. DA and NE uptake sites in rat brain have been differentially visualized using (/sup 3/H)mazindol autoradiography. At appropriate concentrations, desipramine (DMI) selectively inhibits (/sup 3/H)mazindol binding to NE uptake sites without significantly affecting binding to DA uptake sites. The localization of DMI-insensitive specific (/sup 3/H) mazindol binding, reflecting DA uptake sites, is densest in the caudate-putamen, the nucleus accumbens, the olfactory tubercle, the subthalamic nucleus, the ventral tegmental area, the substantia nigra (SN) pars compacta, and the anterior olfactory nuclei. In contrast, the localization of DMI-sensitive specific (/sup 3/H)mazindol binding, representing NE uptake sites, is densest in the locus coeruleus, the nucleus of the solitary tract, the bed nucleus of the stria terminalis, the paraventricular and periventricular nuclei of the hypothalamus, and the anteroventral thalamus. The distribution of DMI-insensitive specific (/sup 3/H)mazindol binding closely parallels that of dopaminergic terminal and somatodendritic regions, while the distribution of DMI-sensitive specific (/sup 3/H)mazindol binding correlates well with the regional localization of noradrenergic terminals and cell bodies. Injection of 6-hydroxydopamine, ibotenic acid, or colchicine into the SN decreases (/sup 3/H)mazindol binding to DA uptake sites in the ipsilateral caudate-putamen by 85%. In contrast, ibotenic acid lesions of the caudate-putamen do not reduce (/sup 3/H)mazindol binding to either the ipsilateral or contralateral caudate-putamen.

  3. Polyclonal activation of rat B cells. I. A single mitogenic signal can stimulate proliferation, but three signals are required for differentiation

    International Nuclear Information System (INIS)

    Stunz, L.L.; Feldbush, T.L.

    1986-01-01

    A water-soluble, proteinaceous preparation derived from the cell walls of Salmonella typhimurium Re mutants has recently been tested in this laboratory for its ability to act as a mitogen for rat lymphocytes. This preparation (STM) has been found to be a potent simulator of B lymphocyte proliferation, as measured both by 3 H-TdR incorporation and by cell cycle analysis performed with flow cytofluorometry. STM stimulates approximately 50% of rat B cells to enter cycle. Previous investigations by others have shown that at least two sets of signals are required for B cell differentiation; (a) proliferation signals that may consist of both a stimulator of B cell conversion from G 0 to G 1 and growth factors, and (b) differentiation signals that probably include at least two B cell differentiation factors (BCDF). When STM was tested in a differentiation system it did not drive purified B cells to differentiate to PFC, either alone or when supplemented with a supernatant from concanavalin A-stimulated spleen cells (CAS). However, when both CAS and dextran sulfate (DXS) were supplied to the STM-stimulated cells, a large number of PFC resulted. DXT does not act by stimulating an additional, CAS-responsive B cell subset, since it has only a marginal effect upon 3 H-TdR uptake and does not increase the number of B cells in cycle when used together with STM. The authors that the two agents may be acting sequentially: STM stimulates the B cells to proliferate, and DXS drives the proliferating cells to become responsive to CAS. This suggests that the signals for B cell differentiation must consist of at least three activities: a trigger to stimulate the cells to proliferate, a factor to drive the cells to a BCDF-responsive state, and a BCDF that can drive the cells to secrete antibody

  4. Differential expression of system L amino acid transporters during wound healing process in the skin of young and old rats.

    Science.gov (United States)

    Jeong, Moon-Jin; Kim, Chun Sung; Park, Joo-Cheol; Kim, Heung-Joong; Ko, Yeong Mu; Park, Kyung Jin; Jeong, Soon-Jeong; Endou, Hitoshi; Kanai, Yoshikatsu; Lim, Do-Seon; Kim, Do Kyung

    2008-03-01

    In order to elucidate the role of the system L-type amino acid transporters (LATs) in the wound healing process of aged and young subjects, we investigated the expression of LAT1, LAT2 and their subunit 4F2hc in the skin healing process after artificial wounds of dorsal skin in the young and old rats. The 1 cm full-thickness incisional wounds were made through the skin and panniculus carnosus muscle. The wounds were harvested at days 1, 3, 5 and 7 post-wounding, the experimental controls were harvested the skin of rat without wounds and the various analyses were performed. In young rats, gradually and noticeable wound healing was detected, however, in old rats, wound healing was found to be greatly delayed. In young rats, the expression of LAT1 was increased rapidly on the day 1 after wound induction, on the other hand, in old rats, the expression of LAT1 after wound induction was not different from the control group. In young rats, the expression of LAT2 after the induction of wound was not different from the control group, however in old rats, the expression of LAT2 on the day 1 of wound induction was rapidly elevated. These results suggest that the LAT1 and LAT2 increase in the wound healing process after cell injury in young and old rats, respectively.

