A difference tracking algorithm based on discrete sine transform
Liu, HaoPeng; Yao, Yong; Lei, HeBing; Wu, HaoKun
2018-04-01
Target tracking is an important field of computer vision. The template matching tracking algorithm based on squared difference matching (SSD) and standard correlation coefficient (NCC) matching is very sensitive to the gray change of image. When the brightness or gray change, the tracking algorithm will be affected by high-frequency information. Tracking accuracy is reduced, resulting in loss of tracking target. In this paper, a differential tracking algorithm based on discrete sine transform is proposed to reduce the influence of image gray or brightness change. The algorithm that combines the discrete sine transform and the difference algorithm maps the target image into a image digital sequence. The Kalman filter predicts the target position. Using the Hamming distance determines the degree of similarity between the target and the template. The window closest to the template is determined the target to be tracked. The target to be tracked updates the template. Based on the above achieve target tracking. The algorithm is tested in this paper. Compared with SSD and NCC template matching algorithms, the algorithm tracks target stably when image gray or brightness change. And the tracking speed can meet the read-time requirement.
Image Retrieval Algorithm Based on Discrete Fractional Transforms
Jindal, Neeru; Singh, Kulbir
2013-06-01
The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.
Validation of a numerical algorithm based on transformed equations
International Nuclear Information System (INIS)
Xu, H.; Barron, R.M.; Zhang, C.
2003-01-01
Generally, a typical equation governing a physical process, such as fluid flow or heat transfer, has three types of terms that involve partial derivatives, namely, the transient term, the convective terms and the diffusion terms. The major difficulty in obtaining numerical solutions of these partial differential equations is the discretization of the convective terms. The transient term is usually discretized using the first-order forward or backward differencing scheme. The diffusion terms are usually discretized using the central differencing scheme and no difficulty arises since these terms involve second-order spatial derivatives of the flow variables. The convective terms are non-linear and contain first-order spatial derivatives. The main difference between various numerical algorithms is the discretization of the convective terms. In the present study, an alternative approach to discretizing the governing equations is presented. In this algorithm, the governing equations are first transformed by introducing an exponential function to eliminate the convective terms in the equations. The proposed algorithm is applied to simulate some fluid flows with exact solutions to validate the proposed algorithm. The fluid flows used in this study are a self-designed quasi-fluid flow problem, stagnation in plane flow (Hiemenz flow), and flow between two concentric cylinders. The comparisons with the power-law scheme indicate that the proposed scheme exhibits better performance. (author)
Hong, Xia
2006-07-01
In this letter, a Box-Cox transformation-based radial basis function (RBF) neural network is introduced using the RBF neural network to represent the transformed system output. Initially a fixed and moderate sized RBF model base is derived based on a rank revealing orthogonal matrix triangularization (QR decomposition). Then a new fast identification algorithm is introduced using Gauss-Newton algorithm to derive the required Box-Cox transformation, based on a maximum likelihood estimator. The main contribution of this letter is to explore the special structure of the proposed RBF neural network for computational efficiency by utilizing the inverse of matrix block decomposition lemma. Finally, the Box-Cox transformation-based RBF neural network, with good generalization and sparsity, is identified based on the derived optimal Box-Cox transformation and a D-optimality-based orthogonal forward regression algorithm. The proposed algorithm and its efficacy are demonstrated with an illustrative example in comparison with support vector machine regression.
Multi-stage phase retrieval algorithm based upon the gyrator transform.
Rodrigo, José A; Duadi, Hamootal; Alieva, Tatiana; Zalevsky, Zeev
2010-01-18
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and experimental results.
Multi-stage phase retrieval algorithm based upon the gyrator transform
Rodrigo Martín-Romo, José Augusto; Duadi, Hamootal; Alieva, Tatiana Krasheninnikova; Zalevsky, Zeev
2010-01-01
The gyrator transform is a useful tool for optical information processing applications. In this work we propose a multi-stage phase retrieval approach based on this operation as well as on the well-known Gerchberg-Saxton algorithm. It results in an iterative algorithm able to retrieve the phase information using several measurements of the gyrator transform power spectrum. The viability and performance of the proposed algorithm is demonstrated by means of several numerical simulations and exp...
Ogawa, Takahiro; Haseyama, Miki
2013-03-01
A missing texture reconstruction method based on an error reduction (ER) algorithm, including a novel estimation scheme of Fourier transform magnitudes is presented in this brief. In our method, Fourier transform magnitude is estimated for a target patch including missing areas, and the missing intensities are estimated by retrieving its phase based on the ER algorithm. Specifically, by monitoring errors converged in the ER algorithm, known patches whose Fourier transform magnitudes are similar to that of the target patch are selected from the target image. In the second approach, the Fourier transform magnitude of the target patch is estimated from those of the selected known patches and their corresponding errors. Consequently, by using the ER algorithm, we can estimate both the Fourier transform magnitudes and phases to reconstruct the missing areas.
A study of Hough Transform-based fingerprint alignment algorithms
CSIR Research Space (South Africa)
Mlambo, CS
2014-10-01
Full Text Available the implementation of each algorithm. The comparison is performed by considering the alignment results computed using each group of algorithms when varying number of minutiae points, rotation angle, and translation. In addition, the memory usage, computing time...
2018-01-01
ARL-TR-8270 ● JAN 2018 US Army Research Laboratory An Automated Energy Detection Algorithm Based on Morphological Filter...Automated Energy Detection Algorithm Based on Morphological Filter Processing with a Modified Watershed Transform by Kwok F Tom Sensors and Electron...1 October 2016–30 September 2017 4. TITLE AND SUBTITLE An Automated Energy Detection Algorithm Based on Morphological Filter Processing with a
Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua
2016-07-01
On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.
Fast heap transform-based QR-decomposition of real and complex matrices: algorithms and codes
Grigoryan, Artyom M.
2015-03-01
In this paper, we describe a new look on the application of Givens rotations to the QR-decomposition problem, which is similar to the method of Householder transformations. We apply the concept of the discrete heap transform, or signal-induced unitary transforms which had been introduced by Grigoryan (2006) and used in signal and image processing. Both cases of real and complex nonsingular matrices are considered and examples of performing QR-decomposition of square matrices are given. The proposed method of QR-decomposition for the complex matrix is novel and differs from the known method of complex Givens rotation and is based on analytical equations for the heap transforms. Many examples illustrated the proposed heap transform method of QR-decomposition are given, algorithms are described in detail, and MATLAB-based codes are included.
Analysis of the Chirplet Transform-Based Algorithm for Radar Detection of Accelerated Targets
Galushko, V. G.; Vavriv, D. M.
2017-06-01
Purpose: Efficiency analysis of an optimal algorithm of chirp signal processing based on the chirplet transform as applied to detection of radar targets in uniformly accelerated motion. Design/methodology/approach: Standard methods of the optimal filtration theory are used to investigate the ambiguity function of chirp signals. Findings: An analytical expression has been derived for the ambiguity function of chirp signals that is analyzed with respect to detection of radar targets moving at a constant acceleration. Sidelobe level and characteristic width of the ambiguity function with respect to the coordinates frequency and rate of its change have been estimated. The gain in the signal-to-noise ratio has been assessed that is provided by the algorithm under consideration as compared with application of the standard Fourier transform to detection of chirp signals against a “white” noise background. It is shown that already with a comparatively small (processing channels (elementary filters with respect to the frequency change rate) the gain in the signal-tonoise ratio exceeds 10 dB. A block diagram of implementation of the algorithm under consideration is suggested on the basis of a multichannel weighted Fourier transform. Recommendations as for selection of the detection algorithm parameters have been developed. Conclusions: The obtained results testify to efficiency of application of the algorithm under consideration to detection of radar targets moving at a constant acceleration. Nevertheless, it seems expedient to perform computer simulations of its operability with account for the noise impact along with trial measurements in real conditions.
Zhang, B.; Sang, Jun; Alam, Mohammad S.
2013-03-01
An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.
A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms
Directory of Open Access Journals (Sweden)
Nasreddine Taleb
2010-09-01
Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.
Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine
2010-01-01
Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.
Bouganssa, Issam; Sbihi, Mohamed; Zaim, Mounia
2017-07-01
The 2D Discrete Wavelet Transform (DWT) is a computationally intensive task that is usually implemented on specific architectures in many imaging systems in real time. In this paper, a high throughput edge or contour detection algorithm is proposed based on the discrete wavelet transform. A technique for applying the filters on the three directions (Horizontal, Vertical and Diagonal) of the image is used to present the maximum of the existing contours. The proposed architectures were designed in VHDL and mapped to a Xilinx Sparten6 FPGA. The results of the synthesis show that the proposed architecture has a low area cost and can operate up to 100 MHz, which can perform 2D wavelet analysis for a sequence of images while maintaining the flexibility of the system to support an adaptive algorithm.
Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong
2016-12-01
To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.
Qian, Jinfang; Zhang, Changjiang
2014-11-01
An efficient algorithm based on continuous wavelet transform combining with pre-knowledge, which can be used to detect the defect of glass bottle mouth, is proposed. Firstly, under the condition of ball integral light source, a perfect glass bottle mouth image is obtained by Japanese Computar camera through the interface of IEEE-1394b. A single threshold method based on gray level histogram is used to obtain the binary image of the glass bottle mouth. In order to efficiently suppress noise, moving average filter is employed to smooth the histogram of original glass bottle mouth image. And then continuous wavelet transform is done to accurately determine the segmentation threshold. Mathematical morphology operations are used to get normal binary bottle mouth mask. A glass bottle to be detected is moving to the detection zone by conveyor belt. Both bottle mouth image and binary image are obtained by above method. The binary image is multiplied with normal bottle mask and a region of interest is got. Four parameters (number of connected regions, coordinate of centroid position, diameter of inner cycle, and area of annular region) can be computed based on the region of interest. Glass bottle mouth detection rules are designed by above four parameters so as to accurately detect and identify the defect conditions of glass bottle. Finally, the glass bottles of Coca-Cola Company are used to verify the proposed algorithm. The experimental results show that the proposed algorithm can accurately detect the defect conditions of the glass bottles and have 98% detecting accuracy.
Multirate-based fast parallel algorithms for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2012-07-01
Novel algorithms for the multirate and fast parallel implementation of the 2-D discrete Hartley transform (DHT)-based real-valued discrete Gabor transform (RDGT) and its inverse transform are presented in this paper. A 2-D multirate-based analysis convolver bank is designed for the 2-D RDGT, and a 2-D multirate-based synthesis convolver bank is designed for the 2-D inverse RDGT. The parallel channels in each of the two convolver banks have a unified structure and can apply the 2-D fast DHT algorithm to speed up their computations. The computational complexity of each parallel channel is low and is independent of the Gabor oversampling rate. All the 2-D RDGT coefficients of an image are computed in parallel during the analysis process and can be reconstructed in parallel during the synthesis process. The computational complexity and time of the proposed parallel algorithms are analyzed and compared with those of the existing fastest algorithms for 2-D discrete Gabor transforms. The results indicate that the proposed algorithms are the fastest, which make them attractive for real-time image processing.
