WorldWideScience

Sample records for transgene-specific immune responses

  1. ANALYSIS OF IMMUNE RESPONSES ON TRANSGENIC TIGER SHRIMP (Penaeus monodon AGAINST PATHOGENIC BACTERIUM Vibrio harveyi

    Directory of Open Access Journals (Sweden)

    Andi Parenrengi

    2014-06-01

    Full Text Available Vibriosis is one of main diseases of the black tiger shrimp Penaeus monodon infected by pathogenic bioluminous bacterium Vibrio harveyi that can cause mass mortalities in shrimp culture. The bacteria can also trigger the disease white spot syndrome virus (WSSV. An effort to produce shrimp disease-resistant strains has been done through transgenesis technology with antiviral gene transfection. By this technology, it is expected an increase in the immune response of shrimp in a variety of diseasecausing pathogens. This study aimed to determine the immune responses (total haemocytes, haemocyte differentiation, and phenoloxydase activity of transgenic tiger shrimp against pathogenic bacterium V. harveyi. Research using completely randomized design, which consists of two treatments and three replications. Test animals being used were transgenic and non-transgenic shrimp with size, weight 3.93±1.25 g and a total length of 7.59±0.87 cm. Treatments being tested were the injection of bacterium V. harveyi (density of 5x106 cfu/mL of 0.1 mL/individual on transgenic (A and non-transgenic shrimp (B. Immune response parameters such as total haemocytes, haemocyte differentiation, and phenoloxydase activity were observed on day 1, 3, and 6 days after challenging. Data were analyzed using t-test by SPSS software. The results showed that the total haemocyte of transgenic shrimp was not significantly different (P>0.05 from non-transgenic shrimp, but haemocyte differentiation and phenoloxydase activity were significantly different (P<0.05 especially on sixth days after being exposed to the bioluminescent bacteria. The study results implied that transgenic shrimp has a better immune response compared than non-transgenic shrimp.

  2. Immunizations with hepatitis B viral antigens and a TLR7/8 agonist adjuvant induce antigen-specific immune responses in HBV-transgenic mice

    Directory of Open Access Journals (Sweden)

    Ying Wang

    2014-12-01

    Conclusions: Immunization with CL097-conjugated HBV-Ag reversed immune tolerance in HBV-Tg mice and induced antigen-specific immune responses. TLR7/8 agonists appear to be potent adjuvants for the induction of antigen-specific Th1 responses in an immune tolerant state.

  3. Immune selection of tumor cells in TCR β-chain transgenic mice.

    Science.gov (United States)

    Silaeva, Yulia Yu; Grinenko, Tatyana S; Vagida, Murad S; Kalinina, Anastasia A; Khromykh, Ludmila M; Kazansky, Dmitry B

    2014-10-01

    The concept of immunological surveillance implies that immunogenic variants of tumor cells arising in the organism can be recognized by the immune system. Tumor progression is provided by somatic evolution of tumor cells under the pressure of the immune system. The loss of MHC Class I molecules on the surface of tumor cells is one of the most known outcomes of immune selection. This study developed a model of immune selection based on the immune response of TCR 1d1 single β-chain transgenic B10.D2(R101) (K(d)I(d)D(b)) mice to allogeneic EL4 (H-2(b)) thymoma cells. In wild-type B10.D2(R101) mice, immunization with EL4 cells induced a vigorous CTL response targeted to the H-2K(b) molecule and results in full rejection of the tumor cells. In contrast, transgenic mice developed a compromised proliferative response in mixed-lymphocyte response assays and were unable to reject transplanted allogeneic EL4 cells. During the immune response to EL4 cells, CD8(+) T-lymphocytes with endogenous β-chains accumulated predominantly in the spleen of transgenic mice and only a small part of the T-lymphocytes expressing transgenic β-chains became CD8(+)CD44(+)CD62L(-) effectors. Then, instead of a full elimination of tumor cells as in wild-type mice, a reproducible prolonged equilibrium phase and subsequent escape was observed in transgenic mice that resulted in death of 90% of the mice in 40-60 days after grafting. Prolonged exposure of tumor cells to the pressure of the immune system in transgenic mice in vivo resulted in a stable loss of H-2K(b) molecules on the EL4 cell surface. Genetic manipulation of the T-lymphocyte repertoire was sufficient to reproduce the classic pattern of interactions between tumor cells and the immune system, usually observed in reliable syngeneic models of anti-tumor immunity. This newly-developed model could be used in further studies of immunoregulatory circuits common for transplantational and anti-tumor immune responses.

  4. Circumsporozoite Protein-Specific Kd-Restricted CD8+ T Cells Mediate Protective Antimalaria Immunity in Sporozoite-Immunized MHC-I-Kd Transgenic Mice

    Directory of Open Access Journals (Sweden)

    Jing Huang

    2014-01-01

    Full Text Available Although the roles of CD8+ T cells and a major preerythrocytic antigen, the circumsporozoite (CS protein, in contributing protective antimalaria immunity induced by radiation-attenuated sporozoites, have been shown by a number of studies, the extent to which these players contribute to antimalaria immunity is still unknown. To address this question, we have generated C57BL/6 (B6 transgenic (Tg mice, expressing Kd molecules under the MHC-I promoter, called MHC-I-Kd-Tg mice. In this study, we first determined that a single immunizing dose of IrPySpz induced a significant level of antimalaria protective immunity in MHC-I-Kd-Tg mice but not in B6 mice. Then, by depleting various T-cell subsets in vivo, we determined that CD8+ T cells are the main mediator of the protective immunity induced by IrPySpz. Furthermore, when we immunized (MHC-I-Kd-Tg × CS-Tg F1 mice with IrPySpz after crossing MHC-I-Kd-Tg mice with PyCS-transgenic mice (CS-Tg, which are unable to mount PyCS-specific immunity, we found that IrPySpz immunization failed to induce protective antimalaria immunity in (MHC-I-Kd-Tg × CS-Tg F1 mice, thus indicating the absence of PyCS antigen-dependent immunity in these mice. These results indicate that protective antimalaria immunity induced by IrPySpz in MHC-I-Kd-Tg mice is mediated by CS protein-specific, Kd-restricted CD8+ T cells.

  5. Type II collagen in cartilage evokes peptide-specific tolerance and skews the immune response.

    Science.gov (United States)

    Malmström, V; Kjellén, P; Holmdahl, R

    1998-06-01

    T cell recognition of type II collagen (CII) is a crucial event in the induction of collagen-induced arthritis in the mouse. Several CII peptides have been shown to be of importance, dependent on which MHC haplotype the mouse carries. By sequencing the rat CII and comparing the sequence with mouse, human, bovine and chicken CII, we have found that the immunodominant peptides all differ at critical positions compared with the autologous mouse sequence. Transgenic expression of the immunodominant Aq-restricted heterologous CII 256-270 epitope inserted into type I collagen (TSC mice) or type II collagen (MMC-1 mice) led to epitope-specific tolerance. Immunization of TSC mice with chick CII led to arthritis and immune responses, dependent on the subdominant, Aq-restricted and chick-specific CII 190-200 epitope. Immunization of F1 mice, expressing both H-2q and H-2r as well as transgenic expression of the Aq-restricted CII 256-270 epitope in cartilage, with bovine CII, led to arthritis, dependent on the Ar-restricted, bovine-specific epitope CII 607-621. These data show that the immunodominance of CII recognition is directed towards heterologous determinants, and that T cells directed towards the corresponding autologous epitopes are tolerated without evidence of active suppression.

  6. Oropharyngeal Candidiasis in HIV Infection: Analysis of Impaired Mucosal Immune Response to Candida albicans in Mice Expressing the HIV-1 Transgene

    Directory of Open Access Journals (Sweden)

    Louis de Repentigny

    2015-06-01

    Full Text Available IL-17-producing Th17 cells are of critical importance in host defense against oropharyngeal candidiasis (OPC. Speculation about defective Th17 responses to oral C. albicans infection in the context of HIV infection prompted an investigation of innate and adaptive immune responses to Candida albicans in transgenic mice expressing the genome of HIV-1 in immune cells and displaying an AIDS-like disease. Defective IL-17 and IL-22-dependent mucosal responses to C. albicans were found to determine susceptibility to OPC in these transgenic mice. Innate phagocytes were quantitatively and functionally intact, and individually dispensable for control of OPC and to prevent systemic dissemination of Candida to deep organs. CD8+ T-cells recruited to the oral mucosa of the transgenic mice limited the proliferation of C. albicans in these conditions of CD4+ T-cell deficiency. Therefore, the immunopathogenesis of OPC in the context of HIV infection involves defective T-cell-mediated immunity, failure of crosstalk with innate mucosal immune effector mechanisms, and compensatory cell responses, which limit Candida infection to the oral mucosa and prevent systemic dissemination.

  7. Transgenic expression of soluble human CD5 enhances experimentally-induced autoimmune and anti-tumoral immune responses.

    Directory of Open Access Journals (Sweden)

    Rafael Fenutría

    Full Text Available CD5 is a lymphoid-specific transmembrane glycoprotein constitutively expressed on thymocytes and mature T and B1a lymphocytes. Current data support the view that CD5 is a negative regulator of antigen-specific receptor-mediated signaling in these cells, and that this would likely be achieved through interaction with CD5 ligand/s (CD5L of still undefined nature expressed on immune or accessory cells. To determine the functional consequence of loss of CD5/CD5L interaction in vivo, a new transgenic mouse line was generated (shCD5EμTg, expressing a circulating soluble form of human CD5 (shCD5 as a decoy to impair membrane-bound CD5 function. These shCD5EμTg mice showed an enhanced response to autologous antigens, as deduced from the presentation of more severe forms of experimentally inducible autoimmune disease (collagen-induced arthritis, CIA; and experimental autoimmune encephalitis, EAE, as well as an increased anti-tumoral response in non-orthotopic cancer models (B16 melanoma. This enhancement of the immune response was in agreement with the finding of significantly reduced proportions of spleen and lymph node Treg cells (CD4+CD25+FoxP3+, and of peritoneal IL-10-producing and CD5+ B cells, as well as an increased proportion of spleen NKT cells in shCD5EμTg mice. Similar changes in lymphocyte subpopulations were observed in wild-type mice following repeated administration of exogenous recombinant shCD5 protein. These data reveal the relevant role played by CD5/CD5L interactions on the homeostasis of some functionally relevant lymphocyte subpopulations and the modulation of immune responses to autologous antigens.

  8. T-Cell Mediated Immune Responses Induced in ret Transgenic Mouse Model of Malignant Melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Abschuetz, Oliver [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Osen, Wolfram [Division of Translational Immunology, German Cancer Center, Heidelberg 69120 (Germany); Frank, Kathrin [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany); Kato, Masashi [Unit of Environmental Health Sciences, Department of Biomedical Sciences, College of Life and Health Sciences, Chubu University, Aichi 487-8501 (Japan); Schadendorf, Dirk [Department of Dermatology, University Hospital Essen, Essen 45122 (Germany); Umansky, Viktor, E-mail: v.umansky@dkfz.de [Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg and Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim , Heidelberg 69120 (Germany)

    2012-04-26

    Poor response of human malignant melanoma to currently available treatments requires a development of innovative therapeutic strategies. Their evaluation should be based on animal models that resemble human melanoma with respect to genetics, histopathology and clinical features. Here we used a transgenic mouse model of spontaneous skin melanoma, in which the ret transgene is expressed in melanocytes under the control of metallothionein-I promoter. After a short latency, around 25% mice develop macroscopic skin melanoma metastasizing to lymph nodes, bone marrow, lungs and brain, whereas other transgenic mice showed only metastatic lesions without visible skin tumors. We found that tumor lesions expressed melanoma associated antigens (MAA) tyrosinase, tyrosinase related protein (TRP)-1, TRP-2 and gp100, which could be applied as targets for the immunotherapy. Upon peptide vaccination, ret transgenic mice without macroscopic melanomas were able to generate T cell responses not only against a strong model antigen ovalbumin but also against typical MAA TRP-2. Although mice bearing macroscopic primary tumors could also display an antigen-specific T cell reactivity, it was significantly down-regulated as compared to tumor-free transgenic mice or non-transgenic littermates. We suggest that ret transgenic mice could be used as a pre-clinical model for the evaluation of novel strategies of melanoma immunotherapy.

  9. HIV-1 Gag-specific exosome-targeted T cell-based vaccine stimulates effector CTL responses leading to therapeutic and long-term immunity against Gag/HLA-A2-expressing B16 melanoma in transgenic HLA-A2 mice

    Directory of Open Access Journals (Sweden)

    Rong Wang

    2014-01-01

    Full Text Available Human immunodeficiency virus type-1 (HIV-1-specific dendritic cell (DC vaccines have been applied to clinical trials that show only induction of some degree of immune responses, warranting the search of other more efficient vaccine strategies. Since HIV-1-specific CD8+ cytotoxic T lymphocytes (CTLs have been found to recognize some HIV-1 structural protein Gag conserved and cross-strain epitopes, Gag has become one of the most attractive target candidates for HIV-1 vaccine development. In this study, we generated HIV-1 Gag-specific Gag-Texo vaccine by using ConA-stimulated polyclonal CD8+ T-cells with uptake of Gag-expressing adenoviral vector AdVGag-transfected DC (DCGag-released exosomes (EXOs, and assessed its stimulation of Gag-specific CD8+ CTL responses and antitumor immunity. We demonstrate that Gag-Texo and DCGag vaccines comparably stimulate Gag-specific effector CD8+ CTL responses. Gag-Texo-stimulated CTL responses result in protective immunity against Gag-expressing BL6-10Gag melanoma in 8/8 wild-type C57BL/6 mice. In addition, we show that Gag-Texo vaccine also induces CTL responses leading to protective and long-term immunity against Gag/HLA-A2-expressing BL6-10Gag/A2 melanoma in 8/8 and 2/8 transgenic HLA-A2 mice, respectively. The average number of lung tumor colonies in mice with 30-days post-immunization is only 23, which is significantly less than that (>300 in control ConA-T-immunized HLA-A2 mice. Furthermore, Gag-Texo vaccine also induces some degree of therapeutic immunity. The average number (50 and size (0.23 mm in diameter of lung tumor colonies in Gag-Texo-immunized HLA-A2 mice bearing 6-day-established lung BL6-10Gag/A2 melanoma metastasis are significantly less than the average number (>300 and size (1.02 mm in diameter in control ConA-T-immunized HLA-A2 mice. Taken together, HIV-1 Gag-Texo vaccine capable of stimulating Gag-specific CTL responses and therapeutic immunity may be useful as a new immunotherapeutic

  10. Transgenic zebrafish reveal tissue-specific differences in estrogen signaling in response to environmental water samples.

    Science.gov (United States)

    Gorelick, Daniel A; Iwanowicz, Luke R; Hung, Alice L; Blazer, Vicki S; Halpern, Marnie E

    2014-04-01

    Environmental endocrine disruptors (EEDs) are exogenous chemicals that mimic endogenous hormones such as estrogens. Previous studies using a zebrafish transgenic reporter demonstrated that the EEDs bisphenol A and genistein preferentially activate estrogen receptors (ERs) in the larval heart compared with the liver. However, it was not known whether the transgenic zebrafish reporter was sensitive enough to detect estrogens from environmental samples, whether environmental estrogens would exhibit tissue-specific effects similar to those of BPA and genistein, or why some compounds preferentially target receptors in the heart. We tested surface water samples using a transgenic zebrafish reporter with tandem estrogen response elements driving green fluorescent protein expression (5xERE:GFP). Reporter activation was colocalized with tissue-specific expression of ER genes by RNA in situ hybridization. We observed selective patterns of ER activation in transgenic fish exposed to river water samples from the Mid-Atlantic United States, with several samples preferentially activating receptors in embryonic and larval heart valves. We discovered that tissue specificity in ER activation was due to differences in the expression of ER subtypes. ERα was expressed in developing heart valves but not in the liver, whereas ERβ2 had the opposite profile. Accordingly, subtype-specific ER agonists activated the reporter in either the heart valves or the liver. The use of 5xERE:GFP transgenic zebrafish revealed an unexpected tissue-specific difference in the response to environmentally relevant estrogenic compounds. Exposure to estrogenic EEDs in utero was associated with adverse health effects, with the potentially unanticipated consequence of targeting developing heart valves.

  11. Transgenerational effects enhance specific immune response in a wild passerine

    Directory of Open Access Journals (Sweden)

    Juli Broggi

    2016-03-01

    Full Text Available Vertebrate mothers transfer diverse compounds to developing embryos that can affect their development and final phenotype (i.e., maternal effects. However, the way such effects modulate offspring phenotype, in particular their immunity, remains unclear. To test the impact of maternal effects on offspring development, we treated wild breeding house sparrows (Passer domesticus in Sevilla, SE Spain with Newcastle disease virus (NDV vaccine. Female parents were vaccinated when caring for first broods, eliciting a specific immune response to NDV. The immune response to the same vaccine, and to the PHA inflammatory test were measured in 11-day-old chicks from their following brood. Vaccinated chicks from vaccinated mothers developed a stronger specific response that was related to maternal NDV antibody concentration while rearing their chicks. The chicks’ carotenoid concentration and total antioxidant capacity in blood were negatively related to NDV antibody concentration, whereas no relation with PHA response was found. Specific NDV antibodies could not be detected in 11-day-old control chicks from vaccinated mothers, implying that maternally transmitted antibodies are not directly involved but may promote offspring specific immunity through a priming effect, while other immunity components remain unaffected. Maternally transmitted antibodies in the house sparrow are short-lived, depend on maternal circulation levels and enhance pre-fledging chick specific immunity when exposed to the same pathogens as the mothers.

  12. Ocular myasthenia gravis induced by human acetylcholine receptor ϵ subunit immunization in HLA DR3 transgenic mice.

    Science.gov (United States)

    Wu, Xiaorong; Tuzun, Erdem; Saini, Shamsher S; Wang, Jun; Li, Jing; Aguilera-Aguirre, Leopoldo; Huda, Ruksana; Christadoss, Premkumar

    2015-12-01

    Extraocular muscles (EOM) are preferentially involved in myasthenia gravis (MG) and acetylcholine receptor (AChR) antibody positive MG patients may occasionally present with isolated ocular symptoms. Although experimental autoimmune myasthenia gravis (EAMG) induced by whole AChR immunization closely mimics clinical and immunopathological aspects of MG, EOM are usually not affected. We have previously developed an EAMG model, which imitates EOM symptoms of MG by immunization of human leukocyte antigen (HLA) transgenic mice with α or γ-subunits of human AChR (H-AChR). To investigate the significance of the ϵ-subunit in ocular MG, we immunized HLA-DR3 and HLA-DQ8 transgenic mice with recombinant H-AChR ϵ-subunit expressed in Escherichia coli. HLA-DR3 transgenic mice showed significantly higher clinical ocular and generalized MG severity scores and lower grip strength values than HLA-DQ8 mice. H-AChR ϵ-subunit-immunized HLA-DR3 transgenic mice had higher serum anti-AChR antibody (IgG, IgG1, IgG2b, IgG2c and IgM) levels, neuromuscular junction IgG and complement deposit percentages than ϵ-subunit-immunized HLA-DQ8 transgenic mice. Control mice immunized with E. coli extract or complete Freund adjuvant (CFA) did not show clinical and immunopathological features of ocular and generalized EAMG. Lymph node cells of ϵ-subunit-immunized HLA-DR3 mice showed significantly higher proliferative responses than those of ϵ-subunit-immunized HLA-DQ8 mice, crude E. coli extract-immunized and CFA-immunized transgenic mice. Our results indicate that the human AChR ϵ-subunit is capable of inducing myasthenic muscle weakness. Diversity of the autoimmune responses displayed by mice expressing different HLA class II molecules suggests that the interplay between HLA class II alleles and AChR subunits might have a profound impact on the clinical course of MG. Copyright © 2015 European Federation of Immunological Societies. Published by Elsevier B.V. All rights reserved.

  13. Anthrax lethal factor as an immune target in humans and transgenic mice and the impact of HLA polymorphism on CD4+ T cell immunity.

    Science.gov (United States)

    Ascough, Stephanie; Ingram, Rebecca J; Chu, Karen K; Reynolds, Catherine J; Musson, Julie A; Doganay, Mehmet; Metan, Gökhan; Ozkul, Yusuf; Baillie, Les; Sriskandan, Shiranee; Moore, Stephen J; Gallagher, Theresa B; Dyson, Hugh; Williamson, E Diane; Robinson, John H; Maillere, Bernard; Boyton, Rosemary J; Altmann, Daniel M

    2014-05-01

    Bacillus anthracis produces a binary toxin composed of protective antigen (PA) and one of two subunits, lethal factor (LF) or edema factor (EF). Most studies have concentrated on induction of toxin-specific antibodies as the correlate of protective immunity, in contrast to which understanding of cellular immunity to these toxins and its impact on infection is limited. We characterized CD4+ T cell immunity to LF in a panel of humanized HLA-DR and DQ transgenic mice and in naturally exposed patients. As the variation in antigen presentation governed by HLA polymorphism has a major impact on protective immunity to specific epitopes, we examined relative binding affinities of LF peptides to purified HLA class II molecules, identifying those regions likely to be of broad applicability to human immune studies through their ability to bind multiple alleles. Transgenics differing only in their expression of human HLA class II alleles showed a marked hierarchy of immunity to LF. Immunogenicity in HLA transgenics was primarily restricted to epitopes from domains II and IV of LF and promiscuous, dominant epitopes, common to all HLA types, were identified in domain II. The relevance of this model was further demonstrated by the fact that a number of the immunodominant epitopes identified in mice were recognized by T cells from humans previously infected with cutaneous anthrax and from vaccinated individuals. The ability of the identified epitopes to confer protective immunity was demonstrated by lethal anthrax challenge of HLA transgenic mice immunized with a peptide subunit vaccine comprising the immunodominant epitopes that we identified.

  14. A novel therapeutic hepatitis B vaccine induces cellular and humoral immune responses and breaks tolerance in hepatitis B virus (HBV) transgenic mice.

    Science.gov (United States)

    Buchmann, Pascale; Dembek, Claudia; Kuklick, Larissa; Jäger, Clemens; Tedjokusumo, Raindy; von Freyend, Miriam John; Drebber, Uta; Janowicz, Zbigniew; Melber, Karl; Protzer, Ulrike

    2013-02-06

    Therapeutic vaccines are currently being developed for chronic hepatitis B and C. As an alternative to long-term antiviral treatment or to support only partially effective therapy, they should activate the patient's immune system effectively to fight and finally control the virus. A paradigm of therapeutic vaccination is the potent induction of T-cell responses against key viral antigens - besides activation of a humoral immune response. We have evaluated the potential of a novel vaccine formulation comprising particulate hepatitis B surface (HBsAg) and core antigen (HBcAg), and the saponin-based ISCOMATRIX™ adjuvant for its ability to stimulate T and B cell responses in C57BL/6 mice and its ability to break tolerance in syngeneic HBV transgenic (HBVtg) mice. In C57BL/6 mice, the vaccine induced multifunctional HBsAg- and HBcAg-specific CD8+ T cells detected by staining for IFNγ, TNFα and IL-2, as well as high antibody titers against both antigens. Vaccination of HBVtg animals induced potent HBsAg- and HBcAg-specific CD8+ T-cell responses in spleens and HBcAg-specific CD8+ T-cell responses in livers as well as anti-HBs seroconversion two weeks post injection. Vaccination further reduced HBcAg expression in livers of HBVtg mice without causing liver damage. In summary, this study demonstrates therapeutic efficacy of a novel vaccine formulation in a mouse model of immunotolerant, chronic HBV infection. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. A specific primed immune response in Drosophila is dependent on phagocytes.

    Directory of Open Access Journals (Sweden)

    Linh N Pham

    2007-03-01

    Full Text Available Drosophila melanogaster, like other invertebrates, relies solely on its innate immune response to fight invading microbes; by definition, innate immunity lacks adaptive characteristics. However, we show here that priming Drosophila with a sublethal dose of Streptococcus pneumoniae protects against an otherwise-lethal second challenge of S. pneumoniae. This protective effect exhibits coarse specificity for S. pneumoniae and persists for the life of the fly. Although not all microbial challenges induced this specific primed response, we find that a similar specific protection can be elicited by Beauveria bassiana, a natural fly pathogen. To characterize this primed response, we focused on S. pneumoniae-induced protection. The mechanism underlying this protective effect requires phagocytes and the Toll pathway. However, activation of the Toll pathway is not sufficient for priming-induced protection. This work contradicts the paradigm that insect immune responses cannot adapt and will promote the search for similar responses overlooked in organisms with an adaptive immune response.

  16. Pretreatment antigen-specific immunity and regulation - association with subsequent immune response to anti-tumor DNA vaccination.

    Science.gov (United States)

    Johnson, Laura E; Olson, Brian M; McNeel, Douglas G

    2017-07-18

    Immunotherapies have demonstrated clinical benefit for many types of cancers, however many patients do not respond, and treatment-related adverse effects can be severe. Hence many efforts are underway to identify treatment predictive biomarkers. We have reported the results of two phase I trials using a DNA vaccine encoding prostatic acid phosphatase (PAP) in patients with biochemically recurrent prostate cancer. In both trials, persistent PAP-specific Th1 immunity developed in some patients, and this was associated with favorable changes in serum PSA kinetics. In the current study, we sought to determine if measures of antigen-specific or antigen non-specific immunity were present prior to treatment, and associated with subsequent immune response, to identify possible predictive immune biomarkers. Patients who developed persistent PAP-specific, IFNγ-secreting immune responses were defined as immune "responders." The frequency of peripheral T cell and B cell lymphocytes, natural killer cells, monocytes, dendritic cells, myeloid derived suppressor cells, and regulatory T cells were assessed by flow cytometry and clinical laboratory values. PAP-specific immune responses were evaluated by cytokine secretion in vitro, and by antigen-specific suppression of delayed-type hypersensitivity to a recall antigen in an in vivo SCID mouse model. The frequency of peripheral blood cell types did not differ between the immune responder and non-responder groups. Non-responder patients tended to have higher PAP-specific IL-10 production pre-vaccination (p = 0.09). Responder patients had greater preexisting PAP-specific bystander regulatory responses that suppressed DTH to a recall antigen (p = 0.016). While our study population was small (n = 38), these results suggest that different measures of antigen-specific tolerance or regulation might help predict immunological outcome from DNA vaccination. These will be prospectively evaluated in an ongoing randomized, phase II trial.

  17. Non specific immune response in the African catfish ...

    African Journals Online (AJOL)

    Non specific immune response in the African catfish, Heterobranchus longifilis fed diets fortified with ethanolic extracts of selected traditional medicinal plants and disease resistance against Pseudomonas aeruginosa.

  18. Improved Cytotoxic T Lymphocyte Responses to Vaccination with Porcine Reproductive and Respiratory Syndrome Virus in 4-1BB Transgenic Pigs

    Directory of Open Access Journals (Sweden)

    Guangping Huang

    2017-12-01

    Full Text Available Vaccination is the most reliable measure to prevent infectious diseases in domestic animals. Development of novel vaccines demands extensive studies with new technologies, such as using novel adjuvants and immunomodulatory molecules. The co-stimulatory molecule 4-1BB provides a key signal that directs the fate of T cells during activation, and thus is important to their function in immune protection. To determine whether host immune responses to viral infection could be promoted by enhancing 4-1BB co-stimulation, in this study, we produced transgenic pig clones expressing an extra copy of the 4-1BB gene by clustered regularly interspaced short palindromic repeats/CRISPR-associated gene 9-mediated homologous recombination at the Rosa26 locus. The immune responses of transgenic pigs to porcine reproductive and respiratory syndrome virus (PRRSV vaccine were determined on day 14. We show that peripheral blood lymphocytes of transgenic pigs expressed around twice the level of 4-1BB mRNA than those of control pigs. We also found IL-2, TNF-α, and granzyme B mRNA levels as well as PRRSV-specific IFN-γ response were significantly upregulated in 4-1BB transgenic pigs, leading to more efficient cytotoxic T lymphocyte (CTL killing, whereas the expressions of IL-4, IL-17, and Foxp3 were not affected. These results indicate that higher levels of 4-1BB expression involve in promoting Th1 differentiation and enhancing specific CTL responses to PRRSV, and provide a novel approach to increase the efficacy of current vaccines to control the infectious diseases.

  19. Functional characterization of Foxp3-specific spontaneous immune responses

    DEFF Research Database (Denmark)

    Larsen, Susanne Købke; Munir, S; Andersen, Anders Woetmann

    2013-01-01

    Tumor-infiltrating CD4+CD25+ regulatory T cells (Tregs) are associated with an impaired prognosis in several cancers. The transcription factor forkhead box P3 (Foxp3) is generally expressed in Tregs. Here, we identify and characterize spontaneous cytotoxic immune responses to Foxp3-expressing cel....... Consequently, induction of Foxp3-specific cytotoxic T-cell responses appears as an attractive tool to boost spontaneous or therapeutically provoked immune responses, for example, for the therapy of cancer....

  20. Male bovine GH transgenic mice have decreased adiposity with an adipose depot-specific increase in immune cell populations.

    Science.gov (United States)

    Benencia, Fabian; Harshman, Stephanie; Duran-Ortiz, Silvana; Lubbers, Ellen R; List, Edward O; Householder, Lara; Al-Naeeli, Mawadda; Liang, Xiaoyu; Welch, Lonnie; Kopchick, John J; Berryman, Darlene E

    2015-05-01

    White adipose tissue (WAT) is composed of mature adipocytes and a stromal vascular fraction (SVF), which contains a variety of cells, including immune cells that vary among the different WAT depots. Growth hormone (GH) impacts immune function and adiposity in an adipose depot-specific manner. However, its effects on WAT immune cell populations remain unstudied. Bovine GH transgenic (bGH) mice are commonly used to study the in vivo effects of GH. These giant mice have an excess of GH action, impaired glucose metabolism, decreased adiposity, increased lean mass, and a shortened lifespan. Therefore, the purpose of this study was to characterize the WAT depot-specific differences in immune cell populations in the presence of excess GH in vivo. Three WAT depots were assessed: inguinal (sc), epididymal (EPI), and mesenteric (MES). Subcutaneous and MES bGH WAT depots showed a significantly higher number of total SVF cells, yet only MES bGH WAT had higher leukocyte counts compared with control samples. By means of flow cytometry analysis of the SVF, we detected greater macrophage and regulatory T-cell infiltration in sc and MES bGH WAT depots compared with controls. However, no differences were observed in the EPI WAT depot. RNA-sequencing confirmed significant alterations in pathways related to T-cell infiltration and activation in the sc depot with fewer significant changes in the EPI bGH WAT depot. These findings collectively point to a previously unrecognized role for GH in influencing the distribution of WAT immune cell populations in a depot-specific manner.

  1. Identification of NY-BR-1-specific CD4(+) T cell epitopes using HLA-transgenic mice.

    Science.gov (United States)

    Gardyan, Adriane; Osen, Wolfram; Zörnig, Inka; Podola, Lilli; Agarwal, Maria; Aulmann, Sebastian; Ruggiero, Eliana; Schmidt, Manfred; Halama, Niels; Leuchs, Barbara; von Kalle, Christof; Beckhove, Philipp; Schneeweiss, Andreas; Jäger, Dirk; Eichmüller, Stefan B

    2015-06-01

    Breast cancer represents the second most common cancer type worldwide and has remained the leading cause of cancer-related deaths among women. The differentiation antigen NY-BR-1 appears overexpressed in invasive mammary carcinomas compared to healthy breast tissue, thus representing a promising target antigen for T cell based tumor immunotherapy approaches. Since efficient immune attack of tumors depends on the activity of tumor antigen-specific CD4(+) effector T cells, NY-BR-1 was screened for the presence of HLA-restricted CD4(+) T cell epitopes that could be included in immunological treatment approaches. Upon NY-BR-1-specific DNA immunization of HLA-transgenic mice and functional ex vivo analysis, a panel of NY-BR-1-derived library peptides was determined that specifically stimulated IFNγ secretion among splenocytes of immunized mice. Following in silico analyses, four candidate epitopes were determined which were successfully used for peptide immunization to establish NY-BR-1-specific, HLA-DRB1*0301- or HLA-DRB1*0401-restricted CD4(+) T cell lines from splenocytes of peptide immunized HLA-transgenic mice. Notably, all four CD4(+) T cell lines recognized human HLA-DR-matched dendritic cells (DC) pulsed with lysates of NY-BR-1 expressing human tumor cells, demonstrating natural processing of these epitopes also within the human system. Finally, CD4(+) T cells specific for all four CD4(+) T cell epitopes were detectable among PBMC of breast cancer patients, showing that CD4(+) T cell responses against the new epitopes are not deleted nor inactivated by self-tolerance mechanisms. Our results present the first NY-BR-1-specific HLA-DRB1*0301- and HLA-DRB1*0401-restricted T cell epitopes that could be exploited for therapeutic intervention against breast cancer. © 2014 UICC.

  2. Augmentation of antigen-specific immune responses using DNA-fusogenic liposome vaccine

    International Nuclear Information System (INIS)

    Yoshikawa, Tomoaki; Imazu, Susumu; Gao Jianqing; Hayashi, Kazuyuki; Tsuda, Yasuhiro; Shimokawa, Mariko; Sugita, Toshiki; Niwa, Takako; Oda, Atushi; Akashi, Mitsuru; Tsutsumi, Yasuo; Mayumi, Tadanori; Nakagawa, Shinsaku

    2004-01-01

    In an attempt to enhance the immunological efficacy of genetic immunization, we investigated a new biological means for delivering antigen gene directly to the cytoplasm via membrane fusion. In this context, we investigated fusogenic liposome (FL) encapsulating DNA as a possible genetic immunization vehicle. RT-PCR analysis indicated that a FL could introduce and express encapsulating OVA gene efficiently and rapidly in vitro. Consistent with this observation, an in vitro assay showed that FL-mediated antigen-gene delivery can induce potent presentation of antigen via the MHC class I-dependent pathway. Accordingly, immunization with FL containing the OVA-gene induced potent OVA-specific Th1 and Th2 cytokine production. Additionally, OVA-specific CTL responses and antibody production were also observed in systemic compartments including the spleen, upon immunization with the OVA-gene encapsulating FL. These findings suggest that FL is an effective genetic immunization carrier system for the stimulation of antigen-specific immune responses against its encoding antigen

  3. Preexisting Salmonella-specific immunity interferes with the subsequent development of immune responses against the Salmonella strains delivering H9N2 hemagglutinin.

    Science.gov (United States)

    Hajam, Irshad Ahmed; Lee, John Hwa

    2017-06-01

    Recombinant Salmonella strains expressing foreign heterologous antigens have been extensively studied as promising live vaccine delivery vehicles. In this study, we constructed attenuated smooth (S-HA) and rough (R-HA) Salmonella strains expressing hemagglutinin (HA) of H9N2, a low pathogenic avian influenza A virus. We then investigated the HA-specific immune responses following oral immunization with either S-HA or R-HA strain in chicken model. We further examined the effects of the preexisting anti-Salmonella immunity on the subsequent elicitation of the HA and the Salmonella ompA specific immune responses. Our results showed that primary immunization with either the S-HA or the R-HA strain elicited comparable HA-specific immune responses and the responses were significantly (pSalmonella vector control. When chickens were pre-immunized with the smooth Salmonella carrier alone and then vaccinated with either S-HA or R-HA strain 3, 6 and 9 weeks later, respectively, significant reductions were seen for HA-specific immune responses at week 6, a point which corresponded to the peak of the primary Salmonella-specific antibody responses. No reductions were seen at week 3 and 9, albeit, the HA-specific immune responses were boosted at week 9, a point which corresponded to the lowest primary Salmonella-specific antibody responses. The ompA recall responses remain refractory at week 3 and 6 following deliberate immunization with the carrier strain, but were significantly (pSalmonella immunity inhibits antigen-specific immune responses and this effect could be avoided by carefully selecting the time point when carrier-specific immune responses are relatively low. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Science.gov (United States)

    Gunasekaran, Manojkumar; Chatterjee, Prodyot K.; Shih, Andrew; Imperato, Gavin H.; Addorisio, Meghan; Kumar, Gopal; Lee, Annette; Graf, John F.; Meyer, Dan; Marino, Michael; Puleo, Christopher; Ashe, Jeffrey; Cox, Maureen A.; Mak, Tak W.; Bouton, Chad; Sherry, Barbara; Diamond, Betty; Andersson, Ulf; Coleman, Thomas R.; Metz, Christine N.; Tracey, Kevin J.; Chavan, Sangeeta S.

    2018-01-01

    The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs) of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR), dorsal root ganglion (DRG) sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG) required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO) or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM) into wild-type (WT) mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses. PMID:29755449

  5. Immunization Elicits Antigen-Specific Antibody Sequestration in Dorsal Root Ganglia Sensory Neurons

    Directory of Open Access Journals (Sweden)

    Manojkumar Gunasekaran

    2018-04-01

    Full Text Available The immune and nervous systems are two major organ systems responsible for host defense and memory. Both systems achieve memory and learning that can be retained, retrieved, and utilized for decades. Here, we report the surprising discovery that peripheral sensory neurons of the dorsal root ganglia (DRGs of immunized mice contain antigen-specific antibodies. Using a combination of rigorous molecular genetic analyses, transgenic mice, and adoptive transfer experiments, we demonstrate that DRGs do not synthesize these antigen-specific antibodies, but rather sequester primarily IgG1 subtype antibodies. As revealed by RNA-seq and targeted quantitative PCR (qPCR, dorsal root ganglion (DRG sensory neurons harvested from either naïve or immunized mice lack enzymes (i.e., RAG1, RAG2, AID, or UNG required for generating antibody diversity and, therefore, cannot make antibodies. Additionally, transgenic mice that express a reporter fluorescent protein under the control of Igγ1 constant region fail to express Ighg1 transcripts in DRG sensory neurons. Furthermore, neural sequestration of antibodies occurs in mice rendered deficient in neuronal Rag2, but antibody sequestration is not observed in DRG sensory neurons isolated from mice that lack mature B cells [e.g., Rag1 knock out (KO or μMT mice]. Finally, adoptive transfer of Rag1-deficient bone marrow (BM into wild-type (WT mice or WT BM into Rag1 KO mice revealed that antibody sequestration was observed in DRG sensory neurons of chimeric mice with WT BM but not with Rag1-deficient BM. Together, these results indicate that DRG sensory neurons sequester and retain antigen-specific antibodies released by antibody-secreting plasma cells. Coupling this work with previous studies implicating DRG sensory neurons in regulating antigen trafficking during immunization raises the interesting possibility that the nervous system collaborates with the immune system to regulate antigen-mediated responses.

  6. Enhanced Antibody Responses in a Novel NOG Transgenic Mouse with Restored Lymph Node Organogenesis

    Directory of Open Access Journals (Sweden)

    Takeshi Takahashi

    2018-01-01

    Full Text Available Lymph nodes (LNs are at the center of adaptive immune responses. Various exogenous substances are transported into LNs and a series of immune responses ensue after recognition by antigen–specific lymphocytes. Although humanized mice have been used to reconstitute the human immune system, most lack LNs due to deficiency of the interleukin (IL-2Rγ gene (cytokine common γ chain, γc. In this study, we established a transgenic strain, NOG-pRORγt-γc, in the NOD/shi-scid-IL-2Rγnull (NOG background, in which the γc gene was expressed in a lymph-tissue inducer (LTi lineage by the endogenous promoter of RORγt. In this strain, LN organogenesis was normalized and the number of human T cells substantially increased in the periphery after reconstitution of the human immune system by human hematopoietic stem cell transplantation. The distribution of human T cells differed between NOG-pRORγt-γc Tg and NOG-non Tg mice. About 40% of human T cells resided in LNs, primarily the mesenteric LNs. The LN-complemented humanized mice exhibited antigen-specific immunoglobulin G responses together and an increased number of IL-21+–producing CD4+ T cells in LNs. This novel mouse strain will facilitate recapitulation of human immune responses.

  7. Genetic variations in non-specific immune response to ...

    African Journals Online (AJOL)

    Non-specific immune response in three strains of Heterobranchus bidorsalis challenged with the bacterium Aeromonas hydrophilia was evaluated. The study was undertaken in three strains of H. bidorsalis from different ecological zones in Nigeria and the percentage cumulative mortality was lowest and significantly ...

  8. Effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response

    Directory of Open Access Journals (Sweden)

    Jin-Long Wu1

    2017-04-01

    Full Text Available Objective: To explore the effect of thoracoscopic esophagus cancer surgery on postoperative incision pain as well as non-specific and specific immune response. Methods: 56 patients with esophageal cancer who accepted surgical treatment in our hospital between March 2011 and February 2016 were collected, the operation methods and related laboratory tests were reviewed, and then they were divided into the thoracoscope group (n=27 who accepted thoracoscopic surgery and the open surgery group (n=29 who accepted traditional thoracotomy. Before operation and 1 d after operation, immune scatter turbidimetry was used to detect serum levels of pain mediators, and flow cytometer was used to detect the levels of nonspecific immune indexes and specific immune indexes. Results: Before operation, the differences in serum pain mediators as well as nonspecific immune response and specific immune response indexes were not statistically significant between two groups of patients (P>0.05. 1 d after operation, serum pain mediators 5-HT, K+ and NE levels of thoracoscope group were lower than those of open surgery group (P<0.05; nonspecific immune response indexes NK cell as well as C3 and C4 levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05; specific immune response indexes CD4+, CD4+/CD8+, IgA and IgG levels in peripheral blood of thoracoscope group were significantly higher than those of open surgery group (P<0.05. Conclusion: Thoracoscopic esophagus cancer surgery causes less damage, has lighter inhibition on the immune response system, and is an ideal operation method for patients with early middle esophagus cancer.

  9. Heterologous human/rat HER2-specific exosome-targeted T cell vaccine stimulates potent humoral and CTL responses leading to enhanced circumvention of HER2 tolerance in double transgenic HLA-A2/HER2 mice.

    Science.gov (United States)

    Xie, Yufeng; Wu, Jie; Xu, Aizhang; Ahmeqd, Shahid; Sami, Amer; Chibbar, Rajni; Freywald, Andrew; Zheng, Changyu; Xiang, Jim

    2018-03-07

    DNA vaccines composed of heterologous human HER2 and rat neu sequences induce stronger antibody response and protective antitumor immunity than either HER2 or neu DNA vaccines in transgenic mice. We previously developed HER2-specific exosome-targeted T-cell vaccine HER2-T EXO capable of stimulating HER2-specific CD8 + T-cell responses, but only leading to partial protective immunity in double-transgenic HLA-A2/HER2 mice with self-immune tolerance to HER2. Here, we constructed an adenoviral vector AdV HuRt expressing HuRt fusion protein composed of NH 2 -HER2 1-407 (Hu) and COOH-neu 408-690 (Rt) fragments, and developed a heterologous human/rat HER2-specific exosome-targeted T-cell vaccine HuRt-T EXO using polyclonal CD4 + T-cells uptaking exosomes released by AdV HuRt -transfected dendritic cells. We found that the HuRt-T EXO vaccine stimulates enhanced CD4 + T-cell responses leading to increased induction of HER2-specific antibody (∼70 µg/ml) compared to that (∼40 µg/ml) triggered by the homologous HER2-T EXO vaccine. By using PE-H-2K d /HER2 23-71 tetramer, we determined that HuRt-T EXO stimulates stronger HER2-specific CD8 + T-cell responses eradicating 90% of HER2-specific target cells, while HER2-T EXO -induced CD8 + T-cell responses only eliminating 53% targets. Furthermore, HuRt-T EXO , but not HER2-T EXO vaccination, is capable of suppressing early stage-established HER2-expressing 4T1 HER2 breast cancer in its lung metastasis or subcutaneous form in BALB/c mice, and of completely protecting transgenic HLA-A2/HER2 mice from growth of HLA-A2/HER2-expressing BL6-10 A2/HER2 melanoma. HuRt-T EXO -stimulated HER2-specific CD8 + T-cells not only are cytolytic to trastuzumab-resistant HLA-A2/HER2-expressing BT474/A2 breast tumor cells in vitro but also eradicates pre-established BT474/A2 tumors in athymic nude mice. Therefore, our novel heterologous human/rat HER2-specific T-cell vaccine HuRt-T EXO, circumventing HER2 tolerance, may provide a new

  10. Effects of alcohol consumption on the allergen-specific immune response in mice

    DEFF Research Database (Denmark)

    Linneberg, Allan; Roursgaard, Martin; Hersoug, Lars-Georg

    2008-01-01

    There is evidence that chronic alcohol consumption impairs the T-helper 1 (Th1) lymphocyte-regulated cell-mediated immune response possibly favoring a Th2 deviation of the immune response. Moreover, a few epidemiological studies have linked alcohol consumption to allergen-specific IgE sensitization....

  11. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    Directory of Open Access Journals (Sweden)

    Melissa N. van Tok

    2017-08-01

    Full Text Available Spondyloarthritis (SpA does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8+ T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1, HLA-B7/Huβ2m transgenic rats [120-4 × 283-2]F1, and wild-type rats to test our hypothesis that SpA may be primarily driven by the innate immune response. In vitro, splenocytes were stimulated with heat-inactivated Mycobacterium tuberculosis and cytokine expression and production was measured. In vivo, male and female rats were immunized with 30, 60, or 90 µg of heat-inactivated M. tuberculosis and clinically monitored for spondylitis and arthritis development. After validation of the model, we tested whether prophylactic and therapeutic TNF targeting affected spondylitis and arthritis. In vitro stimulation with heat-inactivated M. tuberculosis strongly induced gene expression of pro-inflammatory cytokines such as TNF, IL-6, IL-1α, and IL-1β, in the HLA-B27 transgenic rats compared with controls. In vivo immunization induced an increased spondylitis and arthritis incidence and an accelerated and synchronized onset of spondylitis and arthritis in HLA-B27 transgenic males and females. Moreover, immunization overcame the protective effect of orchiectomy. Prophylactic TNF targeting resulted in delayed spondylitis and arthritis development and reduced arthritis severity, whereas therapeutic TNF blockade did not affect spondylitis and arthritis severity. Collectively, these data indicate that innate immune activation plays a role in the initiation of HLA-B27-associated disease and allowed to establish a useful in vivo model to study the cellular and molecular mechanisms of disease initiation and progression.

  12. Vaxfectin enhances antigen specific antibody titers and maintains Th1 type immune responses to plasmid DNA immunization.

    Science.gov (United States)

    Reyes, L; Hartikka, J; Bozoukova, V; Sukhu, L; Nishioka, W; Singh, G; Ferrari, M; Enas, J; Wheeler, C J; Manthorpe, M; Wloch, M K

    2001-06-14

    Antigen specific immune responses were characterized after intramuscular immunization of BALB/c mice with 5 antigen encoding plasmid DNAs (pDNAs) complexed with Vaxfectin, a cationic lipid formulation. Vaxfectin increased IgG titers for all of the antigens with no effect on the CTL responses to the 2 antigens for which CTL assays were performed. Both antigen specific IgG1 and IgG2a were increased, although IgG2a remained greater than IgG1. Furthermore, Vaxfectin had no effect on IFN-gamma or IL-4 production by splenocytes re-stimulated with antigen, suggesting that the Th1 type responses typical of intramuscular pDNA immunization were not altered. Studies with IL-6 -/- mice suggest that the antibody enhancement is IL-6 dependent and results in a correlative increase in antigen specific antibody secreting cells.

  13. Transgene IL-6 Enhances DC-Stimulated CTL Responses by Counteracting CD4+25+Foxp3+ Regulatory T Cell Suppression via IL-6-Induced Foxp3 Downregulation

    Directory of Open Access Journals (Sweden)

    Kalpana Kalyanasundaram Bhanumathy

    2014-03-01

    Full Text Available Dendritic cells (DCs, the most potent antigen-presenting cells have been extensively applied in clinical trials for evaluation of antitumor immunity. However, the efficacy of DC-mediated cancer vaccines is still limited as they are unable to sufficiently break the immune tolerance. In this study, we constructed a recombinant adenoviral vector (AdVIL-6 expressing IL-6, and generated IL-6 transgene-engineered DC vaccine (DCOVA/IL-6 by transfection of murine bone marrow-derived ovalbumin (OVA-pulsed DCs (DCOVA with AdVIL-6. We then assessed DCOVA/IL-6-stimulated cytotoxic T-lymphocyte (CTL responses and antitumor immunity in OVA-specific animal tumor model. We demonstrate that DCOVA/IL-6 vaccine up-regulates expression of DC maturation markers, secretes transgene-encoded IL-6, and more efficiently stimulates OVA-specific CTL responses and therapeutic immunity against OVA-expressing B16 melanoma BL6-10OVA in vivo than the control DCOVA/Null vaccine. Moreover, DCOVA/IL-6-stimulated CTL responses were relatively maintained in mice with transfer of CD4+25+Foxp3+ Tr-cells, but significantly reduced when treated with anti-IL-6 antibody. In addition, we demonstrate that IL-6 down-regulates Foxp3-expression of CD4+25+Foxp3+ Tr-cells in vitro. Taken together, our results demonstrate that AdV-mediated IL-6 transgene-engineered DC vaccine stimulates potent CTL responses and antitumor immunity by counteracting CD4+25+ Tr immunosuppression via IL-6-induced Foxp3 down-regulation. Thus, IL-6 may be a good candidate for engineering DCs for cancer immunotherapy.

  14. Stable Skin-specific Overexpression of Human CTLA4-Ig in Transgenic Mice through Seven Generations

    Institute of Scientific and Technical Information of China (English)

    Yong WANG; Yong NI; Hong WEI; Feng-Chao WANG; Liang-Peng GE; Xiang GAO

    2006-01-01

    Skin graft rejection is a typical cellular immune response, mainly mediated by T cells. Cytotoxic T lymphocyte associated antigen 4-immunoglobin (CTLA4-Ig) extends graft survival by blocking the T cell co-stimulation pathway and inhibiting T cell activation. To investigate the efficacy of CTLA4-Ig in prolonging skin graft survival, human CTLA4-Ig (hCTLA4-Ig) was engineered to overexpress in mouse skin by transgenesis using the K14 promoter. Reverse transcription-polymerase chain reaction (RT-PCR) and Western blot assay indicated that the expression of CTLA4-Ig remained skin-specific and relatively constant compared to the internal control protein, AKT, through seven generations. The presence and concentration of the hCTLA4-Ig protein in transgenic mouse sera was determined by enzyme-linked immunosorbent assay (ELISA), and the results indicated that the serum CTLA4-Ig concentration also remained constant through generations. Survival of transgenic mouse skins grafted onto rat wounds was remarkably prolonged compared to that of wild-type skins from the same mouse strain, and remained comparable among all seven generations. This suggested that the bioactive hCTLA4-Ig protein was stably expressed in transgenical mice through at least seven generations, which was consistent with the stable skin-specific CTLA4-Ig expression.The results demonstrated that the transgenic expression of hCTLA4-Ig in skin driven by the K14 promoter remained constant through generations, and a transgenic line can be established to provide transgenic skin with extended survival reproducibly.

  15. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats.

    Directory of Open Access Journals (Sweden)

    Osiris Marroquin Belaunzaran

    Full Text Available HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA. HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272 and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS patients and HLA-B27 transgenic rats. We characterized a novel B272-specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders.The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry.HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM. HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules.HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders.

  16. HLA-B27-Homodimer-Specific Antibody Modulates the Expansion of Pro-Inflammatory T-Cells in HLA-B27 Transgenic Rats

    Science.gov (United States)

    Marroquin Belaunzaran, Osiris; Kleber, Sascha; Schauer, Stefan; Hausmann, Martin; Nicholls, Flora; Van den Broek, Maries; Payeli, Sravan; Ciurea, Adrian; Milling, Simon; Stenner, Frank; Shaw, Jackie; Kollnberger, Simon; Bowness, Paul; Petrausch, Ulf; Renner, Christoph

    2015-01-01

    Objectives HLA-B27 is a common genetic risk factor for the development of Spondyloarthritides (SpA). HLA-B27 can misfold to form cell-surface heavy chain homodimers (B272) and induce pro-inflammatory responses that may lead to SpA pathogenesis. The presence of B272 can be detected on leukocytes of HLA-B27+ Ankylosing spondylitis (AS) patients and HLA-B27 transgenic rats. We characterized a novel B272–specific monoclonal antibody to study its therapeutic use in HLA-B27 associated disorders. Methods The monoclonal HD5 antibody was selected from a phage library to target cell-surface B272 homodimers and characterized for affinity, specificity and ligand binding. The immune modulating effect of HD5 was tested in HLA-B27 transgenic rats. Onset and progression of disease profiles were monitored during therapy. Cell-surface B272 and expansion of pro-inflammatory cells from blood, spleen and draining lymph nodes were assessed by flow cytometry. Results HD5 bound B272 with high specificity and affinity (Kd = 0.32 nM). HD5 blocked cell-surface interaction of B272 with immune regulatory receptors KIR3DL2, LILRB2 and Pirb. In addition, HD5 modulated the production of TNF from CD4+ T-cells by limiting B272 interactions in vitro. In an HLA-B27 transgenic rat model repetitive dosing of HD5 reduced the expansion of pro-inflammatory CD4+ T-cells, and decreased the levels of soluble TNF and number of cell-surface B272 molecules. Conclusion HD5 predominantly inhibits early TNF production and expansion of pro-inflammatory CD4+ T-cells in HLA-B27 transgenic rats. Monoclonal antibodies targeting cell-surface B272 propose a new concept for the modulation of inflammatory responses in HLA-B27 related disorders. PMID:26125554

  17. Elimination of contaminating cap genes in AAV vector virions reduces immune responses and improves transgene expression in a canine gene therapy model.

    Science.gov (United States)

    Wang, Z; Halbert, C L; Lee, D; Butts, T; Tapscott, S J; Storb, R; Miller, A D

    2014-04-01

    Animal and human gene therapy studies utilizing AAV vectors have shown that immune responses to AAV capsid proteins can severely limit transgene expression. The main source of capsid antigen is that associated with the AAV vectors, which can be reduced by stringent vector purification. A second source of AAV capsid proteins is that expressed from cap genes aberrantly packaged into AAV virions during vector production. This antigen source can be eliminated by the use of a cap gene that is too large to be incorporated into an AAV capsid, such as a cap gene containing a large intron (captron gene). Here, we investigated the effects of elimination of cap gene transfer and of vector purification by CsCl gradient centrifugation on AAV vector immunogenicity and expression following intramuscular injection in dogs. We found that both approaches reduced vector immunogenicity and that combining the two produced the lowest immune responses and highest transgene expression. This combined approach enabled the use of a relatively mild immunosuppressive regimen to promote robust micro-dystrophin gene expression in Duchenne muscular dystrophy-affected dogs. Our study shows the importance of minimizing AAV cap gene impurities and indicates that this improvement in AAV vector production may benefit human applications.

  18. Giardia-specific cellular immune responses in post-giardiasis chronic fatigue syndrome.

    Science.gov (United States)

    Hanevik, Kurt; Kristoffersen, Einar; Mørch, Kristine; Rye, Kristin Paulsen; Sørnes, Steinar; Svärd, Staffan; Bruserud, Øystein; Langeland, Nina

    2017-01-28

    The role of pathogen specific cellular immune responses against the eliciting pathogen in development of post-infectious chronic fatigue syndrome (PI-CFS) is not known and such studies are difficult to perform. The aim of this study was to evaluate specific anti-Giardia cellular immunity in cases that developed CFS after Giardia infection compared to cases that recovered well. Patients reporting chronic fatigue in a questionnaire study three years after a Giardia outbreak were clinically evaluated five years after the outbreak and grouped according to Fukuda criteria for CFS and idiopathic chronic fatigue. Giardia specific immune responses were evaluated in 39 of these patients by proliferation assay, T cell activation and cytokine release analysis. 20 Giardia exposed non-fatigued individuals and 10 healthy unexposed individuals were recruited as controls. Patients were clinically classified into CFS (n = 15), idiopathic chronic fatigue (n = 5), fatigue from other causes (n = 9) and recovered from fatigue (n = 10). There were statistically significant antigen specific differences between these Giardia exposed groups and unexposed controls. However, we did not find differences between the Giardia exposed fatigue classification groups with regard to CD4 T cell activation, proliferation or cytokine levels in 6 days cultured PBMCs. Interestingly, sCD40L was increased in patients with PI-CFS and other persons with fatigue after Giardia infection compared to the non-fatigued group, and correlated well with fatigue levels at the time of sampling. Our data show antigen specific cellular immune responses in the groups previously exposed to Giardia and increased sCD40L in fatigued patients.

  19. Transgene Expression and Host Cell Responses to Replication-Defective, Single-Cycle, and Replication-Competent Adenovirus Vectors

    Directory of Open Access Journals (Sweden)

    Catherine M. Crosby

    2017-02-01

    Full Text Available Most adenovirus (Ad vectors are E1 gene deleted replication defective (RD-Ad vectors that deliver one transgene to the cell and all expression is based on that one gene. In contrast, E1-intact replication-competent Ad (RC-Ad vectors replicate their DNA and their transgenes up to 10,000-fold, amplifying transgene expression markedly higher than RD-Ad vectors. While RC-Ad are more potent, they run the real risk of causing adenovirus infections in vector recipients and those that administer them. To gain the benefits of transgene amplification, but avoid the risk of Ad infections, we developed “single cycle” Ad (SC-Ad vectors. SC-Ads amplify transgene expression and generated markedly stronger and more persistent immune responses than RD-Ad as expected. However, they also unexpectedly generated stronger immune responses than RC-Ad vectors. To explore the basis of this potency here, we compared gene expression and the cellular responses to infection to these vectors in vitro and in vivo. In vitro, in primary human lung epithelial cells, SC- and RC-Ad amplified their genomes more than 400-fold relative to RD-Ad with higher replication by SC-Ad. This replication translated into higher green fluorescent protein (GFP expression for 48 h by SC- and RC-Ad than by RD-Ad. In vitro, in the absence of an immune system, RD-Ad expression became higher by 72 h coincident with cell death mediated by SC- and RC-Ad and release of transgene product from the dying cells. When the vectors were compared in human THP-1 Lucia- interferon-stimulated gene (ISG cells, which are a human monocyte cell line that have been modified to quantify ISG activity, RC-Ad6 provoked significantly stronger ISG responses than RD- or SC-Ad. In mice, intravenous or intranasal injection produced up to 100-fold genome replication. Under these in vivo conditions in the presence of the immune system, luciferase expression by RC and SC-Ad was markedly higher than that by RD-Ad. In

  20. Inter-donor variation in cell subset specific immune signaling responses in healthy individuals.

    Science.gov (United States)

    Longo, Diane M; Louie, Brent; Wang, Ena; Pos, Zoltan; Marincola, Francesco M; Hawtin, Rachael E; Cesano, Alessandra

    2012-01-01

    Single cell network profiling (SCNP) is a multi-parameter flow cytometry based approach that allows for the simultaneous interrogation of intracellular signaling pathways in multiple cell subpopulations within heterogeneous tissues, without the need for individual cell subset isolation. Thus, the technology is extremely well-suited for characterizing the multitude of interconnected signaling pathways and immune cell subpopulations that regulate the function of the immune system. Recently, SCNP was applied to generate a functional map of the healthy human immune cell signaling network by profiling immune signaling pathways downstream of 12 immunomodulators in 7 distinct immune cell subsets within peripheral blood mononuclear cells (PBMCs) from 60 healthy donors. In the study reported here, the degree of inter-donor variation in the magnitude of the immune signaling responses was analyzed. The highest inter-donor differences in immune signaling pathway activity occurred following perturbation of the immune signaling network, rather than in basal signaling. When examining the full panel of immune signaling responses, as one may expect, the overall degree of inter-donor variation was positively correlated (r = 0.727) with the magnitude of node response (i.e. a larger median signaling response was associated with greater inter-donor variation). However, when examining the degree of heterogeneity across cell subpopulations for individual signaling nodes, cell subset specificity in the degree of inter-donor variation was observed for several nodes. For such nodes, relatively weak correlations between inter-donor variation and the magnitude of the response were observed. Further, within the phenotypically distinct subpopulations, a fraction of the immune signaling responses had bimodal response profiles in which (a) only a portion of the cells had elevated phospho-protein levels following modulation and (b) the proportion of responsive cells varied by donor. These data

  1. Specific versus non-specific immune responses in an invertebrate species evidenced by a comparative de novo sequencing study.

    Directory of Open Access Journals (Sweden)

    Emeline Deleury

    Full Text Available Our present understanding of the functioning and evolutionary history of invertebrate innate immunity derives mostly from studies on a few model species belonging to ecdysozoa. In particular, the characterization of signaling pathways dedicated to specific responses towards fungi and Gram-positive or Gram-negative bacteria in Drosophila melanogaster challenged our original view of a non-specific immunity in invertebrates. However, much remains to be elucidated from lophotrochozoan species. To investigate the global specificity of the immune response in the fresh-water snail Biomphalaria glabrata, we used massive Illumina sequencing of 5'-end cDNAs to compare expression profiles after challenge by Gram-positive or Gram-negative bacteria or after a yeast challenge. 5'-end cDNA sequencing of the libraries yielded over 12 millions high quality reads. To link these short reads to expressed genes, we prepared a reference transcriptomic database through automatic assembly and annotation of the 758,510 redundant sequences (ESTs, mRNAs of B. glabrata available in public databases. Computational analysis of Illumina reads followed by multivariate analyses allowed identification of 1685 candidate transcripts differentially expressed after an immune challenge, with a two fold ratio between transcripts showing a challenge-specific expression versus a lower or non-specific differential expression. Differential expression has been validated using quantitative PCR for a subset of randomly selected candidates. Predicted functions of annotated candidates (approx. 700 unisequences belonged to a large extend to similar functional categories or protein types. This work significantly expands upon previous gene discovery and expression studies on B. glabrata and suggests that responses to various pathogens may involve similar immune processes or signaling pathways but different genes belonging to multigenic families. These results raise the question of the importance

  2. Dendritic cell mediated delivery of plasmid DNA encoding LAMP/HIV-1 Gag fusion immunogen enhances T cell epitope responses in HLA DR4 transgenic mice.

    Directory of Open Access Journals (Sweden)

    Gregory G Simon

    2010-01-01

    Full Text Available This report describes the identification and bioinformatics analysis of HLA-DR4-restricted HIV-1 Gag epitope peptides, and the application of dendritic cell mediated immunization of DNA plasmid constructs. BALB/c (H-2d and HLA-DR4 (DRA1*0101, DRB1*0401 transgenic mice were immunized with immature dendritic cells transfected by a recombinant DNA plasmid encoding the lysosome-associated membrane protein-1/HIV-1 Gag (pLAMP/gag chimera antigen. Three immunization protocols were compared: 1 primary subcutaneous immunization with 1x10(5 immature dendritic cells transfected by electroporation with the pLAMP/gag DNA plasmid, and a second subcutaneous immunization with the naked pLAMP/gag DNA plasmid; 2 primary immunization as above, and a second subcutaneous immunization with a pool of overlapping peptides spanning the HIV-1 Gag sequence; and 3 immunization twice by subcutaneous injection of the pLAMP/gag DNA plasmid. Primary immunization with pLAMP/gag-transfected dendritic cells elicited the greatest number of peptide specific T-cell responses, as measured by ex vivo IFN-gamma ELISpot assay, both in BALB/c and HLA-DR4 transgenic mice. The pLAMP/gag-transfected dendritic cells prime and naked DNA boost immunization protocol also resulted in an increased apparent avidity of peptide in the ELISpot assay. Strikingly, 20 of 25 peptide-specific T-cell responses in the HLA-DR4 transgenic mice contained sequences that corresponded, entirely or partially to 18 of the 19 human HLA-DR4 epitopes listed in the HIV molecular immunology database. Selection of the most conserved epitope peptides as vaccine targets was facilitated by analysis of their representation and variability in all reported sequences. These data provide a model system that demonstrates a the superiority of immunization with dendritic cells transfected with LAMP/gag plasmid DNA, as compared to naked DNA, b the value of HLA transgenic mice as a model system for the identification and evaluation

  3. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses

    DEFF Research Database (Denmark)

    Steffensen, Maria Abildgaard; Jensen, Benjamin Anderschou Holbech; Holst, Peter Johannes

    2012-01-01

    directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated...... that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD......8 T-cell memory even in individuals with pre-existing vector immunity....

  4. The specificity of targeted vaccines for APC surface molecules influences the immune response phenotype.

    Directory of Open Access Journals (Sweden)

    Gunnveig Grødeland

    Full Text Available Different diseases require different immune responses for efficient protection. Thus, prophylactic vaccines should prime the immune system for the particular type of response needed for protection against a given infectious agent. We have here tested fusion DNA vaccines which encode proteins that bivalently target influenza hemagglutinins (HA to different surface molecules on antigen presenting cells (APC. We demonstrate that targeting to MHC class II molecules predominantly induced an antibody/Th2 response, whereas targeting to CCR1/3/5 predominantly induced a CD8(+/Th1 T cell response. With respect to antibodies, the polarizing effect was even more pronounced upon intramuscular (i.m delivery as compared to intradermal (i.d. vaccination. Despite these differences in induced immune responses, both vaccines protected against a viral challenge with influenza H1N1. Substitution of HA with ovalbumin (OVA demonstrated that polarization of immune responses, as a consequence of APC targeting specificity, could be extended to other antigens. Taken together, the results demonstrate that vaccination can be tailor-made to induce a particular phenotype of adaptive immune responses by specifically targeting different surface molecules on APCs.

  5. HCV-specific immune responses induced by CIGB-230 in combination with IFN-α plus ribavirin

    Science.gov (United States)

    Amador-Cañizares, Yalena; Martínez-Donato, Gillian; Álvarez-Lajonchere, Liz; Vasallo, Claudia; Dausá, Mariacarla; Aguilar-Noriega, Daylen; Valenzuela, Carmen; Raíces, Ivette; Dubuisson, Jean; Wychowski, Czeslaw; Cinza-Estévez, Zurina; Castellanos, Marlén; Núñez, Magdalys; Armas, Anny; González, Yaimé; Revé, Ismariley; Guerra, Ivis; Pérez Aguiar, Ángel; Dueñas-Carrera, Santiago

    2014-01-01

    AIM: To analyze hepatitis C virus (HCV)-specific immune responses in chronically infected patients under triple therapy with interferon-α (IFN-α) plus ribavirin and CIGB-230. METHODS: CIGB-230 was administered in different schedules with respect to IFN-α plus ribavirin therapy. Paired serum and peripheral blood mononuclear cells (PBMC) samples from baseline and end of treatment were analyzed. The HCV-specific humoral response was tested by enzyme-linked immunosorbent assay, neutralizing antibodies were evaluated by cell culture HCV neutralization assays, PBMC proliferation was assayed by carboxyfluorescein succinimidyl ester staining and IFN-γ secretion was assessed by enzyme-linked immunospot. Data on virological and histological response and their association with immune variables are also provided. RESULTS: From week 12 to week 48, all groups of patients showed a significant reduction in mean leukocyte counts. Statistically significant reductions in antibody titers were frequent, but only individuals immunized with CIGB-230 as early add-on treatment sustained the core-IgG response, and the neutralizing antibody response was enhanced only in patients receiving CIGB-230. Cell-mediated immune responses also tended to decline, but significant reductions in IFN-γ secretion and total absence of core-specific lymphoproliferation were exclusive of the control group. Only CIGB-230-immunized individuals showed de novo induced lymphoproliferative responses against the structural antigens. Importantly, it was demonstrated that the quality of the CIGB-230-induced immune response depended on the number of doses and timing of administration in relation to the antiviral therapy. Specifically, the administration of 6 doses of CIGB-230 as late add-on to therapy increased the neutralizing antibody activity and the de novo core-specific IFN-γ secretion, both of which were associated with the sustained virological response. CONCLUSION: CIGB-230, combined with IFN

  6. [Effect of vitamine A on mice immune response induced by specific periodontal pathogenic bacteria-immunization].

    Science.gov (United States)

    Lin, Xiao-Ping; Zhou, Xiao-Jia; Liu, Hong-Li; DU, Li-Li; Toshihisa, Kawai

    2010-12-01

    The aim of this study was to investigate the effect of vitamine-A deficiency on the induction of specific periodontal pathogenic bacteria A. actinomycetetemcomitans(Aa) immunization. BALB/c mice were fed with vitamine A-depleted diet or control regular diet throughout the whole experiment period. After 2 weeks, immunized formalin-killed Aa to build immunized models, 6 weeks later, sacrificed to determine specific antibody-IgG, IgM and sub-class IgG antibody titers in serum, and concentration of IL-10, IFN-γ, TNF-α and RANKL in T cell supernatant were measured by ELISA and T cell proliferation was measured by cintilography. SPSS 11.5 software package was used for statistical analysis. The levels of whole IgG and IgM antibody which were immunized by Aa significantly elevated, non-immune group was unable to produce any antibody. Compared with Aa immunized+RD group, the level of whole IgG in Aa immunized+VAD group was significantly higher (Pvitamin-A diet can increase the immunized mice's susceptibility to periodontal pathogenic bacteria and trigger or aggravate immune inflammatory response. Adequate vitamin A is an important factor in maintaining body health. Supported by Natural Science Foundation of Liaoning Province (Grant No.20092139) and Science and Technology Program of Shenyang Municipality (Grant No.F10-149-9-32).

  7. Mice orally immunized with a transgenic plant expressing the glycoprotein of Crimean-Congo hemorrhagic fever virus

    DEFF Research Database (Denmark)

    Ghiasi, Seyed Mojtaba; Salmanian, A H; Chinikar, S

    2011-01-01

    in their serum and feces, respectively. The mice in the fed/boosted group showed a significant rise in specific IgG antibodies after a single boost. Our results imply that oral immunization of animals with edible materials from transgenic plants is feasible, and further assessments are under way. In addition......While Crimean-Congo hemorrhagic fever (CCHF) has a high mortality rate in humans, the associated virus (CCHFV) does not induce clinical symptoms in animals, but animals play an important role in disease transmission to humans. Our aim in this study was to examine the immunogenicity of the CCHFV...... glycoprotein when expressed in the root and leaf of transgenic plants via hairy roots and stable transformation of tobacco plants, respectively. After confirmatory analyses of transgenic plant lines and quantification of the expressed glycoprotein, mice were either fed with the transgenic leaves or roots, fed...

  8. Fate of Transgenic DNA from Orally Administered Bt MON810 Maize and Effects on Immune Response and Growth in Pigs

    Science.gov (United States)

    Walsh, Maria C.; Buzoianu, Stefan G.; Gardiner, Gillian E.; Rea, Mary C.; Gelencsér, Eva; Jánosi, Anna; Epstein, Michelle M.; Ross, R. Paul; Lawlor, Peadar G.

    2011-01-01

    We assessed the effect of short-term feeding of genetically modified (GM: Bt MON810) maize on immune responses and growth in weanling pigs and determined the fate of the transgenic DNA and protein in-vivo. Pigs were fed a diet containing 38.9% GM or non-GM isogenic parent line maize for 31 days. We observed that IL-12 and IFNγ production from mitogenic stimulated peripheral blood mononuclear cells decreased (PGM maize exposure. While Cry1Ab-specific IgG and IgA were not detected in the plasma of GM maize-fed pigs, the detection of the cry1Ab gene and protein was limited to the gastrointestinal digesta and was not found in the kidneys, liver, spleen, muscle, heart or blood. Feeding GM maize to weanling pigs had no effect on growth performance or body weight. IL-6 and IL-4 production from isolated splenocytes were increased (PGM maize while the proportion of CD4+ T cells in the spleen decreased. In the ileum, the proportion of B cells and macrophages decreased while the proportion of CD4+ T cells increased in GM maize-fed pigs. IL-8 and IL-4 production from isolated intraepithelial and lamina propria lymphocytes were also increased (PGM maize. In conclusion, there was no evidence of cry1Ab gene or protein translocation to the organs and blood of weaning pigs. The growth of pigs was not affected by feeding GM maize. Alterations in immune responses were detected; however, their biologic relevance is questionable. PMID:22132091

  9. Transgenic plants as green factories for vaccine production | Vinod ...

    African Journals Online (AJOL)

    Edible vaccine technology represents an alternative to fermentation based vaccine production system. Transgenic plants are used for the production of plant derived specific vaccines with native immunogenic properties stimulating both humoral and mucosal immune responses. Keeping in view the practical need of new ...

  10. Specific gene expression responses to parasite genotypes reveal redundancy of innate immunity in vertebrates.

    Directory of Open Access Journals (Sweden)

    David Haase

    Full Text Available Vertebrate innate immunity is the first line of defense against an invading pathogen and has long been assumed to be largely unspecific with respect to parasite/pathogen species. However, recent phenotypic evidence suggests that immunogenetic variation, i.e. allelic variability in genes associated with the immune system, results in host-parasite genotype-by-genotype interactions and thus specific innate immune responses. Immunogenetic variation is common in all vertebrate taxa and this reflects an effective immunological function in complex environments. However, the underlying variability in host gene expression patterns as response of innate immunity to within-species genetic diversity of macroparasites in vertebrates is unknown. We hypothesized that intra-specific variation among parasite genotypes must be reflected in host gene expression patterns. Here we used high-throughput RNA-sequencing to examine the effect of parasite genotypes on gene expression patterns of a vertebrate host, the three-spined stickleback (Gasterosteus aculeatus. By infecting naïve fish with distinct trematode genotypes of the species Diplostomum pseudospathaceum we show that gene activity of innate immunity in three-spined sticklebacks depended on the identity of an infecting macroparasite genotype. In addition to a suite of genes indicative for a general response against the trematode we also find parasite-strain specific gene expression, in particular in the complement system genes, despite similar infection rates of single clone treatments. The observed discrepancy between infection rates and gene expression indicates the presence of alternative pathways which execute similar functions. This suggests that the innate immune system can induce redundant responses specific to parasite genotypes.

  11. Sex-specific consequences of an induced immune response on reproduction in a moth.

    Science.gov (United States)

    Barthel, Andrea; Staudacher, Heike; Schmaltz, Antje; Heckel, David G; Groot, Astrid T

    2015-12-16

    Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life histories, sex-specific resource investment strategies to achieve an optimal immune response following an infection can be expected. We investigated immune response induction of females and males of Heliothis virescens in response to the entomopathogenic bacterium Serratia entomophila, and its effects on mating success and the female sexual signal. We found that females had higher expression levels of immune-related genes after bacterial challenge than males. However, males maintained a higher baseline expression of immune-related genes than females. The increased investment in immunity of female moths was negatively correlated with mating success and the female sexual signal. Male mating success was unaffected by bacterial challenge. Our results show that the sexes differed in their investment strategies: females invested in immune defense after a bacterial challenge, indicating facultative immune deployment, whereas males had higher baseline immunity than females, indicating immune maintenance. Interestingly, these differences in investment were reflected in the mate choice assays. As female moths are the sexual signallers, females need to invest resources in their attractiveness. However, female moths appeared to invest in immunity at the cost of reproductive effort.

  12. Maternal immunity enhances systemic recall immune responses upon oral immunization of piglets with F4 fimbriae.

    Science.gov (United States)

    Nguyen, Ut V; Melkebeek, Vesna; Devriendt, Bert; Goetstouwers, Tiphanie; Van Poucke, Mario; Peelman, Luc; Goddeeris, Bruno M; Cox, Eric

    2015-06-23

    F4 enterotoxigenic Escherichia coli (ETEC) cause diarrhoea and mortality in piglets leading to severe economic losses. Oral immunization of piglets with F4 fimbriae induces a protective intestinal immune response evidenced by an F4-specific serum and intestinal IgA response. However, successful oral immunization of pigs with F4 fimbriae in the presence of maternal immunity has not been demonstrated yet. In the present study we aimed to evaluate the effect of maternal immunity on the induction of a systemic immune response upon oral immunization of piglets. Whereas F4-specific IgG and IgA could be induced by oral immunization of pigs without maternal antibodies and by intramuscular immunization of pigs with maternal antibodies, no such response was seen in the orally immunized animals with maternal antibodies. Since maternal antibodies can mask an antibody response, we also looked by ELIspot assays for circulating F4-specific antibody secreting cells (ASCs). Enumerating the F4-specific ASCs within the circulating peripheral blood mononuclear cells, and the number of F4-specific IgA ASCs within the circulating IgA(+) B-cells revealed an F4-specific immune response in the orally immunized animals with maternal antibodies. Interestingly, results suggest a more robust IgA booster response by oral immunization of pigs with than without maternal antibodies. These results demonstrate that oral immunization of piglets with F4-specific maternal antibodies is feasible and that these maternal antibodies seem to enhance the secondary systemic immune response. Furthermore, our ELIspot assay on enriched IgA(+) B-cells could be used as a screening procedure to optimize mucosal immunization protocols in pigs with maternal immunity.

  13. Influence of a cocoa-enriched diet on specific immune response in ovalbumin-sensitized rats.

    Science.gov (United States)

    Pérez-Berezo, Teresa; Ramiro-Puig, Emma; Pérez-Cano, Francisco J; Castellote, Cristina; Permanyer, Joan; Franch, Angels; Castell, Margarida

    2009-03-01

    Previous studies in young rats have reported the impact of 3 weeks of high cocoa intake on healthy immune status. The present article describes the effects of a longer-term cocoa-enriched diet (9 weeks) on the specific immune response to ovalbumin (OVA) in adult Wistar rats. At 4 weeks after immunization, control rats produced anti-OVA antibodies, which, according their amount and isotype, were arranged as follows: IgG1 > IgG2a > IgM > IgG2b > IgG2c. Both cocoa diets studied (4% and 10%) down-modulated OVA-specific antibody levels of IgG1 (main subclass associated with the Th2 immune response in rats), IgG2a, IgG2c and IgM isotypes. Conversely, cocoa-fed rats presented equal or higher levels of anti-OVA IgG2b antibodies (subclass linked to the Th1 response). Spleen and lymph node cells from OVA-immunized control and cocoa-fed animals proliferated similarly under OVA stimulation. However, spleen cells from cocoa-fed animals showed decreased interleukin-4 secretion (main Th2 cytokine), and lymph node cells from the same rats displayed higher interferon-gamma secretion (main Th1 cytokine). These changes were accompanied by a reduction in the number of anti-OVA IgG-secreting cells in spleen. In conclusion, cocoa diets induced attenuation of antibody synthesis that may be attributable to specific down-regulation of the Th2 immune response.

  14. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Directory of Open Access Journals (Sweden)

    Narcís Saubi

    2011-01-01

    Full Text Available We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old and adult (7 weeks old BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine.

  15. Newborn Mice Vaccination with BCG.HIVA222 + MVA.HIVA Enhances HIV-1-Specific Immune Responses: Influence of Age and Immunization Routes

    Science.gov (United States)

    Saubi, Narcís; Im, Eung-Jun; Fernández-Lloris, Raquel; Gil, Olga; Cardona, Pere-Joan; Gatell, Josep Maria; Hanke, Tomáš; Joseph, Joan

    2011-01-01

    We have evaluated the influence of age and immunization routes for induction of HIV-1- and M. tuberculosis-specific immune responses after neonatal (7 days old) and adult (7 weeks old) BALB/c mice immunization with BCG.HIVA222 prime and MVA.HIVA boost. The specific HIV-1 cellular immune responses were analyzed in spleen cells. The body weight of the newborn mice was weekly recorded. The frequencies of HIV-specific CD8+ T cells producing IFN-γ were higher in adult mice vaccinated intradermally and lower in adult and newborn mice vaccinated subcutaneously. In all cases the IFN-γ production was significantly higher when mice were primed with BCG.HIVA222 compared with BCGwt. When the HIV-specific CTL activity was assessed, the frequencies of specific killing were higher in newborn mice than in adults. The prime-boost vaccination regimen which includes BCG.HIVA222 and MVA.HIVA was safe when inoculated to newborn mice. The administration of BCG.HIVA222 to newborn mice is safe and immunogenic and increased the HIV-specific responses induced by MVA.HIVA vaccine. It might be a good model for infant HIV and Tuberculosis bivalent vaccine. PMID:21603216

  16. Formulation of the bivalent prostate cancer vaccine with surgifoam elicits antigen-specific effector T cells in PSA-transgenic mice.

    Science.gov (United States)

    Karan, Dev

    2017-10-13

    We previously developed and characterized an adenoviral-based prostate cancer vaccine for simultaneous targeting of prostate-specific antigen (PSA) and prostate stem cell antigen (PSCA). We also demonstrated that immunization of mice with the bivalent vaccine (Ad 5 -PSA+PSCA) inhibited the growth of established prostate tumors. However, there are multiple challenges hindering the success of immunological therapies in the clinic. One of the prime concerns has been to overcome the immunological tolerance and maintenance of long-term effector T cells. In this study, we further characterized the use of the bivalent vaccine (Ad 5 -PSA+PSCA) in a transgenic mouse model expressing human PSA in the mouse prostate. We demonstrated the expression of PSA analyzed at the mRNA level (by RT-PCR) and protein level (by immunohistochemistry) in the prostate lobes harvested from the PSA-transgenic (PSA-Tg) mice. We established that the administration of the bivalent vaccine in surgifoam to the PSA-Tg mice induces strong PSA-specific effector CD8 + T cells as measured by IFN-γ secretion and in vitro cytotoxic T-cell assay. Furthermore, the use of surgifoam with Ad 5 -PSA+PSCA vaccine allows multiple boosting vaccinations with a significant increase in antigen-specific CD8 + T cells. These observations suggest that the formulation of the bivalent prostate cancer vaccine (Ad 5 -PSA+PSCA) with surgifoam bypasses the neutralizing antibody response, thus allowing multiple boosting. This formulation is also helpful for inducing an antigen-specific immune response in the presence of self-antigen, and maintains long-term effector CD8 + T cells. Copyright © 2017 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  17. A proteomic study to identify soya allergens--the human response to transgenic versus non-transgenic soya samples.

    Science.gov (United States)

    Batista, Rita; Martins, Isabel; Jeno, Paul; Ricardo, Cândido Pinto; Oliveira, Maria Margarida

    2007-01-01

    In spite of being among the main foods responsible for allergic reactions worldwide, soybean (Glycine max)-derived products continue to be increasingly widespread in a variety of food products due to their well-documented health benefits. Soybean also continues to be one of the elected target crops for genetic modification. The aim of this study was to characterize the soya proteome and, specifically, IgE-reactive proteins as well as to compare the IgE response in soya-allergic individuals to genetically modified Roundup Ready soya versus its non-transgenic control. We performed two-dimensional gel electrophoresis of protein extracts from a 5% genetically modified Roundup Ready flour sample and its non-transgenic control followed by Western blotting with plasma from 5 soya-sensitive individuals. We used peptide tandem mass spectrometry to identify soya proteins (55 protein matches), specifically IgE-binding ones, and to evaluate differences between transgenic and non-transgenic samples. We identified 2 new potential soybean allergens--one is maturation associated and seems to be part of the late embryogenesis abundant proteins group and the other is a cysteine proteinase inhibitor. None of the individuals tested reacted differentially to the transgenic versus non-transgenic samples under study. Soybean endogenous allergen expression does not seem to be altered after genetic modification. Proteomics should be considered a powerful tool for functional characterization of plants and for food safety assessment. Copyright (c) 2007 S. Karger AG, Basel.

  18. Priming T-cell responses with recombinant measles vaccine vector in a heterologous prime-boost setting in non-human primates.

    Science.gov (United States)

    Bolton, Diane L; Santra, Sampa; Swett-Tapia, Cindy; Custers, Jerome; Song, Kaimei; Balachandran, Harikrishnan; Mach, Linh; Naim, Hussein; Kozlowski, Pamela A; Lifton, Michelle; Goudsmit, Jaap; Letvin, Norman; Roederer, Mario; Radošević, Katarina

    2012-09-07

    Licensed live attenuated virus vaccines capable of expressing transgenes from other pathogens have the potential to reduce the number of childhood immunizations by eliciting robust immunity to multiple pathogens simultaneously. Recombinant attenuated measles virus (rMV) derived from the Edmonston Zagreb vaccine strain was engineered to express simian immunodeficiency virus (SIV) Gag protein for the purpose of evaluating the immunogenicity of rMV as a vaccine vector in rhesus macaques. rMV-Gag immunization alone elicited robust measles-specific humoral and cellular responses, but failed to elicit transgene (Gag)-specific immune responses, following aerosol or intratracheal/intramuscular delivery. However, when administered as a priming vaccine to a heterologous boost with recombinant adenovirus serotype 5 expressing the same transgene, rMV-Gag significantly enhanced Gag-specific T lymphocyte responses following rAd5 immunization. Gag-specific humoral responses were not enhanced, however, which may be due to either the transgene or the vector. Cellular response priming by rMV against the transgene was highly effective even when using a suboptimal dose of rAd5 for the boost. These data demonstrate feasibility of using rMV as a priming component of heterologous prime-boost vaccine regimens for pathogens requiring strong cellular responses. Copyright © 2012 Elsevier Ltd. All rights reserved.