  5. Transgenic Rat Models for Breast Cancer Research

    Science.gov (United States)

    1999-10-01

    that the addition of 7.5 ýIg/ml cytochalasin B, a microfilament inhibitor, to injection medium would facilitate microinjection (called NPNG cytoB... SPERMATOZOA . N Songsasen, KJ G. Rivera *, G. Alanis*, R. Bosch* and H. Monello 4 . Dept de Reprod Betteridge, SP Leibo. Dept Biomedical Sciences, Ontario...thawed spermatozoa has been reported. However, sperm survival has The effects of season of kidding on postpartum intervals were evaluated been either

  6. Comparative characterization of mesenchymal stem cells from eGFP transgenic and non-transgenic mice

    Directory of Open Access Journals (Sweden)

    Bunnell Bruce A

    2009-01-01

    Full Text Available Abstract Background Adipose derived- and bone marrow-derived murine mesenchymal stem cells (mMSCs may be used to study stem cell properties in an in vivo setting for the purposes of evaluating therapeutic strategies that may have clinical applications in the future. If these cells are to be used for transplantation, the question arises of how to track the administered cells. One solution to this problem is to transplant cells with an easily identifiable genetic marker such as enhanced green fluorescent protein (eGFP. This protein is fluorescent and therefore does not require a chemical substrate for identification and can be visualized in living cells. This study seeks to characterize and compare adipose derived- and bone marrow-derived stem cells from C57Bl/6 mice and eGFP transgenic C57Bl/6 mice. Results The expression of eGFP does not appear to affect the ability to differentiate along adipogenic or osteogenic lineages; however it appears that the tissue of origin can influence differentiation capabilities. The presence of eGFP had no effect on cell surface marker expression, and mMSCs derived from both bone marrow and adipose tissue had similar surface marker profiles. There were no significant differences between transgenic and non-transgenic mMSCs. Conclusion Murine adipose derived and bone marrow derived mesenchymal stem cells from non-transgenic and eGFP transgenic C57Bl/6 mice have very similar characterization profiles. The availability of mesenchymal stem cells stably expressing a genetic reporter has important applications for the advancement of stem cell research.

  7. [Study on sub-chronic toxicity of powered milk containing transgenic human alpha-lactalbumin].

    Science.gov (United States)

    Zhi, Yuan; Liu, Haibo; Geng, Guiying; Wang, Huiling; Yang, Hua; Feng, Xiaolian; Gao, Peng; Yu, Qiang; Feng, Yongquan; Xu, Haibin

    2011-07-01

    To investigate the potential toxic or adverse effect of transgenic human alpha-lactalbumin powered milk on rats. Weanling Wistar rats were randomly divided into seven groups according the weight: three transgenic milk powder (T) groups, three non-transgenic milk powder (N) groups and the control (C) group. The diets of T groups contain 15%, 30% and 60% transgenic human alpha-lactalbumin milk powder. The diets of N groups contain 15%, 30% and 60% non-transgenic human alpha-lactalbumin milk powder for 90 days. The diet of C group contains only basic feed. Haematological and biochemical parameters was measured during the study (at 45th and 90th of the experiment). At the end of the 90th day, organ tissues analysis was performed. There were no transgenic human alpha-lactalbumin related adverse effects on the body weight, food intake, food consumption, hematology,serum biochemistry, as well as histopathology. There were no signs of toxic and adverse effects for transgenic human alpha-lactalbumin powdered milk on rats.

  8. Differential Effects of Resveratrol on the Expression of Brain-Derived Neurotrophic Factor Transcripts and Protein in the Hippocampus of Rat Brain

    Directory of Open Access Journals (Sweden)

    Shahla Shojaei

    2017-01-01

    Full Text Available Background: The induction of brain-derived neurotrophic factor (BDNF expression in the hippocampus has shown to play a role in the beneficial effects of resveratrol (RSV on the learning and memory. The BDNF gene has a complicated structure with eight 5’ noncoding exons (I-IXa, each of which can splice to a common coding exon (IX to form a functional transcript. Estrogens increase levels of BDNF transcripts in the hippocampus of rats. The aim of this study was to evaluate the effects of the phytoestrogen, RSV, on the splicing pattern of BDNF transcripts and on the pro-BDNF protein in the hippocampi of mother rats and their embryos. Methods: RSV (60 or 120 mg/kg BW/day was administered orally to pregnant rats from days 1 to 20 of gestation. Hippocampi of adults and embryos were dissected 24 h after the last administration of RSV. Extracts from hippocampi were subject to quantitative (q RT-PCR and Western blotting to assess splicing pattern of the BDNF transcripts and levels of pro-BDNF protein, respectively. Results: RSV (120 mg/kg BW/day caused a statistically significant increase in the expression levels of BDNF exons III, IV and IX, but not the exon I in the hippocampi of adult rats (P≤0.05. Levels of pro-BDNF protein remained unchanged in the hippocampal tissues from both adult and embryonic rats treated by RSV (60 or 120 mg/kg BW/day. Conclusion: Our results showed that RSV differentially activates promoters of the BDNF gene in the hippocampus of pregnant rats, but fails to affect the pro-BDNF level neither in adult nor in the embryonic hippocampal tissues.

  9. Transgenic algae engineered for higher performance

    Science.gov (United States)

    Unkefer, Pat J; Anderson, Penelope S; Knight, Thomas J

    2014-10-21

    The present disclosure relates to transgenic algae having increased growth characteristics, and methods of increasing growth characteristics of algae. In particular, the disclosure relates to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and to transgenic algae comprising a glutamine phenylpyruvate transaminase transgene and a glutamine synthetase.

  10. Differential effects of midazolam and zolpidem on sleep-wake states and epileptic activity in WAG/Rij rats

    NARCIS (Netherlands)

    Depoortere, H.; Francon, D.; Luijtelaar, E.L.J.M. van; Drinkenburg, W.H.I.M.; Coenen, A.M.L.