International Nuclear Information System (INIS)
Chouakri, S A; Djaafri, O; Taleb-Ahmed, A
2013-01-01
We present in this work an algorithm for electrocardiogram (ECG) signal compression aimed to its transmission via telecommunication channel. Basically, the proposed ECG compression algorithm is articulated on the use of wavelet transform, leading to low/high frequency components separation, high order statistics based thresholding, using level adjusted kurtosis value, to denoise the ECG signal, and next a linear predictive coding filter is applied to the wavelet coefficients producing a lower variance signal. This latter one will be coded using the Huffman encoding yielding an optimal coding length in terms of average value of bits per sample. At the receiver end point, with the assumption of an ideal communication channel, the inverse processes are carried out namely the Huffman decoding, inverse linear predictive coding filter and inverse discrete wavelet transform leading to the estimated version of the ECG signal. The proposed ECG compression algorithm is tested upon a set of ECG records extracted from the MIT-BIH Arrhythmia Data Base including different cardiac anomalies as well as the normal ECG signal. The obtained results are evaluated in terms of compression ratio and mean square error which are, respectively, around 1:8 and 7%. Besides the numerical evaluation, the visual perception demonstrates the high quality of ECG signal restitution where the different ECG waves are recovered correctly
Wei, B. G.; Huo, K. X.; Yao, Z. F.; Lou, J.; Li, X. Y.
2018-03-01
It is one of the difficult problems encountered in the research of condition maintenance technology of transformers to recognize partial discharge (PD) pattern. According to the main physical characteristics of PD, three models of oil-paper insulation defects were set up in laboratory to study the PD of transformers, and phase resolved partial discharge (PRPD) was constructed. By using least square method, the grey-scale images of PRPD were constructed and features of each grey-scale image were 28 box dimensions and 28 information dimensions. Affinity propagation algorithm based on manifold distance (AP-MD) for transformers PD pattern recognition was established, and the data of box dimension and information dimension were clustered based on AP-MD. Study shows that clustering result of AP-MD is better than the results of affinity propagation (AP), k-means and fuzzy c-means algorithm (FCM). By choosing different k values of k-nearest neighbor, we find clustering accuracy of AP-MD falls when k value is larger or smaller, and the optimal k value depends on sample size.
Iris Location Algorithm Based on the CANNY Operator and Gradient Hough Transform
Zhong, L. H.; Meng, K.; Wang, Y.; Dai, Z. Q.; Li, S.
2017-12-01
In the iris recognition system, the accuracy of the localization of the inner and outer edges of the iris directly affects the performance of the recognition system, so iris localization has important research meaning. Our iris data contain eyelid, eyelashes, light spot and other noise, even the gray transformation of the images is not obvious, so the general methods of iris location are unable to realize the iris location. The method of the iris location based on Canny operator and gradient Hough transform is proposed. Firstly, the images are pre-processed; then, calculating the gradient information of images, the inner and outer edges of iris are coarse positioned using Canny operator; finally, according to the gradient Hough transform to realize precise localization of the inner and outer edge of iris. The experimental results show that our algorithm can achieve the localization of the inner and outer edges of the iris well, and the algorithm has strong anti-interference ability, can greatly reduce the location time and has higher accuracy and stability.
Qin, Jin; Tang, Siqi; Han, Congying; Guo, Tiande
2018-04-01
Partial fingerprint identification technology which is mainly used in device with small sensor area like cellphone, U disk and computer, has taken more attention in recent years with its unique advantages. However, owing to the lack of sufficient minutiae points, the conventional method do not perform well in the above situation. We propose a new fingerprint matching technique which utilizes ridges as features to deal with partial fingerprint images and combines the modified generalized Hough transform and scoring strategy based on machine learning. The algorithm can effectively meet the real-time and space-saving requirements of the resource constrained devices. Experiments on in-house database indicate that the proposed algorithm have an excellent performance.
Binol, Hamidullah; Bal, Abdullah; Cukur, Huseyin
2015-10-01
The performance of the kernel based techniques depends on the selection of kernel parameters. That's why; suitable parameter selection is an important problem for many kernel based techniques. This article presents a novel technique to learn the kernel parameters in kernel Fukunaga-Koontz Transform based (KFKT) classifier. The proposed approach determines the appropriate values of kernel parameters through optimizing an objective function constructed based on discrimination ability of KFKT. For this purpose we have utilized differential evolution algorithm (DEA). The new technique overcomes some disadvantages such as high time consumption existing in the traditional cross-validation method, and it can be utilized in any type of data. The experiments for target detection applications on the hyperspectral images verify the effectiveness of the proposed method.
Optimization design for the stepped impedance transformer based on the genetic algorithm
International Nuclear Information System (INIS)
Zou Dehui; Lai Wanchang; Qiu Dong
2007-01-01
This paper introduces the basic principium and mathematic model of the stepped impedance transformer, then puts the emphasis on comparing two kinds of design methods of the stepped impedance transformer. The design results are simulated by EDA, which indicates that genetic algorithm design is better than Chebyshev integrated design in the term of the most reflect coefficient's module. (authors)
An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm
Directory of Open Access Journals (Sweden)
Kai Hu
2015-01-01
Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.
Directory of Open Access Journals (Sweden)
Hui Huang
2017-01-01
Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.
Energy Technology Data Exchange (ETDEWEB)
Eldin, A.A. Hossam; Refaey, M.A. [Electrical Engineering Department, Alexandria University, Alexandria (Egypt)
2011-01-15
This paper proposes a novel methodology for transformer differential protection, based on wave shape recognition of the discriminating criterion extracted of the instantaneous differential currents. Discrete wavelet transform has been applied to the differential currents due to internal fault and inrush currents. The diagnosis criterion is based on median absolute deviation (MAD) of wavelet coefficients over a specified frequency band. The proposed algorithm is examined using various simulated inrush and internal fault current cases on a power transformer that has been modeled using electromagnetic transients program EMTDC software. Results of evaluation study show that, proposed wavelet based differential protection scheme can discriminate internal faults from inrush currents. (author)
Cheng, Jun; Zhang, Jun; Tian, Jinwen
2015-12-01
Based on deep analysis of the LiveWire interactive boundary extraction algorithm, a new algorithm focusing on improving the speed of LiveWire algorithm is proposed in this paper. Firstly, the Haar wavelet transform is carried on the input image, and the boundary is extracted on the low resolution image obtained by the wavelet transform of the input image. Secondly, calculating LiveWire shortest path is based on the control point set direction search by utilizing the spatial relationship between the two control points users provide in real time. Thirdly, the search order of the adjacent points of the starting node is set in advance. An ordinary queue instead of a priority queue is taken as the storage pool of the points when optimizing their shortest path value, thus reducing the complexity of the algorithm from O[n2] to O[n]. Finally, A region iterative backward projection method based on neighborhood pixel polling has been used to convert dual-pixel boundary of the reconstructed image to single-pixel boundary after Haar wavelet inverse transform. The algorithm proposed in this paper combines the advantage of the Haar wavelet transform and the advantage of the optimal path searching method based on control point set direction search. The former has fast speed of image decomposition and reconstruction and is more consistent with the texture features of the image and the latter can reduce the time complexity of the original algorithm. So that the algorithm can improve the speed in interactive boundary extraction as well as reflect the boundary information of the image more comprehensively. All methods mentioned above have a big role in improving the execution efficiency and the robustness of the algorithm.
International Nuclear Information System (INIS)
Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.
1995-01-01
This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)
Multiple Harmonics Fitting Algorithms Applied to Periodic Signals Based on Hilbert-Huang Transform
Directory of Open Access Journals (Sweden)
Hui Wang
2013-01-01
Full Text Available A new generation of multipurpose measurement equipment is transforming the role of computers in instrumentation. The new features involve mixed devices, such as kinds of sensors, analog-to-digital and digital-to-analog converters, and digital signal processing techniques, that are able to substitute typical discrete instruments like multimeters and analyzers. Signal-processing applications frequently use least-squares (LS sine-fitting algorithms. Periodic signals may be interpreted as a sum of sine waves with multiple frequencies: the Fourier series. This paper describes a new sine fitting algorithm that is able to fit a multiharmonic acquired periodic signal. By means of a “sinusoidal wave” whose amplitude and phase are both transient, the “triangular wave” can be reconstructed on the basis of Hilbert-Huang transform (HHT. This method can be used to test effective number of bits (ENOBs of analog-to-digital converter (ADC, avoiding the trouble of selecting initial value of the parameters and working out the nonlinear equations. The simulation results show that the algorithm is precise and efficient. In the case of enough sampling points, even under the circumstances of low-resolution signal with the harmonic distortion existing, the root mean square (RMS error between the sampling data of original “triangular wave” and the corresponding points of fitting “sinusoidal wave” is marvelously small. That maybe means, under the circumstances of any periodic signal, that ENOBs of high-resolution ADC can be tested accurately.
Liu, Hua-Long; Liu, Hua-Dong
2014-10-01
Partial discharge (PD) in power transformers is one of the prime reasons resulting in insulation degradation and power faults. Hence, it is of great importance to study the techniques of the detection and localization of PD in theory and practice. The detection and localization of PD employing acoustic emission (AE) techniques, as a kind of non-destructive testing, plus due to the advantages of powerful capability of locating and high precision, have been paid more and more attention. The localization algorithm is the key factor to decide the localization accuracy in AE localization of PD. Many kinds of localization algorithms exist for the PD source localization adopting AE techniques including intelligent and non-intelligent algorithms. However, the existed algorithms possess some defects such as the premature convergence phenomenon, poor local optimization ability and unsuitability for the field applications. To overcome the poor local optimization ability and easily caused premature convergence phenomenon of the fundamental genetic algorithm (GA), a new kind of improved GA is proposed, namely the sequence quadratic programming-genetic algorithm (SQP-GA). For the hybrid optimization algorithm, SQP-GA, the sequence quadratic programming (SQP) algorithm which is used as a basic operator is integrated into the fundamental GA, so the local searching ability of the fundamental GA is improved effectively and the premature convergence phenomenon is overcome. Experimental results of the numerical simulations of benchmark functions show that the hybrid optimization algorithm, SQP-GA, is better than the fundamental GA in the convergence speed and optimization precision, and the proposed algorithm in this paper has outstanding optimization effect. At the same time, the presented SQP-GA in the paper is applied to solve the ultrasonic localization problem of PD in transformers, then the ultrasonic localization method of PD in transformers based on the SQP-GA is proposed. And
Directory of Open Access Journals (Sweden)
Padmavathi Kora
2017-06-01
Full Text Available Electrocardiogram (ECG, a non-invasive diagnostic technique, used for detecting cardiac arrhythmia. From last decade industry dealing with biomedical instrumentation and research, demanding an advancement in its ability to distinguish different cardiac arrhythmia. Atrial Fibrillation (AF is an irregular rhythm of the human heart. During AF, the atrial moments are quicker than the normal rate. As blood is not completely ejected out of atria, chances for the formation of blood clots in atrium. These abnormalities in the heart can be identified by the changes in the morphology of the ECG. The first step in the detection of AF is preprocessing of ECG, which removes noise using filters. Feature extraction is the next key process in this research. Recent feature extraction methods, such as Auto Regressive (AR modeling, Magnitude Squared Coherence (MSC and Wavelet Coherence (WTC using standard database (MIT-BIH, yielded a lot of features. Many of these features might be insignificant containing some redundant and non-discriminatory features that introduce computational burden and loss of performance. This paper presents fast Conjugate Symmetric Sequency Ordered Complex Hadamard Transform (CS-SCHT for extracting relevant features from the ECG signal. The sparse matrix factorization method is used for developing fast and efficient CS-SCHT algorithm and its computational performance is examined and compared to that of the HT and NCHT. The applications of the CS-SCHT in the ECG-based AF detection is also discussed. These fast CS-SCHT features are optimized using Hybrid Firefly and Particle Swarm Optimization (FFPSO to increase the performance of the classifier.