  19. Dynamics of antigen presentation to transgene product-specific CD4+ T cells and of Treg induction upon hepatic AAV gene transfer

    Directory of Open Access Journals (Sweden)

    George Q Perrin

    2016-01-01

    Full Text Available The tolerogenic hepatic microenvironment impedes clearance of viral infections but is an advantage in viral vector gene transfer, which often results in immune tolerance induction to transgene products. Although the underlying tolerance mechanism has been extensively studied, our understanding of antigen presentation to transgene product-specific CD4+ T cells remains limited. To address this, we administered hepatotropic adeno-associated virus (AAV8 vector expressing cytoplasmic ovalbumin (OVA into wt mice followed by adoptive transfer of transgenic OVA-specific T cells. We find that that the liver-draining lymph nodes (celiac and portal are the major sites of MHC II presentation of the virally encoded antigen, as judged by in vivo proliferation of DO11.10 CD4+ T cells (requiring professional antigen-presenting cells, e.g., macrophages and CD4+CD25+FoxP3+ Treg induction. Antigen presentation in the liver itself contributes to activation of CD4+ T cells egressing from the liver. Hepatic-induced Treg rapidly disseminate through the systemic circulation. By contrast, a secreted OVA transgene product is presented in multiple organs, and OVA-specific Treg emerge in both the thymus and periphery. In summary, liver draining lymph nodes play an integral role in hepatic antigen presentation and peripheral Treg induction, which results in systemic regulation of the response to viral gene products.

  20. Immune responses to metastases

    International Nuclear Information System (INIS)

    Herberman, R.B.; Wiltrout, R.H.; Gorelik, E.

    1987-01-01

    The authors present the changes in the immune system in tumor-bearing hosts that may influence the development of progression of metastases. Included are mononuclear cell infiltration of metastases; alterations in natural resistance mediated by natural killer cells and macrophages; development of specific immunity mediated by T-lymphocytes or antibodies; modulation of tumor-associated antigen expression; and the down-regulation of the immune response to the tumor by several suppressor mechanisms; the augmentation of the immune response and its potential for therapeutic application; includes the prophylaxis of metastases formation by NK cells; the therapy of metastases by augmentation NK-, macrophage-, or T-lymphocyte-mediated responses by biological response modifiers; and the transfer of anticancer activity by cytoxic T-lymphocytes or immunoconjugates of monoclonal antibodies with specificity for tumors

  1. Compendium of Immune Signatures Identifies Conserved and Species-Specific Biology in Response to Inflammation.

    Science.gov (United States)

    Godec, Jernej; Tan, Yan; Liberzon, Arthur; Tamayo, Pablo; Bhattacharya, Sanchita; Butte, Atul J; Mesirov, Jill P; Haining, W Nicholas

    2016-01-19

    Gene-expression profiling has become a mainstay in immunology, but subtle changes in gene networks related to biological processes are hard to discern when comparing various datasets. For instance, conservation of the transcriptional response to sepsis in mouse models and human disease remains controversial. To improve transcriptional analysis in immunology, we created ImmuneSigDB: a manually annotated compendium of ∼5,000 gene-sets from diverse cell states, experimental manipulations, and genetic perturbations in immunology. Analysis using ImmuneSigDB identified signatures induced in activated myeloid cells and differentiating lymphocytes that were highly conserved between humans and mice. Sepsis triggered conserved patterns of gene expression in humans and mouse models. However, we also identified species-specific biological processes in the sepsis transcriptional response: although both species upregulated phagocytosis-related genes, a mitosis signature was specific to humans. ImmuneSigDB enables granular analysis of transcriptomic data to improve biological understanding of immune processes of the human and mouse immune systems. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Non-specific immunization against babesiosis

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1980-01-01

    The rodent babesias, Babesia rodhaini and the less virulent B. microti, are useful models with which to study immunity to and immunization against babesiosis. In contrast with the difficulty in inducing specific immunity to these parasites it is comparatively easy to induce non-specific immunity by prior exposure to related and unrelated intra-erythrocytic protozoa, micro-organisms such as Mycobacterium bovis (BCG) and Corynebacterium parvum, microbial extracts and muramyl dipeptide. This non-specific immunity is long lasting and extremely effective. It is characterized by the facts that (a) it occurs early in the infection at the height of the first peak of parasitaemia, and (b) it involves the intra-erythrocytic death of the parasites. After the primary parasitaemia has resolved, some parasites continue to persist at a low level and when introduced into clean mice produce only low-level 'attenuated' infections in these. Non-specific immunity is not equally effective in all strains of mice. It is suggested that immunity to babesiosis, and infections caused by other intra-erythrocytic protozoa, involves two mechanisms, the first non-specific and the second specific. The actual balance between these two mechanisms varies from parasite to parasite and from host to host. An effective vaccine would have to be based on an understanding of the roles of non-specific immunity in the actual disease under consideration, and would ideally combine an adjuvant that would also stimulate non-specific immunity and an attenuated strain of parasite that would induce a specific response. (author)

  3. Immune markers and correlates of protection for vaccine induced immune responses

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Pedersen, Lasse Eggers; Jungersen, Gregers

    2012-01-01

    of an appropriate humoral response currently remain the best validated correlates of protective immunity after vaccination. Despite advancements in the field of immunology over the past few decades currently there are, however, no sufficiently validated immune correlates of vaccine induced protection against......-specific production of interferon-gamma (IFN-γ) has been promoted as a quantitative marker of protective cell-mediated immune responses over the past couple of decades. More recently, however, evidence from several infections has pointed towards the quality of the immune response, measured through increased levels...... of antigen-specific polyfunctional T cells capable of producing a triad of relevant cytokines, as a better correlate of sustained protective immunity against this type of infections. Also the possibilities to measure antigen-specific cytotoxic T cells (CTL) during infection or in response to vaccination...

  4. Pre-existing vector immunity does not prevent replication deficient adenovirus from inducing efficient CD8 T-cell memory and recall responses.

    Directory of Open Access Journals (Sweden)

    Maria Abildgaard Steffensen

    Full Text Available Adenoviral vectors have shown a great potential for vaccine development due to their inherent ability to induce potent and protective CD8 T-cell responses. However, a critical issue regarding the use of these vectors is the existence of inhibitory immunity against the most commonly used Ad5 vector in a large part of the human population. We have recently developed an improved adenoviral vaccine vector system in which the vector expresses the transgene tethered to the MHC class II associated invariant chain (Ii. To further evaluate the potential of this system, the concept of pre-existing inhibitory immunity to adenoviral vectors was revisited to investigate whether the inhibition previously seen with the Ad5 vector also applied to the optimized vector system. We found this to be the case, and antibodies dominated as the mechanism underlying inhibitory vector immunity. However, presence of CD8 T cells directed against epitopes in the adenoviral vector seemed to correlate with repression of the induced response in re-vaccinated B-cell deficient mice. More importantly, despite a repressed primary effector CD8 T-cell response in Ad5-immune animals subjected to vaccination, memory T cells were generated that provided the foundation for an efficient recall response and protection upon subsequent viral challenge. Furthermore, the transgene specific response could be efficiently boosted by homologous re-immunization. Taken together, these studies indicate that adenoviral vectors can be used to induce efficient CD8 T-cell memory even in individuals with pre-existing vector immunity.

  5. Tissue specific heterogeneity in effector immune cell response

    Directory of Open Access Journals (Sweden)

    Saba eTufail

    2013-08-01

    Full Text Available Post pathogen invasion, migration of effector T-cell subsets to specific tissue locations is of prime importance for generation of robust immune response. Effector T cells are imprinted with distinct ‘homing codes’ (adhesion molecules and chemokine receptors during activation which regulate their targeted trafficking to specific tissues. Internal cues in the lymph node microenvironment along with external stimuli from food (vitamin A and sunlight (vitamin D3 prime dendritic cells, imprinting them to play centrestage in the induction of tissue tropism in effector T cells. B cells as well, in a manner similar to effector T cells, exhibit tissue tropic migration. In this review, we have focused on the factors regulating the generation and migration of effector T cells to various tissues alongwith giving an overview of tissue tropism in B cells.

  6. Profiling Humoral Immune Responses to Clostridium difficile-Specific Antigens by Protein Microarray Analysis.

    Science.gov (United States)

    Negm, Ola H; Hamed, Mohamed R; Dilnot, Elizabeth M; Shone, Clifford C; Marszalowska, Izabela; Lynch, Mark; Loscher, Christine E; Edwards, Laura J; Tighe, Patrick J; Wilcox, Mark H; Monaghan, Tanya M

    2015-09-01

    Clostridium difficile is an anaerobic, Gram-positive, and spore-forming bacterium that is the leading worldwide infective cause of hospital-acquired and antibiotic-associated diarrhea. Several studies have reported associations between humoral immunity and the clinical course of C. difficile infection (CDI). Host humoral immune responses are determined using conventional enzyme-linked immunosorbent assay (ELISA) techniques. Herein, we report the first use of a novel protein microarray assay to determine systemic IgG antibody responses against a panel of highly purified C. difficile-specific antigens, including native toxins A and B (TcdA and TcdB, respectively), recombinant fragments of toxins A and B (TxA4 and TxB4, respectively), ribotype-specific surface layer proteins (SLPs; 001, 002, 027), and control proteins (tetanus toxoid and Candida albicans). Microarrays were probed with sera from a total of 327 individuals with CDI, cystic fibrosis without diarrhea, and healthy controls. For all antigens, precision profiles demonstrated ELISA in the quantification of antitoxin A and antitoxin B IgG. These results indicate that microarray is a suitable assay for defining humoral immune responses to C. difficile protein antigens and may have potential advantages in throughput, convenience, and cost. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  7. Adenovirus Vector-Derived VA-RNA-Mediated Innate Immune Responses

    Directory of Open Access Journals (Sweden)

    Hiroyuki Mizuguchi

    2011-07-01

    Full Text Available The major limitation of the clinical use of replication-incompetent adenovirus (Ad vectors is the interference by innate immune responses, including induction of inflammatory cytokines and interferons (IFN, following in vivo application of Ad vectors. Ad vector-induced production of inflammatory cytokines and IFNs also results in severe organ damage and efficient induction of acquired immune responses against Ad proteins and transgene products. Ad vector-induced innate immune responses are triggered by the recognition of Ad components by pattern recognition receptors (PRRs. In order to reduce the side effects by Ad vector-induced innate immune responses and to develop safer Ad vectors, it is crucial to clarify which PRRs and which Ad components are involved in Ad vector-induced innate immune responses. Our group previously demonstrated that myeloid differentiating factor 88 (MyD88 and toll-like receptor 9 (TLR9 play crucial roles in the Ad vector-induced inflammatory cytokine production in mouse bone marrow-derived dendritic cells. Furthermore, our group recently found that virus associated-RNAs (VA-RNAs, which are about 160 nucleotide-long non-coding small RNAs encoded in the Ad genome, are involved in IFN production through the IFN-β promoter stimulator-1 (IPS-1-mediated signaling pathway following Ad vector transduction. The aim of this review is to highlight the Ad vector-induced innate immune responses following transduction, especially VA-RNA-mediated innate immune responses. Our findings on the mechanism of Ad vector-induced innate immune responses should make an important contribution to the development of safer Ad vectors, such as an Ad vector lacking expression of VA-RNAs.

  8. Epigenetic variants of a transgenic petunia line show hypermethylation in transgene DNA: an indication for specific recognition of foreign DNA in transgenic plants.

    Science.gov (United States)

    Meyer, P; Heidmann, I

    1994-05-25

    We analysed de novo DNA methylation occurring in plants obtained from the transgenic petunia line R101-17. This line contains one copy of the maize A1 gene that leads to the production of brick-red pelargonidin pigment in the flowers. Due to its integration into an unmethylated genomic region the A1 transgene is hypomethylated and transcriptionally active. Several epigenetic variants of line 17 were selected that exhibit characteristic and somatically stable pigmentation patterns, displaying fully coloured, marbled or colourless flowers. Analysis of the DNA methylation patterns revealed that the decrease in pigmentation among the epigenetic variants was correlated with an increase in methylation, specifically of the transgene DNA. No change in methylation of the hypomethylated integration region could be detected. A similar increase in methylation, specifically in the transgene region, was also observed among progeny of R101-17del, a deletion derivative of R101-17 that no longer produces pelargonidin pigments due to a deletion in the A1 coding region. Again de novo methylation is specifically directed to the transgene, while the hypomethylated character of neighbouring regions is not affected. Possible mechanisms for transgene-specific methylation and its consequences for long-term use of transgenic material are discussed.

  9. Fusion protein of tapasin and hepatitis B core antigen 18‑27 enhances T helper cell type 1/2 cytokine ratio and antiviral immunity by inhibiting suppressors of cytokine signaling family members 1/3 in hepatitis B virus transgenic mice.

    Science.gov (United States)

    Tang, Yuyan; Chen, Xiaohua; Zhang, Yi; Tang, Zhenghao; Zhuo, Meng; Li, Dan; Wang, Peng; Zang, Guoqing; Yu, Yongsheng

    2014-04-01

    Persistent hepatitis B virus (HBV) infection is characterized by a weak adaptive immune response, which is considered to be due to an imbalance of T helper cell types 1 and 2 (Th1/Th2). Suppressors of cytokine signaling (SOCS) family members, particularly SOCS1 and SOCS3, have been demonstrated to be important in the regulation of T cell differentiation. Previous studies by our group showed that the expressed and purified fusion protein of cytoplasmic transduction peptide (CTP) and HBV core antigen 18‑27 (HBcAg18‑27)‑tapasin was able to enter the cytoplasm of bone marrow‑derived dendritic cells (BMDCs), promoting the maturation of BMDCs and efficiently enhancing T cell immune responses in vitro. In the present study, HBcAg‑specific immune responses induced by CTP‑HBcAg18‑27‑tapasin in HBV were assessed in transgenic mice, and SOCS1 and SOCS3 were identified as negative regulators of this response. The Th1/Th2 cytokine ratio was analyzed by ELISA. The expression of T cell‑specific T‑box transcription factor (T‑bet) and GATA‑binding protein 3 (GATA‑3), SOCS1 and SOCS3 were detected by real‑time quantitative polymerase chain reaction and western blot analysis. The results demonstrated that CTP‑HBcAg18‑27‑tapasin significantly increased the Th1/Th2 cytokine ratio in HBV transgenic mice. CTP‑HBcAg18‑27‑tapasin immunization more efficiently suppressed the expression of serum hepatitis B surface antigen (HBsAg), HBV DNA as well as liver HBsAg and HBcAg in HBV transgenic mice. Furthermore, CTP‑HBcAg18‑27‑tapasin promotes T‑bet but reduces GATA‑3 expression. In addition, the expression of SOCS1 and SOCS3 was significantly downregulated in the CTP‑HBcAg18‑27‑tapasin group compared with the control groups. In conclusion, the present study demonstrated that CTP‑HBcAg18‑27‑tapasin enhanced the Th1/Th2 cytokine ratio and antiviral immunity by suppressing SOCS1/3 in HBV transgenic mice.

  10. Ag85-focused T-cell immune response controls Mycobacterium avium chronic infection.

    Directory of Open Access Journals (Sweden)

    Bruno Cerqueira-Rodrigues

    Full Text Available CD4+ T cells are essential players for the control of mycobacterial infections. Several mycobacterial antigens have been identified for eliciting a relevant CD4+ T cell mediated-immune response, and numerous studies explored this issue in the context of Mycobacterium tuberculosis infection. Antigen 85 (Ag85, a highly conserved protein across Mycobacterium species, is secreted at the early phase of M. tuberculosis infection leading to the proliferation of Ag85-specific CD4+ T cells. However, in the context of Mycobacterium avium infection, little is known about the expression of this antigen and the elicited immune response. In the current work, we investigated if a T cell receptor (TCR repertoire mostly, but not exclusively, directed at Ag85 is sufficient to mount a protective immune response against M. avium. We show that P25 mice, whose majority of T cells express a transgenic TCR specific for Ag85, control M. avium infection at the same level as wild type (WT mice up to 20 weeks post-infection (wpi. During M. avium infection, Ag85 antigen is easily detected in the liver of 20 wpi mice by immunohistochemistry. In spite of the propensity of P25 CD4+ T cells to produce higher amounts of interferon-gamma (IFNγ upon ex vivo stimulation, no differences in serum IFNγ levels are detected in P25 compared to WT mice, nor enhanced immunopathology is detected in P25 mice. These results indicate that a T cell response dominated by Ag85-specific T cells is appropriate to control M. avium infection with no signs of immunopathology.

  11. Oral administration of type-II collagen peptide 250-270 suppresses specific cellular and humoral immune response in collagen-induced arthritis.

    Science.gov (United States)

    Zhu, Ping; Li, Xiao-Yan; Wang, Hong-Kun; Jia, Jun-Feng; Zheng, Zhao-Hui; Ding, Jin; Fan, Chun-Mei

    2007-01-01

    Oral antigen is an attractive approach for the treatment of autoimmune and inflammatory diseases. Establishment of immune markers and methods in evaluating the effects of antigen-specific cellular and humoral immune responses will help the application of oral tolerance in the treatment of human diseases. The present article observed the effects of chicken collagen II (CII), the recombinant polymerized human collagen II 250-270 (rhCII 250-270) peptide and synthesized human CII 250-270 (syCII 250-270) peptide on the induction of antigen-specific autoimmune response in rheumatoid arthritis (RA) peripheral blood mononuclear cells (PBMC) and on the specific cellular and humoral immune response in collagen-induced arthritis (CIA) and mice fed with CII (250-270) prior to immunization with CII. In the study, proliferation, activation and intracellular cytokine production of antigen-specific T lymphocytes were simultaneously analyzed by bromodeoxyuridine (BrdU) incorporation and flow cytometry at the single-cell level. The antigen-specific antibody and antibody-forming cells were detected by ELISA and ELISPOT, respectively. CII (250-270) was found to have stimulated the response of specific lymphocytes in PBMC from RA patients, including the increase expression of surface activation antigen marker CD69 and CD25, and DNA synthesis. Mice, fed with CII (250-270) before CII immunization, had significantly lower arthritic scores than the mice immunized with CII alone, and the body weight of the former increased during the study period. Furthermore, the specific T cell activity, proliferation and secretion of interferon (IFN)-gamma in spleen cells were actively suppressed in CII (250-270)-fed mice, and the serum anti-CII, anti-CII (250-270) antibody activities and the frequency of specific antibody-forming spleen cells were significantly lower in CII (250-270)-fed mice than in mice immunized with CII alone. These observations suggest that oral administration of CII (250-270) can

  12. Maternal immunity enhances Mycoplasma hyopneumoniae vaccination induced cell-mediated immune responses in piglets.

    Science.gov (United States)

    Bandrick, Meggan; Theis, Kara; Molitor, Thomas W

    2014-06-05

    Passively acquired maternal derived immunity (MDI) is a double-edged sword. Maternal derived antibody-mediated immunity (AMI) and cell-mediated immunity (CMI) are critical immediate defenses for the neonate; however, MDI may interfere with the induction of active immunity in the neonate, i.e. passive interference. The effect of antigen-specific MDI on vaccine-induced AMI and CMI responses to Mycoplasma hyopneumoniae (M. hyopneumoniae) was assessed in neonatal piglets. To determine whether CMI and AMI responses could be induced in piglets with MDI, piglets with high and low levels of maternal M. hyopneumoniae-specific immunity were vaccinated against M. hyopneumoniae at 7 d of age. Piglet M. hyopneumoniae-specific antibody, lymphoproliferation, and delayed type hypersensitivity (DTH) responses were measured 7 d and 14 d post vaccination. Piglets with M. hyopneumoniae-specific MDI failed to show vaccine-induced AMI responses; there was no rise in M. hyopneumoniae antibody levels following vaccination of piglets in the presence of M. hyopneumoniae-specific MDI. However, piglets with M. hyopneumoniae-specific MDI had primary (antigen-specific lymphoproliferation) and secondary (DTH) M. hyopneumoniae-specific CMI responses following vaccination. In this study neonatal M. hyopneumoniae-specific CMI was not subject to passive interference by MDI. Further, it appears that both maternal derived and endogenous CMI contribute to M. hyopneumoniae-specific CMI responses in piglets vaccinated in the face of MDI.

  13. An inducible transgenic mouse model for immune mediated hepatitis showing clearance of antigen expressing hepatocytes by CD8+ T cells.

    Directory of Open Access Journals (Sweden)

    Marcin Cebula

    Full Text Available The liver has the ability to prime immune responses against neo antigens provided upon infections. However, T cell immunity in liver is uniquely modulated by the complex tolerogenic property of this organ that has to also cope with foreign agents such as endotoxins or food antigens. In this respect, the nature of intrahepatic T cell responses remains to be fully characterized. To gain deeper insight into the mechanisms that regulate the CD8+ T cell responses in the liver, we established a novel OVA_X_CreER(T2 mouse model. Upon tamoxifen administration OVA antigen expression is observed in a fraction of hepatocytes, resulting in a mosaic expression pattern. To elucidate the cross-talk of CD8+ T cells with antigen-expressing hepatocytes, we adoptively transferred K(b/OVA257-264-specific OT-I T cells to OVA_X_CreER(T2 mice or generated triple transgenic OVA_X CreER(T2_X_OT-I mice. OT-I T cells become activated in OVA_X_CreER(T2 mice and induce an acute and transient hepatitis accompanied by liver damage. In OVA_X_CreER(T2_X_OT-I mice, OVA induction triggers an OT-I T cell mediated, fulminant hepatitis resulting in 50% mortality. Surviving mice manifest a long lasting hepatitis, and recover after 9 weeks. In these experimental settings, recovery from hepatitis correlates with a complete loss of OVA expression indicating efficient clearance of the antigen-expressing hepatocytes. Moreover, a relapse of hepatitis can be induced upon re-induction of cured OVA_X_CreER(T2_X_OT-I mice indicating absence of tolerogenic mechanisms. This pathogen-free, conditional mouse model has the advantage of tamoxifen inducible tissue specific antigen expression that reflects the heterogeneity of viral antigen expression and enables the study of intrahepatic immune responses to both de novo and persistent antigen. It allows following the course of intrahepatic immune responses: initiation, the acute phase and antigen clearance.

  14. Cellular immune responses to respiratory viruses

    NARCIS (Netherlands)

    van Helden, M.J.G.

    2011-01-01

    When a respiratory virus successfully infects the lungs, cascades of immune responses are initiated aimed to remove the pathogen. Immediate non-specific protection is provided by the innate immune system and this reduces the viral load during the first days of infection. The adaptive immune response

  15. Poliovirus intrahost evolution is required to overcome tissue-specific innate immune responses.

    Science.gov (United States)

    Xiao, Yinghong; Dolan, Patrick Timothy; Goldstein, Elizabeth Faul; Li, Min; Farkov, Mikhail; Brodsky, Leonid; Andino, Raul

    2017-08-29

    RNA viruses, such as poliovirus, have a great evolutionary capacity, allowing them to quickly adapt and overcome challenges encountered during infection. Here we show that poliovirus infection in immune-competent mice requires adaptation to tissue-specific innate immune microenvironments. The ability of the virus to establish robust infection and virulence correlates with its evolutionary capacity. We further identify a region in the multi-functional poliovirus protein 2B as a hotspot for the accumulation of minor alleles that facilitate a more effective suppression of the interferon response. We propose that population genetic dynamics enables poliovirus spread between tissues through optimization of the genetic composition of low frequency variants, which together cooperate to circumvent tissue-specific challenges. Thus, intrahost virus evolution determines pathogenesis, allowing a dynamic regulation of viral functions required to overcome barriers to infection.RNA viruses, such as polioviruses, have a great evolutionary capacity and can adapt quickly during infection. Here, the authors show that poliovirus infection in mice requires adaptation to innate immune microenvironments encountered in different tissues.

  16. A Functional Toll-Interacting Protein Variant Is Associated with Bacillus Calmette-Guérin-Specific Immune Responses and Tuberculosis.

    Science.gov (United States)

    Shah, Javeed A; Musvosvi, Munyaradzi; Shey, Muki; Horne, David J; Wells, Richard D; Peterson, Glenna J; Cox, Jeffery S; Daya, Michelle; Hoal, Eileen G; Lin, Lin; Gottardo, Raphael; Hanekom, Willem A; Scriba, Thomas J; Hatherill, Mark; Hawn, Thomas R

    2017-08-15

    The molecular mechanisms that regulate tuberculosis susceptibility and bacillus Calmette-Guérin (BCG)-induced immunity are mostly unknown. However, induction of the adaptive immune response is a critical step in host control of Mycobacterium tuberculosis. Toll-interacting protein (TOLLIP) is a ubiquitin-binding protein that regulates innate immune responses, including Toll-like receptor signaling, which initiate adaptive immunity. TOLLIP variation is associated with susceptibility to tuberculosis, but the mechanism by which it regulates tuberculosis immunity is poorly understood. To identify functional TOLLIP variants and evaluate the role of TOLLIP variation on innate and adaptive immune responses to mycobacteria and susceptibility to tuberculosis. We used human cellular immunology approaches to characterize the role of a functional TOLLIP variant on monocyte mRNA expression and M. tuberculosis-induced monocyte immune functions. We also examined the association of TOLLIP variation with BCG-induced T-cell responses and susceptibility to latent tuberculosis infection. We identified a functional TOLLIP promoter region single-nucleotide polymorphism, rs5743854, which was associated with decreased TOLLIP mRNA expression in infant monocytes. After M. tuberculosis infection, TOLLIP-deficient monocytes demonstrated increased IL-6, increased nitrite, and decreased bacterial replication. The TOLLIP-deficiency G/G genotype was associated with decreased BCG-specific IL-2 + CD4 + T-cell frequency and proliferation. This genotype was also associated with increased susceptibility to latent tuberculosis infection. TOLLIP deficiency is associated with decreased BCG-specific T-cell responses and increased susceptibility to tuberculosis. We hypothesize that the heightened antibacterial monocyte responses after vaccination of TOLLIP-deficient infants are responsible for decreased BCG-specific T-cell responses. Activating TOLLIP may provide a novel adjuvant strategy for BCG

  17. Immunization with Tc52 or its amino terminal domain adjuvanted with c-di-AMP induces Th17+Th1 specific immune responses and confers protection against Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Marina N Matos

    2017-02-01

    Full Text Available The development of new adjuvants enables fine modulation of the elicited immune responses. Ideally, the use of one or more adjuvants should result in the induction of a protective immune response against the specific pathogen. We have evaluated the immune response and protection against Trypanosoma cruzi infection in mice vaccinated with recombinant Tc52 or its N- and C-terminal domains (NTc52 and CTc52 adjuvanted either with the STING (Stimulator of Interferon Genes agonist cyclic di-AMP (c-di-AMP, a pegylated derivative of α-galactosylceramide (αGC-PEG, or oligodeoxynucleotides containing unmethylated CpG motifs (ODN-CpG. All groups immunized with the recombinant proteins plus adjuvant: Tc52+c-di-AMP, NTc52+c-di-AMP, CTc52+c-di-AMP, NTc52+c-di-AMP+αGC-PEG, NTc52+CpG, developed significantly higher anti-Tc52 IgG titers than controls. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 showed the highest Tc52-specific IgA titers in nasal lavages. All groups immunized with the recombinant proteins plus adjuvant developed a strong specific cellular immune response in splenocytes and lymph node cells with significant differences for groups immunized with c-di-AMP and Tc52, NTc52 or CTc52. These groups also showed high levels of Tc52-specific IL-17 and IFN-γ producing cells, while NTc52+CpG group only showed significant difference with control in IFN-γ producing cells. Groups immunized with c-di-AMP and Tc52, NTc52 or CTc52 developed predominantly a Th17 and Th1immune response, whereas for NTc52+CpG it was a dominant Th1 response. It was previously described that αGC-PEG inhibits Th17 differentiation by activating NKT cells. Thus, in this work we have also included a group immunized with both adjuvants (NTc52+c-di-AMP+αGC-PEG with the aim to modulate the Th17 response induced by c-di-AMP. This group showed a significant reduction in the number of Tc52-specific IL-17 producing splenocytes, as compared to the group NTc52+c-di-AMP, which has

  18. Systemic and oral immunogenicity of hemagglutinin protein of rinderpest virus expressed by transgenic peanut plants in a mouse model

    International Nuclear Information System (INIS)

    Khandelwal, Abha; Renukaradhya, G.J.; Rajasekhar, M.; Sita, G. Lakshmi; Shaila, M.S.

    2004-01-01

    Rinderpest causes a devastating disease, often fatal, in wild and domestic ruminants. It has been eradicated successfully using a live, attenuated vaccine from most part of the world leaving a few foci of disease in parts of Africa, the Middle East, and South Asia. We have developed transgenic peanut (Arachis hypogaea L.) plants expressing hemagglutinin (H) protein of rinderpest virus (RPV), which is antigenically authentic. In this work, we have evaluated the immunogenicity of peanut-expressed H protein using mouse model, administered parenterally as well as orally. Intraperitoneal immunization of mice with the transgenic peanut extract elicited antibody response specific to H. These antibodies neutralized virus infectivity in vitro. Oral immunization of mice with transgenic peanut induced H-specific serum IgG and IgA antibodies. The systemic and oral immunogenicity of plant-derived H in absence of any adjuvant indicates the potential of edible vaccine for rinderpest

  19. Zymosan-induced immune challenge modifies the stress response of hypoxic air-breathing fish (Anabas testudineus Bloch): Evidence for reversed patterns of cortisol and thyroid hormone interaction, differential ion transporter functions and non-specific immune response.

    Science.gov (United States)

    Simi, S; Peter, Valsa S; Peter, M C Subhash

    2017-09-15

    Fishes have evolved physiological mechanisms to exhibit stress response, where hormonal signals interact with an array of ion transporters and regulate homeostasis. As major ion transport regulators in fish, cortisol and thyroid hormones have been shown to interact and fine-tune the stress response. Likewise, in fishes many interactions have been identified between stress and immune components, but the physiological basis of such interaction has not yet delineated particularly in air-breathing fish. We, therefore, investigated the responses of thyroid hormones and cortisol, ion transporter functions and non-specific immune response of an obligate air-breathing fish Anabas testudineus Bloch to zymosan treatment or hypoxia stress or both, to understand how immune challenge modifies the pattern of stress response in this fish. Induction of experimental peritonitis in these fish by zymosan treatment (200ngg -1 ) for 24h produced rise in respiratory burst and lysozomal activities in head kidney phagocytes. In contrast, hypoxia stress for 30min in immune-challenged fish reversed these non-specific responses of head kidney phagocytes. The decline in plasma cortisol in zymosan-treated fish and its further suppression by hypoxia stress indicate that immune challenge suppresses the cortisol-driven stress response of this fish. Likewise, the decline in plasma T 3 and T 4 after zymosan-treatment and the rise in plasma T 4 after hypoxia stress in immune-challenged fish indicate a critical role for thyroid hormone in immune-stress response due to its differential sensitivity to both immune and stress challenges. Further, analysis of the activity pattern of ion-dependent ATPases viz. Na + /K + -ATPase, H + /K + -ATPase and Na + /NH 4 + -ATPase indicates a functional interaction of ion transport system with the immune response as evident in its differential and spatial modifications after hypoxia stress in immune-challenged fish. The immune-challenge that produced differential

  20. Indirect detection of an epitope-specific response to HIV-1 gp120 immunization in human subjects.

    Directory of Open Access Journals (Sweden)

    Evgeny Shmelkov

    Full Text Available A specific response of human serum neutralizing antibodies (nAb to a conformational epitope as a result of vaccination of human subjects with the surface envelope glycoprotein (gp120 of HIV-1 has not previously been documented. Here, we used computational analysis to assess the epitope-specific responses of human subjects, which were immunized with recombinant gp120 immunogens in the VAX003 and VAX004 clinical trials. Our computational methodology--a variation of sieve analysis--compares the occurrence of specific nAb targeted conformational 3D epitopes on viruses from infected individuals who received vaccination to the occurrence of matched epitopes in the viruses infecting placebo subjects. We specifically studied seven crystallographically defined nAb targeted conformational epitopes in the V3 loop, an immunogenic region of gp120. Of the six epitopes present in the immunogens and targeted by known monoclonal neutralizing antibodies, only the one targeted by the anti-V3 nAb 2219 exhibited a significant reduction in occurrence in vaccinated subjects compared to the placebo group. This difference occurred only in the VAX003 Thailand cohort. No difference was seen between vaccinated and placebo groups for the occurrence of an epitope that was not present in the immunogen. Thus, it can be theorized that a specific 2219-like human neutralizing antibody immune response to AIDSVAX immunization occurred in the VAX003 cohort, and that this response protected subjects from a narrow subset of HIV-1 viruses circulating in Thailand in the 1990s and bearing the conformational epitope targeted by the neutralizing antibody 2219.

  1. Vaccination targeting human HER3 alters the phenotype of infiltrating T cells and responses to immune checkpoint inhibition.

    Science.gov (United States)

    Osada, Takuya; Morse, Michael A; Hobeika, Amy; Diniz, Marcio A; Gwin, William R; Hartman, Zachary; Wei, Junping; Guo, Hongtao; Yang, Xiao-Yi; Liu, Cong-Xiao; Kaneko, Kensuke; Broadwater, Gloria; Lyerly, H Kim

    2017-01-01

    Expression of human epidermal growth factor family member 3 (HER3), a critical heterodimerization partner with EGFR and HER2, promotes more aggressive biology in breast and other epithelial malignancies. As such, inhibiting HER3 could have broad applicability to the treatment of EGFR- and HER2-driven tumors. Although lack of a functional kinase domain limits the use of receptor tyrosine kinase inhibitors, HER3 contains antigenic targets for T cells and antibodies. Using novel human HER3 transgenic mouse models of breast cancer, we demonstrate that immunization with recombinant adenoviral vectors encoding full length human HER3 (Ad-HER3-FL) induces HER3-specific T cells and antibodies, alters the T cell infiltrate in tumors, and influences responses to immune checkpoint inhibitions. Both preventative and therapeutic Ad-HER3-FL immunization delayed tumor growth but were associated with both intratumoral PD-1 expressing CD8 + T cells and regulatory CD4 + T cell infiltrates. Immune checkpoint inhibition with either anti-PD-1 or anti-PD-L1 antibodies increased intratumoral CD8 + T cell infiltration and eliminated tumor following preventive vaccination with Ad-HER3-FL vaccine. The combination of dual PD-1/PD-L1 and CTLA4 blockade slowed the growth of tumor in response to Ad-HER3-FL in the therapeutic model. We conclude that HER3-targeting vaccines activate HER3-specific T cells and induce anti-HER3 specific antibodies, which alters the intratumoral T cell infiltrate and responses to immune checkpoint inhibition.

  2. Transgenic Mouse Model Harboring the Transcriptional Fusion Ccl20-Luciferase as a Novel Reporter of Pro-Inflammatory Response

    Science.gov (United States)

    Crispo, Martina; Van Maele, Laurye; Tabareau, Julien; Cayet, Delphine; Errea, Agustina; Ferreira, Ana María; Rumbo, Martin; Sirard, Jean Claude

    2013-01-01

    The chemokine CCL20, the unique ligand of CCR6 functions as an attractant of immune cells. Expression of CCL20 is induced by Toll-like Receptor (TLR) signaling or proinflammatory cytokine stimulation. However CCL20 is also constitutively produced at specific epithelial sites of mucosa. This expression profile is achieved by transcriptional regulation. In the present work we characterized regulatory features of mouse Ccl20 gene. Transcriptional fusions between the mouse Ccl20 promoter and the firefly luciferase (luc) encoding gene were constructed and assessed in in vitro and in vivo assays. We found that liver CCL20 expression and luciferase activity were upregulated by systemic administration of the TLR5 agonist flagellin. Using shRNA and dominant negative form specific for mouse TLR5, we showed that this expression was controlled by TLR5. To address in situ the regulation of gene activity, a transgenic mouse line harboring a functional Ccl20-luc fusion was generated. The luciferase expression was highly concordant with Ccl20 expression in different tissues. Our data indicate that the transgenic mouse model can be used to monitor activation of innate response in vivo. PMID:24265691

  3. Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis

    Science.gov (United States)

    Beers, D. R.; Ho, B. K.; Siklos, L.; Alexianu, M. E.; Mosier, D. R.; Mohamed, A. H.; Otsuka, Y.; Kozovska, M. E.; McAlhany, R. E.; Smith, R. G.; hide

    2001-01-01

    Intracellular calcium is increased in vulnerable spinal motoneurons in immune-mediated as well as transgenic models of amyotrophic lateral sclerosis (ALS). To determine whether intracellular calcium levels are influenced by the calcium-binding protein parvalbumin, we developed transgenic mice overexpressing parvalbumin in spinal motoneurons. ALS immunoglobulins increased intracellular calcium and spontaneous transmitter release at motoneuron terminals in control animals, but not in parvalbumin overexpressing transgenic mice. Parvalbumin transgenic mice interbred with mutant SOD1 (mSOD1) transgenic mice, an animal model of familial ALS, had significantly reduced motoneuron loss, and had delayed disease onset (17%) and prolonged survival (11%) when compared with mice with only the mSOD1 transgene. These results affirm the importance of the calcium binding protein parvalbumin in altering calcium homeostasis in motoneurons. The increased motoneuron parvalbumin can significantly attenuate the immune-mediated increases in calcium and to a lesser extent compensate for the mSOD1-mediated 'toxic-gain-of-function' in transgenic mice.

  4. Entirely Carbohydrate-Based Vaccines: An Emerging Field for Specific and Selective Immune Responses

    Directory of Open Access Journals (Sweden)

    Sharmeen Nishat

    2016-05-01

    Full Text Available Carbohydrates are regarded as promising targets for vaccine development against infectious disease because cell surface glycans on many infectious agents are attributed to playing an important role in pathogenesis. In addition, oncogenic transformation of normal cells, in many cases, is associated with aberrant glycosylation of the cell surface glycan generating tumor associated carbohydrate antigens (TACAs. Technological advances in glycobiology have added a new dimension to immunotherapy when considering carbohydrates as key targets in developing safe and effective vaccines to combat cancer, bacterial infections, viral infections, etc. Many consider effective vaccines induce T-cell dependent immunity with satisfactory levels of immunological memory that preclude recurrence. Unfortunately, carbohydrates alone are poorly immunogenic as they do not bind strongly to the MHCII complex and thus fail to elicit T-cell immunity. To increase immunogenicity, carbohydrates have been conjugated to carrier proteins, which sometimes can impede carbohydrate specific immunity as peptide-based immune responses can negate antibodies directed at the targeted carbohydrate antigens. To overcome many challenges in using carbohydrate-based vaccine design and development approaches targeting cancer and other diseases, zwitterionic polysaccharides (ZPSs, isolated from the capsule of commensal anaerobic bacteria, will be discussed as promising carriers of carbohydrate antigens to achieve desired immunological responses.

  5. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle.

    Science.gov (United States)

    Lyons, John D; Klingensmith, Nathan J; Otani, Shunsuke; Mittal, Rohit; Liang, Zhe; Ford, Mandy L; Coopersmith, Craig M

    2017-12-01

    Cell production and death are tightly regulated in the rapidly renewing gut epithelium, with proliferation confined to crypts and apoptosis occurring in villi and crypts. This study sought to determine how stress alters these compartmentalized processes. Wild-type mice made septic via cecal ligation and puncture had decreased crypt proliferation and increased crypt and villus apoptosis. Fabpi -TAg mice expressing large T-antigen solely in villi had ectopic enterocyte proliferation with increased villus apoptosis in unmanipulated animals. Septic fabpi -TAg mice had an unexpected increase in villus proliferation compared with unmanipulated littermates, whereas crypt proliferation was decreased. Cell cycle regulators cyclin D1 and cyclin D2 were decreased in jejunal tissue in septic transgenic mice. In contrast, villus and crypt apoptosis were increased in septic fabpi -TAg mice. To examine the relationship between apoptosis and proliferation in a compartment-specific manner, fabpi -TAg mice were crossed with fabpl -Bcl-2 mice, resulting in expression of both genes in the villus but Bcl-2 alone in the crypt. Septic bi-transgenic animals had decreased crypt apoptosis but had a paradoxical increase in villus apoptosis compared with septic fabpi -TAg mice, associated with decreased proliferation in both compartments. Thus, sepsis unmasks compartment-specific proliferative and apoptotic regulation that is not present under homeostatic conditions.-Lyons, J. D., Klingensmith, N. J., Otani, S., Mittal, R., Liang, Z., Ford, M. L., Coopersmith, C. M. Sepsis reveals compartment-specific responses in intestinal proliferation and apoptosis in transgenic mice whose enterocytes re-enter the cell cycle. © FASEB.

  6. The Specificity of Innate Immune Responses Is Enforced by Repression of Interferon Response Elements by NF-κB p50

    Science.gov (United States)

    Cheng, Christine S.; Feldman, Kristyn E.; Lee, James; Verma, Shilpi; Huang, De-Bin; Huynh, Kim; Chang, Mikyoung; Ponomarenko, Julia V.; Sun, Shao-Cong; Benedict, Chris A.; Ghosh, Gourisankar; Hoffmann, Alexander

    2011-01-01

    The specific binding of transcription factors to cognate sequence elements is thought to be critical for the generation of specific gene expression programs. Members of the nuclear factor κB (NF-κB) and interferon (IFN) regulatory factor (IRF) transcription factor families bind to the κB site and the IFN response element (IRE), respectively, of target genes, and they are activated in macrophages after exposure to pathogens. However, how these factors produce pathogen-specific inflammatory and immune responses remains poorly understood. Combining top-down and bottom-up systems biology approaches, we have identified the NF-κB p50 homodimer as a regulator of IRF responses. Unbiased genome-wide expression and biochemical and structural analyses revealed that the p50 homodimer repressed a subset of IFN-inducible genes through a previously uncharacterized subclass of guanine-rich IRE (G-IRE) sequences. Mathematical modeling predicted that the p50 homodimer might enforce the stimulus specificity of composite promoters. Indeed, the production of the antiviral regulator IFN-β was rendered stimulus-specific by the binding of the p50 homodimer to the G-IRE–containing IFNβ enhancer to suppress cytotoxic IFN signaling. Specifically, a deficiency in p50 resulted in the inappropriate production of IFN-β in response to bacterial DNA sensed by Toll-like receptor 9. This role for the NF-κB p50 homodimer in enforcing the specificity of the cellular response to pathogens by binding to a subset of IRE sequences alters our understanding of how the NF-κB and IRF signaling systems cooperate to regulate antimicrobial immunity. PMID:21343618

  7. Flanking sequence determination and specific PCR identification of transgenic wheat B102-1-2.

    Science.gov (United States)

    Cao, Jijuan; Xu, Junyi; Zhao, Tongtong; Cao, Dongmei; Huang, Xin; Zhang, Piqiao; Luan, Fengxia

    2014-01-01

    The exogenous fragment sequence and flanking sequence between the exogenous fragment and recombinant chromosome of transgenic wheat B102-1-2 were successfully acquired using genome walking technology. The newly acquired exogenous fragment encoded the full-length sequence of transformed genes with transformed plasmid and corresponding functional genes including ubi, vector pBANF-bar, vector pUbiGUSPlus, vector HSP, reporter vector pUbiGUSPlus, promoter ubiquitin, and coli DH1. A specific polymerase chain reaction (PCR) identification method for transgenic wheat B102-1-2 was established on the basis of designed primers according to flanking sequence. This established specific PCR strategy was validated by using transgenic wheat, transgenic corn, transgenic soybean, transgenic rice, and non-transgenic wheat. A specifically amplified target band was observed only in transgenic wheat B102-1-2. Therefore, this method is characterized by high specificity, high reproducibility, rapid identification, and excellent accuracy for the identification of transgenic wheat B102-1-2.

  8. Innate Immune Activation Can Trigger Experimental Spondyloarthritis in HLA-B27/Huβ2m Transgenic Rats

    NARCIS (Netherlands)

    van Tok, Melissa N.; Satumtira, Nimman; Dorris, Martha; Pots, Desirée; Slobodin, Gleb; van de Sande, Marleen G.; Taurog, Joel D.; Baeten, Dominique L.; van Duivenvoorde, Leonie M.

    2017-01-01

    Spondyloarthritis (SpA) does not display the typical features of auto-immune disease. Despite the strong association with MHC class I, CD8(+) T cells are not required for disease induction in the HLA-B27/Huβ2m transgenic rats. We used Lewis HLA-B27/Huβ2m transgenic rats [21-3 × 283-2]F1,

  9. Gastrointestinal immune responses in HIV infected subjects

    Directory of Open Access Journals (Sweden)

    LRR Castello-Branco

    1996-06-01

    Full Text Available The gut associated lymphoid tissue is responsible for specific responses to intestinal antigens. During HIV infection, mucosal immune deficiency may account for the gastrointestinal infections. In this review we describe the humoral and cellular mucosal immune responses in normal and HIV-infected subjects.

  10. Vaccination with lipid core peptides fails to induce epitope-specific T cell responses but confers non-specific protective immunity in a malaria model.

    Directory of Open Access Journals (Sweden)

    Simon H Apte

    Full Text Available Vaccines against many pathogens for which conventional approaches have failed remain an unmet public health priority. Synthetic peptide-based vaccines offer an attractive alternative to whole protein and whole organism vaccines, particularly for complex pathogens that cause chronic infection. Previously, we have reported a promising lipid core peptide (LCP vaccine delivery system that incorporates the antigen, carrier, and adjuvant in a single molecular entity. LCP vaccines have been used to deliver several peptide subunit-based vaccine candidates and induced high titre functional antibodies and protected against Group A streptococcus in mice. Herein, we have evaluated whether LCP constructs incorporating defined CD4(+ and/or CD8(+ T cell epitopes could induce epitope-specific T cell responses and protect against pathogen challenge in a rodent malaria model. We show that LCP vaccines failed to induce an expansion of antigen-specific CD8(+ T cells following primary immunization or by boosting. We further demonstrated that the LCP vaccines induced a non-specific type 2 polarized cytokine response, rather than an epitope-specific canonical CD8(+ T cell type 1 response. Cytotoxic responses of unknown specificity were also induced. These non-specific responses were able to protect against parasite challenge. These data demonstrate that vaccination with lipid core peptides fails to induce canonical epitope-specific T cell responses, at least in our rodent model, but can nonetheless confer non-specific protective immunity against Plasmodium parasite challenge.

  11. Maternal supplementation with LGG reduces vaccine-specific immune responses in infants at high-risk of developing allergic disease

    Directory of Open Access Journals (Sweden)

    Paul V Licciardi

    2013-11-01

    Full Text Available Probiotics are defined as live micro-organisms that when administered in adequate amounts confer a health benefit on the host. Among their pleiotropic effects, inhibition of pathogen colonisation at the mucosal surface as well as modulation of immune responses are widely recognised as the principal biological activities of probiotic bacteria. In recent times, the immune effects of probiotics have led to their application as vaccine adjuvants, offering a novel strategy for enhancing the efficacy of current vaccines. Such an approach is particularly relevant in regions where infectious disease burden is greatest and where access to complete vaccination programs is limited. In this study, we report the effects of the probiotic, Lactobacillus rhamnosus GG (LGG on immune responses to tetanus, Haemophilus influenzae type b (Hib and pneumococcal conjugate (PCV7 vaccines in infants. This study was conducted as part of a larger clinical trial assessing the impact of maternal LGG supplementation in preventing the development of atopic eczema in infants at high-risk for developing allergic disease. Maternal LGG supplementation was associated with reduced antibody responses against tetanus, Hib and pneumococcal serotypes contained in PCV7 (N=31 compared to placebo-treatment (N=30 but not total IgG levels. Maternal LGG supplementation was also associated with a trend to increased number of tetanus toxoid-specific Treg in the peripheral blood compared to placebo-treated infants. These findings suggest that maternal LGG supplementation may not be beneficial in terms of improving vaccine-specific immunity in infants. Further clinical studies are needed to confirm these findings. As probiotic immune effects can be species/strain specific, our findings do not exclude the potential use of other probiotic bacteria to modulate infant immune responses to vaccines.

  12. Decreased HIV-specific T-regulatory responses are associated with effective DC-vaccine induced immunity.

    Directory of Open Access Journals (Sweden)

    Vedran Brezar

    2015-03-01

    Full Text Available The role of regulatory T cells (Tregs in vaccination has been poorly investigated. We have reported that vaccination with ex vivo-generated dendritic-cells (DC loaded with HIV-lipopeptides (LIPO-5-DC vaccine in HIV-infected patients was well tolerated and highly immunogenic. These responses and their relation to viral replication following analytical treatment interruption (ATI were variable. Here, we investigated whether the presence of HIV-specific Tregs might explain these differences. Co-expression of CD25, CD134, CD39 and FoxP3 was used to delineate both antigen-specific Tregs and effectors T cells (Teffs. Median LIPO-5 specific-CD25+CD134+ polyfunctional T cells increased from 0.1% (IQR 0-0.3 before vaccination (week -4 to 2.1% (IQR 1.1-3.9 at week 16 following 4 immunizations (p=0.001 and were inversely correlated with maximum viral load following ATI (r=-0.77, p=0.001. Vaccinees who displayed lower levels of HIV-specific CD4+CD134+CD25+CD39+FoxP3+ Tregs responded better to the LIPO-5-DC vaccine. After vaccination, the frequency of HIV-specific Tregs decreased (from 69.3 at week -4 to 31.7% at week 16 and inversely correlated with HIV-specific IFN-γ-producing cells (r=-0.64, p=0.002. We show that therapeutic immunization skewed the HIV-specific response from regulatory to effector phenotype which impacts on the magnitude of viral replication following ATI.

  13. Generation of the bovine viral diarrhea virus e0 protein in transgenic astragalus and its immunogenicity in sika deer.

    Science.gov (United States)

    Gao, Yugang; Zhao, Xueliang; Zang, Pu; Liu, Qun; Wei, Gongqing; Zhang, Lianxue

    2014-01-01

    The bovine viral diarrhea virus (BVDV), a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR), transcription was verified by reverse transcription- (RT-) PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  14. Generation of the Bovine Viral Diarrhea Virus E0 Protein in Transgenic Astragalus and Its Immunogenicity in Sika Deer

    Directory of Open Access Journals (Sweden)

    Yugang Gao

    2014-01-01

    Full Text Available The bovine viral diarrhea virus (BVDV, a single-stranded RNA virus, can cause fatal diarrhea syndrome, respiratory problems, and reproductive disorders in herds. Over the past few years, it has become clear that the BVDV infection rates are increasing and it is likely that an effective vaccine for BVDV will be needed. In this study, transgenic Astragalus was used as an alternative productive platform for the expression of glycoprotein E0. The immunogenicity of glycoprotein E0 expressed in transgenic Astragalus was detected in deer. The presence of pBI121-E0 was confirmed by polymerase chain reaction (PCR, transcription was verified by reverse transcription- (RT- PCR, and recombinant protein expression was confirmed by ELISA and Western blot analyses. Deer that were immunized subcutaneously with the transgenic plant vaccine developed specific humoral and cell-mediated immune responses against BVDV. This study provides a new method for a protein with weak immunogenicity to be used as part of a transgenic plant vaccine.

  15. B-cell depletion is protective against anti-AAV capsid immune response: a human subject case study

    Directory of Open Access Journals (Sweden)

    M Corti

    2014-01-01

    Full Text Available Gene therapy strategies for congenital myopathies may require repeat administration of adeno-associated viral (AAV vectors due to aspects of the clinical application, such as: (i administration of doses below therapeutic efficacy in patients enrolled in early phase clinical trials; (ii progressive reduction of the therapeutic gene expression over time as a result of increasing muscle mass in patients treated at a young age; and (iii a possibly faster depletion of pathogenic myofibers in this patient population. Immune response triggered by the first vector administration, and to subsequent doses, represents a major obstacle for successful gene transfer in young patients. Anti-capsid and anti-transgene product related humoral and cell-mediated responses have been previously observed in all preclinical models and human subjects who received gene therapy or enzyme replacement therapy (ERT for congenital myopathies. Immune responses may result in reduced efficacy of the gene transfer over time and/or may preclude for the possibility of re-administration of the same vector. In this study, we evaluated the immune response of a Pompe patient dosed with an AAV1-GAA vector after receiving Rituximab and Sirolimus to modulate reactions against ERT. A key finding of this single subject case report is the observation that B-cell ablation with rituximab prior to AAV vector exposure results in non-responsiveness to both capsid and transgene, therefore allowing the possibility of repeat administration in the future. This observation is significant for future gene therapy studies and establishes a clinically relevant approach to blocking immune responses to AAV vectors.

  16. Arabidopsis EF-Tu receptor enhances bacterial disease resistance in transgenic wheat.

    Science.gov (United States)

    Schoonbeek, Henk-Jan; Wang, Hsi-Hua; Stefanato, Francesca L; Craze, Melanie; Bowden, Sarah; Wallington, Emma; Zipfel, Cyril; Ridout, Christopher J

    2015-04-01

    Perception of pathogen (or microbe)-associated molecular patterns (PAMPs/MAMPs) by pattern recognition receptors (PRRs) is a key component of plant innate immunity. The Arabidopsis PRR EF-Tu receptor (EFR) recognizes the bacterial PAMP elongation factor Tu (EF-Tu) and its derived peptide elf18. Previous work revealed that transgenic expression of AtEFR in Solanaceae confers elf18 responsiveness and broad-spectrum bacterial disease resistance. In this study, we developed a set of bioassays to study the activation of PAMP-triggered immunity (PTI) in wheat. We generated transgenic wheat (Triticum aestivum) plants expressing AtEFR driven by the constitutive rice actin promoter and tested their response to elf18. We show that transgenic expression of AtEFR in wheat confers recognition of elf18, as measured by the induction of immune marker genes and callose deposition. When challenged with the cereal bacterial pathogen Pseudomonas syringae pv. oryzae, transgenic EFR wheat lines had reduced lesion size and bacterial multiplication. These results demonstrate that AtEFR can be transferred successfully from dicot to monocot species, further revealing that immune signalling pathways are conserved across these distant phyla. As novel PRRs are identified, their transfer between plant families represents a useful strategy for enhancing resistance to pathogens in crops. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  17. Beryllium-specific immune response in primary cells from healthy individuals

    International Nuclear Information System (INIS)

    Chaudhary, Anu; Sauer, Nancy N.; Gupta, Goutam

    2004-01-01

    The effect of beryllium (Be) exposure has been extensively studied in patients with chronic beryllium disease (CBD). CBD patients carry mutated MHC class II alleles and show a hyperproliferation of T cells upon Be exposure. The exact mechanism of Be-induced T-cell proliferation in these patients is not clearly understood. It is also not known how the inflammatory and suppressive cytokines maintain a balance in healthy individuals and how this balance is lost in CBD patients. To address these issues, we have initiated cellular and biochemical studies to identify Be-responsive cytokines and other cellular markers that help maintain a balance in healthy individuals. We have established an immune cell model derived from a mixture of peripheral blood mononuclear cells (PBMCs) and dendritic cells (DCs). In this article, we demonstrate that pro-inflammatory cytokine IL6 shows decreased release whereas suppressive cytokine IL10 shows enhanced release after 5-10 h of Be treatment. Furthermore, the Be-specific pattern of IL6 and IL10 release is dependent upon induction of threonine phosphorylation of a 45 kDa cytosolic protein (p45), as early as 90 min after Be treatment. Pharmacological inhibition of phosphatidylinositol 3' kinase (PI3'K) by wortmannin and p38 mitogen-activated protein kinase (MAPK) by SB203580 reveal that PI3'K mediates Be-specific p45 phosphorylation and IL6 release, whereas p38 MAPK regulates the release of IL6 and IL10 and the phosphorylation of p45 independent of metal-salt treatment. While the IL10 and IL6 release pathways are uncoupled in these cells, they are linked to phosphorylation of p45. These findings suggest that the balance between IL10 and IL6 release and the correlated p45 phosphorylation are important components of the Be-mediated immune response in healthy individuals

  18. Heart-specific expression of laminopathic mutations in transgenic zebrafish.

    Science.gov (United States)

    Verma, Ajay D; Parnaik, Veena K

    2017-07-01

    Lamins are key determinants of nuclear organization and function in the metazoan nucleus. Mutations in human lamin A cause a spectrum of genetic diseases that affect cardiac muscle and skeletal muscle as well as other tissues. A few laminopathies have been modeled using the mouse. As zebrafish is a well established model for the study of cardiac development and disease, we have investigated the effects of heart-specific lamin A mutations in transgenic zebrafish. We have developed transgenic lines of zebrafish expressing conserved lamin A mutations that cause cardiac dysfunction in humans. Expression of zlamin A mutations Q291P and M368K in the heart was driven by the zebrafish cardiac troponin T2 promoter. Homozygous mutant embryos displayed nuclear abnormalities in cardiomyocyte nuclei. Expression analysis showed the upregulation of genes involved in heart regeneration in transgenic mutant embryos and a cell proliferation marker was increased in adult heart tissue. At the physiological level, there was deviation of up to 20% from normal heart rate in transgenic embryos expressing mutant lamins. Adult homozygous zebrafish were fertile and did not show signs of early mortality. Our results suggest that transgenic zebrafish models of heart-specific laminopathies show cardiac regeneration and moderate deviations in heart rate during embryonic development. © 2017 International Federation for Cell Biology.

  19. Circumvention of MHC class II restriction by genetic immunization.

    Science.gov (United States)

    Schuler, K; Lu, C; Chang, H D; Croft, M; Zanetti, M; Gerloni, M

    2001-11-12

    The fate of T cell responses to peptide-based vaccination is subject to constraints by the major histocompatibility complex (MHC), MHC restriction. Using as a model system of T and B cell epitopes from the circumsporozoite protein of Plasmodium falciparum malaria parasite, we show that vaccination by somatic transgene immunization readily primes Balb/c mice (H-2(d)) a strain previously reported to be non-responder to immunization with a synthetic peptide vaccine encompassing these epitopes. Following genetic vaccination Balb/c mice developed a primary T cell response comparable to that of the responder strain C57Bl/6 (H-2(b)). Following booster immunization on day 45 Balb/c mice responded with a typical T cell memory response. Priming induced the formation of specific antibodies, which rose sharply after booster immunization. These findings suggests that genetic immunization can circumvent MHC class II restriction.

  20. MHC class II-associated invariant chain linkage of antigen dramatically improves cell-mediated immunity induced by adenovirus vaccines

    DEFF Research Database (Denmark)

    Holst, Peter Johannes; Mandrup Jensen, Camilla Maria; Orskov, Cathrine

    2008-01-01

    The ideal vaccine induces a potent protective immune response, which should be rapidly induced, long-standing, and of broad specificity. Recombinant adenoviral vectors induce potent Ab and CD8+ T cell responses against transgenic Ags within weeks of administration, and they are among the most...

  1. Immunization with the conjugate vaccine Vi-CRM₁₉₇ against Salmonella typhi induces Vi-specific mucosal and systemic immune responses in mice.

    Science.gov (United States)

    Fiorino, Fabio; Ciabattini, Annalisa; Rondini, Simona; Pozzi, Gianni; Martin, Laura B; Medaglini, Donata

    2012-09-21

    Typhoid fever is a public health problem, especially among young children in developing countries. To address this need, a glycoconjugate vaccine Vi-CRM₁₉₇, composed of the polysaccharide antigen Vi covalently conjugated to the non-toxic mutant of diphtheria toxin CRM₁₉₇, is under development. Here, we assessed the antibody and cellular responses, both local and systemic, following subcutaneous injection of Vi-CRM₁₉₇. The glycoconjugate elicited Vi-specific serum IgG titers significantly higher than unconjugated Vi, with prevalence of IgG1 that persisted for at least 60 days after immunization. Vi-specific IgG, but not IgA, were present in intestinal washes. Lymphocytes proliferation after restimulation with Vi-CRM₁₉₇ was observed in spleen and mesenteric lymph nodes. These data confirm the immunogenicity of Vi-CRM₁₉₇ and demonstrate that the vaccine-specific antibody and cellular immune responses are present also in the intestinal tract, thus strengthening the suitability of Vi-CRM₁₉₇ as a promising candidate vaccine against Salmonella Typhi. Copyright © 2012 Elsevier Ltd. All rights reserved.

  2. Arabidopsis thaliana plants expressing Rift Valley fever virus antigens: Mice exhibit systemic immune responses as the result of oral administration of the transgenic plants.

    Science.gov (United States)

    Kalbina, Irina; Lagerqvist, Nina; Moiane, Bélisario; Ahlm, Clas; Andersson, Sören; Strid, Åke; Falk, Kerstin I

    2016-11-01

    The zoonotic Rift Valley fever virus affects livestock and humans in Africa and on the Arabian Peninsula. The economic impact of this pathogen due to livestock losses, as well as its relevance to public health, underscores the importance of developing effective and easily distributed vaccines. Vaccines that can be delivered orally are of particular interest. Here, we report the expression in transformed plants (Arabidopsis thaliana) of Rift Valley fever virus antigens. The antigens used in this study were the N protein and a deletion mutant of the Gn glycoprotein. Transformed lines were analysed for specific mRNA and protein content by RT-PCR and Western blotting, respectively. Furthermore, the plant-expressed antigens were evaluated for their immunogenicity in mice fed the transgenic plants. After oral intake of fresh transgenic plant material, a proportion of the mice elicited specific IgG antibody responses, as compared to the control animals that were fed wild-type plants and of which none sero-converted. Thus, we show that transgenic plants can be readily used to express and produce Rift Valley Fever virus proteins, and that the plants are immunogenic when given orally to mice. These are promising findings and provide a basis for further studies on edible plant vaccines against the Rift Valley fever virus. Copyright © 2016 Elsevier Inc. All rights reserved.

  3. Apolipoprotein E-specific innate immune response in astrocytes from targeted replacement mice

    Directory of Open Access Journals (Sweden)

    Montine Thomas J

    2006-04-01

    Full Text Available Abstract Background Inheritance of the three different alleles of the human apolipoprotein (apo E gene (APOE are associated with varying risk or clinical outcome from a variety of neurologic diseases. ApoE isoform-specific modulation of several pathogenic processes, in addition to amyloid β metabolism in Alzheimer's disease, have been proposed: one of these is innate immune response by glia. Previously we have shown that primary microglia cultures from targeted replacement (TR APOE mice have apoE isoform-dependent innate immune activation and paracrine damage to neurons that is greatest with TR by the ε4 allele (TR APOE4 and that derives from p38 mitogen-activated protein kinase (p38MAPK activity. Methods Primary cultures of TR APOE2, TR APOE3 and TR APOE4 astrocytes were stimulated with lipopolysaccharide (LPS. ApoE secretion, cytokine production, and nuclear factor-kappa B (NF-κB subunit activity were measured and compared. Results Here we showed that activation of primary astrocytes from TR APOE mice with LPS led to TR APOE-dependent differences in cytokine secretion that were greatest in TR APOE2 and that were associated with differences in NF-κB subunit activity. Conclusion Our results suggest that LPS activation of innate immune response in TR APOE glia results in opposing outcomes from microglia and astrocytes as a result of TR APOE-dependent activation of p38MAPK or NF-κB signaling in these two cell types.

  4. Pleurodeles Waltl Humoral Immune Response under Spaceflight Conditions

    Science.gov (United States)

    Bascove, Matthieu; Touche, Nadege; Frippiat, Jean-Pol

    2008-06-01

    The immune system is an important regulatory mechanism affected by spaceflights. In a previous work, we performed a first study of the humoral immune response induced by the immunization of Pleurodeles waltl during a 5 months stay onboard the Mir space station. This analysis indicated that heavy-chain variable domains of specific IgM are encoded by genes of the VHII and VHVI families. However, the contributions of these two families to IgM heavy-chains are different in flown animals [1]. To better understand this immune response modification, we have now determined how individual VH genes have been used to build specific IgM binding sites in animals immunized on earth or in space. This new study revealed quantitative and qualitative modifications in VH genes expression. These data confirm that a spaceflight might affect the humoral response.

  5. Characterization of Specific Immune Responses to Different Aspergillus Antigens during the Course of Invasive Aspergillosis in Hematologic Patients

    Science.gov (United States)

    Beauvais, Anne; Beau, Remi; Candoni, Anna; Maertens, Johan; Rossi, Giulio; Morselli, Monica; Zanetti, Eleonora; Quadrelli, Chiara; Codeluppi, Mauro; Guaraldi, Giovanni; Pagano, Livio; Caira, Morena; Giovane, Cinzia Del; Maccaferri, Monica; Stefani, Alessandro; Morandi, Uliano; Tazzioli, Giovanni; Girardis, Massimo; Delia, Mario; Specchia, Giorgina; Longo, Giuseppe; Marasca, Roberto; Narni, Franco; Merli, Francesco; Imovilli, Annalisa; Apolone, Giovanni; Carvalho, Agostinho; Comoli, Patrizia; Romani, Luigina; Latgè, Jean Paul; Luppi, Mario

    2013-01-01

    Several studies in mouse model of invasive aspergillosis (IA) and in healthy donors have shown that different Aspergillus antigens may stimulate different adaptive immune responses. However, the occurrence of Aspergillus-specific T cells have not yet been reported in patients with the disease. In patients with IA, we have investigated during the infection: a) whether and how specific T-cell responses to different Aspergillus antigens occur and develop; b) which antigens elicit the highest frequencies of protective immune responses and, c) whether such protective T cells could be expanded ex-vivo. Forty hematologic patients have been studied, including 22 patients with IA and 18 controls. Specific T cells producing IL-10, IFN-γ, IL-4 and IL-17A have been characterized through enzyme linked immunospot and cytokine secretion assays on 88 peripheral blood (PB) samples, by using the following recombinant antigens: GEL1p, CRF1p, PEP1p, SOD1p, α1–3glucan, β1–3glucan, galactomannan. Specific T cells were expanded through short term culture. Aspergillus-specific T cells producing non-protective interleukin-10 (IL-10) and protective interferon-gamma (IFN-γ) have been detected to all the antigens only in IA patients. Lower numbers of specific T cells producing IL-4 and IL-17A have also been shown. Protective T cells targeted predominantly Aspergillus cell wall antigens, tended to increase during the IA course and to be associated with a better clinical outcome. Aspergillus-specific T cells could be successfully generated from the PB of 8 out of 8 patients with IA and included cytotoxic subsets able to lyse Aspergillus hyphae. Aspergillus specific T-cell responses contribute to the clearance of the pathogen in immunosuppressed patients with IA and Aspergillus cell wall antigens are those mainly targeted by protective immune responses. Cytotoxic specific T cells can be expanded from immunosuppressed patients even during the infection by using the above mentioned

  6. Humoral immune responses of dengue fever patients using epitope-specific serotype-2 virus-like particle antigens.

    Directory of Open Access Journals (Sweden)

    Wayne D Crill

    Full Text Available Dengue virus (DENV is a serious mosquito-borne pathogen causing significant global disease burden, either as classic dengue fever (DF or in its most severe manifestation dengue hemorrhagic fever (DHF. Nearly half of the world's population is at risk of dengue disease and there are estimated to be millions of infections annually; a situation which will continue to worsen with increasing expansion of the mosquito vectors and epidemic DF/DHF. Currently there are no available licensed vaccines or antivirals for dengue, although significant effort has been directed toward the development of safe and efficacious dengue vaccines for over 30 years. Promising vaccine candidates are in development and testing phases, but a better understanding of immune responses to DENV infection and vaccination is needed. Humoral immune responses to DENV infection are complex and may exacerbate pathogenicity, yet are essential for immune protection. In this report, we develop DENV-2 envelope (E protein epitope-specific antigens and measure immunoglobulin responses to three distinct epitopes in DENV-2 infected human serum samples. Immunoglobulin responses to DENV-2 infection exhibited significant levels of individual variation. Antibody populations targeting broadly cross-reactive epitopes centered on the fusion peptide in structural domain II were large, highly variable, and greater in primary than in secondary DENV-2 infected sera. E protein domain III cross-reactive immunoglobulin populations were similarly variable and much larger in IgM than in IgG. DENV-2 specific domain III IgG formed a very small proportion of the antibody response yet was significantly correlated with DENV-2 neutralization, suggesting that the highly protective IgG recognizing this epitope in murine studies plays a role in humans as well. This report begins to tease apart complex humoral immune responses to DENV infection and is thus important for improving our understanding of dengue disease

  7. Modulation of the innate immune responses in the striped ...

    African Journals Online (AJOL)

    Thus, most of the innate non-specific immune responses are inducible though they are constitutive of fish immune system exhibiting a basal level of activity even in the absence of pathogen challenge. Keywords: Aeromonas hydrophila, Experimental challenge, Innate immune response, Striped snakehead murrel ...

  8. Peripheral dendritic cells are essential for both the innate and adaptive antiviral immune responses in the central nervous system

    International Nuclear Information System (INIS)

    Steel, Christina D.; Hahto, Suzanne M.; Ciavarra, Richard P.

    2009-01-01

    Intranasal application of vesicular stomatitis virus (VSV) causes acute infection of the central nervous system (CNS). However, VSV encephalitis is not invariably fatal, suggesting that the CNS may contain a professional antigen-presenting cell (APC) capable of inducing or propagating a protective antiviral immune response. To examine this possibility, we first characterized the cellular elements that infiltrate the brain as well as the activation status of resident microglia in the brains of normal and transgenic mice acutely ablated of peripheral dendritic cells (DCs) in vivo. VSV encephalitis was characterized by a pronounced infiltrate of myeloid cells (CD45 high CD11b + ) and CD8 + T cells containing a subset that was specific for the immunodominant VSV nuclear protein epitope. This T cell response correlated temporally with a rapid and sustained upregulation of MHC class I expression on microglia, whereas class II expression was markedly delayed. Ablation of peripheral DCs profoundly inhibited the inflammatory response as well as infiltration of virus-specific CD8 + T cells. Unexpectedly, the VSV-induced interferon-gamma (IFN-γ) response in the CNS remained intact in DC-deficient mice. Thus, both the inflammatory and certain components of the adaptive primary antiviral immune response in the CNS are dependent on peripheral DCs in vivo.

  9. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route.

    Science.gov (United States)

    Carey, John B; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V S; Draper, Simon J; Moore, Anne C

    2014-08-21

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP1₄₂, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP1₄₂ also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP1₄₂ using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies.

  10. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    Science.gov (United States)

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delivery. Microneedle-mediated vaccine priming and resultant induction of low anti-vector antibody titres permitted repeated use of the same adenovirus vaccine vector. This resulted in significantly increased antigen-specific antibody responses in these mice compared to ID-treated mice. Boosting with a heterologous vaccine; MVA-PyMSP142 also resulted in significantly greater antibody responses in mice primed with HAdV5-PyMSP142 using MN compared to the ID route. The highest protection against blood-stage malaria challenge was observed when a heterologous route of immunization (MN/ID) was used. Therefore, microneedle-mediated immunization has potential to both overcome some of the logistic obstacles surrounding needle-and-syringe-based immunization as well as to facilitate the repeated use of the same adenovirus vaccine thereby potentially reducing manufacturing costs of multiple vaccines. This could have important benefits in the clinical ease of use of adenovirus-based immunization strategies. PMID:25142082

  11. Memory and Specificity in the Insect Immune System: Current Perspectives and Future Challenges

    Directory of Open Access Journals (Sweden)

    Dustin Cooper

    2017-05-01

    Full Text Available The immune response of a host to a pathogen is typically described as either innate or adaptive. The innate form of the immune response is conserved across all organisms, including insects. Previous and recent research has focused on the nature of the insect immune system and the results imply that the innate immune response of insects is more robust and specific than previously thought. Priming of the insect innate immune system involves the exposure of insects to dead or a sublethal dose of microbes in order to elicit an initial response. Comparing subsequent infections in primed insects to non-primed individuals indicates that the insect innate immune response may possess some of the qualities of an adaptive immune system. Although some studies demonstrate that the protective effects of priming are due to a “loitering” innate immune response, others have presented more convincing elements of adaptivity. While an immune mechanism capable of producing the same degree of recognition specificity as seen in vertebrates has yet to be discovered in insects, a few interesting cases have been identified and discussed.

  12. Effects of feeding Bt maize to sows during gestation and lactation on maternal and offspring immunity and fate of transgenic material.

    Directory of Open Access Journals (Sweden)

    Stefan G Buzoianu

    Full Text Available BACKGROUND: We aimed to determine the effect of feeding transgenic maize to sows during gestation and lactation on maternal and offspring immunity and to assess the fate of transgenic material. METHODOLOGY/PRINCIPAL FINDINGS: On the day of insemination, sows were assigned to one of two treatments (n = 12/treatment; 1 non-Bt control maize diet or 2 Bt-MON810 maize diet, which were fed for ~143 days throughout gestation and lactation. Immune function was assessed by leukocyte phenotyping, haematology and Cry1Ab-specific antibody presence in blood on days 0, 28 and 110 of gestation and at the end of lactation. Peripheral-blood mononuclear cell cytokine production was investigated on days 28 and 110 of gestation. Haematological analysis was performed on offspring at birth (n = 12/treatment. Presence of the cry1Ab transgene was assessed in sows' blood and faeces on day 110 of gestation and in blood and tissues of offspring at birth. Cry1Ab protein presence was assessed in sows' blood during gestation and lactation and in tissues of offspring at birth. Blood monocyte count and percentage were higher (P<0.05, while granulocyte percentage was lower (P<0.05 in Bt maize-fed sows on day 110 of gestation. Leukocyte count and granulocyte count and percentage were lower (P<0.05, while lymphocyte percentage was higher (P<0.05 in offspring of Bt maize-fed sows. Bt maize-fed sows had a lower percentage of monocytes on day 28 of lactation and of CD4(+CD8(+ lymphocytes on day 110 of gestation, day 28 of lactation and overall (P<0.05. Cytokine production was similar between treatments. Transgenic material or Cry1Ab-specific antibodies were not detected in sows or offspring. CONCLUSIONS/SIGNIFICANCE: Treatment differences observed following feeding of Bt maize to sows did not indicate inflammation or allergy and are unlikely to be of major importance. These results provide additional data for Bt maize safety assessment.

  13. Ovine model for studying pulmonary immune responses

    International Nuclear Information System (INIS)

    Joel, D.D.; Chanana, A.D.

    1984-01-01

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with 125 I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables

  14. Ovine model for studying pulmonary immune responses

    Energy Technology Data Exchange (ETDEWEB)

    Joel, D.D.; Chanana, A.D.

    1984-11-25

    Anatomical features of the sheep lung make it an excellent model for studying pulmonary immunity. Four specific lung segments were identified which drain exclusively to three separate lymph nodes. One of these segments, the dorsal basal segment of the right lung, is drained by the caudal mediastinal lymph node (CMLN). Cannulation of the efferent lymph duct of the CMLN along with highly localized intrabronchial instillation of antigen provides a functional unit with which to study factors involved in development of pulmonary immune responses. Following intrabronchial immunization there was an increased output of lymphoblasts and specific antibody-forming cells in efferent CMLN lymph. Continuous divergence of efferent lymph eliminated the serum antibody response but did not totally eliminate the appearance of specific antibody in fluid obtained by bronchoalveolar lavage. In these studies localized immunization of the right cranial lobe served as a control. Efferent lymphoblasts produced in response to intrabronchial antigen were labeled with /sup 125/I-iododeoxyuridine and their migrational patterns and tissue distribution compared to lymphoblasts obtained from the thoracic duct. The results indicated that pulmonary immunoblasts tend to relocate in lung tissue and reappear with a higher specific activity in pulmonary lymph than in thoracic duct lymph. The reverse was observed with labeled intestinal lymphoblasts. 35 references, 2 figures, 3 tables.

  15. Pilot Study on the Use of DNA Priming Immunization to Enhance Y. pestis LcrV-Specific B Cell Responses Elicited by a Recombinant LcrV Protein Vaccine

    Directory of Open Access Journals (Sweden)

    Wei Li

    2013-12-01

    Full Text Available Recent studies indicate that DNA immunization is powerful in eliciting antigen-specific antibody responses in both animal and human studies. However, there is limited information on the mechanism of this effect. In particular, it is not known whether DNA immunization can also enhance the development of antigen-specific B cell development. In this report, a pilot study was conducted using plague LcrV immunogen as a model system to determine whether DNA immunization is able to enhance LcrV-specific B cell development in mice. Plague is an acute and often fatal infectious disease caused by Yersinia pestis (Y. pestis. Humoral immune responses provide critical protective immunity against plague. Previously, we demonstrated that a DNA vaccine expressing LcrV antigen can protect mice from lethal mucosal challenge. In the current study, we further evaluated whether the use of a DNA priming immunization is able to enhance the immunogenicity of a recombinant LcrV protein vaccine, and in particular, the development of LcrV-specific B cells. Our data indicate that DNA immunization was able to elicit high-level LcrV antibody responses when used alone or as part of a prime-boost immunization approach. Most significantly, DNA immunization was also able to increase the levels of LcrV-specific B cell development. The finding that DNA immunization can enhance antigen-specific B cell responses is highly significant and will help guide similar studies in other model antigen systems.

  16. Characterization of host immune responses in Ebola virus infections.

    Science.gov (United States)

    Wong, Gary; Kobinger, Gary P; Qiu, Xiangguo

    2014-06-01

    Ebola causes highly lethal hemorrhagic fever in humans with no licensed countermeasures. Its virulence can be attributed to several immunoevasion mechanisms: an early inhibition of innate immunity started by the downregulation of type I interferon, epitope masking and subversion of the adaptive humoural immunity by secreting a truncated form of the viral glycoprotein. Deficiencies in specific and non-specific antiviral responses result in unrestricted viral replication and dissemination in the host, causing death typically within 10 days after the appearance of symptoms. This review summarizes the host immune response to Ebola infection, and highlights the short- and long-term immune responses crucial for protection, which holds implications for the design of future vaccines and therapeutics.

  17. Immunization with Brucella VirB proteins reduces organ colonization in mice through a Th1-type immune response and elicits a similar immune response in dogs.

    Science.gov (United States)

    Pollak, Cora N; Wanke, María Magdalena; Estein, Silvia M; Delpino, M Victoria; Monachesi, Norma E; Comercio, Elida A; Fossati, Carlos A; Baldi, Pablo C

    2015-03-01

    VirB proteins from Brucella spp. constitute the type IV secretion system, a key virulence factor mediating the intracellular survival of these bacteria. Here, we assessed whether a Th1-type immune response against VirB proteins may protect mice from Brucella infection and whether this response can be induced in the dog, a natural host for Brucella. Splenocytes from mice immunized with VirB7 or VirB9 responded to their respective antigens with significant and specific production of gamma interferon (IFN-γ), whereas interleukin-4 (IL-4) was not detected. Thirty days after an intraperitoneal challenge with live Brucella abortus, the spleen load of bacteria was almost 1 log lower in mice immunized with VirB proteins than in unvaccinated animals. As colonization reduction seemed to correlate with a Th1-type immune response against VirB proteins, we decided to assess whether such a response could be elicited in the dog. Peripheral blood mononuclear cells (PBMCs) from dogs immunized with VirB proteins (three subcutaneous doses in QuilA adjuvant) produced significantly higher levels of IFN-γ than cells from control animals upon in vitro stimulation with VirB proteins. A skin test to assess specific delayed-type hypersensitivity was positive in 4 out of 5 dogs immunized with either VirB7 or VirB9. As both proteins are predicted to locate in the outer membrane of Brucella organisms, the ability of anti-VirB antibodies to mediate complement-dependent bacteriolysis of B. canis was assessed in vitro. Sera from dogs immunized with either VirB7 or VirB9, but not from those receiving phosphate-buffered saline (PBS), produced significant bacteriolysis. These results suggest that VirB-specific responses that reduce organ colonization by Brucella in mice can be also elicited in dogs. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  18. Coxsackievirus A 16 infection does not interfere with the specific immune response induced by an enterovirus 71 inactivated vaccine in rhesus monkeys.

    Science.gov (United States)

    Wang, Jingjing; Qi, Sudong; Zhang, Xiaolong; Zhang, Ying; Liu, Longding; Che, Yanchun; He, Zhanlong; Zhao, Yuan; Lu, Shuaiyao; Yu, Wenhai; Li, Qihan

    2014-07-31

    Hand, foot and mouth disease is usually caused by enterovirus 71 (EV71) and coxsackievirus A 16 (CA16), which are members of the Picornaviridae family. In the present study, the characteristics of the immune response induced by an EV71 inactivated vaccine (made from human diploid cells) were explored in the presence of CA16 infection, based on the previously established neonatal rhesus monkey model. The typical clinical manifestations, including body temperature, viral viremia and virus shedding in the mouth, pharynx and feces, were characterized. A specific neutralizing antibody assay showed that the specific immune response induced by the EV71 inactivated vaccine was active against EV71 but not against CA16. No remarkable fluctuation in proinflammatory cytokine release was identified in the serum of immunized monkeys with EV71 vaccine and CA16 infections subsequently. The results showed that the specific immune response induced by the EV71 inactivated vaccine is effective against EV71 infection but is not affected by CA16 infection. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Transplantational and specific antitumor immunity in retrospective view: new models based on transgenesis of individual chains of T-cell receptor

    Directory of Open Access Journals (Sweden)

    D. B. Kazanskiy

    2016-01-01

    Full Text Available Findings in experimental oncology in beginning of last century and subsequent achievements of genetics of tissue compatibility resulted in divergence of transplantational immunology and oncoimmunology. However, central achievements of both scientific fields are based on unified phenomenon of interaction between T-cell receptor (TCR and histocompatibility molecules. In this review we describe the history of ideas, achievements and unique experience of the team of the Laboratory of Regulatory Mechanisms in Immunity at Scientific Research Institute of Carcinogenesis, N.N. Blokhin Russian Cancer Research Center for all time of existence. This experience shows that efficiency of immunological defense including immunological surveillance are critically influenced by T-cell receptor repertoire. Transgenesis of individual chains of TCR is one of possible means to manage T-cell repertoire. Functional outcomes of transgenesis may be different due to diverse extent of dependence of α- and β-chains expression on the rules of allelic exclusion. Expression of transgenic β-chains results in the expansion of TCR repertoire diversity. Expression of β-chains is under strong control by allelic exclusion, resulting in formation of repertoire bearing mainly invariant transgenic β-chain pared with different α-chains and overall narrowing of repertoire. Earlier, we cloned genes encoding α- and β-chains of TCR of CD8+ memory cells specific to histocompatibility molecule H-2Kb . After introduction them in zigotes we have obtained transgenic mouse strains, which could be used for modeling of interactions between tumor cells and immune system of recipient. Normally, B10. D2 (R101 mice reject lymphoma EL4 cells in 12–14 days after transplantation, in spite of the fact, that allogeneic difference between B10. D2 (R101 (Kd Id Db mice and lymphoma EL4 (H-2b cells is only in one product of MHC, the H-2Kb molecule. Transgenics carrying β-chains of TCR displayed

  20. Tracking by flow cytometry antigen-specific follicular helper T cells in wild-type animals after protein vaccination.

    Science.gov (United States)

    Chakarov, Svetoslav; Fazilleau, Nicolas

    2015-01-01

    Flow cytometry is a valuable technology used in immunology to characterize and enumerate the different cell subpopulations specific for a nonself-antigen in the context of an ongoing immune response. Among them, follicular helper T cells are the cognate regulators of B cells in secondary lymphoid tissues. Thus, tracking them is of high interest especially in the context of protein vaccination. For this purpose, transgenic antigen-receptor mouse models have been largely used. It is now clear that transgenic models are not always the best means to study the dynamics of the immune response since they can modify the response. In this chapter, we describe how to track endogenous antigen-specific follicular helper T cells by flow cytometry after protein vaccination in nonmodified wild-type animals, which ultimately provides a comprehensive way to enumerate, characterize, and isolate these particular cells in vivo.

  1. Screening Immunomodulators To Skew the Antigen-Specific Autoimmune Response.

    Science.gov (United States)

    Northrup, Laura; Sullivan, Bradley P; Hartwell, Brittany L; Garza, Aaron; Berkland, Cory

    2017-01-03

    Current therapies to treat autoimmune diseases often result in side effects such as nonspecific immunosuppression. Therapies that can induce antigen-specific immune tolerance provide an opportunity to reverse autoimmunity and mitigate the risks associated with global immunosuppression. In an effort to induce antigen-specific immune tolerance, co-administration of immunomodulators with autoantigens has been investigated in an effort to reprogram autoimmunity. To date, identifying immunomodulators that may skew the antigen-specific immune response has been ad hoc at best. To address this need, we utilized splenocytes obtained from mice with experimental autoimmune encephalomyelitis (EAE) in order to determine if certain immunomodulators may induce markers of immune tolerance following antigen rechallenge. Of the immunomodulatory compounds investigated, only dexamethasone modified the antigen-specific immune response by skewing the cytokine response and decreasing T-cell populations at a concentration corresponding to a relevant in vivo dose. Thus, antigen-educated EAE splenocytes provide an ex vivo screen for investigating compounds capable of skewing the antigen-specific immune response, and this approach could be extrapolated to antigen-educated cells from other diseases or human tissues.

  2. A platform to screen for C-type lectin receptor-binding carbohydrates and their potential for cell-specific targeting and immune modulation.