    1995-01-01

    Hypnotic drugs are known to possess antiepileptic activity. Therefore, the effects of the benzodiazepine hypnotic midazolam (10 mg/kg) and the novel imidazopyridine hypnotic zolpidem (10 mg/kg) on sleep-wake states and on the number of spike-wave discharges were evaluated in WAG/Rij rats. Rats of

  11. Substance P Differentially Modulates Firing Rate of Solitary Complex (SC) Neurons from Control and Chronic Hypoxia-Adapted Adult Rats

    Science.gov (United States)

    Nichols, Nicole L.; Powell, Frank L.; Dean, Jay B.; Putnam, Robert W.

    2014-01-01

    NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS). Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus) neurons from control and chronic hypoxia-adapted (CHx) adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats. PMID:24516602

  12. Substance P differentially modulates firing rate of solitary complex (SC neurons from control and chronic hypoxia-adapted adult rats.

    Directory of Open Access Journals (Sweden)

    Nicole L Nichols

    Full Text Available NK1 receptors, which bind substance P, are present in the majority of brainstem regions that contain CO2/H(+-sensitive neurons that play a role in central chemosensitivity. However, the effect of substance P on the chemosensitive response of neurons from these regions has not been studied. Hypoxia increases substance P release from peripheral afferents that terminate in the caudal nucleus tractus solitarius (NTS. Here we studied the effect of substance P on the chemosensitive responses of solitary complex (SC: NTS and dorsal motor nucleus neurons from control and chronic hypoxia-adapted (CHx adult rats. We simultaneously measured intracellular pH and electrical responses to hypercapnic acidosis in SC neurons from control and CHx adult rats using the blind whole cell patch clamp technique and fluorescence imaging microscopy. Substance P significantly increased the basal firing rate in SC neurons from control and CHx rats, although the increase was smaller in CHx rats. However, substance P did not affect the chemosensitive response of SC neurons from either group of rats. In conclusion, we found that substance P plays a role in modulating the basal firing rate of SC neurons but the magnitude of the effect is smaller for SC neurons from CHx adult rats, implying that NK1 receptors may be down regulated in CHx adult rats. Substance P does not appear to play a role in modulating the firing rate response to hypercapnic acidosis of SC neurons from either control or CHx adult rats.

  13. Differential effects of 17α-ethinylestradiol on the neutral and acidic pathways of bile salt synthesis in the rat

    NARCIS (Netherlands)

    Koopen, N.R.; Post, S.M.; Wolters, H.; Havinga, R.; Stellaard, F.; Boverhof, R.; Kuipers, F.; Princen, H.M.G.

    1999-01-01

    Effects of 17α-ethinylestradiol (EE) on the neutral and acidic biosynthetic pathways of bile salt (BS) synthesis were evaluated in rats with an intact enterohepatic circulation and in rats with long-term bile diversion to induce BS synthesis. For this purpose, bile salt pool composition, synthesis

  14. Identification of cytochrome P450 differentiated expression related to developmental stages in bromadiolone resistance in rats (Rattus norvegicus)

    DEFF Research Database (Denmark)

    Markussen, Mette; Heiberg, Ann-Charlotte; Fredholm, Merete

    2008-01-01

    over-express the Cyp2a1 gene. TGhe altered gene expression has been suggested to be involved in the bromadiolone resistance by facilitating enhanced anticoagulant metabolism. To investigate the gene expression of these cytochrome P450 genes in rats of different developmental stages we compared...... expression profiles, from 8-, 12- and 20-week-old resistant rats of the Danish strain to profiles of anticoagulant-susceptible rats of same ages. The three age-groups were selected to represent a group of pre-pubertal, pubertal and adult rats. We found expression profiles of the pre-pubertal and pubertal...... resistant rats to concur with profiles of the adults suggesting that cytochrome P450 enzymes are involved in the Danish bromadiolone resistance regardless of developmental stage. We also investigated the relative importance of the six cytochrome P450s in the different development stages of the resistant...

  15. Effect of Chromatin-Remodeling Agents in Hepatic Differentiation of Rat Bone Marrow-Derived Mesenchymal Stem Cells In Vitro and In Vivo

    Directory of Open Access Journals (Sweden)

    Danna Ye

    2016-01-01

    Full Text Available Epigenetic events, including covalent histone modifications and DNA methylation, play fundamental roles in the determination of lineage-specific gene expression and cell fates. The aim of this study was to determine whether the DNA methyltransferase inhibitor (DNMTi 5-aza-2′-deoxycytidine (5-aza-dC and the histone deacetylase inhibitor (HDACi trichostatin A (TSA promote the hepatic differentiation of rat bone marrow-derived mesenchymal stem cells (rBM-MSCs and their therapeutic effect on liver damage. 1 μM TSA and 20 μM 5-aza-dC were added to standard hepatogenic medium especially at differentiation and maturation steps and their potential function on hepatic differentiation in vitro and in vivo was determined. Exposure of rBM-MSCs to 1 μM TSA at both the differentiation and maturation steps considerably improved hepatic differentiation. TSA enhanced the development of the hepatocyte shape, promoted the chronological expression of hepatocyte-specific markers, and improved hepatic functions. In contrast, treatment of rBM-MSCs with 20 μM 5-aza-dC alone or in combination with TSA was ineffective in improving hepatic differentiation in vitro. TSA and/or 5-aza-dC derived hepatocytes-like cells failed to improve the therapeutic potential in liver damage. We conclude that HDACis enhance hepatic differentiation in a time-dependent manner, while DNMTis do not induce the hepatic differentiation of rBM-MSCs in vitro. Their in vivo function needs further investigation.