Directory of Open Access Journals (Sweden)
Abhijeet Ravankar
2016-05-01
Full Text Available Line detection is an important problem in computer vision, graphics and autonomous robot navigation. Lines detected using a laser range sensor (LRS mounted on a robot can be used as features to build a map of the environment, and later to localize the robot in the map, in a process known as Simultaneous Localization and Mapping (SLAM. We propose an efficient algorithm for line detection from LRS data using a novel hopping-points Singular Value Decomposition (SVD and Hough transform-based algorithm, in which SVD is applied to intermittent LRS points to accelerate the algorithm. A reverse-hop mechanism ensures that the end points of the line segments are accurately extracted. Line segments extracted from the proposed algorithm are used to form a map and, subsequently, LRS data points are matched with the line segments to localize the robot. The proposed algorithm eliminates the drawbacks of point-based matching algorithms like the Iterative Closest Points (ICP algorithm, the performance of which degrades with an increasing number of points. We tested the proposed algorithm for mapping and localization in both simulated and real environments, and found it to detect lines accurately and build maps with good self-localization.
Energy Technology Data Exchange (ETDEWEB)
Bang, Jeongho [Seoul National University, Seoul (Korea, Republic of); Hanyang University, Seoul (Korea, Republic of); Yoo, Seokwon [Hanyang University, Seoul (Korea, Republic of)
2014-12-15
We propose a genetic-algorithm-based method to find the unitary transformations for any desired quantum computation. We formulate a simple genetic algorithm by introducing the 'genetic parameter vector' of the unitary transformations to be found. In the genetic algorithm process, all components of the genetic parameter vectors are supposed to evolve to the solution parameters of the unitary transformations. We apply our method to find the optimal unitary transformations and to generalize the corresponding quantum algorithms for a realistic problem, the one-bit oracle decision problem, or the often-called Deutsch problem. By numerical simulations, we can faithfully find the appropriate unitary transformations to solve the problem by using our method. We analyze the quantum algorithms identified by the found unitary transformations and generalize the variant models of the original Deutsch's algorithm.
Directory of Open Access Journals (Sweden)
Byambaa Dorj
2016-01-01
Full Text Available The next promising key issue of the automobile development is a self-driving technique. One of the challenges for intelligent self-driving includes a lane-detecting and lane-keeping capability for advanced driver assistance systems. This paper introduces an efficient and lane detection method designed based on top view image transformation that converts an image from a front view to a top view space. After the top view image transformation, a Hough transformation technique is integrated by using a parabolic model of a curved lane in order to estimate a parametric model of the lane in the top view space. The parameters of the parabolic model are estimated by utilizing a least-square approach. The experimental results show that the newly proposed lane detection method with the top view transformation is very effective in estimating a sharp and curved lane leading to a precise self-driving capability.
Xu, Shaoping; Zeng, Xiaoxia; Jiang, Yinnan; Tang, Yiling
2018-01-01
We proposed a noniterative principal component analysis (PCA)-based noise level estimation (NLE) algorithm that addresses the problem of estimating the noise level with a two-step scheme. First, we randomly extracted a number of raw patches from a given noisy image and took the smallest eigenvalue of the covariance matrix of the raw patches as the preliminary estimation of the noise level. Next, the final estimation was directly obtained with a nonlinear mapping (rectification) function that was trained on some representative noisy images corrupted with different known noise levels. Compared with the state-of-art NLE algorithms, the experiment results show that the proposed NLE algorithm can reliably infer the noise level and has robust performance over a wide range of image contents and noise levels, showing a good compromise between speed and accuracy in general.
Sum of top-hat transform based algorithm for vessel enhancement in MRA images
Ouazaa, Hibet-Allah; Jlassi, Hajer; Hamrouni, Kamel
2018-04-01
The Magnetic Resonance Angiography (MRA) is rich with information's. But, they suffer from poor contrast, illumination and noise. Thus, it is required to enhance the images. But, these significant information can be lost if improper techniques are applied. Therefore, in this paper, we propose a new method of enhancement. We applied firstly the CLAHE method to increase the contrast of the image. Then, we applied the sum of Top-Hat Transform to increase the brightness of vessels. It is performed with the structuring element oriented in different angles. The methodology is tested and evaluated on the publicly available database BRAINIX. And, we used the measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio) for the evaluation. The results demonstrate that the proposed method could efficiently enhance the image details and is comparable with state of the art algorithms. Hence, the proposed method could be broadly used in various applications.
Directory of Open Access Journals (Sweden)
Mahin K. Atiq
2013-09-01
Full Text Available Measurement of the active, reactive, and apparent power is one of the most fundamental tasks of smart meters in energy systems. Recently, a number of studies have employed the discrete wavelet transform (DWT for power measurement in smart meters. The most common way to implement DWT is the pyramid algorithm; however, this is not feasible for practical DWT computation because it requires either a log N cascaded filter or O (N word size memory storage for an input signal of the N-point. Both solutions are too expensive for practical applications of smart meters. It is proposed that the recursive pyramid algorithm is more suitable for smart meter implementation because it requires only word size storage of L × Log (N-L, where L is the length of filter. We also investigated the effect of varying different system parameters, such as the sampling rate, dc offset, phase offset, linearity error in current and voltage sensors, analog to digital converter resolution, and number of harmonics in a non-sinusoidal system, on the reactive energy measurement using DWT. The error analysis is depicted in the form of the absolute difference between the measured and the true value of the reactive energy.
International Nuclear Information System (INIS)
Bakhos, Tania; Saibaba, Arvind K.; Kitanidis, Peter K.
2015-01-01
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method
Energy Technology Data Exchange (ETDEWEB)
Bakhos, Tania, E-mail: taniab@stanford.edu [Institute for Computational and Mathematical Engineering, Stanford University (United States); Saibaba, Arvind K. [Department of Electrical and Computer Engineering, Tufts University (United States); Kitanidis, Peter K. [Institute for Computational and Mathematical Engineering, Stanford University (United States); Department of Civil and Environmental Engineering, Stanford University (United States)
2015-10-15
We consider the problem of estimating parameters in large-scale weakly nonlinear inverse problems for which the underlying governing equations is a linear, time-dependent, parabolic partial differential equation. A major challenge in solving these inverse problems using Newton-type methods is the computational cost associated with solving the forward problem and with repeated construction of the Jacobian, which represents the sensitivity of the measurements to the unknown parameters. Forming the Jacobian can be prohibitively expensive because it requires repeated solutions of the forward and adjoint time-dependent parabolic partial differential equations corresponding to multiple sources and receivers. We propose an efficient method based on a Laplace transform-based exponential time integrator combined with a flexible Krylov subspace approach to solve the resulting shifted systems of equations efficiently. Our proposed solver speeds up the computation of the forward and adjoint problems, thus yielding significant speedup in total inversion time. We consider an application from Transient Hydraulic Tomography (THT), which is an imaging technique to estimate hydraulic parameters related to the subsurface from pressure measurements obtained by a series of pumping tests. The algorithms discussed are applied to a synthetic example taken from THT to demonstrate the resulting computational gains of this proposed method.
Directory of Open Access Journals (Sweden)
HE Manyun
2017-09-01
Full Text Available Classification of building and vegetation is difficult solely by LiDAR data and vegetation in shadows can't be eliminated only by aerial images. The improved top-hat transformations and local binary patterns (LBP elevation texture analysis for building extraction are proposed based on the fusion of aerial images and LiDAR data. Firstly, LiDAR data is reorganized into grid cell, the algorithm removes ground points through top-hat transform. Then, the vegetation points are extracted by normalized difference vegetation index (NDVI. Thirdly, according to the elevation information of LiDAR points, LBP elevation texture is calculated and achieving precise elimination of vegetation in shadows or surrounding to the buildings. At last, morphological operations are used to fill the holes of building roofs, and region growing for complete building edges. The simulation is based on the complex urban area in Vaihingen benchmark provided by ISPRS, the results show that the algorithm affording higher classification accuracy.
Directory of Open Access Journals (Sweden)
R. Hajiabadi
2016-10-01
Full Text Available Introduction One reason for the complexity of hydrological phenomena prediction, especially time series is existence of features such as trend, noise and high-frequency oscillations. These complex features, especially noise, can be detected or removed by preprocessing. Appropriate preprocessing causes estimation of these phenomena become easier. Preprocessing in the data driven models such as artificial neural network, gene expression programming, support vector machine, is more effective because the quality of data in these models is important. Present study, by considering diagnosing and data transformation as two different preprocessing, tries to improve the results of intelligent models. In this study two different intelligent models, Artificial Neural Network and Gene Expression Programming, are applied to estimation of daily suspended sediment load. Wavelet transforms and logarithmic transformation is used for diagnosing and data transformation, respectively. Finally, the impacts of preprocessing on the results of intelligent models are evaluated. Materials and Methods In this study, Gene Expression Programming and Artificial Neural Network are used as intelligent models for suspended sediment load estimation, then the impacts of diagnosing and logarithmic transformations approaches as data preprocessor are evaluated and compared to the result improvement. Two different logarithmic transforms are considered in this research, LN and LOG. Wavelet transformation is used to time series denoising. In order to denoising by wavelet transforms, first, time series can be decomposed at one level (Approximation part and detail part and second, high-frequency part (detail will be removed as noise. According to the ability of gene expression programming and artificial neural network to analysis nonlinear systems; daily values of suspended sediment load of the Skunk River in USA, during a 5-year period, are investigated and then estimated.4 years of
Correa Monteiro, Luis Fernando; Aredes, Mauricio; Pinto, J. G.; Exposto, Bruno; Afonso, João L.
2016-01-01
This study presents control algorithms for a new unified power quality conditioner (UPQC) without the series transformers that are frequently used to make the insertion of the series converter of the UPQC between the power supply and the load. The behaviour of the proposed UPQC is evaluated in presence of voltage imbalances, as well as under non-sinusoidal voltage-and current conditions. The presented algorithms derive from the concepts involving the active and non-active currents, together w...
Wormeester, Herbert; Sasse, A.G.B.M.; van Silfhout, Arend
1988-01-01
One of the main problems in the analysis of measured spectra is how to reduce the influence of noise in data processing. We show a deconvolution, a differentiation and a Fourier Transform algorithm that can be run on a small computer (64 K RAM) and suffer less from noise than commonly used routines.
Directory of Open Access Journals (Sweden)
Erik Cuevas
2015-01-01
Full Text Available In this paper, a new method for robustly estimating multiple view relations from point correspondences is presented. The approach combines the popular random sampling consensus (RANSAC algorithm and the evolutionary method harmony search (HS. With this combination, the proposed method adopts a different sampling strategy than RANSAC to generate putative solutions. Under the new mechanism, at each iteration, new candidate solutions are built taking into account the quality of the models generated by previous candidate solutions, rather than purely random as it is the case of RANSAC. The rules for the generation of candidate solutions (samples are motivated by the improvisation process that occurs when a musician searches for a better state of harmony. As a result, the proposed approach can substantially reduce the number of iterations still preserving the robust capabilities of RANSAC. The method is generic and its use is illustrated by the estimation of homographies, considering synthetic and real images. Additionally, in order to demonstrate the performance of the proposed approach within a real engineering application, it is employed to solve the problem of position estimation in a humanoid robot. Experimental results validate the efficiency of the proposed method in terms of accuracy, speed, and robustness.