    Science.gov (United States)

    Maglinao, Maha; Eriksson, Magdalena; Schlegel, Mark K; Zimmermann, Stephanie; Johannssen, Timo; Götze, Sebastian; Seeberger, Peter H; Lepenies, Bernd

    2014-02-10

    Myeloid C-type lectin receptors (CLRs) in innate immunity represent a superfamily of pattern recognition receptors that recognize carbohydrate structures on pathogens and self-antigens. The primary interaction of an antigen-presenting cell and a pathogen shapes the following immune response. Therefore, the identification of CLR ligands that can either enhance or modulate the immune response is of interest. We have developed a screening platform based on glycan arrays to identify immune modulatory carbohydrate ligands of CLRs. A comprehensive library of CLRs was expressed by fusing the extracellular part of each respective CLR, the part containing the carbohydrate-recognition domain (CRD), to the Fc fragment of human IgG1 molecules. CLR-Fc fusion proteins display the CRD in a dimeric form, are properly glycosylated, and can be detected by a secondary antibody with a conjugated fluorophore. Thus, they are valuable tools for high-throughput screening. We were able to identify novel carbohydrate binders of CLRs using the glycan array technology. These CLR-binding carbohydrates were then covalently attached to the model antigen ovalbumin. The ovalbumin neoglycoconjugates were used in a dendritic cell/T cell co-culture assay to stimulate transgenic T cells in vitro. In addition, mice were immunized with these conjugates to analyze the immune modulatory properties of the CLR ligands in vivo. The CLR ligands induced an increased Th1 cytokine production in vitro and modulated the humoral response in vivo. The platform described here allows for the identification of CLR ligands, as well as the evaluation of each ligand's cell-specific targeting and immune modulatory properties. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. Induction of Immune Tolerance to Foreign Protein via Adeno-Associated Viral Vector Gene Transfer in Mid-Gestation Fetal Sheep

    Science.gov (United States)

    Davey, Marcus G.; Riley, John S.; Andrews, Abigail; Tyminski, Alec; Limberis, Maria; Pogoriler, Jennifer E.; Partridge, Emily; Olive, Aliza; Hedrick, Holly L.; Flake, Alan W.; Peranteau, William H.

    2017-01-01

    A major limitation to adeno-associated virus (AAV) gene therapy is the generation of host immune responses to viral vector antigens and the transgene product. The ability to induce immune tolerance to foreign protein has the potential to overcome this host immunity. Acquisition and maintenance of tolerance to viral vector antigens and transgene products may also permit repeat administration thereby enhancing therapeutic efficacy. In utero gene transfer (IUGT) takes advantage of the immunologic immaturity of the fetus to induce immune tolerance to foreign antigens. In this large animal study, in utero administration of AAV6.2, AAV8 and AAV9 expressing green fluorescent protein (GFP) to ~60 day fetal sheep (term: ~150 days) was performed. Transgene expression and postnatal immune tolerance to GFP and viral antigens were assessed. We demonstrate 1) hepatic expression of GFP 1 month following in utero administration of AAV6.2.GFP and AAV8.GFP, 2) in utero recipients of either AAV6.2.GFP or AAV8.GFP fail to mount an anti-GFP antibody response following postnatal GFP challenge and lack inflammatory cellular infiltrates at the intramuscular site of immunization, 3) a serotype specific anti-AAV neutralizing antibody response is elicited following postnatal challenge of in utero recipients of AAV6.2 or AAV8 with the corresponding AAV serotype, and 4) durable hepatic GFP expression was observed up to 6 months after birth in recipients of AAV8.GFP but expression was lost between 1 and 6 months of age in recipients of AAV6.2.GFP. The current study demonstrates, in a preclinical large animal model, the potential of IUGT to achieve host immune tolerance to the viral vector transgene product but also suggests that a single exposure to the vector capsid proteins at the time of IUGT is inadequate to induce tolerance to viral vector antigens. PMID:28141818

  4. Epidermal Overexpression of Xenobiotic Receptor PXR Impairs the Epidermal Barrier and Triggers Th2 Immune Response.

    Science.gov (United States)

    Elentner, Andreas; Schmuth, Matthias; Yannoutsos, Nikolaos; Eichmann, Thomas O; Gruber, Robert; Radner, Franz P W; Hermann, Martin; Del Frari, Barbara; Dubrac, Sandrine

    2018-01-01

    The skin is in daily contact with environmental pollutants, but the long-term effects of such exposure remain underinvestigated. Many of these toxins bind and activate the pregnane X receptor (PXR), a ligand-activated transcription factor that regulates genes central to xenobiotic metabolism. The objective of this work was to investigate the effect of constitutive activation of PXR in the basal layer of the skin to mimic repeated skin exposure to noxious molecules. We designed a transgenic mouse model that overexpresses the human PXR gene linked to the herpes simplex VP16 domain under the control of the keratin 14 promoter. We show that transgenic mice display increased transepidermal water loss and elevated skin pH, abnormal stratum corneum lipids, focal epidermal hyperplasia, activated keratinocytes expressing more thymic stromal lymphopoietin, a T helper type 2/T helper type 17 skin immune response, and increased serum IgE. Furthermore, the cutaneous barrier dysfunction precedes development of the T helper type 2/T helper type 17 inflammation in transgenic mice, thereby mirroring the time course of atopic dermatitis development in humans. Moreover, further experiments suggest increased PXR signaling in the skin of patients with atopic dermatitis when compared with healthy skin. Thus, PXR activation by environmental pollutants may compromise epidermal barrier function and favor an immune response resembling atopic dermatitis. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  5. Immunization with a dicistronic plasmid expressing a truncated form of bovine herpesvirus-1 glycoprotein D and the amino-terminal subunit of glycoprotein B results in reduced gB-specific immune responses

    International Nuclear Information System (INIS)

    Manoj, Sharmila; Babiuk, Lorne A.; Drunen Littel van-Hurk, Sylvia van den

    2003-01-01

    As an approach to create a divalent DNA vaccine, a truncated secreted version of bovine herpesvirus-1 (BHV-1) glycoprotein D (tgD) and the amino-terminal subunit of glycoprotein B (gBb) were expressed from a dicistronic plasmid, designated pSLIAtgD-IRES-gBb. Intradermal immunization of mice with pSLIAtgD-IRES-gBb or a mixture of plasmids encoding tgD (pSLIAtgD) and gBb (pSLIAgBb) by needle injection or gene gun elicited strong tgD-specific immune responses. However, a significant reduction in gBb-specific immune responses was observed upon immunization of mice with pSLIAtgD-IRES-gBb or a mixture of pSLIAtgD and pSLIAgBb in comparison to immunization with pSLIAgBb alone. This reduction in gBb-specific immune responses induced by pSLIAtgD-IRES-gBb was due to production of low amounts of gBb from pSLIAtgD-IRES-gBb, inefficient processing and transport of gBb, and possibly competition for antigen-presenting cells by tgD and gBb. These results indicate that, although divalent plasmids may be used to express different antigens, the efficacy of vaccination with such plasmids may be influenced by the plasmid design and the characteristics of the expressed antigens

  6. Specific micro RNA-regulated TetR-KRAB transcriptional control of transgene expression in viral vector-transduced cells.

    Directory of Open Access Journals (Sweden)

    Virginie Pichard

    Full Text Available Precise control of transgene expression in a tissue-specific and temporally regulated manner is desirable for many basic and applied investigations gene therapy applications. This is important to regulate dose of transgene products and minimize unwanted effects. Previously described methods have employed tissue specific promoters, miRNA-based transgene silencing or tetR-KRAB-mediated suppression of transgene promoters. To improve on versatility of transgene expression control, we have developed expression systems that use combinations of a tetR-KRAB artificial transgene-repressor, endogenous miRNA silencing machinery and tissue specific promoters. Precise control of transgene expression was demonstrated in liver-, macrophage- and muscle-derived cells. Efficiency was also demonstrated in vivo in murine muscle. This multicomponent and modular regulatory system provides a robust and easily adaptable method for achieving regulated transgene expression in different tissue types. The improved precision of regulation will be useful for many gene therapy applications requiring specific spatiotemporal transgene regulation.

  7. Exercise alters the immune profile in Tg2576 Alzheimer mice toward a response coincident with improved cognitive performance and decreased amyloid

    Directory of Open Access Journals (Sweden)

    Cribbs David H

    2008-04-01

    Full Text Available Abstract Background Inflammation is associated with Aβ pathology in Alzheimer's disease (AD and transgenic AD models. Previously, it has been demonstrated that chronic stimulation of the immune response induces pro-inflammatory cytokines IL-1β and TNF-α which contribute to neurodegeneration. However, recent evidence has shown that inducing the adaptive immune response reduces Aβ pathology and is neuroprotective. Low concentrations of IFN-γ modulate the adaptive immune response by directing microglia to differentiate to antigen presenting cells. Our objective was to determine if exercise could induce a shift from the immune profile in aged (17–19 months Tg2576 mice to a response that reduces Aβ pathology. Methods TG (n = 29 and WT (n = 27 mice were divided into sedentary (SED and exercised (RUN groups. RUN animals were provided an in-cage running wheel for 3 weeks. Tissue was harvested and hippocampus and cortex dissected out. Quantitative data was analyzed using 2 × 2 ANOVA and student's t-tests. Results IL-1β and TNF-α were significantly greater in hippocampi from sedentary Tg2576 (TGSED mice than in wildtype (WTSED (p = 0.04, p = 0.006. Immune response proteins IFN-γ and MIP-1α are lower in TGSED mice than in WTSED (p = 0.03, p = 0.07. Following three weeks of voluntary wheel running, IL-1β and TNF-α decreased to levels indistinguishable from WT. Concurrently, IFN-γ and MIP-1α increased in TGRUN. Increased CD40 and MHCII, markers of antigen presentation, were observed in TGRUN animals compared to TGSED, as well as CD11c staining in and around plaques and vasculature. Additional vascular reactivity observed in TGRUN is consistent with an alternative activation immune pathway, involving perivascular macrophages. Significant decreases in soluble Aβ40 (p = 0.01 and soluble fibrillar Aβ (p = 0.01 were observed in the exercised transgenic animals. Conclusion Exercise shifts the immune response from innate to an adaptive or

  8. Apoptosis of antigen-specific CTLs contributes to low immune response in gut-associated lymphoid tissue post vaccination.

    Science.gov (United States)

    Shimada, Masaru; Yoshizaki, Shinji; Ichino, Motohide; Klinman, Dennis M; Okuda, Kenji

    2014-09-08

    The gut-associated lymphoid tissue (GALT) represents a major reservoir of HIV in infected individuals. Vaccines can induce strong systemic immune responses but these have less impact on CD4 T cells activity and numbers in GALT. In this study, we vaccinated mice with an adenovirus vector that expressed the envelope gene from HIV and observed immune responses in the peripheral blood, spleen, liver, mesenteric lymph nodes, and Peyer's patches. We found that (1) the number of HIV-specific CD8 T cells was dramatically lower in GALT than in other tissues; (2) the programmed cell death protein-1 (PD-1) was expressed at high levels in HIV-specific CD8 T cells including memory T cells in GALT; and (3) high levels of HIV-specific CD8 T cell apoptosis were occurring in GALT. These results suggest that contributing to GALT becoming an HIV reservoir during infection is a combination of exhaustion and/or dysfunction of HIV-specific CTLs at that site. These results emphasize the importance of developing of an effective mucosal vaccine against HIV. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Varicella-Zoster Virus-Specific Cellular Immune Responses to the Live Attenuated Zoster Vaccine in Young and Older Adults.

    Science.gov (United States)

    Weinberg, Adriana; Canniff, Jennifer; Rouphael, Nadine; Mehta, Aneesh; Mulligan, Mark; Whitaker, Jennifer A; Levin, Myron J

    2017-07-15

    The incidence and severity of herpes zoster (HZ) increases with age. The live attenuated zoster vaccine generates immune responses similar to HZ. We compared the immune responses to zoster vaccine in young and older to adults to increase our understanding of the immune characteristics that may contribute to the increased susceptibility to HZ in older adults. Young (25-40 y; n = 25) and older (60-80 y; n = 33) adults had similar magnitude memory responses to varicella-zoster virus (VZV) ex vivo restimulation measured by responder cell-frequency and flow cytometry, but the responses were delayed in older compared with young adults. Only young adults had an increase in dual-function VZV-specific CD4 + and CD8 + T cell effectors defined by coexpression of IFN-γ, IL-2, and CD107a after vaccination. In contrast, older adults showed marginal increases in VZV-specific CD8 + CD57 + senescent T cells after vaccination, which were already higher than those of young adults before vaccination. An increase in VZV-stimulated CD4 + CD69 + CD57 + PD1 + and CD8 + CD69 + CD57 + PD1 + T cells from baseline to postvaccination was associated with concurrent decreased VZV-memory and CD8 + effector responses, respectively, in older adults. Blocking the PD1 pathway during ex vivo VZV restimulation increased the CD4 + and CD8 + proliferation, but not the effector cytokine production, which modestly increased with TIM-3 blockade. We conclude that high proportions of senescent and exhausted VZV-specific T cells in the older adults contribute to their poor effector responses to a VZV challenge. This may underlie their inability to contain VZV reactivation and prevent the development of HZ. Copyright © 2017 by The American Association of Immunologists, Inc.

  10. Regulation of Mucosal Immune Responses – The Missing Link in IBD?

    Directory of Open Access Journals (Sweden)

    Charles O Elson

    1996-01-01

    Full Text Available Although the etiology of inflammatory bowel disease (IBD remains unknown, a major working hypothesis is that it represents a dysregulated immune response to common enteric bacterial antigens. Until recently there has been a relative dearth of experimental models to study this hypothesis. However, exciting developments in experimental models of colitis, including spontaneous, transgenic and knockout mice, now allow this and other hypotheses to be tested. The regulation of mucosal immune responses is not well understood in the normal animal, much less in those with chronic intestinal inflammation. Clearly the CD4 Th1 and Th2 pathways are important in the host response to microbial pathogens, and recent data indicate that the intestinal mucosa seems to be a site of preferential Th2 responses toward exogenous antigens. Deletion of certain cytokine genes involved in maintaining this Th1/Th2 balance (interleukin [IL]-2, IL-10 resulted in colitis, although deletion of others (IL-4, interferon-gamma that are also involved did not. Whether these cytokine gene deletions cause a dysregulation of the mucosal immune response has yet to be shown. However, the importance of regulation can be demonstrated in a model in which a normal CD4+ T cell subset (CD45Rbhigh is transferred into syngeneic severe combined immunodeficiency syndrome recipients. This results in a striking colitis over the ensuing weeks with chronic diarrhea and wasting of the animals. If the reciprocal CD4+ subset (CD45Rblow is co-transferred or if whole CD4+ T cells are transferred no colitis ensues. Therefore, T cells capable of causing colitis are present in normal animals but are prevented from doing so by immunoregulatory mechanisms. The antigens that drive the colitis in several of these models (IL-2 knockout mouse, human leukocyte antigen B27/β2M transgenic rat appear to be those of the normal enteric bacterial flora because germ-free animals do not get the disease. Spontaneously

  11. Development of transgenic rats producing human β-amyloid precursor protein as a model for Alzheimer's disease: Transgene and endogenous APP genes are regulated tissue-specifically

    Directory of Open Access Journals (Sweden)

    Chan Anthony WS

    2008-02-01

    expression in the two transgenic rat lines and in wild-type rats contradicts our current understanding of APP gene regulation. Determination of the elements that are responsible for tissue-specific expression of APP may enable new treatment options for AD.

  12. A Drosophila immune response against Ras-induced overgrowth

    Directory of Open Access Journals (Sweden)

    Thomas Hauling

    2014-03-01

    Full Text Available Our goal is to characterize the innate immune response against the early stage of tumor development. For this, animal models where genetic changes in specific cells and tissues can be performed in a controlled way have become increasingly important, including the fruitfly Drosophila melanogaster. Many tumor mutants in Drosophila affect the germline and, as a consequence, also the immune system itself, making it difficult to ascribe their phenotype to a specific tissue. Only during the past decade, mutations have been induced systematically in somatic cells to study the control of tumorous growth by neighboring cells and by immune cells. Here we show that upon ectopic expression of a dominant-active form of the Ras oncogene (RasV12, both imaginal discs and salivary glands are affected. Particularly, the glands increase in size, express metalloproteinases and display apoptotic markers. This leads to a strong cellular response, which has many hallmarks of the granuloma-like encapsulation reaction, usually mounted by the insect against larger foreign objects. RNA sequencing of the fat body reveals a characteristic humoral immune response. In addition we also identify genes that are specifically induced upon expression of RasV12. As a proof-of-principle, we show that one of the induced genes (santa-maria, which encodes a scavenger receptor, modulates damage to the salivary glands. The list of genes we have identified provides a rich source for further functional characterization. Our hope is that this will lead to a better understanding of the earliest stage of innate immune responses against tumors with implications for mammalian immunity.

  13. Maternal Cytomegalovirus-Specific Immune Responses and Symptomatic Postnatal Cytomegalovirus Transmission in Very Low-Birth-Weight Preterm Infants

    Science.gov (United States)

    Ehlinger, Elizabeth P.; Webster, Emily M.; Kang, Helen H.; Cangialose, Aislyn; Simmons, Adam C.; Barbas, Kimberly H.; Burchett, Sandra K.; Gregory, Mary L.; Puopolo, Karen P.

    2011-01-01

    Introduction. Transmission of cytomegalovirus (CMV) via breast milk can lead to severe acute illness in very low-birth-weight (VLBW) preterm infants. Although the majority of CMV-seropositive women shed CMV in milk, symptomatic postnatal infection of VLBW infants occurs infrequently, suggesting that virologic or immunologic factors in milk may be associated with the risk and severity of postnatal CMV infection. Methods. We investigated the magnitude of CMV-specific cellular and humoral immune responses in milk of 30 seropositive mothers of VLWB preterm infants and assessed their relationship to milk CMV load and symptomatic CMV transmission. Results. Milk immunoglobulin G (IgG) avidity was inversely correlated to milk CMV load (r = −0.47; P = .009). However, milk CMV load and CMV-specific cellular and humoral immune responses were similar in mothers of VLBW infants with and those without symptomatic postnatal CMV infection. Conclusions. Similar immunologic parameters in milk of CMV-seropositive mothers of VLBW infants with and without symptomatic postnatal CMV infection indicate that screening milk by these parameters may not predict disease risk. However, the inverse correlation between milk CMV IgG avidity and CMV load may suggest that enhancement of maternal CMV-specific IgG responses could aid in reduction of CMV shedding into breast milk. PMID:21984738

  14. The role of radiotherapy for the induction of antitumor immune responses

    International Nuclear Information System (INIS)

    Multhoff, G.; Helmholtz-Zentrum Muenchen; Gaipl, U.S.; Niedermann, G.

    2012-01-01

    Effective radiotherapy is aimed to control the growth of the primary carcinoma and to induce a long-term specific antitumor immune response against the primary tumor, recurrence and metastases. The contribution covers the following issues: T cells and tumor specific immune responses, dendritic cells (DCs) start adaptive immune responses, NK (natural killer) cells for HLA independent tumor control, abscopal effects of radiotherapy, combination of radiotherapy and immune therapy, radiotherapy contribution to the induction of immunogenic cell death, combinability of radiotherapy and DC activation, combinability of radiotherapy and NK cell therapy. It turns out that the combination of radio-chemotherapy and immune therapy can change the microenvironment initiating antitumor immune reactions that inhibit the recurrence risk and the development of metastases.

  15. Adoptive transfer of natural antibodies to non-immunized chickens affects subsequent antigen-specific humoral and cellular immune responses

    NARCIS (Netherlands)

    Lammers, A.; Klomp, M.E.V.; Nieuwland, M.G.B.; Savelkoul, H.F.J.; Parmentier, H.K.

    2004-01-01

    To determine a regulatory function of natural antibodies in the immune response of chickens, pooled plasma obtained from non-immunized (naive) 15 months old hens was subjected to keyhole limpet hemocyanin (KLH) antigen-affinity chromatography. Purified KLH-binding antibodies were adoptively

  16. Models for Immune Response and Immune Evasion in MSI Cancer and Lynch Syndrome

    OpenAIRE

    Özcan, Mine

    2017-01-01

    Microsatellite-unstable (MSI) cancers occurring in the context of the hereditary Lynch syndrome or as sporadic cancers elicit pronounced tumor-specific immune responses. The pronounced immune response was shown to be closely associated with frameshift peptides (FSP) that are generated as a result of deficiency in DNA mismatch repair system leading to insertion/deletion mutations in coding microsatellites (cMS). FSP neoantigens are long antigenic amino acid stretches that bear m...

  17. Qualitative analysis of a stochastic epidemic model with specific functional response and temporary immunity

    Science.gov (United States)

    Hattaf, Khalid; Mahrouf, Marouane; Adnani, Jihad; Yousfi, Noura

    2018-01-01

    In this paper, we propose a stochastic delayed epidemic model with specific functional response. The time delay represents temporary immunity period, i.e., time from recovery to becoming susceptible again. We first show that the proposed model is mathematically and biologically well-posed. Moreover, the extinction of the disease and the persistence in the mean are established in the terms of a threshold value R0S which is smaller than the basic reproduction number R0 of the corresponding deterministic system.

  18. Epstein-Barr Virus-Specific Humoral Immune Responses in Health and Disease.

    Science.gov (United States)

    Middeldorp, Jaap M

    2015-01-01

    Epstein-Barr virus (EBV) is widely distributed in the world and associated with a still increasing number of acute, chronic, malignant and autoimmune disease syndromes. Humoral immune responses to EBV have been studied for diagnostic, pathogenic and protective (vaccine) purposes. These studies use a range of methodologies, from cell-based immunofluorescence testing to antibody-diversity analysis using immunoblot and epitope analysis using recombinant or synthetic peptide-scanning. First, the individual EBV antigen complexes (VCA , MA, EA(D), EA(R) and EBNA) are defined at cellular and molecular levels, providing a historic overview. The characteristic antibody responses to these complexes in health and disease are described, and differences are highlighted by clinical examples. Options for EBV vaccination are briefly addressed. For a selected number of immunodominant proteins, in particular EBNA1, the interaction with human antibodies is further detailed at the epitope level, revealing interesting insights for structure, function and immunological aspects, not considered previously. Humoral immune responses against EBV-encoded tumour antigens LMP1, LMP2 and BARF1 are addressed, which provide novel options for targeted immunotherapy. Finally, some considerations on EBV-linked autoimmune diseases are given, and mechanisms of antigen mimicry are briefly discussed. Further analysis of humoral immune responses against EBV in health and disease in carefully selected patient cohorts will open new options for understanding pathogenesis of individual EBV-linked diseases and developing targeted diagnostic and therapeutic approaches.

  19. Enhancements of non-specific immune response in Mugil cephlus by seaweed extract against Vibrio alginolyticus (BRTR07

    Directory of Open Access Journals (Sweden)

    Rajasekar Thirunavukkarasu

    2015-10-01

    Full Text Available Objective: To focus on the growth rate and feed utilization of fish by using trash fish feeds supplement with marine seaweeds. Methods: Selected seaweed was extracted using hot-water and its extract was mixed with trash fish feed at different concentrations (0.5%, 1% and 2% for 1-30 days and the nonspecific immune response in fish was studied and challenged with Vibrio alginolyticus at 1 × 106 CFU/fish. The hot-water extract of seaweeds was analysed by gas chromatography-mass spectrometry. Results: The average body weight (5.320 ± 0.018, percent weight gain (227.66 ± 0.28, specific growth rate (2.080 ± 0.015, hepatosomatic index (1.197 ± 0.00 and viscerosomatic index (4.421 ± 0.150 were significantly increased in the fish feed with seaweed containing 5% of Sargassum wightii (S. wightii when compared with other seaweeds and control diet. Hotwater extract of S. wightii (1% was significantly enhanced the immune response in fish when compared with other diets (0.5% and 2%. S. wightii showed good immunostimulation properties. Gas chromatography-mass spectrometry result showed that the hot-water extract of S. wightii seaweed contained fatty acids. Conclusions: Trash fish feed will reduce the production cost and also provide evidence that aqueous leaf extract of S. wightii (1% was added to a formulated fish diet which could activate the non-specific immune response and disease resistance against Vibrio alginolyticus in Mugil cephalus.

  20. Induction of immunity to antigens expressed by recombinant adeno-associated virus depends on the route of administration.

    Science.gov (United States)

    Brockstedt, D G; Podsakoff, G M; Fong, L; Kurtzman, G; Mueller-Ruchholtz, W; Engleman, E G

    1999-07-01

    Recombinant adeno-associated virus (rAAV) is a replication-defective parvovirus which is being explored as a vector for gene therapy because of its broad host range, excellent safety profile, and durable transgene expression in infected hosts. rAAV has also been reported by several groups to induce little or no immune response to its encoded transgene products. In this study we examined the immunogenicity of rAAV by studying the immune response of C57BL/6 mice to a single dose of rAAV-encoding ovalbumin (AAV-Ova) administered by a variety of routes. Mice injected with AAV-Ova intraperitoneally (ip), intravenously, or subcutaneously developed potent ovalbumin-specific cytotoxic T lymphocytes (CTL) as well as anti-ovalbumin antibodies and antibodies to AAV. In contrast, mice injected with AAV-Ova intramuscularly developed a humoral response to the virus and the transgene but minimal ovalbumin-specific CTLs. The induced CTL response after ip administration of AAV-Ova protected mice against a subsequent tumor challenge with an ovalbumin-transfected B16 melanoma cell line. Studies of the mechanism by which AAV-Ova induces CTL confirmed that the virus delivers the transgene product into the classical MHC class I pathway of antigen processing. Mice that previously had been exposed to rAAV vectors failed to develop ovalbumin-specific CTL following administration of AAV-Ova. Analysis of these mice revealed the presence of circulating anti-AAV antibodies that blocked rAAV transduction in vitro and inhibited CTL induction in vivo. These results suggest a possible role for rAAV in the immunotherapy of malignancies and viral infections, although induced antibody responses to AAV may limit its ability to be administered for repeated vaccinations. Copyright 1999 Academic Press.

  1. Combined chromatin and expression analysis reveals specific regulatory mechanisms within cytokine genes in the macrophage early immune response.

    Directory of Open Access Journals (Sweden)

    Maria Jesus Iglesias

    Full Text Available Macrophages play a critical role in innate immunity, and the expression of early response genes orchestrate much of the initial response of the immune system. Macrophages undergo extensive transcriptional reprogramming in response to inflammatory stimuli such as Lipopolysaccharide (LPS.To identify gene transcription regulation patterns involved in early innate immune responses, we used two genome-wide approaches--gene expression profiling and chromatin immunoprecipitation-sequencing (ChIP-seq analysis. We examined the effect of 2 hrs LPS stimulation on early gene expression and its relation to chromatin remodeling (H3 acetylation; H3Ac and promoter binding of Sp1 and RNA polymerase II phosphorylated at serine 5 (S5P RNAPII, which is a marker for transcriptional initiation. Our results indicate novel and alternative gene regulatory mechanisms for certain proinflammatory genes. We identified two groups of up-regulated inflammatory genes with respect to chromatin modification and promoter features. One group, including highly up-regulated genes such as tumor necrosis factor (TNF, was characterized by H3Ac, high CpG content and lack of TATA boxes. The second group, containing inflammatory mediators (interleukins and CCL chemokines, was up-regulated upon LPS stimulation despite lacking H3Ac in their annotated promoters, which were low in CpG content but did contain TATA boxes. Genome-wide analysis showed that few H3Ac peaks were unique to either +/-LPS condition. However, within these, an unpacking/expansion of already existing H3Ac peaks was observed upon LPS stimulation. In contrast, a significant proportion of S5P RNAPII peaks (approx 40% was unique to either condition. Furthermore, data indicated a large portion of previously unannotated TSSs, particularly in LPS-stimulated macrophages, where only 28% of unique S5P RNAPII peaks overlap annotated promoters. The regulation of the inflammatory response appears to occur in a very specific manner at

  2. Enhanced virus resistance in transgenic maize expressing a dsRNA-specific endoribonuclease gene from E. coli.

    Directory of Open Access Journals (Sweden)

    Xiuling Cao

    Full Text Available Maize rough dwarf disease (MRDD, caused by several Fijiviruses in the family Reoviridae, is a global disease that is responsible for substantial yield losses in maize. Although some maize germplasm have low levels of polygenic resistance to MRDD, highly resistant cultivated varieties are not available for agronomic field production in China. In this work, we have generated transgenic maize lines that constitutively express rnc70, a mutant E. coli dsRNA-specific endoribonuclease gene. Transgenic lines were propagated and screened under field conditions for 12 generations. During three years of evaluations, two transgenic lines and their progeny were challenged with Rice black-streaked dwarf virus (RBSDV, the causal agent of MRDD in China, and these plants exhibited reduced levels of disease severity. In two normal years of MRDD abundance, both lines were more resistant than non-transgenic plants. Even in the most serious MRDD year, six out of seven progeny from one line were resistant, whereas non-transgenic plants were highly susceptible. Molecular approaches in the T12 generation revealed that the rnc70 transgene was integrated and expressed stably in transgenic lines. Under artificial conditions permitting heavy virus inoculation, the T12 progeny of two highly resistant lines had a reduced incidence of MRDD and accumulation of RBSDV in infected plants. In addition, we confirmed that the RNC70 protein could bind directly to RBSDV dsRNA in vitro. Overall, our data show that RNC70-mediated resistance in transgenic maize can provide efficient protection against dsRNA virus infection.

  3. Induction of antigen-specific immunity by pH-sensitive carbonate apatite as a potent vaccine carrier

    International Nuclear Information System (INIS)

    Hebishima, Takehisa; Tada, Seiichi; Takeshima, Shin-nosuke; Akaike, Toshihiro; Ito, Yoshihiro; Aida, Yoko

    2011-01-01

    Highlights: ► To develop effective vaccine, we examined the effects of CO 3 Ap as an antigen carrier. ► OVA contained in CO 3 Ap was taken up by BMDCs more effectively than free OVA. ► OVA-immunized splenocytes was activated by OVA contained in CO 3 Ap effectively. ► OVA contained in CO 3 Ap induced strong OVA-specific immune responses to C57BL/6 mice. ► CO 3 Ap is promising antigen carrier for the achievement of effective vaccine. -- Abstract: The ability of carbonate apatite (CO 3 Ap) to enhance antigen-specific immunity was examined in vitro and in vivo to investigate its utility as a vaccine carrier. Murine bone marrow-derived dendritic cells took up ovalbumin (OVA) containing CO 3 Ap more effectively than free OVA. Interestingly, mice immunized with OVA-containing CO 3 Ap produced OVA-specific antibodies more effectively than mice immunized with free OVA. Furthermore, immunization of C57BL/6 mice with OVA-containing CO 3 Ap induced the proliferation and antigen-specific production of IFN-γ by splenocytes more strongly than immunization with free OVA. Moreover, no significant differences were detected in the induction of delayed-type hypersensitivity responses, an immune reaction involving an antigen-specific, cell-mediated immune response between OVA-containing CO 3 Ap and OVA-containing alumina salt (Alum), suggesting that CO 3 Ap induced cell-mediated immune response to the same degree as Alum, which is commonly used for clinical applications. This study is the first to demonstrate the induction of antigen-specific immune responses in vivo by CO 3 Ap.

  4. Influence of bedding type on mucosal immune responses.

    Science.gov (United States)

    Sanford, Amy N; Clark, Stephanie E; Talham, Gwen; Sidelsky, Michael G; Coffin, Susan E

    2002-10-01

    The mucosal immune system interacts with the external environment. In the study reported here, we found that bedding materials can influence the intestinal immune responses of mice. We observed that mice housed on wood, compared with cotton bedding, had increased numbers of Peyer's patches (PP) visible under a dissecting microscope. In addition, culture of lymphoid organs revealed increased production of total and virus-specific IgA by PP and mesenteric lymph node (MLN) lymphocytes from mice housed on wood, compared with cotton bedding. However, bedding type did not influence serum virus-specific antibody responses. These observations indicate that bedding type influences the intestinal immune system and suggest that this issue should be considered by mucosal immunologists and personnel at animal care facilities.

  5. Sex-specific consequences of an induced immune response on reproduction in a moth

    NARCIS (Netherlands)

    Barthel, A.; Staudacher, H.; Schmalz, A.; Heckel, D.G.; Groot, A.T.

    2015-01-01

    Background Immune response induction benefits insects in combatting infection by pathogens. However, organisms have a limited amount of resources available and face the dilemma of partitioning resources between immunity and other life-history traits. Since males and females differ in their life

  6. Clustered epitopes within the Gag-Pol fusion protein DNA vaccine enhance immune responses and protection against challenge with recombinant vaccinia viruses expressing HIV-1 Gag and Pol antigens

    International Nuclear Information System (INIS)

    Bolesta, Elizabeth; Gzyl, Jaroslaw; Wierzbicki, Andrzej; Kmieciak, Dariusz; Kowalczyk, Aleksandra; Kaneko, Yutaro; Srinivasan, Alagarsamy; Kozbor, Danuta

    2005-01-01

    We have generated a codon-optimized hGagp17p24-Polp51 plasmid DNA expressing the human immunodeficiency virus type 1 (HIV-1) Gag-Pol fusion protein that consists of clusters of highly conserved cytotoxic T lymphocyte (CTL) epitopes presented by multiple MHC class I alleles. In the hGagp17p24-Polp51 construct, the ribosomal frameshift site had been deleted together with the potentially immunosuppressive Gag nucleocapsid (p15) as well as Pol protease (p10) and integrase (p31). Analyses of the magnitude and breadth of cellular responses demonstrated that immunization of HLA-A2/K b transgenic mice with the hGagp17p24-Polp51 construct induced 2- to 5-fold higher CD8 + T-cell responses to Gag p17-, p24-, and Pol reverse transcriptase (RT)-specific CTL epitopes than the full-length hGag-PolΔFsΔPr counterpart. The increases were correlated with higher protection against challenge with recombinant vaccinia viruses (rVVs) expressing gag and pol gene products. Consistent with the profile of Gag- and Pol-specific CD8 + T cell responses, an elevated level of type 1 cytokine production was noted in p24- and RT-stimulated splenocyte cultures established from hGagp17p24-Polp51-immunized mice compared to responses induced with the hGag-PolΔFsΔPr vaccine. Sera of mice immunized with the hGagp17p24-Polp51 vaccine also exhibited an increased titer of p24- and RT-specific IgG2 antibody responses. The results from our studies provide insights into approaches for boosting the breadth of Gag- and Pol-specific immune responses

  7. Co-delivery of antigen and IL-12 by Venezuelan equine encephalitis virus replicon particles enhances antigen-specific immune responses and anti-tumor effects

    Science.gov (United States)

    Osada, Takuya; Berglund, Peter; Morse, Michael A.; Hubby, Bolyn; Lewis, Whitney; Niedzwiecki, Donna; Hobeika, Amy; Burnett, Bruce; Devi, Gayathri R.; Clay, Timothy M.; Smith, Jonathan; Lyerly, H. Kim

    2013-01-01

    We recently demonstrated that Venezuelan equine encephalitis (VEE) virus-based replicon particles (VRP) encoding tumor antigens could break tolerance in the immunomodulatory environment of advanced cancer. We hypothesized that local injection of VRP expressing Interleukin-12 (IL-12) at the site of injections of VRP-based cancer vaccines would enhance the tumor-antigen-specific T cell and antibody responses and anti-tumor efficacy. Mice were immunized with VRP encoding the human tumor-associated antigen, carcinoembryonic antigen (CEA) (VRP-CEA(6D)) and VRP-IL-12 was also administered at the same site or at a distant location. CEA-specific T cell and antibody responses were measured. To determine antitumor activity, mice were implanted with MC38-CEA-2 cells and immunized with VRP-CEA with and without VRP-IL-12 and tumor growth and mouse survival were measured. VRP-IL-12 greatly enhanced CEA-specific T cell and antibody responses when combined with VRP-CEA(6D) vaccination. VRP IL-12 was superior to IL-12 protein at enhancing immune responses. Vaccination with VRP-CEA(6D) plus VRP-IL-12 was superior to VRP-CEA(6D) or VRP-IL-12 alone in inducing anti-tumor activity and prolonging survival in tumor-bearing mice. Importantly, local injection of VRP-IL-12 at the VRP-CEA(6D) injection site provided more potent activation of CEA-specific immune responses than VRP-IL-12 injected at a distant site from the VRP-CEA injections. Together, this study shows that VRP-IL-12 enhances vaccination with VRP-CEA(6D) and was more effective at activating CEA-specific T cell responses when locally expressed at the vaccine site. Clinical trials evaluating the adjuvant effect of VRP-IL-12 at enhancing the immunogenicity of cancer vaccines are warranted. PMID:22488274

  8. Radiation effects on tumor-specific DTH response, 2

    International Nuclear Information System (INIS)

    Nobusawa, Hiroshi; Hachisu, Reiko.

    1991-01-01

    Tumor-specific immunity was induced in C3H mice by immunizing with syngeneic MH134 hepatoma cells. Radiation sensitivity of anti-tumor activity of immunized spleen cells were examined and compared with the radiation sensitivity of the delayed-type hypersensitivity (DTH)-response. The spleen cells were irradiated in vitro, then mixed with the tumor cells. DTH-response intensity was determined from the footpad increment twenty-four hours after inoculation of tumor cells with immunized spleen cells. Anti-tumor activity of the spleen cells, based on growth inhibition of tumor cells, was measured by a cytostatic test in vivo with diffusion chambers. Tumor-specific DTH response was suppressed dose-dependently in the range of 12-24 Gy irradiation. No suppression was observed below 12 Gy. Without irradiation, growth of tumor cells was inhibited by immunized spleen cells more effectively than by normal spleen cells. Anti-tumor activity of immunized and normal spleen cells was diminished by irradiation doses of 20 Gy and 10 Gy, respectively. Comparing our report with others that analyzed the type of anti-tumor effector cells induced in this experimental system, we concluded that tumor-specific anti-tumor activity (tumor growth inhibition in vivo) that was radiosensitive at 10-20 Gy depended on a DTH-response. (author)

  9. Quantitating cellular immune responses to cancer vaccines.

    Science.gov (United States)

    Lyerly, H Kim

    2003-06-01

    While the future of immunotherapy in the treatment of cancer is promising, it is difficult to compare the various approaches because monitoring assays have not been standardized in approach or technique. Common assays for measuring the immune response need to be established so that these assays can one day serve as surrogate markers for clinical response. Assays that accurately detect and quantitate T-cell-mediated, antigen-specific immune responses are particularly desired. However, to date, increases in the number of cytotoxic T cells through immunization have not been correlated with clinical tumor regression. Ideally, then, a T-cell assay not only needs to be sensitive, specific, reliable, reproducible, simple, and quick to perform, it must also demonstrate close correlation with clinical outcome. Assays currently used to measure T-cell response are delayed-type hypersensitivity testing, flow cytometry using peptide major histocompatibility complex tetramers, lymphoproliferation assay, enzyme-linked immunosorbant assay, enzyme-linked immunospot assay, cytokine flow cytometry, direct cytotoxicity assay, measurement of cytokine mRNA by quantitative reverse transcriptase polymerase chain reaction, and limiting dilution analysis. The purpose of this review is to describe the attributes of each test and compare their advantages and disadvantages.

  10. Bovine immune response to inoculation with Neospora caninum surface antigen SRS2 lipopeptides mimics immune response to infection with live parasites.

    Science.gov (United States)

    Baszler, Timothy V; Shkap, Varda; Mwangi, Waithaka; Davies, Christopher J; Mathison, Bruce A; Mazuz, Monica; Resnikov, Dror; Fish, Lea; Leibovitch, Benjamin; Staska, Lauren M; Savitsky, Igor

    2008-04-01

    Infection of cattle with Neospora caninum protozoa, the causative agent of bovine protozoal abortion, results in robust cellular and humoral immune responses, particularly CD4(+) T-lymphocyte activation and gamma interferon (IFN-gamma) secretion. In the present study, N. caninum SRS2 (NcSRS2) T-lymphocyte-epitope-bearing subunits were incorporated into DNA and peptide preparations to assess CD4(+) cell proliferation and IFN-gamma T-lymphocyte-secretion immune responses in cattle with predetermined major histocompatibility complex (MHC) genotypes. In order to optimize dendritic-cell processing, NcSRS2 DNA vaccine was delivered with granulocyte macrophage-colony-stimulating factor and Flt3 ligand adjuvant. The synthesized NcSRS2 peptides were coupled with a palmitic acid molecule (lipopeptide) and delivered with Freund's adjuvant. Cattle vaccinated with NcSRS2 DNA vaccine alone did not induce T-lymphocyte activation or IFN-gamma secretion, whereas subsequent booster inoculation with NcSRS2-lipopeptides induced robust NcSRS2-specific immune responses. Compared to the response in control animals, NcSRS2-lipopeptide-immunized cattle had significantly increased NcSRS2-specific T-lymphocyte proliferation, numbers of IFN-gamma-secreting peripheral blood mononuclear cells, and immunoglobulin G1 (IgG1) and IgG2a antibody levels. The findings show that N. caninum NcSRS2 subunits bearing T-lymphocyte epitopes induced cell-mediated immune responses similar to the protective immune responses previously described against live parasite infection, namely T-lymphocyte activation and IFN-gamma secretion. The findings support the investigation of NcSRS2 immunogens for protection against N. caninum-induced fetal infection and abortion in cattle.

  11. Oviduct-Specific Expression of Human Neutrophil Defensin 4 in Lentivirally Generated Transgenic Chickens

    Science.gov (United States)

    Liu, Tongxin; Wu, Hanyu; Cao, Dainan; Li, Qingyuan; Zhang, Yaqiong; Li, Ning; Hu, Xiaoxiang

    2015-01-01

    The expression of oviduct-specific recombinant proteins in transgenic chickens is a promising technology for the production of therapeutic biologics in eggs. In this study, we constructed a lentiviral vector encoding an expression cassette for human neutrophil defensin 4 (HNP4), a compound that displays high activity against Escherichia coli, and produced transgenic chickens that expressed the recombinant HNP4 protein in egg whites. After the antimicrobial activity of the recombinant HNP4 protein was tested at the cellular level, a 2.8-kb ovalbumin promoter was used to drive HNP4 expression specifically in oviduct tissues. From 669 injected eggs, 218 chickens were successfully hatched. Ten G0 roosters, with semens identified as positive for the transgene, were mated with wild-type hens to generate G1 chickens. From 1,274 total offspring, fifteen G1 transgenic chickens were positive for the transgene, which was confirmed by PCR and Southern blotting. The results of the Southern blotting and genome walking indicated that a single copy of the HNP4 gene was integrated into chromosomes 1, 2, 3, 4, 6 and 24 of the chickens. As expected, HNP4 expression was restricted to the oviduct tissues, and the levels of both transcriptional and translational HNP4 expression varied greatly in transgenic chickens with different transgene insertion sites. The amount of HNP4 protein expressed in the eggs of G1 and G2 heterozygous transgenic chickens ranged from 1.65 μg/ml to 10.18 μg/ml. These results indicated that the production of transgenic chickens that expressed HNP4 protein in egg whites was successful. PMID:26020529

  12. [Premature immunosenescence in triple-transgenic mice for Alzheimer's disease].

    Science.gov (United States)

    Mate, Ianire; Cruces, Julia; Vida, Carmen; Sanfeliu, Coral; Manassra, Rashed; Giménez-Llort, Lydia; De la Fuente, Mónica

    2014-01-01

    A deterioration of the neuroimmunoendocrine network has been observed in Alzheimer's disease (AD). However, the peripheral immune response has hardly been investigated in this pathology. Since some immune function parameters have been established as good markers of the rate of ageing, and can predict longevity, the aim of the present work was to study some of these functions in splenic leucocytes in transgenic mice for AD of different ages. Young female (4 ± 1 months), adult (9 ± 1 months), and mature (12 ± 1 months) triple-transgenic mice for AD (3 xTgAD) and non-transgenic (NTg) control mice of the same ages were used. The chemotaxis, the anti-tumour activity of « natural killer » (NK) cells and the lymphoproliferative response in the presence of the mitogens concanavalin A and lipopolysaccharide, functions that decrease with age, were determined in splenic leucocytes. In addition, the differences in lifespan between 3 xTgAD and NTg were studied in parallel using other animals, until their death through natural causes. In 3 xTgAD, with respect to NTg, chemotaxis decreased at all ages studied, whereas in lymphoproliferative response this reduction was shown at 4 months and 9 months. NK activity was diminished only in young 3 xTgAD with respect to NTg. The 3 xTgAD showed a shorter lifespan than the NTg control group. The 3 xTgAD mice show a premature immunosenescence, which could explain their early mortality. The determination of these immune functions at peripheral level could serve as a marker of the progression of the Alzheimer's disease. Copyright © 2013 SEGG. Published by Elsevier Espana. All rights reserved.

  13. Differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses to single epicutaneous immunization.

    Science.gov (United States)

    Lee, Chih-Hung; Chen, Jau-Shiuh; Chiu, Hsien-Ching; Hong, Chien-Hui; Liu, Ching-Yi; Ta, Yng-Cun; Wang, Li-Fang

    2016-12-01

    Epicutaneous immunization with allergens is an important sensitization route for atopic dermatitis. We recently showed in addition to the Th2 response following single epicutaneous immunization, a remarkable Th1 response is induced in B6 mice, but not in BALB/c mice, mimicking the immune response to allergens in human non-atopics and atopics. We investigated the underlying mechanisms driving this differential Th1 response between BALB/c and B6 mice. We characterized dermal dendritic cells by flow cytometric analysis. We measured the induced Th1/Th2 responses by measuring the IFN-γ/IL-13 contents of supernatants of antigen reactivation cultures of lymph node cells. We demonstrate that more dermal dendritic cells with higher activation status migrate into draining lymph nodes of B6 mice compared to BALB/c mice. Dermal dendritic cells of B6 mice have a greater ability to capture protein antigen than those of BALB/c mice. Moreover, increasing the activation status or amount of captured antigen in dermal dendritic cells induced a Th1 response in BALB/c mice. Further, differential activation behavior, but not antigen-capturing ability of dermal dendritic cells between BALB/c and B6 mice is dendritic cell-intrinsic. These results show that the differential activation behavior of dermal dendritic cells underlies the strain-specific Th1 responses following single epicutaneous immunization. Furthermore, our findings highlight the potential differences between human atopics and non-atopics and provide useful information for the prediction and prevention of atopic diseases. Copyright © 2016 Japanese Society for Investigative Dermatology. Published by Elsevier Ireland Ltd. All rights reserved.

  14. Immune activation induces immortalization of HTLV-1 LTR-Tax transgenic CD4+ T cells

    OpenAIRE

    Swaims, Alison Y.; Khani, Francesca; Zhang, Yingyu; Roberts, Arthur I.; Devadas, Satish; Shi, Yufang; Rabson, Arnold B.

    2010-01-01

    Infection with the human T-cell leukemia virus-1 (HTLV-1) results in a variety of diseases including adult T-cell leukemia/lymphoma (ATL). Although the pathogenesis of these disorders is poorly understood, it involves complex interactions with the host immune system. Activation of infected T cells may play an important role in disease pathogenesis through induction of the oncogenic HTLV-1 Tax transactivator protein. To test this hypothesis, we employed transgenic mice in which Tax is regulate...

  15. Virus-specific immune response in HBeAg-negative chronic hepatitis B: relationship with clinical profile and HBsAg serum levels.

    Directory of Open Access Journals (Sweden)

    Elisabetta Loggi

    Full Text Available BACKGROUND AIMS: The immune impairment characterizing chronic hepatitis B (cHBV infection is thought to be the consequence of persistent exposure to viral antigens. However, the immune correlates of different clinical stages of cHBV and their relation with different levels of HBsAg have not been investigated. The aim of the present study was to evaluate the relationship between HBV-specific T cells response and the degree of in vivo HBV control and HBsAg serum levels in HBeAg-HBeAb+ cHBV. METHODS: Peripheral blood mononuclear cells from 42 patients with different clinical profiles (treatment-suppressed, inactive carriers and active hepatitis of cHBV, 6 patients with resolved HBV infection and 10 HBV-uninfected individuals were tested with overlapping peptides spanning the entire HBV proteome. The frequency and magnitude of HBV-specific T cell responses was assessed by IFNγ ELISPOT assay. Serum HBsAg was quantified with a chemiluminescent immunoassay. RESULTS: The total breadth and magnitude of HBV-specific T cell responses did not differ significantly between the four groups. However, inactive carriers targeted preferentially the core region. In untreated patients, the breadth of the anti-core specific T cell response was inversely correlated with serum HBsAg concentrations as well as HBV-DNA and ALT levels and was significantly different in patients with HBsAg levels either above or below 1000 IU/mL. The same inverse association between anti-core T cell response and HBsAg levels was found in treated patients. CONCLUSIONS: Different clinical outcomes of cHBV infection are associated with the magnitude, breadth and specificity of the HBV-specific T cell response. Especially, robust anti-core T cell responses were found in the presence of reduced HBsAg serum levels, suggesting that core-specific T cell responses can mediate a protective effect on HBV control.

  16. Polyomavirus specific cellular immunity: from BK-virus-specific cellular immunity to BK-virus-associated nephropathy ?

    Directory of Open Access Journals (Sweden)

    manon edekeyser

    2015-06-01

    Full Text Available In renal transplantation, BK-virus-associated nephropathy has emerged as a major complication, with a prevalence of 5–10% and graft loss in >50% of cases. BK-virus is a member of the Polyomavirus family and rarely induces apparent clinical disease in the general population. However, replication of polyomaviruses, associated with significant organ disease, is observed in patients with acquired immunosuppression, which suggests a critical role for virus-specific cellular immunity to control virus replication and prevent chronic disease. Monitoring of specific immunity combined with viral load could be used to individually assess the risk of viral reactivation and virus control. We review the current knowledge on BK-virus specific cellular immunity and, more specifically, in immunocompromised patients. In the future, immune-based therapies could allow us to treat and prevent BK-virus-associated nephropathy.

  17. Specific immune responses against airway epithelial cells in a transgenic mouse-trachea transplantation model for obliterative airway disease

    NARCIS (Netherlands)

    Qu, N; de Haan, A; Harmsen, MC; Kroese, FGM; de Leij, LFMH; Prop, J

    2003-01-01

    Background. Immune injury to airway epithelium is suggested to play a central role in the pathogenesis of obliterative bronchiolitis (OB) after clinical lung transplantation. In several studies, a rejection model of murine trachea transplants is used, resulting in obliterative airway disease (OAD)

  18. RhD Specific Antibodies Are Not Detectable in HLA-DRB11501* Mice Challenged with Human RhD Positive Erythrocytes

    Directory of Open Access Journals (Sweden)

    Lidice Bernardo

    2014-01-01

    Full Text Available The ability to study the immune response to the RhD antigen in the prevention of hemolytic disease of the fetus and newborn has been hampered by the lack of a mouse model of RhD immunization. However, the ability of transgenic mice expressing human HLA DRB11501* to respond to immunization with purified RhD has allowed this question to be revisited. In this work we aimed at inducing anti-RhD antibodies by administering human RhD+ RBCs to mice transgenic for the human HLA DRB11501* as well as to several standard inbred and outbred laboratory strains including C57BL/6, DBA1/J, CFW(SW, CD1(ICR, and NSA(CF-1. DRB11501* mice were additionally immunized with putative extracellular immunogenic RhD peptides. DRB11501* mice immunized with RhD+ erythrocytes developed an erythrocyte-reactive antibody response. Antibodies specific for RhD could not however be detected by flow cytometry. Despite this, DRB11501* mice were capable of recognizing immunogenic sequences of Rh as injection with Rh peptides induced antibodies reactive with RhD sequences, consistent with the presence of B cell repertoires capable of recognizing RhD. We conclude that while HLA DRB11501* transgenic mice may have the capability of responding to immunogenic sequences within RhD, an immune response to human RBC expressing RhD is not directly observed.

  19. Feasibilty of in utero DNA vaccination following naked gene transfer into pig fetal muscle: transgene expression, immunity and safety.

    Science.gov (United States)

    Rinaldi, Monica; Signori, Emanuela; Rosati, Paolo; Cannelli, Giorgio; Parrella, Paola; Iannace, Enrico; Monego, Giovanni; Ciafrè, Silvia Anna; Farace, Maria Giulia; Iurescia, Sandra; Fioretti, Daniela; Rasi, Guido; Fazio, Vito Michele

    2006-05-22

    The high toll of death among first-week infants is due to infections occurring at the end of pregnancy, during birth or by breastfeeding. This problem significantly concerns industrialized countries also. To prevent the typical "first-week infections", a vaccine would be protective as early as at the birth. In utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. We have already published results of a 2-year follow-up showing long-term safety, protective antibody titers at birth and long-term immune memory, following intramuscular in utero anti-HBV DNA immunization in 90-days pig fetuses. We have now analyzed further parameters of short-term safety. Two different reporter genes were injected in the thigh muscles of 90-days fetuses. At 8 days following DNA injection, we found high-level of transgenes expression in all injected fetuses. A step gradient of expression from the area of injection was observed with both reporter genes. CMV promoter/enhancer produced higher levels of expression compared to SV40 promoter/enhancer. Moreover, no evidence of local or systemic flogistic alterations or fetal malformations, mortality or haemorrhage following intramuscular injection were observed. A single anti-HBV s-antigen DNA immunization in 90-days fetuses supported protective antibody levels in all immunized newborns, lasting at least up to 4 months after birth. Our report further sustains safety and efficacy of intramuscular in utero naked gene transfer and immunization. This approach may support therapeutic or prophylactic procedure in many early life-threatening pathologic conditions.

  20. Non-specific immunization against parasites

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1981-01-01

    Non-specific resistance to tumours can be induced by pretreating animals with micro-organisms, microbial extracts or various synthetic substances. Mycobacterium bovis, Corynebacterium parvum and a number of other micro-organisms also protect mice against rodent piroplasms and there is evidence that they are also protective against other parasites including Schistosoma mansoni. The actual mechanisms of non-specific immunity are still unclear but it is influenced by both the genetic make-up of the host and the nature of the parasite. Non-specific immunization may be a possible alternative to specific immunization and may avoid many of the potential immunopathological changes induced during parasite infections. Irradiated vaccines (Dictyocaulus viviparus, schistomiasis) are mentioned marginally only

  1. Tetracycline-inducible system for regulation of skeletal muscle-specific gene expression in transgenic mice

    Science.gov (United States)

    Grill, Mischala A.; Bales, Mark A.; Fought, Amber N.; Rosburg, Kristopher C.; Munger, Stephanie J.; Antin, Parker B.

    2003-01-01

    Tightly regulated control of over-expression is often necessary to study one aspect or time point of gene function and, in transgenesis, may help to avoid lethal effects and complications caused by ubiquitous over-expression. We have utilized the benefits of an optimized tet-on system and a modified muscle creatine kinase (MCK) promoter to generate a skeletal muscle-specific, doxycycline (Dox) controlled over-expression system in transgenic mice. A DNA construct was generated in which the codon optimized reverse tetracycline transactivator (rtTA) was placed under control of a skeletal muscle-specific version of the mouse MCK promoter. Transgenic mice containing this construct expressed rtTA almost exclusively in skeletal muscles. These mice were crossed to a second transgenic line containing a bi-directional promoter centered on a tet responder element driving both a luciferase reporter gene and a tagged gene of interest; in this case the calpain inhibitor calpastatin. Compound hemizygous mice showed high level, Dox dependent muscle-specific luciferase activity often exceeding 10,000-fold over non-muscle tissues of the same mouse. Western and immunocytochemical analysis demonstrated similar Dox dependent muscle-specific induction of the tagged calpastatin protein. These findings demonstrate the effectiveness and flexibility of the tet-on system to provide a tightly regulated over-expression system in adult skeletal muscle. The MCKrtTA transgenic lines can be combined with other transgenic responder lines for skeletal muscle-specific over-expression of any target gene of interest.

  2. Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP10025–33 peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma

    International Nuclear Information System (INIS)

    Chang, Xiaoli; Xia, Chang-Qing

    2015-01-01

    It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100 25–33 peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100 25–33 peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleen cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100 25–33 peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100 25–33 were significantly increased compared to control groups. Tumor antigen, GP100 25–23 specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100 25–33 -coupled spleen cells leads to potent anti-melanoma immunity. • GP100 25–33 -coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.

  3. The pathogenesis of Chagas' disease: when autoimmune and parasite-specific immune responses meet

    Directory of Open Access Journals (Sweden)

    MILENA B. P. SOARES

    2001-12-01

    Full Text Available Chagas' disease is a major health problem in Latin America, where it constitutes one of the leading causes of heart failure. About one fourth of Trypanosoma cruzi-infected individuals develop chronic chagasic cardiomyopathy (CChC, the most severe form of the disease. CChC is histologically characterized by the presence of multifocal inflammatory infiltrates in the heart, composed mainly by mononuclear cells, usually adhered to myocytes and leading to myocytolysis, and frequently by interstitial fibrosis. The pathogenesis of CChC is still unclear, despite intense investigations both in human beings and in animal models of the disease. Although tissue parasitism is rare in the chronic phase of infection, an immune response targeted to persistent parasites or parasite antigens is suggested, by some authors, as the pathogenic mechanism of CChC. Other researchers affirm that the lack of correlation between tissue parasitism and intensity of inflammation suggests, along with the presence of autoreactive immune responses, that CChC results from the action of an autoimmune response. Herein we review reports from the literature and our own data, which together indicate, on one hand, the participation of parasite-specific immune responses and, on the other hand, clearly demonstrate the participation of heart-specific immune responses in the pathogenesis of CChC. Moreover, multiple factors may determine whether an individual in the indeterminate form of the disease will develop CChC. The mechanisms by which T. cruzi breaks immunological tolerance to heart antigens are also discussed.A doença de Chagas constitui um grave problema de saúde pública na América Latina, onde é uma das principais causas de problemas cardíacos. A cardiopatia chagásica crônica (CChC, forma mais grave da doença, manifesta-se em cerca de 25% dos indivíduos infectados pelo Trypanosoma cruzi, e é caracterizada, a nível histopatológico, pela presença de infiltrados

  4. Immune response to uv-induced tumors: transplantation immunity and lymphocyte populations exhibiting anti-tumor activity

    International Nuclear Information System (INIS)

    Streeter, P.R.

    1985-01-01

    Ultraviolet light-induced murine skin tumors were analyzed for their ability to induce tumor-specific and cross-protective transplantation immunity in immunocompetent syngeneic mice. These studies revealed that progressor UV-tumors, like regressor UV-tumors, possess tumor-specific transplantation antigens. Cross-protective transplantation immunity to UV-tumors, however, was associated with sensitization to the serum used to culture the tumor lines rather than to cross-reactive or common determinants on UV-tumors. An analysis of the cytolytic activity of lymphocytes from the spleens of mice immunized with either regressor or progressor UV-tumors revealed a striking difference between the two immune splenocyte populations. From regressor tumor-immune animals, cytolytic T (Tc) lymphocytes with specificity for the immunizing tumor were found. However, the analysis of splenic lymphocytes from progressor tumor immune animals revealed no such effector cells. To more effectively examine those lymphocytes exhibiting cytolytic activity in vitro, T lymphocyte cloning technology was used as a means of isolating homogeneous lymphocyte populations with the effector activities described above. The mechanisms where NK cells and other nonspecific effector cells could be induced in tumor-immune animals are discussed in the context of class II restricted immune responses

  5. Lesion-Specific Immune Response in Granulomas of Patients with Pulmonary Tuberculosis: A Pilot Study.

    Directory of Open Access Journals (Sweden)

    Selvakumar Subbian

    Full Text Available The formation and maintenance of granulomas is central to the host response to Mycobacterium tuberculosis (Mtb infection. It is widely accepted that the lungs of patients with tuberculosis (TB usually contain multiple infection foci, and that the granulomas evolve and differentiate independently, resulting in considerable heterogeneity. Although gene expression profiles of human blood cells have been proposed as biomarkers of Mtb infection and/or active disease, the immune profiles of discrete lesion types has not been studied extensively. Using histology, immunopathology and genome-wide transcriptome analysis, we explored the immunological profile of human lung TB granulomas. We show that although the different granulomas share core similarities in their immunological/inflammatory characteristics, they also exhibit significant divergence. Despite similar numbers of CD68+ macrophages in the different lesions, the extent of immune reactivity, as determined by the density of CD3+ T cells in the macrophage rich areas, and the extent of fibrosis, shows considerable variation. Both quantitative and qualitative differences among significantly differentially expressed genes (SDEG were noted in each of the lesion types studied. Further, network/pathway analysis of SDEG revealed differential regulation of inflammatory response, immune cell trafficking, and cell mediated immune response in the different lesions. Our data highlight the formidable challenges facing ongoing efforts to identify peripheral blood biomarkers due to the diversity of lesion types and complexity of local immune responses in the lung.

  6. Antigen-Specific lgA B Memory Cell Responses to Shigella Antigens Elicited in Volunteers Immunized with Live Attenuated Shigella flexneri 2a Oral Vaccine Candidates

    Science.gov (United States)

    2011-01-01

    167. [10] E.V. Oaks, T.L. Hale, S.B. Formal, Serum immune response to Shigella protein antigens in rhesus monkeys and humans infected with Shigella ...cell responses to Shigella antigens elicited in volunteers immunized with live attenuated Shigella flexneri 2a oral vaccine candidates J.K. Simona,b... Shigella ;. B cell memory; Immunoglobulin lgA; Mucosal immunity Abstract We studied the induction of antigen-specific lgA memory B cells (BM) in

  7. Detection of herpes simplex virus type 2 (HSV-2) -specific cell-mediated immune responses in guinea pigs during latent HSV-2 genital infection.

    Science.gov (United States)

    Perry, Clarice L; Banasik, Brianne N; Gorder, Summer R; Xia, Jingya; Auclair, Sarah; Bourne, Nigel; Milligan, Gregg N

    2016-12-01

    Genital infections with herpes simplex virus type 2 (HSV-2) are a source of considerable morbidity and are a health concern for newborns exposed to virus during vaginal delivery. Additionally, HSV-2 infection diminishes the integrity of the vaginal epithelium resulting in increased susceptibility of individuals to infection with other sexually transmitted pathogens. Understanding immune protection against HSV-2 primary infection and immune modulation of virus shedding events following reactivation of the virus from latency is important for the development of effective prophylactic and therapeutic vaccines. Although the murine model of HSV-2 infection is useful for understanding immunity following immunization, it is limited by the lack of spontaneous reactivation of HSV-2 from latency. Genital infection of guinea pigs with HSV-2 accurately models the disease of humans including the spontaneous reactivation of HSV-2 from latency and provides a unique opportunity to examine virus-host interactions during latency. Although the guinea pig represents an accurate model of many human infections, relatively few reagents are available to study the immunological response to infection. To analyze the cell-mediated immune response of guinea pigs at extended periods of time after establishment of HSV-2 latency, we have modified flow-cytometry based proliferation assays and IFN-γ ELISPOT assays to detect and quantify HSV-specific cell-mediated responses during latent infection of guinea pigs. Here we demonstrate that a combination of proliferation and ELISPOT assays can be used to quantify and characterize effecter function of virus-specific immune memory responses during HSV-latency. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. A Transgenic Mouse Model of Poliomyelitis.

    Science.gov (United States)

    Koike, Satoshi; Nagata, Noriyo

    2016-01-01

    Transgenic mice (tg mice) that express the human poliovirus receptor (PVR), CD155, are susceptible to poliovirus and develop a neurological disease that resembles human poliomyelitis. Assessment of the neurovirulence levels of poliovirus strains, including mutant viruses produced by reverse genetics, circulating vaccine-derived poliovirus, and vaccine candidates, is useful for basic research of poliovirus pathogenicity, the surveillance of circulating polioviruses, and the quality control of oral live poliovirus vaccines, and does not require the use of monkeys. Furthermore, PVR-tg mice are useful for studying poliovirus tissue tropism and host immune responses. PVR-tg mice can be bred with mice deficient in the genes involved in viral pathogenicity. This report describes the methods used to analyze the pathogenicity and immune responses of poliovirus using the PVR-tg mouse model.

  9. A zebrafish larval model reveals early tissue-specific innate immune responses to Mucor circinelloides.

    Science.gov (United States)

    Voelz, Kerstin; Gratacap, Remi L; Wheeler, Robert T

    2015-11-01

    Mucormycosis is an emerging fungal infection that is clinically difficult to manage, with increasing incidence and extremely high mortality rates. Individuals with diabetes, suppressed immunity or traumatic injury are at increased risk of developing disease. These individuals often present with defects in phagocytic effector cell function. Research using mammalian models and phagocytic effector cell lines has attempted to decipher the importance of the innate immune system in host defence against mucormycosis. However, these model systems have not been satisfactory for direct analysis of the interaction between innate immune effector cells and infectious sporangiospores in vivo. Here, we report the first real-time in vivo analysis of the early innate immune response to mucormycete infection using a whole-animal zebrafish larval model system. We identified differential host susceptibility, dependent on the site of infection (hindbrain ventricle and swim bladder), as well as differential functions of the two major phagocyte effector cell types in response to viable and non-viable spores. Larval susceptibility to mucormycete spore infection was increased upon immunosuppressant treatment. We showed for the first time that macrophages and neutrophils were readily recruited in vivo to the site of infection in an intact host and that spore phagocytosis can be observed in real-time in vivo. While exploring innate immune effector recruitment dynamics, we discovered the formation of phagocyte clusters in response to fungal spores that potentially play a role in fungal spore dissemination. Spores failed to activate pro-inflammatory gene expression by 6 h post-infection in both infection models. After 24 h, induction of a pro-inflammatory response was observed only in hindbrain ventricle infections. Only a weak pro-inflammatory response was initiated after spore injection into the swim bladder during the same time frame. In the future, the zebrafish larva as a live whole

  10. Ectopic Expression of JcWRKY Confers Enhanced Resistance in Transgenic Tobacco Against Macrophomina phaseolina.

    Science.gov (United States)

    Agarwal, Parinita; Patel, Khantika; Agarwal, Pradeep K

    2018-04-01

    Plants possess an innate immune system comprising of a complex network of closely regulated defense responses involving differential gene expression mediated by transcription factors (TFs). The WRKYs comprise of an important plant-specific TF family, which is involved in regulation of biotic and abiotic defenses. The overexpression of JcWRKY resulted in improved resistance in transgenic tobacco against Macrophomina phaseolina. The production of reactive oxygen species (ROS) and its detoxification through antioxidative system in the transgenics facilitates defense against Macrophomina. The enhanced catalase activity on Macrophomina infection limits the spread of infection. The transcript expression of antioxidative enzymes gene (CAT and SOD) and salicylic acid (SA) biosynthetic gene ICS1 showed upregulation during Macrophomina infection and combinatorial stress. The enhanced transcript of pathogenesis-related genes PR-1 indicates the accumulation of SA during different stresses. The PR-2 and PR-5 highlight the activation of defense responses comprising of activation of hydrolytic cleavage of glucanases and thaumatin-like proteins causing disruption of fungal cells. The ROS homeostasis in coordination with signaling molecules regulate the defense responses and inhibit fungal growth.

  11. Mechanism study of tumor-specific immune responses induced by laser immunotherapy

    Science.gov (United States)

    Li, Xiaosong; Zhou, Feifan; Le, Henry; Wolf, Roman F.; Howard, Eric; Nordquist, Robert E.; Hode, Tomas; Liu, Hong; Chen, Wei R.

    2011-03-01

    Laser immunotherapy (LIT) has shown its efficacy against late-stage, metastatic cancers, both in pre-clinical studies and clinical pilot trials. However, the possible mechanism of LIT is still not fully understood. In our previous studies, we have shown that LIT induces tumor-specific antibodies that strongly bind to the target tumors. Tumor resistance in cured animals demonstrated long-term immunological effect of LIT. Successful transfer of adoptive immunity using spleen cells from LIT-cured animals indicated a long-term immunological memory of the host system. In clinical trials for the treatment of late-stage melanoma patients and breast cancer patients, the similar long-term, systemic effects have also been observed. To further study the immunological mechanism of LIT, immuno-histochemical analysis of patient tumor samples has performed before and after LIT treatment. Our results showed strong evidence that LIT significantly increases the infiltration of immune cells in the target tumors. Specifically, LIT appeared to drive the infiltrating immune cell populations in the direction of CD4, CD8 and CD68 T-cells. It is possible that activation and enhancement of both humeral and cellular arms of the host immune system are achievable by the treatment of LIT. These special features of LIT have contributed to the success of patient treatment. The underlying mechanism of LIT appears to be an in-situ autologous whole-cell cancer vaccination, using all components of tumors as sources of tumor antigens. Our preliminary mechanistic studies and future in-depth studies will contribute to the understanding and development of LIT as an effective modality for the treatment of late stage cancer patients who are facing severely limited options.

  12. Mathematical modeling provides kinetic details of the human immune response to vaccination

    Directory of Open Access Journals (Sweden)

    Dustin eLe

    2015-01-01

    Full Text Available With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combine mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response is determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increases slowly, the slow increase can still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model describes well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization are derived from the population of circulating antibody-secreting cells. Taken together, our analysis provides novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlight challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  13. Mathematical modeling provides kinetic details of the human immune response to vaccination.

    Science.gov (United States)

    Le, Dustin; Miller, Joseph D; Ganusov, Vitaly V

    2014-01-01

    With major advances in experimental techniques to track antigen-specific immune responses many basic questions on the kinetics of virus-specific immunity in humans remain unanswered. To gain insights into kinetics of T and B cell responses in human volunteers we combined mathematical models and experimental data from recent studies employing vaccines against yellow fever and smallpox. Yellow fever virus-specific CD8 T cell population expanded slowly with the average doubling time of 2 days peaking 2.5 weeks post immunization. Interestingly, we found that the peak of the yellow fever-specific CD8 T cell response was determined by the rate of T cell proliferation and not by the precursor frequency of antigen-specific cells as has been suggested in several studies in mice. We also found that while the frequency of virus-specific T cells increased slowly, the slow increase could still accurately explain clearance of yellow fever virus in the blood. Our additional mathematical model described well the kinetics of virus-specific antibody-secreting cell and antibody response to vaccinia virus in vaccinated individuals suggesting that most of antibodies in 3 months post immunization were derived from the population of circulating antibody-secreting cells. Taken together, our analysis provided novel insights into mechanisms by which live vaccines induce immunity to viral infections and highlighted challenges of applying methods of mathematical modeling to the current, state-of-the-art yet limited immunological data.

  14. Immune responses to transgene and retroviral vector in patients treated with ex vivo-engineered T cells

    NARCIS (Netherlands)

    Lamers, C.H.; Willemsen, R.; Elzakker, P. van; Steenbergen-Langeveld, S. van; Broertjes, M.; Oosterwijk-Wakka, J.C.; Oosterwijk, E.; Sleijfer, S.; Debets, R.; Gratama, J.W.

    2011-01-01

    Adoptive transfer of immune effector cells that are gene modified by retroviral transduction to express tumor-specific receptors constitutes an attractive approach to treat cancer. In patients with metastatic renal cell carcinoma, we performed a study with autologous T cells genetically retargeted

  15. Cord blood Streptococcus pneumoniae-specific cellular immune responses predict early pneumococcal carriage in high-risk infants in Papua New Guinea.

    Science.gov (United States)

    Francis, J P; Richmond, P C; Strickland, D; Prescott, S L; Pomat, W S; Michael, A; Nadal-Sims, M A; Edwards-Devitt, C J; Holt, P G; Lehmann, D; van den Biggelaar, A H J

    2017-03-01

    In areas where Streptococcus pneumoniae is highly endemic, infants experience very early pneumococcal colonization of the upper respiratory tract, with carriage often persisting into adulthood. We aimed to explore whether newborns in high-risk areas have pre-existing pneumococcal-specific cellular immune responses that may affect early pneumococcal acquisition. Cord blood mononuclear cells (CBMC) of 84 Papua New Guinean (PNG; high endemic) and 33 Australian (AUS; low endemic) newborns were stimulated in vitro with detoxified pneumolysin (dPly) or pneumococcal surface protein A (PspA; families 1 and 2) and compared for cytokine responses. Within the PNG cohort, associations between CBMC dPly and PspA-induced responses and pneumococcal colonization within the first month of life were studied. Significantly higher PspA-specific interferon (IFN)-γ, tumour necrosis factor (TNF)-α, interleukin (IL)-5, IL-6, IL-10 and IL-13 responses, and lower dPly-IL-6 responses were produced in CBMC cultures of PNG compared to AUS newborns. Higher CBMC PspA-IL-5 and PspA-IL-13 responses correlated with a higher proportion of cord CD4 T cells, and higher dPly-IL-6 responses with a higher frequency of cord antigen-presenting cells. In the PNG cohort, higher PspA-specific IL-5 and IL-6 CBMC responses were associated independently and significantly with increased risk of earlier pneumococcal colonization, while a significant protective effect was found for higher PspA-IL-10 CBMC responses. Pneumococcus-specific cellular immune responses differ between children born in pneumococcal high versus low endemic settings, which may contribute to the higher risk of infants in high endemic settings for early pneumococcal colonization, and hence disease. © 2016 British Society for Immunology.

  16. Chemokine-mediated immune responses in the female genital tract mucosa.

    Science.gov (United States)

    Deruaz, Maud; Luster, Andrew D

    2015-04-01

    The genital tract mucosa is the site where sexually transmitted infections gain entry to the host. The immune response at this site is thus critical to provide innate protection against pathogens that are seen for the very first time as well as provide long-term pathogen-specific immunity, which would be required for an effective vaccine against sexually transmitted infection. A finely regulated immune response is therefore required to provide an effective barrier against pathogens without compromising the capacity of the genital tract to allow for successful conception and fetal development. We review recent developments in our understanding of the immune response in the female genital tract to infectious pathogens, using herpes simplex virus-2, human immunodeficiency virus-1 and Chlamydia trachomatis as examples, with a particular focus on the role of chemokines in orchestrating immune cell migration necessary to achieve effective innate and adaptive immune responses in the female genital tract.

  17. Increased sequence diversity coverage improves detection of HIV-Specific T cell responses

    DEFF Research Database (Denmark)

    Frahm, N.; Kaufmann, D.E.; Yusim, K.

    2007-01-01

    The accurate identification of HIV-specific T cell responses is important for determining the relationship between immune response, viral control, and disease progression. HIV-specific immune responses are usually measured using peptide sets based on consensus sequences, which frequently miss res...

  18. Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice.

    Science.gov (United States)

    Miró, Lluïsa; Garcia-Just, Alba; Amat, Concepció; Polo, Javier; Moretó, Miquel; Pérez-Bosque, Anna

    2017-12-11

    Increased life expectancy has promoted research on healthy aging. Aging is accompanied by increased non-specific immune activation (inflammaging) which favors the appearance of several disorders. Here, we study whether dietary supplementation with spray-dried animal plasma (SDP), which has been shown to reduce the activation of gut-associated lymphoid tissue (GALT) in rodents challenged by S. aureus enterotoxin B (SEB), and can also prevent the effects of aging on immune system homeostasis. We first characterized GALT in a mouse model of accelerated senescence (SAMP8) at different ages (compared to mice resistant to accelerated senescence; SAMR1). Second, we analyzed the SDP effects on GALT response to an SEB challenge in SAMP8 mice. In GALT characterization, aging increased the cell number and the percentage of activated Th lymphocytes in mesenteric lymph nodes and Peyer's patches (all, p < 0.05), as well as the expression of IL-6 and TNF-α in intestinal mucosa (both, p < 0.05). With respect to GALT response to the SEB challenge, young mice showed increased expression of intestinal IL-6 and TNF-α, as well as lymphocyte recruitment and activation (all, p < 0.05). However, the immune response of senescent mice to the SEB challenge was weak, since SEB did not change cell recruitment or the percentage of activated Th lymphocytes. Mice supplemented with SDP showed improved capacity to respond to the SEB challenge, similar to the response of the young mice. These results indicate that senescent mice have an impaired mucosal immune response characterized by unspecific GALT activation and a weak specific immune response. SDP supplementation reduces non-specific basal immune activation, allowing for the generation of specific responses.

  19. The role of complement in the acquired immune response

    DEFF Research Database (Denmark)

    Nielsen, C H; Fischer, E M; Leslie, R G

    2000-01-01

    Studies over the past three decades have clearly established a central role for complement in the promotion of a humoral immune response. The primary function of complement, in this regard, is to opsonize antigen or immune complexes for uptake by complement receptor type 2 (CR2, CD21) expressed...... on B cells, follicular dendritic cells (FDC) and some T cells. A variety of mechanisms appear to be involved in complement-mediated promotion of the humoral response. These include: enhancement of antigen (Ag) uptake and processing by both Ag-specific and non-specific B cells for presentation...

  20. Dynamic Nature of Noncoding RNA Regulation of Adaptive Immune Response

    Directory of Open Access Journals (Sweden)

    Franca Citarella

    2013-08-01

    Full Text Available Immune response plays a fundamental role in protecting the organism from infections; however, dysregulation often occurs and can be detrimental for the organism, leading to a variety of immune-mediated diseases. Recently our understanding of the molecular and cellular networks regulating the immune response, and, in particular, adaptive immunity, has improved dramatically. For many years, much of the focus has been on the study of protein regulators; nevertheless, recent evidence points to a fundamental role for specific classes of noncoding RNAs (ncRNAs in regulating development, activation and homeostasis of the immune system. Although microRNAs (miRNAs are the most comprehensive and well-studied, a number of reports suggest the exciting possibility that long ncRNAs (lncRNAs could mediate host response and immune function. Finally, evidence is also accumulating that suggests a role for miRNAs and other small ncRNAs in autocrine, paracrine and exocrine signaling events, thus highlighting an elaborate network of regulatory interactions mediated by different classes of ncRNAs during immune response. This review will explore the multifaceted roles of ncRNAs in the adaptive immune response. In particular, we will focus on the well-established role of miRNAs and on the emerging role of lncRNAs and circulating ncRNAs, which all make indispensable contributions to the understanding of the multilayered modulation of the adaptive immune response.

  1. Initiation of innate immune responses by surveillance of homeostasis perturbations.

    Science.gov (United States)

    Colaço, Henrique G; Moita, Luis F

    2016-07-01

    Pathogen recognition, signaling transduction pathways, and effector mechanisms are necessary steps of innate immune responses that play key roles in the early phase of defense and in the stimulation of the later specific response of adaptive immunity. Here, we argue that in addition to the direct recognition of conserved common structural and functional molecular signatures of microorganisms using pattern recognition receptors, hosts can mount an immune response following the sensing of disruption in homeostasis as proximal reporters for infections. Surveillance of disruption of core cellular activities leading to defense responses is a flexible strategy that requires few additional components and that can effectively detect relevant threats. It is likely to be evolutionarily very conserved and ancient because it is operational in organisms that lack pattern recognition triggered immunity. A homeostasis disruption model of immune response initiation and modulation has broad implications for pathophysiology and treatment of disease and might constitute an often overlooked but central component of a comprehensive conceptual framework for innate immunity. © 2016 Federation of European Biochemical Societies.

  2. The Role of Non-specific and Specific Immune Systems in Poultry against Newcastle Disease

    Directory of Open Access Journals (Sweden)

    Dyah Ayu Hewajuli

    2015-09-01

    Full Text Available Newcastle disease (ND is caused by avian paramyxovirus-1 which belong to Avulavirus genus and Paramyxoviridae family. The birds have abnormalities in humoral (bursa fabricius and cellular (thymus and spleen lymphoid organs. Lesions decrease the immune system. Immune system consists of non-specific and specific immune systems. The main components of non-specific immunity are physical and chemical barrier (feather and skin or mucosa, phagocytic cells (macrophages and natural killer, protein complement and the mediator of inflammation and cytokines. Interferons (IFNs belong to a group of cytokines that play a major role in the nonspecific or innate (natural immunity. The virulent ND virus encodes protein of V gene can be suppressed IFN type I. This leads to non-specific immune system fail to respond to the virulent strains resulting in severe pathogenicity. The defense mechanism of the host is replaced by specific immunity (adaptive immunity when natural immunity fails to overcome the infection. The specific immune system consists of humoral mediated immunity (HMI and cell-mediated immunity (CMI. The cells of immune system that react specifically with the antigen are B lymphocytes producing the antibodies, T lymphocytes that regulate the synthesis of antibodies and T cells as effector or the direct cytotoxic cells. Both non-specific and specific immunities are complementary against the invasion of ND virus in the birds. The objective of this article is to discuss the role of non specific and specific immune system in ND.

  3. Eicosapentenoic Acid Attenuates Allograft Rejection in an HLA-B27/EGFP Transgenic Rat Cardiac Transplantation Model.

    Science.gov (United States)

    Liu, Zhong; Hatayama, Naoyuki; Xie, Lin; Kato, Ken; Zhu, Ping; Ochiya, Takahiro; Nagahara, Yukitoshi; Hu, Xiang; Li, Xiao-Kang

    2012-01-01

    The development of an animal model bearing definite antigens is important to facilitate the evaluation and modulation of specific allo-antigen responses after transplantation. In the present study, heterotopic cardiac transplantation was performed from F344/EGFPTg and F344/HLA-B27Tg rats to F344 rats. The F344 recipients accepted the F344/EGFPTg transplants, whereas they rejected the cardiac tissue from the F344/HLA-B27Tg rats by 39.4 ± 6.5 days, due to high production of anti-HLA-B27 IgM- and IgG-specific antibodies. In addition, immunization of F344 rats with skin grafts from F344/HLA-B27Tg rats resulted in robust production of anti- HLA-B27 IgM and IgG antibodies and accelerated the rejection of a secondary cardiac allograft (7.4 ± 1.9 days). Of interest, the F344 recipients rejected cardiac grafts from double transgenic F344/HLA-B27&EGFPTg rats within 9.0 ± 3.2 days, and this was associated with a significant increase in the infiltration of lymphocytes by day 7, suggesting a role for cellular immune rejection. Eicosapentenoic acid (EPA), one of the ω-3 polyunsaturated fatty acids in fish oil, could attenuate the production of anti-HLA IgG antibodies and B-cell proliferation, significantly prolonging double transgenic F344HLA-B27&EGFPTg to F344 rat cardiac allograft survival (36.1 ± 13.6 days). Moreover, the mRNA expression in the grafts was assessed by quantitative reverse transcription polymerase chain reaction (qRT-PCR), revealing an increase in the expression of the HO-1, IL-10, TGF-β, IDO, and Foxp3 genes in the EPA-treated group. Hence, our data indicate that HLA-B27 and/or GFP transgenic proteins are useful for establishing a unique animal transplantation model to clarify the mechanism underlying the allogeneic cellular and humoral immune response, in which the transplant antigens are specifically presented. Furthermore, we also demonstrated that EPA was effective in the treatment of rat cardiac allograft rejection and may allow the development of

  4. Herbicidal and antioxidant responses of transgenic rice overexpressing Myxococcus xanthus protoporphyrinogen oxidase.

    Science.gov (United States)

    Jung, Sunyo; Back, Kyoungwhan

    2005-05-01

    We analyzed the herbicidal and antioxidant defense responses of transgenic rice plants that overexpressed the Myxococcus xanthus protoporphyrinogen oxidase gene. Leaf squares of the wild-type incubated with oxyfluorfen were characterized by necrotic leaf lesions and increases in conductivity and malonyldialdehyde levels, whereas transgenic lines M4 and M7 did not show any change with up to 100 microM oxyfluorfen. The wild-type had decreased F(v)/F(m) and produced a high level of H(2)O(2) at 18 h after foliar application of oxyfluorfen, whereas transgenic lines M4 and M7 were unaffected. In response to oxyfluorfen, violaxanthin, beta-carotene, and chlorophylls (Chls) decreased in wild-type plants, whereas antheraxanthin and zeaxanthin increased. Only a slight decline in Chls was observed in transgenic lines at 48 h after oxyfluorfen treatment. Noticeable increases of cytosolic Cu/Zn-superoxide dismutase, peroxidase isozymes 1 and 2, and catalase were observed after at 48 h of oxyfluorfen treatment in the wild-type. Non-enzymatic antioxidants appeared to respond faster to oxyfluorfen-induced photodynamic stress than did enzymatic antioxidants. Protective responses for the detoxification of active oxygen species were induced to counteract photodynamic stress in oxyfluorfen-treated, wild-type plants. However, oxyfluorfen-treated, transgenic plants suffered less oxidative stress, confirming increased herbicidal resistance resulted from dual expression of M. xanthus Protox in chloroplasts and mitochondria.

  5. Modulation of immune response by bacterial lipopolysaccharides

    Directory of Open Access Journals (Sweden)

    Gustavo Aldapa-Vega

    2016-08-01

    Full Text Available Lipopolysaccharide (LPS is a molecule that is profusely found on the outer membrane of Gram-negative bacteria and is also a potent stimulator of the immune response. As the main molecule on the bacterial surface, is also the most biologically active. The immune response of the host is activated by the recognition of LPS through Toll-like receptor 4 (TLR4 and this receptor-ligand interaction is closely linked to LPS structure. Microorganisms have evolved systems to control the expression and structure of LPS, producing structural variants that are used for modulating the host immune responses during infection. Examples of this include Helicobacter pylori, Francisella tularensis, Chlamydia trachomatis and Salmonella spp. High concentrations of LPS can cause fever, increased heart rate and lead to septic shock and death. However, at relatively low concentrations some LPS are highly active immunomodulators, which can induce non-specific resistance to invading microorganisms. The elucidation of the molecular and cellular mechanisms involved in the recognition of LPS and its structural variants has been fundamental to understand inflammation and is currently a pivotal field of research to understand the innate immune response, inflammation, the complex host-pathogen relationship and has important implications for the rational development of new immunomodulators and adjuvants.