  16. Comparative Proteomics of Leaves from Phytase-transgenic Maize and the Non-transgenic Isogenic Variety

    Directory of Open Access Journals (Sweden)

    Yanhua Tan

    2016-08-01

    Full Text Available To investigate unintended effects in genetically modified crops (GMCs, a comparative proteomics analysis between the leaves of the phytase-transgenic maize and those of non-transgenic plants was performed by using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed protein spots (DEPs were successfully identified, which represented 44 unique proteins. Functional classification of the identified unique proteins showed that these proteins were predominantly involved in carbohydrate transport and metabolism, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Comparison of the changes in the protein and gene transcript levels of the identified unique proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially altered between the leaves of phytase-transgenic maize and its non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences of proteome between the two kinds of maize leaves might be attributed to both genetic modification and hybrid influence.

  17. Comparative Proteomics of Leaves from Phytase-Transgenic Maize and Its Non-transgenic Isogenic Variety.

    Science.gov (United States)

    Tan, Yanhua; Yi, Xiaoping; Wang, Limin; Peng, Cunzhi; Sun, Yong; Wang, Dan; Zhang, Jiaming; Guo, Anping; Wang, Xuchu

    2016-01-01

    To investigate unintended effects in genetically modified crops (GMCs), a comparative proteomic analysis between the leaves of the phytase-transgenic maize and the non-transgenic plants was performed using two-dimensional gel electrophoresis and mass spectrometry. A total of 57 differentially expressed proteins (DEPs) were successfully identified, which represents 44 unique proteins. Functional classification of the identified proteins showed that these DEPs were predominantly involved in carbohydrate transport and metabolism category, followed by post-translational modification. KEGG pathway analysis revealed that most of the DEPs participated in carbon fixation in photosynthesis. Among them, 15 proteins were found to show protein-protein interactions with each other, and these proteins were mainly participated in glycolysis and carbon fixation. Comparison of the changes in the protein and tanscript levels of the identified proteins showed that most proteins had a similar pattern of changes between proteins and transcripts. Our results suggested that although some significant differences were observed, the proteomic patterns were not substantially different between the leaves of the phytase-transgenic maize and the non-transgenic isogenic type. Moreover, none of the DEPs was identified as a new toxic protein or an allergenic protein. The differences between the leaf proteome might be attributed to both genetic modification and hybrid influence.

  18. Biosafety assessment of transgenic Bt cotton on model animals

    Directory of Open Access Journals (Sweden)

    Sadia Bano

    2016-05-01

    Full Text Available Abstract Background: To know the effects of transgenic crops on soil microorganisms, animals and other expected hazards due to the introduction of GM crops into the environment is critical both scientifically and environmentally. The work was conducted to study the effect of insecticidal Bt protein on Rats and Earthworms. Methods: For this purpose, animals like rat and soil organisms like Earthworm were selected. Rats were selected on the basis of its 95% homology on genomic, cellular and enzymatic level with human while earthworm were preferred on the basis of their direct contact with soil to evaluate the impact of Bt (Cry1AC crop field soil on earthworm, secreted by root exudates of Bt cotton. Several physical, molecular, biochemical and histological analyses were performed on both Rats/Earthworms fed on standard diet (control group as well containing Bt protein (experimental group. Results: Molecular analyses such as immune Dot blot, SDS-PAGE, ELISA and PCR, confirmed the absence of Cry1Ac protein in blood and urine samples of rats, which were fed with Bt protein in their diet. Furthermore, histological studies showed that there was no difference in cellular architecture in liver, heart, kidney and intestine of Bt and non-Bt diet fed rats. To see the effect of Bt on earthworm two different groups were studied, one with transgenic plant field soil supplemented with grinded leaves of cotton and second group with non-Bt field soil. Conclusions: No lethal effects of transgenic Bt protein on the survival of earthworm and rats were observed. Bradford assay, Dipstick assay ELISA demonstrated the absence of Cry1Ac protein in the mid-gut epithelial tissue of earthworm. The results of present study will be helpful in successful deployment and commercial release of genetically modified crop in Pakistan.

  19. Rats

    Directory of Open Access Journals (Sweden)

    Alexey Kondrashov

    2012-01-01

    Full Text Available We aimed to perform a chemical analysis of both Alibernet red wine and an alcohol-free Alibernet red wine extract (AWE and to investigate the effects of AWE on nitric oxide and reactive oxygen species production as well as blood pressure development in normotensive Wistar Kyoto (WKY and spontaneously hypertensive rats (SHRs. Total antioxidant capacity together with total phenolic and selected mineral content was measured in wine and AWE. Young 6-week-old male WKY and SHR were treated with AWE (24,2 mg/kg/day for 3 weeks. Total NOS and SOD activities, eNOS and SOD1 protein expressions, and superoxide production were determined in the tissues. Both antioxidant capacity and phenolic content were significantly higher in AWE compared to wine. The AWE increased NOS activity in the left ventricle, aorta, and kidney of SHR, while it did not change NOS activity in WKY rats. Similarly, increased SOD activity in the plasma and left ventricle was observed in SHR only. There were no changes in eNOS and SOD1 expressions. In conclusion, phenolics and minerals included in AWE may contribute directly to increased NOS and SOD activities of SHR. Nevertheless, 3 weeks of AWE treatment failed to affect blood pressure of SHR.