Kumar, Gaurav; Kumar, Ashok
2017-11-01
Structural control has gained significant attention in recent times. The standalone issue of power requirement during an earthquake has already been solved up to a large extent by designing semi-active control systems using conventional linear quadratic control theory, and many other intelligent control algorithms such as fuzzy controllers, artificial neural networks, etc. In conventional linear-quadratic regulator (LQR) theory, it is customary to note that the values of the design parameters are decided at the time of designing the controller and cannot be subsequently altered. During an earthquake event, the response of the structure may increase or decrease, depending the quasi-resonance occurring between the structure and the earthquake. In this case, it is essential to modify the value of the design parameters of the conventional LQR controller to obtain optimum control force to mitigate the vibrations due to the earthquake. A few studies have been done to sort out this issue but in all these studies it was necessary to maintain a database of the earthquake. To solve this problem and to find the optimized design parameters of the LQR controller in real time, a fast Fourier transform and particle swarm optimization based modified linear quadratic regulator method is presented here. This method comprises four different algorithms: particle swarm optimization (PSO), the fast Fourier transform (FFT), clipped control algorithm and the LQR. The FFT helps to obtain the dominant frequency for every time window. PSO finds the optimum gain matrix through the real-time update of the weighting matrix R, thereby, dispensing with the experimentation. The clipped control law is employed to match the magnetorheological (MR) damper force with the desired force given by the controller. The modified Bouc-Wen phenomenological model is taken to recognize the nonlinearities in the MR damper. The assessment of the advised method is done by simulation of a three-story structure
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Lieb, Florian; Stark, Hans-Georg; Thielemann, Christiane
2017-06-01
Objective. Spike detection from extracellular recordings is a crucial preprocessing step when analyzing neuronal activity. The decision whether a specific part of the signal is a spike or not is important for any kind of other subsequent preprocessing steps, like spike sorting or burst detection in order to reduce the classification of erroneously identified spikes. Many spike detection algorithms have already been suggested, all working reasonably well whenever the signal-to-noise ratio is large enough. When the noise level is high, however, these algorithms have a poor performance. Approach. In this paper we present two new spike detection algorithms. The first is based on a stationary wavelet energy operator and the second is based on the time-frequency representation of spikes. Both algorithms are more reliable than all of the most commonly used methods. Main results. The performance of the algorithms is confirmed by using simulated data, resembling original data recorded from cortical neurons with multielectrode arrays. In order to demonstrate that the performance of the algorithms is not restricted to only one specific set of data, we also verify the performance using a simulated publicly available data set. We show that both proposed algorithms have the best performance under all tested methods, regardless of the signal-to-noise ratio in both data sets. Significance. This contribution will redound to the benefit of electrophysiological investigations of human cells. Especially the spatial and temporal analysis of neural network communications is improved by using the proposed spike detection algorithms.
Directory of Open Access Journals (Sweden)
Byung Eun Lee
2014-09-01
Full Text Available This paper proposes an algorithm for fault detection, faulted phase and winding identification of a three-winding power transformer based on the induced voltages in the electrical power system. The ratio of the induced voltages of the primary-secondary, primary-tertiary and secondary-tertiary windings is the same as the corresponding turns ratio during normal operating conditions, magnetic inrush, and over-excitation. It differs from the turns ratio during an internal fault. For a single phase and a three-phase power transformer with wye-connected windings, the induced voltages of each pair of windings are estimated. For a three-phase power transformer with delta-connected windings, the induced voltage differences are estimated to use the line currents, because the delta winding currents are practically unavailable. Six detectors are suggested for fault detection. An additional three detectors and a rule for faulted phase and winding identification are presented as well. The proposed algorithm can not only detect an internal fault, but also identify the faulted phase and winding of a three-winding power transformer. The various test results with Electromagnetic Transients Program (EMTP-generated data show that the proposed algorithm successfully discriminates internal faults from normal operating conditions including magnetic inrush and over-excitation. This paper concludes by implementing the algorithm into a prototype relay based on a digital signal processor.
Momeni, Saba; Pourghassem, Hossein
2014-08-01
Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.
Fast numerical algorithm for the linear canonical transform.
Hennelly, Bryan M; Sheridan, John T
2005-05-01
The linear canonical transform (LCT) describes the effect of any quadratic phase system (QPS) on an input optical wave field. Special cases of the LCT include the fractional Fourier transform (FRT), the Fourier transform (FT), and the Fresnel transform (FST) describing free-space propagation. Currently there are numerous efficient algorithms used (for purposes of numerical simulation in the area of optical signal processing) to calculate the discrete FT, FRT, and FST. All of these algorithms are based on the use of the fast Fourier transform (FFT). In this paper we develop theory for the discrete linear canonical transform (DLCT), which is to the LCT what the discrete Fourier transform (DFT) is to the FT. We then derive the fast linear canonical transform (FLCT), an N log N algorithm for its numerical implementation by an approach similar to that used in deriving the FFT from the DFT. Our algorithm is significantly different from the FFT, is based purely on the properties of the LCT, and can be used for FFT, FRT, and FST calculations and, in the most general case, for the rapid calculation of the effect of any QPS.
Siddeq, M. M.; Rodrigues, M. A.
2015-09-01
Image compression techniques are widely used on 2D image 2D video 3D images and 3D video. There are many types of compression techniques and among the most popular are JPEG and JPEG2000. In this research, we introduce a new compression method based on applying a two level discrete cosine transform (DCT) and a two level discrete wavelet transform (DWT) in connection with novel compression steps for high-resolution images. The proposed image compression algorithm consists of four steps. (1) Transform an image by a two level DWT followed by a DCT to produce two matrices: DC- and AC-Matrix, or low and high frequency matrix, respectively, (2) apply a second level DCT on the DC-Matrix to generate two arrays, namely nonzero-array and zero-array, (3) apply the Minimize-Matrix-Size algorithm to the AC-Matrix and to the other high-frequencies generated by the second level DWT, (4) apply arithmetic coding to the output of previous steps. A novel decompression algorithm, Fast-Match-Search algorithm (FMS), is used to reconstruct all high-frequency matrices. The FMS-algorithm computes all compressed data probabilities by using a table of data, and then using a binary search algorithm for finding decompressed data inside the table. Thereafter, all decoded DC-values with the decoded AC-coefficients are combined in one matrix followed by inverse two levels DCT with two levels DWT. The technique is tested by compression and reconstruction of 3D surface patches. Additionally, this technique is compared with JPEG and JPEG2000 algorithm through 2D and 3D root-mean-square-error following reconstruction. The results demonstrate that the proposed compression method has better visual properties than JPEG and JPEG2000 and is able to more accurately reconstruct surface patches in 3D.
Unaldi, Numan; Temel, Samil; Asari, Vijayan K.
2012-01-01
One of the most critical issues of Wireless Sensor Networks (WSNs) is the deployment of a limited number of sensors in order to achieve maximum coverage on a terrain. The optimal sensor deployment which enables one to minimize the consumed energy, communication time and manpower for the maintenance of the network has attracted interest with the increased number of studies conducted on the subject in the last decade. Most of the studies in the literature today are proposed for two dimensional (2D) surfaces; however, real world sensor deployments often arise on three dimensional (3D) environments. In this paper, a guided wavelet transform (WT) based deployment strategy (WTDS) for 3D terrains, in which the sensor movements are carried out within the mutation phase of the genetic algorithms (GAs) is proposed. The proposed algorithm aims to maximize the Quality of Coverage (QoC) of a WSN via deploying a limited number of sensors on a 3D surface by utilizing a probabilistic sensing model and the Bresenham's line of sight (LOS) algorithm. In addition, the method followed in this paper is novel to the literature and the performance of the proposed algorithm is compared with the Delaunay Triangulation (DT) method as well as a standard genetic algorithm based method and the results reveal that the proposed method is a more powerful and more successful method for sensor deployment on 3D terrains. PMID:22666078
Discrete Hadamard transformation algorithm's parallelism analysis and achievement
Hu, Hui
2009-07-01
With respect to Discrete Hadamard Transformation (DHT) wide application in real-time signal processing while limitation in operation speed of DSP. The article makes DHT parallel research and its parallel performance analysis. Based on multiprocessor platform-TMS320C80 programming structure, the research is carried out to achieve two kinds of parallel DHT algorithms. Several experiments demonstrated the effectiveness of the proposed algorithms.
Directory of Open Access Journals (Sweden)
Wei Sun
2015-01-01
Full Text Available Electric power is a kind of unstorable energy concerning the national welfare and the people’s livelihood, the stability of which is attracting more and more attention. Because the short-term power load is always interfered by various external factors with the characteristics like high volatility and instability, a single model is not suitable for short-term load forecasting due to low accuracy. In order to solve this problem, this paper proposes a new model based on wavelet transform and the least squares support vector machine (LSSVM which is optimized by fruit fly algorithm (FOA for short-term load forecasting. Wavelet transform is used to remove error points and enhance the stability of the data. Fruit fly algorithm is applied to optimize the parameters of LSSVM, avoiding the randomness and inaccuracy to parameters setting. The result of implementation of short-term load forecasting demonstrates that the hybrid model can be used in the short-term forecasting of the power system.
Directory of Open Access Journals (Sweden)
Wenzhu Huang
2015-04-01
Full Text Available Static strain can be detected by measuring a cross-correlation of reflection spectra from two fiber Bragg gratings (FBGs. However, the static-strain measurement resolution is limited by the dominant Gaussian noise source when using this traditional method. This paper presents a novel static-strain demodulation algorithm for FBG-based Fabry-Perot interferometers (FBG-FPs. The Hilbert transform is proposed for changing the Gaussian distribution of the two FBG-FPs’ reflection spectra, and a cross third-order cumulant is used to use the results of the Hilbert transform and get a group of noise-vanished signals which can be used to accurately calculate the wavelength difference of the two FBG-FPs. The benefit by these processes is that Gaussian noise in the spectra can be suppressed completely in theory and a higher resolution can be reached. In order to verify the precision and flexibility of this algorithm, a detailed theory model and a simulation analysis are given, and an experiment is implemented. As a result, a static-strain resolution of 0.9 nε under laboratory environment condition is achieved, showing a higher resolution than the traditional cross-correlation method.
Directory of Open Access Journals (Sweden)
Abdallah Bengueddoudj
2017-05-01
Full Text Available In this paper, we propose a new image fusion algorithm based on two-dimensional Scale-Mixing Complex Wavelet Transform (2D-SMCWT. The fusion of the detail 2D-SMCWT coefficients is performed via a Bayesian Maximum a Posteriori (MAP approach by considering a trivariate statistical model for the local neighboring of 2D-SMCWT coefficients. For the approximation coefficients, a new fusion rule based on the Principal Component Analysis (PCA is applied. We conduct several experiments using three different groups of multimodal medical images to evaluate the performance of the proposed method. The obtained results prove the superiority of the proposed method over the state of the art fusion methods in terms of visual quality and several commonly used metrics. Robustness of the proposed method is further tested against different types of noise. The plots of fusion metrics establish the accuracy of the proposed fusion method.
Fast algorithm for computing complex number-theoretic transforms
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix FFT algorithm for computing transforms over FFT, where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
A fast butterfly algorithm for generalized Radon transforms
Hu, Jingwei; Fomel, Sergey; Demanet, Laurent; Ying, Lexing
2013-01-01
Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm
Inversion algorithms for the spherical Radon and cosine transform
International Nuclear Information System (INIS)
Louis, A K; Riplinger, M; Spiess, M; Spodarev, E
2011-01-01
We consider two integral transforms which are frequently used in integral geometry and related fields, namely the spherical Radon and cosine transform. Fast algorithms are developed which invert the respective transforms in a numerically stable way. So far, only theoretical inversion formulae or algorithms for atomic measures have been derived, which are not so important for applications. We focus on two- and three-dimensional cases, where we also show that our method leads to a regularization. Numerical results are presented and show the validity of the resulting algorithms. First, we use synthetic data for the inversion of the Radon transform. Then we apply the algorithm for the inversion of the cosine transform to reconstruct the directional distribution of line processes from finitely many intersections of their lines with test lines (2D) or planes (3D), respectively. Finally we apply our method to analyse a series of microscopic two- and three-dimensional images of a fibre system
Multi-resolution inversion algorithm for the attenuated radon transform
Barbano, Paolo Emilio
2011-09-01
We present a FAST implementation of the Inverse Attenuated Radon Transform which incorporates accurate collimator response, as well as artifact rejection due to statistical noise and data corruption. This new reconstruction procedure is performed by combining a memory-efficient implementation of the analytical inversion formula (AIF [1], [2]) with a wavelet-based version of a recently discovered regularization technique [3]. The paper introduces all the main aspects of the new AIF, as well numerical experiments on real and simulated data. Those display a substantial improvement in reconstruction quality when compared to linear or iterative algorithms. © 2011 IEEE.