  6. The immune response to sand fly salivary proteins and its influence on Leishmania immunity

    Directory of Open Access Journals (Sweden)

    Regis eGomes

    2012-05-01

    Full Text Available Leishmaniasis is a vector-borne disease transmitted by bites of phlebotomine sand flies. During Leishmania transmission, sand fly saliva is co-inoculated with parasites into the skin of the mammalian host. Sand fly saliva consists of roughly thirty different salivary proteins, many with known roles linked to blood feeding facilitation. Apart from the anti-hemostatic capacity of saliva, several sand fly salivary proteins have been shown to be immunogenic upon multiple contacts with a mammalian host. Immunization with single immunogenic salivary proteins or exposure to uninfected bites can produce protective immune responses against leishmaniasis. These sand fly salivary proteins induce cellular immune responses and/or antibodies. Antibodies to saliva are not required for protection in a mouse model against leishmaniasis. A strong body of evidence points to the role for saliva-specific T cells producing IFN-γ in the form of a delayed-type hypersensitivity reaction at the bite site as the main protective response. Herein, we review immunity to sand fly salivary proteins in the context of its vector-parasite-host combinations and vaccine potential, as well as some recent advances to shed light on the mechanism of how an immune response to sand fly saliva protects against leishmaniasis.

  7. Differential and site specific impact of B cells in the protective immune response to Mycobacterium tuberculosis in the mouse.

    Directory of Open Access Journals (Sweden)

    Egídio Torrado

    Full Text Available Cell-mediated immune responses are known to be critical for control of mycobacterial infections whereas the role of B cells and humoral immunity is unclear. B cells can modulate immune responses by secretion of immunoglobulin, production of cytokines and antigen-presentation. To define the impact of B cells in the absence of secreted immunoglobulin, we analyzed the progression of Mycobacterium tuberculosis (Mtb infection in mice that have B cells but which lack secretory immunoglobulin (AID(-/-µS(-/-mice. AID(-/-µS(-/- mice accumulated a population of activated B cells in the lungs when infected and were more susceptible to aerosol Mtb when compared to wild type (C57BL/6 mice or indeed mice that totally lack B cells. The enhanced susceptibility of AID(-/-µS(-/- mice was not associated with defective T cell activation or expression of a type 1 immune response. While delivery of normal serum to AID(-/-µS(-/- mice did not reverse susceptibility, susceptibility in the spleen was dependent upon the presence of B cells and susceptibility in the lungs of AID(-/-µS(-/-mice was associated with elevated expression of the cytokines IL-6, GM-CSF, IL-10 and molecules made by alternatively activated macrophages. Blocking of IL-10 signaling resulted in reversal of susceptibility in the spleens and lungs of AID(-/-µS(-/- mice. These data support the hypothesis that B cells can modulate immunity to Mtb in an organ specific manner via the modulation of cytokine production and macrophage activation.

  8. Co-incubation with IL-18 potentiates antigen-specific IFN-γ response in a whole-blood stimulation assay for measurement of cell-mediated immune responses in pigs experimentally infected with Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Riber, Ulla; Boesen, Henriette Toft; Jakobsen, Jeanne Toft

    2011-01-01

    The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult to evalu......The whole-blood interferon-gamma (IFN-γ) assay is a quantitative in-vitro assay for a direct read out of Ag-specific cell-mediated immune (CMI) responses to infectious diseases. The IFN-γ assay is robust in severe intracellular infections like Brucella or mycobacteria, but more difficult...

  9. Induction of complex immune responses and strong protection against retrovirus challenge by adenovirus-based immunization depends on the order of vaccine delivery.

    Science.gov (United States)

    Kaulfuß, Meike; Wensing, Ina; Windmann, Sonja; Hrycak, Camilla Patrizia; Bayer, Wibke

    2017-02-06

    In the Friend retrovirus mouse model we developed potent adenovirus-based vaccines that were designed to induce either strong Friend virus GagL 85-93 -specific CD8 + T cell or antibody responses, respectively. To optimize the immunization outcome we evaluated vaccination strategies using combinations of these vaccines. While the vaccines on their own confer strong protection from a subsequent Friend virus challenge, the simple combination of the vaccines for the establishment of an optimized immunization protocol did not result in a further improvement of vaccine effectivity. We demonstrate that the co-immunization with GagL 85-93 /leader-gag encoding vectors together with envelope-encoding vectors abrogates the induction of GagL 85-93 -specific CD8 + T cells, and in successive immunization protocols the immunization with the GagL 85-93 /leader-gag encoding vector had to precede the immunization with an envelope encoding vector for the efficient induction of GagL 85-93 -specific CD8 + T cells. Importantly, the antibody response to envelope was in fact enhanced when the mice were adenovirus-experienced from a prior immunization, highlighting the expedience of this approach. To circumvent the immunosuppressive effect of envelope on immune responses to simultaneously or subsequently administered immunogens, we developed a two immunizations-based vaccination protocol that induces strong immune responses and confers robust protection of highly Friend virus-susceptible mice from a lethal Friend virus challenge.

  10. Staphylococcus aureus innate immune evasion is lineage-specific: a bioinfomatics study.

    Science.gov (United States)

    McCarthy, Alex J; Lindsay, Jodi A

    2013-10-01

    Staphylococcus aureus is a major human pathogen, and is targeted by the host innate immune system. In response, S. aureus genomes encode dozens of secreted proteins that inhibit complement, chemotaxis and neutrophil activation resulting in successful evasion of innate immune responses. These proteins include immune evasion cluster proteins (IEC; Chp, Sak, Scn), staphylococcal superantigen-like proteins (SSLs), phenol soluble modulins (PSMs) and several leukocidins. Biochemical studies have indicated that genetic variants of these proteins can have unique functions. To ascertain the scale of genetic variation in secreted immune evasion proteins, whole genome sequences of 88 S. aureus isolates, representing 25 clonal complex (CC) lineages, in the public domain were analysed across 43 genes encoding 38 secreted innate immune evasion protein complexes. Twenty-three genes were variable, with between 2 and 15 variants, and the variants had lineage-specific distributions. They include genes encoding Eap, Ecb, Efb, Flipr/Flipr-like, Hla, Hld, Hlg, Sbi, Scin-B/C and 13 SSLs. Most of these protein complexes inhibit complement, chemotaxis and neutrophil activation suggesting that isolates from each S. aureus lineage respond to the innate immune system differently. In contrast, protein complexes that lyse neutrophils (LukSF-PVL, LukMF, LukED and PSMs) were highly conserved, but can be carried on mobile genetic elements (MGEs). MGEs also encode proteins with narrow host-specificities arguing that their acquisition has important roles in host/environmental adaptation. In conclusion, this data suggests that each lineage of S. aureus evades host immune responses differently, and that isolates can adapt to new host environments by acquiring MGEs and the immune evasion protein complexes that they encode. Cocktail therapeutics that targets multiple variant proteins may be the most appropriate strategy for controlling S. aureus infections. Copyright © 2013 Elsevier B.V. All rights

  11. Dietary Animal Plasma Proteins Improve the Intestinal Immune Response in Senescent Mice

    Directory of Open Access Journals (Sweden)

    Lluïsa Miró

    2017-12-01

    Full Text Available Increased life expectancy has promoted research on healthy aging. Aging is accompanied by increased non-specific immune activation (inflammaging which favors the appearance of several disorders. Here, we study whether dietary supplementation with spray-dried animal plasma (SDP, which has been shown to reduce the activation of gut-associated lymphoid tissue (GALT in rodents challenged by S. aureus enterotoxin B (SEB, and can also prevent the effects of aging on immune system homeostasis. We first characterized GALT in a mouse model of accelerated senescence (SAMP8 at different ages (compared to mice resistant to accelerated senescence; SAMR1. Second, we analyzed the SDP effects on GALT response to an SEB challenge in SAMP8 mice. In GALT characterization, aging increased the cell number and the percentage of activated Th lymphocytes in mesenteric lymph nodes and Peyer’s patches (all, p < 0.05, as well as the expression of IL-6 and TNF-α in intestinal mucosa (both, p < 0.05. With respect to GALT response to the SEB challenge, young mice showed increased expression of intestinal IL-6 and TNF-α, as well as lymphocyte recruitment and activation (all, p < 0.05. However, the immune response of senescent mice to the SEB challenge was weak, since SEB did not change cell recruitment or the percentage of activated Th lymphocytes. Mice supplemented with SDP showed improved capacity to respond to the SEB challenge, similar to the response of the young mice. These results indicate that senescent mice have an impaired mucosal immune response characterized by unspecific GALT activation and a weak specific immune response. SDP supplementation reduces non-specific basal immune activation, allowing for the generation of specific responses.

  12. Administration of sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate conjugated GP100{sub 25–33} peptide-coupled spleen cells effectively mounts antigen-specific immune response against mouse melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Chang, Xiaoli [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Xia, Chang-Qing, E-mail: cqx65@yahoo.com [Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing (China); Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL32610 (United States)

    2015-12-04

    It remains a top research priority to develop immunotherapeutic approaches to induce potent antigen-specific immune responses against tumors. However, in spite of some promising results, most strategies are ineffective because they generate low numbers of tumor-reactive cytotoxic T lymphocytes (CTLs). Here we designed a strategy to enhance antigen-specific immune response via administering sulfosuccinimidyl-4-[N-maleimidomethyl] cyclohexane-1-carboxylate (sulfo-SMCC)-conjugated melanoma tumor antigen GP100{sub 25–33} peptide-coupled syngeneic spleen cells in a mouse model of melanoma. We found that infusion of GP100{sub 25–33} peptide-coupled spleen cells significantly attenuated the growth of melanoma in prophylactic and therapeutic immunizations. Consistent with these findings, the adoptive transfer of spleen cells from immunized mice to naïve syngeneic mice was able to transfer anti-tumor effect, suggesting that GP100{sub 25–33} peptide-specific immune response was induced. Further studies showed that, CD8+ T cell proliferation and the frequency of interferon (IFN)-γ-producing CD8+ T cells upon ex vivo stimulation by GP100{sub 25–33} were significantly increased compared to control groups. Tumor antigen, GP100{sub 25–23} specific immune response was also confirmed by ELISpot and GP100-tetramer assays. This approach is simple, easy-handled, and efficiently delivering antigens to lymphoid tissues. Our study offers an opportunity for clinically translating this approach into tumor immunotherapy. - Highlights: • Infusion of GP100{sub 25–33}-coupled spleen cells leads to potent anti-melanoma immunity. • GP100{sub 25–33}-coupled spleen cell treatment induces antigen-specific IFN-γ-producing CD8 T cells. • This approach takes advantage of homing nature of immune cells.

  13. Probiotics, antibiotics and the immune responses to vaccines.

    Science.gov (United States)

    Praharaj, Ira; John, Sushil M; Bandyopadhyay, Rini; Kang, Gagandeep

    2015-06-19

    Orally delivered vaccines have been shown to perform poorly in developing countries. There are marked differences in the structure and the luminal environment of the gut in developing countries resulting in changes in immune and barrier function. Recent studies using newly developed technology and analytic methods have made it increasingly clear that the intestinal microbiota activate a multitude of pathways that control innate and adaptive immunity in the gut. Several hypotheses have been proposed for the underperformance of oral vaccines in developing countries, and modulation of the intestinal microbiota is now being tested in human clinical trials. Supplementation with specific strains of probiotics has been shown to have modulatory effects on intestinal and systemic immune responses in animal models and forms the basis for human studies with vaccines. However, most studies published so far that have evaluated the immune response to vaccines in children and adults have been small and results have varied by age, antigen, type of antibody response and probiotic strain. Use of anthelminthic drugs in children has been shown to possibly increase immunogenicity following oral cholera vaccination, lending further support to the rationale for modulation of the immune response to oral vaccination through the intestinal microbiome. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  14. Suppressive influences in the immune response to cancer.

    Science.gov (United States)

    Bronte, Vincenzo; Mocellin, Simone

    2009-01-01

    Although much evidence has been gathered demonstrating that immune effectors can play a significant role in controlling tumor growth under natural conditions or in response to therapeutic manipulation, it is clear that malignant cells do evade immune surveillance in most cases. Considering that anticancer active specific immunotherapy seems to have reached a plateau of results and that currently no vaccination regimen is indicated as a standard anticancer therapy, the dissection of the molecular events underlying tumor immune escape is the necessary condition to make anticancer vaccines a therapeutic weapon effective enough to be implemented in the routine clinical setting. Recent years have witnessed significant advances in our understanding of the molecular mechanisms underlying tumor immune escape. These mechanistic insights are fostering the development of rationally designed therapeutics aimed to revert the immunosuppressive circuits that undermine an effective antitumor immune response. In this review, the best characterized mechanisms that allow cancer cells to evade immune surveillance are overviewed and the most debated controversies constellating this complex field are highlighted.

  15. Sex-specific life history responses to nymphal diet quality and immune status in a field cricket.

    Science.gov (United States)

    Kelly, C D; Neyer, A A; Gress, B E

    2014-02-01

    Individual fitness is expected to benefit from earlier maturation at a larger body size and higher body condition. However, poor nutritional quality or high prevalence of disease make this difficult because individuals either cannot acquire sufficient resources or must divert resources to other fitness-related traits such as immunity. Under such conditions, individuals are expected to mature later at a smaller body size and in poorer body condition. Moreover, the juvenile environment can also produce longer-term effects on adult fitness by causing shifts in resource allocation strategies that could alter investment in immune function and affect adult lifespan. We manipulated diet quality and immune status of juvenile Texas field crickets, Gryllus texensis, to investigate how poor developmental conditions affect sex-specific investment in fitness-related traits. As predicted, a poor juvenile diet was related to smaller mass and body size at eclosion in both sexes. However, our results also reveal sexually dimorphic responses to different facets of the rearing environment: female life history decisions are affected more by diet quality, whereas males are affected more by immune status. We suggest that females respond to decreased nutritional income because this threatens their ability to achieve a large adult body size, whereas male fitness is more dependent on reaching adulthood and so they invest in immunity and survival to eclosion. © 2013 The Authors. Journal of Evolutionary Biology © 2013 European Society For Evolutionary Biology.

  16. HPV16-E7-Specific Activated CD8 T Cells in E7 Transgenic Skin and Skin Grafts

    Directory of Open Access Journals (Sweden)

    Seyed Davoud Jazayeri

    2017-05-01

    Full Text Available Human papillomavirus (HPV 16 E7 (E7 protein expression in skin promotes epithelial hyperproliferation and transformation to malignancy. Grafts of murine skin expressing E7 protein as a transgene in keratinocytes are not rejected from immunocompetent recipients, whereas grafts expressing ovalbumin (OVA, with or without coexpression of E7 protein, are promptly rejected, demonstrating that E7-associated non-antigen-specific local immunosuppression is not a major determinant of lack of rejection of E7 transgenic skin. To determine whether failure of rejection of E7 skin grafts is due to failure to attract E7-specific effector T cells, E7- and OVA-specific effector CD8+ T cells, activated in vitro, were transferred to animals bearing E7 transgenic skin grafts. Three days after T cell transfer, E7-specific T cells were present in significantly greater numbers than OVA-specific T cells in the grafted skin on animals bearing recently placed or healed E7 grafts, without graft rejection, and also in the ear skin of E7 transgenic animals, without obvious pathology. E7 and OVA-specific T cells were present in lesser numbers in healed E7 grafts than in recently placed grafts and in lesser numbers in recently placed E7 transgenic epidermal grafts without E7-associated hyperproliferation, derived from E7 transgenic mice with a mutated retinoblastoma gene. These data demonstrate that effector T cells are to some extent attracted to E7 transgenic skin specifically by E7 expression, but in large measure non-specifically by the epithelial proliferation associated with E7 expression, and by the local inflammation produced by grafting. Failure of E7 graft rejection was observed despite trafficking of E7-specific effector T cells to E7-expressing epithelium, a finding of consequence for immunotherapy of HPV 16 E7-associated human cancers.

  17. A simple non-linear model of immune response

    International Nuclear Information System (INIS)

    Gutnikov, Sergei; Melnikov, Yuri

    2003-01-01

    It is still unknown why the adaptive immune response in the natural immune system based on clonal proliferation of lymphocytes requires interaction of at least two different cell types with the same antigen. We present a simple mathematical model illustrating that the system with separate types of cells for antigen recognition and patogen destruction provides more robust adaptive immunity than the system where just one cell type is responsible for both recognition and destruction. The model is over-simplified as we did not have an intention of describing the natural immune system. However, our model provides a tool for testing the proposed approach through qualitative analysis of the immune system dynamics in order to construct more sophisticated models of the immune systems that exist in the living nature. It also opens a possibility to explore specific features of highly non-linear dynamics in nature-inspired computational paradigms like artificial immune systems and immunocomputing . We expect this paper to be of interest not only for mathematicians but also for biologists; therefore we made effort to explain mathematics in sufficient detail for readers without professional mathematical background

  18. Pathogen recognition in the innate immune response.

    Science.gov (United States)

    Kumar, Himanshu; Kawai, Taro; Akira, Shizuo

    2009-04-28

    Immunity against microbial pathogens primarily depends on the recognition of pathogen components by innate receptors expressed on immune and non-immune cells. Innate receptors are evolutionarily conserved germ-line-encoded proteins and include TLRs (Toll-like receptors), RLRs [RIG-I (retinoic acid-inducible gene-I)-like receptors] and NLRs (Nod-like receptors). These receptors recognize pathogens or pathogen-derived products in different cellular compartments, such as the plasma membrane, the endosomes or the cytoplasm, and induce the expression of cytokines, chemokines and co-stimulatory molecules to eliminate pathogens and instruct pathogen-specific adaptive immune responses. In the present review, we will discuss the recent progress in the study of pathogen recognition by TLRs, RLRs and NLRs and their signalling pathways.

  19. Can probiotics enhance vaccine-specific immunity in children and adults?

    Science.gov (United States)

    Kwak, J Y; Lamousé-Smith, E S N

    2017-10-13

    The growing use of probiotics by the general public has heightened the interest in understanding the role of probiotics in promoting health and preventing disease. General practitioners and specialists often receive inquiries from their patients regarding probiotic products and their use to ward off systemic infection or intestinal maladies. Enhanced immune function is among the touted health benefits conferred by probiotics but has not yet been fully established. Results from recent clinical trials in adults suggest a potential role for probiotics in enhancing vaccine-specific immunity. Although almost all vaccinations are given during infancy and childhood, the numbers of and results from studies using probiotics in pediatric subjects are limited. This review evaluates recent clinical trials of probiotics used to enhance vaccine-specific immune responses in adults and infants. We highlight meaningful results and the implications of these findings for designing translational and clinical studies that will evaluate the potential clinical role for probiotics. We conclude that the touted health claims of probiotics for use in children to augment immunity warrant further investigation. In order to achieve this goal, a consensus should be reached on common study designs that apply similar treatment timelines, compare well-characterised probiotic strains and monitor effective responses against different classes of vaccines.

  20. Immune response in the lungs following oral immunization with bacterial lysates of respiratory pathogens.

    Science.gov (United States)

    Ruedl, C; Frühwirth, M; Wick, G; Wolf, H

    1994-03-01

    We have investigated the local immune response of the BALB/c mouse respiratory tract after oral immunization with a bacterial lysate of seven common respiratory pathogens. After two immunization on five consecutive days, we examined the immunoglobulin (immunoglobulin G [IgG], IgM, and IgA) secretion rates of cells isolated from the lungs and compared them with those of spleen cells of orally immunized and nonimmunized animals by using a new test system based on time-resolved fluorescence. The procedure followed the principle of the classical ELISPOT test with nitrocellulose-bottomed microtiter plates, but europium (Eu3+)-linked streptavidin rather than enzyme-conjugated streptavidin was used, with the advantage of quantifying secreted immunoglobulins instead of detecting single antibody-secreting cells. Lymphocytes isolated from the lungs of treated animals revealed significant increases in total and antigen-specific IgA synthesis compared with the rates of the controls, whereas IgG and IgM production rates showed no remarkable differences. In addition, the sera of treated mice revealed higher antigen-specific IgA titers but not increased IgM and IgG levels. We conclude that priming the gut-associated lymphoid tissue with bacterial antigens of pneumotropic microorganisms can elicit an enhanced IgA response in a distant mucosal effector site, such as the respiratory tract, according to the concept of a common mucosa-associated immune system.

  1. Transgene and immune gene expression following intramuscular injection of Atlantic salmon (Salmo salar L.) with DNA-releasing PLGA nano- and microparticles.

    Science.gov (United States)

    Hølvold, Linn Benjaminsen; Fredriksen, Børge N; Bøgwald, Jarl; Dalmo, Roy A

    2013-09-01

    The use of poly-(D,L-lactic-co-glycolic) acid (PLGA) particles as carriers for DNA delivery has received considerable attention in mammalian studies. DNA vaccination of fish has been shown to elicit durable transgene expression, but no reports exist on intramuscular administration of PLGA-encapsulated plasmid DNA (pDNA). We injected Atlantic salmon (Salmo salar L.) intramuscularly with a plasmid vector containing a luciferase (Photinus pyralis) reporter gene as a) naked pDNA, b) encapsulated into PLGA nano- (~320 nm) (NP) or microparticles (~4 μm) (MP), c) in an oil-based formulation, or with empty particles of both sizes. The ability of the different pDNA-treatments to induce transgene expression was analyzed through a 70-day experimental period. Anatomical distribution patterns and depot effects were determined by tracking isotope labeled pDNA. Muscle, head kidney and spleen from all treatment groups were analyzed for proinflammatory cytokines (TNF-α, IL-1β), antiviral genes (IFN-α, Mx) and cytotoxic T-cell markers (CD8, Eomes) at mRNA transcription levels at days 1, 2, 4 and 7. Histopathological examinations were performed on injection site samples from days 2, 7 and 30. Injection of either naked pDNA or the oil-formulation was superior to particle treatments for inducing transgene expression at early time-points. Empty particles of both sizes were able to induce proinflammatory immune responses as well as degenerative and inflammatory pathology at the injection site. Microparticles demonstrated injection site depots and an inflammatory pathology comparable to the oil-based formulation. In comparison, the distribution of NP-encapsulated pDNA resembled that of naked pDNA, although encapsulation into NPs significantly elevated the expression of antiviral genes in all tissues. Together the results indicate that while naked pDNA is most efficient for inducing transgene expression, the encapsulation of pDNA into NPs up-regulates antiviral responses that could be

  2. The immune system strikes back: cellular immune responses against indoleamine 2,3-dioxygenase

    DEFF Research Database (Denmark)

    Sørensen, Rikke Baek; Berge-Hansen, Linda; Junker, Niels

    2009-01-01

    BACKGROUND: The enzyme indoleamine 2,3-dioxygenase (IDO) exerts an well established immunosuppressive function in cancer. IDO is expressed within the tumor itself as well as in antigen-presenting cells in tumor-draining lymph nodes, where it promotes the establishment of peripheral immune tolerance...... to tumor antigens. In the present study, we tested the notion whether IDO itself may be subject to immune responses. METHODS AND FINDINGS: The presence of naturally occurring IDO-specific CD8 T cells in cancer patients was determined by MHC/peptide stainings as well as ELISPOT. Antigen specific cytotoxic T...... of the major immune suppressive cell populations. CONCLUSION: IDO may serve as an important and widely applicable target for anti-cancer immunotherapeutic strategies. Furthermore, as emerging evidence suggests that IDO constitutes a significant counter-regulatory mechanism induced by pro-inflammatory signals...

  3. Survival of Skin Graft between Transgenic Cloned Dogs and Non-Transgenic Cloned Dogs

    Science.gov (United States)

    Kim, Geon A; Oh, Hyun Ju; Kim, Min Jung; Jo, Young Kwang; Choi, Jin; Park, Jung Eun; Park, Eun Jung; Lim, Sang Hyun; Yoon, Byung Il; Kang, Sung Keun; Jang, Goo; Lee, Byeong Chun

    2014-01-01

    Whereas it has been assumed that genetically modified tissues or cells derived from somatic cell nuclear transfer (SCNT) should be accepted by a host of the same species, their immune compatibility has not been extensively explored. To identify acceptance of SCNT-derived cells or tissues, skin grafts were performed between cloned dogs that were identical except for their mitochondrial DNA (mtDNA) haplotypes and foreign gene. We showed here that differences in mtDNA haplotypes and genetic modification did not elicit immune responses in these dogs: 1) skin tissues from genetically-modified cloned dogs were successfully transplanted into genetically-modified cloned dogs with different mtDNA haplotype under three successive grafts over 63 days; and 2) non-transgenic cloned tissues were accepted into transgenic cloned syngeneic recipients with different mtDNA haplotypes and vice versa under two successive grafts over 63 days. In addition, expression of the inserted gene was maintained, being functional without eliciting graft rejection. In conclusion, these results show that transplanting genetically-modified tissues into normal, syngeneic or genetically-modified recipient dogs with different mtDNA haplotypes do not elicit skin graft rejection or affect expression of the inserted gene. Therefore, therapeutically valuable tissue derived from SCNT with genetic modification might be used safely in clinical applications for patients with diseased tissues. PMID:25372489

  4. Immune oncology, immune responsiveness and the theory of everything.

    Science.gov (United States)

    Turan, Tolga; Kannan, Deepti; Patel, Maulik; Matthew Barnes, J; Tanlimco, Sonia G; Lu, Rongze; Halliwill, Kyle; Kongpachith, Sarah; Kline, Douglas E; Hendrickx, Wouter; Cesano, Alessandra; Butterfield, Lisa H; Kaufman, Howard L; Hudson, Thomas J; Bedognetti, Davide; Marincola, Francesco; Samayoa, Josue

    2018-06-05

    Anti-cancer immunotherapy is encountering its own checkpoint. Responses are dramatic and long lasting but occur in a subset of tumors and are largely dependent upon the pre-existing immune contexture of individual cancers. Available data suggest that three landscapes best define the cancer microenvironment: immune-active, immune-deserted and immune-excluded. This trichotomy is observable across most solid tumors (although the frequency of each landscape varies depending on tumor tissue of origin) and is associated with cancer prognosis and response to checkpoint inhibitor therapy (CIT). Various gene signatures (e.g. Immunological Constant of Rejection - ICR and Tumor Inflammation Signature - TIS) that delineate these landscapes have been described by different groups. In an effort to explain the mechanisms of cancer immune responsiveness or resistance to CIT, several models have been proposed that are loosely associated with the three landscapes. Here, we propose a strategy to integrate compelling data from various paradigms into a "Theory of Everything". Founded upon this unified theory, we also propose the creation of a task force led by the Society for Immunotherapy of Cancer (SITC) aimed at systematically addressing salient questions relevant to cancer immune responsiveness and immune evasion. This multidisciplinary effort will encompass aspects of genetics, tumor cell biology, and immunology that are pertinent to the understanding of this multifaceted problem.

  5. Oral administration of Eclipta alba leaf aqueous extract enhances the non-specific immune responses and disease resistance of Oreochromis mossambicus.

    Science.gov (United States)

    Christybapita, D; Divyagnaneswari, M; Michael, R Dinakaran

    2007-10-01

    Immunostimulatory effects of the oral administration of the medicinal plant, Eclipta alba leaf extracts was studied in tilapia, Oreochromis mossambicus. For this purpose, fish were fed for 1, 2 or 3 weeks with diets containing E. alba leaf aqueous extract at 0, 0.01, 0.1 or 1% levels. After each week, non-specific humoral (lysozyme, antiprotease and complement) and cellular (myeloperoxidase content, production of reactive oxygen and nitrogen species) responses and disease resistance against Aeromonas hydrophila were determined. The results indicated that E. alba aqueous extract administered as feed supplement significantly enhanced most of the non-specific immune parameters tested. Among the humoral responses, lysozyme activity significantly increased after feeding with aqueous extract for 1, 2 or 3 weeks. No significant modulation was noticed in all the cellular responses tested after 3 weeks of feeding, while reactive oxygen species production and myeloperoxidase content showed significant enhancement after 1 week of feeding with aqueous extract. When challenged with A. hydrophila after 1, 2 or 3 weeks of feeding, the percentage mortality was significantly reduced in the treated fish. The highest dose of 1% gave better protection than the other doses with the relative percentage survival (RPS) values of 64, 75 and 32 after feeding for 1, 2 and 3 weeks respectively. The results indicate that dietary intake of E. alba aqueous leaf extract enhances the non-specific immune responses and disease resistance of O. mossambicus against A. hydrophila.

  6. [Comparison of immune response after oral and intranasal immunization with recombinant Lactobacillus casei expressing ETEC F41].

    Science.gov (United States)

    Liu, Jiankui; Wei, Chunhua; Hou, Xilin; Wang, Guihua; Yu, Liyun

    2009-04-01

    In order to represent a promising strategy for mucosal vaccination, oral or intranasal immunization of Specific Pathogen Free (SPF) BALB/c mice were performed. The mucosal immunity, systemic immune and protective immune responses were compared after immunization with the recombinant Lactobacillus casei (L. casei) harboring enterotoxigenic Escherichia coli (ETEC) F41. The recombinant fusion proteins were detected by Western blot. Surface localization of the fusion protein was verified by immunofluorescence microscopy and flow cytometry. Six-week-old female SPF BALB/c mice (160 heads) were divided into 4 groups for immunization and control. Oral and intranasal immunization of mice was performed with the recombinant strain L. casei harboring pLA-F41 or pLA. For oral immunization, the mice were inoculated daily on days 0 to 4, 7 to 11, 21 to 25, and 49 to 53. A lighter schedule was used for nasal immunization (days 0 to 2, 7 to 9, 21 and 49). Specific anti-F41 IgG antibody in the serum and specific anti-F41 secret immunoglobulin A (sIgA) antibody in the lung, intestines, vagina fluid and feces of mice were detected by indirect ELISA. The mice orally or intranasally immunized with pLA-F41/L. casei and pLA/IL. casei were challenged with standard-type ETEC F41 (C83919) (2 x 10(3) LD50). Mice immunized with pLA-F41/L. casei could produce remarkable anti-F41 antibody level. More than 90% survived in oral immunization group whereas more than 85% survived in intranasal immunization group after challenged with C83919, all dead in the control group. Ninety percent of the pups survived in oral immunization group whereas 80% survived in intranasal immunization group after challenged with C83919, but only a 5% survival rate for pups that were either immunized with a control pLA vector or unimmunized. Oral or intranasal immunization with recombinant L. casei displaying ETEC F41 antigens on the surface induced effective and similar systemic and mucosal immune responses against the

  7. Immune and stress responses in oysters with insights on adaptation.

    Science.gov (United States)

    Guo, Ximing; He, Yan; Zhang, Linlin; Lelong, Christophe; Jouaux, Aude

    2015-09-01

    Oysters are representative bivalve molluscs that are widely distributed in world oceans. As successful colonizers of estuaries and intertidal zones, oysters are remarkably resilient against harsh environmental conditions including wide fluctuations in temperature and salinity as well as prolonged air exposure. Oysters have no adaptive immunity but can thrive in microbe-rich estuaries as filter-feeders. These unique adaptations make oysters interesting models to study the evolution of host-defense systems. Recent advances in genomic studies including sequencing of the oyster genome have provided insights into oyster's immune and stress responses underlying their amazing resilience. Studies show that the oyster genomes are highly polymorphic and complex, which may be key to their resilience. The oyster genome has a large gene repertoire that is enriched for immune and stress response genes. Thousands of genes are involved in oyster's immune and stress responses, through complex interactions, with many gene families expanded showing high sequence, structural and functional diversity. The high diversity of immune receptors and effectors may provide oysters with enhanced specificity in immune recognition and response to cope with diverse pathogens in the absence of adaptive immunity. Some members of expanded immune gene families have diverged to function at different temperatures and salinities or assumed new roles in abiotic stress response. Most canonical innate immunity pathways are conserved in oysters and supported by a large number of diverse and often novel genes. The great diversity in immune and stress response genes exhibited by expanded gene families as well as high sequence and structural polymorphisms may be central to oyster's adaptation to highly stressful and widely changing environments. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Immunization of neonatal mice with LAMP/p55 HIV gag DNA elicits robust immune responses that last to adulthood

    International Nuclear Information System (INIS)

    Ordonhez Rigato, Paula; Maciel, Milton; Goldoni, Adriana Leticia; Piubelli, Orlando; Alves de Brito, Cyro; Fusaro, Ana Elisa; Eurico de Alencar, Liciana Xavier; August, Thomas; Torres Azevedo Marques, Ernesto; Silva Duarte, Alberto Jose da; Sato, Maria Notomi

    2010-01-01

    Successful T cell priming in early postnatal life that can generate effective long-lasting responses until adulthood is critical in HIV vaccination strategies because it prevents early sexual initiation and breastfeeding transmission of HIV. A chimeric DNA vaccine encoding p55 HIV gag associated with lysosome-associated membrane protein 1 (LAMP-1; which drives the antigen to the MIIC compartment), has been used to enhance cellular and humoral antigen-specific responses in adult mice and macaques. Herein, we investigated LAMP-1/gag vaccine immunogenicity in the neonatal period in mice and its ability to generate long-lasting effects. Neonatal vaccination with chimeric LAMP/gag generated stronger Gag-specific immune responses, as measured by the breadth of the Gag peptide-specific IFN-γ, proliferative responsiveness, cytokine production and antibody production, all of which revealed activation of CD4+ T cells as well as the generation of a more robust CTL response compared to gag vaccine alone. To induce long-lived T and B cell memory responses, it was necessary to immunize neonates with the chimeric LAMP/gag DNA vaccine. The LAMP/gag DNA vaccine strategy could be particularly useful for generating an anti-HIV immune response in the early postnatal period capable of inducing long-term immunological memory.

  9. Nonequivalence of classical MHC class I loci in ability to direct effective antiviral immunity.

    Directory of Open Access Journals (Sweden)

    Kevin D Pavelko

    2012-02-01

    Full Text Available Structural diversity in the peptide binding sites of the redundant classical MHC antigen presenting molecules is strongly selected in humans and mice. Although the encoded antigen presenting molecules overlap in antigen presenting function, differences in polymorphism at the MHC I A, B and C loci in humans and higher primates indicate these loci are not functionally equivalent. The structural basis of these differences is not known. We hypothesize that classical class I loci differ in their ability to direct effective immunity against intracellular pathogens. Using a picornavirus infection model and chimeric H-2 transgenes, we examined locus specific functional determinants distinguishing the ability of class I sister genes to direct effective anti viral immunity. Whereas, parental FVB and transgenic FVB mice expressing the H-2K(b gene are highly susceptible to persisting Theiler's virus infection within the CNS and subsequent demyelination, mice expressing the D(b transgene clear the virus and are protected from demyelination. Remarkably, animals expressing a chimeric transgene, comprised primarily of K(b but encoding the peptide binding domain of D(b, develop a robust anti viral CTL response yet fail to clear virus and develop significant demyelination. Differences in expression of the chimeric K(bα1α2D(b gene (low and D(b (high in the CNS of infected mice mirror expression levels of their endogenous H-2(q counterparts in FVB mice. These findings demonstrate that locus specific elements other than those specifying peptide binding and T cell receptor interaction can determine ability to clear virus infection. This finding provides a basis for understanding locus-specific differences in MHC polymorphism, characterized best in human populations.

  10. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    International Nuclear Information System (INIS)

    Pomorska-Mól, Małgorzata; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-01-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  11. The effect of doxycycline treatment on the postvaccinal immune response in pigs

    Energy Technology Data Exchange (ETDEWEB)

    Pomorska-Mól, Małgorzata, E-mail: mpomorska@piwet.pulawy.pl; Kwit, Krzysztof; Markowska-Daniel, Iwona; Pejsak, Zygmunt

    2014-07-01

    The effect of a seven-day antibiotic therapy with doxycycline was investigated on the postvaccinal humoral and cellular immune response in pigs. The selected parameters of non-specific immunity were also studied. Fifty pigs were used (control not vaccinated (C, n = 10), control vaccinated (CV, n = 20), and experimental — received doxycycline (DOXY, n = 20)). For vaccination live-attenuated vaccine against pseudorabies (PR) was used. From day − 1 to day 5 pigs from DOXY group received doxycycline orally with drinking water, at the recommended dose. Pigs from DOXY and CV groups were vaccinated at 8 and 10 weeks of age. The results of the present study showed that cell-mediated postvaccinal immune response can be modulated by oral treatment with doxycycline. Significantly lower values of stimulation index were observed after PRV restimulation in doxycycline-treated pigs. Moreover, in the DOXY group a significant decrease in IFN-γ production after PRV restimulation was noted. The significantly lower number of CD4+CD8 + cells was also observed in doxy-treated, vaccinated pigs, 2 weeks after final vaccination. Simultaneously, specific humoral response was not disturbed. This study demonstrated the importance of defining the immune modulatory activity of doxycycline because it may alter the immune responses to vaccines. The exact mechanism of T-cell response suppression by doxycycline remains to be elucidated, however the influence of doxycycline on the secretion of various cytokines, including IFN-γ, may be considered as a possible cause. The present observations should prompt further studies on the practical significance of such phenomena in terms of clinical implications. - Highlights: • We examine the postvaccinal immune response in pigs treated with doxycycline. • Doxycycline negatively influenced the specific proliferation after recall stimulation. • Doxycycline negatively influenced secretion of IFN-γ after recall stimulation. • The lower number of

  12. Integrative proteomics, genomics, and translational immunology approaches reveal mutated forms of Proteolipid Protein 1 (PLP1) and mutant-specific immune response in multiple sclerosis.

    Science.gov (United States)

    Qendro, Veneta; Bugos, Grace A; Lundgren, Debbie H; Glynn, John; Han, May H; Han, David K

    2017-03-01

    In order to gain mechanistic insights into multiple sclerosis (MS) pathogenesis, we utilized a multi-dimensional approach to test the hypothesis that mutations in myelin proteins lead to immune activation and central nervous system autoimmunity in MS. Mass spectrometry-based proteomic analysis of human MS brain lesions revealed seven unique mutations of PLP1; a key myelin protein that is known to be destroyed in MS. Surprisingly, in-depth genomic analysis of two MS patients at the genomic DNA and mRNA confirmed mutated PLP1 in RNA, but not in the genomic DNA. Quantification of wild type and mutant PLP RNA levels by qPCR further validated the presence of mutant PLP RNA in the MS patients. To seek evidence linking mutations in abundant myelin proteins and immune-mediated destruction of myelin, specific immune response against mutant PLP1 in MS patients was examined. Thus, we have designed paired, wild type and mutant peptide microarrays, and examined antibody response to multiple mutated PLP1 in sera from MS patients. Consistent with the idea of different patients exhibiting unique mutation profiles, we found that 13 out of 20 MS patients showed antibody responses against specific but not against all the mutant-PLP1 peptides. Interestingly, we found mutant PLP-directed antibody response against specific mutant peptides in the sera of pre-MS controls. The results from integrative proteomic, genomic, and immune analyses reveal a possible mechanism of mutation-driven pathogenesis in human MS. The study also highlights the need for integrative genomic and proteomic analyses for uncovering pathogenic mechanisms of human diseases. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Expression of verocytotoxic Escherichia coli antigens in tobacco seeds and evaluation of gut immunity after oral administration in mouse model

    OpenAIRE

    Rossi, Luciana; Di Giancamillo, Alessia; Reggi, Serena; Domeneghini, Cinzia; Baldi, Antonella; Sala, Vittorio; Dell'Orto, Vittorio; Coddens, Annelies; Cox, Eric; Fogher, Corrado

    2013-01-01

    Verocytotoxic Escherichia (E.) coli strains are responsible for swine oedema disease, which is an enterotoxaemia that causes economic losses in the pig industry. The production of a vaccine for oral administration in transgenic seeds could be an efficient system to stimulate local immunity. This study was conducted to transform tobacco plants for the seed-specific expression of antigenic proteins from a porcine verocytotoxic E. coli strain. Parameters related to an immunological response and ...

  14. Propolis and Herba Epimedii extracts enhance the non-specific immune response and disease resistance of Chinese sucker, Myxocyprinus asiaticus.

    Science.gov (United States)

    Zhang, Guobin; Gong, Shiyuan; Yu, Denghang; Yuan, Hanwen

    2009-03-01

    The effect of traditional Chinese medicine (TCM) formulated from propolis and Herba Epimedii extracts at the ratio of 3:1 (w/w) on non-specific immune response of Chinese sucker (Myxocyprinus asiaticus) was investigated. Fish were fed diets containing 0 (control), 0.1%, 0.5% or 1.0% TCM extracts for five weeks. The respiratory burst and phagocytic activities of blood leukocytes, lysozyme and natural haemolytic complement activities in plasma were measured weekly. After five weeks of feeding, fish were infected with Aeromonas hydrophila and mortalities were recorded. Results of this study showed that feeding Chinese sucker with different dosage of TCM extracts stimulated respiratory burst activity, phagocytosis of phagocytic cells in blood and lysozyme activity in plasma. They had no effect on plasma natural haemolytic complement activity. All dosage of treated groups showed reduced mortality following A. hydrophila infection. Feed containing 0.5% TCM extracts was the most effective with the mortality of the fish significantly reduced by 35% compared to the control. The results indicate that propolis and Herba Epimedii extracts in combination enhances the non-specific immune response and disease resistance of Chinese sucker against A. hydrophila.

  15. Transgene regulation using the tetracycline-inducible TetR-KRAB system after AAV-mediated gene transfer in rodents and nonhuman primates.

    Directory of Open Access Journals (Sweden)

    Caroline Le Guiner

    Full Text Available Numerous studies have demonstrated the efficacy of the Adeno-Associated Virus (AAV-based gene delivery platform in vivo. The control of transgene expression in many protocols is highly desirable for therapeutic applications and/or safety reasons. To date, the tetracycline and the rapamycin dependent regulatory systems have been the most widely evaluated. While the long-term regulation of the transgene has been obtained in rodent models, the translation of these studies to larger animals, especially to nonhuman primates (NHP, has often resulted in an immune response against the recombinant regulator protein involved in transgene expression regulation. These immune responses were dependent on the target tissue and vector delivery route. Here, using AAV vectors, we evaluated a doxycyclin-inducible system in rodents and macaques in which the TetR protein is fused to the human Krüppel associated box (KRAB protein. We demonstrated long term gene regulation efficiency in rodents after subretinal and intramuscular administration of AAV5 and AAV1 vectors, respectively. However, as previously described for other chimeric transactivators, the TetR-KRAB-based system failed to achieve long term regulation in the macaque after intramuscular vector delivery because of the development of an immune response. Thus, immunity against the chimeric transactivator TetR-KRAB emerged as the primary limitation for the clinical translation of the system when targeting the skeletal muscle, as previously described for other regulatory proteins. New developments in the field of chimeric drug-sensitive transactivators with the potential to not trigger the host immune system are still needed.

  16. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A.; Thörn, Karolina; Cairns, Tina M.; Wegmann, Frank; Sattentau, Quentin J.; Eisenberg, Roselyn J.; Cohen, Gary H.; Harandi, Ali M.

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes. PMID:28082979

  17. Nasal Immunization Confers High Avidity Neutralizing Antibody Response and Immunity to Primary and Recurrent Genital Herpes in Guinea Pigs.

    Science.gov (United States)

    Persson, Josefine; Zhang, Yuan; Olafsdottir, Thorunn A; Thörn, Karolina; Cairns, Tina M; Wegmann, Frank; Sattentau, Quentin J; Eisenberg, Roselyn J; Cohen, Gary H; Harandi, Ali M

    2016-01-01

    Genital herpes is one of the most prevalent sexually transmitted infections in both the developing and developed world. Following infection, individuals experience life-long latency associated with sporadic ulcerative outbreaks. Despite many efforts, no vaccine has yet been licensed for human use. Herein, we demonstrated that nasal immunization with an adjuvanted HSV-2 gD envelope protein mounts significant protection to primary infection as well as the establishment of latency and recurrent genital herpes in guinea pigs. Nasal immunization was shown to elicit specific T cell proliferative and IFN-γ responses as well as systemic and vaginal gD-specific IgG antibody (Ab) responses. Furthermore, systemic IgG Abs displayed potent HSV-2 neutralizing properties and high avidity. By employing a competitive surface plasmon resonance (SPR) analysis combined with a battery of known gD-specific neutralizing monoclonal Abs (MAbs), we showed that nasal immunization generated IgG Abs directed to two major discontinuous neutralizing epitopes of gD. These results highlight the potential of nasal immunization with an adjuvanted HSV-2 envelope protein for induction of protective immunity to primary and recurrent genital herpes.

  18. Effects of effluent from electoplating industry on the immune response in the freshwater fish, Cyprinus carpio.

    Science.gov (United States)

    Borgia, V J Florence; Thatheyus, A J; Murugesan, A G; Alexander, S Catherine P; Geetha, I

    2018-08-01

    The present study was designed to assess the effect of sublethal concentrations of electoplating industry effluent (EIE) on the non-specific and specific immune responses in the freshwater fish, Cyprinus carpio. Sublethal concentrations of electroplating industry effluent such as 0.004, 0.007, 0.010 and 0.013% were chosen based on the LC 50 values. Experimental fish were exposed to these sublethal concentrations of EIE for 28 days. After 7, 14, 21 and 28 days of treatment, non-specific immune response by serum lysozyme activity, myeloperoxidase activity and antiprotease activity and specific immune response by antibody response to Aeromonas hydrophila using bacterial agglutination assay and ELISA were assessed. The results showed that chronic exposure of fish to 0.004, 0.007, 0.010 and 0.013% EIE, dose-dependently decreased the non-specific and specific immune responses on all the days tested compared to control fish whereas statistically significant suppressive effects were observed in fish exposed to 0.013% of EIE on all activities tested. Copyright © 2018 Elsevier Ltd. All rights reserved.

  19. Glufosinate ammonium-induced pathogen inhibition and defense responses culminate in disease protection in bar-transgenic rice.

    Science.gov (United States)

    Ahn, Il-Pyung

    2008-01-01

    Glufosinate ammonium diminished developments of rice (Oryza sativa) blast and brown leaf spot in 35S:bar-transgenic rice. Pre- and postinoculation treatments of this herbicide reduced disease development. Glufosinate ammonium specifically impeded appressorium formation of the pathogens Magnaporthe grisea and Cochliobolus miyabeanus on hydrophobic surface and on transgenic rice. In contrast, conidial germination remained unaffected. Glufosinate ammonium diminished mycelial growth of two pathogens; however, this inhibitory effect was attenuated in malnutrition conditions. Glufosinate ammonium caused slight chlorosis and diminished chlorophyll content; however, these alterations were almost completely restored in transgenic rice within 7 d. Glufosinate ammonium triggered transcriptions of PATHOGENESIS-RELATED (PR) genes and hydrogen peroxide accumulation in transgenic rice and PR1 transcription in Arabidopsis (Arabidopsis thaliana) wild-type ecotype Columbia harboring 35S:bar construct. All transgenic Arabidopsis showed robust hydrogen peroxide accumulation by glufosinate ammonium. This herbicide also induced PR1 transcription in etr1 and jar1 expressing bar; however, no expression was observed in NahG and npr1. Fungal infection did not alter transcriptions of PR genes and hydrogen peroxide accumulation induced by glufosinate ammonium. Infiltration of glufosinate ammonium did not affect appressorium formation of M. grisea in vivo but inhibited blast disease development. Hydrogen peroxide scavengers nullified blast protection and transcriptions of PR genes by glufosinate ammonium; however, they did not affect brown leaf spot progression. In sum, both direct inhibition of pathogen infection and activation of defense systems were responsible for disease protection in bar-transgenic rice.

  20. Intranasal immunization with protective antigen of Bacillus anthracis induces a long-term immunological memory response.

    Science.gov (United States)

    Woo, Sun-Je; Kang, Seok-Seong; Park, Sung-Moo; Yang, Jae Seung; Song, Man Ki; Yun, Cheol-Heui; Han, Seung Hyun

    2015-10-01

    Although intranasal vaccination has been shown to be effective for the protection against inhalational anthrax, establishment of long-term immunity has yet to be achieved. Here, we investigated whether intranasal immunization with recombinant protective antigen (rPA) of Bacillus anthracis induces immunological memory responses in the mucosal and systemic compartments. Intranasal immunization with rPA plus cholera toxin (CT) sustained PA-specific antibody responses for 6 months in lung, nasal washes, and vaginal washes as well as serum. A significant induction of PA-specific memory B cells was observed in spleen, cervical lymph nodes (CLNs) and lung after booster immunization. Furthermore, intranasal immunization with rPA plus CT remarkably generated effector memory CD4(+) T cells in the lung. PA-specific CD4(+) T cells preferentially increased the expression of Th1- and Th17-type cytokines in lung, but not in spleen or CLNs. Collectively, the intranasal immunization with rPA plus CT promoted immunologic memory responses in the mucosal and systemic compartments, providing long-term immunity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  1. An endoplasmic reticulum-localized Coffea arabica BURP domain-containing protein affects the response of transgenic Arabidopsis plants to diverse abiotic stresses.

    Science.gov (United States)

    Dinh, Sy Nguyen; Kang, Hunseung

    2017-11-01

    The Coffea arabica BURP domain-containing gene plays an important role in the response of transgenic Arabidopsis plants to abiotic stresses via regulating the level of diverse proteins. Although the functions of plant-specific BURP domain-containing proteins (BDP) have been determined for a few plants, their roles in the growth, development, and stress responses of most plant species, including coffee plant (Coffea arabica), are largely unknown. In this study, the function of a C. arabica BDP, designated CaBDP1, was investigated in transgenic Arabidopsis plants. The expression of CaBDP1 was highly modulated in coffee plants subjected to drought, cold, salt, or ABA. Confocal analysis of CaBDP1-GFP fusion proteins revealed that CaBDP1 is localized in the endoplasmic reticulum. The ectopic expression of CaBDP1 in Arabidopsis resulted in delayed germination of the transgenic plants under abiotic stress and in the presence of ABA. Cotyledon greening and seedling growth of the transgenic plants were inhibited in the presence of ABA due to the upregulation of ABA signaling-related genes like ABI3, ABI4, and ABI5. Proteome analysis revealed that the levels of several proteins are modulated in CaBDP1-expressing transgenic plants. The results of this study underscore the importance of BURP domain proteins in plant responses to diverse abiotic stresses.

  2. The development of a fully-integrated immune response model (FIRM) simulator of the immune response through integration of multiple subset models.

    Science.gov (United States)

    Palsson, Sirus; Hickling, Timothy P; Bradshaw-Pierce, Erica L; Zager, Michael; Jooss, Karin; O'Brien, Peter J; Spilker, Mary E; Palsson, Bernhard O; Vicini, Paolo

    2013-09-28

    The complexity and multiscale nature of the mammalian immune response provides an excellent test bed for the potential of mathematical modeling and simulation to facilitate mechanistic understanding. Historically, mathematical models of the immune response focused on subsets of the immune system and/or specific aspects of the response. Mathematical models have been developed for the humoral side of the immune response, or for the cellular side, or for cytokine kinetics, but rarely have they been proposed to encompass the overall system complexity. We propose here a framework for integration of subset models, based on a system biology approach. A dynamic simulator, the Fully-integrated Immune Response Model (FIRM), was built in a stepwise fashion by integrating published subset models and adding novel features. The approach used to build the model includes the formulation of the network of interacting species and the subsequent introduction of rate laws to describe each biological process. The resulting model represents a multi-organ structure, comprised of the target organ where the immune response takes place, circulating blood, lymphoid T, and lymphoid B tissue. The cell types accounted for include macrophages, a few T-cell lineages (cytotoxic, regulatory, helper 1, and helper 2), and B-cell activation to plasma cells. Four different cytokines were accounted for: IFN-γ, IL-4, IL-10 and IL-12. In addition, generic inflammatory signals are used to represent the kinetics of IL-1, IL-2, and TGF-β. Cell recruitment, differentiation, replication, apoptosis and migration are described as appropriate for the different cell types. The model is a hybrid structure containing information from several mammalian species. The structure of the network was built to be physiologically and biochemically consistent. Rate laws for all the cellular fate processes, growth factor production rates and half-lives, together with antibody production rates and half-lives, are provided. The

  3. Effect of glucocorticoids on melatonin receptor expression under T-cell activated immune response

    International Nuclear Information System (INIS)

    Tauschanova, P.; Georgiev, G.; Manchev, S.; Konakchieva, R.

    2007-01-01

    The present study was aimed to explore the stress response in rats under conditions of T-cell antigen-activated immune function and to investigate the specific melatonin (MEL) receptor binding in primary and secondary immune tissue of rats employing 2-( 125 I)-iodo melatonin autoradiography and in vitro ligand binding assay. The study revealed that melatonin receptor binding was specifically expressed in discrete areas of the lymphoid sheath of the spleen and in a network of interdigitating cells of the experimental rats. Demonstration of the modulation of MEL receptor binding in the course of a primary immune response under hypercorticalemic conditions indicate that the pineal hormone might interfere in the processes of glucocorticoid-dependent immune competency. (authors)

  4. Evasion of adaptive and innate immune response mechanisms by γ-herpesviruses

    Science.gov (United States)

    Feng, Pinghui; Moses, Ashlee; Früh, Klaus

    2015-01-01

    γ-Herpesviral immune evasion mechanisms are optimized to support the acute, lytic and the longterm, latent phase of infection. During acute infection, specific immune modulatory proteins limit, but also exploit, the antiviral activities of cell intrinsic innate immune responses as well as those of innate and adaptive immune cells. During latent infection, a restricted gene expression program limits immune targeting and cis-acting mechanisms to reduce the antigen presentation as well as antigenicity of latency-associated proteins. Here, we will review recent progress in our understanding of γ-herpesviral immune evasion strategies. PMID:23735334

  5. FEATURES OF THE IMMUNE RESPONSE DURING INFECTION AND PROSPECTS FOR THE VACCINES CREATION

    Directory of Open Access Journals (Sweden)

    Davidova T.V.

    2015-12-01

    Full Text Available The influenza virus belongs to the family Orthomyxoviridae and is a major cause of respiratory infections in humans. Each year, influenza viruses cause, according to experts, 3-5 million severe course of the disease and 250 000-500 000 deaths. Influenza A viruses are divided into serotypes based on their surface glycoproteins - known currently 17 subtypes of HA and NA subtypes ten. Upon infection with an influenza virus, both innate and adaptive immune responses are inducing. In recent years the annual seasonal epidemics were causing strains of the virus A (H1N1 and H3N2 and virus B. This may be due to their ability to be unrecognizable virus specific antibodies due to antigenic drift (Figure 1. Seasonal flu vaccine, to be effective, must be updated almost annually, according to new epidemic strains. In this work will discuss various strategies used by influenza viruses to evade innate immune responses and recognition by components of the humoral and cellular immune response, which consequently may result in reduced clearing of the virus and virus-infected cells.The primary targets for influenza viruses are the epithelial cells that line the respiratory tract and which initiate an antiviral immune response upon detection of the virus. The first line of defense is formed by the innate immune system, which is quick but lacks specificity and memory. Innate immunity is formed by physical barriers and innate cellular immune responses. Here, we outline several of the innate defense mechanisms directed against influenza infections. During homeostasis, alveolar macrophages exhibit a relatively quiescent state, producing only low levels of cytokines, and suppress the induction of innate and adaptive immunity. Activated macrophages enhance their pro-inflammatory cytokine response, including IL-6 and TNF-α. Alveolar macrophages have a direct role in limiting viral spread by phagocytosis of apoptotic infected cells and by phagocyte

  6. Tissue- and agonist-specific regulation of human and murine plasminogen activator inhibitor-1 promoters in transgenic mice.

    Science.gov (United States)

    Eren, M; Painter, C A; Gleaves, L A; Schoenhard, J A; Atkinson, J B; Brown, N J; Vaughan, D E

    2003-11-01

    Numerous studies have described regulatory factors and sequences that control transcriptional responses in vitro. However, there is a paucity of information on the qualitative and quantitative regulation of heterologous promoters using transgenic strategies. In order to investigate the physiological regulation of human plasminogen activator inhibitor type-1 (hPAI-1) expression in vivo compared to murine PAI-1 (mPAI-1) and to test the physiological relevance of regulatory mechanisms described in vitro, we generated transgenic mice expressing enhanced green fluorescent protein (EGFP) driven by the proximal -2.9 kb of the hPAI-1 promoter. Transgenic animals were treated with Ang II, TGF-beta1 and lipopolysaccharide (LPS) to compare the relative activation of the human and murine PAI-1 promoters. Ang II increased EGFP expression most effectively in brain, kidney and spleen, while mPAI-1 expression was quantitatively enhanced most prominently in heart and spleen. TGF-beta1 failed to induce activation of the hPAI-1 promoter but potently stimulated mPAI-1 in kidney and spleen. LPS administration triggered robust expression of mPAI-1 in liver, kidney, pancreas, spleen and lung, while EGFP was induced only modestly in heart and kidney. These results indicate that the transcriptional response of the endogenous mPAI-1 promoter varies widely in terms of location and magnitude of response to specific stimuli. Moreover, the physiological regulation of PAI-1 expression likely involves a complex interaction of transcription factors and DNA sequences that are not adequately replicated by in vitro functional studies focused on the proximal -2.9 kb promoter.

  7. Merck Ad5/HIV induces broad innate immune activation that predicts CD8⁺ T-cell responses but is attenuated by preexisting Ad5 immunity.

    Science.gov (United States)

    Zak, Daniel E; Andersen-Nissen, Erica; Peterson, Eric R; Sato, Alicia; Hamilton, M Kristina; Borgerding, Joleen; Krishnamurty, Akshay T; Chang, Joanne T; Adams, Devin J; Hensley, Tiffany R; Salter, Alexander I; Morgan, Cecilia A; Duerr, Ann C; De Rosa, Stephen C; Aderem, Alan; McElrath, M Juliana

    2012-12-11

    To better understand how innate immune responses to vaccination can lead to lasting protective immunity, we used a systems approach to define immune signatures in humans over 1 wk following MRKAd5/HIV vaccination that predicted subsequent HIV-specific T-cell responses. Within 24 h, striking increases in peripheral blood mononuclear cell gene expression associated with inflammation, IFN response, and myeloid cell trafficking occurred, and lymphocyte-specific transcripts decreased. These alterations were corroborated by marked serum inflammatory cytokine elevations and egress of circulating lymphocytes. Responses of vaccinees with preexisting adenovirus serotype 5 (Ad5) neutralizing antibodies were strongly attenuated, suggesting that enhanced HIV acquisition in Ad5-seropositive subgroups in the Step Study may relate to the lack of appropriate innate activation rather than to increased systemic immune activation. Importantly, patterns of chemoattractant cytokine responses at 24 h and alterations in 209 peripheral blood mononuclear cell transcripts at 72 h were predictive of subsequent induction and magnitude of HIV-specific CD8(+) T-cell responses. This systems approach provides a framework to compare innate responses induced by vectors, as shown here by contrasting the more rapid, robust response to MRKAd5/HIV with that to yellow fever vaccine. When applied iteratively, the findings may permit selection of HIV vaccine candidates eliciting innate immune response profiles more likely to drive HIV protective immunity.

  8. A T-cell response to a liver-stage Plasmodium antigen is not boosted by repeated sporozoite immunizations

    Science.gov (United States)

    Murphy, Sean C.; Kas, Arnold; Stone, Brad C.; Bevan, Michael J.

    2013-01-01

    Development of an antimalarial subunit vaccine inducing protective cytotoxic T lymphocyte (CTL)-mediated immunity could pave the way for malaria eradication. Experimental immunization with sporozoites induces this type of protective response, but the extremely large number of proteins expressed by Plasmodium parasites has so far prohibited the identification of sufficient discrete T-cell antigens to develop subunit vaccines that produce sterile immunity. Here, using mice singly immunized with Plasmodium yoelii sporozoites and high-throughput screening, we identified a unique CTL response against the parasite ribosomal L3 protein. Unlike CTL responses to the circumsporozoite protein (CSP), the population of L3-specific CTLs was not expanded by multiple sporozoite immunizations. CSP is abundant in the sporozoite itself, whereas L3 expression does not increase until the liver stage. The response induced by a single immunization with sporozoites reduces the parasite load in the liver so greatly during subsequent immunizations that L3-specific responses are only generated during the primary exposure. Functional L3-specific CTLs can, however, be expanded by heterologous prime-boost regimens. Thus, although repeat sporozoite immunization expands responses to preformed antigens like CSP that are present in the sporozoite itself, this immunization strategy may not expand CTLs targeting parasite proteins that are synthesized later. Heterologous strategies may be needed to increase CTL responses across the entire spectrum of Plasmodium liver-stage proteins. PMID:23530242

  9. Pulmonary Immune-Compartment-Specific Interferon Gamma Responses in HIV-Infected Individuals with Active Tuberculosis (TB in an Area of High TB Prevalence

    Directory of Open Access Journals (Sweden)

    S. Buldeo

    2012-01-01

    Full Text Available There is a paucity of data on the pulmonary immune-compartment interferon gamma (IFNγ response to M. tuberculosis, particularly in settings of high tuberculosis (TB prevalence and in HIV-coinfected individuals. This data is necessary to understand the diagnostic potential of commercially available interferon gamma release assays (IGRAs in both the pulmonary immune-compartment and peripheral blood. We used intracellular cytokine staining by flow cytometry to assess the IFNγ response to purified protein derivative (PPD and early secretory antigen 6 (ESAT6 in induced sputa (ISp and blood samples from HIV-infected, smear-negative, TB suspects. We found that individuals with active TB disease produced significantly less IFNγ in response to PPD in their induced sputa samples than individuals with non-active TB (control group. This difference was not reflected in the peripheral blood, even within the CD27− CD4+ memory T lymphocyte population. These findings suggest that progression to active TB disease may be associated with the loss of IFNγ secretion at the site of primary infection. Our findings highlight the importance of studying pulmonary immune-compartment M. tuberculosis specific responses to elucidate IFNγ secretion across the spectrum of TB disease.

  10. Forced expression of stabilized c-Fos in dendritic cells reduces cytokine production and immune responses in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Yoshida, Ryoko; Suzuki, Mayu; Sakaguchi, Ryota; Hasegawa, Eiichi; Kimura, Akihiro; Shichita, Takashi; Sekiya, Takashi [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan); Shiraishi, Hiroshi [Division of Medical Biochemistry, Department of Biomolecular Sciences, Saga Medical School, Saga (Japan); Shimoda, Kouji [Department of Laboratory Animal Center, Keio University School of Medicine, Tokyo (Japan); Yoshimura, Akihiko, E-mail: yoshimura@a6.keio.jp [Department of Microbiology and Immunology, Keio University School of Medicine, 35 Shinanomachi, Shinjyuku-ku, Tokyo 160-8582 (Japan); Japan Science and Technology Agency, CREST, Chiyoda-ku 102-0075 (Japan)

    2012-06-29

    Highlights: Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos produced less inflammatory cytokines. Black-Right-Pointing-Pointer Dendritic cells expressing stabilized c-Fos activated T cells less efficiently. Black-Right-Pointing-Pointer Transgenic mice expressing stabilized c-Fos were resistant to EAE model. -- Abstract: Intracellular cyclic adenosine monophosphate (cAMP) suppresses innate immunity by inhibiting proinflammatory cytokine production by monocytic cells. We have shown that the transcription factor c-Fos is responsible for cAMP-mediated suppression of inflammatory cytokine production, and that c-Fos protein is stabilized by IKK{beta}-mediated phosphorylation. We found that S308 is one of the major phosphorylation sites, and that the S308D mutation prolongs c-Fos halflife. To investigate the role of stabilized c-Fos protein in dendritic cells (DCs) in vivo, we generated CD11c-promoter-deriven c-FosS308D transgenic mice. As expected, bone marrow-derived DCs (BMDCs) from these Tg mice produced smaller amounts of inflammatory cytokines, including TNF-{alpha}, IL-12, and IL-23, but higher levels of IL-10, in response to LPS, than those from wild-type (Wt) mice. When T cells were co-cultured with BMDCs from Tg mice, production of Th1 and Th17 cytokines was reduced, although T cell proliferation was not affected. Tg mice demonstrated more resistance to experimental autoimmune encephalomyelitis (EAE) than did Wt mice. These data suggest that c-Fos in DCs plays a suppressive role in certain innate and adaptive immune responses.

  11. Immune activation and HIV-specific T cell responses are modulated by a cyclooxygenase-2 inhibitor in untreated HIV-infected individuals: An exploratory clinical trial.

    Directory of Open Access Journals (Sweden)

    Christian Prebensen

    Full Text Available Pathologically elevated immune activation and inflammation contribute to HIV disease progression and immunodeficiency, potentially mediated by elevated levels of prostaglandin E2, which suppress HIV-specific T cell responses. We have previously shown that a high dose of the cyclooxygenase-2 inhibitor celecoxib can reduce HIV-associated immune activation and improve IgG responses to T cell-dependent vaccines. In this follow-up study, we included 56 HIV-infected adults, 28 antiretroviral therapy (ART-naïve and 28 on ART with undetectable plasma viremia but CD4 counts below 500 cells/μL. Patients in each of the two study groups were randomized to receive 90 mg qd of the cyclooxygenase-2 inhibitor etoricoxib for six months, two weeks or to a control arm, respectively. T cell activation status, HIV Gag-specific T cell responses and plasma inflammatory markers, tryptophan metabolism and thrombin generation were analyzed at baseline and after four months. In addition, patients received tetanus toxoid, conjugated pneumococcal and seasonal influenza vaccines, to which IgG responses were determined after four weeks. In ART-naïve patients, etoricoxib reduced the density of the activation marker CD38 in multiple CD8+ T cell subsets, improved Gag-specific T cell responses, and reduced in vitro plasma thrombin generation, while no effects were seen on plasma markers of inflammation or tryptophan metabolism. No significant immunological effects of etoricoxib were observed in ART-treated patients. Patients receiving long-term etoricoxib treatment had poorer tetanus toxoid and conjugated pneumococcal vaccine responses than those receiving short-course etoricoxib. Cyclooxygenase-2 inhibitors may attenuate harmful immune activation in HIV-infected patients without access to ART.

  12. Vaccine platforms combining circumsporozoite protein and potent immune modulators, rEA or EAT-2, paradoxically result in opposing immune responses.

    Directory of Open Access Journals (Sweden)

    Nathaniel J Schuldt

    Full Text Available Malaria greatly impacts the health and wellbeing of over half of the world's population. Promising malaria vaccine candidates have attempted to induce adaptive immune responses to Circumsporozoite (CS protein. Despite the inclusion of potent adjuvants, these vaccines have limited protective efficacy. Conventional recombinant adenovirus (rAd based vaccines expressing CS protein can induce CS protein specific immune responses, but these are essentially equivalent to those generated after use of the CS protein subunit based vaccines. In this study we combined the use of rAds expressing CS protein along with rAds expressing novel innate immune response modulating proteins in an attempt to significantly improve the induction of CS protein specific cell mediated immune (CMI responses.BALB/cJ mice were co-vaccinated with a rAd vectors expressing CS protein simultaneous with a rAd expressing either TLR agonist (rEA or SLAM receptors adaptor protein (EAT-2. Paradoxically, expression of the TLR agonist uncovered a potent immunosuppressive activity inherent to the combined expression of the CS protein and rEA. Fortunately, use of the rAd vaccine expressing EAT-2 circumvented CS protein's suppressive activity, and generated a fivefold increase in the number of CS protein responsive, IFNγ secreting splenocytes, as well as increased the breadth of T cells responsive to peptides present in the CS protein. These improvements were positively correlated with the induction of a fourfold improvement in CS protein specific CTL functional activity in vivo.Our results emphasize the need for caution when incorporating CS protein into malaria vaccine platforms expressing or containing other immunostimulatory compounds, as the immunological outcomes may be unanticipated and/or counter-productive. However, expressing the SLAM receptors derived signaling adaptor EAT-2 at the same time of vaccination with CS protein can overcome these concerns, as well as significantly

  13. Transgenic Expression of the piRNA-Resistant Masculinizer Gene Induces Female-Specific Lethality and Partial Female-to-Male Sex Reversal in the Silkworm, Bombyx mori.

    Science.gov (United States)

    Sakai, Hiroki; Sumitani, Megumi; Chikami, Yasuhiko; Yahata, Kensuke; Uchino, Keiro; Kiuchi, Takashi; Katsuma, Susumu; Aoki, Fugaku; Sezutsu, Hideki; Suzuki, Masataka G

    2016-08-01

    In Bombyx mori (B. mori), Fem piRNA originates from the W chromosome and is responsible for femaleness. The Fem piRNA-PIWI complex targets and cleaves mRNAs transcribed from the Masc gene. Masc encodes a novel CCCH type zinc-finger protein and is required for male-specific splicing of B. mori doublesex (Bmdsx) transcripts. In the present study, several silkworm strains carrying a transgene, which encodes a Fem piRNA-resistant Masc mRNA (Masc-R), were generated. Forced expression of the Masc-R transgene caused female-specific lethality during the larval stages. One of the Masc-R strains weakly expressed Masc-R in various tissues. Females heterozygous for the transgene expressed male-specific isoform of the Bombyx homolog of insulin-like growth factor II mRNA-binding protein (ImpM) and Bmdsx. All examined females showed a lower inducibility of vitellogenin synthesis and exhibited abnormalities in the ovaries. Testis-like tissues were observed in abnormal ovaries and, notably, the tissues contained considerable numbers of sperm bundles. Homozygous expression of the transgene resulted in formation of the male-specific abdominal segment in adult females and caused partial male differentiation in female genitalia. These results strongly suggest that Masc is an important regulatory gene of maleness in B. mori.

  14. Mucosal immunization with PLGA-microencapsulated DNA primes a SIV-specific CTL response revealed by boosting with cognate recombinant modified vaccinia virus Ankara

    International Nuclear Information System (INIS)

    Sharpe, Sally; Hanke, Tomas; Tinsley-Bown, Anne; Dennis, Mike; Dowall, Stuart; McMichael, Andrew; Cranage, Martin

    2003-01-01

    Systemically administered DNA encoding a recombinant human immunodeficiency virus (HIV) derived immunogen effectively primes a cytotoxic T lymphocyte (CTL) response in macaques. In this further pilot study we have evaluated mucosal delivery of DNA as an alternative priming strategy. Plasmid DNA, pTH.HW, encoding a multi-CTL epitope gene, was incorporated into poly(D,L-lactic-co-glycolic acid) microparticles of less than 10 μm in diameter. Five intrarectal immunizations failed to stimulate a circulating vaccine-specific CTL response in 2 Mamu-A*01 + rhesus macaques. However, 1 week after intradermal immunization with a cognate modified vaccinia virus Ankara vaccine MVA.HW, CTL responses were detected in both animals that persisted until analysis postmortem, 12 weeks after the final boost. In contrast, a weaker and less durable response was seen in an animal vaccinated with the MVA construct alone. Analysis of lymphoid tissues revealed a disseminated CTL response in peripheral and regional lymph nodes but not the spleen of both mucosally primed animals

  15. Sensitivity and specificity of tritiated thymidine incorporation and ELISPOT assays in identifying antigen specific T cell immune responses

    Directory of Open Access Journals (Sweden)

    MacLeod Beth

    2007-09-01

    Full Text Available Abstract Background Standardization of cell-based immunologic monitoring is becoming increasingly important as methods for measuring cellular immunity become more complex. We assessed the ability of two commonly used cell-based assays, tritiated thymidine incorporation (proliferation and IFN-gamma ELISPOT, to predict T cell responses to HER-2/neu, tetanus toxoid (tt, and cytomegalovirus (CMV antigens. These antigens were determined to be low (HER-2/neu, moderate (tt, and robustly (CMV immunogenic proteins. Samples from 27 Stage II, III, and IV HER-2/neu positive breast cancer patients, vaccinated against the HER-2/neu protein and tt, were analyzed by tritiated thymidine incorporation and IFN-gamma ELISPOT for T cell response. Results Linear regression analysis indicates that both stimulation index (SI (p = 0.011 and IFN-gamma secreting precursor frequency (p Conclusion These data underscore the importance of taking into consideration the performance characteristics of assays used to measure T cell immunity. This consideration is particularly necessary when determining which method to utilize for assessing responses to immunotherapeutic manipulations in cancer patients.

  16. The immune complex CTA1-DD/IgG adjuvant specifically targets connective tissue mast cells through FcγRIIIA and augments anti-HPV immunity after nasal immunization.

    Science.gov (United States)

    Fang, Y; Zhang, T; Lidell, L; Xu, X; Lycke, N; Xiang, Z

    2013-11-01

    We have previously reported that CTA1-DD/IgG immune complexes augment antibody responses in a mast cell-dependent manner following intranasal (IN) immunizations. However, from a safety perspective, mast cell activation could preclude clinical use. Therefore, we have extended these studies and demonstrate that CTA1-DD/IgG immune complexes administered IN did not trigger an anaphylactic reaction. Importantly, CTA1-DD/IgE immune complexes did not activate mast cells. Interestingly, only connective tissue, but not mucosal, mast cells could be activated by CTA1-DD/IgG immune complexes. This effect was mediated by FcγRIIIA, only expressed on connective tissue mast cells, and found in the nasal submucosa. FcγRIIIA-deficient mice had compromised responses to immunization adjuvanted by CTA1-DD/IgG. Proof-of-concept studies revealed that IN immunized mice with human papillomavirus (HPV) type 16 L1 virus-like particles (VLP) and CTA1-DD/IgG immune complexes demonstrated strong and sustained specific antibody titers in serum and vaginal secretions. From a mast cell perspective, CTA1-DD/IgG immune complexes appear to be safe and effective mucosal adjuvants.

  17. Indian Hedgehog Suppresses a Stromal Cell-Driven Intestinal Immune Response.

    Science.gov (United States)

    Westendorp, B Florien; Büller, Nikè V J A; Karpus, Olga N; van Dop, Willemijn A; Koster, Jan; Versteeg, Rogier; Koelink, Pim J; Snel, Clinton Y; Meisner, Sander; Roelofs, Joris J T H; Uhmann, Anja; Ver Loren van Themaat, Emiel; Heijmans, Jarom; Hahn, Heidi; Muncan, Vanesa; Wildenberg, Manon E; van den Brink, Gijs R

    2018-01-01

    Upon intestinal epithelial damage a complex wound healing response is initiated to restore epithelial integrity and defend against pathogenic invasion. Epithelium-derived Indian Hedgehog (Ihh) functions as a critical sensor in this process. Signaling occurs in a paracrine manner because the receptor for Ihh is expressed only in the mesenchyme, but the exact Hedgehog target cell has remained elusive. The aim of this study was to elucidate further the nature of this target cell in the context of intestinal inflammation. Hedgehog activity was modulated genetically in both cell type-specific and body-wide models and the resulting animals were analyzed for gene expression profiles and sensitivity for dextran sodium sulfate (DSS) colitis. To characterize the Hedgehog target cell, Gli1-CreERT2-Rosa26-ZsGreen animals were generated, which express ZsGreen in all Hedgehog-responsive cells. These cells were characterized using flow cytometry and immunofluorescence. Loss of Indian Hedgehog from the intestinal epithelium resulted in a rapid increase in expression of inflammation-related genes, accompanied by increased influx of immune cells. Animals with epithelium-specific deletion of Ihh or lacking the Hedgehog receptor Smoothened from Hedgehog target cells were more sensitive to DSS colitis. In contrast, specific deletion of Smoothened in the myeloid compartment did not alter the response to DSS. This suggests that Hedgehog signaling does not repress intestinal immunity through an effect on myeloid cells. Indeed, we found that Hedgehog-responsive cells expressed gp38, smooth muscle actin, and desmin, indicating a fibroblastic nature. Ihh signaling inhibited expression of C-X-C motif chemokine ligand 12 (CXCL12) in fibroblasts in vitro and in vivo, thereby impairing the recruitment of immune cells. We show that epithelium-derived Indian Hedgehog signals exclusively to fibroblasts in the intestine. Loss of Ihh leads to a rapid immune response with up-regulation of fibroblast

  18. Innate Immune Responses of Drosophila melanogaster Are Altered by Spaceflight

    Science.gov (United States)

    Marcu, Oana; Lera, Matthew P.; Sanchez, Max E.; Levic, Edina; Higgins, Laura A.; Shmygelska, Alena; Fahlen, Thomas F.; Nichol, Helen; Bhattacharya, Sharmila

    2011-01-01

    Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly) innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km) for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR) of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP) pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways. PMID:21264297

  19. Innate immune responses of Drosophila melanogaster are altered by spaceflight.

    Directory of Open Access Journals (Sweden)

    Oana Marcu

    2011-01-01

    Full Text Available Alterations and impairment of immune responses in humans present a health risk for space exploration missions. The molecular mechanisms underpinning innate immune defense can be confounded by the complexity of the acquired immune system of humans. Drosophila (fruit fly innate immunity is simpler, and shares many similarities with human innate immunity at the level of molecular and genetic pathways. The goals of this study were to elucidate fundamental immune processes in Drosophila affected by spaceflight and to measure host-pathogen responses post-flight. Five containers, each containing ten female and five male fruit flies, were housed and bred on the space shuttle (average orbit altitude of 330.35 km for 12 days and 18.5 hours. A new generation of flies was reared in microgravity. In larvae, the immune system was examined by analyzing plasmatocyte number and activity in culture. In adults, the induced immune responses were analyzed by bacterial clearance and quantitative real-time polymerase chain reaction (qPCR of selected genes following infection with E. coli. The RNA levels of relevant immune pathway genes were determined in both larvae and adults by microarray analysis. The ability of larval plasmatocytes to phagocytose E. coli in culture was attenuated following spaceflight, and in parallel, the expression of genes involved in cell maturation was downregulated. In addition, the level of constitutive expression of pattern recognition receptors and opsonins that specifically recognize bacteria, and of lysozymes, antimicrobial peptide (AMP pathway and immune stress genes, hallmarks of humoral immunity, were also reduced in larvae. In adults, the efficiency of bacterial clearance measured in vivo following a systemic infection with E. coli post-flight, remained robust. We show that spaceflight altered both cellular and humoral immune responses in Drosophila and that the disruption occurs at multiple interacting pathways.

  20. Development of a novel, guinea pig-specific IFN-γ ELISPOT assay and characterization of guinea pig cytomegalovirus GP83-specific cellular immune responses following immunization with a modified vaccinia virus Ankara (MVA)-vectored GP83 vaccine.

    Science.gov (United States)

    Gillis, Peter A; Hernandez-Alvarado, Nelmary; Gnanandarajah, Josephine S; Wussow, Felix; Diamond, Don J; Schleiss, Mark R

    2014-06-30

    The guinea pig (Cavia porcellus) provides a useful animal model for studying the pathogenesis of many infectious diseases, and for preclinical evaluation of vaccines. However, guinea pig models are limited by the lack of immunological reagents required for characterization and quantification of antigen-specific T cell responses. To address this deficiency, an enzyme-linked immunospot (ELISPOT) assay for guinea pig interferon (IFN)-γ was developed to measure antigen/epitope-specific T cell responses to guinea pig cytomegalovirus (GPCMV) vaccines. Using splenocytes harvested from animals vaccinated with a modified vaccinia virus Ankara (MVA) vector encoding the GPCMV GP83 (homolog of human CMV pp65 [gpUL83]) protein, we were able to enumerate and map antigen-specific responses, both in vaccinated as well as GPCMV-infected animals, using a panel of GP83-specific peptides. Several potential immunodominant GP83-specific peptides were identified, including one epitope, LGIVHFFDN, that was noted in all guinea pigs that had a detectable CD8+ response to GP83. Development of a guinea pig IFN-γ ELISPOT should be useful in characterization of additional T cell-specific responses to GPCMV, as well as other pathogens. This information in turn can help focus future experimental evaluation of immunization strategies, both for GPCMV as well as for other vaccine-preventable illnesses studied in the guinea pig model. Copyright © 2014 Elsevier Ltd. All rights reserved.

  1. Modulation of immune response by alloactivated suppressor T cells

    International Nuclear Information System (INIS)

    Bernstein, A.; Sopori, M.L.; Gose, J.E.; Sondel, P.M.

    1979-01-01

    These studies show that there may be several different kinds of suppressor cells, each activated by different pathways and able to suppress different parts of the immune response either specifically or nonspecifically. As such, the physiology of one type of suppressor cell need not necessarily apply to that of another type of suppressor. Thus we emphasize the trap that the suppressor cell option provides: that is, virtually any previously inexplicable in vitro and in vivo immune phenomenon can always be adequately accounted for by evoking a suppressor mechanism, either by suppressing the response or suppressing the suppressor

  2. Behavioural fever is a synergic signal amplifying the innate immune response.

    Science.gov (United States)

    Boltaña, Sebastian; Rey, Sonia; Roher, Nerea; Vargas, Reynaldo; Huerta, Mario; Huntingford, Felicity Anne; Goetz, Frederick William; Moore, Janice; Garcia-Valtanen, Pablo; Estepa, Amparo; Mackenzie, S

    2013-09-07

    Behavioural fever, defined as an acute change in thermal preference driven by pathogen recognition, has been reported in a variety of invertebrates and ectothermic vertebrates. It has been suggested, but so far not confirmed, that such changes in thermal regime favour the immune response and thus promote survival. Here, we show that zebrafish display behavioural fever that acts to promote extensive and highly specific temperature-dependent changes in the brain transcriptome. The observed coupling of the immune response to fever acts at the gene-environment level to promote a robust, highly specific time-dependent anti-viral response that, under viral infection, increases survival. Fish that are not offered a choice of temperatures and that therefore cannot express behavioural fever show decreased survival under viral challenge. This phenomenon provides an underlying explanation for the varied functional responses observed during systemic fever. Given the effects of behavioural fever on survival and the fact that it exists across considerable phylogenetic space, such immunity-environment interactions are likely to be under strong positive selection.

  3. pH-Responsive Micelle-Based Cytoplasmic Delivery System for Induction of Cellular Immunity

    Directory of Open Access Journals (Sweden)

    Eiji Yuba

    2017-11-01

    Full Text Available (1 Background: Cytoplasmic delivery of antigens is crucial for the induction of cellular immunity, which is an important immune response for the treatment of cancer and infectious diseases. To date, fusogenic protein-incorporated liposomes and pH-responsive polymer-modified liposomes have been used to achieve cytoplasmic delivery of antigen via membrane rupture or fusion with endosomes. However, a more versatile cytoplasmic delivery system is desired for practical use. For this study, we developed pH-responsive micelles composed of dilauroyl phosphatidylcholine (DLPC and deoxycholic acid and investigated their cytoplasmic delivery performance and immunity-inducing capability. (2 Methods: Interaction of micelles with fluorescence dye-loaded liposomes, intracellular distribution of micelles, and antigenic proteins were observed. Finally, antigen-specific cellular immune response was evaluated in vivo using ELIspot assay. (3 Results: Micelles induced leakage of contents from liposomes via lipid mixing at low pH. Micelles were taken up by dendritic cells mainly via macropinocytosis and delivered ovalbumin (OVA into the cytosol. After intradermal injection of micelles and OVA, OVA-specific cellular immunity was induced in the spleen. (4 Conclusions: pH-responsive micelles composed of DLPC and deoxycholic acid are promising as enhancers of cytosol delivery of antigens and the induction capability of cellular immunity for the treatment of cancer immunotherapy and infectious diseases.

  4. Silencing Agrobacterium oncogenes in transgenic grapevine results in strain-specific crown gall resistance.

    Science.gov (United States)

    Galambos, A; Zok, A; Kuczmog, A; Oláh, R; Putnoky, P; Ream, W; Szegedi, E

    2013-11-01

    Grapevine rootstock transformed with an Agrobacterium oncogene-silencing transgene was resistant to certain Agrobacterium strains but sensitive to others. Thus, genetic diversity of Agrobacterium oncogenes may limit engineering crown gall resistance. Crown gall disease of grapevine induced by Agrobacterium vitis or Agrobacterium tumefaciens causes serious economic losses in viticulture. To establish crown gall-resistant lines, somatic proembryos of Vitis berlandieri × V. rupestris cv. 'Richter 110' rootstock were transformed with an oncogene-silencing transgene based on iaaM and ipt oncogene sequences from octopine-type, tumor-inducing (Ti) plasmid pTiA6. Twenty-one transgenic lines were selected, and their transgenic nature was confirmed by polymerase chain reaction (PCR). These lines were inoculated with two A. tumefaciens and three A. vitis strains. Eight lines showed resistance to octopine-type A. tumefaciens A348. Resistance correlated with the expression of the silencing genes. However, oncogene silencing was mostly sequence specific because these lines did not abolish tumorigenesis by A. vitis strains or nopaline-type A. tumefaciens C58.