  20. Genetic transformation and gene silencing mediated by multiple copies of a transgene in eastern white pine.

    Science.gov (United States)

    Tang, Wei; Newton, Ronald J; Weidner, Douglas A

    2007-01-01

    An efficient transgenic eastern white pine (Pinus strobus L.) plant regeneration system has been established using Agrobacterium tumefaciens strain GV3850-mediated transformation and the green fluorescent protein (gfp) gene as a reporter in this investigation. Stable integration of transgenes in the plant genome of pine was confirmed by polymerase chain reaction (PCR), Southern blot, and northern blot analyses. Transgene expression was analysed in pine T-DNA transformants carrying different numbers of copies of T-DNA insertions. Post-transcriptional gene silencing (PTGS) was mostly obtained in transgenic lines with more than three copies of T-DNA, but not in transgenic lines with one copy of T-DNA. In situ hybridization chromosome analysis of transgenic lines demonstrated that silenced transgenic lines had two or more T-DNA insertions in the same chromosome. These results suggest that two or more T-DNA insertions in the same chromosome facilitate efficient gene silencing in transgenic pine cells expressing green fluorescent protein. There were no differences in shoot differentiation and development between transgenic lines with multiple T-DNA copies and transgenic lines with one or two T-DNA copies.

  1. Comparative nutritional compositions and proteomics analysis of transgenic Xa21 rice seeds compared to conventional rice.

    Science.gov (United States)

    Gayen, Dipak; Paul, Soumitra; Sarkar, Sailendra Nath; Datta, Swapan K; Datta, Karabi

    2016-07-15

    Transgenic rice expressing the Xa21 gene have enhanced resistant to most devastating bacterial blight diseases caused by Xanthomonas oryzae pv. oryzae (Xoo). However, identification of unintended modifications, owing to the genetic modification, is an important aspect of transgenic crop safety assessment. In this study, the nutritional compositions of seeds from transgenic rice plants expressing the Xa21 gene were compared against non-transgenic rice seeds. In addition, to detect any changes in protein translation levels as a result of Xa21 gene expression, rice seed proteome analyses were also performed by two-dimensional gel electrophoresis. No significant differences were found in the nutritional compositions (proximate components, amino acids, minerals, vitamins and anti-nutrients) of the transgenic and non-transgenic rice seeds. Although gel electrophoresis identified 11 proteins that were differentially expressed between the transgenic and non-transgenic seed, only one of these (with a 20-fold up-regulation in the transgenic seed) shows nutrient reservoir activity. No new toxins or allergens were detected in the transgenic seeds. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  3. Plant biotechnology: transgenic crops.

    Science.gov (United States)

    Shewry, Peter R; Jones, Huw D; Halford, Nigel G

    2008-01-01

    Transgenesis is an important adjunct to classical plant breeding, in that it allows the targeted manipulation of specific characters using genes from a range of sources. The current status of crop transformation is reviewed, including methods of gene transfer, the selection of transformed plants and control of transgene expression. The application of genetic modification technology to specific traits is then discussed, including input traits relating to crop production (herbicide tolerance and resistance to insects, pathogens and abiotic stresses) and output traits relating to the composition and quality of the harvested organs. The latter include improving the nutritional quality for consumers as well as the improvement of functional properties for food processing.

  4. Increased expression and secretion of r-Gsp protein, rat counterpart of complement C1s precursor, during cyclic AMP-induced differentiation in rat C6 glioma cells.

    Science.gov (United States)

    Nakagawa, Masanori; Nakashima, Shigeru; Banno, Yoshiko; Yamada, Jun; Sawada, Motoshi; Yoshimura, Shin ichi; Kaku, Yasuhiko; Iwama, Toru; Shinoda, Jun; Sakai, Noboru

    2002-10-15

    The gene, termed r-gsp, was originally isolated during identification of differentiation-associated molecules in rat C6 glial cells. Its mRNA expression was markedly increased during cAMP-induced glial cell differentiation. The deduced amino acid sequence of r-gsp was homologous to those of complement C1s precursors of hamsters and humans. In the present study, we raised anti-peptide antibody against r-Gsp protein and analyzed its change during cAMP-induced differentiation. The 90-kDa r-Gsp protein increased time-dependently and reached the maximal level ( approximately 7.6-fold increase) at 24 h in response to dibutyryl cyclic AMP (dbcAMP) and theophylline. Moreover, it was secreted into the medium and then was cleaved to form disulfide-linked fragments, one of which was 30 kDa, similar to C1s, suggesting its processing in the extracellular space. In fact, the partially purified r-Gsp from culture medium was cleaved by active human C1r to form a 30-kDa polypeptide. Moreover, secreted r-Gsp protein cleaved human C4alpha to yield C4alpha' and associated with human serum C1-esterase inhibitor, strongly suggesting that r-Gsp protein is rat C1s. However, in C6 cells overexpressing r-Gsp, their morphology and proliferation rate were similar to those in parent C6 cells. These results suggest that r-Gsp protein could not induce glial differentiation alone, and suggest that r-Gsp protein was secreted as a proenzyme and processed in culture medium. Its possible role in glial cell differentiation will be discussed.