A fast butterfly algorithm for generalized Radon transforms
Hu, Jingwei
2013-06-21
Generalized Radon transforms, such as the hyperbolic Radon transform, cannot be implemented as efficiently in the frequency domain as convolutions, thus limiting their use in seismic data processing. We have devised a fast butterfly algorithm for the hyperbolic Radon transform. The basic idea is to reformulate the transform as an oscillatory integral operator and to construct a blockwise lowrank approximation of the kernel function. The overall structure follows the Fourier integral operator butterfly algorithm. For 2D data, the algorithm runs in complexity O(N2 log N), where N depends on the maximum frequency and offset in the data set and the range of parameters (intercept time and slowness) in the model space. From a series of studies, we found that this algorithm can be significantly more efficient than the conventional time-domain integration. © 2013 Society of Exploration Geophysicists.
Genetic Algorithms Evolve Optimized Transforms for Signal Processing Applications
National Research Council Canada - National Science Library
Moore, Frank; Babb, Brendan; Becke, Steven; Koyuk, Heather; Lamson, Earl, III; Wedge, Christopher
2005-01-01
.... The primary goal of the research described in this final report was to establish a methodology for using genetic algorithms to evolve coefficient sets describing inverse transforms and matched...
Using transformation algorithms to estimate (co)variance ...
African Journals Online (AJOL)
REML) procedures by a diagonalization approach is extended to multiple traits by the use of canonical transformations. A computing strategy is developed for use on large data sets employing two different REML algorithms for the estimation of ...
Healy, John J.
2018-01-01
The linear canonical transforms (LCTs) are a parameterised group of linear integral transforms. The LCTs encompass a number of well-known transformations as special cases, including the Fourier transform, fractional Fourier transform, and the Fresnel integral. They relate the scalar wave fields at the input and output of systems composed of thin lenses and free space, along with other quadratic phase systems. In this paper, we perform a systematic search of all algorithms based on up to five stages of magnification, chirp multiplication and Fourier transforms. Based on that search, we propose a novel algorithm, for which we present numerical results. We compare the sampling requirements of three algorithms. Finally, we discuss some issues surrounding the composition of discrete LCTs.
A general algorithm for computing distance transforms in linear time
Meijster, A.; Roerdink, J.B.T.M.; Hesselink, W.H.; Goutsias, J; Vincent, L; Bloomberg, DS
2000-01-01
A new general algorithm fur computing distance transforms of digital images is presented. The algorithm consists of two phases. Both phases consist of two scans, a forward and a backward scan. The first phase scans the image column-wise, while the second phase scans the image row-wise. Since the
A linear-time algorithm for Euclidean feature transform sets
Hesselink, Wim H.
2007-01-01
The Euclidean distance transform of a binary image is the function that assigns to every pixel the Euclidean distance to the background. The Euclidean feature transform is the function that assigns to every pixel the set of background pixels with this distance. We present an algorithm to compute the
The Watershed Transform : Definitions, Algorithms and Parallelization Strategies
Roerdink, Jos B.T.M.; Meijster, Arnold
2000-01-01
The watershed transform is the method of choice for image segmentation in the field of mathematical morphology. We present a critical review of several definitions of the watershed transform and the associated sequential algorithms, and discuss various issues which often cause confusion in the
Improved FHT Algorithms for Fast Computation of the Discrete Hartley Transform
Directory of Open Access Journals (Sweden)
M. T. Hamood
2013-05-01
Full Text Available In this paper, by using the symmetrical properties of the discrete Hartley transform (DHT, an improved radix-2 fast Hartley transform (FHT algorithm with arithmetic complexity comparable to that of the real-valued fast Fourier transform (RFFT is developed. It has a simple and regular butterfly structure and possesses the in-place computation property. Furthermore, using the same principles, the development can be extended to more efficient radix-based FHT algorithms. An example for the improved radix-4 FHT algorithm is given to show the validity of the presented method. The arithmetic complexity for the new algorithms are computed and then compared with the existing FHT algorithms. The results of these comparisons have shown that the developed algorithms reduce the number of multiplications and additions considerably.
Akkoç, Betül; Arslan, Ahmet; Kök, Hatice
2017-05-01
One of the first stages in the identification of an individual is gender determination. Through gender determination, the search spectrum can be reduced. In disasters such as accidents or fires, which can render identification somewhat difficult, durable teeth are an important source for identification. This study proposes a smart system that can automatically determine gender using 3D digital maxillary tooth plaster models. The study group was composed of 40 Turkish individuals (20 female, 20 male) between the ages of 21 and 24. Using the iterative closest point (ICP) algorithm, tooth models were aligned, and after the segmentation process, models were transformed into depth images. The local discrete cosine transform (DCT) was used in the process of feature extraction, and the random forest (RF) algorithm was used for the process of classification. Classification was performed using 30 different seeds for random generator values and 10-fold cross-validation. A value of 85.166% was obtained for average classification accuracy (CA) and a value of 91.75% for the area under the ROC curve (AUC). A multi-disciplinary study is performed here that includes computer sciences, medicine and dentistry. A smart system is proposed for the determination of gender from 3D digital models of maxillary tooth plaster models. This study has the capacity to extend the field of gender determination from teeth. Copyright © 2017 Elsevier B.V. All rights reserved.
Algorithms for Fast Computing of the 3D-DCT Transform
Directory of Open Access Journals (Sweden)
S. Hanus
2003-04-01
Full Text Available The algorithm for video compression based on the Three-DimensionalDiscrete Cosine Transform (3D-DCT is presented. The original algorithmof the 3D-DCT has high time complexity. We propose several enhancementsto the original algorithm and make the calculation of the DCT algorithmfeasible for future real-time video compression.
Efficient Algorithms for the Discrete Gabor Transform with a Long Fir Window
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2012-01-01
The Discrete Gabor Transform (DGT) is the most commonly used signal transform for signal analysis and synthesis using a linear frequency scale. The development of the Linear Time-Frequency Analysis Toolbox (LTFAT) has been based on a detailed study of many variants of the relevant algorithms. As ...
Adaptive discrete cosine transform coding algorithm for digital mammography
Baskurt, Atilla M.; Magnin, Isabelle E.; Goutte, Robert
1992-09-01
The need for storage, transmission, and archiving of medical images has led researchers to develop adaptive and efficient data compression techniques. Among medical images, x-ray radiographs of the breast are especially difficult to process because of their particularly low contrast and very fine structures. A block adaptive coding algorithm based on the discrete cosine transform to compress digitized mammograms is described. A homogeneous repartition of the degradation in the decoded images is obtained using a spatially adaptive threshold. This threshold depends on the coding error associated with each block of the image. The proposed method is tested on a limited number of pathological mammograms including opacities and microcalcifications. A comparative visual analysis is performed between the original and the decoded images. Finally, it is shown that data compression with rather high compression rates (11 to 26) is possible in the mammography field.
International Nuclear Information System (INIS)
Yu Guofu; Duan Qihua
2010-01-01
In this paper, based on the Hirota bilinear method, a reliable algorithm for generating the bilinear Baecklund transformation (BT) of integrable hierarchies is described. With the help of Maple symbolic computation the algorithm would be very helpful and powerful for looking for the bilinear BT of integrable systems especially for those high-order integrable hierarchies. The BTs of bilinear Ramani hierarchy are deduced for the first time by using the algorithm.
Transformation Algorithm of Dielectric Response in Time-Frequency Domain
Directory of Open Access Journals (Sweden)
Ji Liu
2014-01-01
Full Text Available A transformation algorithm of dielectric response from time domain to frequency domain is presented. In order to shorten measuring time of low or ultralow frequency dielectric response characteristics, the transformation algorithm is used in this paper to transform the time domain relaxation current to frequency domain current for calculating the low frequency dielectric dissipation factor. In addition, it is shown from comparing the calculation results with actual test data that there is a coincidence for both results over a wide range of low frequencies. Meanwhile, the time domain test data of depolarization currents in dry and moist pressboards are converted into frequency domain results on the basis of the transformation. The frequency domain curves of complex capacitance and dielectric dissipation factor at the low frequency range are obtained. Test results of polarization and depolarization current (PDC in pressboards are also given at the different voltage and polarization time. It is demonstrated from the experimental results that polarization and depolarization current are affected significantly by moisture contents of the test pressboards, and the transformation algorithm is effective in ultralow frequency of 10−3 Hz. Data analysis and interpretation of the test results conclude that analysis of time-frequency domain dielectric response can be used for assessing insulation system in power transformer.
International Nuclear Information System (INIS)
Aghajani, Afshin; Kazemzadeh, Rasool; Ebrahimi, Afshin
2016-01-01
Highlights: • Proposing a novel hybrid method for short-term prediction of wind farms with high accuracy. • Investigating the prediction accuracy for proposed method in comparison with other methods. • Investigating the effect of six types of parameters as input data on predictions. • Comparing results for 6 & 4 types of the input parameters – addition of pressure and air humidity. - Abstract: This paper proposes a novel hybrid approach to forecast electric power production in wind farms. Wavelet transform (WT) is employed to filter input data of wind power, while radial basis function (RBF) neural network is utilized for primary prediction. For better predictions the main forecasting engine is comprised of three multilayer perceptron (MLP) neural networks by different learning algorithms of Levenberg–Marquardt (LM), Broyden–Fletcher–Goldfarb–Shanno (BFGS), and Bayesian regularization (BR). Meta-heuristic technique Imperialist Competitive Algorithm (ICA) is used to optimize neural networks’ weightings in order to escape from local minima. In the forecast process, the real data of wind farms located in the southern part of Alberta, Canada, are used to train and test the proposed model. The data are a complete set of six meteorological and technical characteristics, including wind speed, wind power, wind direction, temperature, pressure, and air humidity. In order to demonstrate the efficiency of the proposed method, it is compared with several other wind power forecast techniques. Results of optimizations indicate the superiority of the proposed method over the other mentioned techniques; and, forecasting error is remarkably reduced. For instance, the average normalized root mean square error (NRMSE) and average mean absolute percentage error (MAPE) are respectively 11% and 14% lower for the proposed method in 1-h-ahead forecasts over a 24-h period with six types of input than those for the best of the compared models.
Extended-Maxima Transform Watershed Segmentation Algorithm for Touching Corn Kernels
Directory of Open Access Journals (Sweden)
Yibo Qin
2013-01-01
Full Text Available Touching corn kernels are usually oversegmented by the traditional watershed algorithm. This paper proposes a modified watershed segmentation algorithm based on the extended-maxima transform. Firstly, a distance-transformed image is processed by the extended-maxima transform in the range of the optimized threshold value. Secondly, the binary image obtained by the preceding process is run through the watershed segmentation algorithm, and watershed ridge lines are superimposed on the original image, so that touching corn kernels are separated into segments. Fifty images which all contain 400 corn kernels were tested. Experimental results showed that the effect of segmentation is satisfactory by the improved algorithm, and the accuracy of segmentation is as high as 99.87%.
Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun
2018-07-01
Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.
Watermarking on 3D mesh based on spherical wavelet transform.
Jin, Jian-Qiu; Dai, Min-Ya; Bao, Hu-Jun; Peng, Qun-Sheng
2004-03-01
In this paper we propose a robust watermarking algorithm for 3D mesh. The algorithm is based on spherical wavelet transform. Our basic idea is to decompose the original mesh into a series of details at different scales by using spherical wavelet transform; the watermark is then embedded into the different levels of details. The embedding process includes: global sphere parameterization, spherical uniform sampling, spherical wavelet forward transform, embedding watermark, spherical wavelet inverse transform, and at last resampling the mesh watermarked to recover the topological connectivity of the original model. Experiments showed that our algorithm can improve the capacity of the watermark and the robustness of watermarking against attacks.