  5. Rapid expression of transgenes driven by seed-specific constructs in leaf tissue: DHA production

    Directory of Open Access Journals (Sweden)

    Zhou Xue-Rong

    2010-03-01

    Full Text Available Abstract Background Metabolic engineering of seed biosynthetic pathways to diversify and improve crop product quality is a highly active research area. The validation of genes driven by seed-specific promoters is time-consuming since the transformed plants must be grown to maturity before the gene function can be analysed. Results In this study we demonstrate that genes driven by seed-specific promoters contained within complex constructs can be transiently-expressed in the Nicotiana benthamiana leaf-assay system by co-infiltrating the Arabidopsis thaliana LEAFY COTYLEDON2 (LEC2 gene. A real-world case study is described in which we first assembled an efficient transgenic DHA synthesis pathway using a traditional N. benthamiana Cauliflower Mosaic Virus (CaMV 35S-driven leaf assay before using the LEC2-extended assay to rapidly validate a complex seed-specific construct containing the same genes before stable transformation in Arabidopsis. Conclusions The LEC2-extended N. benthamiana assay allows the transient activation of seed-specific promoters in leaf tissue. In this study we have used the assay as a rapid preliminary screen of a complex seed-specific transgenic construct prior to stable transformation, a feature that will become increasingly useful as genetic engineering moves from the manipulation of single genes to the engineering of complex pathways. We propose that the assay will prove useful for other applications wherein rapid expression of transgenes driven by seed-specific constructs in leaf tissue are sought.

  6. Hemagglutinating virus of Japan envelope (HVJ-E) can enhance the immune responses of swine immunized with killed PRRSV vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Dai, Zhihong [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Quan [College of Veterinary Medicine, Yangzhou University, Yangzhou 225009 (China); Wang, Zaishi [China Institute of Veterinary Drug Control, Beijing 100081 (China); Zhang, Zhongqiu [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China); Veterinary Bureau, Ministry of Agriculture of the People' s Republic of China, Beijing 100125 (China); Guo, Pengju [Institute of Veterinary Medicine, Guangdong Academy of Agricultural Sciences, Guangdong 510640 (China); Zhao, Deming, E-mail: zhaodm@cau.edu.cn [State Key Laboratory of Agrobiotechnology, College of Veterinary Medicine, China Agricultural University, Beijing 100094 (China)

    2011-11-11

    Highlights: Black-Right-Pointing-Pointer We investigated the immunoadjuvant effects of HVJ-E on killed PRRSV vaccine. Black-Right-Pointing-Pointer HVJ-E enhanced the humoral and cellular responses of the piglets to PRRSV. Black-Right-Pointing-Pointer It is suggested that HVJ-E could be developed as a new-type adjuvant for mammals. -- Abstract: Porcine reproductive and respiratory syndrome virus (PRRSV) is an economically detrimental pig pathogen that causes significant losses for the pig industry. The immunostimulatory effects of hemagglutinating virus of Japan envelope (HVJ-E) in cancer therapy and the adjuvant efficacy of HVJ-E have been previously evaluated. The objective of this study was to investigate the adjuvant effects of HVJ-E on immunization with killed PRRSV vaccine, and to evaluate the protective effects of this immunization strategy against virulent PRRSV infection in piglets. Next, the PRRSV-specific antibody response, lymphocyte proliferation, PRRSV-specific IL-2, IL-10 and IFN-{gamma} production, and the overall protection efficacy were evaluated to assess the immune responses of the piglets. The results showed that the piglets inoculated simultaneously with killed PRRSV vaccine and HVJ-E had a significantly stronger immune response than those inoculated with killed PRRSV vaccine alone. Our results suggest that HVJ-E could be employed as an effective adjuvant to enhance the humoral and cellular responses of piglets to PRRSV.

  7. Immune Response of Multiparous Hyper-Immunized Sows against Peptides from Non-Structural and Structural Proteins of PRRSV

    Directory of Open Access Journals (Sweden)

    Edgar Rascón-Castelo

    2015-11-01

    Full Text Available The purpose of this study was to evaluate the humoral and cellular responses of commercial multiparous and hyper-immunized sows against peptides from non-structural (nsp and structural proteins of porcine reproductive and respiratory syndrome virus (PRRSV. We selected sows with different numbers of parities from a commercial farm. Management practices on this farm include the use of the MLV commercial vaccine four times per year, plus two vaccinations during the acclimation period. The humoral response was evaluated via the antibody recognition of peptides from nsp and structural proteins, and the cellular response was assessed by measuring the frequency of peptide and PRRSV-specific IFN-gamma-secreting cells (IFNγ-SC. Our results show that sows with six parities have more antibodies against peptides from structural proteins than against peptides from nsp. The analysis of the cellular response revealed that the number of immunizations did not affect the frequency of IFNγ-SC and that the response was stronger against peptides from structural proteins (M protein than against nsp (nsp2. In summary, these results demonstrate that multiparous, hyper-immunized sows have a stronger immune humoral response to PRRSV structural peptides than nsp, but no differences in IFNγ-SC against the same peptides were observed.

  8. F4+ ETEC infection and oral immunization with F4 fimbriae elicits an IL-17-dominated immune response.

    Science.gov (United States)

    Luo, Yu; Van Nguyen, Ut; de la Fe Rodriguez, Pedro Y; Devriendt, Bert; Cox, Eric

    2015-10-21

    Enterotoxigenic Escherichia coli (ETEC) are an important cause of post-weaning diarrhea (PWD) in piglets. Porcine-specific ETEC strains possess different fimbrial subtypes of which F4 fimbriae are the most frequently associated with ETEC-induced diarrhea in piglets. These F4 fimbriae are potent oral immunogens that induce protective F4-specific IgA antibody secreting cells at intestinal tissues. Recently, T-helper 17 (Th17) cells have been implicated in the protection of the host against extracellular pathogens. However, it remains unknown if Th17 effector responses are needed to clear ETEC infections. In the present study, we aimed to elucidate if ETEC elicits a Th17 response in piglets and if F4 fimbriae trigger a similar response. F4(+) ETEC infection upregulated IL-17A, IL-17F, IL-21 and IL-23p19, but not IL-12 and IFN-γ mRNA expression in the systemic and mucosal immune system. Similarly, oral immunization with F4 fimbriae triggered a Th17 signature evidenced by an upregulated mRNA expression of IL-17F, RORγt, IL-23p19 and IL-21 in the peripheral blood mononuclear cells (PBMCs). Intriguingly, IL-17A mRNA levels were unaltered. To further evaluate this difference between systemic and mucosal immune responses, we assayed the cytokine mRNA profile of F4 fimbriae stimulated PBMCs. F4 fimbriae induced IL-17A, IL-17F, IL-22 and IL-23p19, but downregulated IL-17B mRNA expression. Altogether, these data indicate a Th17 dominated response upon oral immunization with F4 fimbriae and F4(+) ETEC infection. Our work also highlights that IL-17B and IL-17F participate in the immune response to protect the host against F4(+) ETEC infection and could aid in the design of future ETEC vaccines.

  9. Immunization with intestinal microbiota-derived Staphylococcus aureus and Escherichia coli reduces bacteria-specific recolonization of the intestinal tract.

    Science.gov (United States)

    Garfias-López, Julio Adrián; Castro-Escarpuli, Graciela; Cárdenas, Pedro E; Moreno-Altamirano, María Maximina Bertha; Padierna-Olivos, Juan; Sánchez-García, F Javier

    2018-04-01

    A wide array of microorganisms colonizes distinctive anatomical regions of animals, being the intestine the one that harbors the most abundant and complex microbiota. Phylogenetic analyses indicate that it is composed mainly of bacteria, and that Bacterioidetes and Firmicutes are the most represented phyla (>90% of the total eubacteria) in mice and humans. Intestinal microbiota plays an important role in host physiology, contributing to digestion, epithelial cells metabolism, stimulation of intestinal immune responses, and protection against intestinal pathogens. Changes in its composition may affect intestinal homeostasis, a condition known as dysbiosis, which may lead to non-specific inflammation and disease. The aim of this work was to analyze the effect that a bacteria-specific systemic immune response would have on the intestinal re-colonization by that particular bacterium. Bacteria were isolated and identified from the feces of Balb/c mice, bacterial cell-free extracts were used to immunize the same mice from which bacteria came from. Concurrently with immunization, mice were subjected to a previously described antibiotic-based protocol to eliminate most of their intestinal bacteria. Serum IgG and feces IgA, specific for the immunizing bacteria were determined. After antibiotic treatment was suspended, specific bacteria were orally administered, in an attempt to specifically re-colonize the intestine. Results showed that parenteral immunization with gut-derived bacteria elicited the production of both anti-bacterial IgG and IgA, and that immunization reduces bacteria specific recolonization of the gut. These findings support the idea that the systemic immune response may, at least in part, determine the bacterial composition of the gut. Copyright © 2018. Published by Elsevier B.V.

  10. Chicken IgY Fc linked to Bordetella avium ompA and Taishan Pinus massoniana pollen polysaccharide adjuvant enhances macrophage function and specific immune responses

    Directory of Open Access Journals (Sweden)

    Zhu Ruiliang

    2016-11-01

    Full Text Available Fc-fusion technologies, in which immunoglobulin Fc is genetically fused to an antigenic protein, have been developed to confer antibody-like properties to proteins and peptides. Mammalian IgG Fc fusion exhibits improved antigen-induced immune responses by providing aggregates with high avidity for the IgG Fc receptor and salvaging the antigenic portion from endosomal degradation. However, whether the linked chicken IgY Fc fragment shares similar characteristics to mammalian IgG Fc remains unclear. In this study, we linked the chicken IgY Fc gene to the outer membrane protein A (ompA of Borderella avium through overlapping PCR. The fusion gene was cloned into the pPIC9 plasmid to construct the recombinant Pichia pastoris transformant expressing the ompA–Fc fusion protein. The effects of the linked Fc on macrophage vitality, activity, efficiency of antigen processing, and immune responses induced by the fused ompA were investigated. Furthermore, the effect of Taishan Pinus massoniana pollen polysaccharide (TPPPS, an immunomodulator, on chicken macrophage activation was evaluated. TPPPS was also used as an adjuvant to investigate its immunomodulatory effect on immunoresponses induced by the fused ompA–Fc in chickens. The pinocytosis, phagocytosis, secretion of nitric oxide and TNF-α, and MHC-II molecular expression of the macrophages treated with the fused ompA–Fc were significantly higher than those of the macrophages treated with ompA alone. The addition of TPPPS to the fused ompA–Fc further enhanced macrophage functions. The fused ompA–Fc elicited higher antigen-specific immune responses and protective efficacy compared with ompA alone. Moreover, the fused ompA–Fc conferred higher serum antibody titers, serum IL-2 and IL-4 concentrations, CD4+ and CD8+ T-lymphocyte counts, lymphocyte transformation rate, and protection rate compared with ompA alone. Notably, the prepared TPPPS adjuvant ompA–Fc vaccines induced high immune

  11. Peptide immunisation of HLA-DR-transgenic mice permits the identification of a novel HLA-DRbeta1*0101- and HLA-DRbeta1*0401-restricted epitope from p53.

    Science.gov (United States)

    Rojas, José Manuel; McArdle, Stephanie E B; Horton, Roger B V; Bell, Matthew; Mian, Shahid; Li, Geng; Ali, Selman A; Rees, Robert C

    2005-03-01

    Because of the central role of CD4(+) T cells in antitumour immunity, the identification of the MHC class II-restricted peptides to which CD4(+) T cells respond has become a priority of tumour immunologists. Here, we describe a strategy permitting us to rapidly determine the immunogenicity of candidate HLA-DR-restricted peptides using peptide immunisation of HLA-DR-transgenic mice, followed by assessment of the response in vitro. This strategy was successfully applied to the reported haemaglutinin influenza peptide HA(307-319), and then extended to three candidate HLA-DR-restricted p53 peptides predicted by the evidence-based algorithm SYFPEITHI to bind to HLA-DRbeta1*0101 (HLA-DR1) and HLA-DRbeta1*0401 (HLA-DR4) molecules. One of these peptides, p53(108-122), consistently induced responses in HLA-DR1- and in HLA-DR4-transgenic mice. Moreover, this peptide was naturally processed by dendritic cells (DCs), and induced specific proliferation in the splenocytes of mice immunised with p53 cDNA, demonstrating that immune responses could be naturally mounted to the peptide. Furthermore, p53(108-122) peptide was also immunogenic in HLA-DR1 and HLA-DR4 healthy donors. Thus, the use of this transgenic model permitted the identification of a novel HLA-DR-restricted epitope from p53 and constitutes an attractive approach for the rapid identification of novel immunogenic MHC class II-restricted peptides from tumour antigens, which can ultimately be incorporated in immunotherapeutic protocols.

  12. Defective B cell response to T-dependent immunization in lupus-prone mice

    Science.gov (United States)

    Niu, Haitao; Sobel, Eric S.; Morel, Laurence

    2009-01-01

    Lupus anti-nuclear Abs show the characteristics of Ag-driven T cell-dependent (TD) humoral responses. If autoAgs elicit the same response as exogenous Ags, lupus should enhance humoral responses to immunization. Blunted responses to various immunizations have, however, been reported in a significant portion of lupus patients. In this study, we show that lupus-prone B6.Sle1.Sle2.Sle3 (B6.TC) mice produce significantly less Ab in response to TD immunization than congenic controls, while producing significantly more total Ig. This blunted Ab response to TD Ag could be reconstituted with B6.TC B and CD4+ T cells. Multiple defects were found in the B6.TC response to NP-KLH as compared to total Ig, including a smaller percentage of B cells participating to the NP-response, a reduced entry into germinal centers, and highly defective production of NP-specific long-lived plasma cells in the bone marrow. B6.TC plasma cells expressed reduced levels of FcγRIIb, which suggests that reduced apoptosis in resident plasma cells prevents the establishment of newly-formed NP-specific plasma cells in bone marrow niches. Overall, these results show that lupus-prone mice responded differently to auto- and exogenous antigens and suggest that low FcγRIIb, hypergammaglobulinemia and high autoantibody production would be predictive of a poor response to immunization in lupus patients. PMID:18924209

  13. Escaping deleterious immune response in their hosts: lessons from trypanosomatids

    Directory of Open Access Journals (Sweden)

    Anne eGeiger

    2016-05-01

    Full Text Available The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, T. cruzi and Leishmania spp are important human pathogens causing Human African Trypanosomiasis (HAT or Sleeping Sickness, Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs or sandflies and affect millions of people worldwide.In humans, extracellular African trypanosomes (T. brucei evade the hosts’ immune defences, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response.This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite-host interactions and, will focus on: clinical and epidemiological importance of diseases; life cycles: parasites-hosts-vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation.

  14. Escaping Deleterious Immune Response in Their Hosts: Lessons from Trypanosomatids

    Science.gov (United States)

    Geiger, Anne; Bossard, Géraldine; Sereno, Denis; Pissarra, Joana; Lemesre, Jean-Loup; Vincendeau, Philippe; Holzmuller, Philippe

    2016-01-01

    The Trypanosomatidae family includes the genera Trypanosoma and Leishmania, protozoan parasites displaying complex digenetic life cycles requiring a vertebrate host and an insect vector. Trypanosoma brucei gambiense, Trypanosoma cruzi, and Leishmania spp. are important human pathogens causing human African trypanosomiasis (HAT or sleeping sickness), Chagas’ disease, and various clinical forms of Leishmaniasis, respectively. They are transmitted to humans by tsetse flies, triatomine bugs, or sandflies, and affect millions of people worldwide. In humans, extracellular African trypanosomes (T. brucei) evade the hosts’ immune defenses, allowing their transmission to the next host, via the tsetse vector. By contrast, T. cruzi and Leishmania sp. have developed a complex intracellular lifestyle, also preventing several mechanisms to circumvent the host’s immune response. This review seeks to set out the immune evasion strategies developed by the different trypanosomatids resulting from parasite–host interactions and will focus on: clinical and epidemiological importance of diseases; life cycles: parasites–hosts–vectors; innate immunity: key steps for trypanosomatids in invading hosts; deregulation of antigen-presenting cells; disruption of efficient specific immunity; and the immune responses used for parasite proliferation. PMID:27303406

  15. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor Tu receptor EFR

    Institute of Scientific and Technical Information of China (English)

    Fen Lu; Huiqin Wang; Shanzhi Wang; Wendi Jiang; Changlin Shan; Bin Li; Jun Yang; Shiyong Zhang; Wenxian Sun

    2015-01-01

    The elongation factor Tu (EF-Tu) receptor (EFR) in cruciferous plants specifical y recognizes the N-terminal acetylated elf18 region of bacterial EF-Tu and thereby activates plant immunity. It has been demonstrated that Arabidopsis EFR confers broad-spectrum bacterial resistance in the EFR transgenic solanaceous plants. Here, the transgenic rice plants (Oryza sativa L. ssp. japonica cv. Zhonghua 17) and cel cultures with constitutive expression of AtEFR were developed to investigate whether AtEFR senses EF-Tu and thus enhances bacterial resistance in the monocot plants. We demonstrated that the Xanthomonas oryzae-derived elf18 peptide induced oxidative burst and mitogen-activated protein kinase activa-tion in the AtEFR transgenic rice cel s and plants, respectively. Pathogenesis-related genes, such as OsPBZ1, were upregulated dramatical y in transgenic rice plant and cel lines in response to elf18 stimulation. Importantly, pretreatment with elf18 trig-gered strong resistance to X. oryzae pv. oryzae in the transgenic plants, which was largely dependent on the AtEFR expression level. These plants also exhibited enhanced resistance to rice bacterial brown stripe, but not to rice fungal blast. Col ectively, the results indicate that the rice plants with heterologous expression of AtEFR recognize bacterial EF-Tu and exhibit enhanced broad-spectrum bacterial disease resistance and that pattern recognition receptor-mediated immunity may be manipulated across the two plant classes, dicots and monocots.

  16. PCR Primer Specific CaMV 35S Promoter to Detect Transgenic Soybean in Indonesia Commercial Soy Bean and Tempeh

    Directory of Open Access Journals (Sweden)

    Tri Joko Raharjo

    2017-11-01

    Full Text Available In the framework of the supervision and enforcement of the regulation regarding the content of soybean transgenic in food and processed foods such as tempeh, a reliable testing method is indispensable. Performance specific primer PCR amplification with promoter of CaMV 35S tested to detect the presence of GMOs. The parameters tested were specificity, precision and cut off detection using CRM transgenic soybean. The method is reliable to detect transgenic soybean specifically and has the annealing temperature at 59 °C during the 30 cycle standard PCR condition. The method did not show any false positive and false negative results meaning good precision. The cut off the methods is up to 2 copies total DNA of soybean or less than 104 copies of the CaMV 35S promoter. Observation to the commercial soybeans and tempeh found that most of the commercially available soybean in Indonesia are transgenic (8 of 10 sample while all tested tempeh sample were detected have been fermented from transgenic soybeans.

  17. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response.

    Directory of Open Access Journals (Sweden)

    Ana V García

    2010-07-01

    Full Text Available An important layer of plant innate immunity to host-adapted pathogens is conferred by intracellular nucleotide-binding/oligomerization domain-leucine rich repeat (NB-LRR receptors recognizing specific microbial effectors. Signaling from activated receptors of the TIR (Toll/Interleukin-1 Receptor-NB-LRR class converges on the nucleo-cytoplasmic immune regulator EDS1 (Enhanced Disease Susceptibility1. In this report we show that a receptor-stimulated increase in accumulation of nuclear EDS1 precedes or coincides with the EDS1-dependent induction and repression of defense-related genes. EDS1 is capable of nuclear transport receptor-mediated shuttling between the cytoplasm and nucleus. By enhancing EDS1 export from inside nuclei (through attachment of an additional nuclear export sequence (NES or conditionally releasing EDS1 to the nucleus (by fusion to a glucocorticoid receptor (GR in transgenic Arabidopsis we establish that the EDS1 nuclear pool is essential for resistance to biotrophic and hemi-biotrophic pathogens and for transcriptional reprogramming. Evidence points to post-transcriptional processes regulating receptor-triggered accumulation of EDS1 in nuclei. Changes in nuclear EDS1 levels become equilibrated with the cytoplasmic EDS1 pool and cytoplasmic EDS1 is needed for complete resistance and restriction of host cell death at infection sites. We propose that coordinated nuclear and cytoplasmic activities of EDS1 enable the plant to mount an appropriately balanced immune response to pathogen attack.

  18. Immune responses to influenza virus and its correlation to age and inherited factors

    Directory of Open Access Journals (Sweden)

    Azadeh Bahadoran

    2016-11-01

    Full Text Available Influenza viruses belong to the family Orthomyxoviridae of enveloped viruses and are an important cause of respiratory infections worldwide. The influenza virus is able to infect a wide variety species as diverse as poultry, marine, pigs, horses and humans. Upon infection with influenza virus the innate immunity plays a critical role in efficient and rapid control of viral infections as well as in adaptive immunity initiation. The humoral immune system produces antibodies against different influenza antigens, of which the HA-specific antibody is the most important for neutralization of the virus and thus prevention of illness. Cell mediated immunity including CD4+ helper T cells and CD8+ cytotoxic T cells are the other arms of adaptive immunity induced upon influenza virus infection. The complex inherited factors and age related changes are associated with the host immune responses. Here, we review the different components of immune responses against influenza virus. Additionally, the correlation of the immune response to age and inherited factors has been discussed. These determinations lead to a better understanding of the limitations of immune responses for developing improved vaccines to control influenza virus infection.

  19. Systemic and mucosal immunization with Candida albicans hsp90 elicits hsp90-specific humoral response in vaginal mucosa which is further enhanced during experimental vaginal candidiasis.

    Science.gov (United States)

    Raska, Milan; Belakova, Jana; Horynova, Milada; Krupka, Michal; Novotny, Jiri; Sebestova, Martina; Weigl, Evzen

    2008-08-01

    The Candida albicans heat shock protein 90 kDa (hsp90-CA) is an important target for protective antibodies in disseminated candidiasis of experimental mice and humans. Hsp90-CA is present in the cell wall of Candida pseudohyphae or hyphae--typical pathogenic morphotypes in both mucosal and systemic Candida infections. However, the potential protective effects of hsp90-CA-specific antibodies in vaginal candidiasis has not yet been reported. In the present study we used various vaccine formulations (recombinant hsp90-CA protein and hsp90-CA-encoding DNA vaccine) and routes of administration (intradermal, intranasal, and intravenous) to induce both hsp90-CA-specific systemic and vaginal mucosa immune responses in experimental BALB/c mice. The results showed that intradermal recombinant hsp90-CA protein priming, followed by intranasal or intradermal recombinant hsp90-CA protein boosting induced significant increases in both serum and vaginal hsp90-CA-specific IgG and IgA antibodies compared to the control group, as well as enhanced hsp90-CA-specific splenocyte responses in vitro. In the intradermally boosted group, subsequent experimental vaginal Candida infection induced additional increases in the hsp90-CA specific IgG isotype, suggesting that Candida has the ability to induce a local hsp90-specific antibody (IgG) response during vulvovaginal candidiasis. Further work is required to elucidate the importance of immunity to highly conserved antigens during infection of the human female reproductive tract where a balance between immunity to and tolerance for commonly antigens such as hsp90 is necessary for the maintenance of fertility.

  20. IL-10 polymorphism and cell-mediated immune response to Chlamydia trachomatis

    DEFF Research Database (Denmark)

    Öhman, H.; Tiitinen, A; Halttunen, M.

    2006-01-01

    background. To study a relationship between interleukin-10 (IL-10) promoter -1082 polymorphism and cell-mediated immune response during C trachomatis infection in vitro, lymphocyte proliferation and cytokine (IL-10, IFN-gamma, TNF-alpha, IL-2, IL-4 and IL-5) secretion were analysed in subjects with different...... IL-10 genotypes. Enhanced IL-10 secretion and reduced antigen-specific lymphocyte proliferative and IFN-gamma responses were found in subjects with IL-10 -1082 GG genotype when compared to those with -1082 AA genotype. CD14+ monocytes were main source of IL-10 indicating that these cells...... are important regulators of the antigen-specific cell-mediated responses during active C trachomatis infection. We conclude that impaired cell-mediated response to C trachomatis is associated with IL-10 genotype in subjects with high IL-10 producing capacity. A comparison of immune markers between subjects...

  1. Expression of jasmonic ethylene responsive factor gene in transgenic poplar tree leads to increased salt tolerance.

    Science.gov (United States)

    Li, Yiliang; Su, Xiaohua; Zhang, Bingyu; Huang, Qinjun; Zhang, Xianghua; Huang, Rongfeng

    2009-02-01

    The stress resistance of plants can be enhanced by regulating the expression of multiple downstream genes associated with stress resistance. We used the Agrobacterium method to transfer the tomato jasmonic ethylene responsive factors (JERFs) gene that encodes the ethylene response factor (ERF) like transcription factor to the genome of a hybrid poplar (Populus alba x Populus berolinensis). Eighteen resistant plants were obtained, of which 13 were identified by polymerase chain reaction (PCR), reverse transcriptase PCR and Southern blot analyses as having incorporated the JERFs gene and able to express it at the transcriptional level. Salinity tests were conducted in a greenhouse with 0, 100, 200 and 300 mM NaCl. In the absence of NaCl, the transgenic plants were significantly taller than the control plants, but no statistically significant differences in the concentrations of proline and chlorophyll were observed. With increasing salinity, the extent of damage was significantly less in transgenic plants than that in control plants, and the reductions in height, basal diameter and biomass were less in transgenic plants than those in control plants. At 200 and 300 mM NaCl concentrations, transgenic plants were 128.9% and 98.8% taller, respectively, and had 199.8% and 113.0% more dry biomass, respectively, than control plants. The saline-induced reduction in leaf water content and increase in root/crown ratio were less in transgenic plants than in control plants. Foliar proline concentration increased more in response to salt treatment in transgenic plants than in control plants. Foliar Na(+) concentration was higher in transgenic plants than in control plants. In the coastal area in Panjin of Liaoning where the total soil salt concentration is 0.3%, a salt tolerance trial of transgenic plants indicated that 3-year-old transgenic plants were 14.5% and 33.6% taller than the control plants at two field sites. The transgenic plants at the two field sites were growing

  2. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  3. Dendritic cells pulsed with a tumor-specific peptide induce long-lasting immunity and are effective against murine intracerebral melanoma.

    Science.gov (United States)

    Heimberger, Amy B; Archer, Gary E; Crotty, Laura E; McLendon, Roger E; Friedman, Allan H; Friedman, Henry S; Bigner, Darell D; Sampson, John H

    2002-01-01

    Dendritic cells (DCs) are specialized cells of the immune system that are capable of generating potent immune responses that are active even within the "immunologically privileged" central nervous system. However, immune responses generated by DCs have also been demonstrated to produce clinically significant autoimmunity. Targeting the epidermal growth factor receptor variant III (EGFRvIII), which is a mutation specific to tumor tissue, could eliminate this risk. The purpose of this study was to demonstrate that DC-based immunizations directed solely against this tumor-specific antigen, which is commonly found on tumors that originate within or metastasize to the brain, could be efficacious. C3H mice were vaccinated with DCs mixed with a keyhole limpet hemocyanin conjugate of the tumor-specific peptide, PEP-3, which spans the EGFRvIII mutation, or the random-sequence peptide, PEP-1, and were intracerebrally challenged with a syngeneic melanoma expressing a murine homologue of EGFRvIII. Systemic immunization with DCs mixed with PEP-3-keyhole limpet hemocyanin generated antigen-specific immunity. Among mice challenged with intracerebral tumors, this resulted in an approximately 600% increase in the median survival time (>300 d, P < 0.0016), relative to control values. Sixty-three percent of mice treated with DCs mixed with the tumor-specific peptide survived in the long term and 100% survived rechallenge with tumor, indicating that antitumor immunological memory was also induced. In a murine melanoma model, immunization with DCs mixed with tumor-specific peptide results in an antigen-specific immunological response that recognizes the EGFRvIII mutation, has potent antitumor efficacy against intracerebral tumors that express EGFRvIII, and results in long-lasting antitumor immunity.

  4. Anopheles gambiae antiviral immune response to systemic O'nyong-nyong infection.

    Directory of Open Access Journals (Sweden)

    Joanna Waldock

    Full Text Available Mosquito-borne viral diseases cause significant burden in much of the developing world. Although host-virus interactions have been studied extensively in the vertebrate host, little is known about mosquito responses to viral infection. In contrast to mosquitoes of the Aedes and Culex genera, Anopheles gambiae, the principal vector of human malaria, naturally transmits very few arboviruses, the most important of which is O'nyong-nyong virus (ONNV. Here we have investigated the A. gambiae immune response to systemic ONNV infection using forward and reverse genetic approaches.We have used DNA microarrays to profile the transcriptional response of A. gambiae inoculated with ONNV and investigate the antiviral function of candidate genes through RNAi gene silencing assays. Our results demonstrate that A. gambiae responses to systemic viral infection involve genes covering all aspects of innate immunity including pathogen recognition, modulation of immune signalling, complement-mediated lysis/opsonisation and other immune effector mechanisms. Patterns of transcriptional regulation and co-infections of A. gambiae with ONNV and the rodent malaria parasite Plasmodium berghei suggest that hemolymph immune responses to viral infection are diverted away from melanisation. We show that four viral responsive genes encoding two putative recognition receptors, a galectin and an MD2-like receptor, and two effector lysozymes, function in limiting viral load.This study is the first step in elucidating the antiviral mechanisms of A. gambiae mosquitoes, and has revealed interesting differences between A. gambiae and other invertebrates. Our data suggest that mechanisms employed by A. gambiae are distinct from described invertebrate antiviral immunity to date, and involve the complement-like branch of the humoral immune response, supressing the melanisation response that is prominent in anti-parasitic immunity. The antiviral immune response in A. gambiae is thus

  5. Inhibition of the immune response to experimental fresh osteoarticular allografts

    International Nuclear Information System (INIS)

    Rodrigo, J.J.; Schnaser, A.M.; Reynolds, H.M. Jr.; Biggart, J.M. III; Leathers, M.W.; Chism, S.E.; Thorson, E.; Grotz, T.; Yang, Q.M.

    1989-01-01

    The immune response to osteoarticular allografts is capable of destroying the cartilage--a tissue that has antigens on its cells identical to those on the bone and marrow cells. Osteoarticular allografts of the distal femur were performed in rats using various methods to attempt to temporarily inhibit the antibody response. The temporary systemic immunosuppressant regimens investigated were cyclophosphamide, azathioprine and prednisolone, cyclosporine A, and total lymphoid irradiation. The most successful appeared to be cyclosporine A, but significant side effects were observed. To specifically inhibit the immune response in the allograft antigens without systemically inhibiting the entire immune system, passive enhancement and preadministration of donor blood were tried. Neither was as effective as coating the donor bone with biodegradable cements, a method previously found to be successful. Cyclosporine A was investigated in dogs in a preliminary study of medial compartmental knee allografts and was found to be successful in inhibiting the antibody response and in producing a more successful graft; however, some significant side effects were similarly observed

  6. Impact of child malnutrition on the specific anti-Plasmodium falciparum antibody response

    Directory of Open Access Journals (Sweden)

    Fillol Florie

    2009-06-01

    Full Text Available Abstract Background In sub-Saharan Africa, preschool children represent the population most vulnerable to malaria and malnutrition. It is widely recognized that malnutrition compromises the immune function, resulting in higher risk of infection. However, very few studies have investigated the relationship between malaria, malnutrition and specific immunity. In the present study, the anti-Plasmodium falciparum IgG antibody (Ab response was evaluated in children according to the type of malnutrition. Methods Anthropometric assessment and blood sample collection were carried out during a cross-sectional survey including rural Senegalese preschool children. This cross-sectional survey was conducted in July 2003 at the onset of the rainy season. Malnutrition was defined as stunting (height-for-age P. falciparum whole extracts (schizont antigens was assessed by ELISA in sera of the included children. Results Both the prevalence of anti-malarial immune responders and specific IgG Ab levels were significantly lower in malnourished children than in controls. Depending on the type of malnutrition, wasted children and stunted children presented a lower specific IgG Ab response than their respective controls, but this difference was significant only in stunted children (P = 0.026. This down-regulation of the specific Ab response seemed to be explained by severely stunted children (HAZ ≤ -2.5 compared to their controls (P = 0.03, while no significant difference was observed in mildly stunted children (-2.5 P. falciparum Ab response appeared to be independent of the intensity of infection. Conclusion Child malnutrition, and particularly stunting, may down-regulate the anti-P. falciparum Ab response, both in terms of prevalence of immune responders and specific IgG Ab levels. This study provides further evidence for the influence of malnutrition on the specific anti-malarial immune response and points to the importance of taking into account child

  7. Transgenic plants over-expressing insect-specific microRNA acquire insecticidal activity against Helicoverpa armigera: an alternative to Bt-toxin technology.

    Science.gov (United States)

    Agrawal, Aditi; Rajamani, Vijayalakshmi; Reddy, Vanga Siva; Mukherjee, Sunil Kumar; Bhatnagar, Raj K

    2015-10-01

    The success of Bt transgenics in controlling predation of crops has been tempered by sporadic emergence of resistance in targeted insect larvae. Such emerging threats have prompted the search for novel insecticidal molecules that are specific and could be expressed through plants. We have resorted to small RNA-based technology for an investigative search and focused our attention to an insect-specific miRNA that interferes with the insect molting process resulting in the death of the larvae. In this study, we report the designing of a vector that produces artificial microRNA (amiR), namely amiR-24, which targets the chitinase gene of Helicoverpa armigera. This vector was used as transgene in tobacco. Northern blot and real-time analysis revealed the high level expression of amiR-24 in transgenic tobacco plants. Larvae feeding on the transgenic plants ceased to molt further and eventually died. Our results demonstrate that transgenic tobacco plants can express amiR-24 insectice specific to H. armigera.

  8. Cellular immune responses to HPV-18, -31, and -53 in healthy volunteers immunized with recombinant HPV-16 L1 virus-like particles

    International Nuclear Information System (INIS)

    Pinto, Ligia A.; Viscidi, Raphael; Harro, Clayton D.; Kemp, Troy J.; Garcia-Pineres, Alfonso J.; Trivett, Matthew; Demuth, Franklin; Lowy, Douglas R.; Schiller, John T.; Berzofsky, Jay A.; Hildesheim, Allan

    2006-01-01

    Human papillomavirus-like particles (HPV VLP) are candidate vaccines that have shown to be efficacious in reducing infection and inducing robust antiviral immunity. Neutralizing antibodies generated by vaccination are largely type-specific, but little is known about the type-specificity of cellular immune responses to VLP vaccination. To determine whether vaccination with HPV-16 L1VLP induces cellular immunity to heterologous HPV types (HPV-18, HPV-31, and HPV-53), we examined proliferative and cytokine responses in vaccine (n = 11) and placebo (n = 5) recipients. Increased proliferative and cytokine responses to heterologous types were observed postvaccination in some individuals. The proportion of women responding to heterologous types postvaccination (36%-55%) was lower than that observed in response to HPV-16 (73%). Response to HPV-16 VLP predicted response to other types. The strongest correlations in response were observed between HPV-16 and HPV-31, consistent with their phylogenetic relatedness. In summary, PBMC from HPV-16 VLP vaccine recipients can respond to L1VLP from heterologous HPV types, suggesting the presence of conserved T cell epitopes

  9. The food additive vanillic acid controls transgene expression in mammalian cells and mice.

    Science.gov (United States)

    Gitzinger, Marc; Kemmer, Christian; Fluri, David A; El-Baba, Marie Daoud; Weber, Wilfried; Fussenegger, Martin

    2012-03-01

    Trigger-inducible transcription-control devices that reversibly fine-tune transgene expression in response to molecular cues have significantly advanced the rational reprogramming of mammalian cells. When designed for use in future gene- and cell-based therapies the trigger molecules have to be carefully chosen in order to provide maximum specificity, minimal side-effects and optimal pharmacokinetics in a mammalian organism. Capitalizing on control components that enable Caulobacter crescentus to metabolize vanillic acid originating from lignin degradation that occurs in its oligotrophic freshwater habitat, we have designed synthetic devices that specifically adjust transgene expression in mammalian cells when exposed to vanillic acid. Even in mice transgene expression was robust, precise and tunable in response to vanillic acid. As a licensed food additive that is regularly consumed by humans via flavoured convenience food and specific fresh vegetable and fruits, vanillic acid can be considered as a safe trigger molecule that could be used for diet-controlled transgene expression in future gene- and cell-based therapies.

  10. Protective immunization with B16 melanoma induces antibody response and not cytotoxic T cell response

    International Nuclear Information System (INIS)

    Sarzotti, M.; Sriyuktasuth, P.; Klimpel, G.R.; Cerny, J.

    1986-01-01

    C57BL/6 mice immunized with three intraperitoneal injections of syngeneic, irradiated B16 melanoma cells, became resistant to B16 tumor challenge. Immunized mice had high levels of serum antibody against a membrane antigen of B16 cells. The B16 antigen recognized by the anti-B16 sera formed a major band of 90 KD in gel electrophoresis. The anti-B16 antibody was partially protective when mixed with B16 cells and injected into normal recipient mice. Surprisingly, B16 resistance mice were incapable of generating cytotoxic T cells (CTL) specific for the B16 tumor. Both spleen and lymph node cell populations from immunized mice did not generate B16-specific CTL. Allogeneic mice (DBA/2 or C3H) were also unable to generate B16-specific CTL: however, alloreactive CTL produced in these strains of mice by immunization with C57BL/6 lymphocytes, did kill B16 target cells. Interestingly, spleen cells from syngeneic mice immunized with B16 tumor produced 6-fold more interleukin-2 (IL-2) than normal spleen cells, in vitro. These data suggest that immunization with B16 tumor activates a helper subset of T cells (for antibody and IL-2 production) but not the effector CTL response

  11. Induction of a specific strong polyantigenic cellular immune response after short-term chemotherapy controls bacillary reactivation in murine and guinea pig experimental models of tuberculosis.

    Science.gov (United States)

    Guirado, Evelyn; Gil, Olga; Cáceres, Neus; Singh, Mahavir; Vilaplana, Cristina; Cardona, Pere-Joan

    2008-08-01

    RUTI is a therapeutic vaccine that is generated from detoxified and liposomed Mycobacterium tuberculosis cell fragments that has demonstrated its efficacy in the control of bacillus reactivation after short-term chemotherapy. The aim of this study was to characterize the cellular immune response generated after the therapeutic administration of RUTI and to corroborate the lack of toxicity of the vaccine. Mouse and guinea pig experimental models were infected with a low-dose M. tuberculosis aerosol. RUTI-treated animals showed the lowest bacillary load in both experimental models. RUTI also decreased the percentage of pulmonary granulomatous infiltration in the mouse and guinea pig models. This was not the case after Mycobacterium bovis BCG treatment. Cellular immunity was studied through the characterization of the intracellular gamma interferon (IFN-gamma)-producing cells after the splenocytes' stimulation with M. tuberculosis-specific structural and growth-related antigens. Our data show that the difference between the therapeutic administration of BCG and RUTI resides mainly in the stronger activation of IFN-gamma(+) CD4(+) cells and CD8(+) cells against tuberculin purified protein derivative, ESAT-6, and Ag85B that RUTI generates. Both vaccines also triggered a specific immune response against the M. tuberculosis structural antigens Ag16kDa and Ag38kDa and a marked mRNA expression of IFN-gamma, tumor necrosis factor, interleukin-12, inducible nitric oxide synthase, and RANTES in the lung. The results show that RUTI's therapeutic effect is linked not only to the induction of a Th1 response but also to the stimulation of a quicker and stronger specific immunity against structural and growth-related antigens that reduces both the bacillary load and the pulmonary pathology.

  12. Effect of partial and complete variable loop deletions of the human immunodeficiency virus type 1 envelope glycoprotein on the breadth of gp160-specific immune responses

    International Nuclear Information System (INIS)

    Gzyl, Jaroslaw; Bolesta, Elizabeth; Wierzbicki, Andrew; Kmieciak, Dariusz; Naito, Toshio; Honda, Mitsuo; Komuro, Katsutoshi; Kaneko, Yutaro; Kozbor, Danuta

    2004-01-01

    Induction of cross-reactive cellular and humoral responses to the HIV-1 envelope (env) glycoprotein was examined after DNA immunization of BALB/c mice with gp140 89.6 -derived constructs exhibiting partial or complete deletions of the V1, V2, and V3 domains. It was demonstrated that specific modification of the V3 loop (mV3) in combination with the V2-modified (mV2) or V1/V2-deleted (ΔV1/V2) region elicited increased levels of cross-reactive CD8 + T cell responses. Mice immunized with the mV2/mV3 or ΔV1/V2/mV3 gp140 89.6 plasmid DNA were greater than 50-fold more resistant to challenge with recombinant vaccinia virus (rVV) expressing heterologous env gene products than animals immunized with the wild-type (WT) counterpart. Sera from mV2/mV3- and ΔV1/V2/mV3-immunized mice exhibited the highest cross-neutralizing activity and displayed intermediate antibody avidity values which were further enhanced by challenge with rVV expressing the homologous gp160 glycoprotein. In contrast, complete deletion of the variable regions had little or no effect on the cross-reactive antibody responses. The results of these experiments indicate that the breadth of antibody responses to the HIV-1 env glycoprotein may not be increased by removal of the variable domains. Instead, partial deletions within these regions may redirect specific responses toward conserved epitopes and facilitate approaches for boosting cross-reactive cellular and antibody responses to the env glycoprotein

  13. A novel transgenic mouse model of lysosomal storage disorder.

    Science.gov (United States)

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A; Greiner, Dale L; Bortell, Rita; Gregg, Ronald G; Cheng, Alan; Hennings, Leah J; Rittenhouse, Ann R

    2016-11-01

    Knockout technology has proven useful for delineating functional roles of specific genes. Here we describe and provide an explanation for striking pathology that occurs in a subset of genetically engineered mice expressing a rat Ca V β2a transgene under control of the cardiac α-myosin heavy chain promoter. Lesions were limited to mice homozygous for transgene and independent of native Cacnb2 genomic copy number. Gross findings included an atrophied pancreas; decreased adipose tissue; thickened, orange intestines; and enlarged liver, spleen, and abdominal lymph nodes. Immune cell infiltration and cell engulfment by macrophages were associated with loss of pancreatic acinar cells. Foamy macrophages diffusely infiltrated the small intestine's lamina propria, while similar macrophage aggregates packed liver and splenic red pulp sinusoids. Periodic acid-Schiff-positive, diastase-resistant, iron-negative, Oil Red O-positive, and autofluorescent cytoplasm was indicative of a lipid storage disorder. Electron microscopic analysis revealed liver sinusoids distended by clusters of macrophages containing intracellular myelin "swirls" and hepatocytes with enlarged lysosomes. Additionally, build up of cholesterol, cholesterol esters, and triglycerides, along with changes in liver metabolic enzyme levels, were consistent with a lipid processing defect. Because of this complex pathology, we examined the transgene insertion site. Multiple transgene copies inserted into chromosome 19; at this same site, an approximate 180,000 base pair deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95 Loss of gene function can account for the altered lipid processing, along with hypertrophy of the immune system, which define this phenotype, and serendipitously provides a novel mouse model of lysosomal storage disorder. Copyright © 2016 the American Physiological Society.

  14. Immunity to rhabdoviruses in rainbow trout: the antibody response

    DEFF Research Database (Denmark)

    Lorenzen, Niels; Lapatra, S.E.

    1999-01-01

    to their occasional detrimental effect on rainbow trout farming. Research efforts have been focused on understanding the mechanisms involved in protective immunity. Several specific and nonspecific cellular and humoral parameters are believed to be involved, but only the antibody response has been characterised......, have demonstrated that rainbow trout can produce specific and highly functional antibodies that are able to neutralise virus pathogenicity in vitro as well as in vivo. The apparently more restricted antibody response to IHNV and VHSV antigens in fish compared to mammals could possibly be explained...... aspects of antibody response and antibody reactivity with IHNV and VHSV antigens....

  15. Antitumor immunity is defective in T cell-specific microRNA-155-deficient mice and is rescued by immune checkpoint blockade.

    Science.gov (United States)

    Huffaker, Thomas B; Lee, Soh-Hyun; Tang, William W; Wallace, Jared A; Alexander, Margaret; Runtsch, Marah C; Larsen, Dane K; Thompson, Jacob; Ramstead, Andrew G; Voth, Warren P; Hu, Ruozhen; Round, June L; Williams, Matthew A; O'Connell, Ryan M

    2017-11-10

    MicroRNA-155 (miR-155) regulates antitumor immune responses. However, its specific functions within distinct immune cell types have not been delineated in conditional KO mouse models. In this study, we investigated the role of miR-155 specifically within T cells during the immune response to syngeneic tumors. We found that miR-155 expression within T cells is required to limit syngeneic tumor growth and promote IFNγ production by T cells within the tumor microenvironment. Consequently, we found that miR-155 expression by T cells is necessary for proper tumor-associated macrophage expression of IFNγ-inducible genes. We also found that immune checkpoint-blocking (ICB) antibodies against programmed cell death protein 1/programmed death ligand 1 (PD-1/PD-L1) and cytotoxic T lymphocyte-associated protein 4 (CTLA-4) restored antitumor immunity in miR-155 T cell-conditional KO mice. We noted that these ICB antibodies rescued the levels of IFNγ-expressing T cells, expression of multiple activation and effector genes expressed by tumor-infiltrating CD8 + and CD4 + T cells, and tumor-associated macrophage activation. Moreover, the ICB approach partially restored expression of several derepressed miR-155 targets in tumor-infiltrating, miR-155-deficient CD8 + T cells, suggesting that miR-155 and ICB regulate overlapping pathways to promote antitumor immunity. Taken together, our findings highlight the multifaceted role of miR-155 in T cells, in which it promotes antitumor immunity. These results suggest that the augmentation of miR-155 expression could be used to improve anticancer immunotherapies. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  16. FOXP3-specific immunity

    DEFF Research Database (Denmark)

    Andersen, Mads Hald

    2013-01-01

    Forkhead box P3 (FOXP3)-specific cytotoxic CD8(+) T cells are present among human peripheral blood mononuclear cells (PBMCs), especially in cancer patients. Such T lymphocytes are able not only to specifically recognize dendritic cells (DCs) that have been exposed to recombinant FOXP3 and regulat...... and regulatory T cells, but also to kill FOXP3(+) malignant T cells. The natural occurrence of FOXP3-specific cytotoxic T lymphocytes among human PBMCs suggests a general role for these cells in the complex network of immune regulation....

  17. Protective immunity provided by HLA-A2 epitopes for fusion and hemagglutinin proteins of measles virus

    International Nuclear Information System (INIS)

    Oh, Sang Kon; Stegman, Brian; Pendleton, C. David; Ota, Martin O.; Pan, C.-H.; Griffin, Diane E.; Burke, Donald S.; Berzofsky, Jay A.

    2006-01-01

    Natural infection and vaccination with a live-attenuated measles virus (MV) induce CD8 + T-cell-mediated immune responses that may play a central role in controlling MV infection. In this study, we show that newly identified human HLA-A2 epitopes from MV hemagglutinin (H) and fusion (F) proteins induced protective immunity in HLA-A2 transgenic mice challenged with recombinant vaccinia viruses expressing F or H protein. HLA-A2 epitopes were predicted and synthesized. Five and four peptides from H and F, respectively, bound to HLA-A2 molecules in a T2-binding assay, and four from H and two from F could induce peptide-specific CD8 + T cell responses in HLA-A2 transgenic mice. Further experiments proved that three peptides from H (H9-567, H10-250, and H10-516) and one from F protein (F9-57) were endogenously processed and presented on HLA-A2 molecules. All peptides tested in this study are common to 5 different strains of MV including Edmonston. In both A2K b and HHD-2 mice, the identified peptide epitopes induced protective immunity against recombinant vaccinia viruses expressing H or F. Because F and H proteins induce neutralizing antibodies, they are major components of new vaccine strategies, and therefore data from this study will contribute to the development of new vaccines against MV infection

  18. Signalling through C-type lectin receptors: shaping immune responses

    NARCIS (Netherlands)

    Geijtenbeek, Teunis B. H.; Gringhuis, Sonja I.

    2009-01-01

    C-type lectin receptors (CLRs) expressed by dendritic cells are crucial for tailoring immune responses to pathogens. Following pathogen binding, CLRs trigger distinct signalling pathways that induce the expression of specific cytokines which determine T cell polarization fates. Some CLRs can induce

  19. Antimicrobial peptides in innate immune responses

    DEFF Research Database (Denmark)

    Sorensen, O.E.; Borregaard, N.; Cole, A.M.

    2008-01-01

    Antimicrobial peptides (AMPs) are ancient effector molecules in the innate immune response of eukaryotes. These peptides are important for the antimicrobial efficacy of phagocytes and for the innate immune response mounted by epithelia of humans and other mammals. AMPs are generated either by de...... novo synthesis or by proteolytic cleavage from antimicrobially inactive proproteins. Studies of human diseases and animal studies have given important clues to the in vivo role of AMPs. It is now evident that dysregulation of the generation of AMPs in innate immune responses plays a role in certain...

  20. Breaking tolerance in transgenic mice expressing the human TSH receptor A-subunit: thyroiditis, epitope spreading and adjuvant as a 'double edged sword'.

    Science.gov (United States)

    McLachlan, Sandra M; Aliesky, Holly A; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a "double-edged sword". On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  1. Humoral immune responses of experimentally Eimeria ninakholyakimovae-infected goat kids.

    Science.gov (United States)

    Matos, Lorena; Muñoz, María Del Carmen; Molina, José Manuel; Ferrer, Otilia; Rodríguez, Francisco; Pérez, Davinia; López, Adassa María; Martín, Sergio; Hermosilla, Carlos; Taubert, Anja; Ruiz, Antonio

    2017-04-01

    Although cellular immune reactions seem to be crucial for protective immune responses in Eimeria spp. infections, there are also evidences on an active involvement of the humoral counterpart. In the present study, we have analyzed the humoral response of goat kids subjected to primary and challenge infections with Eimeria ninakholyakimovae. Specific levels of IgG and IgM in serum samples and IgA in the ileal mucus were estimated. In infected kids, significantly increased levels of IgG were observed from 3 weeks post infection onwards in addition to an enhancement of specific IgM and secretory IgA levels. A wide range of peptides of sporulated oocyst antigen (SOA) was recognized by specific IgG as determined by immunoblotting. However, no correlations were found between immunoglobulin levels and OPG counts after challenge infection. Overall, these data indicate a significant specific humoral response of E. ninakohlyakimovae-infected goat kids that does not seem to convey immunoprotection. Further studies should be addressed to clarify if the lack of correlation might be associated to the type of antigen used for the immunoenzimatic assays, the age of the animals or other factors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  2. Regulation of growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicus (Selenka) in biofloc systems.

    Science.gov (United States)

    Chen, Jinghua; Ren, Yichao; Li, Yuquan; Xia, Bin

    2018-06-01

    Bioflocs are not only a source of supplemental nutrition but also provide substantial probiotic bacteria and bioactive compounds, which play an important role in improving physiological health of aquatic organisms. A 60-day experiment was conducted to investigate the growth, intestinal microbiota, non-specific immune response and disease resistance of sea cucumber in biofloc systems with different carbon sources (glucose, sucrose and starch). Control (no biofloc) and three biofloc systems were set up, and each group has three replicates. The results showed that biofloc volume (BFV) and total suspended solids (TSS) increased in the sequences of glucose > sucrose > starch and green sea cucumber > white sea cucumber during the experiment. The highest specific growth rates (SGRs) were observed in biofloc system with glucose as carbon source, which also had relatively lower glucose, lactate and cortisol levels in coelomic fluid and higher glycogen content in muscle compared to other groups. There were significant increased Bacillus and Lactobacillus counts of sea cucumber intestine in biofloc systems, and the activities of superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx) also showed obvious ascending trends. Significant increases in total coelomocytes counts (TCC), phagocytosis, respiratory burst, complement C3 content and lysozyme (LSZ) and acid phosphatase (ACP) activities of sea cucumber were all found in biofloc system (glucose). The expression patterns of most immune-related genes (i.e. Hsp90, Hsp70, c-type lectin (CL), toll-like receptor (TLR)) were up-regulated, suggesting the promotion of pathogen recognition ability and immune signaling pathways activation by biofloc. Furthermore, green and white sea cucumber had significantly higher survival rates in biofloc systems during the 14-day challenge test. In conclusion, biofloc technology could improve growth and physiological health of A. japonicus, by optimizing intestinal

  3. Perturbation of gut bacteria induces a coordinated cellular immune response in the purple sea urchin larva

    Science.gov (United States)

    CH Ho, Eric; Buckley, Katherine M; Schrankel, Catherine S; Schuh, Nicholas W; Hibino, Taku; Solek, Cynthia M; Bae, Koeun; Wang, Guizhi; Rast, Jonathan P

    2016-01-01

    The purple sea urchin (Strongylocentrotus purpuratus) genome sequence contains a complex repertoire of genes encoding innate immune recognition proteins and homologs of important vertebrate immune regulatory factors. To characterize how this immune system is deployed within an experimentally tractable, intact animal, we investigate the immune capability of the larval stage. Sea urchin embryos and larvae are morphologically simple and transparent, providing an organism-wide model to view immune response at cellular resolution. Here we present evidence for immune function in five mesenchymal cell types based on morphology, behavior and gene expression. Two cell types are phagocytic; the others interact at sites of microbial detection or injury. We characterize immune-associated gene markers for three cell types, including a perforin-like molecule, a scavenger receptor, a complement-like thioester-containing protein and the echinoderm-specific immune response factor 185/333. We elicit larval immune responses by (1) bacterial injection into the blastocoel and (2) seawater exposure to the marine bacterium Vibrio diazotrophicus to perturb immune state in the gut. Exposure at the epithelium induces a strong response in which pigment cells (one type of immune cell) migrate from the ectoderm to interact with the gut epithelium. Bacteria that accumulate in the gut later invade the blastocoel, where they are cleared by phagocytic and granular immune cells. The complexity of this coordinated, dynamic inflammatory program within the simple larval morphology provides a system in which to characterize processes that direct both aspects of the echinoderm-specific immune response as well as those that are shared with other deuterostomes, including vertebrates. PMID:27192936

  4. A non-specific effect associated with conditional transgene expression based on Cre-loxP strategy in mice.

    Directory of Open Access Journals (Sweden)

    Linghua Qiu

    Full Text Available Transgenes flanked by loxP sites have been widely used to generate transgenic mice where the transgene expression can be controlled spatially and temporally by Cre recombinase. Data from this approach has led to important conclusions in cancer, neurodevelopment and neurodegeneration. Using this approach to conditionally express micro RNAs (miRNAs in mice, we found that Cre-mediated recombination in neural progenitor cells caused microcephaly in five of our ten independent transgenic lines. This effect was not associated with the types or the quantity of miRNAs being expressed, nor was it associated with specific target knockdown. Rather, it was correlated with the presence of multiple tandem transgene copies and inverted (head-to-head or tail-to-tail transgene repeats. The presence of these inverted repeats caused a high level of cell death in the ventricular zone of the embryonic brain, where Cre was expressed. Therefore, results from this Cre-loxP approach to generate inducible transgenic alleles must be interpreted with caution and conclusions drawn in previous reports may need reexamination.

  5. Study of the immune response to thyroglobulin through a model of experimental autoimmune thyroiditis

    International Nuclear Information System (INIS)

    Santos Castro, M. dos.

    1981-01-01

    The cellular and humoral immune response to thyroglobulin of different species was studied in guinea pigs. The experiments described suggested that the immune system can be activated against self-determinants. Human and pork thyroglobulin were able to induce the experimental thyroiditis as well as some immune responses, such as in vitro proliferative response, delayed hypersensitivity and antibodies. Although guinea pig thyroglobulin was unable to induce specific T-lymphocyte proliferation in vitro, delayed hypersensitivity response and antibodies, it was very efficient in inducing the autoimmune thyroiditis. On the contrary, bovine thyroglobulin did not induce experimental autoimmune thyroiditis despite producing good responses as determined by similar in vitro proliferative response, delayed hypersensitivity and on the humoral level. These results suggest that the assays utilised were not able to evaluate the relevant immune response to genesis of the thyroiditis. The determinant selection mechanisms operating in these immune responses are probably selecting determinants not responsible for self-recognition in vivo. It was suggested that the macrophage could be the cell responsible for the presentation of these determinants to the lymphocyte in an immunogenic form. (Author) [pt

  6. Effect of dietary carbohydrate on non-specific immune response, hepatic antioxidative abilities and disease resistance of juvenile golden pompano (Trachinotus ovatus).

    Science.gov (United States)

    Zhou, Chuanpeng; Ge, Xianping; Lin, Heizhao; Niu, Jin

    2014-12-01

    The present study was conducted to investigate the effects of dietary carbohydrate (CHO) levels on non-specific immune responses, hepatic antioxidative status and disease resistance of juvenile golden pompano. Fish were fed six isonitrogenous and isoenergetic diets containing various CHO levels for 8 weeks. After the feeding trial, fish were challenged by Vibrio harveyi and survival rate was recorded for the next 12 days. Plasma total protein and albumin content, respiratory burst activity, alkaline phosphatase, slightly increased with dietary starch level from 0% to 16.8%, but significantly decreased at dietary starch levels of 16.8%-28%. Plasma lysozyme, complement 3 and complement 4 levels increased with increasing dietary carbohydrate up to 11.2% and then declined (P 0.05) with those of the other treatments. After challenge, fish fed 11.2% and 16.8% dietary CHO showed higher survival rate than that of fish in 0% CHO group (P 0.05). The results of this study suggest that ingestion of 11.2-16.8% dietary CHO can enhance the non-specific immune responses, increase the hepatic antioxidant abilities, and improve resistance to V. harveyi infection of juvenile golden pompano. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. The specificity of immune priming in silkworm, Bombyx mori, is mediated by the phagocytic ability of granular cells.

    Science.gov (United States)

    Wu, Gongqing; Li, Mei; Liu, Yi; Ding, Ying; Yi, Yunhong

    2015-10-01

    In the past decade, the phenomenon of immune priming was documented in many invertebrates in a large number of studies; however, in most of these studies, behavioral evidence was used to identify the immune priming. The underlying mechanism and the degree of specificity of the priming response remain unclear. We studied the mechanism of immune priming in the larvae of the silkworm, Bombyx mori, and analyzed the specificity of the priming response using two closely related Gram-negative pathogenic bacteria (Photorhabdus luminescens TT01 and P. luminescens H06) and one Gram-positive pathogenic bacterium (Bacillus thuringiensis HD-1). Primed with heat-killed bacteria, the B. mori larvae were more likely to survive subsequent homologous exposure (the identical bacteria used in the priming and in the subsequent challenge) than heterologous (different bacteria used in the priming and subsequent exposure) exposure to live bacteria. This result indicated that the B. mori larvae possessed a strong immune priming response and revealed a degree of specificity to TT01, H06 and HD-1 bacteria. The degree of enhanced immune protection was positively correlated with the level of phagocytic ability of the granular cells and the antibacterial activity of the cell-free hemolymph. Moreover, the granular cells of the immune-primed larvae increased the phagocytosis of a previously encountered bacterial strain compared with other bacteria. Thus, the enhanced immune protection of the B. mori larvae after priming was mediated by the phagocytic ability of the granular cells and the antibacterial activity of the hemolymph; the specificity of the priming response was primarily attributed to the phagocytosis of bacteria by the granular cells. Copyright © 2015 Elsevier Ltd. All rights reserved.

  8. Acyclovir Therapy Reduces the CD4+ T Cell Response against the Immunodominant pp65 Protein from Cytomegalovirus in Immune Competent Individuals.

    Directory of Open Access Journals (Sweden)

    Annette Pachnio

    Full Text Available Cytomegalovirus (CMV infects the majority of the global population and leads to the development of a strong virus-specific immune response. The CMV-specific CD4+ and CD8+ T cell immune response can comprise between 10 and 50% of the T cell pool within peripheral blood and there is concern that this may impair immunity to other pathogens. Elderly individuals with the highest magnitude of CMV-specific immune response have been demonstrated to be at increased risk of mortality and there is increasing interest in interventions that may serve to moderate this. Acyclovir is an anti-viral drug with activity against a range of herpes viruses and is used as long term treatment to suppress reactivation of herpes simplex virus. We studied the immune response to CMV in patients who were taking acyclovir to assess if therapy could be used to suppress the CMV-specific immune response. The T cell reactivity against the immunodominant late viral protein pp65 was reduced by 53% in people who were taking acyclovir. This effect was seen within one year of therapy and was observed primarily within the CD4+ response. Acyclovir treatment only modestly influenced the immune response to the IE-1 target protein. These data show that low dose acyclovir treatment has the potential to modulate components of the T cell response to CMV antigen proteins and indicate that anti-viral drugs should be further investigated as a means to reduce the magnitude of CMV-specific immune response and potentially improve overall immune function.

  9. Effects of Aqueous Extract of Cyphostemma glaucophilla Leaves on Some Specific and Non-specific Immune Responses in Albino Rats

    OpenAIRE

    Ojogbane Eleojo; Omale James; Nwodo Okwesili Fred Chiletugo

    2013-01-01

    Cyphostemma glaucophilla is used in the management of kwashiorkor, because impaired immune responses is associated with malnourishment the modulatory activity of aqueous leaves extract of Cyphostemma glaucophilla on primary and secondary humuoral responses, in vivo leucocyte mobilization, Delayed Type Hypersensitive Reaction (DTHR), haemoglobin, packed cell volume and white blood cell count were evaluated. The extract at 250 and 500 mg/kg stimulated significant (p&ang 0.05) dose dependent inc...

  10. Crimean-Congo Hemorrhagic Fever Virus Suppresses Innate Immune Responses via a Ubiquitin and ISG15 Specific Protease

    Directory of Open Access Journals (Sweden)

    Florine E.M. Scholte

    2017-09-01

    Full Text Available Antiviral responses are regulated by conjugation of ubiquitin (Ub and interferon-stimulated gene 15 (ISG15 to proteins. Certain classes of viruses encode Ub- or ISG15-specific proteases belonging to the ovarian tumor (OTU superfamily. Their activity is thought to suppress cellular immune responses, but studies demonstrating the function of viral OTU proteases during infection are lacking. Crimean-Congo hemorrhagic fever virus (CCHFV, family Nairoviridae is a highly pathogenic human virus that encodes an OTU with both deubiquitinase and deISGylase activity as part of the viral RNA polymerase. We investigated CCHFV OTU function by inactivating protease catalytic activity or by selectively disrupting its deubiquitinase and deISGylase activity using reverse genetics. CCHFV OTU inactivation blocked viral replication independently of its RNA polymerase activity, while deubiquitinase activity proved critical for suppressing the interferon responses. Our findings provide insights into viral OTU functions and support the development of therapeutics and vaccines.

  11. Immune response to H pylori

    Science.gov (United States)

    Suarez, Giovanni; Reyes, Victor E; Beswick, Ellen J

    2006-01-01

    The gastric mucosa separates the underlying tissue from the vast array of antigens that traffic through the stomach lumen. While the extreme pH of this environment is essential in aiding the activation of enzymes and food digestion, it also renders the gastric epithelium free from bacterial colonization, with the exception of one important human pathogen, H pylori. This bacterium has developed mechanisms to survive the harsh environment of the stomach, actively move through the mucosal layer, attach to the epithelium, evade immune responses, and achieve persistent colonization. While a hallmark of this infection is a marked inflammatory response with the infiltration of various immune cells into the infected gastric mucosa, the host immune response is unable to clear the infection and may actually contribute to the associated pathogenesis. Here, we review the host responses involved during infection with H pylori and how they are influenced by this bacterium. PMID:17007009

  12. The microRNA miR-29 controls innate and adaptive immune responses to intracellular bacterial infection by targeting interferon-γ.

    Science.gov (United States)

    Ma, Feng; Xu, Sheng; Liu, Xingguang; Zhang, Qian; Xu, Xiongfei; Liu, Mofang; Hua, Minmin; Li, Nan; Yao, Hangping; Cao, Xuetao

    2011-07-24

    Interferon-γ (IFN-γ) has a critical role in immune responses to intracellular bacterial infection. MicroRNAs (miRNAs) are important in the regulation of innate and adaptive immunity. However, whether miRNAs can directly target IFN-γ and regulate IFN-γ production post-transcriptionally remains unknown. Here we show that infection of mice with Listeria monocytogenes or Mycobacterium bovis bacillus Calmette-Guérin (BCG) downregulated miR-29 expression in IFN-γ-producing natural killer cells, CD4(+) T cells and CD8(+) T cells. Moreover, miR-29 suppressed IFN-γ production by directly targeting IFN-γ mRNA. We developed mice with transgenic expression of a 'sponge' target to compete with endogenous miR-29 targets (GS29 mice). We found higher serum concentrations of IFN-γ and lower L. monocytogenes burdens in L. monocytogenes-infected GS29 mice than in their littermates. GS29 mice had enhanced T helper type 1 (T(H)1) responses and greater resistance to infection with BCG or Mycobacterium tuberculosis. Therefore, miR-29 suppresses immune responses to intracellular pathogens by targeting IFN-γ.

  13. Study of the integrated immune response induced by an inactivated EV71 vaccine.

    Directory of Open Access Journals (Sweden)

    Longding Liu

    Full Text Available Enterovirus 71 (EV71, a major causative agent of hand-foot-and-mouth disease (HFMD, causes outbreaks among children in the Asia-Pacific region. A vaccine is urgently needed. Based on successful pre-clinical work, phase I and II clinical trials of an inactivated EV71 vaccine, which included the participants of 288 and 660 respectively, have been conducted. In the present study, the immune response and the correlated modulation of gene expression in the peripheral blood mononuclear cells (PBMCs of 30 infants (6 to 11 months immunized with this vaccine or placebo and consented to join this study in the phase II clinical trial were analyzed. The results showed significantly greater neutralizing antibody and specific T cell responses in vaccine group after two inoculations on days 0 and 28. Additionally, more than 600 functional genes that were up- or down-regulated in PBMCs were identified by the microarray assay, and these genes included 68 genes associated with the immune response in vaccine group. These results emphasize the gene expression profile of the immune system in response to an inactivated EV71 vaccine in humans and confirmed that such an immune response was generated as the result of the positive mobilization of the immune system. Furthermore, the immune response was not accompanied by the development of a remarkable inflammatory response.NCT01391494 and NCT01512706.

  14. Complex genomic rearrangement in CCS-LacZ transgenic mice.

    Science.gov (United States)

    Stroud, Dina Myers; Darrow, Bruce J; Kim, Sang Do; Zhang, Jie; Jongbloed, Monique R M; Rentschler, Stacey; Moskowitz, Ivan P G; Seidman, Jonathan; Fishman, Glenn I

    2007-02-01

    The cardiac conduction system (CCS)-lacZ insertional mouse mutant strain genetically labels the developing and mature CCS. This pattern of expression is presumed to reflect the site of transgene integration rather than regulatory elements within the transgene proper. We sought to characterize the genomic structure of the integration locus and identify nearby gene(s) that might potentially confer the observed CCS-specific transcription. We found rearrangement of chromosome 7 between regions D1 and E1 with altered transcription of multiple genes in the D1 region. Several lines of evidence suggested that regulatory elements from at least one gene, Slco3A1, influenced CCS-restricted reporter gene expression. In embryonic hearts, Slco3A1 was expressed in a spatial pattern similar to the CCS-lacZ transgene and was similarly neuregulin-responsive. At later stages, however, expression patterns of the transgene and Slco3A1 diverged, suggesting that the Slco3A1 locus may be necessary, but not sufficient to confer CCS-specific transgene expression in the CCS-lacZ line. (c) 2007 Wiley-Liss, Inc.

  15. Chicken Immune Response after In Ovo Immunization with Chimeric TLR5 Activating Flagellin of Campylobacter jejuni.

    Directory of Open Access Journals (Sweden)

    Katarzyna A Radomska

    Full Text Available Campylobacter jejuni is the main cause of bacterial food-borne diseases in developed countries. Chickens are the most important source of human infection. Vaccination of poultry is an attractive strategy to reduce the number of C. jejuni in the intestinal tract of chickens. We investigated the immunogenicity and protective efficacy of a recombinant C. jejuni flagellin-based subunit vaccine with intrinsic adjuvant activity. Toll-like receptor activation assays demonstrated the purity and TLR5 stimulating (adjuvant activity of the vaccine. The antigen (20-40 μg was administered in ovo to 18 day-old chicken embryos. Serum samples and intestinal content were assessed for antigen-specific systemic and mucosal humoral immune responses. In ovo vaccination resulted in the successful generation of IgY and IgM serum antibodies against the flagellin-based subunit vaccine as determined by ELISA and Western blotting. Vaccination did not induce significant amounts of flagellin-specific secretory IgA in the chicken intestine. Challenge of chickens with C. jejuni yielded similar intestinal colonization levels for vaccinated and control animals. Our results indicate that in ovo delivery of recombinant C. jejuni flagellin subunit vaccine is a feasible approach to yield a systemic humoral immune response in chickens but that a mucosal immune response may be needed to reduce C. jejuni colonization.

  16. Humoral immune response of the small-spotted catshark, Scyliorhinus canicula.

    Science.gov (United States)

    Crouch, Kathryn; Smith, Lauren E; Williams, Rebecca; Cao, Wei; Lee, Mike; Jensen, Allan; Dooley, Helen

    2013-05-01

    Cartilaginous fishes are the oldest group in which an adaptive immune system based on immunoglobulin-superfamily members is found. This manuscript compares humoral immune function in small-spotted catshark (Scyliorhinus canicula) with that described for spiny dogfish (Squalus acanthias), another member of the Squalomorphi superorder, and nurse shark, the model for humoral immunity in elasmobranchs and a member of the Galeomorphi superorder. Although small-spotted catshark and nurse shark are separated by over 200 million years we found that immunoglobulin isoforms are well conserved between the two species. However, the plasma protein profile of small-spotted catshark was most similar to that of spiny dogfish, with low levels of pentameric IgM, and IgNAR present as a multimer in plasma rather than a monomer. We show that an antigen-specific monomeric IgM response, with a profile similar to that described previously for nurse sharks, can be raised in small-spotted catshark. Lacking polyclonal or monoclonal antibody reagents for detecting catshark IgNAR we investigated phage-display and recombinant Fc-fusion protein expression as alternative methods to look for an antigen-specific response for this isotype. However, we could find no evidence of an antigen-specific IgNAR in the animals tested using either of these techniques. Thus, unlike nurse sharks where antigen-specific monomeric IgM and IgNAR appear together, it seems there may be a temporal or complete 'uncoupling' of these isotypes during a humoral response in the small-spotted catshark. Copyright © 2013 Elsevier Ltd. All rights reserved.

  17. Augmenting Plant Immune Responses and Biological Control by Microbial Determinants

    Directory of Open Access Journals (Sweden)

    Sang Moo Lee

    2015-09-01

    Full Text Available Plant have developed sophisticated defence mechanisms against microbial pathogens. The recent accumulated information allow us to understand the nature of plant immune responses followed by recognition of microbial factors/determinants through cutting-edge genomics and multi-omics techniques. However, the practical approaches to sustain plant health using enhancement of plant immunity is yet to be fully appreciated. Here, we overviewed the general concept and representative examples on the plant immunity. The fungal, bacterial, and viral determinants that was previously reported as the triggers of plant immune responses are introduced and described as the potential protocol of biological control. Specifically, the role of chitin, glucan, lipopolysaccharides/extracellular polysaccharides, microbe/pathogen-associated molecular pattern, antibiotics, mimic-phytohormones, N-acyl homoserine lactone, harpin, vitamins, and volatile organic compounds are considered. We hope that this review stimulates scientific community and farmers to broaden their knowledge on the microbial determinant-based biological control and to apply the technology on the integrated pest management program.

  18. Mycobacterium tuberculosis co-operonic PE32/PPE65 proteins alter host immune responses by hampering Th1 response

    Directory of Open Access Journals (Sweden)

    Mohd eKhubaib

    2016-05-01

    Full Text Available PE/PPE genes, present in cluster with ESAT-6 like genes, are suspected to have a role in antigenic variation and virulence of Mycobacterium tuberculosis. Their roles in immune evasion and immune modulation of host are also well documented. We present evidence that PE32/PPE65 present within the RD8 region are co-operonic, co-transcribed and co-translated, and play role in modulating host immune responses. Experiments with macrophage cell lines revealed that this protein complex suppresses pro-inflammatory cytokines such as TNF-α and IL-6 whereas also inducing high expression of anti-inflammatory IL-10. Immunization of mice with these recombinant proteins dampens an effective Th1 response as evident from reduced frequency of IFN-g and IL-2 producing CD4+ and CD8+ T cells. IgG sub-typing from serum of immunized mice revealed high levels of IgG1 when compared with IgG2a and IgG2b. Further IgG1/IgG2a ratio clearly demonstrated that the protein complex manipulates the host immune response favourable to the pathogen. Our results demonstrate that the co-transcribed and co-translated PE32 and PPE65 antigens are involved specifically in modulating anti-mycobacterial host immune response by hampering Th1 response.

  19. REACTOGENITY OF TICK-BORNE ENCEPHALITIS VACCINE ENCEPUR ADULT AND IMMUNE RESPONSE

    Directory of Open Access Journals (Sweden)

    G. N. Leonova

    2005-01-01

    Full Text Available Abstract. The comprehensive clinical-immunological characteristic of a tick-borne encephalitis vaccine En-cepur Adult (Germany, which was studied on a group of residents of Far East of Russia was discussed. Reactogenity in 32,4% of vaccinees was characterized by minor clinical manifestations and was due to the reaction to specific vaccine albumin. Expression of immune response (mean geometric titers was evaluated in a neutralization test. A group with the reactogenity showed higher geometric mean antibody titers (1:182 compared with a group without the reactogenity (1:97.All of vaccinees with various levels (high, middle, low of specific immune response had an increased quantity of CD20+ and CD25+ lymphocytes. We showed a difference in immunologic reactivity of people with high and low levels of specific antibody response. As compared with a low level group the group with a high level of specific response showed significantly higher quantity of lymphocytes and their subpopulations (CD3+, CD4+, CD45RA+ as well as higher levels of IgM, IgG.We conclude that vaccine Encepur Adult (Germany possesses a high immunologic activity. It is recommended to use this vaccine as a safe and effective specific preventive remedy in TBE endemic areas.

  20. Breaking Tolerance in Transgenic Mice Expressing the Human TSH Receptor A-Subunit: Thyroiditis, Epitope Spreading and Adjuvant as a ‘Double Edged Sword’

    Science.gov (United States)

    McLachlan, Sandra M.; Aliesky, Holly A.; Chen, Chun-Rong; Chong, Gao; Rapoport, Basil

    2012-01-01

    Transgenic mice with the human thyrotropin-receptor (TSHR) A-subunit targeted to the thyroid are tolerant of the transgene. In transgenics that express low A-subunit levels (Lo-expressors), regulatory T cell (Treg) depletion using anti-CD25 before immunization with adenovirus encoding the A-subunit (A-sub-Ad) breaks tolerance, inducing extensive thyroid lymphocytic infiltration, thyroid damage and antibody spreading to other thyroid proteins. In contrast, no thyroiditis develops in Hi-expressor transgenics or wild-type mice. Our present goal was to determine if thyroiditis could be induced in Hi-expressor transgenics using a more potent immunization protocol: Treg depletion, priming with Complete Freund's Adjuvant (CFA) + A-subunit protein and further Treg depletions before two boosts with A-sub-Ad. As controls, anti-CD25 treated Hi- and Lo-expressors and wild-type mice were primed with CFA+ mouse thyroglobulin (Tg) or CFA alone before A-sub-Ad boosting. Thyroiditis developed after CFA+A-subunit protein or Tg and A-sub-Ad boosting in Lo-expressor transgenics but Hi- expressors (and wild-type mice) were resistant to thyroiditis induction. Importantly, in Lo-expressors, thyroiditis was associated with the development of antibodies to the mouse TSHR downstream of the A-subunit. Unexpectedly, we observed that the effect of bacterial products on the immune system is a “double-edged sword”. On the one hand, priming with CFA (mycobacteria emulsified in oil) plus A-subunit protein broke tolerance to the A-subunit in Hi-expressor transgenics leading to high TSHR antibody levels. On the other hand, prior treatment with CFA in the absence of A-subunit protein inhibited responses to subsequent immunization with A-sub-Ad. Consequently, adjuvant activity arising in vivo after bacterial infections combined with a protein autoantigen can break self-tolerance but in the absence of the autoantigen, adjuvant activity can inhibit the induction of immunity to autoantigens (like the

  1. Effect of partially purified fumonisins on cellular immune response in ...

    African Journals Online (AJOL)

    After 7 days, cellular immune response was evaluated by delayed-type hypersensitivity (DTH) and lymphoproliferative assays (LA) using spleen cells. Nitric oxide (NO) production by spleen cells was also evaluated. The specific LA response to Pb antigen was higher in group PB than in FB and CTR groups (p< 0.05) but not ...

  2. Differential immune responses to albumin adducts of reactive intermediates of trichloroethene in MRL+/+ mice

    International Nuclear Information System (INIS)

    Cai Ping; Koenig, Rolf; Khan, M. Firoze; Kaphalia, Bhupendra S.; Ansari, G.A.S.

    2007-01-01

    Trichloroethene (TCE) is an industrial degreasing solvent and widespread environmental contaminant. Exposure to TCE is associated with autoimmunity. The mode of action of TCE is via its oxidative metabolism, and most likely, immunotoxicity is mediated via haptenization of macromolecules and subsequent induction of immune responses. To better understand the role of protein haptenization through TCE metabolism, we immunized MRL+/+ mice with albumin adducts of various TCE reactive intermediates. Serum immunoglobulins and cytokine levels were measured to determine immune responses against haptenized albumin. We found antigen-specific IgG responses of the IgG subtypes IgG 1 , IgG 2a , and IgG 2b , with IgG 1 predominating. Serum levels of G-CSF were increased in immunized mice, suggesting macrophage activation. Liver histology revealed lymphocyte infiltration in the lobules and the portal area following immunization with formyl-albumin. Our findings suggest that proteins haptenized by metabolites of TCE may act as neo-antigens that can induce humoral immune responses and T cell-mediated hepatitis

  3. Influence of CCR7 ligand DNA preexposure on the magnitude and duration of immunity

    International Nuclear Information System (INIS)

    Lee, Yunsang; Seong, Kug Eo; Rouse, Richard J.D.; Rouse, Barry T.

    2003-01-01

    The CC chemokine receptor (CCR) 7 ligands CCL21 and CCL19 were recently described as essential elements for establishing the microenvironment needed to initiate optimal immune responses in secondary lymphoid tissues. In the present study we have kinetically investigated the primary responses of naive DO11.10 TCR-transgenic CD4+ T cells (OVA323-339 peptide specific) adoptively transferred into normal BALB/c mice given plasmid DNA encoding CCR7 ligands. The primary responses of CD4+ Tg-T cells in CCR7 ligand DNA recipients occurred more promptly, reaching levels higher than those observed in vector controls. In line with enhanced specific immunity, the T-cell population in CCR7 ligand recipients underwent more in vivo cell division following Ag stimulation, and a higher percentage of Ag-specific T cells expressed an activation phenotype. Moreover, the enhanced primary responses of naive CD4+ T cells appeared to act via affects on migration and maturation of CD11c+ dendritic cells in the draining lymph nodes. In addition following mucosal challenge of herpes simplex virus-immune mice with virus, those that had received CCL21 or CCL19 during priming contained a higher frequency of responding CD4 T cells in lymph nodes and the site of infection. Moreover, CCL21- and CCL19-treated mice showed less severe disease and better survival following challenge. Our results are discussed in terms of the relevance of CCR7 ligand preimmunization to improve vaccine

  4. [The humoral immune response in mice induced by recombinant Lactococcus lactis expressing HIV-1 gag].

    Science.gov (United States)

    Zhao, Xiaofei; Zhang, Cairong; Liu, Xiaojuan; Ma, Zhenghai

    2014-11-01

    To analyze the humoral immune response induced by recombinant Lactococcus lactis expressing HIV-1 gag in mice immunized orally, intranasally, subcutaneously or in the combined way of above three. Fifty BALB/c mice were randomly divided into 5 groups, 10 mice per group. The mice were immunized consecutively three times at two week intervals with 10(9) CFU of recombinant Lactococcus lactis expressing gag through oral, intranasal, subcutaneous administration or the mix of them. The mice that were immunized orally with Lactococcus lactis containing PMG36e served as a control group. The sera of mice were collected before primary immunization and 2 weeks after each immunization to detect the gag specific IgG by ELISA. Compared with the control group, the higher titer of serum gag specific IgG was detected in the four groups immunized with recombinant Lactococcus lactis expressing gag, and it was the highest in the mixed immunization group (PLactococcus lactis expressing gag can induce humoral immune response in mice by oral, intranasal, subcutaneous injection or the mix of them, and the mixed immunization can enhance the immune effects of Lactococcus lactis vector vaccine.

  5. Human interleukin-10 delivered intrathecally by self-complementary adeno-associated virus 8 induces xenogeneic transgene immunity without clinical neurotoxicity in swine.

    Science.gov (United States)

    Unger, Mark D; Pleticha, Josef; Heilmann, Lukas F; Newman, Laura K; Maus, Timothy P; Beutler, Andreas S

    2018-05-25

    Intrathecal interleukin-10 delivered by plasmid or viral gene vectors has been proposed for clinical testing because it is effective for chronic pain in rodents, a potential therapeutic for various human diseases, and was found to be non-toxic in dogs, when the human interleukin-10 ortholog was tested. However, recent studies in swine testing porcine interleukin-10 demonstrated fatal neurotoxicity. To deliver vector-encoded human interleukin-10 in swine, measure expression of the transgene in cerebrospinal fluid, and monitor animals for signs of neurotoxicity. Human interleukin-10 levels peaked 2 weeks after vector administration followed by a rapid decline that occurred concomitant with the emergence of anti-human interleukin-10 antibodies in the cerebrospinal fluid and serum. Animals remained neurologically healthy throughout the study period. This study suggests that swine are not idiosyncratically sensitive to intrathecal interleukin-10 because, recapitulating previous reports in dogs, they suffered no clinical neurotoxicity from the human ortholog. These results strongly infer that toxicity of intrathecal interleukin-10 in large animal models was previously overlooked because of a species mismatch between transgene and host. The present study further suggests that swine were protected from interleukin-10 by a humoral immune response against the xenogeneic cytokine. Future safety studies of interleukin-10 or related therapeutics may require syngeneic large animal models. This article is protected by copyright. All rights reserved.

  6. Dystrophin Immunity in Duchenne’s Muscular Dystrophy

    Science.gov (United States)

    Mendell, Jerry R.; Campbell, Katherine; Rodino-Klapac, Louise; Sahenk, Zarife; Shilling, Chris; Lewis, Sarah; Bowles, Dawn; Gray, Steven; Li, Chengwen; Galloway, Gloria; Malik, Vinod; Coley, Brian; Clark, K. Reed; Li, Juan; Xiao, Xiao; Samulski, Jade; McPhee, Scott W.; Samulski, R. Jude; Walker, Christopher M.

    2010-01-01

    SUMMARY We report on delivery of a functional dystrophin transgene to skeletal muscle in six patients with Duchenne’s muscular dystrophy. Dystrophin-specific T cells were detected after treatment, providing evidence of transgene expression even when the functional protein was not visualized in skeletal muscle. Circulating dystrophin-specific T cells were unexpectedly detected in two patients before vector treatment. Revertant dystrophin fibers, which expressed functional, truncated dystrophin from the deleted endogenous gene after spontaneous in-frame splicing, contained epitopes targeted by the autoreactive T cells. The potential for T-cell immunity to self and nonself dystrophin epitopes should be considered in designing and monitoring experimental therapies for this disease. (Funded by the Muscular Dystrophy Association and others; ClinicalTrials.gov number, NCT00428935.) PMID:20925545

  7. Vascular endothelium as a target of immune response in renal transplant rejection

    Directory of Open Access Journals (Sweden)

    Giovanni ePiotti

    2014-10-01

    Full Text Available This review of clinical and experimental studies aims at analysing the interplay between graft endothelium and host immune system in renal transplantation, and how it affects the survival of the graft. Graft endothelium is indeed the first barrier between self and non-self that is encountered by host lymphocytes upon reperfusion of vascularised solid transplants. Endothelial cells express all the major sets of antigens that elicit host immune response, and therefore represent a preferential target in organ rejection.Some of the antigens expressed by endothelial cells are target of the antibody-mediated response, such as the AB0 blood group system, the HLA and MICA systems, and the endothelial cell-restricted antigens; for each of these systems, the mechanisms of interaction and damage of both preformed and de novo donor-specific antibodies are reviewed along with their impact on renal graft survival. Moreover the rejection process can force injured endothelial cells to expose cryptic self-antigens, toward which an auto-immune response mounts, overlapping to the allo-immune response in the damaging of the graft. Not only are endothelial cells a passive target of the host immune response, but also an active player in lymphocyte activation; therefore their interaction with allogenic T-cells is analysed on the basis of experimental in vitro and in vivo studies, according to the patterns of expression of the HLA class I and II and the co-stimulatory molecules specific for cytotoxic and helper T-cells.Finally, as the response that follows transplantation has proven to be not necessarily destructive, the factors that foster graft endothelium functioning in spite of rejection, and how they could be therapeutically harnessed to promote long-term graft acceptance, are described: accommodation that is resistance of endothelial cells to donor-specific antibodies, and endothelial cell ability to induce Foxp3+ Regulatory T-cells, that are crucial mediators of

  8. Mucosal immunization using proteoliposome and cochleate structures from Neisseria meningitidis serogroup B induce mucosal and systemic responses.