  5. Combined effects of mineral trioxide aggregate and human placental extract on rat pulp tissue and growth, differentiation and angiogenesis in human dental pulp cells.

    Science.gov (United States)

    Chang, Seok-Woo; Kim, Ji-Youn; Kim, Mi-Joo; Kim, Ga-Hyun; Yi, Jin-Kyu; Lee, Deok-Won; Kum, Kee-Yeon; Kim, Eun-Cheol

    2016-01-01

    The aim of this study was to evaluate the combined effects of mineral trioxide aggregate (MTA) and human placental extract (HPE) on cell growth, differentiation and in vitro angiogenesis of human dental pulp cells (HDPCs) and to identify underlying signal transduction mechanisms. In vivo dental pulp responses in rats for a pulp-capping agent were examined. MTS assay. ALP activity test, alizarin red S staining and RT-PCR for marker genes were carried out to evaluate cell growth and differentiation. HUVEC migration, mRNA expression and capillary tube formation were measured to evaluate angiogenesis. Signal transduction was analysed using Western blotting and confocal microscopy. The pulps of rat maxillary first molars were exposed and capped with either MTA or MTA plus HPE. Histologic observation and scoring were performed. Compared to treatment of HDPCs with either HPE or MTA alone, the combination of HPE and MTA increased cell growth, ALP activity, mineralized nodules and expression of marker mRNAs. Combination HPE and MTA increased migration, capillary tube formation and angiogenic gene expression compared with MTA alone. Activation of Akt, mammalian target of rapamycin (mTOR), p38, JNK and ERK MAPK, Akt, and NF-κB were significantly increased by combining HPE and MTA compared with MTA alone. Pulp capping with MTA plus HPE in rats showed superior dentin bridge formation, odontoblastic layers and dentinal tubules and lower inflammatory cell response, compared to the MTA alone group. This study demonstrates for the first time that the use of MTA with HPE promotes cell growth, differentiation and angiogenesis in HDPCs, which were associated with mTOR, MAPK and NF-κB pathways. Direct pulp capping with HPE plus MTA showed superior results when compared with MTA alone. Thus, the combination of MTA and HPE may be useful for regenerative endodontics.

  6. Daily Socs1 rhythms alter with aging differentially in peripheral clocks in male Wistar rats: therapeutic effects of melatonin.

    Science.gov (United States)

    Vinod, Ch; Jagota, Anita

    2017-06-01

    Suprachiasmatic nucleus (SCN) in synchronization with the peripheral clocks regulates the temporal oscillations leading to overt rhythms. Aging leads to attenuation of such circadian regulation, accompanied by increased inflammatory mediators prevalently the cytokines. Suppressors of cytokine signaling (SOCS) family of proteins such as SOCS 1, 3 and cytokine-inducible SH2-containing protein (CIS) negatively regulate the cytokine signaling pathway. The role of SOCS1 in aging and circadian system is obscure. We therefore studied the daily rhythms of rSocs1 mRNA expression at Zeitgeber time (ZT) -0, 6, 12 and 18 in peripheral clocks such as liver, kidney, intestine and heart of 3, 12 and 24 months (m) old male Wistar rats. Interestingly the peripheral clocks studied displayed a rhythmic rSocs1 gene expression in 3 months. In 12 months group, 12 h phase advance in liver and 12 h phase delay in kidney and heart was observed with abolition of rhythms in intestine. Aging (24 months group) resulted in a phase advance by 6 h in liver and heart with abolition of rhythms in intestine in 24 months group. Kidney was also significantly affected upon aging with significant decrease in the rSocs1 levels and abolition of rhythms. The decrease in melatonin levels with aging is associated with decreased immunity and increased oxidative stress. The exogenous administration of melatonin has been linked to play a role in re-synchronization of circadian rhythms, reducing oxidative stress and enhancing immune properties. We therefore had studied the effect of exogenous melatonin upon age induced changes in daily rSocs1 gene expression patterns. Melatonin treatment partially restored the rhythms and daily pulse (ratio of maximum:minimum levels) in liver and intestine in 12 months group. Melatonin administration resulted in a significant increase in mean 24 h rSocs1 expression in intestine and heart of 24 months group compared to that of 3 months. The melatonin administration

  7. Differential gene expression in liver tissues of streptozotocin-induced diabetic rats in response to resveratrol treatment.

    Directory of Open Access Journals (Sweden)

    Gökhan Sadi

    Full Text Available This study was conducted to elucidate the genome-wide gene expression profile in streptozotocin induced diabetic rat liver tissues in response to resveratrol treatment and to establish differentially expressed transcription regulation networks with microarray technology. In addition to measure the expression levels of several antioxidant and detoxification genes, real-time quantitative polymerase chain reaction (qRT-PCR was also used to verify the microarray results. Moreover, gene and protein expressions as well as enzymatic activities of main antioxidant enzymes; superoxide dismutase (SOD-1 and SOD-2 and glutathione S-transferase (GST-Mu were analyzed. Diabetes altered 273 genes significantly and 90 of which were categorized functionally which suggested that genes in cellular catalytic activities, oxidation-reduction reactions, co-enzyme binding and terpenoid biosynthesis were dominated by up-regulated expression in diabetes. Whereas; genes responsible from cellular carbohydrate metabolism, regulation of transcription, cell signal transduction, calcium independent cell-to-cell adhesion and lipid catabolism were down-regulated. Resveratrol increased the expression of 186 and decreased the expression of 494 genes in control groups. While cellular and extracellular components, positive regulation of biological processes, biological response to stress and biotic stimulants, and immune response genes were up-regulated, genes responsible from proteins present in nucleus and nucleolus were mainly down-regulated. The enzyme assays showed a significant decrease in diabetic SOD-1 and GST-Mu activities. The qRT-PCR and Western-blot results demonstrated that decrease in activity is regulated at gene expression level as both mRNA and protein expressions were also suppressed. Resveratrol treatment normalized the GST activities towards the control values reflecting a post-translational effect. As a conclusion, global gene expression in the liver tissues is

  8. Differential regulation of fos family genes in the ventrolateral and dorsomedial subdivisions of the rat suprachiasmatic nucleus.