An algorithm for the basis of the finite Fourier transform
Santhanam, Thalanayar S.
1995-01-01
The Finite Fourier Transformation matrix (F.F.T.) plays a central role in the formulation of quantum mechanics in a finite dimensional space studied by the author over the past couple of decades. An outstanding problem which still remains open is to find a complete basis for F.F.T. In this paper we suggest a simple algorithm to find the eigenvectors of F.T.T.
Energy Technology Data Exchange (ETDEWEB)
Piovesan, Luis Sergio
1997-07-01
The appliance of two algorithms is evaluated, one based in Fourier analysis and other based in a rectangular transform technique over Fourier analysis, to be used in digital logical circuits (digital protection relays) for the purpose of differential protection of power transformers (ANSI 87T). The first chapter has a brief introduction about electrical protection. The second chapter discusses the general problems of transform protection, the development of digital technology and, with more detail, the differential protection associated to this technology. In this chapter are presented the particular aspects of transformers differential protection concerning sensibility, inrush current situations and harmonic distortions caused by transformer core saturations and the differential protection algorithms and their applications in a specific relay design. In chapter three, a method to make possible testing the protection performance is developed. This work applies digital simulations using EMTP to generate current signal of transformer operation and fault conditions. Digital simulation using Matlab is used to simulate the protection. The EMTP generated field signals are sent to the relay under test, furnishing data of normal operation, internal and external faults. The relay logic simulator at Matlab will work this data and so, it will be possible to verify and evaluate the algorithm behavior and performance. Chapter 4 shows the protection operation over simulations of several of transformer operation and fault conditions. The last chapter presents a conclusion about the protection performance, discussions about all the methods applied in this work and suggestions for further studies. (author)
Directory of Open Access Journals (Sweden)
Vladimir A. Batura
2014-11-01
Full Text Available The efficiency of orthogonal transformations application in the frequency algorithms of the digital watermarking of still images is examined. Discrete Hadamard transform, discrete cosine transform and discrete Haar transform are selected. Their effectiveness is determined by the invisibility of embedded in digital image watermark and its resistance to the most common image processing operations: JPEG-compression, noising, changing of the brightness and image size, histogram equalization. The algorithm for digital watermarking and its embedding parameters remain unchanged at these orthogonal transformations. Imperceptibility of embedding is defined by the peak signal to noise ratio, watermark stability– by Pearson's correlation coefficient. Embedding is considered to be invisible, if the value of the peak signal to noise ratio is not less than 43 dB. Embedded watermark is considered to be resistant to a specific attack, if the Pearson’s correlation coefficient is not less than 0.5. Elham algorithm based on the image entropy is chosen for computing experiment. Computing experiment is carried out according to the following algorithm: embedding of a digital watermark in low-frequency area of the image (container by Elham algorithm, exposure to a harmful influence on the protected image (cover image, extraction of a digital watermark. These actions are followed by quality assessment of cover image and watermark on the basis of which efficiency of orthogonal transformation is defined. As a result of computing experiment it was determined that the choice of the specified orthogonal transformations at identical algorithm and parameters of embedding doesn't influence the degree of imperceptibility for a watermark. Efficiency of discrete Hadamard transform and discrete cosine transformation in relation to the attacks chosen for experiment was established based on the correlation indicators. Application of discrete Hadamard transform increases
The parallel algorithm for the 2D discrete wavelet transform
Barina, David; Najman, Pavel; Kleparnik, Petr; Kula, Michal; Zemcik, Pavel
2018-04-01
The discrete wavelet transform can be found at the heart of many image-processing algorithms. Until now, the transform on general-purpose processors (CPUs) was mostly computed using a separable lifting scheme. As the lifting scheme consists of a small number of operations, it is preferred for processing using single-core CPUs. However, considering a parallel processing using multi-core processors, this scheme is inappropriate due to a large number of steps. On such architectures, the number of steps corresponds to the number of points that represent the exchange of data. Consequently, these points often form a performance bottleneck. Our approach appropriately rearranges calculations inside the transform, and thereby reduces the number of steps. In other words, we propose a new scheme that is friendly to parallel environments. When evaluating on multi-core CPUs, we consistently overcome the original lifting scheme. The evaluation was performed on 61-core Intel Xeon Phi and 8-core Intel Xeon processors.
Limitations on continuous variable quantum algorithms with Fourier transforms
International Nuclear Information System (INIS)
Adcock, Mark R A; Hoeyer, Peter; Sanders, Barry C
2009-01-01
We study quantum algorithms implemented within a single harmonic oscillator, or equivalently within a single mode of the electromagnetic field. Logical states correspond to functions of the canonical position, and the Fourier transform to canonical momentum serves as the analogue of the Hadamard transform for this implementation. This continuous variable version of quantum information processing has widespread appeal because of advanced quantum optics technology that can create, manipulate and read Gaussian states of light. We show that, contrary to a previous claim, this implementation of quantum information processing has limitations due to a position-momentum trade-off of the Fourier transform, analogous to the famous time-bandwidth theorem of signal processing.
Hennelly, Bryan M.; Sheridan, John T.
2005-05-01
By use of matrix-based techniques it is shown how the space-bandwidth product (SBP) of a signal, as indicated by the location of the signal energy in the Wigner distribution function, can be tracked through any quadratic-phase optical system whose operation is described by the linear canonical transform. Then, applying the regular uniform sampling criteria imposed by the SBP and linking the criteria explicitly to a decomposition of the optical matrix of the system, it is shown how numerical algorithms (employing interpolation and decimation), which exhibit both invertibility and additivity, can be implemented. Algorithms appearing in the literature for a variety of transforms (Fresnel, fractional Fourier) are shown to be special cases of our general approach. The method is shown to allow the existing algorithms to be optimized and is also shown to permit the invention of many new algorithms.
A Streaming Distance Transform Algorithm for Neighborhood-Sequence Distances
Directory of Open Access Journals (Sweden)
Nicolas Normand
2014-09-01
Full Text Available We describe an algorithm that computes a “translated” 2D Neighborhood-Sequence Distance Transform (DT using a look up table approach. It requires a single raster scan of the input image and produces one line of output for every line of input. The neighborhood sequence is specified either by providing one period of some integer periodic sequence or by providing the rate of appearance of neighborhoods. The full algorithm optionally derives the regular (centered DT from the “translated” DT, providing the result image on-the-ﬂy, with a minimal delay, before the input image is fully processed. Its efficiency can benefit all applications that use neighborhood- sequence distances, particularly when pipelined processing architectures are involved, or when the size of objects in the source image is limited.
Fast and accurate algorithm for the computation of complex linear canonical transforms.
Koç, Aykut; Ozaktas, Haldun M; Hesselink, Lambertus
2010-09-01
A fast and accurate algorithm is developed for the numerical computation of the family of complex linear canonical transforms (CLCTs), which represent the input-output relationship of complex quadratic-phase systems. Allowing the linear canonical transform parameters to be complex numbers makes it possible to represent paraxial optical systems that involve complex parameters. These include lossy systems such as Gaussian apertures, Gaussian ducts, or complex graded-index media, as well as lossless thin lenses and sections of free space and any arbitrary combinations of them. Complex-ordered fractional Fourier transforms (CFRTs) are a special case of CLCTs, and therefore a fast and accurate algorithm to compute CFRTs is included as a special case of the presented algorithm. The algorithm is based on decomposition of an arbitrary CLCT matrix into real and complex chirp multiplications and Fourier transforms. The samples of the output are obtained from the samples of the input in approximately N log N time, where N is the number of input samples. A space-bandwidth product tracking formalism is developed to ensure that the number of samples is information-theoretically sufficient to reconstruct the continuous transform, but not unnecessarily redundant.
Directory of Open Access Journals (Sweden)
M. I. Fursanov
2014-01-01
Full Text Available This article reflects algorithmization of search methods of effective replacement of consumer transformers in distributed electrical networks. As any electrical equipment of power systems, power transformers have their own limited service duration, which is determined by natural processes of materials degradation and also by unexpected wear under different conditions of overload and overvoltage. According to the standards, adapted by in the Republic of Belarus, rated service life of power transformers is 25 years. But it can be situations that transformers should be better changed till this time – economically efficient. The possibility of such replacement is considered in order to increase efficiency of electrical network operation connected with its physical wear and aging.In this article the faults of early developed mathematical models of transformers replacement were discussed. Early such worked out transformers were not used. But in practice they can be replaced in one substation but they can be successfully used in other substations .Especially if there are limits of financial resources and the replacement needs more detail technical and economical basis.During the research the authors developed the efficient algorithm for determining of optimal location of transformers at substations of distributed electrical networks, based on search of the best solution from all sets of displacement in oriented graph. Suggested algorithm allows considerably reduce design time of optimal placement of transformers using a set of simplifications. The result of algorithm’s work is series displacement of transformers in networks, which allow obtain a great economic effect in comparison with replacement of single transformer.
The discrete Fourier transform theory, algorithms and applications
Sundaraajan, D
2001-01-01
This authoritative book provides comprehensive coverage of practical Fourier analysis. It develops the concepts right from the basics and gradually guides the reader to the advanced topics. It presents the latest and practically efficient DFT algorithms, as well as the computation of discrete cosine and Walsh-Hadamard transforms. The large number of visual aids such as figures, flow graphs and flow charts makes the mathematical topic easy to understand. In addition, the numerous examples and the set of C-language programs (a supplement to the book) help greatly in understanding the theory and
CSIR Research Space (South Africa)
Mlambo, CS
2015-01-01
Full Text Available In this paper, implementations of three Hough Transform based fingerprint alignment algorithms are analyzed with respect to time complexity on Java Card environment. Three algorithms are: Local Match Based Approach (LMBA), Discretized Rotation Based...
Bal, A.; Alam, M. S.; Aslan, M. S.
2006-05-01
Often sensor ego-motion or fast target movement causes the target to temporarily go out of the field-of-view leading to reappearing target detection problem in target tracking applications. Since the target goes out of the current frame and reenters at a later frame, the reentering location and variations in rotation, scale, and other 3D orientations of the target are not known thus complicating the detection algorithm has been developed using Fukunaga-Koontz Transform (FKT) and distance classifier correlation filter (DCCF). The detection algorithm uses target and background information, extracted from training samples, to detect possible candidate target images. The detected candidate target images are then introduced into the second algorithm, DCCF, called clutter rejection module, to determine the target coordinates are detected and tracking algorithm is initiated. The performance of the proposed FKT-DCCF based target detection algorithm has been tested using real-world forward looking infrared (FLIR) video sequences.
Moving boundary - Oxygen diffusion. Two algorithms using Landau transformation
International Nuclear Information System (INIS)
Moyano, E.A.
1991-01-01
A description is made of two algorithms which solve a mathematical model destinated for the study of one-dimensional problems with moving boundaries and implicit boundary conditions. The Landau transformation is used in both methods for each temporal level so as to work all through with the same amount of nodes. Thus, it is necessary to deal with a partial differential equation whose diffusive and convective terms are accompanied by variable coefficients. The partial differential equation is made discrete implicitly, using the Laasonen scheme -which is always stable- instead of the Crank-Nicholson scheme, as performed by Ferris and Hill (5), in the fixed time passing method. The second method employs the tridiagonal algorithm. The first algorithm uses fixed time passing and iterates with variable interface positions, that is to say, it varies δs until it satisfies the boundary condition. The mathematical model describes oxygen diffusion in live tissues. Its numerical solution is obtained by finite differences. An important application of this method could be the estimation of the radiation dose in cancerous tumor treatment. (Author) [es
Hegde, Veena; Deekshit, Ravishankar; Satyanarayana, P. S.