    Science.gov (United States)

    Campo, Judith Del; Zayas, Caridad; Romeu, Belkis; Acevedo, Reinaldo; González, Elizabeth; Bracho, Gustavo; Cuello, Maribel; Cabrera, Osmir; Balboa, Julio; Lastre, Miriam

    2009-12-01

    Most pathogens either invade the body or establish infection in mucosal tissues and represent an enormous challenge for vaccine development by the absence of good mucosal adjuvants. A proteoliposome-derived adjuvant from Neisseria meningitidis serogroup B (AFPL1, Adjuvant Finlay Proteoliposome 1) and its derived cochleate form (Co, AFCo1) contain multiple pathogen-associated molecular patterns as immunopotentiators, and can also serve as delivery systems to elicit a Th1-type immune response. The present studies demonstrate the ability of AFPL1and AFCo1 to induce mucosal and systemic immune responses by different mucosal immunizations routes and significant adjuvant activity for antibody responses of both structures: a microparticle and a nanoparticle with a heterologous antigen. Therefore, we used female mice immunized by intragastric, intravaginal, intranasal or intramuscular routes with both structures alone or incorporated with ovalbumin (OVA). High levels of specific IgG antibody were detected in all sera and in vaginal washes, but specific IgA antibody in external secretions was only detected in mucosally immunized mice. Furthermore, antigen specific IgG1 and IgG2a isotypes were all induced. AFPL1 and AFCo1 are capable of inducing IFN-gamma responses, and chemokine secretions, like MIP-1alpha and MIP-1beta. However, AFCo1 is a better alternative to induce immune responses at mucosal level. Even when we use a heterologous antigen, the AFCo1 response was better than with AFPL1 in inducing mucosal and systemic immune responses. These results support the use of AFCo1 as a potent Th1 inducing adjuvant particularly suitable for mucosal immunization.

  9. Humoral and cellular immune responses to modified hepatitis B ...

    African Journals Online (AJOL)

    These findings indicate that the vaccine induced both a humoral and cellular ... Keywords: Hepatitis B virus, Plasmid DNA, Vaccine, Spleen cytokines, Humoral and cellular immune responses ... produced in mice. ... were performed and HBsAg specific IgM and IgG ..... and protection elicited against Plasmodium berghei.

  10. Immune response at birth, long-term immune memory and 2 years follow-up after in-utero anti-HBV DNA immunization.

    Science.gov (United States)

    Fazio, V M; Ria, F; Franco, E; Rosati, P; Cannelli, G; Signori, E; Parrella, P; Zaratti, L; Iannace, E; Monego, G; Blogna, S; Fioretti, D; Iurescia, S; Filippetti, R; Rinaldi, M

    2004-03-01

    Infections occurring at the end of pregnancy, during birth or by breastfeeding are responsible for the high toll of death among first-week infants. In-utero DNA immunization has demonstrated the effectiveness in inducing specific immunity in newborns. A major contribution to infant immunization would be achieved if a vaccine proved able to be protective as early as at the birth, preventing the typical 'first-week infections'. To establish its potential for use in humans, in-utero DNA vaccination efficiency has to be evaluated for short- and long-term safety, protection at delivery, efficacy of boosts in adults and effective window/s for modulation of immune response during pregnancy, in an animal model suitable with human development. Here we show that a single intramuscular in-utero anti-HBV DNA immunization at two-thirds of pig gestation produces, at birth, antibody titers considered protective in humans. The boost of antibody titers in every animal following recall at 4 and 10 months demonstrates the establishment of immune memory. The safety of in-utero fetus manipulation is guaranteed by short-term (no fetus loss, lack of local alterations, at-term spontaneous delivery, breastfeeding) and long-term (2 years) monitoring. Treatment of fetuses closer to delivery results in immune ignorance without induction of tolerance. This result highlights the repercussion of selecting the appropriate time point when this approach is used to deliver therapeutic genes. All these findings illustrate the relevance of naked DNA-based vaccination technology in therapeutic efforts aimed to prevent the high toll of death among first-week infants.

  11. Herpes simplex virus (HSV)-specific proliferative and cytotoxic T-cell responses in humans immunized with an HSF type 2 glycoprotein subunit vaccine

    Energy Technology Data Exchange (ETDEWEB)

    Zarling, J.M.; Moran, P.A.; Brewer, L.; Ashley, R.; Corey, L.

    1988-12-01

    Studies were undertaken to determine whether immunization of humans with a herpes simplex virus type 2 (HSV-2) glycoprotein-subunit vaccine would result in the priming of both HSV-specific proliferating cells and cytotoxic T cells. Peripheral blood lymphocytes (PBL) from all eight vaccinees studied responded by proliferating after stimulation with HSV-2, HSV-1, and glycoprotein gB-1. The PBL of five of these eight vaccinees proliferated following stimulation with gD-2, whereas stimulation with Gd-1 resulted in relatively low or no proliferative responses. T-cell clones were generated from HSV-2-stimulated PBL of three vaccinees who demonstrated strong proliferative responses to HSV-1 and HSV-2. Of 12 clones studied in lymphoproliferative assays, 9 were found to be cross-reactive for HSV-1 and HSV-2. Of the approximately 90 T-cell clones isolated, 14 demonstrated HSV-specific cytotoxic activity. Radioimmunoprecipitation-polyacrylamide gel electrophoresis analyses confirmed that the vaccinees had antibodies only to HSV glycoproteins, not to proteins which are absent in the subunit vaccine, indicating that these vaccinees had not become infected with HSV. Immunization of humans with an HSV-2 glycoprotein-subunit vaccine thus results in the priming of T cells that proliferate in response to stimulation with HSV and its glycoproteins and T cells that have cytotoxic activity against HSV-infected cells. Such HSV-specific memory T cells were detected as late as 2 years following the last boost with the subunit vaccine.

  12. Conventional dendritic cells at the crossroads between immunity and cholesterol homeostasis in atherosclerosis.

    Science.gov (United States)

    Gautier, Emmanuel L; Huby, Thierry; Saint-Charles, Flora; Ouzilleau, Betty; Pirault, John; Deswaerte, Virginie; Ginhoux, Florent; Miller, Elizabeth R; Witztum, Joseph L; Chapman, M John; Lesnik, Philippe

    2009-05-05

    Immunoinflammatory mechanisms are implicated in the atherogenic process. The polarization of the immune response and the nature of the immune cells involved, however, are major determinants of the net effect, which may be either proatherogenic or antiatherogenic. Dendritic cells (DCs) are central to the regulation of immunity, the polarization of the immune response, and the induction of tolerance to antigens. The potential role of DCs in atherosclerosis, however, remains to be defined. We created a mouse model in which the lifespan and immunogenicity of conventional DCs are enhanced by specific overexpression of the antiapoptotic gene hBcl-2 under the control of the CD11c promoter. When studied in either low-density lipoprotein receptor-deficient or apolipoprotein E-deficient backgrounds, DC-hBcl2 mice exhibited an expanded DC population associated with enhanced T-cell activation, a T-helper 1 and T-helper 17 cytokine expression profile, and elevated production of T-helper 1-driven IgG2c autoantibodies directed against oxidation-specific epitopes. This proatherogenic signature, however, was not associated with acceleration of atherosclerotic plaque progression, because expansion of the DC population was unexpectedly associated with an atheroprotective decrease in plasma cholesterol levels. Conversely, depletion of DCs in hyperlipidemic CD11c-diphtheria toxin receptor/apolipoprotein E-deficient transgenic mice resulted in enhanced cholesterolemia, thereby arguing for a close relationship between the DC population and plasma cholesterol levels. Considered together, the present data reveal that conventional DCs are central to the atherosclerotic process, because they are directly implicated in both cholesterol homeostasis and the immune response.

  13. Manipulations of the immune response in the chicken

    International Nuclear Information System (INIS)

    Bixler, G.S. Jr.

    1978-01-01

    The chicken with its dissociation of immune responses in cell-mediated immunity, dependent on the thymus, and humoral immunity, dependent on the bursa of Fabricius, provides a unique model for studying the two components of the immune system. While there are methods of obtaining selective, profound deficiency of humoral immunity, in this species, methods for obtaining a consistent, profound selective deficiency of cell-mediated immunity have been lacking. Oxisuran, 2[(methylsulfinyl)acetal] pyridine, has been reported to have the unique ability to differentially suppress cell-mediated immunity in several species of mammals without a concomitant reduction in antibody forming capacity. The effect of this compound on two parameters of cell-mediated immune responses in chickens was investigated. In further attempts to create a deficiency of both cell-mediated and humoral immunity, the effects of a combination of cyclophosphamide treatment and x-irradiation early in life on immune responses were studied

  14. Transgene vaccination using Ulex europaeus agglutinin I (UEA-1) for targeted mucosal immunization against HIV-1 envelope.

    Science.gov (United States)

    Wang, Xinhai; Kochetkova, Irina; Haddad, Asmahan; Hoyt, Teri; Hone, David M; Pascual, David W

    2005-05-31

    Receptor-mediated gene transfer using an M cell ligand has been shown to be an efficient method for mucosal DNA immunization. To investigate further into alternative M cell ligands, the plant lectin, Ulex europaeus agglutinin I (UEA-1), was tested. UEA-1 binds to human intestinal Caco-2 cells, and these cells can be transfected with poly-l-lysine (PL)-conjugated UEA-1 for expression of reporter cDNAs. When tested in vivo, mice nasally immunized with UEA-1-PL complexed to plasmid encoding HIV-1 envelope showed elevated systemic and mucosal antibody responses, and these were supported by tissue antibody-forming cells. Likewise, elevated envelope-specific CTLs were induced. Thus, UEA-1 mediated DNA delivery represents an alternative mucosal formulation for inducing humoral and cellular immunity against HIV-1.

  15. The adaptive immune system promotes initiation of prostate carcinogenesis in a human c-Myc transgenic mouse model.

    Science.gov (United States)

    Melis, Monique H M; Nevedomskaya, Ekaterina; van Burgsteden, Johan; Cioni, Bianca; van Zeeburg, Hester J T; Song, Ji-Ying; Zevenhoven, John; Hawinkels, Lukas J A C; de Visser, Karin E; Bergman, Andries M

    2017-11-07

    Increasing evidence from epidemiological and pathological studies suggests a role of the immune system in the initiation and progression of multiple cancers, including prostate cancer. Reports on the contribution of the adaptive immune system are contradictive, since both suppression and acceleration of disease development have been reported. This study addresses the functional role of lymphocytes in prostate cancer development using a genetically engineered mouse model (GEMM) of human c-Myc driven prostate cancer (Hi-Myc mice) combined with B and T cell deficiency (RAG1 -/- mice). From a pre-cancerous stage on, Hi-Myc mice showed higher accumulation of immune cells in their prostates then wild-type mice, of which macrophages were the most abundant. The onset of invasive adenocarcinoma was delayed in Hi-MycRAG1 -/- compared to Hi-Myc mice and associated with decreased infiltration of leukocytes into the prostate. In addition, lower levels of the cytokines CXCL2, CCL5 and TGF-β1 were detected in Hi-MycRAG1 -/- compared to Hi-Myc mouse prostates. These results from a GEMM of prostate cancer provide new insights into the promoting role of the adaptive immune system in prostate cancer development. Our findings indicate that the endogenous adaptive immune system does not protect against de novo prostate carcinogenesis in Hi-Myc transgenic mice, but rather accelerates the formation of invasive adenocarcinomas. This may have implications for the development of novel treatment strategies.

  16. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses

    Directory of Open Access Journals (Sweden)

    Luping Du

    2018-01-01

    Full Text Available Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide (PLGA nanoparticles (NPs with Ulex europaeus agglutinin 1 (UEA-1 and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5] or subunit vaccine ORF5-encoded glycoprotein (GP5 from exposure to the gastrointestinal (GI tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05. Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system.

  17. Targeted Delivery of GP5 Antigen of PRRSV to M Cells Enhances the Antigen-Specific Systemic and Mucosal Immune Responses

    Science.gov (United States)

    Du, Luping; Yu, Zhengyu; Pang, Fengjiao; Xu, Xiangwei; Mao, Aihua; Yuan, Wanzhe; He, Kongwang; Li, Bin

    2018-01-01

    Efficient delivery of antigens through oral immunization is a first and critical step for successful induction of mucosal immunity, which can provide protection against pathogens invading the mucosa. Membranous/microfold cells (M cells) within the mucosa can transcytose internalized antigen without degradation and thus play an important role in initiating antigen-specific mucosal immune responses through inducing secretory IgA production. In this research, we modified poly (D, L-lactide-co-glycolide) (PLGA) nanoparticles (NPs) with Ulex europaeus agglutinin 1 (UEA-1) and successfully prepared an oral vaccine delivery system, UEA-1/PLGA NPs. PLGA NPs were prepared using a standard double emulsion solvent evaporation technique, which can protect the entrapped PRRSV DNA vaccine [pcDNA3.1-SynORF5 (synthetic ORF5)] or subunit vaccine ORF5-encoded glycoprotein (GP5) from exposure to the gastrointestinal (GI) tract and release the plasmids in a controlled manner. With UEA-1 modification, the UEA-1/PLGA NPs can be effectively transported by M-cells. We investigated immune response induced by UEA-1/PLGA-SynORF5 or UEA-1/PLGA-GP5 following inoculation in mice and piglets. Compared with PLGA-SynORF5 or PLGA-GP5 NPs, UEA-1/PLGA-SynORF5, or UEA-1/PLGA-GP5 NPs stimulated significantly increased serum IgG levels and augmented intestinal IgA levels in mice and piglets (P < 0.05). Our findings indicate UEA-1/PLGA NPs can be applied as a promising and universally robust oral vaccine delivery system. PMID:29423381

  18. The Macrophage-Specific Promoter mfap4 Allows Live, Long-Term Analysis of Macrophage Behavior during Mycobacterial Infection in Zebrafish.

    Directory of Open Access Journals (Sweden)

    Eric M Walton

    Full Text Available Transgenic labeling of innate immune cell lineages within the larval zebrafish allows for real-time, in vivo analyses of microbial pathogenesis within a vertebrate host. To date, labeling of zebrafish macrophages has been relatively limited, with the most specific expression coming from the mpeg1 promoter. However, mpeg1 transcription at both endogenous and transgenic loci becomes attenuated in the presence of intracellular pathogens, including Salmonella typhimurium and Mycobacterium marinum. Here, we describe mfap4 as a macrophage-specific promoter capable of producing transgenic lines in which transgene expression within larval macrophages remains stable throughout several days of infection. Additionally, we have developed a novel macrophage-specific Cre transgenic line under the control of mfap4, enabling macrophage-specific expression using existing floxed transgenic lines. These tools enrich the repertoire of transgenic lines and promoters available for studying zebrafish macrophage dynamics during infection and inflammation and add flexibility to the design of future macrophage-specific transgenic lines.

  19. Glufosinate Ammonium-Induced Pathogen Inhibition and Defense Responses Culminate in Disease Protection in bar-Transgenic Rice1[C

    Science.gov (United States)

    Ahn, Il-Pyung

    2008-01-01

    Glufosinate ammonium diminished developments of rice (Oryza sativa) blast and brown leaf spot in 35S:bar-transgenic rice. Pre- and postinoculation treatments of this herbicide reduced disease development. Glufosinate ammonium specifically impeded appressorium formation of the pathogens Magnaporthe grisea and Cochliobolus miyabeanus on hydrophobic surface and on transgenic rice. In contrast, conidial germination remained unaffected. Glufosinate ammonium diminished mycelial growth of two pathogens; however, this inhibitory effect was attenuated in malnutrition conditions. Glufosinate ammonium caused slight chlorosis and diminished chlorophyll content; however, these alterations were almost completely restored in transgenic rice within 7 d. Glufosinate ammonium triggered transcriptions of PATHOGENESIS-RELATED (PR) genes and hydrogen peroxide accumulation in transgenic rice and PR1 transcription in Arabidopsis (Arabidopsis thaliana) wild-type ecotype Columbia harboring 35S:bar construct. All transgenic Arabidopsis showed robust hydrogen peroxide accumulation by glufosinate ammonium. This herbicide also induced PR1 transcription in etr1 and jar1 expressing bar; however, no expression was observed in NahG and npr1. Fungal infection did not alter transcriptions of PR genes and hydrogen peroxide accumulation induced by glufosinate ammonium. Infiltration of glufosinate ammonium did not affect appressorium formation of M. grisea in vivo but inhibited blast disease development. Hydrogen peroxide scavengers nullified blast protection and transcriptions of PR genes by glufosinate ammonium; however, they did not affect brown leaf spot progression. In sum, both direct inhibition of pathogen infection and activation of defense systems were responsible for disease protection in bar-transgenic rice. PMID:17981989

  20. Inflammation and Immune Response in COPD: Where Do We Stand?

    Directory of Open Access Journals (Sweden)

    Nikoletta Rovina

    2013-01-01

    Full Text Available Increasing evidence indicates that chronic inflammatory and immune responses play key roles in the development and progression of COPD. Recent data provide evidence for a role in the NLRP3 inflammasome in the airway inflammation observed in COPD. Cigarette smoke activates innate immune cells by triggering pattern recognition receptors (PRRs to release “danger signal”. These signals act as ligands to Toll-like receptors (TLRs, triggering the production of cytokines and inducing innate inflammation. In smokers who develop COPD there appears to be a specific pattern of inflammation in the airways and parenchyma as a result of both innate and adaptive immune responses, with the predominance of CD8+ and CD4+ cells, and in the more severe disease, with the presence of lymphoid follicles containing B lymphocytes and T cells. Furthermore, viral and bacterial infections interfere with the chronic inflammation seen in stable COPD and exacerbations via pathogen-associated molecular patterns (PAMPs. Finally, autoimmunity is another novel aspect that may play a critical role in the pathogenesis of COPD. This review is un update of the currently discussed roles of inflammatory and immune responses in the pathogenesis of COPD.

  1. Aberrant cellular immune responses in humans infected persistently with parvovirus B19

    DEFF Research Database (Denmark)

    Isa, Adiba; Norbeck, Oscar; Hirbod, Taha

    2006-01-01

    A subset of parvovirus B19 (B19) infected patients retains the infection for years, as defined by detection of B19 DNA in bone marrow. Thus far, analysis of B19-specific humoral immune responses and viral genome variations has not revealed a mechanism for the absent viral clearance. In this study......, ex-vivo cellular immune responses were assessed by enzyme linked immunospot assay mounted against the majority of the translated viral genome. Compared to seropositive healthy individuals, individuals with B19 persistence (2-8 years) showed larger number of responses to the structural proteins (P = 0.......0022), whereas responses to the non-structural protein were of lower magnitude (P = 0.012). These observations provide the first findings of immunological discrepancies between individuals with B19 persistence and healthy individuals, findings that may reflect both failed immunity and antigenic exhaustion....

  2. Immune responses during gestational malaria: a review of the current knowledge and future trend of research.

    Science.gov (United States)

    Maestre, Amanda; Carmona-Fonseca, Jaime

    2014-04-15

    Women pregnant with their first child are susceptible to severe P. falciparum disease from placental malaria because they lack immunity to placenta-specific cytoadherence proteins. In subsequent pregnancies, as immunity against placental parasites is acquired, there is a reduced risk of adverse effects of malaria on the mother and fetus and asymptomatic parasitaemia is common. In the case of vivax malaria, with increasing reports of severe cases in Asia and South America, the effects of infection by this species during pregnancy remain to be elucidated. This review summarized the main aspects involved in the acquisition of specific antimalarial immune responses during pregnancy with emphasis in research carried out in America and Asia, in order to offer a framework of interpretation for studies on pregnant women with malaria which are recently being produced in these regions. The authors conclude that (1) Effective humoral responses during gestational malaria are mainly directed against variant surface antigens codified by genes of the var2Csa family of P. falciparum; (2) Acquisition of immunity against these variant antigens depends on the degree and intensity of transmission, and the chance increases with age and successive pregnancies; (3) Antibody development is guided by specific cellular immune responses in cases of placental and maternal infection, and (4) The study of the significance of acquisition of specific immunity against both P. falciparum and P. vivax in America, should be performed.

  3. Differential Patterns of Large Tumor Antigen-Specific Immune Responsiveness in Patients with BK Polyomavirus-Positive Prostate Cancer or Benign Prostatic Hyperplasia

    Science.gov (United States)

    Sais, Giovanni; Wyler, Stephen; Hudolin, Tvrtko; Banzola, Irina; Mengus, Chantal; Bubendorf, Lukas; Wild, Peter J.; Hirsch, Hans H.; Sulser, Tullio; Spagnoli, Giulio C.

    2012-01-01

    The role of the polyomavirus BK (BKV) large tumor antigen (L-Tag) as a target of immune response in patients with prostate cancer (PCa) has not been investigated thus far. In this study, we comparatively analyzed humoral and cellular L-Tag-specific responsiveness in age-matched patients bearing PCa or benign prostatic hyperplasia, expressing or not expressing BKV L-Tag-specific sequences in their tissue specimens, and in non-age-matched healthy individuals. Furthermore, results from patients with PCa were correlated to 5-year follow-up clinical data focusing on evidence of biochemical recurrence (BR) after surgery (prostate specific antigen level of ≥0.2 ng/ml). In peripheral blood mononuclear cells (PBMC) from patients with PCa with evidence of BR and BKV L-Tag-positive tumors, stimulation with peptides derived from the BKV L-Tag but not those derived from Epstein-Barr virus, influenza virus, or cytomegalovirus induced a peculiar cytokine gene expression profile, characterized by high expression of interleukin-10 (IL-10) and transforming growth factor β1 and low expression of gamma interferon genes. This pattern was confirmed by protein secretion data and correlated with high levels of anti-BKV L-Tag IgG. Furthermore, in PBMC from these PCa-bearing patients, L-Tag-derived peptides significantly expanded an IL-10-secreting CD4+ CD25+(high) CD127− FoxP3+ T cell population with an effector memory phenotype (CD103+) capable of inhibiting proliferation of autologous anti-CD3/CD28-triggered CD4+ CD25− T cells. Collectively, our findings indicate that potentially tolerogenic features of L-Tag-specific immune response are significantly associated with tumor progression in patients with BKV+ PCa. PMID:22647697

  4. A new paradigm: innate immune sensing of viruses via the Unfolded Protein Response

    Directory of Open Access Journals (Sweden)

    Judith A Smith

    2014-05-01

    Full Text Available The immune system depends upon combinations of signals to mount appropriate responses: pathogen specific signals in the context of co-stimulatory danger signals drive immune strength and accuracy. Viral infections trigger anti-viral type I interferon (IFN responses by stimulating endosomal and cytosolic pattern recognition receptors (PRRs. However, viruses have also evolved many strategies to counteract IFN responses. Are there intracellular danger signals that enhance immune responses to viruses? During infection, viruses place a heavy demand on the protein folding machinery of the host endoplasmic reticulum (ER. To survive ER stress, host cells mount an Unfolded Protein Response (UPR to decrease ER protein load and enhance protein-folding capacity. Viruses also directly elicit the UPR to enhance their replication. Increasing evidence supports an intersection between the host UPR and inflammation, in particular the production of pro-inflammatory cytokines and type I IFN. The UPR directly activates pro-inflammatory cytokine transcription factors and dramatically enhances cytokine production in response to viral PRR engagement. Additionally, viral PRR engagement may stimulate specific pathways within the UPR to enhance cytokine production. Through these mechanisms, viral detection via the UPR and inflammatory cytokine production are intertwined. Consequently, the UPR response is perfectly poised to act as an infection-triggered danger signal. The UPR may serve as an internal co-stimulatory signal that 1 provides specificity and 2 critically augments responses to overcome viral subterfuge. Further work is needed to test this hypothesis during viral infections.

  5. Identification of choriogenin cis-regulatory elements and production of estrogen-inducible, liver-specific transgenic Medaka.

    Science.gov (United States)

    Ueno, Tetsuro; Yasumasu, Shigeki; Hayashi, Shinji; Iuchi, Ichiro

    2004-07-01

    Choriogenins (chg-H, chg-L) are precursor proteins of egg envelope of medaka and synthesized in the spawning female liver in response to estrogen. We linked a gene construct chg-L1.5 kb/GFP (a 1.5 kb 5'-upstream region of the chg-L gene fused with a green fluorescence protein (GFP) gene) to another construct emgb/RFP (a cis-regulatory region of embryonic globin gene fused with an RFP gene), injected the double fusion gene construct into 1- or 2-cell-stage embryos, and selected embryos expressing the RFP in erythroid cells. From the embryos, we established two lines of chg-L1.5 kb/GFP-emgb/RFP-transgenic medaka. The 3-month-old spawning females and estradiol-17beta (E2)-exposed males displayed the liver-specific GFP expression. The E2-dependent GFP expression was detected in the differentiating liver of the stage 37-38 embryos. In addition, RT-PCR and whole-mount in situ hybridization showed that the E2-dependent chg expression was found in the liver of the stage 34 embryos of wild medaka, suggesting that such E2-dependency is achieved shortly after differentiation of the liver. Analysis using serial deletion mutants fused with GFP showed that the region -426 to -284 of the chg-L gene or the region -364 to -265 of the chg-H gene had the ability to promote the E2-dependent liver-specific GFP expression of its downstream gene. Further analyses suggested that an estrogen response element (ERE) at -309, an ERE half-site at -330 and a binding site for C/EBP at -363 of the chg-L gene played important roles in its downstream chg-L gene expression. In addition, this transgenic medaka may be useful as one of the test animals for detecting environmental estrogenic steroids.

  6. Alternative inactivated poliovirus vaccines adjuvanted with Quillaja brasiliensis or Quil-a saponins are equally effective in inducing specific immune responses.

    Directory of Open Access Journals (Sweden)

    Fernanda de Costa

    Full Text Available Inactivated polio vaccines (IPV have an important role at the final stages of poliomyelitis eradication programs, reducing the risks associated with the use of attenuated polio vaccine (OPV. An affordable option to enhance vaccine immunogenicity and reduce costs of IPV may be the use of an effective and renewable adjuvant. In the present study, the adjuvant activity of aqueous extract (AE and saponin fraction QB-90 from Quillaja brasiliensis using poliovirus antigen as model were analyzed and compared to a preparation adjuvanted with Quil-A, a well-known saponin-based commercial adjuvant. Experimental vaccines were prepared with viral antigen plus saline (control, Quil-A (50 µg, AE (400 µg or QB-90 (50 µg. Sera from inoculated mice were collected at days 0, 28, 42 and 56 post-inoculation of the first dose of vaccine. Serum levels of specific IgG, IgG1 and IgG2a were significantly enhanced by AE, QB-90 and Quil-A compared to control group on day 56. The magnitude of enhancement was statistically equivalent for QB-90 and Quil-A. The cellular response was evaluated through DTH and analysis of IFN-γ and IL-2 mRNA levels using in vitro reestimulated splenocytes. Results indicated that AE and QB-90 were capable of stimulating the generation of Th1 cells against the administered antigen to the same extent as Quil-A. Mucosal immune response was enhanced by the vaccine adjuvanted with QB-90 as demonstrated by increases of specific IgA titers in bile, feces and vaginal washings, yielding comparable or higher titers than Quil-A. The results obtained indicate that saponins from Q. brasiliensis are potent adjuvants of specific cellular and humoral immune responses and represent a viable option to Quil-A.

  7. The Immune Response of Maternally Immune Chicks to Vaccination ...

    African Journals Online (AJOL)

    The Immune Response of Maternally Immune Chicks to Vaccination with Newcastle Disease Virus. ... G A El-Tayeb, M Y El-Ttegani, I E Hajer, M A Mohammed ... This study was conducted to determine the persistence of maternally derived antibodies (MDA) to Newcastle disease virus (NDV) in newly hatched chicks and the ...

  8. A high level of liver-specific expression of oncogenic KrasV12 drives robust liver tumorigenesis in transgenic zebrafish

    Directory of Open Access Journals (Sweden)

    Anh Tuan Nguyen

    2011-11-01

    Human liver cancer is one of the deadliest cancers worldwide, with hepatocellular carcinoma (HCC being the most common type. Aberrant Ras signaling has been implicated in the development and progression of human HCC, but a complete understanding of the molecular mechanisms of this protein in hepatocarcinogenesis remains elusive. In this study, a stable in vivo liver cancer model using transgenic zebrafish was generated to elucidate Ras-driven tumorigenesis in HCC. Using the liver-specific fabp10 (fatty acid binding protein 10 promoter, we overexpressed oncogenic krasV12 specifically in the transgenic zebrafish liver. Only a high level of krasV12 expression initiated liver tumorigenesis, which progressed from hyperplasia to benign and malignant tumors with activation of the Ras-Raf-MEK-ERK and Wnt–β-catenin pathways. Histological diagnosis of zebrafish tumors identified HCC as the main lesion. The tumors were invasive and transplantable, indicating malignancy of these HCC cells. Oncogenic krasV12 was also found to trigger p53-dependent senescence as a tumor suppressive barrier in the pre-neoplastic stage. Microarray analysis of zebrafish liver hyperplasia and HCC uncovered the deregulation of several stage-specific and common biological processes and signaling pathways responsible for krasV12-driven liver tumorigenesis that recapitulated the molecular hallmarks of human liver cancer. Cross-species comparisons of cancer transcriptomes further defined a HCC-specific gene signature as well as a liver cancer progression gene signature that are evolutionarily conserved between human and zebrafish. Collectively, our study presents a comprehensive portrait of molecular mechanisms during progressive Ras-induced HCC. These observations indicate the validity of our transgenic zebrafish to model human liver cancer, and this model might act as a useful platform for drug screening and identifying new therapeutic targets.

  9. Endothelial cells present antigens in vivo

    Directory of Open Access Journals (Sweden)

    Tellides George

    2004-03-01

    Full Text Available Abstract Background Immune recognition of vascular endothelial cells (EC has been implicated in allograft rejection, protection against pathogens, and lymphocyte recruitment. However, EC pervade nearly all tissues and predominate in none, complicating any direct test of immune recognition. Here, we examined antigen presentation by EC in vivo by testing immune responses against E. coli β-galactosidase (β-gal in two lines of transgenic mice that express β-gal exclusively in their EC. TIE2-lacZ mice express β-gal in all EC and VWF-lacZ mice express β-gal in heart and brain microvascular EC. Results Transgenic and congenic wild type FVB mice immunized with β-gal expression vector DNA or β-gal protein generated high titer, high affinity antisera containing comparable levels of antigen-specific IgG1 and IgG2a isotypes, suggesting equivalent activation of T helper cell subsets. The immunized transgenic mice remained healthy, their EC continued to express β-gal, and their blood vessels showed no histological abnormalities. In response to β-gal in vitro, CD4+ and CD8+ T cells from immunized transgenic and FVB mice proliferated, expressed CD25, and secreted IFN-γ. Infection with recombinant vaccinia virus encoding β-gal raised equivalent responses in transgenic and FVB mice. Hearts transplanted from transgenic mice into FVB mice continued to beat and the graft EC continued to express β-gal. These results suggested immunological ignorance of the transgene encoded EC protein. However, skin transplanted from TIE2-lacZ onto FVB mice lost β-gal+ EC and the hosts developed β-gal-specific antisera, demonstrating activation of host immune effector mechanisms. In contrast, skin grafted from TIE2-lacZ onto VWF-lacZ mice retained β-gal+ EC and no antisera developed, suggesting a tolerant host immune system. Conclusion Resting, β-gal+ EC in transgenic mice tolerize specific lymphocytes that would otherwise respond against β-gal expressed by EC within

  10. Effect of lipoarabinomannan from Mycobacterium avium subsp avium in Freund's incomplete adjuvant on the immune response of cattle.

    Science.gov (United States)

    Colavecchia, S B; Jolly, A; Fernández, B; Fontanals, A M; Fernández, E; Mundo, S L

    2012-02-01

    The aim of the present study was to determine whether lipoarabinomannan (LAM), in combination with Freund's incomplete adjuvant (FIA), was able to improve cell-mediated and antibody-mediated immune responses against ovalbumin (OVA) in cattle. Twenty-three calves were assigned to four treatment groups, which were subcutaneously immunized with either OVA plus FIA, OVA plus FIA and LAM from Mycobacterium avium subsp avium, FIA plus LAM, or FIA alone. Lymphoproliferation, IFN-γ production and cell subpopulations on peripheral blood mononuclear cells before and 15 days after treatment were evaluated. Delayed hypersensitivity was evaluated on day 57. Specific humoral immune response was measured by ELISA. Inoculation with LAM induced higher levels of lymphoproliferation and IFN-γ production in response to ConA and OVA (P < 0.05). Specific antibody titers were similar in both OVA-immunized groups. Interestingly, our results showed that the use of LAM in vaccine preparations improved specific cell immune response evaluated by lymphoproliferation and IFN-γ production by at least 50 and 25%, respectively, in cattle without interfering with tuberculosis and paratuberculosis diagnosis.

  11. Transient B cell depletion or improved transgene expression by codon optimization promote tolerance to factor VIII in gene therapy.

    Directory of Open Access Journals (Sweden)

    Brandon K Sack

    Full Text Available The major complication in the treatment of hemophilia A is the development of neutralizing antibodies (inhibitors against factor VIII (FVIII. The current method for eradicating inhibitors, termed immune tolerance induction (ITI, is costly and protracted. Clinical protocols that prevent rather than treat inhibitors are not yet established. Liver-directed gene therapy hopes to achieve long-term correction of the disease while also inducing immune tolerance. We sought to investigate the use of adeno-associated viral (serotype 8 gene transfer to induce tolerance to human B domain deleted FVIII in hemophilia A mice. We administered an AAV8 vector with either human B domain deleted FVIII or a codon-optimized transgene, both under a liver-specific promoter to two strains of hemophilia A mice. Protein therapy or gene therapy was given either alone or in conjunction with anti-CD20 antibody-mediated B cell depletion. Gene therapy with a low-expressing vector resulted in sustained near-therapeutic expression. However, supplementary protein therapy revealed that gene transfer had sensitized mice to hFVIII in a high-responder strain but not in mice of a low-responding strain. This heightened response was ameliorated when gene therapy was delivered with anti-murine CD20 treatment. Transient B cell depletion prevented inhibitor formation in protein therapy, but failed to achieve a sustained hypo-responsiveness. Importantly, use of a codon-optimized hFVIII transgene resulted in sustained therapeutic expression and tolerance without a need for B cell depletion. Therefore, anti-CD20 may be beneficial in preventing vector-induced immune priming to FVIII, but higher levels of liver-restricted expression are preferred for tolerance.

  12. Dynamics of oligodendrocyte responses to anterograde axonal (Wallerian) and terminal degeneration in normal and TNF-transgenic mice

    DEFF Research Database (Denmark)

    Drøjdahl, Nina; Fenger, Christina; Nielsen, Helle H

    2004-01-01

    degeneration and lesion-induced axonal sprouting in the hippocampal dentate gyrus in TNF-transgenic mice with the response in genetically normal mice. Transectioning of the entorhino-dentate perforant path axonal projection increased hippocampal TNF mRNA expression in both types of mice, but to significantly...... larger levels in the TNF-transgenics. At 5 days after axonal transection, numbers of oligodendrocytes and myelin basic protein (MBP) mRNA expression in the denervated dentate gyrus in TNF-transgenic mice had increased to the same extent as in nontransgenic littermates. At this time, transgenics showed...

  13. The type of adjuvant strongly influences the T-cell response during nanoparticle-based immunization

    Science.gov (United States)

    Knuschke, Torben; Epple, Matthias; Westendorf, Astrid M

    2014-01-01

    Potent vaccines require the ability to effectively induce immune responses. Especially for the control of infectious diseases with intracellular pathogens, like viruses or bacteria, potent T-cell responses are indispensable. Several delivery systems such as nanoparticles have been considered to boost the immunogenicity of pathogen derived peptides or subunits for the induction of potent T-cell responses. Since they can be further functionalized with immunostimulants, like Toll-like receptor (TLR) agonists, they improve the response by enhanced activation of the innate immune system. Currently, TLR agonists like unmethylated CpG oligonucleotides and the synthetic dsRNA derivate polyriboinosinic acid-polyribocytidylic acid (poly[I:C]) are widely used as vaccine adjuvants. CpG and poly(I:C) trigger different TLRs and therefore show differential signal transduction. Recently, we established biodegradable calcium phosphate (CaP) nanoparticles as potent T cell inducing vaccination vehicles. In this commentary we discuss the role of CpG and poly(I:C) for the effective induction of virus-specific T cells during immunization with CaP nanoparticles. The presented results underline the importance of the right formulation of vaccines for specific immunization purpose. PMID:23982325

  14. Enhancement of Immune Memory Responses to Respiratory Infection

    Science.gov (United States)

    2017-08-01

    AWARD NUMBER: W81XWH-16-1-0360 TITLE: Enhancement of Immune Memory Responses to Respiratory Infection PRINCIPAL INVESTIGATORs: Dr Min Chen PhD...5a. CONTRACT NUMBER Enhancement of Immune Memory Responses to Respiratory Infection 5b. GRANT NUMBER W81XWH-16-1-0360 5c. PROGRAM ELEMENT NUMBER...entitled “ENHANCEMENT OF IMMUNE MEMORY RESPONSES TO RESPIRATORY INFECTION: AUTOPHAGY IN MEMORY B-CELLS RESPONSE TO INFLUENZA VACCINE (AMBRIV

  15. Novel adenoviral vector induces T-cell responses despite anti-adenoviral neutralizing antibodies in colorectal cancer patients.

    Science.gov (United States)

    Morse, Michael A; Chaudhry, Arvind; Gabitzsch, Elizabeth S; Hobeika, Amy C; Osada, Takuya; Clay, Timothy M; Amalfitano, Andrea; Burnett, Bruce K; Devi, Gayathri R; Hsu, David S; Xu, Younong; Balcaitis, Stephanie; Dua, Rajesh; Nguyen, Susan; Balint, Joseph P; Jones, Frank R; Lyerly, H Kim

    2013-08-01

    First-generation, E1-deleted adenovirus subtype 5 (Ad5)-based vectors, although promising platforms for use as cancer vaccines, are impeded in activity by naturally occurring or induced Ad-specific neutralizing antibodies. Ad5-based vectors with deletions of the E1 and the E2b regions (Ad5 [E1-, E2b-]), the latter encoding the DNA polymerase and the pre-terminal protein, by virtue of diminished late phase viral protein expression, were hypothesized to avoid immunological clearance and induce more potent immune responses against the encoded tumor antigen transgene in Ad-immune hosts. Indeed, multiple homologous immunizations with Ad5 [E1-, E2b-]-CEA(6D), encoding the tumor antigen carcinoembryonic antigen (CEA), induced CEA-specific cell-mediated immune (CMI) responses with antitumor activity in mice despite the presence of preexisting or induced Ad5-neutralizing antibody. In the present phase I/II study, cohorts of patients with advanced colorectal cancer were immunized with escalating doses of Ad5 [E1-, E2b-]-CEA(6D). CEA-specific CMI responses were observed despite the presence of preexisting Ad5 immunity in a majority (61.3 %) of patients. Importantly, there was minimal toxicity, and overall patient survival (48 % at 12 months) was similar regardless of preexisting Ad5 neutralizing antibody titers. The results demonstrate that, in cancer patients, the novel Ad5 [E1-, E2b-] gene delivery platform generates significant CMI responses to the tumor antigen CEA in the setting of both naturally acquired and immunization-induced Ad5-specific immunity.

  16. Immune responses against SARS-coronavirus nucleocapsid protein induced by DNA vaccine

    International Nuclear Information System (INIS)

    Zhao Ping; Cao Jie; Zhao Lanjuan; Qin Zhaolin; Ke Jinshan; Pan Wei; Ren Hao; Yu Jianguo; Qi Zhongtian

    2005-01-01

    The nucleocapsid (N) protein of SARS-coronavirus (SARS-CoV) is the key protein for the formation of the helical nucleocapsid during virion assembly. This protein is believed to be more conserved than other proteins of the virus, such as spike and membrane glycoprotein. In this study, the N protein of SARS-CoV was expressed in Escherichia coli DH5α and identified with pooled sera from patients in the convalescence phase of SARS. A plasmid pCI-N, encoding the full-length N gene of SARS-CoV, was constructed. Expression of the N protein was observed in COS1 cells following transfection with pCI-N. The immune responses induced by intramuscular immunization with pCI-N were evaluated in a murine model. Serum anti-N immunoglobulins and splenocytes proliferative responses against N protein were observed in immunized BALB/c mice. The major immunoglobulin G subclass recognizing N protein was immunoglobulin G2a, and stimulated splenocytes secreted high levels of gamma interferon and IL-2 in response to N protein. More importantly, the immunized mice produced strong delayed-type hypersensitivity (DTH) and CD8 + CTL responses to N protein. The study shows that N protein of SARS-CoV not only is an important B cell immunogen, but also can elicit broad-based cellular immune responses. The results indicate that the N protein may be of potential value in vaccine development for specific prophylaxis and treatment against SARS

  17. Impact of pre-existing MSP142-allele specific immunity on potency of an erythrocytic Plasmodium falciparum vaccine

    Directory of Open Access Journals (Sweden)

    Bergmann-Leitner Elke S

    2012-09-01

    Full Text Available Abstract Background MSP1 is the major surface protein on merozoites and a prime candidate for a blood stage malaria vaccine. Preclinical and seroepidemiological studies have implicated antibodies to MSP1 in protection against blood stage parasitaemia and/or reduced parasite densities, respectively. Malaria endemic areas have multiple strains of Plasmodium falciparum circulating at any given time, giving rise to complex immune responses, an issue which is generally not addressed in clinical trials conducted in non-endemic areas. A lack of understanding of the effect of pre-existing immunity to heterologous parasite strains may significantly contribute to vaccine failure in the field. The purpose of this study was to model the effect of pre-existing immunity to MSP142 on the immunogenicity of blood-stage malaria vaccines based on alternative MSP1 alleles. Methods Inbred and outbred mice were immunized with various recombinant P. falciparum MSP142 proteins that represent the two major alleles of MSP142, MAD20 (3D7 and Wellcome (K1, FVO. Humoral immune responses were analysed by ELISA and LuminexTM, and functional activity of induced MSP142-specific antibodies was assessed by growth inhibition assays. T-cell responses were characterized using ex vivo ELISpot assays. Results Analysis of the immune responses induced by various immunization regimens demonstrated a strong allele-specific response at the T cell level in both inbred and outbred mice. The success of heterologous regimens depended on the degree of homology of the N-terminal p33 portion of the MSP142, likely due to the fact that most T cell epitopes reside in this part of the molecule. Analysis of humoral immune responses revealed a marked cross-reactivity between the alleles. Functional analyses showed that some of the heterologous regimens induced antibodies with improved growth inhibitory activities. Conclusion The development of a more broadly efficacious MSP1 based vaccine may be

  18. TL transgenic mouse strains

    International Nuclear Information System (INIS)

    Obata, Y.; Matsudaira, Y.; Hasegawa, H.; Tamaki, H.; Takahashi, T.; Morita, A.; Kasai, K.

    1993-01-01

    As a result of abnormal development of the thymus of these mice, TCR αβ lineage of the T cell differentiation is disturbed and cells belonging to the TCR γδ CD4 - CD8 - double negative (DN) lineage become preponderant. The γδ DN cells migrate into peripheral lymphoid organs and constitute nearly 50% of peripheral T cells. Immune function of the transgenic mice is severely impaired, indicating that the γδ cells are incapable of participating in these reactions. Molecular and serological analyses of T-cell lymphomas reveal that they belong to the γδ lineage. Tg.Tla a -3-1 mice should be useful in defining the role of TL in normal and abnormal T cell differentiation as well as in the development of T-cell lymphomas, and further they should facilitate studies on the differentiation and function of γδ T cells. We isolated T3 b -TL gene from B6 mice and constructed a chimeric gene in which T3 b -TL is driven by the promoter of H-2K b . With the chimeric gene, two transgenic mouse strains, Tg. Con.3-1 and -2 have been derived in C3H background. Both strains express TL antigen in various tissues including skin. The skin graft of transgenic mice on C3H and (B6 X C3H)F 1 mice were rejected. In the mice which rejected the grafts, CD8 + TCRαβ cytotoxic T cells (CTL) against TL antigens were recognized. The recognition of TL by CTL did not require the antigen presentation by H-2 molecules. The results indicated that TL antigen in the skin becomes a transplantation antigen and behaves like a typical allogeneic MHC class I antigen. The facts that (B6 X C3H)F 1 mice rejected the skin expressing T3 b -TL antigen and induced CTL that killed TL + lymphomas of B6 origin revealed that TL antigen encoded by T3 b -TL is recognized as non-self in B6 mice. Experiments are now extended to analyze immune responses to TL antigen expressed on autochthonous T cell lymphomas. (J.P.N.)

  19. Immune Response to Lipoproteins in Atherosclerosis

    Directory of Open Access Journals (Sweden)

    Sonia Samson

    2012-01-01

    Full Text Available Atherosclerosis, the underlying cause of cardiovascular disease, is characterized by chronic inflammation and altered immune response. Cholesterol is a well-known risk factor associated with the development of cardiovascular diseases. Elevated serum cholesterol is unique because it can lead to development of atherosclerosis in animals and humans even in the absence of other risk factors. Modifications of low-density lipoproteins mediated by oxidation, enzymatic degradation, and aggregation result in changes in their function and activate both innate and adaptive immune system. Oxidized low-density lipoprotein (LDL has been identified as one of the most important autoantigens in atherosclerosis. This escape from self-tolerance is dependent on the formation of oxidized phospholipids. The emerging understanding of the importance of immune responses against oxidized LDL in atherosclerosis has focused attention on the possibility of development of novel therapy for atherosclerosis. This review provides an overview of immune response to lipoproteins and the fascinating possibility of developing an immunomodulatory therapy for atherosclerosis.

  20. Characterization of the CD8+ T cell responses directed against respiratory syncytial virus during primary and secondary infection in C57BL/6 mice

    International Nuclear Information System (INIS)

    Lukens, Michael V.; Claassen, Erwin A.W.; Graaff, Patricia M.A. de; Dijk, Mariska E.A. van; Hoogerhout, Peter; Toebes, Mireille; Schumacher, Ton N.; Most, Robbert G. van der; Kimpen, Jan L.L.; Bleek, Grada M. van

    2006-01-01

    The BALB/c mouse model for human respiratory syncytial virus infection has contributed significantly to our understanding of the relative role for CD4 + and CD8 + T cells to immune protection and pathogenic immune responses. To enable comparison of RSV-specific T cell responses in different mouse strains and allow dissection of immune mechanisms by using transgenic and knockout mice that are mostly available on a C57BL/6 background, we characterized the specificity, level and functional capabilities of CD8 + T cells during primary and secondary responses in lung parenchyma, airways and spleens of C57BL/6 mice. During the primary response, epitopes were recognized originating from the matrix, fusion, nucleo- and attachment proteins, whereas the secondary response focused predominantly on the matrix epitope. C57BL/6 mice are less permissive for hRSV infection than BALB/c mice, yet we found CD8 + T cell responses in the lungs and bronchoalveolar lavage, comparable to the responses described for BALB/c mice

  1. Cholinergic Modulation of Type 2 Immune Responses

    Directory of Open Access Journals (Sweden)

    Goele Bosmans

    2017-12-01

    Full Text Available In recent years, the bidirectional relationship between the nervous and immune system has become increasingly clear, and its role in both homeostasis and inflammation has been well documented over the years. Since the introduction of the cholinergic anti-inflammatory pathway, there has been an increased interest in parasympathetic regulation of both innate and adaptive immune responses, including T helper 2 responses. Increasing evidence has been emerging suggesting a role for the parasympathetic nervous system in the pathophysiology of allergic diseases, including allergic rhinitis, asthma, food allergy, and atopic dermatitis. In this review, we will highlight the role of cholinergic modulation by both nicotinic and muscarinic receptors in several key aspects of the allergic inflammatory response, including barrier function, innate and adaptive immune responses, and effector cells responses. A better understanding of these cholinergic processes mediating key aspects of type 2 immune disorders might lead to novel therapeutic approaches to treat allergic diseases.

  2. Innate immune responses to gut microbiota differ between oceanic and freshwater threespine stickleback populations

    Directory of Open Access Journals (Sweden)

    Kathryn Milligan-Myhre

    2016-02-01

    Full Text Available Animal hosts must co-exist with beneficial microbes while simultaneously being able to mount rapid, non-specific, innate immune responses to pathogenic microbes. How this balance is achieved is not fully understood, and disruption of this relationship can lead to disease. Excessive inflammatory responses to resident microbes are characteristic of certain gastrointestinal pathologies such as inflammatory bowel disease (IBD. The immune dysregulation of IBD has complex genetic underpinnings that cannot be fully recapitulated with single-gene-knockout models. A deeper understanding of the genetic regulation of innate immune responses to resident microbes requires the ability to measure immune responses in the presence and absence of the microbiota using vertebrate models with complex genetic variation. Here, we describe a new gnotobiotic vertebrate model to explore the natural genetic variation that contributes to differences in innate immune responses to microbiota. Threespine stickleback, Gasterosteus aculeatus, has been used to study the developmental genetics of complex traits during the repeated evolution from ancestral oceanic to derived freshwater forms. We established methods to rear germ-free stickleback larvae and gnotobiotic animals monoassociated with single bacterial isolates. We characterized the innate immune response of these fish to resident gut microbes by quantifying the neutrophil cells in conventionally reared monoassociated or germ-free stickleback from both oceanic and freshwater populations grown in a common intermediate salinity environment. We found that oceanic and freshwater fish in the wild and in the laboratory share many intestinal microbial community members. However, oceanic fish mount a strong immune response to residential microbiota, whereas freshwater fish frequently do not. A strong innate immune response was uniformly observed across oceanic families, but this response varied among families of freshwater fish

  3. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    Directory of Open Access Journals (Sweden)

    Qiyan Jiang

    2014-04-01

    Full Text Available The transcription factor dehydration-responsive element binding protein (DREB is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L. and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed longer coleoptiles and radicles and a greater radicle number at the germination stage, as well as greater root length, fresh weight, and tiller number per plant at the seedling stage. The yield-related traits of transgenic lines were also improved compared with the wild type, indicating enhanced salt tolerance in transgenic lines overexpressing GmDREB1. Proteomics analysis revealed that osmotic- and oxidative-stress-related proteins were up-regulated in transgenic wheat leaves under salt stress conditions. Transgenic wheat had higher levels of proline and betaine and lower levels of malondialdehyde and relative electrolyte leakage than the wild type. These results suggest that GmDREB1 regulates the expression of osmotic- and oxidative-stress-related proteins that reduce the occurrence of cell injury caused by high salinity, thus improving the salt tolerance of transgenic wheat.

  4. Psoriasiform skin disease in transgenic pigs with high-copy ectopic expression of human integrins α2 and β1

    DEFF Research Database (Denmark)

    Staunstrup, Nicklas Heine; Stenderup, Karin; Mortensen, Sidsel

    2017-01-01

    Psoriasis is a complex human-specific disease characterized by perturbed keratinocyte proliferation and a pro-inflammatory environment in the skin. Porcine skin architecture and immunity are very similar to that in humans, rendering the pig a suitable animal model for studying the biology...... and β1 in suprabasal epidermal layers. Integrin-transgenic minipigs born into the project displayed skin phenotypes that correlated with the number of inserted transgenes. Molecular analyses were in good concordance with histological observations of psoriatic hallmarks, including hypogranulosis and T...

  5. Trivalent combination vaccine induces broad heterologous immune responses to norovirus and rotavirus in mice.

    Directory of Open Access Journals (Sweden)

    Kirsi Tamminen

    Full Text Available Rotavirus (RV and norovirus (NoV are the two major causes of viral gastroenteritis (GE in children worldwide. We have developed an injectable vaccine design to prevent infection or GE induced with these enteric viruses. The trivalent combination vaccine consists of NoV capsid (VP1 derived virus-like particles (VLPs of GI-3 and GII-4 representing the two major NoV genogroups and tubular RV recombinant VP6 (rVP6, the most conserved and abundant RV protein. Each component was produced in insect cells by a recombinant baculovirus expression system and combined in vitro. The vaccine components were administered intramuscularly to BALB/c mice either separately or in the trivalent combination. High levels of NoV and RV type specific serum IgGs with high avidity (>50% as well as intestinal IgGs were detected in the immunized mice. Cross-reactive IgG antibodies were also elicited against heterologous NoV VLPs not used for immunization (GII-4 NO, GII-12 and GI-1 VLPs and to different RVs from cell cultures. NoV-specific serum antibodies blocked binding of homologous and heterologous VLPs to the putative receptors, histo-blood group antigens, suggesting broad NoV neutralizing activity of the sera. Mucosal antibodies of mice immunized with the trivalent combination vaccine inhibited RV infection in vitro. In addition, cross-reactive T cell immune responses to NoV and RV-specific antigens were detected. All the responses were sustained for up to six months. No mutual inhibition of the components in the trivalent vaccine combination was observed. In conclusion, the NoV GI and GII VLPs combination induced broader cross-reactive and potentially neutralizing immune responses than either of the VLPs alone. Therefore, trivalent vaccine might induce protective immune responses to the vast majority of circulating NoV and RV genotypes.

  6. Isotope-based immunological techniques. Their use in assessment of immune competence and the study of immune responses to pathogens

    International Nuclear Information System (INIS)

    Duffus, W.P.H.

    1984-01-01

    The influence of isotope-based techniques on both assessment of immune competence and immune response to pathogens is discussed. Immunodeficiencies acquired as a result of factors like malnutrition and concomitant disease can severely affect not only attempts to intensify and improve production but also successful immune response against important vaccines such as rinderpest and foot-and-mouth disease. Isotope-based techniques, with their accuracy, speed and small sample volume, are ideally suited for assessing immunocompetence. One of the main drawbacks remains antigen purity, an area where research should now be concentrated. Lymphocyte transformation is widely used to assess cell-mediated immuno-competence but techniques to assess biological functions such as phagocytosis and cell-mediated cytotoxicity could more usefully reflect immune status. These latter techniques utilize isotopes such as 3 H, 14 C, 32 P and 125 I. Investigation of specific cell-mediated immune response often requires a labelled target. Suitable isotopes such as 51 Cr, 99 Tcsup(m), 75 Se and 3 H are compared for their capacity to label both mammalian and parasite targets. Suggestions are made on a number of areas of research that might usefully be encouraged and supported in order to improve applied veterinary immunology in tropical countries. (author)

  7. CD8(+)NKT-like cells regulate the immune response by killing antigen-bearing DCs.

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-09-15

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8(+)NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8(+)NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8(+)NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8(+)NKT-like cell development is normal in CD1d(-/-) mice, which suggests that CD8(+)NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8(+)NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8(+)NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8(+)NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens.

  8. CD8+NKT-like cells regulate the immune response by killing antigen-bearing DCs

    Science.gov (United States)

    Wang, Chao; Liu, Xi; Li, Zhengyuan; Chai, Yijie; Jiang, Yunfeng; Wang, Qian; Ji, Yewei; Zhu, Zhongli; Wan, Ying; Yuan, Zhenglong; Chang, Zhijie; Zhang, Minghui

    2015-01-01

    CD1d-dependent NKT cells have been extensively studied; however, the function of CD8+NKT-like cells, which are CD1d-independent T cells with NK markers, remains unknown. Here, we report that CD1d-independent CD8+NKT-like cells, which express both T cell markers (TCRβ and CD3) and NK cell receptors (NK1.1, CD49b and NKG2D), are activated and significantly expanded in mice immunized with GFP-expressing dendritic cells. Distinct from CD1d-dependent NKT cells, CD8+NKT-like cells possess a diverse repertoire of TCRs and secrete high levels of IFN-gamma but not IL-4. CD8+NKT-like cell development is normal in CD1d−/− mice, which suggests that CD8+NKT-like cells undergo a unique development pathway that differs from iNKT cells. Further functional analyses show that CD8+NKT-like cells suppress T-cell responses through elimination of dendritic cells in an antigen-specific manner. Adoptive transfer of antigen-specific CD8+NKT-like cells into RIP-OVA mice prevented subsequent development of diabetes in the animals induced by activated OT-I CD8 T cells. Our study suggests that CD8+NKT-like cells can function as antigen-specific suppressive cells to regulate the immune response through killing antigen-bearing DCs. Antigen-specific down regulation may provide an active and precise method for constraining an excessive immune response and avoiding bypass suppression of necessary immune responses to other antigens. PMID:26369936

  9. Human leukocyte antigen and cytokine receptor gene polymorphisms associated with heterogeneous immune responses to mumps viral vaccine.

    Science.gov (United States)

    Ovsyannikova, Inna G; Jacobson, Robert M; Dhiman, Neelam; Vierkant, Robert A; Pankratz, V Shane; Poland, Gregory A

    2008-05-01

    Mumps outbreaks continue to occur throughout the world, including in highly vaccinated populations. Vaccination against mumps has been successful; however, humoral and cellular immune responses to mumps vaccines vary significantly from person to person. We set out to assess whether HLA and cytokine gene polymorphisms are associated with variations in the immune response to mumps viral vaccine. To identify genetic factors that might contribute to variations in mumps vaccine-induced immune responses, we performed HLA genotyping in a group of 346 healthy schoolchildren (12-18 years of age) who previously received 2 doses of live mumps vaccine. Single-nucleotide polymorphisms (minor allele frequency of >5%) in cytokine and cytokine receptor genes were genotyped for a subset of 118 children. Median values for mumps-specific antibody titers and lymphoproliferative stimulation indices were 729 IU/mL and 4.8, respectively. Girls demonstrated significantly higher mumps antibody titers than boys, indicating gender-linked genetic differences in humoral immune response. Significant associations were found between the HLA-DQB1*0303 alleles and lower mumps-specific antibody titers. An interesting finding was the association of several HLA class II alleles with mumps-specific lymphoproliferation. Alleles of the DRB1 (*0101, *0301, *0801, *1001, *1201, and *1302), DQA1 (*0101, *0105, *0401, and *0501), and DQB1 (*0201, *0402, and *0501) loci were associated with significant variations in lymphoproliferative immune responses to mumps vaccine. Additional associations were observed with single-nucleotide polymorphisms in the interleukin-10RA, interleukin-12RB1, and interleukin-12RB2 cytokine receptor genes. Minor alleles for 4 single-nucleotide polymorphisms within interleukin-10RA and interleukin-12RB genes were associated with variations in humoral and cellular immune responses to mumps vaccination. These data suggest the important role of HLA and immunoregulatory cytokine receptor

  10. Atheroprotective immunization with malondialdehyde-modified LDL is hapten specific and dependent on advanced MDA adducts

    DEFF Research Database (Denmark)

    Gonen, Ayelet; Hansen, Lotte; Turner, William W

    2014-01-01

    as an immunogen would be impractical for generalized use. Furthermore, when MDA is used to modify LDL, a wide variety of related MDA adducts are formed, both simple and more complex. To define the relevant epitopes that would reproduce the atheroprotective effects of immunization with MDA-LDL, we sought......Immunization with homologous malondialdehyde (MDA)-modified LDL (MDA-LDL) leads to atheroprotection in experimental models supporting the concept that a vaccine to oxidation-specific epitopes (OSEs) of oxidized LDL could limit atherogenesis. However, modification of human LDL with OSE to use...... responses. We further demonstrate that a T helper (Th) 2-biased hapten-specific humoral and cellular response is sufficient, and thus, MAA-modified homologous albumin is an equally effective immunogen. We further show that such Th2-biased humoral responses per se are not atheroprotective if they do...

  11. NLRC5: a key regulator of MHC class I-dependent immune responses.

    Science.gov (United States)

    Kobayashi, Koichi S; van den Elsen, Peter J

    2012-12-01

    The expression of MHC class I molecules is crucial for the initiation and regulation of adaptive immune responses against pathogens. NOD-, LRR- and CARD-containing 5 (NLRC5) was recently identified as a specific transactivator of MHC class I genes (CITA). NLRC5 and the master regulator for MHC class II genes, class II transactivator (CIITA), interact with similar MHC promoter-bound factors. Here, we provide a broad overview of the molecular mechanisms behind MHC class I transcription and the role of the class I transactivator NLRC5 in MHC class I-dependent immune responses.

  12. Effects of dietary nucleotides on growth, non-specific immune response and disease resistance of sea cucumber Apostichopus japonicas.

    Science.gov (United States)

    Wei, Zehong; Yi, Lina; Xu, Wei; Zhou, Huihui; Zhang, Yanjiao; Zhang, Wenbing; Mai, Kangsen

    2015-11-01

    A 9-week feeding trial was conducted to investigate the effects of dietary nucleotides (NT) on growth, immune response and disease resistance of sea cucumber Apostichopus japonicas (initial weight: 5.87 ± 0.03 g). Four graded levels of dietary NT were designed as 0, 150, 375 and 700 mg/kg, respectively. After the feeding trial, sea cucumbers were challenged with Vibrio splendidus for the determination of disease resistance. The results showed that the specific growth rates were significantly higher in sea cucumber fed the diet with 375 mg/kg NT than those fed the basal diet without NT supplementation (P sea cucumber fed diets with nucleotides (≥ 375 mg/kg) had significantly higher phagocytic activities in coelomic fluid (P 0.05). After being challenged with V. splendidus, the cumulative mortalities of sea cucumber fed diets with 150 and 375 mg/kg NT were significantly lower than that in the treatment without dietary nucleotide supplementation (P sea cucumber in vivo. In conclusion, it was showed that dietary NT does increase the growth performance, non-specific immunity and disease resistance of sea cucumber. The optimum dietary NT supplementation level for sea cucumber was found to be 375 mg/kg. The application of dietary NT may present a novel strategy for health management in sea cucumber's aquaculture. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. 17D yellow fever vaccine elicits comparable long-term immune responses in healthy individuals and immune-compromised patients.

    Science.gov (United States)

    Wieten, R W; Goorhuis, A; Jonker, E F F; de Bree, G J; de Visser, A W; van Genderen, P J J; Remmerswaal, E B M; Ten Berge, I J M; Visser, L G; Grobusch, M P; van Leeuwen, E M M

    2016-06-01

    The 17D live attenuated yellow fever (YF) vaccine is contra-indicated in immune-compromised individuals and may elicit a suboptimal immunologic response. The aim of this study is to assess whether long-term immune responses against the YF vaccine are impaired in immune-compromised patients. Fifteen patients using different immunosuppressive drugs and 30 healthy individuals vaccinated 0-22 years ago were included. The serological response was measured using the plaque reduction neutralization test (PRNT). CD8(+) and CD4(+) T-cell responses were measured following proliferation and re-stimulation with YFV peptide pools. Phenotypic characteristics and cytokine responses of CD8(+) T-cells were determined using class I tetramers. The geometric mean titre of neutralizing antibodies was not different between the groups (p = 0.77). The presence of YFV-specific CD4(+) and CD8(+) T-cell did not differ between patients and healthy individuals (15/15, 100.0% vs. 29/30, 96.7%, p = 0.475). Time since vaccination correlated negatively with the number of YFV-specific CD8(+) T-cells (r = -0.66, p = 0.0045). Percentages of early-differentiated memory cells increased (r = 0.67, p = 0.017) over time. These results imply that YF vaccination is effective despite certain immunosuppressive drug regimens. An early-differentiated memory-like phenotype persisted, which is associated with effective expansion upon re-encounter with antigen, suggesting a potent memory T-cell pool remains. Copyright © 2016 The British Infection Association. Published by Elsevier Ltd. All rights reserved.

  14. Insect immunity shows specificity in protection upon secondary pathogen exposure.

    Science.gov (United States)

    Sadd, Ben M; Schmid-Hempel, Paul

    2006-06-20

    Immunological memory in vertebrates, conferring lasting specific protection after an initial pathogen exposure, has implications for a broad spectrum of evolutionary, epidemiological, and medical phenomena . However, the existence of specificity in protection upon secondary pathogen exposure in invertebrates remains controversial . To separate this functional phenomenon from a particular mechanism, we refer to it as specific immune priming. We investigate the presence of specific immune priming in workers of the social insect Bombus terrestris. Using three bacterial pathogens, we test whether a prior homologous pathogen exposure gives a benefit in terms of long-term protection against a later challenge, over and above a heterologous combination. With a reciprocally designed initial and second-exposure protocol (i.e., all combinations of bacteria were tested), we demonstrate, even several weeks after the clearance of a first exposure, increased protection and narrow specificity upon secondary exposure. This demonstrates that the invertebrate immune system is functionally capable of unexpectedly specific and durable induced protection. Ultimately, despite general broad differences between vertebrates and invertebrates, the ability of both immune systems to show specificity in protection suggests that their immune defenses have found comparable solutions to similar selective pressures over evolutionary time.

  15. Cell-Mediated and Humoral Immune Responses after Immunization of Calves with a Recombinant Multiantigenic Mycobacterium avium subsp. paratuberculosis Subunit Vaccine at Different Ages

    DEFF Research Database (Denmark)

    Thakur, Aneesh; Aagaard, Claus; Stockmarr, Anders

    2013-01-01

    and 12 relative to the first vaccination. Vaccine-induced immune responses, the gamma interferon (IFN-γ) cytokine secretion and antibody responses, were followed for 20 weeks. In general, the specific responses were significantly elevated in all three vaccination groups after the first booster...

  16. The Immune Response against Acinetobacter baumannii, an Emerging Pathogen in Nosocomial Infections

    Science.gov (United States)

    García-Patiño, María Guadalupe; García-Contreras, Rodolfo; Licona-Limón, Paula

    2017-01-01

    Acinetobacter baumannii is the etiologic agent of a wide range of nosocomial infections, including pneumonia, bacteremia, and skin infections. Over the last 45 years, an alarming increase in the antibiotic resistance of this opportunistic microorganism has been reported, a situation that hinders effective treatments. In order to develop effective therapies against A. baumannii it is crucial to understand the basis of host–bacterium interactions, especially those concerning the immune response of the host. Different innate immune cells such as monocytes, macrophages, dendritic cells, and natural killer cells have been identified as important effectors in the defense against A. baumannii; among them, neutrophils represent a key immune cell indispensable for the control of the infection. Several immune strategies to combat A. baumannii have been identified such as recognition of the bacteria by immune cells through pattern recognition receptors, specifically toll-like receptors, which trigger bactericidal mechanisms including oxidative burst and cytokine and chemokine production to amplify the immune response against the pathogen. However, a complete picture of the protective immune strategies activated by this bacteria and its potential therapeutic use remains to be determined and explored. PMID:28446911

  17. Human and Animal Isolates of Yersinia enterocolitica Show Significant Serotype-Specific Colonization and Host-Specific Immune Defense Properties

    Science.gov (United States)

    Schaake, Julia; Kronshage, Malte; Uliczka, Frank; Rohde, Manfred; Knuuti, Tobias; Strauch, Eckhard; Fruth, Angelika; Wos-Oxley, Melissa

    2013-01-01

    Yersinia enterocolitica is a human pathogen that is ubiquitous in livestock, especially pigs. The bacteria are able to colonize the intestinal tract of a variety of mammalian hosts, but the severity of induced gut-associated diseases (yersiniosis) differs significantly between hosts. To gain more information about the individual virulence determinants that contribute to colonization and induction of immune responses in different hosts, we analyzed and compared the interactions of different human- and animal-derived isolates of serotypes O:3, O:5,27, O:8, and O:9 with murine, porcine, and human intestinal cells and macrophages. The examined strains exhibited significant serotype-specific cell binding and entry characteristics, but adhesion and uptake into different host cells were not host specific and were independent of the source of the isolate. In contrast, survival and replication within macrophages and the induced proinflammatory response differed between murine, porcine, and human macrophages, suggesting a host-specific immune response. In fact, similar levels of the proinflammatory cytokine macrophage inflammatory protein 2 (MIP-2) were secreted by murine bone marrow-derived macrophages with all tested isolates, but the equivalent interleukin-8 (IL-8) response of porcine bone marrow-derived macrophages was strongly serotype specific and considerably lower in O:3 than in O:8 strains. In addition, all tested Y. enterocolitica strains caused a considerably higher level of secretion of the anti-inflammatory cytokine IL-10 by porcine than by murine macrophages. This could contribute to limiting the severity of the infection (in particular of serotype O:3 strains) in pigs, which are the primary reservoir of Y. enterocolitica strains pathogenic to humans. PMID:23959720

  18. The intestinal flora is required to support antibody responses to systemic immunization in infant and germ free mice.

    Science.gov (United States)

    Lamousé-Smith, Esi S; Tzeng, Alice; Starnbach, Michael N

    2011-01-01

    The presence of a complex and diverse intestinal flora is functionally important for regulating intestinal mucosal immune responses. However, the extent to which a balanced intestinal flora regulates systemic immune responses is still being defined. In order to specifically examine whether the acquisition of a less complex flora influences responses to immunization in the pre-weaning stages of life, we utilize a model in which infant mice acquire an intestinal flora from their mothers that has been altered by broad-spectrum antibiotics. In this model, pregnant dams are treated with a cocktail of antibiotics that alters both the density and microbial diversity of the intestinal flora. After challenge with a subcutaneous immunization, the antibiotic altered flora infant mice have lower antigen specific antibody titers compared to control age-matched mice. In a second model, we examined germ free (GF) mice to analyze how the complete lack of flora influences the ability to mount normal antibody responses following subcutaneous immunization. GF mice do not respond well to immunization and introduction of a normal flora into GF mice restores the capacity of these mice to respond. These results indicate that a gastrointestinal flora reduced in density and complexity at critical time points during development adversely impacts immune responses to systemic antigens.

  19. The Design of New Adjuvants for Mucosal Immunity to Neisseria meningitidis B in Nasally Primed Neonatal Mice for Adult Immune Response

    Directory of Open Access Journals (Sweden)

    Tatiane Ferreira

    2012-01-01

    Full Text Available The aim of this study was to determine the value of detoxified Shiga toxins Stx1 and Stx2 (toxoids of Escherichia coli as mucosal adjuvants in neonatal mice for immunogenicity against the outer membrane proteins (OMPs of Neisseria meningitidis B. Mucosal immunization has been shown to be effective for the induction of antigen-specific immune responses in both the systemic and mucosal compartments. Systemic antibody levels (IgG, IgG1, IgG2a, IgG2b, IgM, and IgA and mucosal IgM and IgA were measured by ELISA using an N. meningitidis as an antigen. In addition, IFN-γ and IL-6 production were measured after stimulated proliferation of immune cells. Intranasal administration elicited a higher anti-OMP IgA response in both saliva and vaginal fluids. Our results suggest that both Stx1 and Stx2 toxoids are effective mucosal adjuvants for the induction of Ag-specific IgG, IgM, and IgA antibodies. The toxoids significantly enhanced the IgG and IgM response against OMPs with a potency equivalent to CT, with the response being characterized by both IgG1 and IgG2a isotypes, and increased IFN-gamma production. Additionally, bactericidal activity was induced with IgG and IgM antibodies of high avidity. These results support the use of the new toxoids as potent inducing adjuvants that are particularly suitable for mucosal immunization.

  20. Adenoviral vector immunity: its implications and circumvention strategies.

    Science.gov (United States)

    Ahi, Yadvinder S; Bangari, Dinesh S; Mittal, Suresh K

    2011-08-01

    Adenoviral (Ad) vectors have emerged as a promising gene delivery platform for a variety of therapeutic and vaccine purposes during last two decades. However, the presence of preexisting Ad immunity and the rapid development of Ad vector immunity still pose significant challenges to the clinical use of these vectors. Innate inflammatory response following Ad vector administration may lead to systemic toxicity, drastically limit vector transduction efficiency and significantly abbreviate the duration of transgene expression. Currently, a number of approaches are being extensively pursued to overcome these drawbacks by strategies that target either the host or the Ad vector. In addition, significant progress has been made in the development of novel Ad vectors based on less prevalent human Ad serotypes and nonhuman Ad. This review provides an update on our current understanding of immune responses to Ad vectors and delineates various approaches for eluding Ad vector immunity. Approaches targeting the host and those targeting the vector are discussed in light of their promises and limitations.

  1. Polyfunctional HIV-Specific Antibody Responses Are Associated with Spontaneous HIV Control.

    Directory of Open Access Journals (Sweden)

    Margaret E Ackerman

    2016-01-01

    Full Text Available Elite controllers (ECs represent a unique model of a functional cure for HIV-1 infection as these individuals develop HIV-specific immunity able to persistently suppress viremia. Because accumulating evidence suggests that HIV controllers generate antibodies with enhanced capacity to drive antibody-dependent cellular cytotoxicity (ADCC that may contribute to viral containment, we profiled an array of extra-neutralizing antibody effector functions across HIV-infected populations with varying degrees of viral control to define the characteristics of antibodies associated with spontaneous control. While neither the overall magnitude of antibody titer nor individual effector functions were increased in ECs, a more functionally coordinated innate immune-recruiting response was observed. Specifically, ECs demonstrated polyfunctional humoral immune responses able to coordinately recruit ADCC, other NK functions, monocyte and neutrophil phagocytosis, and complement. This functionally coordinated response was associated with qualitatively superior IgG3/IgG1 responses, whereas HIV-specific IgG2/IgG4 responses, prevalent among viremic subjects, were associated with poorer overall antibody activity. Rather than linking viral control to any single activity, this study highlights the critical nature of functionally coordinated antibodies in HIV control and associates this polyfunctionality with preferential induction of potent antibody subclasses, supporting coordinated antibody activity as a goal in strategies directed at an HIV-1 functional cure.

  2. Cross-reactive microbial peptides can modulate HIV-specific CD8+ T cell responses.

    Directory of Open Access Journals (Sweden)

    Christopher W Pohlmeyer

    Full Text Available Heterologous immunity is an important aspect of the adaptive immune response. We hypothesized that this process could modulate the HIV-1-specific CD8+ T cell response, which has been shown to play an important role in HIV-1 immunity and control. We found that stimulation of peripheral blood mononuclear cells (PBMCs from HIV-1-positive subjects with microbial peptides that were cross-reactive with immunodominant HIV-1 epitopes resulted in dramatic expansion of HIV-1-specific CD8+ T cells. Interestingly, the TCR repertoire of HIV-1-specific CD8+ T cells generated by ex vivo stimulation of PBMCs using HIV-1 peptide was different from that of cells stimulated with cross-reactive microbial peptides in some HIV-1-positive subjects. Despite these differences, CD8+ T cells stimulated with either HIV-1 or cross-reactive peptides effectively suppressed HIV-1 replication in autologous CD4+ T cells. These data suggest that exposure to cross-reactive microbial antigens can modulate HIV-1-specific immunity.

  3. Beta 1,3/1,6-glucan and vitamin C immunostimulate the non-specific immune response of white shrimp (Litopenaeus vannamei).

    Science.gov (United States)

    Wu, Yu-Sheng; Liau, Shu-Yu; Huang, Cheng-Ting; Nan, Fan-Hua

    2016-10-01

    This study mainly evaluated the effects of orally administered beta 1,3/1,6-glucan and vitamin C on the nonspecific immune responses of white shrimp (Litopenaeus vannamei). In this study, we found that the white shrimp oral administration with 1 g/kg of beta 1,3/1,6-glucan effectively enhanced O2(-) production and phenoloxidase and superoxide dismutase activity. Shrimp were oral administration with 0.2 g/kg of vitamin C presented beneficial nonspecific immune responses and enzyme activity and also observed in the beta 1,3/1,6-glucan treatment groups. Consequently, we compared the alterations in the immune activity between the beta 1,3/1,6-glucan and vitamin C groups and the evidence illustrated that combination of beta 1,3/1,6-glucan and vitamin C presented an additive effect on inducing the nonspecific immune responses of white shrimp. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Immunomodulator-based enhancement of anti smallpox immune responses.

    Directory of Open Access Journals (Sweden)

    Osmarie Martínez

    Full Text Available The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists, and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein.We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation.The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections.These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  5. Immunomodulator-based enhancement of anti smallpox immune responses.

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform.

  6. Cell-mediated immune responses in rainbow trout after DNA immunization against the viral hemorrhagic septicemia virus

    DEFF Research Database (Denmark)

    Utke, Katrin; Kock, Holger; Schuetze, Heike

    2008-01-01

    injection site rather than to injection sites of heterologous vaccines, suggesting the antigen specificity of homing. By demonstrating CMC responses to distinct viral proteins and homing in rainbow trout, these results substantially contribute to the understanding of the teleost immune system.......To identify viral proteins that induce cell-mediated cytotoxicity (CMC) against viral hemorrhagic septicemia virus (VHSV)-infected cells, rainbow trout were immunized with DNA vectors encoding the glycoprotein G or the nucleocapsid protein N of VHSV. The G protein was a more potent trigger...... of cytotoxic cells than the N protein. Peripheral blood leukocytes (PBL) isolated from trout immunized against the G protein killed both VHSV-infected MHC class I matched (RTG-2) and VHSV-infected xenogeneic (EPC) target cells, suggesting the involvement of both cytotoxic T lymphocytes (CTL) and NK cells...

  7. Salmonella fecal shedding and immune responses are dose- and serotype- dependent in pigs.

    Directory of Open Access Journals (Sweden)

    Renata Ivanek

    Full Text Available Despite the public health importance of Salmonella infection in pigs, little is known about the associated dynamics of fecal shedding and immunity. In this study, we investigated the transitions of pigs through the states of Salmonella fecal shedding and immune response post-Salmonella inoculation as affected by the challenge dose and serotype. Continuous-time multistate Markov models were developed using published experimental data. The model for shedding had four transient states, of which two were shedding (continuous and intermittent shedding and two non-shedding (latency and intermittent non-shedding, and one absorbing state representing permanent cessation of shedding. The immune response model had two transient states representing responses below and above the seroconversion level. The effects of two doses [low (0.65×10(6 CFU/pig and high (0.65×10(9 CFU/pig] and four serotypes (Salmonella Yoruba, Salmonella Cubana, Salmonella Typhimurium, and Salmonella Derby on the models' transition intensities were evaluated using a proportional intensities model. Results indicated statistically significant effects of the challenge dose and serotype on the dynamics of shedding and immune response. The time spent in the specific states was also estimated. Continuous shedding was on average 10-26 days longer, while intermittent non-shedding was 2-4 days shorter, in pigs challenged with the high compared to low dose. Interestingly, among pigs challenged with the high dose, the continuous and intermittent shedding states were on average up to 10-17 and 3-4 days longer, respectively, in pigs infected with S. Cubana compared to the other three serotypes. Pigs challenged with the high dose of S. Typhimurium or S. Derby seroconverted on average up to 8-11 days faster compared to the low dose. These findings highlight that Salmonella fecal shedding and immune response following Salmonella challenge are dose- and serotype-dependent and that the detection of

  8. Role and contribution of pulmonary CD103+ dendritic cells in the adaptive immune response to Mycobacterium tuberculosis.

    Science.gov (United States)

    Koh, Vanessa Hui Qi; Ng, See Liang; Ang, Michelle Lay Teng; Lin, Wenwei; Ruedl, Christiane; Alonso, Sylvie

    2017-01-01

    Despite international control programmes, the global burden of tuberculosis remains enormous. Efforts to discover novel drugs have largely focused on targeting the bacterium directly. Alternatively, manipulating the host immune response may represent a valuable approach to enhance immunological clearance of the bacilli, but necessitates a deeper understanding of the immune mechanisms associated with protection against Mycobacterium tuberculosis infection. Here, we examined the various dendritic cells (DC) subsets present in the lung and draining lymph nodes (LN) from mice intra-tracheally infected with M. tuberculosis. We showed that although limited in number, pulmonary CD103 + DCs appeared to be involved in the initial transport of mycobacteria to the draining mediastinal LN and subsequent activation of T cells. Using CLEC9A-DTR transgenic mice enabling the inducible depletion of CD103 + DCs, we established that this DC subset contributes to the control of mycobacterial burden and plays a role in the early activation of T cells, in particular CD8 + T cells. Our findings thus support a previously unidentified role for pulmonary CD103 + DCs in the rapid mobilization of mycobacteria from the lungs to the draining LN soon after exposure to M. tuberculosis, which is a critical step for the development of the host adaptive immune response. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Stress proteins and the immune response.

    Science.gov (United States)

    Moseley, P

    2000-07-25

    The heat shock or stress response is one of the most highly conserved adaptive responses in nature. In single cell organisms, the stress response confers tolerance to a variety of stresses including hyperthermia, hyperoxia, hypoxia, and other perturbations, which alter protein synthesis. This tolerance phenomenon is also extremely important in the multicellular organism, resulting in not only thermal tolerance, but also resistance to stresses of the whole organism such as ischemia-reperfusion injury. Moreover, recent data indicates that these stress proteins have the ability to modulate the cellular immune response. Although the terms heat shock proteins (HSPs) and stress proteins are often used interchangeably, the term stress proteins includes the HSPs, the glucose-regulated proteins (GRPs) and ubiquitin. The stress proteins may be grouped by molecular weight ranging from the large 110 kDa HSP110 to ubiquitin at 8 kDa. These proteins serve as cellular chaperones, participating in protein synthesis and transport through the various cellular compartments. Because these proteins have unique cellular localizations, the chaperone function of the stress proteins often involves a transfer of peptides between stress proteins as the peptide is moved between cellular compartments. For example, HSP70 is a cytosolic and nuclear chaperone, which is critical for the transfer of cellular peptides in the mitochondrion through a hand-off that involves mitochondrial HSP60 at the inner mitochondrial membrane. Similarly, cytosolic proteins are transferred from HSP70 to gp96 as they move into the endoplasmic reticulum. The central role of the stress proteins in the transfer of peptides through the cell may be responsible for the recently recognized importance of the stress proteins in the modulation of the immune system [Feder, M.E., Hofmann, G.E., 1999. Heat-shock proteins, molecular chaperones, and the stress response: evolutionary and ecological physiology. Annu. Rev. Physiol. 61

  10. Vaccination with dengue virus-like particles induces humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Zhang Quanfu

    2011-06-01

    Full Text Available Abstract Background The incidence of dengue, an infectious disease caused by dengue virus (DENV, has dramatically increased around the world in recent decades and is becoming a severe public health threat. However, there is currently no specific treatment for dengue fever, and licensed vaccine against dengue is not available. Vaccination with virus-like particles (VLPs has shown considerable promise for many viral diseases, but the effect of DENV VLPs to induce specific immune responses has not been adequately investigated. Results By optimizing the expression plasmids, recombinant VLPs of four antigenically different DENV serotypes DENV1-4 were successfully produced in 293T cells. The vaccination effect of dengue VLPs in mice showed that monovalent VLPs of each serotype stimulated specific IgG responses and potent neutralizing antibodies against homotypic virus. Tetravalent VLPs efficiently enhanced specific IgG and neutralizing antibodies against all four serotypes of DENV. Moreover, vaccination with monovalent or tetravalent VLPs resulted in the induction of specific cytotoxic T cell responses. Conclusions Mammalian cell expressed dengue VLPs are capable to induce VLP-specific humoral and cellular immune responses in mice, and being a promising subunit vaccine candidate for prevention of dengue virus infection.

  11. c-MPL provides tumor-targeted T-cell receptor-transgenic T cells with costimulation and cytokine signals.

    Science.gov (United States)

    Nishimura, Christopher D; Brenner, Daniel A; Mukherjee, Malini; Hirsch, Rachel A; Ott, Leah; Wu, Meng-Fen; Liu, Hao; Dakhova, Olga; Orange, Jordan S; Brenner, Malcolm K; Lin, Charles Y; Arber, Caroline

    2017-12-21

    Adoptively transferred T-cell receptor (TCR)-engineered T cells depend on host-derived costimulation and cytokine signals for their full and sustained activation. However, in patients with cancer, both signals are frequently impaired. Hence, we developed a novel strategy that combines both essential signals in 1 transgene by expressing the nonlymphoid hematopoietic growth factor receptor c-MPL (myeloproliferative leukemia), the receptor for thrombopoietin (TPO), in T cells. c-MPL signaling activates pathways shared with conventional costimulatory and cytokine receptor signaling. Thus, we hypothesized that host-derived TPO, present in the tumor microenvironment, or pharmacological c-MPL agonists approved by the US Food and Drug Administration could deliver both signals to c-MPL-engineered TCR-transgenic T cells. We found that c-MPL + polyclonal T cells expand and proliferate in response to TPO, and persist longer after adoptive transfer in immunodeficient human TPO-transgenic mice. In TCR-transgenic T cells, c-MPL activation enhances antitumor function, T-cell expansion, and cytokine production and preserves a central memory phenotype. c-MPL signaling also enables sequential tumor cell killing, enhances the formation of effective immune synapses, and improves antileukemic activity in vivo in a leukemia xenograft model. We identify the type 1 interferon pathway as a molecular mechanism by which c-MPL mediates immune stimulation in T cells. In conclusion, we present a novel immunotherapeutic strategy using c-MPL-enhanced transgenic T cells responding to either endogenously produced TPO (a microenvironment factor in hematologic malignancies) or c-MPL-targeted pharmacological agents. © 2017 by The American Society of Hematology.