    Science.gov (United States)

    Schwartz, W J; Carpino, A; de la Iglesia, H O; Baler, R; Klein, D C; Nakabeppu, Y; Aronin, N

    2000-01-01

    Extensive studies have established that light regulates c-fos gene expression in the suprachiasmatic nucleus, the site of an endogenous circadian clock, but relatively little is known about the expression of genes structurally related to c-fos, including fra-1, fra-2 and fosB. We analysed the photic and temporal regulation of these genes at the messenger RNA and immunoreactive protein levels in rat suprachiasmatic nucleus, and we found different expression patterns after photic stimulation and depending on location in the ventrolateral or dorsomedial subdivisions. In the ventrolateral suprachiasmatic nucleus, c-fos, fra-2 and fosB expression was stimulated after a subjective-night (but not subjective-day) light pulse. Expression of the fra-2 gene was prolonged following photic stimulation, with elevated messenger RNA and protein levels that appeared unchanged for at least a few hours beyond the c-fos peak. Unlike c-fos and fra-2, the fosB gene appeared to be expressed constitutively in the ventrolateral suprachiasmatic nucleus throughout the circadian cycle; immunohistochemical analysis suggested that delta FosB was the protein product accounting for this constitutive expression, while FosB was induced by the subjective-night light pulse. In the dorsomedial suprachiasmatic nucleus, c-fos and fra-2 expression exhibited an endogenous circadian rhythm, with higher levels during the early subjective day, although the relative abundance was much lower than that measured after light pulses in the ventrolateral suprachiasmatic nucleus. Double-label immunohistochemistry suggested that some of the dorsomedial cells responsible for the circadian expression of c-Fos also synthesized arginine vasopressin. No evidence of suprachiasmatic nucleus fra-1 expression was found. In summary, fos family genes exhibit differences in their specific expression patterns in the suprachiasmatic nucleus, including their photic and circadian regulation in separate cell populations in the

  9. Leaf proteome profiling of transgenic mint infected with Alternaria alternata.

    Science.gov (United States)

    Sinha, Ragini; Bhattacharyya, Dipto; Majumdar, Aparupa Bose; Datta, Riddhi; Hazra, Saptarshi; Chattopadhyay, Sharmila

    2013-11-20

    The genus Mentha has been widely used in food, flavor, culinary, cosmetic and pharmaceutical industries. Substantial damage to this crop happened regularly due to environmental stresses like metal toxicity and pathogen attack. Here, an approach has been taken to raise transgenic mint over-expressing γ-glutamyl-cysteine synthetase (γ-ECS), the rate-limiting enzyme of GSH biosynthesis, resulted enhanced GSH content and its in planta expression confers significant tolerance towards abiotic/biotic stresses viz. metal toxicity - Cd, Zn as well as against infection of Alternaria alternata and Rhizoctonia solani. A differential proteomic analysis through 2-DE and MALDI TOF-TOF MSMS was performed to focus on the altered abundance of functionally important protein species in control and infected transgenic mint. Results showed a significant variation in the protein profile of the infected transgenic plant as compared to the wild/control transgenic counterpart. In addition to protein species related to stress and defense, redox regulation, transcription factors and energy & metabolism, protein species related to signaling and gene regulation as well as cell division also showed differential accumulation in infected transgenic. Hence, proteomics can be used as a tool to decipher the mechanism of action of GSH in providing tolerance against a necrotrophic fungus, A. alternata in transgenic mint. The reported work describes a comparative proteomics of non-model unsequenced plants like Mentha. There is a comparative protein profile between transgenic and its wild counterparts under control and infected condition. The work has an impact in crop proteomics and also tries to explain the application of proteomic approach to decipher the mechanism by which a foreign metabolite mediates stress tolerance in plant under control and infected condition. This article is part of a Special Issue entitled: Translational Plant Proteomics. Copyright © 2013 Elsevier B.V. All rights reserved.

  10. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    Science.gov (United States)

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  11. Behavior in the elevated plus maze is differentially affected by testing conditions in rats under and over three weeks of age

    Directory of Open Access Journals (Sweden)