2011-12-01
The electrocardiogram (ECG) is widely used for diagnosis of heart diseases. Good quality of ECG is utilized by physicians for interpretation and identification of physiological and pathological phenomena. However, in real situations, ECG recordings are often corrupted by artifacts or noise. Noise severely limits the utility of the recorded ECG and thus needs to be removed, for better clinical evaluation. In the present paper a new noise cancellation technique is proposed for removal of random noise like muscle artifact from ECG signal. A transform domain robust variable step size Griffiths' LMS algorithm (TVGLMS) is proposed for noise cancellation. For the TVGLMS, the robust variable step size has been achieved by using the Griffiths' gradient which uses cross-correlation between the desired signal contaminated with observation or random noise and the input. The algorithm is discrete cosine transform (DCT) based and uses symmetric property of the signal to represent the signal in frequency domain with lesser number of frequency coefficients when compared to that of discrete Fourier transform (DFT). The algorithm is implemented for adaptive line enhancer (ALE) filter which extracts the ECG signal in a noisy environment using LMS filter adaptation. The proposed algorithm is found to have better convergence error/misadjustment when compared to that of ordinary transform domain LMS (TLMS) algorithm, both in the presence of white/colored observation noise. The reduction in convergence error achieved by the new algorithm with desired signal decomposition is found to be lower than that obtained without decomposition. The experimental results indicate that the proposed method is better than traditional adaptive filter using LMS algorithm in the aspects of retaining geometrical characteristics of ECG signal.
Quantitative Comparison of Tolerance-Based Feature Transforms
Reniers, Dennie; Telea, Alexandru
2006-01-01
Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary images. Of these, two are novel methods and two extend existing distance transform algorithms. We quantitatively and qualitatively compare all algorithms on speed and accuracy of both distance and...
TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS
Directory of Open Access Journals (Sweden)
V. P. Lazarenko
2015-01-01
Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses
A hash-based image encryption algorithm
Cheddad, Abbas; Condell, Joan; Curran, Kevin; McKevitt, Paul
2010-03-01
There exist several algorithms that deal with text encryption. However, there has been little research carried out to date on encrypting digital images or video files. This paper describes a novel way of encrypting digital images with password protection using 1D SHA-2 algorithm coupled with a compound forward transform. A spatial mask is generated from the frequency domain by taking advantage of the conjugate symmetry of the complex imagery part of the Fourier Transform. This mask is then XORed with the bit stream of the original image. Exclusive OR (XOR), a logical symmetric operation, that yields 0 if both binary pixels are zeros or if both are ones and 1 otherwise. This can be verified simply by modulus (pixel1, pixel2, 2). Finally, confusion is applied based on the displacement of the cipher's pixels in accordance with a reference mask. Both security and performance aspects of the proposed method are analyzed, which prove that the method is efficient and secure from a cryptographic point of view. One of the merits of such an algorithm is to force a continuous tone payload, a steganographic term, to map onto a balanced bits distribution sequence. This bit balance is needed in certain applications, such as steganography and watermarking, since it is likely to have a balanced perceptibility effect on the cover image when embedding.
Transformations and algorithms in a computerized brain atlas
International Nuclear Information System (INIS)
Thurfjell, L.; Bohm, C.; Eriksson, L.; Karolinska Institute/Hospital, Stockholm
1993-01-01
The computerized brain atlas constructed at the Karolinska Hospital, Stockholm, Sweden, has been further developed. This atlas was designed to be employed in different fields of neuro imaging such as positron emission tomography (PET), single photon emission tomography (SPECT), computerized tomography (CT) and magnetic resonance imaging (MR). The main objectives with the atlas is to aid the interpretation of functional images by introducing anatomical information, to serve as a tool in the merging of data from different imaging modalities and to facilitate the comparisons of data from different individuals by allowing for anatomical standardization of individual data. The purpose of this paper is to describe the algorithms and transformations used in the implementation of the atlas software
The Roadmaker's algorithm for the discrete pulse transform.
Laurie, Dirk P
2011-02-01
The discrete pulse transform (DPT) is a decomposition of an observed signal into a sum of pulses, i.e., signals that are constant on a connected set and zero elsewhere. Originally developed for 1-D signal processing, the DPT has recently been generalized to more dimensions. Applications in image processing are currently being investigated. The time required to compute the DPT as originally defined via the successive application of LULU operators (members of a class of minimax filters studied by Rohwer) has been a severe drawback to its applicability. This paper introduces a fast method for obtaining such a decomposition, called the Roadmaker's algorithm because it involves filling pits and razing bumps. It acts selectively only on those features actually present in the signal, flattening them in order of increasing size by subtracing an appropriate positive or negative pulse, which is then appended to the decomposition. The implementation described here covers 1-D signal as well as two and 3-D image processing in a single framework. This is achieved by considering the signal or image as a function defined on a graph, with the geometry specified by the edges of the graph. Whenever a feature is flattened, nodes in the graph are merged, until eventually only one node remains. At that stage, a new set of edges for the same nodes as the graph, forming a tree structure, defines the obtained decomposition. The Roadmaker's algorithm is shown to be equivalent to the DPT in the sense of obtaining the same decomposition. However, its simpler operators are not in general equivalent to the LULU operators in situations where those operators are not applied successively. A by-product of the Roadmaker's algorithm is that it yields a proof of the so-called Highlight Conjecture, stated as an open problem in 2006. We pay particular attention to algorithmic details and complexity, including a demonstration that in the 1-D case, and also in the case of a complete graph, the Roadmaker
Foundation: Transforming data bases into knowledge bases
Purves, R. B.; Carnes, James R.; Cutts, Dannie E.
1987-01-01
One approach to transforming information stored in relational data bases into knowledge based representations and back again is described. This system, called Foundation, allows knowledge bases to take advantage of vast amounts of pre-existing data. A benefit of this approach is inspection, and even population, of data bases through an intelligent knowledge-based front-end.
Institute of Scientific and Technical Information of China (English)
徐涛; 李冠章
2011-01-01
A novel adaptive detail enhancement algorithm aiming at colour image is proposed in this paper based on wavelet transform. The first step is to select appropriate colour space, and then the luminance components of the image are being implemented wavelet transform while the chroma components are hold on. The detail wavelet coefficients are adjusted adaptively considering the contrasts of discomposed approximate images on each level while the approximate coefficients are increased properly to boost the average luminance of colour image, there is no extra adjustment parameters setting in the process of treatment. Experiments confirm that the algorithm preserves the brighter details of the image and improves the darker details in it too. Meanwhile the image colour distortion does not appear.%针对彩色图像,提出了一种基于小波变换的自适应细节增强算法.首先选择了合适的彩色空间,保持图像的彩色分量不变,对其亮度分量进行小波变换,然后按照分解后的各级近似图像对比度自适应地调整小波细节系数,同时适当地增强近似系数以提高彩色图像的平均亮度,在处理过程中不需要设定额外的调整参数.实验证明,算法不但保留了图像较亮的细节,而且增强了较暗的细节,同时达到了图像色彩不失真的目的.
Energy Technology Data Exchange (ETDEWEB)
Silveira, L.M.; Kamon, M.; Elfadel, I.; White, J. [Massachusetts Inst. of Technology, Cambridge, MA (United States)
1996-12-31
Model order reduction based on Krylov subspace iterative methods has recently emerged as a major tool for compressing the number of states in linear models used for simulating very large physical systems (VLSI circuits, electromagnetic interactions). There are currently two main methods for accomplishing such a compression: one is based on the nonsymmetric look-ahead Lanczos algorithm that gives a numerically stable procedure for finding Pade approximations, while the other is based on a less well characterized Arnoldi algorithm. In this paper, we show that for certain classes of generalized state-space systems, the reduced-order models produced by a coordinate-transformed Arnoldi algorithm inherit the stability of the original system. Complete Proofs of our results will be given in the final paper.
MEMS based digital transform spectrometers
Geller, Yariv; Ramani, Mouli
2005-09-01
Earlier this year, a new breed of Spectrometers based on Micro-Electro-Mechanical-System (MEMS) engines has been introduced to the commercial market. The use of these engines combined with transform mathematics, produces powerful spectrometers at unprecedented low cost in various spectral regions.
Tolerance-Based Feature Transforms
Reniers, Dennie; Telea, Alexandru
2007-01-01
Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs on binary
Gog, Simon; Bader, Martin
2008-10-01
The problem of sorting signed permutations by reversals is a well-studied problem in computational biology. The first polynomial time algorithm was presented by Hannenhalli and Pevzner in 1995. The algorithm was improved several times, and nowadays the most efficient algorithm has a subquadratic running time. Simple permutations played an important role in the development of these algorithms. Although the latest result of Tannier et al. does not require simple permutations, the preliminary version of their algorithm as well as the first polynomial time algorithm of Hannenhalli and Pevzner use the structure of simple permutations. More precisely, the latter algorithms require a precomputation that transforms a permutation into an equivalent simple permutation. To the best of our knowledge, all published algorithms for this transformation have at least a quadratic running time. For further investigations on genome rearrangement problems, the existence of a fast algorithm for the transformation could be crucial. Another important task is the back transformation, i.e. if we have a sorting on the simple permutation, transform it into a sorting on the original permutation. Again, the naive approach results in an algorithm with quadratic running time. In this paper, we present a linear time algorithm for transforming a permutation into an equivalent simple permutation, and an O(n log n) algorithm for the back transformation of the sorting sequence.
Algorithm of parallel: hierarchical transformation and its implementation on FPGA
Timchenko, Leonid I.; Petrovskiy, Mykola S.; Kokryatskay, Natalia I.; Barylo, Alexander S.; Dembitska, Sofia V.; Stepanikuk, Dmytro S.; Suleimenov, Batyrbek; Zyska, Tomasz; Uvaysova, Svetlana; Shedreyeva, Indira
2017-08-01
In this paper considers the algorithm of laser beam spots image classification in atmospheric-optical transmission systems. It discusses the need for images filtering using adaptive methods, using, for example, parallel-hierarchical networks. The article also highlights the need to create high-speed memory devices for such networks. Implementation and simulation results of the developed method based on the PLD are demonstrated, which shows that the presented method gives 15-20% better prediction results than similar methods.
Sethi, Gaurav; Saini, B S
2015-12-01
This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.
Pedestrian detection based on redundant wavelet transform
Huang, Lin; Ji, Liping; Hu, Ping; Yang, Tiejun
2016-10-01
Intelligent video surveillance is to analysis video or image sequences captured by a fixed or mobile surveillance camera, including moving object detection, segmentation and recognition. By using it, we can be notified immediately in an abnormal situation. Pedestrian detection plays an important role in an intelligent video surveillance system, and it is also a key technology in the field of intelligent vehicle. So pedestrian detection has very vital significance in traffic management optimization, security early warn and abnormal behavior detection. Generally, pedestrian detection can be summarized as: first to estimate moving areas; then to extract features of region of interest; finally to classify using a classifier. Redundant wavelet transform (RWT) overcomes the deficiency of shift variant of discrete wavelet transform, and it has better performance in motion estimation when compared to discrete wavelet transform. Addressing the problem of the detection of multi-pedestrian with different speed, we present an algorithm of pedestrian detection based on motion estimation using RWT, combining histogram of oriented gradients (HOG) and support vector machine (SVM). Firstly, three intensities of movement (IoM) are estimated using RWT and the corresponding areas are segmented. According to the different IoM, a region proposal (RP) is generated. Then, the features of a RP is extracted using HOG. Finally, the features are fed into a SVM trained by pedestrian databases and the final detection results are gained. Experiments show that the proposed algorithm can detect pedestrians accurately and efficiently.