  12. The Pig as a Large Animal Model for Studying Anti-Tumor Immune Responses

    DEFF Research Database (Denmark)

    Overgaard, Nana Haahr

    but also generates a selective pressure, which may lead to selection of tumor cell variants with reduced immunogenicity; thereby, increasing the risk of tumor escape. Cancer immunotherapy includes treatment strategies aimed at activating anti-tumor immune responses or inhibiting suppressive and tumor......-favorable immune mechanisms. One of the promising arms of cancer immunotherapy is peptide-based therapeutic vaccines; yet, no such vaccine has been approved for use in human oncology. For many years, mouse models have provided invaluable understanding of complex immunological pathways; however, the majority...... tolerance towards IDO and the establishment of an antigen-specific cell-mediated immune (CMI) response. When comparing the different CAF09-formulated antigen doses, we demonstrate the induction of a CMI-dominant response upon exposure to a low endogenous peptide dose. In contrast, a mixed CMI and humoral...

  13. Prevalence of local immune response against oral infection in a Drosophila/Pseudomonas infection model.

    Directory of Open Access Journals (Sweden)

    Peter Liehl

    2006-06-01

    Full Text Available Pathogens have developed multiple strategies that allow them to exploit host resources and resist the immune response. To study how Drosophila flies deal with infectious diseases in a natural context, we investigated the interactions between Drosophila and a newly identified entomopathogen, Pseudomonas entomophila. Flies orally infected with P. entomophila rapidly succumb despite the induction of both local and systemic immune responses, indicating that this bacterium has developed specific strategies to escape the fly immune response. Using a combined genetic approach on both host and pathogen, we showed that P. entomophila virulence is multi-factorial with a clear differentiation between factors that trigger the immune response and those that promote pathogenicity. We demonstrate that AprA, an abundant secreted metalloprotease produced by P. entomophila, is an important virulence factor. Inactivation of aprA attenuated both the capacity to persist in the host and pathogenicity. Interestingly, aprA mutants were able to survive to wild-type levels in immune-deficient Relish flies, indicating that the protease plays an important role in protection against the Drosophila immune response. Our study also reveals that the major contribution to the fly defense against P. entomophila is provided by the local, rather than the systemic immune response. More precisely, our data points to an important role for the antimicrobial peptide Diptericin against orally infectious Gram-negative bacteria, emphasizing the critical role of local antimicrobial peptide expression against food-borne pathogens.

  14. Global Screening of Antiviral Genes that Suppress Baculovirus Transgene Expression in Mammalian Cells.

    Science.gov (United States)

    Wang, Chia-Hung; Naik, Nenavath Gopal; Liao, Lin-Li; Wei, Sung-Chan; Chao, Yu-Chan

    2017-09-15

    Although baculovirus has been used as a safe and convenient gene delivery vector in mammalian cells, baculovirus-mediated transgene expression is less effective in various mammalian cell lines. Identification of the negative regulators in host cells is necessary to improve baculovirus-based expression systems. Here, we performed high-throughput shRNA library screening, targeting 176 antiviral innate immune genes, and identified 43 host restriction factor genes in a human A549 lung carcinoma cell line. Among them, suppression of receptor interaction protein kinase 1 (RIP1, also known as RIPK1) significantly increased baculoviral transgene expression without resulting in significant cell death. Silencing of RIP1 did not affect viral entry or cell viability, but it did inhibit nuclear translocation of the IRF3 and NF-κB transcription factors. Also, activation of downstream signaling mediators (such as TBK1 and IRF7) was affected, and subsequent interferon and cytokine gene expression levels were abolished. Further, Necrostatin-1 (Nec-1)-an inhibitor of RIP1 kinase activity-dramatically increased baculoviral transgene expression in RIP1-silenced cells. Using baculovirus as a model system, this study presents an initial investigation of large numbers of human cell antiviral innate immune response factors against a "nonadaptive virus." In addition, our study has made baculovirus a more efficient gene transfer vector for some of the most frequently used mammalian cell systems.

  15. A microculture method for the generation of primary immune responses in vitro.

    Science.gov (United States)

    Pike, B L

    1975-11-01

    A microculture method for the generation and study of the primary immune response of murine spleen cells to defined antigens in vitro is described. Many of the variable parameters which occur in culture systems have been studied in an attempt to define the optimal culture conditions for this system. Cultures of 10(6) CBA spleen cells consistently produced an immune response of 300-600 hapten-specific plaque-forming cells after 3 days of incubation with the T cell-independent antigens DNP-POL and NIP-POL. Cultures were set up in Microtest II tissue culture plates in a volume of 0.2 ml of medium containing 10(-4) M 2-mercaptoethanol. The system described has the advantages of being highly efficient and reproducible and utilises small amounts of cells, medium and antigen. It provides a simple, economic and reliable approach for the systematic study of the immune response in vitro.

  16. Efficacy of multiple anticancer therapies may depend on host immune response

    Directory of Open Access Journals (Sweden)

    Kritika Karri

    2017-06-01

    Full Text Available The host immune system is a key player in anticancer therapy response and resistance. Although the impact of host immune response in the ‘war against cancer’ has been studied and it has been the basis for immunotherapy, understanding of its role in attenuating the action of conventional anticancer therapies is an area that has not been fully explored. In spite of advances in systemic therapy, the 5-year survival rate for adenocarcinoma is still a mere 13% and the primary reason for treatment failure is believed to be due to acquired resistance to therapy. Hence, there is a need for identifying reliable biomarkers for guided treatment of lung and colon adenocarcinoma and to better predict the outcomes of specific anticancer therapies. In this work, gene expression data were analyzed using public resources and this study shows how host immune competence underscores the efficacy of various anticancer therapies. Additionally, the result provides insight on the regulation of certain biochemical pathways relating to the immune system, and suggests that smart chemotherapeutic intervention strategies could be based on a patient’s immune profile.

  17. The immune response against Candida spp. and Sporothrix schenckii.

    Science.gov (United States)

    Martínez-Álvarez, José A; Pérez-García, Luis A; Flores-Carreón, Arturo; Mora-Montes, Héctor M

    2014-01-01

    Candida albicans is the main causative agent of systemic candidiasis, a condition with high mortality rates. The study of the interaction between C. albicans and immune system components has been thoroughly studied and nowadays there is a model for the anti-C. albicans immune response; however, little is known about the sensing of other pathogenic species of the Candida genus. Sporothrix schenckii is the causative agent of sporotrichosis, a subcutaneous mycosis, and thus far there is limited information about its interaction with the immune system. In this paper, we review the most recent information about the immune sensing of species from genus Candida and S. schenckii. Thoroughly searches in scientific journal databases were performed, looking for papers addressing either Candida- or Sporothrix-immune system interactions. There is a significant advance in the knowledge of non-C. albicans species of Candida and Sporothrix immune sensing; however, there are still relevant points to address, such as the specific contribution of pathogen-associated molecular patterns (PAMPs) for sensing by different immune cells and the immune receptors involved in such interactions. This manuscript is part of the series of works presented at the "V International Workshop: Molecular genetic approaches to the study of human pathogenic fungi" (Oaxaca, Mexico, 2012). Copyright © 2013 Revista Iberoamericana de Micología. Published by Elsevier Espana. All rights reserved.

  18. Beta-1,3-1,6-glucan modulate the non-specific immune response to enhance the survival in the Vibrio alginolyticus infection of Taiwan abalone (Haliotis diversicolor supertexta).

    Science.gov (United States)

    Wu, Yu-Sheng; Tseng, Tzu-Yu; Nan, Fan-Hua

    2016-07-01

    This research aims to investigate the non-specific immune response of Taiwan abalone (Haliotis diversicolor supertexta) which was treated with the beta-1,3-1,6-glucan to be observed in the survival impact after the Vibrio alginolyticus infection. The non-specific immune and physiological response of superoxide anion radical (O2(-)), phenoloxidase (PO), phagocytic index (PI), phagocytic rate (PR) and lucigenin-chemiluminescence for reactive oxygen intermediates (ROIs) were enhanced via in-vitro experiment. In the in-vivo experiment, the observed data presented that the haemolymph lysate supernatant (HLS), superoxide dismutase (SOD), glutamate oxalacetate transaminase (GOT) and glutamate pyruvate transaminase (GPT) were not significant enhanced, but the total haemocyte count (THC), O2(-), PO, phagocytic index (PI), phagocytic ratio (PR) and other parameters of immune were significantly promoted after treated with beta-1,3-1,6-glucan. In the challenge experiment, the survival rates of abalone in the 40 and 80 μl/ml groups of beta-1,3-1,6-glucan were observed from 6.67% up to 33.33% and 36.67% after injection with Vibrio alginolyticus, respectively. Copyright © 2016 Elsevier Ltd. All rights reserved.

  19. An Organismal Model for Gene Regulatory Networks in the Gut-Associated Immune Response

    Directory of Open Access Journals (Sweden)

    Katherine M. Buckley

    2017-10-01

    Full Text Available The gut epithelium is an ancient site of complex communication between the animal immune system and the microbial world. While elements of self-non-self receptors and effector mechanisms differ greatly among animal phyla, some aspects of recognition, regulation, and response are broadly conserved. A gene regulatory network (GRN approach provides a means to investigate the nature of this conservation and divergence even as more peripheral functional details remain incompletely understood. The sea urchin embryo is an unparalleled experimental model for detangling the GRNs that govern embryonic development. By applying this theoretical framework to the free swimming, feeding larval stage of the purple sea urchin, it is possible to delineate the conserved regulatory circuitry that regulates the gut-associated immune response. This model provides a morphologically simple system in which to efficiently unravel regulatory connections that are phylogenetically relevant to immunity in vertebrates. Here, we review the organism-wide cellular and transcriptional immune response of the sea urchin larva. A large set of transcription factors and signal systems, including epithelial expression of interleukin 17 (IL17, are important mediators in the activation of the early gut-associated response. Many of these have homologs that are active in vertebrate immunity, while others are ancient in animals but absent in vertebrates or specific to echinoderms. This larval model provides a means to experimentally characterize immune function encoded in the sea urchin genome and the regulatory interconnections that control immune response and resolution across the tissues of the organism.

  20. Effect of guava leaves on growth and the non-specific immune response of Penaeus monodon.

    Science.gov (United States)

    Yin, Xiao-Li; Li, Zhuo-Jia; Yang, Keng; Lin, Hei-Zhao; Guo, Zhi-Xun

    2014-09-01

    Guava (Psidium guajava L.) leaf extracts have antiviral and antibacterial activity against shrimp pathogens such as yellow-head virus (YHV), white spot syndrome virus (WSSV), and Vibrio harveyi, which make it a potential water disinfectant for use in shrimp culture. In this study, the safety of guava leaf supplementation in shrimp was evaluated by studying its influence on growth and the non-specific immune response of Penaeus monodon. Six diets containing different levels of guava leaves (0% [basal diet], 0.025% [G1], 0.05% [G2], 0.1% [G3], 0.2% [G4], and 0.4% [G5]) were fed to groups of shrimp (1.576 ± 0.011 g body weight) in triplicate for 56 days. Growth performance (final body weight, WG, PWG, SGR) of shrimp fed guava leaf diets was significantly higher (P 0.05) were found. Dietary supplementation with guava leaf improved the activities of prophenoloxidase (PO) and nitric oxide synthase (NOS) in serum, and of superoxide dismutase (SOD), acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LSZ) both in serum and hepatopancreas of shrimp. In the experimental groups, the activities of these enzymes followed a similar pattern of change; they increased initially at low levels of dietary supplementation and then decreased with increasing concentrations of dietary guava leaf. Serum PO and SOD activities in shrimp fed the G1 diet reached 7.50 U ml(-1) and 178.33 U ml(-1), respectively, with PO activity being significantly higher than in controls. In shrimp fed the G1 diet, SOD, ACP, and AKP activities in hepatopancreas were significantly higher than in the controls, reaching 57.32 U g(-1), 23.28 U g(-1), and 19.35 U g(-1) protein, respectively. The highest activities of serum ACP, AKP, LSZ, and of hepatopancreas LSZ, were observed in the G3 diet group. Total nitric oxide synthase (TNOS) activity was highest (64.80 U ml(-1)) in the G4 diet group, which was significantly higher than that observed in the control group. These results suggest that dietary

  1. T Lymphocyte-Endothelial Interactions: Emerging Understanding of Trafficking and Antigen-Specific Immunity

    Directory of Open Access Journals (Sweden)

    Christopher Vincent Carman

    2015-11-01

    Full Text Available Antigen-specific immunity requires regulated trafficking of T cells in and out of diverse tissues in order to orchestrate lymphocyte development, immune surveillance, responses and memory. The endothelium serves as a unique barrier, as well as a sentinel, between the blood and the tissues and as such it plays an essential locally tuned role in regulating T cell migration and information exchange. While it is well established that chemoattractants and adhesion molecules are major determinants of T cell trafficking, emerging studies have now enumerated a large number of molecular players as well as a range of discrete cellular remodeling activities (e.g. transmigratory cups and invadosome-like protrusions, IPLs that participate in directed migration and pathfinding by T cells. In addition to providing trafficking cues, intimate cell-cell interaction between lymphocytes and endothelial cells provide instruction to T cells that influence their activation and differentiation states. Perhaps the most intriguing and underappreciated of these ‘sentinel’ roles is the ability of the endothelium to act as a non-hematopoietic ‘semi-professional’ antigen-presenting cell. Close contacts between circulating T cells and antigen-presenting endothelium may play unique non-redundant roles in shaping adaptive immune responses within the periphery. A better understanding of the mechanisms directing T cell trafficking and the antigen-presenting role of the endothelium may not only increase our knowledge of the adaptive immune response but also empower the utility of emerging immunomodulatory therapeutics.

  2. Immunomodulator-Based Enhancement of Anti Smallpox Immune Responses

    Science.gov (United States)

    Martínez, Osmarie; Miranda, Eric; Ramírez, Maite; Santos, Saritza; Rivera, Carlos; Vázquez, Luis; Sánchez, Tomás; Tremblay, Raymond L.; Ríos-Olivares, Eddy; Otero, Miguel

    2015-01-01

    Background The current live vaccinia virus vaccine used in the prevention of smallpox is contraindicated for millions of immune-compromised individuals. Although vaccination with the current smallpox vaccine produces protective immunity, it might result in mild to serious health complications for some vaccinees. Thus, there is a critical need for the production of a safe virus-free vaccine against smallpox that is available to everyone. For that reason, we investigated the impact of imiquimod and resiquimod (Toll-like receptors agonists), and the codon-usage optimization of the vaccinia virus A27L gene in the enhancement of the immune response, with intent of producing a safe, virus-free DNA vaccine coding for the A27 vaccinia virus protein. Methods We analyzed the cellular-immune response by measuring the IFN-γ production of splenocytes by ELISPOT, the humoral-immune responses measuring total IgG and IgG2a/IgG1 ratios by ELISA, and the TH1 and TH2 cytokine profiles by ELISA, in mice immunized with our vaccine formulation. Results The proposed vaccine formulation enhanced the A27L vaccine-mediated production of IFN-γ on mouse spleens, and increased the humoral immunity with a TH1-biased response. Also, our vaccine induced a TH1 cytokine milieu, which is important against viral infections. Conclusion These results support the efforts to find a new mechanism to enhance an immune response against smallpox, through the implementation of a safe, virus-free DNA vaccination platform. PMID:25875833

  3. Sequence-Based Discovery Demonstrates That Fixed Light Chain Human Transgenic Rats Produce a Diverse Repertoire of Antigen-Specific Antibodies

    Directory of Open Access Journals (Sweden)

    Katherine E. Harris

    2018-04-01

    Full Text Available We created a novel transgenic rat that expresses human antibodies comprising a diverse repertoire of heavy chains with a single common rearranged kappa light chain (IgKV3-15-JK1. This fixed light chain animal, called OmniFlic, presents a unique system for human therapeutic antibody discovery and a model to study heavy chain repertoire diversity in the context of a constant light chain. The purpose of this study was to analyze heavy chain variable gene usage, clonotype diversity, and to describe the sequence characteristics of antigen-specific monoclonal antibodies (mAbs isolated from immunized OmniFlic animals. Using next-generation sequencing antibody repertoire analysis, we measured heavy chain variable gene usage and the diversity of clonotypes present in the lymph node germinal centers of 75 OmniFlic rats immunized with 9 different protein antigens. Furthermore, we expressed 2,560 unique heavy chain sequences sampled from a diverse set of clonotypes as fixed light chain antibody proteins and measured their binding to antigen by ELISA. Finally, we measured patterns and overall levels of somatic hypermutation in the full B-cell repertoire and in the 2,560 mAbs tested for binding. The results demonstrate that OmniFlic animals produce an abundance of antigen-specific antibodies with heavy chain clonotype diversity that is similar to what has been described with unrestricted light chain use in mammals. In addition, we show that sequence-based discovery is a highly effective and efficient way to identify a large number of diverse monoclonal antibodies to a protein target of interest.

  4. Immune responses to mumps vaccine in adults who were vaccinated in childhood.

    Science.gov (United States)

    Hanna-Wakim, Rima; Yasukawa, Linda L; Sung, Phillip; Arvin, Ann M; Gans, Hayley A

    2008-06-15

    In a mumps outbreak in the United States, many infected individuals were adults who had received 2 doses of mumps vaccine. The persistence of cellular immunity to mumps vaccine has not been defined. This was an observational, nonrandomized cohort study evaluating cell-mediated and humoral immunity to mumps in 10 vaccinated and 10 naturally immune adults. Mumps-specific T cell activation and interferon (IFN)-gamma production were measured using lymphoproliferative and flow cytometry assays, and mumps immunoglobulin (Ig) G was measured using enzyme-linked immunosorbent assay. T cell immunity to mumps was high in both groups; 70% of vaccinated and 80% of naturally immune individuals had a positive (> or =3) stimulation index (SI) (P = 1.0). The mean percentages of mumps-specific CD4+ T cells that expressed CD69 and produced IFN-gamma were equivalent in the 2 groups: 0.06% and 0.12%, respectively (P = .11). The mean SIs in the groups were also equivalent, although IFN-gamma concentrations from cultures stimulated with mumps antigen were higher in naturally immune adults than in vaccinated adults (P < or = .01). All adults were positive for mumps IgG. T and B cell immunity to mumps was detected in adults at least 10 years after immunization. Except for IFN-gamma release, responses in vaccinated adults paralleled those observed in naturally immune individuals.

  5. Cellular immune responses against CT7 (MAGE-C1) and humoral responses against other cancer-testis antigens in multiple myeloma patients.

    Science.gov (United States)

    Lendvai, Nikoletta; Gnjatic, Sacha; Ritter, Erika; Mangone, Michael; Austin, Wayne; Reyner, Karina; Jayabalan, David; Niesvizky, Ruben; Jagannath, Sundar; Bhardwaj, Nina; Chen-Kiang, Selina; Old, Lloyd J; Cho, Hearn Jay

    2010-01-29

    The type I melanoma antigen gene (MAGE) proteins CT7 (MAGE-C1) and MAGE-A3 are commonly expressed in multiple myeloma (MM), and their expression correlates with increased plasma cell proliferation and poor clinical outcome. They belong to the cancer-testis antigen (CTAg) group of tumor-associated proteins, some of which elicit spontaneous immune responses in cancer patients. CT7 and MAGE-A3 are promising antigenic targets for therapeutic tumor vaccines in myeloma; therefore, it is critical to determine if they are immunogenic in MM patients. We analyzed cellular and humoral immune responses against CTAgs in patients with plasma cell dyscrasias: MM, monoclonal gammopathy of undetermined significance (MGUS), and Waldenström's macroglobulinemia (WM). Bone marrow lymphocytes from two of four untreated MM patients exhibited CT7-specific cellular immune responses as measured by an autologous cellular immunity assay, the first such immune response to CT7 to be reported in cancer patients. Sera from 24 patients were screened by ELISA for humoral immune responses to CTAgs. Two patients with MM demonstrated positive titers, one for MAGE-A1 and the other for SSX1. These data demonstrate that CTAgs, particularly CT7, are immunogenic in MM patients and merit further exploration as targets of immunological therapy in MM.

  6. Engineering antigen-specific T cells from genetically modified human hematopoietic stem cells in immunodeficient mice.

    Directory of Open Access Journals (Sweden)

    Scott G Kitchen

    Full Text Available There is a desperate need for effective therapies to fight chronic viral infections. The immune response is normally fastidious at controlling the majority of viral infections and a therapeutic strategy aimed at reestablishing immune control represents a potentially powerful approach towards treating persistent viral infections. We examined the potential of genetically programming human hematopoietic stem cells to generate mature CD8+ cytotoxic T lymphocytes that express a molecularly cloned, "transgenic" human anti-HIV T cell receptor (TCR. Anti-HIV TCR transduction of human hematopoietic stem cells directed the maturation of a large population of polyfunctional, HIV-specific CD8+ cells capable of recognizing and killing viral antigen-presenting cells. Thus, through this proof-of-concept we propose that genetic engineering of human hematopoietic stem cells will allow the tailoring of effector T cell responses to fight HIV infection or other diseases that are characterized by the loss of immune control.

  7. Poly-functional and long-lasting anticancer immune response elicited by a safe attenuated Pseudomonas aeruginosa vector for antigens delivery

    Directory of Open Access Journals (Sweden)

    Xavier Chauchet

    2016-01-01

    Full Text Available Live-attenuated bacterial vectors for antigens delivery have aroused growing interest in the field of cancer immunotherapy. Their potency to stimulate innate immunity and to promote intracellular antigen delivery into antigen-presenting cells could be exploited to elicit a strong and specific cellular immune response against tumor cells. We previously described genetically-modified and attenuated Pseudomonas aeruginosa vectors able to deliver in vivo protein antigens into antigen-presenting cells, through Type 3 secretion system of the bacteria. Using this approach, we managed to protect immunized mice against aggressive B16 melanoma development in both a prophylactic and therapeutic setting. In this study, we further investigated the antigen-specific CD8+ T cell response, in terms of phenotypic and functional aspects, obtained after immunizations with a killed but metabolically active P. aeruginosa attenuated vector. We demonstrated that P. aeruginosa vaccine induces a highly functional pool of antigen-specific CD8+ T cell able to infiltrate the tumor. Furthermore, multiple immunizations allowed the development of a long-lasting immune response, represented by a pool of predominantly effector memory cells which protected mice against late tumor challenge. Overall, killed but metabolically active P. aeruginosa vector is a safe and promising approach for active and specific antitumor immunotherapy.

  8. Evaluation of mucosal and systemic immune responses elicited by GPI-0100- adjuvanted influenza vaccine delivered by different immunization strategies.

    Directory of Open Access Journals (Sweden)

    Heng Liu

    Full Text Available Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN or the intrapulmonary (IPL route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses.

  9. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100- Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    Science.gov (United States)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery often results in poor systemic immunity. In order to find an immunization strategy which satisfies the need for induction of both mucosal and systemic immunity, we compared local and systemic immune responses elicited by two mucosal immunizations, given either by the intranasal (IN) or the intrapulmonary (IPL) route, with responses elicited by a mucosal prime followed by a systemic boost immunization. The study was conducted in BALB/c mice and the vaccine formulation was an influenza subunit vaccine supplemented with GPI-0100, a saponin-derived adjuvant. While optimal mucosal antibody titers were obtained after two intrapulmonary vaccinations, optimal systemic antibody responses were achieved by intranasal prime followed by intramuscular boost. The latter strategy also resulted in the best T cell response, yet, it was ineffective in inducing nose or lung IgA. Successful induction of secretory IgA, IgG and T cell responses was only achieved with prime-boost strategies involving intrapulmonary immunization and was optimal when both immunizations were given via the intrapulmonary route. Our results underline that immunization via the lungs is particularly effective for priming as well as boosting of local and systemic immune responses. PMID:23936066

  10. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques

    Directory of Open Access Journals (Sweden)

    Bryan C. Au

    2016-02-01

    Full Text Available Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag-specific responses through direct injections of recombinant lentivectors (LVs that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months—the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an “off-the-shelf” anti-cancer vaccine that could be made at large scale and injected into patients—even on an out-patient basis.

  11. Direct Lymph Node Vaccination of Lentivector/Prostate-Specific Antigen is Safe and Generates Tissue-Specific Responses in Rhesus Macaques.

    Science.gov (United States)

    Au, Bryan C; Lee, Chyan-Jang; Lopez-Perez, Orlay; Foltz, Warren; Felizardo, Tania C; Wang, James C M; Huang, Ju; Fan, Xin; Madden, Melissa; Goldstein, Alyssa; Jaffray, David A; Moloo, Badru; McCart, J Andrea; Medin, Jeffrey A

    2016-02-19

    Anti-cancer immunotherapy is emerging from a nadir and demonstrating tangible benefits to patients. A variety of approaches are now employed. We are invoking antigen (Ag)-specific responses through direct injections of recombinant lentivectors (LVs) that encode sequences for tumor-associated antigens into multiple lymph nodes to optimize immune presentation/stimulation. Here we first demonstrate the effectiveness and antigen-specificity of this approach in mice challenged with prostate-specific antigen (PSA)-expressing tumor cells. Next we tested the safety and efficacy of this approach in two cohorts of rhesus macaques as a prelude to a clinical trial application. Our vector encodes the cDNA for rhesus macaque PSA and a rhesus macaque cell surface marker to facilitate vector titering and tracking. We utilized two independent injection schemas demarcated by the timing of LV administration. In both cohorts we observed marked tissue-specific responses as measured by clinical evaluations and magnetic resonance imaging of the prostate gland. Tissue-specific responses were sustained for up to six months-the end-point of the study. Control animals immunized against an irrelevant Ag were unaffected. We did not observe vector spread in test or control animals or perturbations of systemic immune parameters. This approach thus offers an "off-the-shelf" anti-cancer vaccine that could be made at large scale and injected into patients-even on an out-patient basis.

  12. Immune response to allergens in sheep sensitized to house dust mite

    Directory of Open Access Journals (Sweden)

    Velden Joanne

    2008-10-01

    Full Text Available Abstract Background House dust mite (HDM allergens are a major cause of allergic asthma. Most studies using animal models of allergic asthma have used rodents sensitized with the 'un-natural' allergen ovalbumin. It has only recently been recognized that the use of animal models based on HDM provide a more relevant insight into the allergen-induced mechanisms that underpin human allergic disease. We have previously described a sheep model of human allergic asthma that uses Dermatophagoides pteronyssinus HDM. The present study extends our understanding of the immune effects of HDM and the allergens Der p 1 and Der p 2 in the sheep model of asthma. Methods Peripheral blood sera from non-sensitized (control sheep and sheep sensitized to HDM was collected to determine immunoglobulin (Ig reactivities to HDM, Der p 1 and Der p 2 by ELISA. Bronchoalveolar lavage (BAL fluid collected following allergen challenge was also assessed for the presence of HDM-specific antibodies. To examine the cellular immune response to HDM allergens, T cell proliferation and cutaneous responses were assessed in sensitized and control sheep. Results Strong HDM- and Der p 1-specific IgE, IgG1, IgG2 and IgA serum responses were observed in sensitized sheep, while detectable levels of HDM-specific IgG1 and IgA were seen in BAL fluid of allergen-challenged lungs. In contrast, minimal antibody reactivity was observed to Der p 2. Marked T cell proliferation and late phase cutaneous responses, accompanied by the recruitment of eosinophils, indicates the induction of a cellular and delayed-type hypersensitivity (DTH type II response by HDM and Der p 1 allergen, but not Der p 2. Conclusion This work characterizes the humoral and cellular immune effects of HDM extract and its major constituent allergens in sheep sensitized to HDM. The effects of allergen in HDM-sensitized sheep were detectable both locally and systemically, and probably mediated via enzymatic and immune actions of the

  13. Involvement of CD8+ T cell-mediated immune responses in LcrV DNA vaccine induced protection against lethal Yersinia pestis challenge.

    Science.gov (United States)

    Wang, Shixia; Goguen, Jon D; Li, Fusheng; Lu, Shan

    2011-09-09

    Yersinia pestis (Y. pestis) is the causative pathogen of plague, a highly fatal disease for which an effective vaccine, especially against mucosal transmission, is still not available. Like many bacterial infections, antigen-specific antibody responses have been traditionally considered critical, if not solely responsible, for vaccine-induced protection against Y. pestis. Studies in recent years have suggested the importance of T cell immune responses against Y. pestis infection but information is still limited about the details of Y. pestis antigen-specific T cell immune responses. In current report, studies are conducted to identify the presence of CD8+ T cell epitopes in LcrV protein, the leading antigen of plague vaccine development. Furthermore, depletion of CD8+ T cells in LcrV DNA vaccinated Balb/C mice led to reduced protection against lethal intranasal challenge of Y. pestis. These findings establish that an LcrV DNA vaccine is able to elicit CD8+ T cell immune responses against specific epitopes of this key plague antigen and that a CD8+ T cell immune response is involved in LcrV DNA vaccine-elicited protection. Future studies in plague vaccine development will need to examine if the presence of detectable T cell immune responses, in particular CD8+ T-cell immune responses, will enhance the protection against Y. pestis in higher animal species or humans. Copyright © 2010 Elsevier Ltd. All rights reserved.

  14. The new numerology of immunity mediated by virus-specific CD8(+) T cells.

    Science.gov (United States)

    Doherty, P C

    1998-08-01

    Our understanding of virus-specific CD8(+) T cell responses is currently being revolutionized by peptide-based assay systems that allow flow cytometric analysis of effector and memory cytotoxic T lymphocyte populations. These techniques are, for the first time, putting the analysis of T-cell-mediated immunity on a quantitative basis.

  15. Enhancing immune responses to inactivated porcine parvovirus oil emulsion vaccine by co-inoculating porcine transfer factor in mice.

    Science.gov (United States)

    Wang, Rui-ning; Wang, Ya-bin; Geng, Jing-wei; Guo, Dong-hui; Liu, Fang; Chen, Hong-ying; Zhang, Hong-ying; Cui, Bao-an; Wei, Zhan-yong

    2012-07-27

    Inactivated porcine parvovirus (PPV) vaccines are available commercially and widely used in the breeding herds. However, inactivated PPV vaccines have deficiencies in induction of specific cellular immune response. Transfer factor (TF) is a material that obtained from the leukocytes, and is a novel immune-stimulatory reagent that as a modulator of the immune system. In this study, the immunogenicity of PPV oil emulsion vaccine and the immuno-regulatory activities of TF were investigated. The inactivated PPV oil emulsion vaccines with or without TF were inoculated into BALB/c mice by subcutaneous injection. Then humoral and cellular immune responses were evaluated by indirect enzyme-linked immunosorbent assays (ELISA), fluorescence-activated cell sorter analyses (FACS). The results showed that the PPV specific immune responses could be evoked in mice by inoculating with PPV oil emulsion vaccine alone or by co-inoculation with TF. The cellular immune response levels in the co-inoculation groups were higher than those groups receiving the PPV oil emulsion vaccine alone, with the phenomena of higher level of IFN-γ, a little IL-6 and a trace of IL-4 in serum, and a vigorous T-cell response. However, there was no significant difference in antibody titers between TF synergy inactivated vaccine and the inactivated vaccine group (P>0.05). In conclusion, these results suggest that TF possess better cellular immune-enhancing capability and would be exploited into an effective immune-adjuvant for inactivated vaccines. Copyright © 2012 Elsevier Ltd. All rights reserved.

  16. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    International Nuclear Information System (INIS)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas

    2011-01-01

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses

  17. Carbohydrate Mimetic Peptides Augment Carbohydrate-Reactive Immune Responses in the Absence of Immune Pathology

    Energy Technology Data Exchange (ETDEWEB)

    Hennings, Leah; Artaud, Cecile; Jousheghany, Fariba; Monzavi-Karbassi, Behjatolah; Pashov, Anastas; Kieber-Emmons, Thomas, E-mail: tke@uams.edu [Winthrop P. Rockefeller Cancer Institute and Department of Pathology, University of Arkansas for Medical Sciences, Little Rock, AR 72205 (United States)

    2011-11-11

    Among the most challenging of clinical targets for cancer immunotherapy are Tumor Associated Carbohydrate Antigens (TACAs). To augment immune responses to TACA we are developing carbohydrate mimetic peptides (CMPs) that are sufficiently potent to activate broad-spectrum anti-tumor reactivity. However, the activation of immune responses against terminal mono- and disaccharide constituents of TACA raises concerns regarding the balance between “tumor destruction” and “tissue damage”, as mono- and disaccharides are also expressed on normal tissue. To support the development of CMPs for clinical trial testing, we demonstrate in preclinical safety assessment studies in mice that vaccination with CMPs can enhance responses to TACAs without mediating tissue damage to normal cells expressing TACA. BALB/c mice were immunized with CMPs that mimic TACAs reactive with Griffonia simplicifolia lectin 1 (GS-I), and tissue reactivity of serum antibodies were compared with the tissue staining profile of GS-I. Tissues from CMP immunized mice were analyzed using hematoxylin and eosin stain, and Luxol-fast blue staining for myelination. Western blots of membranes from murine mammary 4T1 cells, syngeneic with BALB/c mice, were also compared using GS-I, immunized serum antibodies, and naive serum antibodies. CMP immunization enhanced glycan reactivities with no evidence of pathological autoimmunity in any immunized mice demonstrating that tissue damage is not an inevitable consequence of TACA reactive responses.

  18. Cell-mediated and humoral immune responses in pigs following primary and challenge-exposure to Lawsonia intracellularis

    DEFF Research Database (Denmark)

    Hvass, Henriette Cordes; Riber, Ulla; Jensen, Tim Kåre

    2012-01-01

    not boosted by the re-inoculation, since identical intestinal IgA responses developed in response to the inoculation in both the susceptible CC pigs and the protected RE pigs. A memory recall cell-mediated immune response developed in RE pigs which was significantly stronger compared to the primary response...... responses are likely mediators of protective immunity against L. intracellularis, with CD8+ effector cells and CD4+CD8+ double positive memory T cells as main contributors to the antigen-specific IFN-γ production....

  19. Immune-Specific Expression and Estrogenic Regulation of the Four Estrogen Receptor Isoforms in Female Rainbow Trout (Oncorhynchus mykiss

    Directory of Open Access Journals (Sweden)

    Ayako Casanova-Nakayama

    2018-03-01

    Full Text Available Genomic actions of estrogens in vertebrates are exerted via two intracellular estrogen receptor (ER subtypes, ERα and ERβ, which show cell- and tissue-specific expression profiles. Mammalian immune cells express ERs and are responsive to estrogens. More recently, evidence became available that ERs are also present in the immune organs and cells of teleost fish, suggesting that the immunomodulatory function of estrogens has been conserved throughout vertebrate evolution. For a better understanding of the sensitivity and the responsiveness of the fish immune system to estrogens, more insight is needed on the abundance of ERs in the fish immune system, the cellular ratios of the ER subtypes, and their autoregulation by estrogens. Consequently, the aims of the present study were (i to determine the absolute mRNA copy numbers of the four ER isoforms in the immune organs and cells of rainbow trout, Oncorhynchus mykiss, and to compare them to the hepatic ER numbers; (ii to analyse the ER mRNA isoform ratios in the immune system; and, (iii finally, to examine the alterations of immune ER mRNA expression levels in sexually immature trout exposed to 17β-estradiol (E2, as well as the alterations of immune ER mRNA expression levels in sexually mature trout during the reproductive cycle. All four ER isoforms were present in immune organs—head kidney, spleen-and immune cells from head kidney and blood of rainbow trout, but their mRNA levels were substantially lower than in the liver. The ER isoform ratios were tissue- and cell-specific, both within the immune system, but also between the immune system and the liver. Short-term administration of E2 to juvenile female trout altered the ER mRNA levels in the liver, but the ERs of the immune organs and cells were not responsive. Changes of ER gene transcript numbers in immune organs and cells occurred during the reproductive cycle of mature female trout, but the changes in the immune ER profiles differed

  20. Doubly Phosphorylated Peptide Vaccines to Protect Transgenic P301S Mice against Alzheimer’s Disease Like Tau Aggregation

    Directory of Open Access Journals (Sweden)

    Monique Richter

    2014-07-01

    Full Text Available Intracellular neurofibrillary tangles and extracellular senile plaques are potential targets for active and passive immunotherapies. In this study we used the transgenic mouse model P301S for active immunizations with peptide vaccines composed of a double phosphorylated tau neoepitope (pSer202/pThr205, pThr212/pSer214, pThr231/pSer235 and an immunomodulatory T cell epitope from the tetanus toxin or tuberculosis antigen Ag85B. Importantly, the designed vaccine combining Alzheimer’s disease (AD specific B cell epitopes with foreign (bacterial T cell epitopes induced fast immune responses with high IgG1 titers after prophylactic immunization that subsequently decreased over the observation period. The effectiveness of the immunization was surveyed by evaluating the animal behavior, as well as the pathology in the brain by biochemical and histochemical techniques. Immunized mice clearly lived longer with reduced paralysis than placebo-treated mice. Additionally, they performed significantly better in rotarod and beam walk tests at the age of 20 weeks, indicating that the disease development was slowed down. Forty-eight weeks old vaccinated mice passed the beam walk test significantly better than control animals, which together with the increased survival rates undoubtedly prove the treatment effect. In conclusion, the data provide strong evidence that active immune therapies can reduce toxic effects of deposits formed in AD.

  1. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  2. Specific IgE and IgG4 immune responses to tetanus and diphtheria toxoid in atopic and nonatopic children during the first two years of life

    NARCIS (Netherlands)

    Dannemann, A.; van Ree, R.; Kulig, M.; Bergmann, R. L.; Bauer, P.; Forster, J.; Guggenmoos-Holzmann, I.; Aalberse, R. C.; Wahn, U.

    1996-01-01

    BACKGROUND: In order to investigate, whether atopic and nonatopic children show differences in their specific IgE and IgG4 immune responses to tetanus (T) and diphtheria (D) antigens, we studied 538 children who had been followed from birth on and from whom records had been kept of all

  3. MicroRNA-mediated networks underlie immune response regulation in papillary thyroid carcinoma

    Science.gov (United States)

    Huang, Chen-Tsung; Oyang, Yen-Jen; Huang, Hsuan-Cheng; Juan, Hsueh-Fen

    2014-09-01

    Papillary thyroid carcinoma (PTC) is a common endocrine malignancy with low death rate but increased incidence and recurrence in recent years. MicroRNAs (miRNAs) are small non-coding RNAs with diverse regulatory capacities in eukaryotes and have been frequently implied in human cancer. Despite current progress, however, a panoramic overview concerning miRNA regulatory networks in PTC is still lacking. Here, we analyzed the expression datasets of PTC from The Cancer Genome Atlas (TCGA) Data Portal and demonstrate for the first time that immune responses are significantly enriched and under specific regulation in the direct miRNA-target network among distinctive PTC variants to different extents. Additionally, considering the unconventional properties of miRNAs, we explore the protein-coding competing endogenous RNA (ceRNA) and the modulatory networks in PTC and unexpectedly disclose concerted regulation of immune responses from these networks. Interestingly, miRNAs from these conventional and unconventional networks share general similarities and differences but tend to be disparate as regulatory activities increase, coordinately tuning the immune responses that in part account for PTC tumor biology. Together, our systematic results uncover the intensive regulation of immune responses underlain by miRNA-mediated networks in PTC, opening up new avenues in the management of thyroid cancer.

  4. Immune response induction in the central nervous system

    DEFF Research Database (Denmark)

    Owens, Trevor; Babcock, Alicia

    2002-01-01

    The primary function of the immune response is protection of the host against infection with pathogens, including viruses. Since viruses can infect any tissue of the body, including the central nervous system (CNS), it is logical that cells of the immune system should equally have access to all...... tissues. Nevertheless, the brain and spinal cord are noted for their lack of immune presence. Relative to other organ systems, the CNS appears immunologically privileged. Furthermore, when immune responses do occur in the CNS, they are frequently associated with deleterious effects such as inflammatory...

  5. Modulation of Immune Responses by Exosomes Derived from Antigen-Presenting Cells

    Directory of Open Access Journals (Sweden)

    Botros B. Shenoda

    2016-01-01

    Full Text Available Exosome-mediated signaling is important in mediating the inflammatory response. To exert their biological or pathophysiological functions in the recipient cells, exosomes deliver a diverse array of biomacromolecules including long and short coding and non-coding RNAs, proteins, and lipids. Exosomes secreted by antigen-presenting cells can confer therapeutic benefits by attenuating or stimulating the immune response. Exosomes play a crucial role in carrying and presenting functional major histocompatibility peptide complexes to modulate antigen-specific T cell responses. Exosomes from Dendritic Cells (DCs can activate T and B cells and have been explored for their immunostimulatory properties in cancer therapy. The immunosuppressive properties of exosomes derived from macrophages and DCs can reduce inflammation in animal models for several inflammatory disorders. This review focuses on the protective role of exosomes in attenuating inflammation or augmenting immune response, emphasizing studies on exosomes derived from DCs and macrophages.

  6. Mycobacterium tuberculosis Zinc Metalloprotease-1 Elicits Tuberculosis-specific Humoral Immune Response Independent of Mycobacterial Load in Pulmonary and Extra-Pulmonary Tuberculosis Patients

    Directory of Open Access Journals (Sweden)

    Mani Harika eVemula

    2016-03-01

    Full Text Available Conventionally, facultative intracellular pathogen, Mycobacterium tuberculosis (M.tb, the tuberculosis (TB causing bacilli in human is cleared by cell-mediated immunity (CMI with CD4+ T cells playing instrumental role in protective immunity, while antibody-mediated immunity (AMI is considered non-protective. This longstanding convention has been challenged with recent evidences of increased susceptibility of hosts with compromised AMI and monoclonal antibodies conferring passive protection against TB and other intracellular pathogens. Therefore, novel approaches towards vaccine development include strategies aiming at induction of humoral response along with CMI. This necessitates the identification of mycobacterial proteins with properties of immunomodulation and strong immunogenicity. In this study, we determined the immunogenic potential of M.tb Zinc metalloprotease-1 (Zmp1, a secretory protein essential for intracellular survival and pathogenesis of M.tb. We observed that Zmp1 was secreted by in vitro grown M.tb under granuloma-like stress conditions (acidic, oxidative, iron deficiency and nutrient deprivation and generated Th2 cytokine microenvironment upon exogenous treatment of Peripheral Blood Mononulear Cells (PBMCs with recombinant Zmp1 (rZmp1. This was supported by recording specific and robust humoral response in TB patients in a cohort of 295. The anti-Zmp1 titers were significantly higher in TB patients (n=121 as against healthy control (n=62, household contacts (n=89 and non-specific infection controls (n=23. A significant observation of the study is the presence of equally high titers of anti-Zmp1 antibodies in a range of patients with high bacilli load (sputum bacilli load of 300+ per mL to paucibacillary smear-negative pulmonary tuberculosis (PTB cases. This clearly indicated the potential of Zmp1 to evoke an effective humoral response independent of mycobacterial load. Such mycobacterial proteins can be explored as antigen

  7. Overexpression of GmDREB1 improves salt tolerance in transgenic wheat and leaf protein response to high salinity

    OpenAIRE

    Qiyan Jiang; Zheng Hu; Hui Zhang; Youzhi Ma

    2014-01-01

    The transcription factor dehydration-responsive element binding protein (DREB) is able to improve tolerance to abiotic stress in plants by regulating the expression of downstream genes involved in environmental stress resistance. The objectives of this study were to evaluate the salt tolerance of GmDREB1 transgenic wheat (Triticum aestivum L.) and to evaluate its physiological and protein responses to salt stress. Compared with the wild type, the transgenic lines overexpressing GmDREB1 showed...

  8. Cytomegalovirus-specific T-cells are associated with immune senescence, but not with systemic inflammation, in people living with HIV

    DEFF Research Database (Denmark)

    Ballegaard, Vibe; Brændstrup, Peter; Pedersen, Karin Kaereby

    2018-01-01

    In people living with HIV (PLWHIV), coinfection with cytomegalovirus (CMV) has been associated with inflammation, immunological ageing, and increased risk of severe non-AIDS related comorbidity. The effect of CMV-specific immune responses on systemic inflammation, immune activation and T-cell sen...

  9. The influence of innate and adaptative immune responses on the differential clinical outcomes of leprosy.

    Science.gov (United States)

    Fonseca, Adriana Barbosa de Lima; Simon, Marise do Vale; Cazzaniga, Rodrigo Anselmo; de Moura, Tatiana Rodrigues; de Almeida, Roque Pacheco; Duthie, Malcolm S; Reed, Steven G; de Jesus, Amelia Ribeiro

    2017-02-06

    Leprosy is a chronic infectious disease caused by Mycobacterium leprae. According to official reports from 121 countries across five WHO regions, there were 213 899 newly diagnosed cases in 2014. Although leprosy affects the skin and peripheral nerves, it can present across a spectrum of clinical and histopathological forms that are strongly influenced by the immune response of the infected individuals. These forms comprise the extremes of tuberculoid leprosy (TT), with a M. leprae-specific Th1, but also a Th17, response that limits M. leprae multiplication, through to lepromatous leprosy (LL), with M. leprae-specific Th2 and T regulatory responses that do not control M. leprae replication but rather allow bacterial dissemination. The interpolar borderline clinical forms present with similar, but less extreme, immune biases. Acute inflammatory episodes, known as leprosy reactions, are complications that may occur before, during or after treatment, and cause further neurological damages that can cause irreversible chronic disabilities. This review discusses the innate and adaptive immune responses, and their interactions, that are known to affect pathogenesis and influence the clinical outcome of leprosy.

  10. Autologous Stem Cell Transplantation Disrupts Adaptive Immune Responses during Rebound Simian/Human Immunodeficiency Virus Viremia.

    Science.gov (United States)

    Reeves, Daniel B; Peterson, Christopher W; Kiem, Hans-Peter; Schiffer, Joshua T

    2017-07-01

    Primary HIV-1 infection induces a virus-specific adaptive/cytolytic immune response that impacts the plasma viral load set point and the rate of progression to AIDS. Combination antiretroviral therapy (cART) suppresses plasma viremia to undetectable levels that rebound upon cART treatment interruption. Following cART withdrawal, the memory component of the virus-specific adaptive immune response may improve viral control compared to primary infection. Here, using primary infection and treatment interruption data from macaques infected with simian/human immunodeficiency virus (SHIV), we observe a lower peak viral load but an unchanged viral set point during viral rebound. The addition of an autologous stem cell transplant before cART withdrawal alters viral dynamics: we found a higher rebound set point but similar peak viral loads compared to the primary infection. Mathematical modeling of the data that accounts for fundamental immune parameters achieves excellent fit to heterogeneous viral loads. Analysis of model output suggests that the rapid memory immune response following treatment interruption does not ultimately lead to better viral containment. Transplantation decreases the durability of the adaptive immune response following cART withdrawal and viral rebound. Our model's results highlight the impact of the endogenous adaptive immune response during primary SHIV infection. Moreover, because we capture adaptive immune memory and the impact of transplantation, this model will provide insight into further studies of cure strategies inspired by the Berlin patient. IMPORTANCE HIV patients who interrupt combination antiretroviral therapy (cART) eventually experience viral rebound, the return of viral loads to pretreatment levels. However, the "Berlin patient" remained free of HIV rebound over a decade after stopping cART. His cure is attributed to leukemia treatment that included an HIV-resistant stem cell transplant. Inspired by this case, we studied the impact

  11. Immune hierarchy among HIV-1 CD8+ T cell epitopes delivered by dendritic cells depends on MHC-I binding irrespective of mode of loading and immunization in HLA-A*0201 mice

    DEFF Research Database (Denmark)

    Kloverpris, Henrik N; Karlsson, Ingrid; Thorn, Mette

    2009-01-01

    Recent human immunodeficiency virus type 1 (HIV-1) vaccination strategies aim at targeting a broad range of cytotoxic T lymphocyte (CTL) epitopes from different HIV-1 proteins by immunization with multiple CTL epitopes simultaneously. However, this may establish an immune hierarchical response......, where the immune system responds to only a small number of the epitopes administered. To evaluate the feasibility of such vaccine strategies, we used the human leukocyte antigen (HLA)-A*0201 transgenic (tg) HHD murine in vivo model and immunized with dendritic cells pulsed with seven HIV-1-derived HLA......-gamma)-producing CD8(+) T cells, mainly focused on two of seven administered epitopes. The magnitude of individual T-cell responses induced by immunization with multiple peptides correlated with their individual immunogenicity that depended on major histocompatibility class I binding and was not influenced by mode...

  12. Persistence of the immune response induced by BCG vaccination

    Directory of Open Access Journals (Sweden)

    Blitz Rose

    2008-01-01

    Full Text Available Abstract Background Although BCG vaccination is recommended in most countries of the world, little is known of the persistence of BCG-induced immune responses. As novel TB vaccines may be given to boost the immunity induced by neonatal BCG vaccination, evidence concerning the persistence of the BCG vaccine-induced response would help inform decisions about when such boosting would be most effective. Methods A randomised control study of UK adolescents was carried out to investigate persistence of BCG immune responses. Adolescents were tested for interferon-gamma (IFN-γ response to Mycobacterium tuberculosis purified protein derivative (M.tb PPD in a whole blood assay before, 3 months, 12 months (n = 148 and 3 years (n = 19 after receiving teenage BCG vaccination or 14 years after receiving infant BCG vaccination (n = 16. Results A gradual reduction in magnitude of response was evident from 3 months to 1 year and from 1 year to 3 years following teenage vaccination, but responses 3 years after vaccination were still on average 6 times higher than before vaccination among vaccinees. Some individuals (11/86; 13% failed to make a detectable antigen-specific response three months after vaccination, or lost the response after 1 (11/86; 13% or 3 (3/19; 16% years. IFN-γ response to Ag85 was measured in a subgroup of adolescents and appeared to be better maintained with no decline from 3 to 12 months. A smaller group of adolescents were tested 14 years after receiving infant BCG vaccination and 13/16 (81% made a detectable IFN-γ response to M.tb PPD 14 years after infant vaccination as compared to 6/16 (38% matched unvaccinated controls (p = 0.012; teenagers vaccinated in infancy were 19 times more likely to make an IFN-γ response of > 500 pg/ml than unvaccinated teenagers. Conclusion BCG vaccination in infancy and adolescence induces immunological memory to mycobacterial antigens that is still present and measurable for at least 14 years in the

  13. Transgenic engineering of male-specific muscular hypertrophy

    DEFF Research Database (Denmark)

    Pirottin, D.; Grobet, L.; Adamantidis, A.

    2005-01-01

    Using a two-step procedure involving insertional gene targeting and recombinase-mediated cassette exchange in ES cells, we have produced two lines of transgenic mice expressing a dominant-negative latency-associated myostatin propeptide under control of the myosin light chain 1F promoter and 1/3 ...

  14. Effects of the deletion of early region 4 (E4 open reading frame 1 (orf1, orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Directory of Open Access Journals (Sweden)

    Michael A Thomas

    Full Text Available The global health burden engendered by human immunodeficiency virus (HIV-induced acquired immunodeficiency syndrome (AIDS is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1 through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and

  15. Effects of the deletion of early region 4 (E4) open reading frame 1 (orf1), orf1-2, orf1-3 and orf1-4 on virus-host cell interaction, transgene expression, and immunogenicity of replicating adenovirus HIV vaccine vectors.

    Science.gov (United States)

    Thomas, Michael A; Song, Rui; Demberg, Thorsten; Vargas-Inchaustegui, Diego A; Venzon, David; Robert-Guroff, Marjorie

    2013-01-01

    The global health burden engendered by human immunodeficiency virus (HIV)-induced acquired immunodeficiency syndrome (AIDS) is a sobering reminder of the pressing need for a preventative vaccine. In non-human primate models replicating adenovirus (Ad)-HIV/SIV recombinant vaccine vectors have been shown to stimulate potent immune responses culminating in protection against challenge exposures. Nonetheless, an increase in the transgene carrying capacity of these Ad vectors, currently limited to approximately 3000 base pairs, would greatly enhance their utility. Using a replicating, E3-deleted Ad type 5 host range mutant (Ad5 hr) encoding full-length single-chain HIVBaLgp120 linked to the D1 and D2 domains of rhesus macaque CD4 (rhFLSC) we systematically deleted the genes encoding early region 4 open reading frame 1 (E4orf1) through E4orf4. All the Ad-rhFLSC vectors produced similar levels of viral progeny. Cell cycle analysis of infected human and monkey cells revealed no differences in virus-host interaction. The parental and E4-deleted viruses expressed comparable levels of the transgene with kinetics similar to Ad late proteins. Similar levels of cellular immune responses and transgene-specific antibodies were elicited in vaccinated mice. However, differences in recognition of Ad proteins and induced antibody subtypes were observed, suggesting that the E4 gene products might modulate antibody responses by as yet unknown mechanisms. In short, we have improved the transgene carrying capacity by one thousand base pairs while preserving the replicability, levels of transgene expression, and immunogenicity critical to these vaccine vectors. This additional space allows for flexibility in vaccine design that could not be obtained with the current vector and as such should facilitate the goal of improving vaccine efficacy. To the best of our knowledge, this is the first report describing the effects of these E4 deletions on transgene expression and immunogenicity in a

  16. Interplay between behavioural thermoregulation and immune response in mealworms.

    Science.gov (United States)

    Catalán, Tamara P; Niemeyer, Hermann M; Kalergis, Alexis M; Bozinovic, Francisco

    2012-11-01

    Since the preferential body temperature should positively correlate with physiological performance, behavioural fever should enhance an organism's immune response under an immune challenge. Here we have studied the preferential body temperature (T(p)) and its consequences on immune response performance after an immune challenge in larvae of Tenebrio molitor. We evaluated T(p) and immune responses of larvae following a challenge with various concentrations of lipopolysaccharide (LPS), and we studied the correlation between T(p) and two immune traits, namely antibacterial and phenoloxidase (PO) activities. Larvae that were immune challenged with higher LPS concentrations (C(50) and C(100)) preferred in average, warmer temperatures than did larvae challenged with lower concentrations (C(0) and C(25)). T(p) of C(25)-C(100) (challenged)-mealworms was 2.3°C higher than of C(0) (control) larvae. At lower LPS concentration immune challenge (C(0) and C(25)) antibacterial activity correlated positively with T(p), but at C(50) and C(100) correlation was lose. PO activity was higher at higher LPS concentration, but its magnitude of response did not correlate with T(p) Our data suggest that behavioural fever may have a positive effect on host performance by enhancing antibacterial response under a low pathogen load situation. Copyright © 2012 Elsevier Ltd. All rights reserved.

  17. Adrenergic Signaling: A Targetable Checkpoint Limiting Development of the Antitumor Immune Response

    Science.gov (United States)

    Qiao, Guanxi; Chen, Minhui; Bucsek, Mark J.; Repasky, Elizabeth A.; Hylander, Bonnie L.

    2018-01-01

    An immune response must be tightly controlled so that it will be commensurate with the level of response needed to protect the organism without damaging normal tissue. The roles of cytokines and chemokines in orchestrating these processes are well known, but although stress has long been thought to also affect immune responses, the underlying mechanisms were not as well understood. Recently, the role of nerves and, specifically, the sympathetic nervous system, in regulating immune responses is being revealed. Generally, an acute stress response is beneficial but chronic stress is detrimental because it suppresses the activities of effector immune cells while increasing the activities of immunosuppressive cells. In this review, we first discuss the underlying biology of adrenergic signaling in cells of both the innate and adaptive immune system. We then focus on the effects of chronic adrenergic stress in promoting tumor growth, giving examples of effects on tumor cells and immune cells, explaining the methods commonly used to induce stress in preclinical mouse models. We highlight how this relates to our observations that mandated housing conditions impose baseline chronic stress on mouse models, which is sufficient to cause chronic immunosuppression. This problem is not commonly recognized, but it has been shown to impact conclusions of several studies of mouse physiology and mouse models of disease. Moreover, the fact that preclinical mouse models are chronically immunosuppressed has critical ramifications for analysis of any experiments with an immune component. Our group has found that reducing adrenergic stress by housing mice at thermoneutrality or treating mice housed at cooler temperatures with β-blockers reverses immunosuppression and significantly improves responses to checkpoint inhibitor immunotherapy. These observations are clinically relevant because there are numerous retrospective epidemiological studies concluding that cancer patients who were

  18. Induction of antigen-specific immune responses in mice by recombinant baculovirus expressing premembrane and envelope proteins of West Nile virus

    Directory of Open Access Journals (Sweden)

    Zhu Bibo

    2012-07-01

    Full Text Available Abstract Background West Nile Virus (WNV is an emerging arthropod-born flavivirus with increasing distribution worldwide that is responsible for a large proportion of viral encephalitis in humans and horses. Given that there are no effective antiviral drugs available for treatment of the disease, efforts have been directed to develop vaccines to prevent WNV infection. Recently baculovirus has emerged as a novel and attractive gene delivery vehicle for mammalian cells. Results In the present study, recombinant baculoviruses expressing WNV premembrane (prM and envelope (E proteins under the cytomegalovirus (CMV promoter with or without vesicular stomatitis virus glycoprotein (VSV/G were constructed. The recombinant baculoviruses designated Bac-G-prM/E and Bac-prM/E, efficiently express E protein in mammalian cells. Intramuscular injection of the two recombinant baculoviruses (at doses of 108 or 109 PFU/mouse induced the production of WNV-specific antibodies, neutralizing antibodies as well as gamma interferon (IFN-γ in a dose-dependent pattern. Interestingly, the recombinant baculovirus Bac-G-prM/E was found to be a more efficient immunogen than Bac-prM/E to elicit a robust immune response upon intramuscular injection. In addition, inoculation of baculovirus resulted in the secretion of inflammatory cytokines, such as TNF-α, IL-2 and IL-6. Conclusions These recombinant baculoviruses are capable of eliciting robust humoral and cellular immune responses in mice, and may be considered as novel vaccine candidates for West Nile Virus.

  19. Babassu aqueous extract (BAE as an adjuvant for T helper (Th1-dependent immune responses in mice of a Th2 immune response-prone strain

    Directory of Open Access Journals (Sweden)

    Nascimento Flavia RF

    2011-01-01

    Full Text Available Abstract Background The aqueous extract of a Brazilian palm-tree fruit - the babassu - (BAE exerts a clear immunostimulative activity in vivo. In the present work, the possibility that BAE can promote Th1 immune responses in mice of a Th2 immune response-prone strain - the BALB/c was investigated. BAE itself, and preparations consisting of Leishmania amazonensis promastigote extract (LE, adsorbed or not to Al(OH3, and in the presence or not of BAE, were used as immunogens. LE and Al(OH3 have been shown to preferentially elicit Th2 immune responses. Results The addition of BAE to LE-containing immunogenic preparations, adsorbed or not to Al(OH3, clearly promoted the in vitro production of interferon γ (IFN-γ, a major Th1-dependent cytokine, and not of interleukin (IL-4 (a Th2-dependent cytokine, by LE-stimulated splenocytes of immunized BALB/c mice. It also promoted the in vivo formation of IgG2a anti-LE antibodies. However, immunization with LE by itself led to an increased production of IL-4 by LE-stimulated splenocytes, and this production, albeit not enhanced, was not reduced by the addition of BAE to the immunogen. On the other hand, the IL-4 production by LE-stimulated splenocytes was significantly lower in mice immunized with a preparation containing Al(OH3-adsorbed LE and BAE than in mice immunized with the control preparation of Al(OH3-adsorbed LE without BAE. Moreover, an increased production of IFN-γ, and not of IL-4, was observed in the culture supernatants of splenocytes, from BAE-immunized mice, which were in vitro stimulated with BAE or which received no specific in vitro stimulus. No differences in IL-10 (an immunoregulatory cytokine levels in the supernatants of splenocytes from mice that were injected with BAE, in relation to splenocytes from control mice, were observed. The spontaneous ex vivo production of NO by splenocytes of mice that had been injected with BAE was significantly higher than the production of NO by

  20. The role of metalloproteinase ADAM17 in regulating ICOS ligand-mediated humoral immune responses

    DEFF Research Database (Denmark)

    Marczynska, Joanna; Ozga, Aleksandra; Wlodarczyk, Agnieszka

    2014-01-01

    results in spleen and lymph node enlargement, as well as increased levels of Ag-specific class-switched Ig production following immunization with OVA together with anti-CD40 mAbs and polyinosinic-polycytidylic acid. Moreover, we demonstrate that the costimulatory ligand ICOS ligand (ICOSL) is selectively...... downregulated on the surface of B cells in an ADAM17-specific manner, although it is not proteolitically processed by recombinant ADAM17 in vitro. Finally, we show that higher cell surface levels of ICOSL in ADAM17(ex/ex) mice may contribute to the development of excessive Ab responses. Therefore, our data...... suggest a functional link between ADAM17 and ICOSL in controlling adaptive immune responses....

  1. Immune response and anamnestic immune response in children after a 3-dose primary hepatitis b vaccination

    International Nuclear Information System (INIS)

    Afzal, M.F.; Sultan, M.A.; Saleemi, A.I.

    2017-01-01

    Diseases caused by Hepatitis B virus (HBV) have a worldwide distribution. Pakistan adopted the recommendations of World Health Organization (WHO) for routine universal infant vaccination against hepatitis B in 2002, currently being administered at 6, 10, and 14 weeks of age in a combination vaccine. This study was conducted to determine the immune response and anamnestic immune response in children, 9 months-10 years of age, after a 3-dose primary Hepatitis B vaccination. Methods: This cross sectional study was conducted in the Department of Paediatrics, King Edward Medical University/Mayo Hospital, Lahore, Pakistan, from January to June, 2014. A total of 200 children of either sex between the ages of 9 months to 10 years, docu mented to have received 3 doses of hepatitis B vaccines according to Expanded Program of Immunization (6,10,14 weeks) schedule in infancy, were recruited by consecutive sampling. The level of serum anti-HBsAb by ELIZA was measured. Children with anti-HBs titers =10 mIU/mL were considered to be immune. Those with anti-HBsAb levels <10 mIU/mL were offered a booster dose of infant recombinant hepatitis B vaccine. The second serum sample was obtained 21-28 days following the administration of the booster dose and the anamnestic immune response was measured. Data was analysed using SPSS 17 to determine the relation between time interval since last vaccination and antibody titer. Chi square test was applied. Results: Of the 200 children, protective antibody response was found in 58 percent. Median serological response was 18.60 (range 2.82-65.15). Antibody levels were found to have a statistically significant (p-value 0.019) negative correlation with the time since last administration of vaccine. A booster dose of Hepatitis B vaccine was administered to all non-responders, with each registering a statistically significant (p-value 0.00) anamnestic response. Conclusion: The vaccination schedule with short dosage interval was unable to provide

  2. Humoral immune responses of pregnant Guinea pigs Immunized with live attenuated Rhodococcus equi

    Directory of Open Access Journals (Sweden)

    Mawlood Abass Ali Al- Graibawi

    2018-02-01

    Full Text Available The potential to increase passive transfer of specific Rhodococcus equi (R.equi humoral immunity to newborn by preparturient vaccination of their dams was investigated in Pregnant Guinea pigs as a pilot study. Attenuated autogenous vaccine was prepared from a Congo red negative (CR- R.equi local isolate mixed with adjuvant (potassium alum sulphate, tested for sterility, safety and potency prior to vaccination .Two groups of pregnant G. pigs were used, the first group was vaccinated twice subcutaneously (S.C with the prepared vaccine at five and three weeks prior parturition, the second group was inoculated with adjuvant plus phosphate buffer saline (PBS twice s.c and kept as control. Offspring from the vaccinated dams had revealed high titers of specific R. equi antibody as detected by tube agglutination (TA and passive haemagglutination (PH test and showed protection against challenge dose. The results revealed that vaccination of pregnant G. pigs with the prepared attenuated vaccine was safe and efficient method to protect their offspring against experimental challenge with virulent R.equi. Vaccination was associated with increased humoral immune response in vaccinated group.

  3. Increased innate and adaptive immune responses in induced sputum of young smokers

    Directory of Open Access Journals (Sweden)

    Agnese Kislina

    2015-01-01

    Conclusions: This study demonstrates that young smokers have early inflammatory changes in their airways that not only initiate nonspecific mechanisms recruiting neutrophils, but also involve specific immune mechanisms with recruitment of T regulatory lymphocytes. The lymphocyte response is probably adaptive.

  4. Balancing immune protection and immune pathology by CD8+ T cell responses to influenza infection

    Directory of Open Access Journals (Sweden)

    Susu eDuan

    2016-02-01

    Full Text Available Influenza A virus (IAV is a significant human pathogen causing annual epidemics and periodic pandemics. CD8+ cytotoxic T lymphocyte (CTL-mediated immunity contributes to clearance of virus-infected cells; CTL immunity targeting the conserved internal proteins of IAVs is a key protection mechanism when neutralizing antibodies are absent during heterosubtypic IAV infection. However, CTL infiltration into the airways, their cytotoxicity, and the effects of produced pro-inflammatory cytokines can cause severe lung tissue injury, thereby contributing to immunopathology. Studies have discovered complicated and exquisite stimulatory and inhibitory mechanisms that regulate CTL magnitude and effector activities during IAV infection. Here, we review the state of knowledge on the roles of IAV-specific CTLs in immune protection and immunopathology during IAV infection in animal models, highlighting the key findings of various requirements and constraints regulating the balance of immune protection and pathology involved in CTL immunity. We also discuss the evidence of cross-reactive CTL immunity as a positive correlate of cross-subtype protection during secondary IAV infection in both animal and human studies. We argue that the effects of CTL immunity on protection and immunopathology depend on multiple layers of host and viral factors, including complex host mechanisms to regulate CTL magnitude and effector activity, the pathogenic nature of the IAV, the innate response milieu, and the host historical immune context of influenza infection. Future efforts are needed to further understand these key host and viral factors, especially to differentiate those that constrain optimally effective CTL anti-viral immunity from those necessary to restrain CTL-mediated nonspecific immunopathology in the various contexts of IAV infection, in order to develop better vaccination and therapeutic strategies for modifying protective CTL immunity.

  5. A cascade reaction network mimicking the basic functional steps of acquired immune response

    Science.gov (United States)

    Han, Da; Wu, Cuichen; You, Mingxu; Zhang, Tao; Wan, Shuo; Chen, Tao; Qiu, Liping; Zheng, Zheng; Liang, Hao; Tan, Weihong

    2015-01-01

    Biological systems use complex ‘information processing cores’ composed of molecular networks to coordinate their external environment and internal states. An example of this is the acquired, or adaptive, immune system (AIS), which is composed of both humoral and cell-mediated components. Here we report the step-by-step construction of a prototype mimic of the AIS which we call Adaptive Immune Response Simulator (AIRS). DNA and enzymes are used as simple artificial analogues of the components of the AIS to create a system which responds to specific molecular stimuli in vitro. We show that this network of reactions can function in a manner which is superficially similar to the most basic responses of the vertebrate acquired immune system, including reaction sequences that mimic both humoral and cellular responses. As such, AIRS provides guidelines for the design and engineering of artificial reaction networks and molecular devices. PMID:26391084

  6. Oral immunization with F4 fimbriae and CpG formulated with carboxymethyl starch enhances F4-specific mucosal immune response and modulates Th1 and Th2 cytokines in weaned pigs.

    Science.gov (United States)

    Delisle, Benjamin; Calinescu, Carmen; Mateescu, Mircea Alexandru; Fairbrother, John Morris; Nadeau, Éric

    2012-01-01

    F4 fimbriae are a potential candidate for an oral subunit vaccine for prevention of post-weaning diarrhea in swine due to infection with F4-positive enterotoxigenic Escherichia coli. However, large quantities of F4 fimbriae are required to induce a specific antibody response. The aim of the present study was to evaluate the effect of supplementation of F4 fimbriae with Cytosine-phosphate-Guanosine-oligodeoxynucleotide (CpG-A D19) or with complete cholera toxin (CT) as adjuvants on the F4-specific antibody response and cytokine production in weaned pigs following oral administration of F4 fimbrial antigen formulated with Carboxymethyl Starch (CMS). Oral dosage forms of F4 fimbriae alone or supplemented with CpG-A D19 or with CT were formulated with CMS as monolithic tablets, obtained by direct compression, and administered to weaned pigs. Blood and faecal samples were collected to determine the systemic and mucosal immune status of animals at various times until necropsy. During necropsy, contents of the jejunum and ileum were collected for determination of mucosal F4 specific antibodies. Segments of jejunum and ileum were also used to measure mRNA cytokine production. The presence of CpG in the formulation of the fimbriae significantly increased F4-specific immunoglobulin (Ig) IgM and IgG levels in intestinal secretions, and enhanced Th1 (Interferon-gamma / IFN-γ, Tumour Necrosis Factor-alpha / TNF-α, Interleukin-12p40 / IL-12p40, IL-1β) and Th2 (IL-4, IL-6) cytokine production in intestinal tissues. Supplementation with CT did not result in induction of F4-specific antibodies in secretions, although a significant Th1 response (IFN-α, IFN-γ, IL-18) was detected in tissues. Neither F4-specific systemic antibodies, nor intestinally secreted IgA were detected throughout the immunization trial for all groups. CpG-A D19 appeared to be a promising adjuvant for an oral F4 subunit vaccine formulated with CMS excipient as monolithic tablets. This matrix afforded gastro

  7. Cancer patients treated with sunitinib or sorafenib have sufficient antibody and cellular immune responses to warrant influenza vaccination

    NARCIS (Netherlands)

    Mulder, Sasja F.; Jacobs, Joannes F. M.; Olde Nordkamp, Michel A. M.; Galama, Joep M. D.; Desar, Ingrid M. E.; Torensma, Ruurd; Teerenstra, Steven; Mulders, Peter F. A.; Vissers, Kris C. P.; Punt, Cornelis J. A.; de Vries, I. Jolanda M.; van Herpen, Carla M. L.

    2011-01-01

    The tyrosine kinase inhibitors sorafenib and sunitinib have efficacy in several types of cancer. Recent studies indicate that these agents affect the immune system. The way it affects the immune response to influenza vaccination is unknown. The aim of this study was to elucidate the specific immune

  8. Ebola Virus Glycoprotein Induces an Innate Immune Response In vivo via TLR4

    Directory of Open Access Journals (Sweden)

    Chih-Yun Lai

    2017-08-01

    Full Text Available Ebola virus (EBOV, a member of the Filoviridae family, causes the most severe form of viral hemorrhagic fever. Although no FDA licensed vaccine or treatment against Ebola virus disease (EVD is currently available, Ebola virus glycoprotein (GP is the major antigen used in all candidate Ebola vaccines. Recent reports of protection as quickly as within 6 days of administration of the rVSV-based vaccine expressing EBOV GP before robust humoral responses were generated suggests that the innate immune responses elicited early after vaccination may contribute to the protection. However, the innate immune responses induced by EBOV GP in the absence of viral vectors or adjuvants have not been fully characterized in vivo. Our recent studies demonstrated that immunization with highly purified recombinant GP in the absence of adjuvants induced a robust IgG response and partial protection against EBOV infection suggesting that GP alone can induce protective immunity. In this study we investigated the early immune response to purified EBOV GP alone in vitro and in vivo. We show that GP was efficiently internalized by antigen presenting cells and subsequently induced production of key inflammatory cytokines. In vivo, immunization of mice with EBOV GP triggered the production of key Th1 and Th2 innate immune cytokines and chemokines, which directly governed the recruitment of CD11b+ macrophages and CD11c+ dendritic cells to the draining lymph nodes (DLNs. Pre-treatment of mice with a TLR4 antagonist inhibited GP-induced cytokine production and recruitment of immune cells to the DLN. EBOV GP also upregulated the expression of costimulatory molecules in bone marrow derived macrophages suggesting its ability to enhance APC stimulatory capacity, which is critical for the induction of effective antigen-specific adaptive immunity. Collectively, these results provide the first in vivo evidence that early innate immune responses to EBOV GP are mediated via the TLR4

  9. A novel transgenic mouse model of lysosomal storage disorder

    OpenAIRE

    Ortiz-Miranda, Sonia; Ji, Rui; Jurczyk, Agata; Aryee, Ken-Edwin; Mo, Shunyan; Fletcher, Terry; Shaffer, Scott A.; Greiner, Dale L.; Bortell, Rita; Gregg, Ronald G.; Cheng, Alan; Hennings, Leah J.; Rittenhouse, Ann R.

    2016-01-01

    We provide an explanation for striking pathology found in a subset of genetically engineered mice homozygous for a rat CaVβ2a transgene (Tg+/+). Multiple transgene (Tg) copies inserted into chromosome 19; at this same site a large deletion occurred, ablating cholesterol 25-hydroxylase and partially deleting lysosomal acid lipase and CD95. Their loss of function can account for lipid build up and immune system hypertrophy, which defines this phenotype and serendipitously provides a novel model...

  10. Mechanisms of humoral immune response against Pseudomonas aeruginosa biofilm infection in cystic fibrosis

    DEFF Research Database (Denmark)

    Mauch, Renan Marrichi; Jensen, Peter Østrup; Moser, Claus

    2018-01-01

    P. aeruginosa chronic lung infection is the major cause of morbidity and mortality in patients with cystic fibrosis (CF), and is characterized by a biofilm mode of growth, increased levels of specific IgG antibodies and immune complex formation. However, despite being designed to combat...... this infection, such elevated humoral response is not associated with clinical improvement, pointing to a lack of anti-pseudomonas effectiveness. The mode of action of specific antibodies, as well as their structural features, and even the background involving B-cell production, stimulation and differentiation...... into antibody-producing cells in the CF airways are poorly understood. Thus, the aim of this review is to discuss studies that have addressed the intrinsic features of the humoral immune response and provide new insights regarding its insufficiency in the CF context....

  11. Generation of transgenic corn-derived Actinobacillus pleuropneumoniae ApxIIA fused with the cholera toxin B subunit as a vaccine candidate

    Science.gov (United States)

    Shin, Min-Kyoung; Jung, Myung Hwan; Lee, Won-Jung; Choi, Pil Son; Jang, Yong-Suk

    2011-01-01

    Corn, one of the most important forage crops worldwide, has proven to be a useful expression vehicle due to the availability of established transformation procedures for this well-studied plant. The exotoxin Apx, a major virulence factor, is recognized as a common antigen of Actinobacillus (A.) pleuropneumoniae, the causative agent of porcine pleuropneumonia. In this study, a cholera toxin B (CTB)-ApxIIA#5 fusion protein and full-size ApxIIA expressed in corn seed, as a subunit vaccine candidate, were observed to induce Apx-specific immune responses in mice. These results suggest that transgenic corn-derived ApxIIA and CTB-ApxIIA#5 proteins are potential vaccine candidates against A. pleuropneumoniae infection. PMID:22122907

  12. Inhibition of viral replication reduces regulatory T cells and enhances the antiviral immune response in chronic hepatitis B

    International Nuclear Information System (INIS)

    Stoop, Jeroen N.; Molen, Renate G. van der; Kuipers, Ernst J.; Kusters, Johannes G.; Janssen, Harry L.A.

    2007-01-01

    Regulatory T cells (Treg) play a key role in the impaired immune response that is typical for a chronic Hepatitis B virus (HBV) infection. To gain more insight in the mechanism that is responsible for this impaired immune response, the effect of viral load reduction resulting from treatment with the nucleotide analogue adefovir dipivoxil on the percentages of Treg and HBV-specific T-cell responses was analyzed. Peripheral blood mononuclear cells (PBMC) of 12 patients were collected at baseline and during treatment. In parallel to the decline in viral load, we found a decline in circulating Treg, combined with an increase in HBV core antigen-specific IFN-γ production and proliferation. The production of IL10 did not decrease during therapy. In conclusion, adefovir induced viral load reduction results in a decline of circulating Treg together with a partial recovery of the immune response

  13. Innate immune response development in nestling tree swallows

    Science.gov (United States)

    Stambaugh, T.; Houdek, B.J.; Lombardo, M.P.; Thorpe, P.A.; Caldwell, Hahn D.

    2011-01-01

    We tracked the development of innate immunity in nestling Tree Swallows (Tachycineta bicolor) and compared it to that of adults using blood drawn from nestlings during days 6, 12, and 18 of the ???20-day nestling period and from adults. Innate immunity was characterized using an in vitro assay of the ability of whole blood to kill Escherichia coli. The ability of whole blood to kill E. coli increased as nestlings matured. Neither this component of innate immunity nor right wing chord length on day18 were as developed as in adults indicating that development of the innate immune system and growth both continued after fledging. Narrow sense heritability analyses suggest that females with strong immune responses produced nestlings with strong immune responses. These data suggest nestling Tree Swallows allocated sufficient energy to support rapid growth to enable fledging by day 18, but that further development of innate immunity occurred post-fledging. ?? 2011 by the Wilson Ornithological Society.

  14. Expression of a maize Myb transcription factor driven by a putative silk-specific promoter significantly enhances resistance to Helicoverpa zea in transgenic maize.

    Science.gov (United States)

    Johnson, Eric T; Berhow, Mark A; Dowd, Patrick F

    2007-04-18

    Hi II maize (Zea mays) plants were engineered to express maize p1 cDNA, a Myb transcription factor, controlled by a putative silk specific promoter, for secondary metabolite production and corn earworm resistance. Transgene expression did not enhance silk color, but about half of the transformed plant silks displayed browning when cut, which indicated the presence of p1-produced secondary metabolites. Levels of maysin, a secondary metabolite with insect toxicity, were highest in newly emerged browning silks. The insect resistance of transgenic silks was also highest at emergence, regardless of maysin levels, which suggests that other unidentified p1-induced molecules likely contributed to larval mortality. Mean survivor weights of corn earworm larvae fed mature browning transgenic silks were significantly lower than weights of those fed mature nonbrowning transgenic silks. Some transgenic pericarps browned with drying and contained similar molecules found in pericarps expressing a dominant p1 allele, suggesting that the promoter may not be silk-specific.

  15. THE IMPACT OF PERSISTENT HERPESVIRUS INFECTION ON IMMUNITY AND VACCINATION RESPONSE

    Directory of Open Access Journals (Sweden)

    Volyanskiy AYu

    2016-09-01

    outcome of vaccination. The EBV virus remains in memory B cells throughout life. In healthy subjects the EBV remains latent in the latency phase 0 and EBV replication proceeds without production of infectious virions. But the virus can be reactivated in latency phases 1, 2 and 3. The virus reactivation can affect immunity and results in diseases. Chronic fatigue syndrome (CFS is characterized by fatigue, exhaustion and flu-like symptoms. EBV latent reactivation in CFS patients is supported by certain data. In a subset of patients, CFS begins with infectious mononucleosis and enhanced EBV-specific antibody titers have been reported. Also, a profound deficiency in EBV-specific B and T cell memory response was observed in a majority of CFS patients. These data confirmed the EBV virus involvement in the CFS development. Cytokine dysregulation, decreased natural killer cell functioning, the presence of autoantibodies, and a reduced response of T cells to mitogens have been reported in CFS. But if immunity is disturbed in CFS patients, they might have an altered response to vaccination. Herpes viral reactivation has been documented in sepsis. Demonstration of the widespread reactivation of latent herpesviruses in sepsis provides strong evidence that sepsis results in functional immunosuppression. Reactivation of latent viruses may be associated not only with sepsis but with aging as well. Moreover, according to our data herpesvirus reactivation is common in recurrently infected children. These observations highlight the ability of herpesviruses to profoundly impact the host immune function. But the recent publications have shown that persistent herpesvirus infection can be beneficial for the host. The data obtained from the multiple mouse models demonstrate the potential for herpesvirus infection to enhance resistance against a secondary infection. It has been documented that during latent murine cytomegalovirus or murine gammaherpesvirus infection 68 mice are protected against

  16. Overcoming HBV immune tolerance to eliminate HBsAg-positive hepatocytes via pre-administration of GM-CSF as a novel adjuvant for a hepatitis B vaccine in HBV transgenic mice.

    Science.gov (United States)

    Wang, Xianzheng; Dong, Aihua; Xiao, Jingjing; Zhou, Xingjun; Mi, Haili; Xu, Hanqian; Zhang, Jiming; Wang, Bin

    2016-11-01

    Granulocyte-macrophage colony-stimulating factor (GM-CSF) is known to be a potential vaccine adjuvant despite contradictory results from animal and human studies. The discrepancies may be due to the different doses and regimens of GM-CSF that were used, given that either mature or immature dendritic cells (DCs) could be induced under different conditions. To test the hypothesis that GM-CSF can be used as a novel adjuvant for a hepatitis B virus (HBV) therapeutic vaccine, we administered GM-CSF once per day for three days prior to vaccination with recombinant HBV vaccine (rHBVvac) in mice. We observed greater DC maturation in these pre-treated animals at day 3 as compared to day 1 or day 2 of daily GM-CSF administration. This strategy was further investigated for its ability to break the immune tolerance established in hepatitis B surface antigen-transgenic (HBsAg-Tg) animals. We found that the levels of induced anti-HBsAg antibodies were significantly higher in animals following three days of GM-CSF pre-treatment before rHBV vaccination after the third immunization. In addition to the increase in anti-HBsAg antibody levels, cell-mediated anti-HBsAg responses, including delayed-type hypersensitivity, T-cell proliferation, interferon-γ production, and cytotoxic T lymphocytes, were dramatically enhanced in the three-day GM-CSF pre-treated group. After adoptive transfers of CD8 + T cells from immunized animals, antigen-specific CD8 + T cells were observed in the livers of recipient HBsAg-Tg animals. Moreover, the three-day pre-treatments with GM-CSF prior to rHBVvac vaccination could significantly eliminate HBsAg-positive hepatocytes, suggesting beneficial therapeutic effects. Therefore, this protocol utilizing GM-CSF as an adjuvant in combination with the rHBVvac vaccine has the potential to become a novel immunotherapy for chronic hepatitis B patients.

  17. Long-chain inulin for stimulating an immune response

    NARCIS (Netherlands)

    de Vos, Paulus; Vogt, Leonie

    2017-01-01

    The invention relates to a long chain inulin for influencing the immune response against a pathogen. The invention also relates to a combination comprising a long chain inulin and a vaccine for influencing the immune response against a pathogen, wherein the long chain inulin is orally administrated.

  18. Development of marker-free transgenic Jatropha curcas producing curcin-deficient seeds through endosperm-specific RNAi-mediated gene silencing.

    Science.gov (United States)

    Gu, Keyu; Tian, Dongsheng; Mao, Huizhu; Wu, Lifang; Yin, Zhongchao

    2015-10-08

    Jatropha curcas L. is a potential biofuel plant and its seed oil is suitable for biodiesel production. Despite this promising application, jatropha seeds contain two major toxic components, namely phorbol esters and curcins. These compounds would reduce commercial value of seed cake and raise safety and environment concerns on jatropha plantation and processing. Curcins are Type I ribosome inactivating proteins. Several curcin genes have been identified in the jatropha genome. Among which, the Curcin 1 (C1) gene is identified to be specifically expressed in endosperm, whereas the Curcin 2A (C2A) is mainly expressed in young leaves. A marker-free RNAi construct carrying a β-estradiol-regulated Cre/loxP system and a C1 promoter-driven RNAi cassette for C1 gene was made and used to generate marker-free transgenic RNAi plants to specifically silence the C1 gene in the endosperm of J. curcas. Plants of transgenic line L1, derived from T0-1, carry two copies of marker-free RNAi cassette, whereas plants of L35, derived from T0-35, harbored one copy of marker-free RNAi cassette and three copies of closely linked and yet truncated Hpt genes. The C1 protein content in endosperm of L1 and L35 seeds was greatly reduced or undetectable, while the C2A proteins in young leaves of T0-1 and T0-35 plants were unaffected. In addition, the C1 mRNA transcripts were undetectable in the endosperm of T3 seeds of L1 and L35. The results demonstrated that the expression of the C1 gene was specifically down-regulated or silenced by the double-stranded RNA-mediated RNA interference generated from the RNAi cassette. The C1 promoter-driven RNAi cassette for the C1 gene in transgenic plants was functional and heritable. Both C1 transcripts and C1 proteins were greatly down-regulated or silenced in the endosperm of transgenic J. curcas. The marker-free transgenic plants and curcin-deficient seeds developed in this study provided a solution for the toxicity of curcins in jatropha seeds and

  19. In Vivo Monitoring of Pancreatic β-Cells in a Transgenic Mouse Model

    Directory of Open Access Journals (Sweden)

    Steven J. Smith

    2006-04-01

    Full Text Available We generated a transgenic mouse model (RIP-luc for the in vivo monitoring of pancreatic islet mass and function in response to metabolic disease. Using the rat insulin promoter fused to firefly luciferase, and noninvasive technology to detect luciferase activity, we tracked changes in reporter signal during metabolic disease states and correlated the changes in luciferase signal with metabolic status of the mouse. Transgene expression was found to be specific to the pancreatic islets in this transgenic model. Basal transgene expression was tracked in male and female mice fed either a chow or a high-fat diet and in response to treatment with streptozotocin. Pancreatic bioluminescent signal increased in mice fed a high-fat diet compared with chow-fed animals. In a model of chemically induced diabetes, the bioluminescent signal decreased in accordance with the onset of diabetes and reduction of islet β-cell number. Preliminary studies using islets transplanted from this transgenic model suggest that in vivo image analysis can also be used to monitor transplanted islet viability and survival in the host. This transgenic model is a useful tool for in vivo studies of pancreatic β-cells and as a donor for islet transplantation studies.