    Sarah H Albani

    2015-02-01

    Full Text Available The late postnatal period in rats is marked by numerous changes in perceptual and cognitive abilities. As such, age-related variation in cognitive test performance might result in part from disparate sensitivities to environmental factors. To better understand how testing conditions might interact with age, we assessed anxiety behavior on an elevated plus maze in juvenile rats around three weeks of age under diverse testing conditions. Plasma corticosterone and neuronal activation patterns in the forebrain were examined after maze exposure. We found that anxiety was differentially expressed during different stages of late postnatal development. Bright illumination and morning testing encouraged greatest open arm exploration on the elevated plus maze in younger animals, while older rats explored open areas more under dim illumination in the morning compared to bright illumination in the afternoon/evening. Older rats exhibited higher plasma corticosterone levels at baseline compared to younger rats; however, this trend was reversed for post-testing corticosterone. Additionally, post-testing corticosterone levels were inversely related to time of testing. Compared to testing in the morning, elevated plus maze exposure in the afternoon/evening elicited greater neuronal Arc expression in the amygdala. Arc expression in the amygdala after morning testing was greater at P22-24 than P17-19. In layer 2/3 of primary visual cortex, Arc expression was elevated in younger animals and age interacted with time of testing to produce opposing effects at P17-19 and P22-24. These data suggest that age-related differences in anxiety-associated behavior during the late postnatal period are due in part to changes in light sensitivity and emergence of a circadian cycle for corticosterone. The findings illustrate that late postnatal behavioral development in rodents is a complex orchestration of changes in neural systems involved in perception, cognition, affect and

  12. Characterization of A Three-Dimensional Organotypic Co-Culture Skin Model for Epidermal Differentiation of Rat Adipose-Derived Stem Cells.

    Science.gov (United States)

    Ghanavati, Zeinab; Orazizadeh, Mahmoud; Bayati, Vahid; Abbaspour, Mohammad Reza; Khorsandi, Layasadat; Mansouri, Esrafil; Neisi, Niloofar

    2016-01-01

    The organotypic co-culture is a well-known technique to examine cellular interactions and their roles in stem cell proliferation and differentiation. This study aims to evaluate the effects of dermal fibroblasts (DFs) on epidermal differentiation of adipose-derived stem cells (ASCs) using a three-dimensional (3D) organotypic co- culture technique. In this experimental research study, rat DFs and ASCs were isolated and cultured separately on electrospun polycaprolactone (PCL) matrices. The PCL matrices seeded by ASCs were superimposed on to the matrices seeded by DFs in order to create a 3D organotypic co-culture. In the control groups, PCL matrices seeded by ASCs were placed on matrices devoid of DFs. After 10 days, we assessed the expressions of keratinocyte-related genes by real-time reverse transcriptase-polymerase chain reaction (RT-PCR) and expression of pan-cytokeratin protein by immunofluorescence in the differentiated keratinocyte-like cells from co- culture and control groups. Keratinocyte-like cell morphologies were also observed by scanning electron microscopy (SEM). The early, intermediate, and terminal differentiation keratinocyte markers-Cytokeratin14, Filaggrin, and Involucrin significantly expressed in the co-culture groups com- pared to the control ones (Pculture groups showed that the differentiated keratinocyte-like cells developed a polygonal cobblestone shape, considered characteristic of keratinocytes. The 3D organotypic co-culture bilayered construct that consisted of DFs and ASCs was an effective technique for epidermal differentiation of ASCs. This co-culture might be useful for epidermal differentiation of stem cells for future applications in skin regeneration.

  13. Differential antiepileptic effects of the organic calcium antagonists verapamil and flunarizine in neurons of organotypic neocortical explants from newborn rats

    NARCIS (Netherlands)

    Bingmann, D; Speckmann, E J; Baker, R E; Ruijter, J; de Jong, B. M.

    1988-01-01

    Effects of the organic calcium antagonists verapamil and flunarizine on pentylenetetrazol induced paroxysmal depolarizations were tested in organotypic neocortical explants taken from neonatal rats. In these in vitro experiments the papaverin derivative verapamil depressed, and finally abolished,

  14. Ketamine and aminoguanidine differentially affect Bdnf and Mtor gene expression in the prefrontal cortex of adult male rats.

    Science.gov (United States)

    Silva Pereira, Vitor; Elfving, Betina; Joca, Sâmia R L; Wegener, Gregers

    2017-11-15

    The rapid and sustained antidepressant properties of ketamine provide evidence of the importance of the glutamatergic system in the neurobiology of depression. The antidepressant-like effects of ketamine are dependent on brain-derived neurotrophic factor (BDNF) and mammalian target of rapamycin (mTOR) in limbic brain areas. The nitrergic system is closely related to the glutamatergic system and generates antidepressant-like effects when blocked. The aim of this study was to investigate whether the behavioural effects induced by the inhibition of nitric oxide (NO) synthesis by aminoguanidine or N-methyl-D-aspartate (NMDA) receptor blockade by ketamine would affect the gene expression of Bdnf and Mtor in the ventromedial prefrontal cortex in rats. The effects of ketamine or aminoguanidine were investigated in Sprague-Dawley (SD) rats, the Flinders Sensitive Line (FSL), a genetic rat model of depression, and their controls, the Flinders Resistant Line (FRL) rats. In the studies, the three protocols evaluated to which the animals/rats were exposed were: (1) pre-test and test sessions of forced swim test (FST), (2) pre-test session of FST alone, or (3) not exposed to the FST. Ketamine and aminoguanidine both induce antidepressant-like effects in SD and FSL rats. Quantitative real-time polymerase chain reaction analyses in SD rats demonstrated that none of the treatments can change the Bdnf or Mtor gene expression, but in FSL rats the treatment with ketamine increased only Bdnf gene expression. The data obtained strengthens the role of NMDA antagonists and NO inhibitors as potential antidepressant drugs, albeit with different effects on Bdnf gene expression. Copyright © 2017 Elsevier B.V. All rights reserved.

  15. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a signi