  20. Immune Responses Involved in Mycobacterium Tuberculosis Infection

    Directory of Open Access Journals (Sweden)

    Roghayeh Teimourpour

    2016-09-01

    Full Text Available Background and Objectives: Mycobacterium tuberculosis is the causative agent of tuberculosis (TB. Approximately one-third of the world's population is infected with M. tuberculosis. Despite the availability of drug and vaccine, it remains one of the leading causes of death in humans especially in developing countries. Epidemiological studies have indicated that only 10-30% of people exposed to tubercle bacillus are infected with M. tuberculosis, and at least 90% of the infected people finally do not acquire TB. The studies have indicated that the host efficient immune system has essential roles in the control of TB infection such that the highest rate of mortality and morbidity is seen in immunocompromised patients such as people infected with HIV. M. tuberculosis is an obligatory intracellular bacterium. It enters the body mainly through the respiratory tract and alveolar macrophages combat this pathogen most commonly. In addition to alveolar macrophages, various T-cell subpopulations need to be activated to overcome this bacterium's resistance to the host defense systems. CD4+ T cells, through production of several cytokines such as IFN-γ and TNF-α, and CD8+ T cells, through cytotoxic activities and induction of apoptosis in infected cells, play critical roles in inducing appropriate immune responses against M. tuberculosis. Although cell-mediated immunity is the cornerstone of host responses against TB and the recent studies have provided evidence for the importance of humoral and innate immune system in the control of TB, a profound understanding of the immune responses would provide a basis for development of new generations of vaccines and drugs. The present study addresses immune responses involved in M. tuberculosis infection.

  1. Using an agent-based model to analyze the dynamic communication network of the immune response

    Directory of Open Access Journals (Sweden)

    Doolittle John

    2011-01-01

    Full Text Available Abstract Background The immune system behaves like a complex, dynamic network with interacting elements including leukocytes, cytokines, and chemokines. While the immune system is broadly distributed, leukocytes must communicate effectively to respond to a pathological challenge. The Basic Immune Simulator 2010 contains agents representing leukocytes and tissue cells, signals representing cytokines, chemokines, and pathogens, and virtual spaces representing organ tissue, lymphoid tissue, and blood. Agents interact dynamically in the compartments in response to infection of the virtual tissue. Agent behavior is imposed by logical rules derived from the scientific literature. The model captured the agent-to-agent contact history, and from this the network topology and the interactions resulting in successful versus failed viral clearance were identified. This model served to integrate existing knowledge and allowed us to examine the immune response from a novel perspective directed at exploiting complex dynamics, ultimately for the design of therapeutic interventions. Results Analyzing the evolution of agent-agent interactions at incremental time points from identical initial conditions revealed novel features of immune communication associated with successful and failed outcomes. There were fewer contacts between agents for simulations ending in viral elimination (win versus persistent infection (loss, due to the removal of infected agents. However, early cellular interactions preceded successful clearance of infection. Specifically, more Dendritic Agent interactions with TCell and BCell Agents, and more BCell Agent interactions with TCell Agents early in the simulation were associated with the immune win outcome. The Dendritic Agents greatly influenced the outcome, confirming them as hub agents of the immune network. In addition, unexpectedly high frequencies of Dendritic Agent-self interactions occurred in the lymphoid compartment late in the

  2. Agouron and immune response to commercialize remune immune-based treatment.

    Science.gov (United States)

    James, J S

    1998-06-19

    Agouron Pharmaceuticals agreed in June to collaborate with The Immune Response Corporation on the final development and marketing of an immune-based treatment for HIV. Remune, the vaccine developed by Dr. Jonas Salk, is currently in Phase III randomized trials with 2,500 patients, and the trials are expected to be completed in April 1999. Immune-based treatments have been difficult to test, as there is no surrogate marker, like viral load, to determine if the drug is working. Agouron agreed to participate in the joint venture after reviewing encouraging results from preliminary trials in which remune was taken in combination with highly active antiretroviral drugs.

  3. Immune activation alters cellular and humoral responses to yellow fever 17D vaccine.

    Science.gov (United States)

    Muyanja, Enoch; Ssemaganda, Aloysius; Ngauv, Pearline; Cubas, Rafael; Perrin, Helene; Srinivasan, Divya; Canderan, Glenda; Lawson, Benton; Kopycinski, Jakub; Graham, Amanda S; Rowe, Dawne K; Smith, Michaela J; Isern, Sharon; Michael, Scott; Silvestri, Guido; Vanderford, Thomas H; Castro, Erika; Pantaleo, Giuseppe; Singer, Joel; Gillmour, Jill; Kiwanuka, Noah; Nanvubya, Annet; Schmidt, Claudia; Birungi, Josephine; Cox, Josephine; Haddad, Elias K; Kaleebu, Pontiano; Fast, Patricia; Sekaly, Rafick-Pierre; Trautmann, Lydie; Gaucher, Denis

    2014-07-01

    Defining the parameters that modulate vaccine responses in African populations will be imperative to design effective vaccines for protection against HIV, malaria, tuberculosis, and dengue virus infections. This study aimed to evaluate the contribution of the patient-specific immune microenvironment to the response to the licensed yellow fever vaccine 17D (YF-17D) in an African cohort. We compared responses to YF-17D in 50 volunteers in Entebbe, Uganda, and 50 volunteers in Lausanne, Switzerland. We measured the CD8+ T cell and B cell responses induced by YF-17D and correlated them with immune parameters analyzed by flow cytometry prior to vaccination. We showed that YF-17D-induced CD8+ T cell and B cell responses were substantially lower in immunized individuals from Entebbe compared with immunized individuals from Lausanne. The impaired vaccine response in the Entebbe cohort associated with reduced YF-17D replication. Prior to vaccination, we observed higher frequencies of exhausted and activated NK cells, differentiated T and B cell subsets and proinflammatory monocytes, suggesting an activated immune microenvironment in the Entebbe volunteers. Interestingly, activation of CD8+ T cells and B cells as well as proinflammatory monocytes at baseline negatively correlated with YF-17D-neutralizing antibody titers after vaccination. Additionally, memory T and B cell responses in preimmunized volunteers exhibited reduced persistence in the Entebbe cohort but were boosted by a second vaccination. Together, these results demonstrate that an activated immune microenvironment prior to vaccination impedes efficacy of the YF-17D vaccine in an African cohort and suggest that vaccine regimens may need to be boosted in African populations to achieve efficient immunity. Registration is not required for observational studies. This study was funded by Canada's Global Health Research Initiative, Defense Threat Reduction Agency, National Institute of Allergy and Infectious Diseases

  4. Modulation of immune responses in stress by Yoga

    Directory of Open Access Journals (Sweden)

    Arora Sarika

    2008-01-01

    Full Text Available Stress is a constant factor in today′s fastpaced life that can jeopardize our health if left unchecked. It is only in the last half century that the role of stress in every ailment from the common cold to AIDS has been emphasized, and the mechanisms involved in this process have been studied. Stress influences the immune response presumably through the activation of the hypothalamic-pituitary adrenal axis, hypothalamic pituitary-gonadal axis, and the sympathetic-adrenal-medullary system. Various neurotransmitters, neuropeptides, hormones, and cytokines mediate these complex bidirectional interactions between the central nervous system (CNS and the immune system. The effects of stress on the immune responses result in alterations in the number of immune cells and cytokine dysregulation. Various stress management strategies such as meditation, yoga, hypnosis, and muscle relaxation have been shown to reduce the psychological and physiological effects of stress in cancers and HIV infection. This review aims to discuss the effect of stress on the immune system and examine how relaxation techniques such as Yoga and meditation could regulate the cytokine levels and hence, the immune responses during stress.

  5. DNA-encapsulated magnesium phosphate nanoparticles elicit both humoral and cellular immune responses in mice

    Directory of Open Access Journals (Sweden)

    Gajadhar Bhakta

    2014-01-01

    Full Text Available The efficacy of pEGFP (plasmid expressing enhanced green fluorescent protein-encapsulated PEGylated (meaning polyethylene glycol coated magnesium phosphate nanoparticles (referred to as MgPi-pEGFP nanoparticles for the induction of immune responses was investigated in a mouse model. MgPi-pEGFP nanoparticles induced enhanced serum antibody and antigen-specific T-lymphocyte responses, as well as increased IFN-γ and IL-12 levels compared to naked pEGFP when administered via intravenous, intraperitoneal or intramuscular routes. A significant macrophage response, both in size and activity, was also observed when mice were immunized with the nanoparticle formulation. The response was highly specific for the antigen, as the increase in interaction between macrophages and lymphocytes as well as lymphocyte proliferation took place only when they were re-stimulated with recombinant green fluorescence protein (rGFP. Thus the nanoparticle formulation elicited both humoral as well as cellular responses. Cytokine profiling revealed the induction of Th-1 type responses. The results suggest DNA-encapsulated magnesium phosphate (MgPi nanoparticles may constitute a safer, more stable and cost-efficient DNA vaccine formulation.

  6. The responses of crop - wild Brassica hybrids to simulated herbivory and interspecific competition: implications for transgene introgression.

    Science.gov (United States)

    Sutherland, Jamie P; Justinova, Lenka; Poppy, Guy M

    2006-01-01

    Brassica rapa grows as a wild and weedy species throughout the world and is the most likely recipient of transgenes from GM oilseed rape. For transgene introgression to occur, the critical step which must be realized, is the formation of an F1 hybrid. Concerns exist that hybrid populations could be more vigorous and competitive compared to the parental species. This study examines the effect of simulated herbivory and interspecific competition on the vegetative and reproductive performance of non-transgenic F1 hybrids and their parental lines. Several vegetative and reproductive performance measures were used to determine the effect of simulated herbivory and competition on the Brassica lines, including leaf length and biomass for herbivory and seedling height and biomass for competition. For defoliation experiments, B. rapa showed little response in terms of leaf length but B. napus and the F1 hybrid responded negatively. Brassica rapa showed elevated biomass responses, but B. napus and the hybrid demonstrated negative responses to defoliation. Defoliation at the cotyledon stage had a slight effect upon final biomass with the F1 hybrid performing significantly worse than B. napus, although seed counts were not significantly different. For the series of competition experiments, hybrids seemed to be more similar to B. rapa in terms of early seedling growth and reproductive measures. The underperformance of hybrid plants when challenged by herbivory and competition, could potentially decrease survivorship and explain the rarity of hybrids in field surveys. However, should transgene introgression occur, the dynamics of hybrids could change radically thus increasing the risk of gene flow from a transgenic oilseed rape crop to the wild recipient.

  7. MicroRNA-29b modulates innate and antigen-specific immune responses in mouse models of autoimmunity.

    Directory of Open Access Journals (Sweden)

    Apolline Salama

    Full Text Available In addition to important regulatory roles in gene expression through RNA interference, it has recently been shown that microRNAs display immune stimulatory effects through direct interaction with receptors of innate immunity of the Toll-like receptor family, aggravating neuronal damage and tumour growth. Yet no evidence exists on consequences of microRNA immune stimulatory actions in the context of an autoimmune disease. Using microRNA analogues, we here show that pancreatic beta cell-derived microRNA sequences induce pro-inflammatory (TNFa, IFNa, IL-12, IL-6 or suppressive (IL-10 cytokine secretion by primary mouse dendritic cells in a sequence-dependent manner. For miR-29b, immune stimulation in RAW264.7 macrophages involved the endosomal Toll-like receptor-7, independently of the canonical RNA interference pathway. In vivo, the systemic delivery of miR-29b activates CD11b+B220- myeloid and CD11b-B220+ plasmacytoid dendritic cells and induces IFNa, TNFa and IL-6 production in the serum of recipient mice. Strikingly, in a murine model of adoptive transfer of autoimmune diabetes, miR-29b reduces the cytolytic activity of transferred effector CD8+ T-cells, insulitis and disease incidence in a single standalone intervention. Endogenous miR-29b, spontaneously released from beta-cells within exosomes, stimulates TNFa secretion from spleen cells isolated from diabetes-prone NOD mice in vitro. Hence, microRNA sequences modulate innate and ongoing adaptive immune responses raising the question of their potential role in the breakdown of tolerance and opening up new applications for microRNA-based immune therapy.

  8. A new adenovirus based vaccine vector expressing an Eimeria tenella derived TLR agonist improves cellular immune responses to an antigenic target.

    Directory of Open Access Journals (Sweden)

    Daniel M Appledorn

    2010-03-01

    Full Text Available Adenoviral based vectors remain promising vaccine platforms for use against numerous pathogens, including HIV. Recent vaccine trials utilizing Adenovirus based vaccines expressing HIV antigens confirmed induction of cellular immune responses, but these responses failed to prevent HIV infections in vaccinees. This illustrates the need to develop vaccine formulations capable of generating more potent T-cell responses to HIV antigens, such as HIV-Gag, since robust immune responses to this antigen correlate with improved outcomes in long-term non-progressor HIV infected individuals.In this study we designed a novel vaccine strategy utilizing an Ad-based vector expressing a potent TLR agonist derived from Eimeria tenella as an adjuvant to improve immune responses from a [E1-]Ad-based HIV-Gag vaccine. Our results confirm that expression of rEA elicits significantly increased TLR mediated innate immune responses as measured by the influx of plasma cytokines and chemokines, and activation of innate immune responding cells. Furthermore, our data show that the quantity and quality of HIV-Gag specific CD8(+ and CD8(- T-cell responses were significantly improved when coupled with rEA expression. These responses also correlated with a significantly increased number of HIV-Gag derived epitopes being recognized by host T cells. Finally, functional assays confirmed that rEA expression significantly improved antigen specific CTL responses, in vivo. Moreover, we show that these improved responses were dependent upon improved TLR pathway interactions.The data presented in this study illustrate the potential utility of Ad-based vectors expressing TLR agonists to improve clinical outcomes dependent upon induction of robust, antigen specific immune responses.

  9. Effect of household pet ownership on infant immune response and subsequent sensitization

    Directory of Open Access Journals (Sweden)

    Angela Simpson

    2010-08-01

    Full Text Available Angela SimpsonManchester Academic Health Science Centre, NIHR Translational Research Facility in Respiratory Medicine, University Hospital of South Manchester NHS Foundation Trust, Manchester, UKAbstract: Sensitization to pets is a major risk factor for asthma. There are many reports on the relationship between household pets, sensitization to the pet, and sensitization to other allergens, often with conflicting results. Pet ownership is not random, and household pets are associated with exposures other than pet allergens. We will review some of the evidence regarding the effects of household pets on infant immune responses, focusing on data from birth cohort studies. It remains unclear precisely why some children develop specific sensitizations to pets whilst others do not in the face of equivalent exposures, but it is likely to be due to gene-environment interactions. Further long-term follow-up of children in whom neonatal and infant immune responses have been measured is necessary to understand how these events occur and how they relate to subsequent disease.Keywords: pets, sensitization, immune response

  10. A novel role for adiponectin in regulating the immune responses in chronic hepatitis C virus infection.

    Science.gov (United States)

    Palmer, Clovis; Hampartzoumian, Taline; Lloyd, Andrew; Zekry, Amany

    2008-08-01

    Adipose tissue releases pro-inflammatory and anti-inflammatory mediators, including adiponectin, which elicit a broad range of metabolic and immunological effects. The study aim was to determine in subjects infected with chronic hepatitis C virus (HCV) the effects of total adiponectin and its high-molecular-weight (HMW) and low-molecular-weight isoforms on HCV-specific immune responses. Serum levels of total adiponectin and its isoforms were determined by immunoassay. The ex vivo effect of adiponectin on the HCV-specific T-cell response was examined by interferon gamma (IFN-gamma) enzyme-linked immunosorbent spot and enzyme-linked immunosorbent assay cytokine assays. The role of the mitogen-activated protein kinase (MAPK) signaling pathway in mediating the adiponectin effect on T cells was also evaluated. We found that serum levels of total and HMW adiponectin were significantly decreased in subjects with chronic HCV and increased body mass index (BMI) compared with HCV-infected lean subjects. The presence of an anti-HCV specific immune response was strongly associated with lower BMI (P = 0.004) and higher serum total (P = 0.01) and HMW (P = 0.02) adiponectin. In ex vivo assays, total adiponectin and the HMW adiponectin isoform enhanced HCV-specific IFN-gamma production (P = 0.02 and 0.03, respectively). Adiponectin-R1 receptors were expressed on T cells and monocytes. In depletion experiments, the IFN-gamma response to adiponectin was entirely dependent on the simultaneous presence of both CD4 and CD8 T cells, and to a lesser extent, natural killer cells. Selective inhibition of p38MAPK activity by SB203580 abrogated the IFN-gamma response to adiponectin, whereas extracellular signal-regulated kinase 1/2 inhibition by PD98059 did not affect the response. In chronic HCV, a reciprocal association exists between BMI, adiponectin, and the anti-HCV immune responses, emphasizing the important role played by adiposity in regulating the immune response in HCV infection.

  11. Novel chimeric virus-like particles vaccine displaying MERS-CoV receptor-binding domain induce specific humoral and cellular immune response in mice.

    Science.gov (United States)

    Wang, Chong; Zheng, Xuexing; Gai, Weiwei; Wong, Gary; Wang, Hualei; Jin, Hongli; Feng, Na; Zhao, Yongkun; Zhang, Weijiao; Li, Nan; Zhao, Guoxing; Li, Junfu; Yan, Jinghua; Gao, Yuwei; Hu, Guixue; Yang, Songtao; Xia, Xianzhu

    2017-04-01

    Middle East respiratory syndrome coronavirus (MERS-CoV) has continued spreading since its emergence in 2012 with a mortality rate of 35.6%, and is a potential pandemic threat. Prophylactics and therapies are urgently needed to address this public health problem. We report here the efficacy of a vaccine consisting of chimeric virus-like particles (VLP) expressing the receptor binding domain (RBD) of MERS-CoV. In this study, a fusion of the canine parvovirus (CPV) VP2 structural protein gene with the RBD of MERS-CoV can self-assemble into chimeric, spherical VLP (sVLP). sVLP retained certain parvovirus characteristics, such as the ability to agglutinate pig erythrocytes, and structural morphology similar to CPV virions. Immunization with sVLP induced RBD-specific humoral and cellular immune responses in mice. sVLP-specific antisera from these animals were able to prevent pseudotyped MERS-CoV entry into susceptible cells, with neutralizing antibody titers reaching 1: 320. IFN-γ, IL-4 and IL-2 secreting cells induced by the RBD were detected in the splenocytes of vaccinated mice by ELISpot. Furthermore, mice inoculated with sVLP or an adjuvanted sVLP vaccine elicited T-helper 1 (Th1) and T-helper 2 (Th2) cell-mediated immunity. Our study demonstrates that sVLP displaying the RBD of MERS-CoV are promising prophylactic candidates against MERS-CoV in a potential outbreak situation. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. In vivo immunomodulatory effects of Antrodia camphorata polysaccharides in a T1/T2 doubly transgenic mouse model for inhibiting infection of Schistosoma mansoni

    International Nuclear Information System (INIS)

    Cheng, P.-C.; Hsu, C.-Y.; Chen, C.-C.; Lee, K.-M.

    2008-01-01

    Antrodia camphorata (A. camphorata) is a fungus commonly used for treatment of viral hepatitis and cancer in Chinese folk medicine. Extract of A. camphorate is reported to possess anti-inflammatory, antihepatitis B virus and anticancer activities. In this study, we tested the in vivo effects of polysaccharides derived from A. camphorata (AC-PS) on immune function by detection of cytokine expression and evaluation of the immune phenotype in a T1/T2 doubly transgenic mouse model. The protective effect of AC-PS in mice was tested by infection with Schistosoma mansoni. The induction of large amounts of IFN-γ, IL-2 and TNF-a mRNA were detected after 2 and 4 weeks of oral AC-PS administration in BALB/c and C57BL/6 mice. In transgenic mice, 3 to 6 weeks of oral AC-PS administration increased the proportion of CD4 + T cells and B cells within the spleen. More specifically, there was an increase of Th1 CD4 + T cells and Be1 cells among spleen cells as observed by detection the of Type1/Type2 marker molecules. By using a disease model of parasitic infection, we found that AC-PS treatment inhibited infection with S. mansoni in BALB/C and C57BL/6 mice. AC-PS appears to influence the immune system of mice into developing Th1 responses and have potential for preventing infection with S. mansoni

  13. Modulation of systemic immune responses through commensal gastrointestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Kyle M Schachtschneider

    Full Text Available Colonization of the gastrointestinal (GI tract is initiated during birth and continually seeded from the individual's environment. Gastrointestinal microorganisms play a central role in developing and modulating host immune responses and have been the subject of investigation over the last decades. Animal studies have demonstrated the impact of GI tract microbiota on local gastrointestinal immune responses; however, the full spectrum of action of early gastrointestinal tract stimulation and subsequent modulation of systemic immune responses is poorly understood. This study explored the utility of an oral microbial inoculum as a therapeutic tool to affect porcine systemic immune responses. For this study a litter of 12 pigs was split into two groups. One group of pigs was inoculated with a non-pathogenic oral inoculum (modulated, while another group (control was not. DNA extracted from nasal swabs and fecal samples collected throughout the study was sequenced to determine the effects of the oral inoculation on GI and respiratory microbial communities. The effects of GI microbial modulation on systemic immune responses were evaluated by experimentally infecting with the pathogen Mycoplasma hyopneumoniae. Coughing levels, pathology, toll-like receptors 2 and 6, and cytokine production were measured throughout the study. Sequencing results show a successful modulation of the GI and respiratory microbiomes through oral inoculation. Delayed type hypersensitivity responses were stronger (p = 0.07, and the average coughing levels and respiratory TNF-α variance were significantly lower in the modulated group (p<0.0001 and p = 0.0153, respectively. The M. hyopneumoniae infection study showed beneficial effects of the oral inoculum on systemic immune responses including antibody production, severity of infection and cytokine levels. These results suggest that an oral microbial inoculation can be used to modulate microbial communities, as well as

  14. Sexual dimorphism of stress response and immune/ inflammatory reaction: the corticotropin releasing hormone perspective

    Directory of Open Access Journals (Sweden)

    Nicholas V. Vamvakopoulos

    1995-01-01

    Full Text Available This review higlghts key aspects of corticotropin releasing hormone (CRH biology of potential relevance to the sexual dimorphism of the stress response and immune/inflammatory reaction, and introduces two important new concepts based on the regulatory potential of the human (h CRH gene: (1 a proposed mechanism to account for the tissue-specific antithetical responses of hCRH gene expression to glucocorticolds, that may also explain the frequently observed antithetical effects of chronic glucocorticoid administration in clinical practice and (2 a heuristic diagram to illustrate the proposed modulation of the stress response and immune/ inflammatory reaction by steroid hormones, from the perspective of the CRH system.

  15. p53 specific (auto)immunity in mice

    NARCIS (Netherlands)

    Lauwen, Marjolein Monique

    2008-01-01

    Self-tolerance to p53 is a major potential limitation for the activation of the endogenous T-cell repertoire. So far, p53 specific CD8+ and CD4+ T-cell immunity has been described in cancer patients and healthy individuals. However, the restrictions of tolerance on the recruitment of p53 specific T

  16. Sex hormones and the immune response in humans

    NARCIS (Netherlands)

    Bouman, Annechien; Heineman, Maas Jan; Faas, Marijke M.

    2005-01-01

    In addition to their effects on sexual differentiation and reproduction, sex hormones appear to influence the immune system. This results in a sexual dimorphism in the immune response in humans: for instance, females produce more vigorous cellular and more vigorous humoral immune reactions, are more

  17. Characterizing complex polysera produced by antigen-specific immunization through the use of affinity-selected mimotopes.

    Directory of Open Access Journals (Sweden)

    Galina Denisova

    Full Text Available BACKGROUND: Antigen-based (as opposed to whole organism vaccines are actively being pursued for numerous indications. Even though different formulations may produce similar levels of total antigen-specific antibody, the composition of the antibody response can be quite distinct resulting in different levels of therapeutic activity. METHODOLOGY/PRINCIPAL FINDINGS: Using plasmid-based immunization against the proto-oncogene HER-2 as a model, we have demonstrated that affinity-selected epitope mimetics (mimotopes can provide a defined signature of a polyclonal antibody response. Further, using novel computer algorithms that we have developed, these mimotopes can be used to predict epitope targets. CONCLUSIONS/SIGNIFICANCE: By combining our novel strategy with existing methods of epitope prediction based on physical properties of an individual protein, we believe that this method offers a robust method for characterizing the breadth of epitope-specificity within a specific polyserum. This strategy is useful as a tool for monitoring immunity following vaccination and can also be used to define relevant epitopes for the creation of novel vaccines.

  18. Universal immunity to influenza must outwit immune evasion

    Directory of Open Access Journals (Sweden)

    Sergio Manuel Quinones-Parra

    2014-06-01

    Full Text Available Although an influenza vaccine has been available for 70 years, influenza virus still causes seasonal epidemics and worldwide pandemics. Currently available vaccines elicit strain-specific antibody responses to the surface haemagglutinin (HA and neuraminidase (NA proteins, but these can be ineffective against serologically-distinct viral variants and novel subtypes. Thus, there is a need for cross-protective or universal influenza vaccines to overcome the necessity for annual immunisation against seasonal influenza and to provide immunity to reduce the severity of infection with pandemic or outbreak viruses. It is well established that natural influenza infection can provide cross-reactive immunity that can reduce the impact of infection with distinct influenza type A strains and subtypes, including H1N1, H3N2, H2N2, H5N1 and H7N9. The key to generating universal influenza immunity via vaccination is to target functionally-conserved regions of the virus, which include epitopes on the internal proteins for cross-reactive T cell immunity or on the HA stem for broadly reactive antibody responses. In the wake of the 2009 H1N1 pandemic, broadly neutralizing antibodies have been characterized and isolated from convalescent and vaccinated individuals, inspiring development of new vaccination techniques to elicit such responses. Induction of influenza-specific T cell responses through vaccination has also been examined in clinical trials. Strong evidence is available from human and animal models of influenza to show that established influenza-specific T cell memory can reduce viral shedding and symptom severity. However, the published evidence also shows that CD8+ T cells can efficiently select immune escape mutants early after influenza virus infection. Here, we discuss universal immunity to influenza viruses mediated by both cross-reactive T cells and antibodies, the mechanisms of immune evasion in influenza, and how to counteract commonly occurring

  19. The innate immune response during urinary tract infection and pyelonephritis.

    Science.gov (United States)

    Spencer, John David; Schwaderer, Andrew L; Becknell, Brian; Watson, Joshua; Hains, David S

    2014-07-01

    Despite its proximity to the fecal flora, the urinary tract is considered sterile. The precise mechanisms by which the urinary tract maintains sterility are not well understood. Host immune responses are critically important in the antimicrobial defense of the urinary tract. During recent years, considerable advances have been made in our understanding of the mechanisms underlying immune homeostasis of the kidney and urinary tract. Dysfunctions in these immune mechanisms may result in acute disease, tissue destruction and overwhelming infection. The objective of this review is to provide an overview of the innate immune response in the urinary tract in response to microbial assault. In doing so, we focus on the role of antimicrobial peptides-a ubiquitous component of the innate immune response.

  20. Maternal immune response to helminth infection during pregnancy determines offspring susceptibility to allergic airway inflammation.

    Science.gov (United States)

    Straubinger, Kathrin; Paul, Sabine; Prazeres da Costa, Olivia; Ritter, Manuel; Buch, Thorsten; Busch, Dirk H; Layland, Laura E; Prazeres da Costa, Clarissa U

    2014-12-01

    Schistosomiasis, a chronic helminth infection, elicits distinct immune responses within the host, ranging from an initial TH1 and subsequent TH2 phase to a regulatory state, and is associated with dampened allergic reactions within the host. We sought to evaluate whether non-transplacental helminth infection during pregnancy alters the offspring's susceptibility to allergy. Ovalbumin-induced allergic airway inflammation was analyzed in offspring from Schistosoma mansoni-infected mothers mated during the TH1, TH2, or regulatory phase of infection. Embryos derived from in vitro fertilized oocytes of acutely infected females were transferred into uninfected foster mice to determine the role of placental environment. The fetomaternal unit was further characterized by helminth-specific immune responses and microarray analyses. Eventually, IFN-γ-deficient mice were infected to evaluate the role of this predominant cytokine on the offspring's allergy phenotype. We demonstrate that offspring from schistosome-infected mothers that were mated in the TH1 and regulatory phases, but not the TH2 immune phase, are protected against the onset of allergic airway inflammation. Interestingly, these effects were associated with distinctly altered schistosome-specific cytokine and gene expression profiles within the fetomaternal interface. Furthermore, we identified that it is not the transfer of helminth antigens but rather maternally derived IFN-γ during the acute phase of infection that is essential for the progeny's protective immune phenotype. Overall, we present a novel immune phase-dependent coherency between the maternal immune responses during schistosomiasis and the progeny's predisposition to allergy. Therefore, we propose to include helminth-mediated transmaternal immune modulation into the expanded hygiene hypothesis. Copyright © 2014 American Academy of Allergy, Asthma & Immunology. Published by Elsevier Inc. All rights reserved.

  1. Lipopolysaccharide contamination of beta-lactoglobulin affects the immune response against intraperitoneally and orally administered antigen

    DEFF Research Database (Denmark)

    Pedersen, Susanne Brix; Kjær, T.M.R.; Barkholt, Vibeke

    2004-01-01

    Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like co......-LG was contaminated with LPS. Conclusions: LPS contamination of an aqueous protein solution does not affect oral tolerance induction, whereas LPS present in emulsion prevents oral tolerance induction towards the food protein.......Microbial components in the environment are potent activators of the immune system with capacity to shift the active immune response towards priming of Th1 and/or Th2 cells. Lipopolysaccharide (LPS), a cell-wall component of Gram- negative bacteria, is extensively present in food products like cow......'s milk. It is not well established, however, how this presence of LPS affects oral tolerance induction. Methods: We studied the effect of LPS contamination in a commercial preparation of the cow milk protein beta-lactoglobulin (beta-LG) on antigen-specific immune responses. IgG1/IgG2a production upon...

  2. HIV-specific humoral and cellular immunity in rabbits vaccinated with recombinant human immunodeficiency virus-like gag-env particles

    International Nuclear Information System (INIS)

    Haffar, O.K.; Smithgall, M.D.; Moran, P.A.; Travis, B.M.; Zarling, J.M.; Hu, S.L.

    1991-01-01

    Recombinant human immunodeficiency virus type-1 (HIV-1)-like gag-env particles produced in mammalian cells were inoculated into two New Zealand white rabbits. In parallel, two control rabbits were inoculated with the homologous HIV-1 virions inactivated by ultraviolet light (uv) and psoralen treatments. The humoral and cellular immune responses to HIV-1 were evaluated for both groups of animals. Recombinant particles elicited humoral immunity that was specific for all the viral structural proteins. The antibodies recognized both denatured and nondenatured proteins. Moreover, the sera neutralized the in vitro infectivity of the homologous virus in CEM cells. Importantly, the recombinant particles also generated a T helper response by priming with the HIV proteins. Similar results were observed with inactivated virus immunization. Therefore, the authors results suggest that the recombinant HIV-like particles elicit functional humoral immunity as well as cellular immunity and represent a novel vaccine candidate for AIDS

  3. Influence of Hesperidin on the Systemic and Intestinal Rat Immune Response

    Directory of Open Access Journals (Sweden)

    Mariona Camps-Bossacoma

    2017-06-01

    Full Text Available Polyphenols, widely found in edible plants, influence the immune system. Nevertheless, the immunomodulatory properties of hesperidin, the predominant flavanone in oranges, have not been deeply studied. To establish the effect of hesperidin on in vivo immune response, two different conditions of immune system stimulations in Lewis rats were applied. In the first experimental design, rats were intraperitoneally immunized with ovalbumin (OVA plus Bordetella pertussis toxin and alum as the adjuvants, and orally given 100 or 200 mg/kg hesperidin. In the second experimental design, rats were orally sensitized with OVA together with cholera toxin and fed a diet containing 0.5% hesperidin. In the first approach, hesperidin administration changed mesenteric lymph node lymphocyte (MLNL composition, increasing the TCRαβ+ cell percentage and decreasing that of B lymphocytes. Furthermore, hesperidin enhanced the interferon (IFN-γ production in stimulated MLNL. In the second approach, hesperidin intake modified the lymphocyte composition in the intestinal epithelium (TCRγδ+ cells and the lamina propria (TCRγδ+, CD45RA+, natural killer, natural killer T, TCRαβ+CD4+, and TCRαβ+CD8+ cells. Nevertheless, hesperidin did not modify the level of serum anti-OVA antibodies in either study. In conclusion, hesperidin does possess immunoregulatory properties in the intestinal immune response, but this effect is not able to influence the synthesis of specific antibodies.

  4. A Genome-wide Gene-Expression Analysis and Database in Transgenic Mice during Development of Amyloid or Tau Pathology

    Directory of Open Access Journals (Sweden)

    Mar Matarin

    2015-02-01

    Full Text Available We provide microarray data comparing genome-wide differential expression and pathology throughout life in four lines of “amyloid” transgenic mice (mutant human APP, PSEN1, or APP/PSEN1 and “TAU” transgenic mice (mutant human MAPT gene. Microarray data were validated by qPCR and by comparison to human studies, including genome-wide association study (GWAS hits. Immune gene expression correlated tightly with plaques whereas synaptic genes correlated negatively with neurofibrillary tangles. Network analysis of immune gene modules revealed six hub genes in hippocampus of amyloid mice, four in common with cortex. The hippocampal network in TAU mice was similar except that Trem2 had hub status only in amyloid mice. The cortical network of TAU mice was entirely different with more hub genes and few in common with the other networks, suggesting reasons for specificity of cortical dysfunction in FTDP17. This Resource opens up many areas for investigation. All data are available and searchable at http://www.mouseac.org.

  5. Beyond the bolus: transgenic tools for investigating the neurophysiology of learning and memory.

    Science.gov (United States)

    Lykken, Christine; Kentros, Clifford G

    2014-10-01

    Understanding the neural mechanisms underlying learning and memory in the entorhinal-hippocampal circuit is a central challenge of systems neuroscience. For more than 40 years, electrophysiological recordings in awake, behaving animals have been used to relate the receptive fields of neurons in this circuit to learning and memory. However, the vast majority of such studies are purely observational, as electrical, surgical, and pharmacological circuit manipulations are both challenging and relatively coarse, being unable to distinguish between specific classes of neurons. Recent advances in molecular genetic tools can overcome many of these limitations, enabling unprecedented control over neural activity in behaving animals. Expression of pharmaco- or optogenetic transgenes in cell-type-specific "driver" lines provides unparalleled anatomical and cell-type specificity, especially when delivered by viral complementation. Pharmacogenetic transgenes are specially designed neurotransmitter receptors exclusively activated by otherwise inactive synthetic ligands and have kinetics similar to traditional pharmacology. Optogenetic transgenes use light to control the membrane potential, and thereby operate at the millisecond timescale. Thus, activation of pharmacogenetic transgenes in specific neuronal cell types while recording from other parts of the circuit allows investigation of the role of those neurons in the steady state, whereas optogenetic transgenes allow one to determine the immediate network response. © 2014 Lykken and Kentros; Published by Cold Spring Harbor Laboratory Press.

  6. Synthetic double-stranded RNAs are adjuvants for the induction of T helper 1 and humoral immune responses to human papillomavirus in rhesus macaques.

    Directory of Open Access Journals (Sweden)

    Christiane Stahl-Hennig

    2009-04-01

    Full Text Available Toll-like receptor (TLR ligands are being considered as adjuvants for the induction of antigen-specific immune responses, as in the design of vaccines. Polyriboinosinic-polyribocytoidylic acid (poly I:C, a synthetic double-stranded RNA (dsRNA, is recognized by TLR3 and other intracellular receptors. Poly ICLC is a poly I:C analogue, which has been stabilized against the serum nucleases that are present in the plasma of primates. Poly I:C(12U, another analogue, is less toxic but also less stable in vivo than poly I:C, and TLR3 is essential for its recognition. To study the effects of these compounds on the induction of protein-specific immune responses in an animal model relevant to humans, rhesus macaques were immunized subcutaneously (s.c. with keyhole limpet hemocyanin (KLH or human papillomavirus (HPV16 capsomeres with or without dsRNA or a control adjuvant, the TLR9 ligand CpG-C. All dsRNA compounds served as adjuvants for KLH-specific cellular immune responses, with the highest proliferative responses being observed with 2 mg/animal poly ICLC (p = 0.002 or 6 mg/animal poly I:C(12U (p = 0.001 when compared with immunization with KLH alone. Notably, poly ICLC -- but not CpG-C given at the same dose -- also helped to induce HPV16-specific Th1 immune responses while both adjuvants supported the induction of strong anti-HPV16 L1 antibody responses as determined by ELISA and neutralization assay. In contrast, control animals injected with HPV16 capsomeres alone did not develop substantial HPV16-specific immune responses. Injection of dsRNA led to increased numbers of cells producing the T cell-activating chemokines CXCL9 and CXCL10 as detected by in situ hybridization in draining lymph nodes 18 hours after injections, and to increased serum levels of CXCL10 (p = 0.01. This was paralleled by the reduced production of the homeostatic T cell-attracting chemokine CCL21. Thus, synthetic dsRNAs induce an innate chemokine response and act as adjuvants

  7. Time-dependent biodistribution and transgene expression of a recombinant human adenovirus serotype 5-luciferase vector as a surrogate agent for rAd5-FMDV vaccines in cattle

    Science.gov (United States)

    Replication-defective recombinant adenovirus 5 (rAd5) vectors carrying foot-and-mouth disease virus (FMDV) transgenes elicit a robust immune response to FMDV challenge in cattle; however vaccine function mechanisms are incompletely understood. Recent efforts addressing critical interactions of rAd5 ...

  8. Hsp90-downregulation influences the heat-shock response, innate immune response and onset of oocyte development in nematodes.

    Directory of Open Access Journals (Sweden)

    Julia Eckl

    Full Text Available Hsp90 is a molecular chaperone involved in the regulation and maturation of kinases and transcription factors. In Caenorhabditis elegans, it contributes to the development of fertility, maintenance of muscle structure, the regulation of heat-shock response and dauer state. To understand the consequences of Hsp90-depletion, we studied Hsp90 RNAi-treated nematodes by DNA microarrays and mass spectrometry. We find that upon development of phenotypes the levels of chaperones and Hsp90 cofactors are increased, while specific proteins related to the innate immune response are depleted. In microarrays, we further find many differentially expressed genes related to gonad and larval development. These genes form an expression cluster that is regulated independently from the immune response implying separate pathways of Hsp90-involvement. Using fluorescent reporter strains for the differentially expressed immune response genes skr-5, dod-24 and clec-60 we observe that their activity in intestinal tissues is influenced by Hsp90-depletion. Instead, effects on the development are evident in both gonad arms. After Hsp90-depletion, changes can be observed in early embryos and adults containing fluorescence-tagged versions of SEPA-1, CAV-1 or PUD-1, all of which are downregulated after Hsp90-depletion. Our observations identify molecular events for Hsp90-RNAi induced phenotypes during development and immune responses, which may help to separately investigate independent Hsp90-influenced processes that are relevant during the nematode's life and development.

  9. Sequential Immunization with gp140 Boosts Immune Responses Primed by Modified Vaccinia Ankara or DNA in HIV-Uninfected South African Participants.

    Directory of Open Access Journals (Sweden)

    Gavin Churchyard

    Full Text Available The safety and immunogenicity of SAAVI DNA-C2 (4 mg IM, SAAVI MVA-C (2.9 x 109 pfu IM and Novartis V2-deleted subtype C gp140 (100 mcg with MF59 adjuvant in various vaccination regimens was evaluated in HIV-uninfected adults in South Africa.Participants at three South African sites were randomized (1:1:1:1 to one of four vaccine regimens: MVA prime, sequential gp140 protein boost (M/M/P/P; concurrent MVA/gp140 (MP/MP; DNA prime, sequential MVA boost (D/D/M/M; DNA prime, concurrent MVA/gp140 boost (D/D/MP/MP or placebo. Peak HIV specific humoral and cellular responses were measured.184 participants were enrolled: 52% were female, all were Black/African, median age was 23 years (range, 18-42 years and 79% completed all vaccinations. 159 participants reported at least one adverse event, 92.5% were mild or moderate. Five, unrelated, serious adverse events were reported. The M/M/P/P and D/D/MP/MP regimens induced the strongest peak neutralizing and binding antibody responses and the greatest CD4+ T-cell responses to Env. All peak neutralizing and binding antibody responses decayed with time. The MVA, but not DNA, prime contributed to the humoral and cellular immune responses. The D/D/M/M regimen was poorly immunogenic overall but did induce modest CD4+ T-cell responses to Gag and Pol. CD8+ T-cell responses to any antigen were low for all regimens.The SAAVI DNA-C2, SAAVI MVA-C and Novartis gp140 with MF59 adjuvant in various combinations were safe and induced neutralizing and binding antibodies and cellular immune responses. Sequential immunization with gp140 boosted immune responses primed by MVA or DNA. The best overall immune responses were seen with the M/M/P/P regimen.ClinicalTrials.gov NCT01418235.

  10. Immunization with avian metapneumovirus harboring chicken Fc induces higher immune responses.

    Science.gov (United States)

    Paudel, Sarita; Easwaran, Maheswaran; Jang, Hyun; Jung, Ho-Kyoung; Kim, Joo-Hun; Shin, Hyun-Jin

    2016-07-15

    In this study, we evaluated the immune responses of avian metapneumovirus harboring chicken Fc molecule. Stable Vero cells expressing chicken Fc chimera on its surface (Vero-cFc) were established, and we confirmed that aMPV grown in Vero-cFc incorporated host derived chimera Fc into the aMPV virions. Immunization of chicken with aMPV-cFc induced higher level of antibodies and inflammatory cytokines; (Interferon (IFN)-γ and Interleukin (IL)-1β) compared to those of aMPV. The increased levels of antibodies and inflammatory cytokines in chicken immunized with aMPV-cFc were statistically significantly (p<0.05) to that of aMPV and control. The aMPV-cFc group also generated the highest neutralizing antibody response. After challenges, chickens immunized with aMPV-cFc showed much less pathological signs in nasal turbinates and trachea so that we could confirm aMPV-cFc induced higher protection than that of aMPV. The greater ability of aMPV harboring chicken Fc to that of aMPV presented it as a possible vaccine candidate. Copyright © 2016 Elsevier B.V. All rights reserved.

  11. Evaluation of Mucosal and Systemic Immune Responses Elicited by GPI-0100-Adjuvanted Influenza Vaccine Delivered by Different Immunization Strategies

    NARCIS (Netherlands)

    Liu, Heng; Patil, Harshad P.; de Vries-Idema, Jacqueline; Wilschut, Jan; Huckriede, Anke

    2013-01-01

    Vaccines for protection against respiratory infections should optimally induce a mucosal immune response in the respiratory tract in addition to a systemic immune response. However, current parenteral immunization modalities generally fail to induce mucosal immunity, while mucosal vaccine delivery

  12. Regulation of HIV-Gag Expression and Targeting to the Endolysosomal/Secretory Pathway by the Luminal Domain of Lysosomal-Associated Membrane Protein (LAMP-1) Enhance Gag-Specific Immune Response

    Science.gov (United States)

    Lucas, Carolina Gonçalves de Oliveira; Rigato, Paula Ordonhez; Gonçalves, Jorge Luiz Santos; Sato, Maria Notomi; Maciel, Milton; Peçanha, Ligia Maria Torres; August, J. Thomas; de Azevedo Marques, Ernesto Torres; de Arruda, Luciana Barros

    2014-01-01

    We have previously demonstrated that a DNA vaccine encoding HIV-p55gag in association with the lysosomal associated membrane protein-1 (LAMP-1) elicited a greater Gag-specific immune response, in comparison to a DNA encoding the native gag. In vitro studies have also demonstrated that LAMP/Gag was highly expressed and was present in MHCII containing compartments in transfected cells. In this study, the mechanisms involved in these processes and the relative contributions of the increased expression and altered traffic for the enhanced immune response were addressed. Cells transfected with plasmid DNA constructs containing p55gag attached to truncated sequences of LAMP-1 showed that the increased expression of gag mRNA required p55gag in frame with at least 741 bp of the LAMP-1 luminal domain. LAMP luminal domain also showed to be essential for Gag traffic through lysosomes and, in this case, the whole sequence was required. Further analysis of the trafficking pathway of the intact LAMP/Gag chimera demonstrated that it was secreted, at least in part, associated with exosome-like vesicles. Immunization of mice with LAMP/gag chimeric plasmids demonstrated that high expression level alone can induce a substantial transient antibody response, but targeting of the antigen to the endolysosomal/secretory pathways was required for establishment of cellular and memory response. The intact LAMP/gag construct induced polyfunctional CD4+ T cell response, which presence at the time of immunization was required for CD8+ T cell priming. LAMP-mediated targeting to endolysosomal/secretory pathway is an important new mechanistic element in LAMP-mediated enhanced immunity with applications to the development of novel anti-HIV vaccines and to general vaccinology field. PMID:24932692

  13. Clearance of low levels of HCV viremia in the absence of a strong adaptive immune response

    Directory of Open Access Journals (Sweden)

    Manns Michael P

    2007-06-01

    Full Text Available Abstract Spontaneous clearance of hepatitis C virus (HCV has frequently been associated with the presence of HCV-specific cellular immunity. However, there had been also reports in chimpanzees demonstrating clearance of HCV-viremia in the absence of significant levels of detectable HCV-specific cellular immune responses. We here report seven asymptomatic acute hepatitis C cases with peak HCV-RNA levels between 300 and 100.000 copies/ml who all cleared HCV-RNA spontaneously. Patients were identified by a systematic screening of 1176 consecutive new incoming offenders in a German young offender institution. Four of the seven patients never developed anti-HCV antibodies and had normal ALT levels throughout follow-up. Transient weak HCV-specific CD4+ T cell responses were detectable in five individuals which did not differ in strength and breadth from age- and sex-matched patients with chronic hepatitis C and long-term recovered patients. In contrast, HCV-specific MHC-class-I-tetramer-positive cells were found in 3 of 4 HLA-A2-positive patients. Thus, these cases highlight that clearance of low levels of HCV viremia is possible in the absence of a strong adaptive immune response which might explain the low seroconversion rate after occupational exposure to HCV.

  14. Protective antibody and CD8+ T-cell responses to the Plasmodium falciparum circumsporozoite protein induced by a nanoparticle vaccine.

    Directory of Open Access Journals (Sweden)

    Stephen A Kaba

    Full Text Available The worldwide burden of malaria remains a major public health problem due, in part, to the lack of an effective vaccine against the Plasmodium falciparum parasite. An effective vaccine will most likely require the induction of antigen specific CD8(+ and CD4(+ T-cells as well as long-lasting antibody responses all working in concert to eliminate the infection. We report here the effective modification of a self-assembling protein nanoparticle (SAPN vaccine previously proven effective in control of a P. berghei infection in a rodent model to now present B- and T-cell epitopes of the human malaria parasite P. falciparum in a platform capable of being used in human subjects.To establish the basis for a SAPN-based vaccine, B- and CD8(+ T-cell epitopes from the P. falciparum circumsporozoite protein (PfCSP and the universal CD4 T-helper epitope PADRE were engineered into a versatile small protein (∼125 amino acids that self-assembles into a spherical nanoparticle repetitively displaying the selected epitopes. P. falciparum epitope specific immune responses were evaluated in mice using a transgenic P. berghei malaria parasite of mice expressing the human malaria full-length P. falciparum circumsporozoite protein (Tg-Pb/PfCSP. We show that SAPN constructs, delivered in saline, can induce high-titer, long-lasting (1 year protective antibody and poly-functional (IFNγ(+, IL-2(+ long-lived central memory CD8(+ T-cells. Furthermore, we demonstrated that these Ab or CD8(+ T-cells can independently provide sterile protection against a lethal challenge of the transgenic parasites.The SAPN construct induces long-lasting antibody and cellular immune responses to epitope specific sequences of the P. falciparum circumsporozoite protein (PfCSP and prevents infection in mice by a transgenic P. berghei parasite displaying the full length PfCSP.

  15. HIV-1 transgenic rats develop T cell abnormalities

    International Nuclear Information System (INIS)

    Reid, William; Abdelwahab, Sayed; Sadowska, Mariola; Huso, David; Neal, Ashley; Ahearn, Aaron; Bryant, Joseph; Gallo, Robert C.; Lewis, George K.; Reitz, Marvin

    2004-01-01

    HIV-1 infection leads to impaired antigen-specific T cell proliferation, increased susceptibility of T cells to apoptosis, progressive impairment of T-helper 1 (Th1) responses, and altered maturation of HIV-1-specific memory cells. We have identified similar impairments in HIV-1 transgenic (Tg) rats. Tg rats developed an absolute reduction in CD4 + and CD8 + T cells able to produce IFN-γ following activation and an increased susceptibility of T cells to activation-induced apoptosis. CD4 + and CD8 + effector/memory (CD45RC - CD62L - ) pools were significantly smaller in Tg rats compared to non-Tg controls, although the converse was true for the naieve (CD45RC + CD62L + ) T cell pool. Our interpretation is that the HIV transgene causes defects in the development of T cell effector function and generation of specific effector/memory T cell subsets, and that activation-induced apoptosis may be an essential factor in this process

  16. Survivin-specific T-cell reactivity correlates with tumor response and patient survival

    DEFF Research Database (Denmark)

    Becker, Jürgen C; Andersen, Mads H; Hofmeister-Müller, Valeska

    2012-01-01

    Therapeutic vaccination directed to induce an anti-tumoral T-cell response is a field of extensive investigation in the treatment of melanoma. However, many vaccination trials in melanoma failed to demonstrate a correlation between the vaccine-specific immune response and therapy outcome. This has...

  17. Obligate brood parasites show more functionally effective innate immune responses: an eco-immunological hypothesis

    Science.gov (United States)

    Hahn, D. Caldwell; Summers, Scott G.; Genovese, Kenneth J.; He, Haiqi; Kogut, Michael H.

    2013-01-01

    Immune adaptations of obligate brood parasites attracted interest when three New World cowbird species (Passeriformes, Icteridae, genus Molothrus) proved unusually resistant to West Nile virus. We have used cowbirds as models to investigate the eco-immunological hypothesis that species in parasite-rich environments characteristically have enhanced immunity as a life history adaptation. As part of an ongoing program to understand the cowbird immune system, in this study we measured degranulation and oxidative burst, two fundamental responses of the innate immune system. Innate immunity provides non-specific, fast-acting defenses against a variety of invading pathogens, and we hypothesized that innate immunity experiences particularly strong selection in cowbirds, because their life history strategy exposes them to diverse novel and unpredictable parasites. We compared the relative effectiveness of degranulation and oxidative burst responses in two cowbird species and one related, non-parasitic species. Both innate immune defenses were significantly more functionally efficient in the two parasitic cowbird species than in the non-parasitic red-winged blackbird (Icteridae, Agelaius phoeniceus). Additionally, both immune defenses were more functionally efficient in the brown-headed cowbird (M. ater), an extreme host-generalist brood parasite, than in the bronzed cowbird (M. aeneus), a moderate host-specialist with lower exposure to other species and their parasites. Thus the relative effectiveness of these two innate immune responses corresponds to the diversity of parasites in the niche of each species and to their relative resistance to WNV. This study is the first use of these two specialized assays in a comparative immunology study of wild avian species.

  18. Cancer Immunotherapy and the Immune Response in Hodgkin Lymphoma

    Directory of Open Access Journals (Sweden)

    Christoph Renner

    2018-06-01

    Full Text Available Patients with classical Hodgkin lymphoma (cHL have an impaired cellular immune response as indicated by an anergic reaction against standard recall antigens and a diminished rejection reaction of allogeneic skin transplant. This clinical observation can be linked to the histopathological feature of cHL since the typical pattern of a cHL manifestation is characterized by sparse large CD30+ tumor-infiltrating Hodgkin–Reed–Sternberg (HRS cells that are surrounded by a dense inflammatory immune microenvironment with mixed cellularity. Despite this extensive polymorphous inflammatory infiltrate, there is only a poor antitumor immune response seen to the neoplastic HRS cells. This is primarily mediated by a high expression of PD-L1 and PD-L2 ligands on the HRS cell surface which in turn antagonizes the activity of programmed death-1 (PD-1 antigen-positive T cells. PD-L1/L2 overexpression is caused by gene amplification at the 9p24.1 locus and/or latent Epstein–Barr virus infection present in around 40% of cHL cases. The blockade of the PD-L1/L2–PD-1 pathway by monoclonal antibodies can restore local T cell activity and leads to impressive tumor responses, some of which are long lasting and eventually curative. Another feature of HRS cells is the high CD30 antigen expression. Monoclonal antibody technology allowed for the successful development of CD30-specific immunotoxins, bispecific antibodies, and reprogrammed autologous T cells with the first one already approved for the treatment of high risk or relapsed cHL. Altogether, the discovery of the described pathomechanism of immune suppression and the identification of preferential target antigens has rendered cHL to be a prime subject for the successful development of new immunotherapeutic approaches.

  19. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    International Nuclear Information System (INIS)

    Fogg, Mark; Murphy, John R.; Lorch, Jochen; Posner, Marshall; Wang, Fred

    2013-01-01

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients

  20. Therapeutic targeting of regulatory T cells enhances tumor-specific CD8+ T cell responses in Epstein–Barr virus associated nasopharyngeal carcinoma

    Energy Technology Data Exchange (ETDEWEB)

    Fogg, Mark [Department of Medicine, Brigham and Women' s Hospital (United States); Murphy, John R. [Departments of Medicine and Microbiology, Boston University School of Medicine, Boston, MA 02118 (United States); Lorch, Jochen; Posner, Marshall [Department of Adult Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02115 (United States); Wang, Fred, E-mail: fwang@research.bwh.harvard.edu [Department of Medicine, Brigham and Women' s Hospital (United States); Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA 02115 (United States)

    2013-07-05

    Epstein–Barr virus (EBV) is associated with multiple malignancies including nasopharyngeal carcinoma (NPC). In nasopharynx cancer, CD8+ T cells specific for EBV Nuclear Antigen-1 (EBNA-1) and Latent Membrane Protein 2 (LMP2) are important components of anti-tumor immunity since both are consistently expressed in NPC. We have previously shown that EBNA-1-specific CD8+ T cell responses were suppressed in NPC patients compared to healthy controls. We now find that CD8+ T cell responses specific for LMP2 are also abnormal in NPC patients, and both EBNA-1- and LMP2-specific responses are suppressed by regulatory T cells (Treg). EBNA-1 and LMP2-specific CD8+ T cell responses, as well as immune control of EBV-infected cells in vitro, could be restored by the depletion of Tregs and by use of a clinically approved drug targeting Tregs. Thus, in vivo modulation of Tregs may be an effective means of enhancing these anti-tumor immune responses in NPC patients. - Highlights: • Viral proteins are tumor antigens in Epstein–Barr virus associated Nasopharyngeal Carcinoma. • CD8+ T cell responses against EBV proteins EBNA-1 and LMP2 are suppressed in NPC patients. • T regulatory cells are responsible for suppressing EBV immunity in NPC patients. • Depletion of Tregs with Ontak can rescue EBV-specific CD8+ T cell responses in NPC patients. • This clinically approved drug may be effective for enhancing anti-tumor immunity in NPC patients.

  1. Respons imun humoral pada pulpitis (Humoral immune response on pulpitis

    Directory of Open Access Journals (Sweden)

    Trijoedani Widodo

    2005-06-01

    Full Text Available Pulpitis is an inflammation process on dental pulp tissue, and usually as the continuous of caries. The microorganism in the caries is a potential immunogenic triggering the immune respons, both humoral and celluler immune responses. The aim of this research is to explain the humoral immune response changes in the dental pulp tissues of pulpitis. This research was done on three group samples: Irreversible pulpitis, Reversible pulpitis and sound teeth as the control group. The result showed that there were three pulpitis immunopathologic patterns: the sound teeth immunopathologic pattern showing a low humoral immune response, in a low level of IgG, IgA and IgM, the reversible pulpitis pattern showing that in a higher humoral immune response, IgG and IgA decreased but IgM increased, the irreversible pulpitis pattern showing that IgG and IgM increased, but it couldn't be repaired although it has highly immunity, and it showed an unusually low level of IgA. This low level of IgA meant that irreversible pulpitis had a low mucosal immunity.

  2. Activation of antitumor immune responses by Ganoderma formosanum polysaccharides in tumor-bearing mice.

    Science.gov (United States)

    Wang, Cheng-Li; Lu, Chiu-Ying; Hsueh, Ying-Chao; Liu, Wen-Hsiung; Chen, Chun-Jen

    2014-11-01

    Fungi of the genus Ganoderma are basidiomycetes that have been used as traditional medicine in Asia and have been shown to exhibit various pharmacological activities. We recently found that PS-F2, a polysaccharide fraction purified from the submerged culture broth of Ganoderma formosanum, stimulates the maturation of dendritic cells and primes a T helper 1 (Th1)-polarized adaptive immune response in vivo. In this study, we investigated whether the immune adjuvant function of PS-F2 can stimulate antitumor immune responses in tumor-bearing mice. Continuous intraperitoneal or oral administration of PS-F2 effectively suppressed the growth of colon 26 (C26) adenocarcinoma, B16 melanoma, and sarcoma 180 (S180) tumor cells in mice without adverse effects on the animals' health. PS-F2 did not cause direct cytotoxicity on tumor cells, and it lost the antitumor effect in mice with severe combined immunodeficiency (SCID). CD4(+) T cells, CD8(+) T cells, and serum from PS-F2-treated tumor-bearing mice all exhibited antitumor activities when adoptively transferred to naïve animals, indicating that PS-F2 treatment stimulates tumor-specific cellular and humoral immune responses. These data demonstrate that continuous administration of G. formosanum polysaccharide PS-F2 can activate host immune responses against ongoing tumor growth, suggesting that PS-F2 can potentially be developed into a preventive/therapeutic agent for cancer immunotherapy.

  3. The immune response to chronic Pseudomonas aeruginosa lung infection in cystic fibrosis patients is predominantly of the Th2 type

    DEFF Research Database (Denmark)

    Moser, C; Kjaergaard, S; Pressler, T

    2000-01-01

    Most cystic fibrosis (CF) patients with chronic Pseudomonas aeruginosa lung infection have a persistent acute type lung inflammation dominated by polymorphonuclear neutrophils (PMN) and a pronounced antibody response against P. aeruginosa. We speculated whether this immune response in CF...... is of the Th2 type and whether a change to a Th1 type immune response could improve the prognosis. Therefore, we studied 14 CF patients with (CF +P) and 14 CF patients without (CF -P) chronic P. aeruginosa lung infection. The specific production of interferon-gamma (IFN-gamma) and interleukin-4 (IL-4......: Rho=0.524; ptype immune response is most frequent in CF patients with chronic P. aeruginosa lung infection, and the patients with a Th1-dominated immune response had the best lung function. The clinical implication is that a change to a Th1 type immune response might...

  4. Multi-scale modeling of the CD8 immune response

    Energy Technology Data Exchange (ETDEWEB)

    Barbarroux, Loic, E-mail: loic.barbarroux@doctorant.ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Michel, Philippe, E-mail: philippe.michel@ec-lyon.fr [Inria, Université de Lyon, UMR 5208, Institut Camille Jordan (France); Ecole Centrale de Lyon, 36 avenue Guy de Collongue, 69134 Ecully (France); Adimy, Mostafa, E-mail: mostafa.adimy@inria.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France); Crauste, Fabien, E-mail: crauste@math.univ-lyon1.fr [Inria, Université de Lyon, UMR 5208, Université Lyon 1, Institut Camille Jordan, 43 Bd. du 11 novembre 1918, F-69200 Villeurbanne Cedex (France)

    2016-06-08

    During the primary CD8 T-Cell immune response to an intracellular pathogen, CD8 T-Cells undergo exponential proliferation and continuous differentiation, acquiring cytotoxic capabilities to address the infection and memorize the corresponding antigen. After cleaning the organism, the only CD8 T-Cells left are antigen-specific memory cells whose role is to respond stronger and faster in case they are presented this very same antigen again. That is how vaccines work: a small quantity of a weakened pathogen is introduced in the organism to trigger the primary response, generating corresponding memory cells in the process, giving the organism a way to defend himself in case it encounters the same pathogen again. To investigate this process, we propose a non linear, multi-scale mathematical model of the CD8 T-Cells immune response due to vaccination using a maturity structured partial differential equation. At the intracellular scale, the level of expression of key proteins is modeled by a delay differential equation system, which gives the speeds of maturation for each cell. The population of cells is modeled by a maturity structured equation whose speeds are given by the intracellular model. We focus here on building the model, as well as its asymptotic study. Finally, we display numerical simulations showing the model can reproduce the biological dynamics of the cell population for both the primary response and the secondary responses.

  5. Vaccination Enhances Early Immune Responses in White Shrimp Litopenaeus vannamei after Secondary Exposure to Vibrio alginolyticus

    Science.gov (United States)

    Lin, Yong-Chin; Chen, Jiann-Chu; Morni, Wan Zabidii W.; Putra, Dedi Fazriansyah; Huang, Chien-Lun; Li, Chang-Che; Hsieh, Jen-Fang

    2013-01-01

    Background Recent work suggested that the presence of specific memory or some form of adaptive immunity occurs in insects and shrimp. Hypervariable pattern recognition molecules, known as Down syndrome cell adhesion molecules, are able to mount specific recognition, and immune priming in invertebrates. In the present study, we attempted to understand the immune response pattern of white shrimp Litopenaeus vannamei which received primary (PE) and secondary exposure (SE) to Vibrio alginolyticus. Methodology Immune parameters and proliferation of haematopoietic tissues (HPTs) of shrimp which had received PE and SE to V. alginolyticus were measured. In the PE trial, the immune parameters and proliferation of HPTs of shrimp that received heat-killed V. alginolyticus (HVa) and formalin-inactivated V. alginolyticus (FVa) were measured. Mortality, immune parameters and proliferation of HPTs of 7-day-HVa-PE shrimp (shrimp that received primary exposure to HVa after 7 days) and 7-day-FVa-PE shrimp (shrimp that received primary exposure to FVa after 7 days) following SE to live V. alginolyticus (LVa) were measured. Phagocytic activity and clearance efficiency were examined for the 7∼35-day-HVa-PE and FVa-PE shrimp. Results HVa-receiving shrimp showed an earlier increase in the immune response on day 1, whereas FVa-receiving shrimp showed a late increase in the immune response on day 5. The 7-day-FVa-PE shrimp showed enhancement of immunity when encountering SE to LVa, whereas 7-day-HVa-PE shrimp showed a minor enhancement in immunity. 7-day-FVa-PE shrimp showed higher proliferation and an HPT mitotic index. Both phagocytic activity and clearance maintained higher for both HVa-PE and FVa-PE shrimp after 28 days. Conclusions HVa- and FVa-receiving shrimp showed the bacteria agglutinated prior to being phagocytised. FVa functions as a vaccine, whereas HVa functions as an inducer and can be used as an immune adjuvant. A combined mixture of FVa and HVa can serve as a

  6. Regulation of immune responses and tolerance: the microRNA perspective

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-01-01

    Summary Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/ or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. PMID:23550642

  7. Regulation of immune responses and tolerance: the microRNA perspective.

    Science.gov (United States)

    Chen, Chang-Zheng; Schaffert, Steven; Fragoso, Rita; Loh, Christina

    2013-05-01

    Much has been learned about the molecular and cellular components critical for the control of immune responses and tolerance. It remains a challenge, however, to control the immune response and tolerance at the system level without causing significant toxicity to normal tissues. Recent studies suggest that microRNA (miRNA) genes, an abundant class of non-coding RNA genes that produce characteristic approximately 22 nucleotides small RNAs, play important roles in immune cells. In this article, we discuss emerging knowledge regarding the functions of miRNA genes in the immune system. We delve into the roles of miRNAs in regulating signaling strength and threshold, homeostasis, and the dynamics of the immune response and tolerance during normal and pathogenic immunological conditions. We also present observations based on analyzes of miR-181 family genes that indicate the potential functions of primary and/or precursor miRNAs in target recognition and explore the impact of these findings on target identification. Finally, we illustrate that despite the subtle effects of miRNAs on gene expression, miRNAs have the potential to influence the outcomes of normal and pathogenic immune responses by controlling the quantitative and dynamic aspects of immune responses. Tuning miRNA functions in immune cells, through gain- and loss-of-function approaches in mice, may reveal novel approach to restore immune equilibrium from pathogenic conditions, such as autoimmune disease and leukemia, without significant toxicity. © 2013 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.

  8. The role of immune mechanisms in Tourette syndrome.

    Science.gov (United States)

    Martino, Davide; Zis, Panagiotis; Buttiglione, Maura

    2015-08-18

    Tourette syndrome (TS) is a childhood-onset tic disorder associated with abnormal development of brain networks involved in the sensory and motor processing. An involvement of immune mechanisms in its pathophysiology has been proposed. Animal models based on active immunization with bacterial or viral mimics, direct injection of cytokines or patients' serum anti-neuronal antibodies, and transgenic approaches replicated stereotyped behaviors observed in human TS. A crucial role of microglia in the neural-immune crosstalk within TS and related disorders has been proposed by animal models and confirmed by recent post mortem studies. With analogy to autism, genetic and early life environmental factors could foster the involvement of immune mechanisms to the abnormal developmental trajectories postulated in TS, as well as lead to systemic immune dysregulation in this condition. Clinical studies demonstrate an association between TS and immune responses to pathogens like group A Streptococcus (GAS), although their role as risk-modifiers is still undefined. Overactivity of immune responses at a systemic level is suggested by clinical studies exploring cytokine and immunoglobulin levels, immune cell subpopulations, and gene expression profiling of peripheral lymphocytes. The involvement of autoantibodies, on the other hand, remains uncertain and warrants more work using live cell-based approaches. Overall, a body of evidence supports the hypothesis that disease mechanisms in TS, like other neurodevelopmental illnesses (e.g. autism), may involve dysfunctional neural-immune cross-talk, ultimately leading to altered maturation of brain pathways controlling different behavioral domains and, possibly, differences in organising immune and stress responses. This article is part of a Special Issue entitled SI: Neuroimmunology in Health And Disease. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. HIV-derived vectors for gene therapy targeting dendritic cells.

    Science.gov (United States)

    Rossetti, Maura; Cavarelli, Mariangela; Gregori, Silvia; Scarlatti, Gabriella

    2013-01-01

    Human immunodeficiency virus type 1 (HIV-1)-derived lentiviral vectors (LV) have the potential to mediate stable therapeutic gene transfer. However, similarly to other viral vectors, their benefit is compromised by the induction of an immune response toward transgene-expressing cells that closely mimics antiviral immunity. LV share with the parental HIV the ability to activate dendritic cells (DC), while lack the peculiar ability of subverting DC functions, which is responsible for HIV immune escape. Understanding the interaction between LV and DC, with plasmacytoid and myeloid DC playing fundamental and distinct roles, has paved the way to novel approaches aimed at regulating transgene-specific immune responses. Thanks to the ability to target either DC subsets LV might be a powerful tool to induce immunity (i.e., gene therapy of cancer), cell death (i.e., in HIV/AIDS infection), or tolerance (i.e., gene therapy strategies for monogenic diseases). In this chapter, similarities and differences between the LV-mediated and HIV-mediated induction of immune responses, with specific focus on their interactions with DC, are discussed.

  10. Cyclophosphamide augments antitumor immunity: studies in an autochthonous prostate cancer model.

    Science.gov (United States)

    Wada, Satoshi; Yoshimura, Kiyoshi; Hipkiss, Edward L; Harris, Tim J; Yen, Hung-Rong; Goldberg, Monica V; Grosso, Joseph F; Getnet, Derese; Demarzo, Angelo M; Netto, George J; Anders, Robert; Pardoll, Drew M; Drake, Charles G

    2009-05-15

    To study the immune response to prostate cancer, we developed an autochthonous animal model based on the transgenic adenocarcinoma of the mouse prostate (TRAMP) mouse in which spontaneously developing tumors express influenza hemagglutinin as a unique, tumor-associated antigen. Our prior studies in these animals showed immunologic tolerance to hemagglutinin, mirroring the clinical situation in patients with cancer who are generally nonresponsive to their disease. We used this physiologically relevant animal model to assess the immunomodulatory effects of cyclophosphamide when administered in combination with an allogeneic, cell-based granulocyte-macrophage colony-stimulating factor-secreting cancer immunotherapy. Through adoptive transfer of prostate/prostate cancer-specific CD8 T cells as well as through studies of the endogenous T-cell repertoire, we found that cyclophosphamide induced a marked augmentation of the antitumor immune response. This effect was strongly dependent on both the dose and the timing of cyclophosphamide administration. Mechanistic studies showed that immune augmentation by cyclophosphamide was associated with a transient depletion of regulatory T cells in the tumor draining lymph nodes but not in the peripheral circulation. Interestingly, we also noted effects on dendritic cell phenotype; low-dose cyclophosphamide was associated with increased expression of dendritic cell maturation markers. Taken together, these data clarify the dose, timing, and mechanism of action by which immunomodulatory cyclophosphamide can be translated to a clinical setting in a combinatorial cancer treatment strategy.

  11. Chemical modulators of the innate immune response alter gypsy moth larval susceptibility to Bacillus thuringiensis

    Directory of Open Access Journals (Sweden)

    Broderick Nichole A

    2010-04-01

    Full Text Available Abstract Background The gut comprises an essential barrier that protects both invertebrate and vertebrate animals from invasion by microorganisms. Disruption of the balanced relationship between indigenous gut microbiota and their host can result in gut bacteria eliciting host responses similar to those caused by invasive pathogens. For example, ingestion of Bacillus thuringiensis by larvae of some species of susceptible Lepidoptera can result in normally benign enteric bacteria exerting pathogenic effects. Results We explored the potential role of the insect immune response in mortality caused by B. thuringiensis in conjunction with gut bacteria. Two lines of evidence support such a role. First, ingestion of B. thuringiensis by gypsy moth larvae led to the depletion of their hemocytes. Second, pharmacological agents that are known to modulate innate immune responses of invertebrates and vertebrates altered larval mortality induced by B. thuringiensis. Specifically, Gram-negative peptidoglycan pre-treated with lysozyme accelerated B. thuringiensis-induced killing of larvae previously made less susceptible due to treatment with antibiotics. Conversely, several inhibitors of the innate immune response (eicosanoid inhibitors and antioxidants increased the host's survival time following ingestion of B. thuringiensis. Conclusions This study demonstrates that B. thuringiensis infection provokes changes in the cellular immune response of gypsy moth larvae. The effects of chemicals known to modulate the innate immune response of many invertebrates and vertebrates, including Lepidoptera, also indicate a role of this response in B. thuringiensis killing. Interactions among B. thuringiensis toxin, enteric bacteria, and aspects of the gypsy moth immune response may provide a novel model to decipher mechanisms of sepsis associated with bacteria of gut origin.

  12. Risk factors for discordant immune response among HIV-infected ...

    African Journals Online (AJOL)

    Risk factors for discordant immune response among HIV-infected patients initiating antiretroviral therapy: A retrospective cohort study. ... Multivariate logistic regression models were used to estimate adjusted odds ratios (AORs) to determine associations between discordant immune response and clinical and demographic ...

  13. Establishment of HLA-DR4 transgenic mice for the identification of CD4+ T cell epitopes of tumor-associated antigens.

    Directory of Open Access Journals (Sweden)

    Junji Yatsuda

    Full Text Available Reports have shown that activation of tumor-specific CD4(+ helper T (Th cells is crucial for effective anti-tumor immunity and identification of Th-cell epitopes is critical for peptide vaccine-based cancer immunotherapy. Although computer algorithms are available to predict peptides with high binding affinity to a specific HLA class II molecule, the ability of those peptides to induce Th-cell responses must be evaluated. We have established HLA-DR4 (HLA-DRA*01:01/HLA-DRB1*04:05 transgenic mice (Tgm, since this HLA-DR allele is most frequent (13.6% in Japanese population, to evaluate HLA-DR4-restricted Th-cell responses to tumor-associated antigen (TAA-derived peptides predicted to bind to HLA-DR4. To avoid weak binding between mouse CD4 and HLA-DR4, Tgm were designed to express chimeric HLA-DR4/I-E(d, where I-E(d α1 and β1 domains were replaced with those from HLA-DR4. Th cells isolated from Tgm immunized with adjuvant and HLA-DR4-binding cytomegalovirus-derived peptide proliferated when stimulated with peptide-pulsed HLA-DR4-transduced mouse L cells, indicating chimeric HLA-DR4/I-E(d has equivalent antigen presenting capacity to HLA-DR4. Immunization with CDCA155-78 peptide, a computer algorithm-predicted HLA-DR4-binding peptide derived from TAA CDCA1, successfully induced Th-cell responses in Tgm, while immunization of HLA-DR4-binding Wilms' tumor 1 antigen-derived peptide with identical amino acid sequence to mouse ortholog failed. This was overcome by using peptide-pulsed syngeneic bone marrow-derived dendritic cells (BM-DC followed by immunization with peptide/CFA booster. BM-DC-based immunization of KIF20A494-517 peptide from another TAA KIF20A, with an almost identical HLA-binding core amino acid sequence to mouse ortholog, successfully induced Th-cell responses in Tgm. Notably, both CDCA155-78 and KIF20A494-517 peptides induced human Th-cell responses in PBMCs from HLA-DR4-positive donors. Finally, an HLA-DR4 binding DEPDC1191

  14. DNA immunization with fusion of CTLA-4 to hepatitis B virus (HBV core protein enhanced Th2 type responses and cleared HBV with an accelerated kinetic.

    Directory of Open Access Journals (Sweden)

    Ying Yin

    Full Text Available BACKGROUND: Typically, DNA immunization via the intramuscular route induces specific, Th1-dominant immune responses. However, plasmids expressing viral proteins fused to cytotoxic T lymphocyte antigen 4 (CTLA-4 primed Th2-biased responses and were able to induced effective protection against viral challenge in the woodchuck model. Thus, we addressed the question in the mouse model how the Th1/Th2 bias of primed immune responses by a DNA vaccine influences hepatitis B virus (HBV clearance. PRINCIPAL FINDINGS: Plasmids expressing HBV core protein (HBcAg or HBV e antigen and HBcAg fused to the extracellular domain of CTLA-4 (pCTLA-4-HBc, CD27, and full length CD40L were constructed. Immunizations of these DNA plasmids induced HBcAg-specific antibody and cytotoxic T-cell responses in mice, but with different characteristics regarding the titers and subtypes of specific antibodies and intensity of T-cell responses. The plasmid pHBc expressing HBcAg induced an IgG2a-dominant response while immunizations of pCTLA-4-HBc induced a balanced IgG1/IgG2a response. To assess the protective values of the immune responses of different characteristics, mice were pre-immunized with pCTLA-4-HBc and pHBc, and challenged by hydrodynamic injection (HI of pAAV/HBV1.2. HBV surface antigen (HBsAg and DNA in peripheral blood and HBcAg in liver tissue were cleared with significantly accelerated kinetics in both groups. The clearance of HBsAg was completed within 16 days in immunized mice while more than 50% of the control mice are still positive for HBsAg on day 22. Stronger HBcAg-specific T-cell responses were primed by pHBc correlating with a more rapid decline of HBcAg expression in liver tissue, while anti-HBs antibody response developed rapidly in the mice immunized with pCTLA-4-HBc, indicating that the Th1/Th2 bias of vaccine-primed immune responses influences the mode of viral clearance. CONCLUSION: Viral clearance could be efficiently achieved by Th1/Th2-balanced

  15. Microneedle-mediated immunization of an adenovirus-based malaria vaccine enhances antigen-specific antibody immunity and reduces anti-vector responses compared to the intradermal route

    OpenAIRE

    Carey, John B.; Vrdoljak, Anto; O'Mahony, Conor; Hill, Adrian V. S.; Draper, Simon J.; Moore, Anne C.

    2014-01-01

    Substantial effort has been placed in developing efficacious recombinant attenuated adenovirus-based vaccines. However induction of immunity to the vector is a significant obstacle to its repeated use. Here we demonstrate that skin-based delivery of an adenovirus-based malaria vaccine, HAdV5-PyMSP142, to mice using silicon microneedles induces equivalent or enhanced antibody responses to the encoded antigen, however it results in decreased anti-vector responses, compared to intradermal delive...

  16. Co-expression of NCED and ALO improves vitamin C level and tolerance to drought and chilling in transgenic tobacco and stylo plants.

    Science.gov (United States)

    Bao, Gegen; Zhuo, Chunliu; Qian, Chunmei; Xiao, Ting; Guo, Zhenfei; Lu, Shaoyun

    2016-01-01

    Abscisic acid (ABA) regulates plant adaptive responses to various environmental stresses, while L-ascorbic acid (AsA) that is also named vitamin C is an important antioxidant and involves in plant stress tolerance and the immune system in domestic animals. Transgenic tobacco (Nicotiana tabacum L.) and stylo [Stylosanthes guianensis (Aublet) Swartz], a forage legume, plants co-expressing stylo 9-cis-epoxycarotenoid dioxygenase (SgNCED1) and yeast D-arabinono-1,4-lactone oxidase (ALO) genes were generated in this study, and tolerance to drought and chilling was analysed in comparison with transgenic tobacco overexpressing SgNCED1 or ALO and the wild-type plants. Compared to the SgNCED1 or ALO transgenic plants, in which only ABA or AsA levels were increased, both ABA and AsA levels were increased in transgenic tobacco and stylo plants co-expressing SgNCED1 and ALO genes. Compared to the wild type, an enhanced drought tolerance was observed in SgNCED1 transgenic tobacco plants with induced expression of drought-responsive genes, but not in ALO plants, while an enhanced chilling tolerance was observed in ALO transgenic tobaccos with induced expression of cold-responsive genes, but not in SgNCED1 plants. Co-expression of SgNCED1 and ALO genes resulted in elevated tolerance to both drought and chilling in transgenic tobacco and stylo plants with induced expression of both drought and cold-responsive genes. Our result suggests that co-expression of SgNCED1 and ALO genes is an effective way for use in forage plant improvement for increased tolerance to drought and chilling and nutrition quality. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  17. CAF01 potentiates immune responses and efficacy of an inactivated influenza vaccine in ferrets.

    Directory of Open Access Journals (Sweden)

    Cyril Jean-Marie Martel

    Full Text Available Trivalent inactivated vaccines (TIV against influenza are given to 350 million people every year. Most of these are non-adjuvanted vaccines whose immunogenicity and protective efficacy are considered suboptimal. Commercially available non-adjuvanted TIV are known to elicit mainly a humoral immune response, whereas the induction of cell-mediated immune responses is negligible. Recently, a cationic liposomal adjuvant (dimethyldioctadecylammonium/trehalose 6,6'-dibehenate, CAF01 was developed. CAF01 has proven to enhance both humoral and cell-mediated immune responses to a number of different experimental vaccine candidates. In this study, we compared the immune responses in ferrets to a commercially available TIV with the responses to the same vaccine mixed with the CAF01 adjuvant. Two recently circulating H1N1 viruses were used as challenge to test the vaccine efficacy. CAF01 improved the immunogenicity of the vaccine, with increased influenza-specific IgA and IgG levels. Additionally, CAF01 promoted cellular-mediated immunity as indicated by interferon-gamma expressing lymphocytes, measured by flow cytometry. CAF01 also enhanced the protection conferred by the vaccine by reducing the viral load measured in nasal washes by RT-PCR. Finally, CAF01 allowed for dose-reduction and led to higher levels of protection compared to TIV adjuvanted with a squalene emulsion. The data obtained in this human-relevant challenge model supports the potential of CAF01 in future influenza vaccines.

  18. Transgenic mice expressing human glucocerebrosidase variants: utility for the study of Gaucher disease.

    Science.gov (United States)

    Sanders, Angela; Hemmelgarn, Harmony; Melrose, Heather L; Hein, Leanne; Fuller, Maria; Clarke, Lorne A

    2013-08-01

    Gaucher disease is an autosomal recessively inherited storage disorder caused by deficiency of the lysosomal hydrolase, acid β-glucosidase. The disease manifestations seen in Gaucher patients are highly heterogeneous as is the responsiveness to therapy. The elucidation of the precise factors responsible for this heterogeneity has been challenging as the development of clinically relevant animal models of Gaucher disease has been problematic. Although numerous murine models for Gaucher disease have been described each has limitations in their specific utility. We describe here, transgenic murine models of Gaucher disease that will be particularly useful for the study of pharmacological chaperones. We have produced stable transgenic mouse strains that individually express wild type, N370S and L444P containing human acid β-glucosidase and show that each of these transgenic lines rescues the lethal phenotype characteristic of acid β-glucosidase null mice. Both the N370S and L444P transgenic models show early and progressive elevations of tissue sphingolipids with L444P mice developing progressive splenic Gaucher cell infiltration. We demonstrate the potential utility of these new transgenic models for the study of Gaucher disease pathogenesis. In addition, since these mice produce only human enzyme, they are particularly relevant for the study of pharmacological chaperones that are specifically targeted to human acid β-glucosidase and the common mutations underlying Gaucher disease. Copyright © 2013 Elsevier Inc. All rights reserved.

  19. Genetic load and transgenic mitigating genes in transgenic Brassica rapa (field mustard × Brassica napus (oilseed rape hybrid populations

    Directory of Open Access Journals (Sweden)

    Warwick Suzanne I

    2009-10-01

    Full Text Available Abstract Background One theoretical explanation for the relatively poor performance of Brassica rapa (weed × Brassica napus (crop transgenic hybrids suggests that hybridization imparts a negative genetic load. Consequently, in hybrids genetic load could overshadow any benefits of fitness enhancing transgenes and become the limiting factor in transgenic hybrid persistence. Two types of genetic load were analyzed in this study: random/linkage-derived genetic load, and directly incorporated genetic load using a transgenic mitigation (TM strategy. In order to measure the effects of random genetic load, hybrid productivity (seed yield and biomass was correlated with crop- and weed-specific AFLP genomic markers. This portion of the study was designed to answer whether or not weed × transgenic crop hybrids possessing more crop genes were less competitive than hybrids containing fewer crop genes. The effects of directly incorporated genetic load (TM were analyzed through transgene persistence data. TM strategies are proposed to decrease transgene persistence if gene flow and subsequent transgene introgression to a wild host were to occur. Results In the absence of interspecific competition, transgenic weed × crop hybrids benefited from having more crop-specific alleles. There was a positive correlation between performance and number of B. napus crop-specific AFLP markers [seed yield vs. marker number (r = 0.54, P = 0.0003 and vegetative dry biomass vs. marker number (r = 0.44, P = 0.005]. However under interspecific competition with wheat or more weed-like conditions (i.e. representing a situation where hybrid plants emerge as volunteer weeds in subsequent cropping systems, there was a positive correlation between the number of B. rapa weed-specific AFLP markers and seed yield (r = 0.70, P = 0.0001, although no such correlation was detected for vegetative biomass. When genetic load was directly incorporated into the hybrid genome, by inserting a

  20. Sex differences in immune responses: Hormonal effects, antagonistic selection, and evolutionary consequences.

    Science.gov (United States)

    Roved, Jacob; Westerdahl, Helena; Hasselquist, Dennis

    2017-02-01

    Males and females differ in both parasite load and the strength of immune responses and these effects have been verified in humans and other vertebrates. Sex hormones act as important modulators of immune responses; the male sex hormone testosterone is generally immunosuppressive while the female sex hormone estrogen tends to be immunoenhancing. Different sets of T-helper cells (Th) have important roles in adaptive immunity, e.g. Th1 cells trigger type 1 responses which are primarily cell-mediated, and Th2 cells trigger type 2 responses which are primarily humoral responses. In our review of the literature, we find that estrogen and progesterone enhance type 2 and suppress type 1 responses in females, whereas testosterone suppresses type 2 responses and shows an inconsistent pattern for type 1 responses in males. When we combine these patterns of generally immunosuppressive and immunoenhancing effects of the sex hormones, our results imply that the sex differences in immune responses should be particularly strong in immune functions associated with type 2 responses, and less pronounced with type 1 responses. In general the hormone-mediated sex differences in immune responses may lead to genetic sexual conflicts on immunity. Thus, we propose the novel hypothesis that sexually antagonistic selection may act on immune genes shared by the sexes, and that the strength of this sexually antagonistic selection should be stronger for type 2- as compared with type 1-associated immune genes. Finally, we put the consequences of sex hormone-induced effects on immune responses into behavioral and ecological contexts, considering social mating system, sexual selection, geographical distribution of hosts, and parasite abundance. Copyright © 2016 Elsevier Inc. All rights reserved.