A wavelet transform algorithm for peak detection and application to powder x-ray diffraction data.
Gregoire, John M; Dale, Darren; van Dover, R Bruce
2011-01-01
Peak detection is ubiquitous in the analysis of spectral data. While many noise-filtering algorithms and peak identification algorithms have been developed, recent work [P. Du, W. Kibbe, and S. Lin, Bioinformatics 22, 2059 (2006); A. Wee, D. Grayden, Y. Zhu, K. Petkovic-Duran, and D. Smith, Electrophoresis 29, 4215 (2008)] has demonstrated that both of these tasks are efficiently performed through analysis of the wavelet transform of the data. In this paper, we present a wavelet-based peak detection algorithm with user-defined parameters that can be readily applied to the application of any spectral data. Particular attention is given to the algorithm's resolution of overlapping peaks. The algorithm is implemented for the analysis of powder diffraction data, and successful detection of Bragg peaks is demonstrated for both low signal-to-noise data from theta-theta diffraction of nanoparticles and combinatorial x-ray diffraction data from a composition spread thin film. These datasets have different types of background signals which are effectively removed in the wavelet-based method, and the results demonstrate that the algorithm provides a robust method for automated peak detection.
Energy Technology Data Exchange (ETDEWEB)
Nosrati, R [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Soliman, A; Owrangi, A [Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); Ghugre, N [Sunnybrook Research Institute, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Morton, G [Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada); Pejovic-Milic, A [Reyrson University, Toronto, Ontario (Canada); Song, W [Reyrson University, Toronto, Ontario (Canada); Sunnybrook Research Institute, Toronto, Ontario (Canada); Sunnybrook Health Sciences Centre, Toronto, Ontario (Canada); University of Toronto, Toronto, ON (Canada)
2016-06-15
Purpose: This study aims at developing an MRI-only workflow for post-implant dosimetry of the prostate LDR brachytherapy seeds. The specific goal here is to develop a post-processing algorithm to produce positive contrast for the seeds and prostatic calcifications and differentiate between them on MR images. Methods: An agar-based phantom incorporating four dummy seeds (I-125) and five calcifications of different sizes (from sheep cortical bone) was constructed. Seeds were placed arbitrarily in the coronal plane. The phantom was scanned with 3T Philips Achieva MR scanner using an 8-channel head coil array. Multi-echo turbo spin echo (ME-TSE) and multi-echo gradient recalled echo (ME-GRE) sequences were acquired. Due to minimal susceptibility artifacts around seeds, ME-GRE sequence (flip angle=15; TR/TE=20/2.3/2.3; resolution=0.7×0.7×2mm3) was further processed.The induced field inhomogeneity due to the presence of titaniumencapsulated seeds was corrected using a B0 field map. B0 map was calculated using the ME-GRE sequence by calculating the phase difference at two different echo times. Initially, the product of the first echo and B0 map was calculated. The features corresponding to the seeds were then extracted in three steps: 1) the edge pixels were isolated using “Prewitt” operator; 2) the Hough transform was employed to detect ellipses approximately matching the dimensions of the seeds and 3) at the position and orientation of the detected ellipses an ellipse was drawn on the B0-corrected image. Results: The proposed B0-correction process produced positive contrast for the seeds and calcifications. The Hough transform based on Prewitt edge operator successfully identified all the seeds according to their ellipsoidal shape and dimensions in the edge image. Conclusion: The proposed post-processing algorithm successfully visualized the seeds and calcifications with positive contrast and differentiates between them according to their shapes. Further
A new fast algorithm for computing a complex number: Theoretic transforms
Reed, I. S.; Liu, K. Y.; Truong, T. K.
1977-01-01
A high-radix fast Fourier transformation (FFT) algorithm for computing transforms over GF(sq q), where q is a Mersenne prime, is developed to implement fast circular convolutions. This new algorithm requires substantially fewer multiplications than the conventional FFT.
International Nuclear Information System (INIS)
Collins, David
2010-01-01
A general framework for regarding oracle-assisted quantum algorithms as tools for discriminating among unitary transformations is described. This framework is applied to the Deutsch-Jozsa problem and all possible quantum algorithms which solve the problem with certainty using oracle unitaries in a particular form are derived. It is also used to show that any quantum algorithm that solves the Deutsch-Jozsa problem starting with a quantum system in a particular class of initial, thermal equilibrium-based states of the type encountered in solution-state NMR can only succeed with greater probability than a classical algorithm when the problem size n exceeds ∼10 5 .
Implementation of Period-Finding Algorithm by Means of Simulating Quantum Fourier Transform
Directory of Open Access Journals (Sweden)
Zohreh Moghareh Abed
2010-01-01
Full Text Available In this paper, we introduce quantum fourier transform as a key ingredient for many useful algorithms. These algorithms make a solution for problems which is considered to be intractable problems on a classical computer. Quantum Fourier transform is propounded as a key for quantum phase estimation algorithm. In this paper our aim is the implementation of period-finding algorithm.Quantum computer solves this problem, exponentially faster than classical one. Quantum phase estimation algorithm is the key for the period-finding problem .Therefore, by means of simulating quantum Fourier transform, we are able to implement the period-finding algorithm. In this paper, the simulation of quantum Fourier transform is carried out by Matlab software.
Directory of Open Access Journals (Sweden)
Dazhi Jiang
2015-01-01
Full Text Available At present there is a wide range of evolutionary algorithms available to researchers and practitioners. Despite the great diversity of these algorithms, virtually all of the algorithms share one feature: they have been manually designed. A fundamental question is “are there any algorithms that can design evolutionary algorithms automatically?” A more complete definition of the question is “can computer construct an algorithm which will generate algorithms according to the requirement of a problem?” In this paper, a novel evolutionary algorithm based on automatic designing of genetic operators is presented to address these questions. The resulting algorithm not only explores solutions in the problem space like most traditional evolutionary algorithms do, but also automatically generates genetic operators in the operator space. In order to verify the performance of the proposed algorithm, comprehensive experiments on 23 well-known benchmark optimization problems are conducted. The results show that the proposed algorithm can outperform standard differential evolution algorithm in terms of convergence speed and solution accuracy which shows that the algorithm designed automatically by computers can compete with the algorithms designed by human beings.
Adaptive Filtering in the Wavelet Transform Domain via Genetic Algorithms
2004-08-06
wavelet transforms. Whereas the term “evolved” pertains only to the altered wavelet coefficients used during the inverse transform process. 2...words, the inverse transform produces the original signal x(t) from the wavelet and scaling coefficients. )()( ,, tdtx nk n nk k ψ...reconstruct the original signal as accurately as possible. The inverse transform reconstructs an approximation of the original signal (Burrus
Hybrid employment recommendation algorithm based on Spark
Li, Zuoquan; Lin, Yubei; Zhang, Xingming
2017-08-01
Aiming at the real-time application of collaborative filtering employment recommendation algorithm (CF), a clustering collaborative filtering recommendation algorithm (CCF) is developed, which applies hierarchical clustering to CF and narrows the query range of neighbour items. In addition, to solve the cold-start problem of content-based recommendation algorithm (CB), a content-based algorithm with users’ information (CBUI) is introduced for job recommendation. Furthermore, a hybrid recommendation algorithm (HRA) which combines CCF and CBUI algorithms is proposed, and implemented on Spark platform. The experimental results show that HRA can overcome the problems of cold start and data sparsity, and achieve good recommendation accuracy and scalability for employment recommendation.
Opposition-Based Adaptive Fireworks Algorithm
Directory of Open Access Journals (Sweden)
Chibing Gong
2016-07-01
Full Text Available A fireworks algorithm (FWA is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA. The purpose of this paper is to add opposition-based learning (OBL to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based adaptive fireworks algorithm (OAFWA. The final results conclude that OAFWA significantly outperformed EFWA and AFWA in terms of solution accuracy. Additionally, OAFWA was compared with a bat algorithm (BA, differential evolution (DE, self-adapting control parameters in differential evolution (jDE, a firefly algorithm (FA, and a standard particle swarm optimization 2011 (SPSO2011 algorithm. The research results indicate that OAFWA ranks the highest of the six algorithms for both solution accuracy and runtime cost.
Motion Analysis Based on Invertible Rapid Transform
Directory of Open Access Journals (Sweden)
J. Turan
1999-06-01
Full Text Available This paper presents the results of a study on the use of invertible rapid transform (IRT for the motion estimation in a sequence of images. Motion estimation algorithms based on the analysis of the matrix of states (produced in the IRT calculation are described. The new method was used experimentally to estimate crowd and traffic motion from the image data sequences captured at railway stations and at high ways in large cities. The motion vectors may be used to devise a polar plot (showing velocity magnitude and direction for moving objects where the dominant motion tendency can be seen. The experimental results of comparison of the new motion estimation methods with other well known block matching methods (full search, 2D-log, method based on conventional (cross correlation (CC function or phase correlation (PC function for application of crowd motion estimation are also presented.
Wavelet-LMS algorithm-based echo cancellers
Seetharaman, Lalith K.; Rao, Sathyanarayana S.
2002-12-01
This paper presents Echo Cancellers based on the Wavelet-LMS Algorithm. The performance of the Least Mean Square Algorithm in Wavelet transform domain is observed and its application in Echo cancellation is analyzed. The Widrow-Hoff Least Mean Square Algorithm is most widely used algorithm for Adaptive filters that function as Echo Cancellers. The present day communication signals are widely non-stationary in nature and some errors crop up when Least Mean Square Algorithm is used for the Echo Cancellers handling such signals. The analysis of non-stationary signals often involves a compromise between how well transitions or discontinuities can be located. The multi-scale or multi-resolution of signal analysis, which is the essence of wavelet transform, makes Wavelets popular in non-stationary signal analysis. In this paper, we present a Wavelet-LMS algorithm wherein the wavelet coefficients of a signal are modified adaptively using the Least Mean Square Algorithm and then reconstructed to give an Echo-free signal. The Echo Canceller based on this Algorithm is found to have a better convergence and a comparatively lesser MSE (Mean Square error).
Opposition-Based Adaptive Fireworks Algorithm
Chibing Gong
2016-01-01
A fireworks algorithm (FWA) is a recent swarm intelligence algorithm that is inspired by observing fireworks explosions. An adaptive fireworks algorithm (AFWA) proposes additional adaptive amplitudes to improve the performance of the enhanced fireworks algorithm (EFWA). The purpose of this paper is to add opposition-based learning (OBL) to AFWA with the goal of further boosting performance and achieving global optimization. Twelve benchmark functions are tested in use of an opposition-based a...
Multispectral image pansharpening based on the contourlet transform
Energy Technology Data Exchange (ETDEWEB)
Amro, Israa; Mateos, Javier, E-mail: iamro@correo.ugr.e, E-mail: jmd@decsai.ugr.e [Departamento de Ciencias de la Computacion e I.A., Universidad de Granada, 18071 Granada (Spain)
2010-02-01
Pansharpening is a technique that fuses the information of a low resolution multispectral image (MS) and a high resolution panchromatic image (PAN), usually remote sensing images, to provide a high resolution multispectral image. In the literature, this task has been addressed from different points of view being one of the most popular the wavelets based algorithms. Recently, the contourlet transform has been proposed. This transform combines the advantages of the wavelets transform with a more efficient directional information representation. In this paper we propose a new pansharpening method based on contourlets, compare with its wavelet counterpart and assess its performance numerically and visually.
International Nuclear Information System (INIS)
Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua
2015-01-01
We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)
Energy Technology Data Exchange (ETDEWEB)
Bueno, Josiane M.; Traina, Agma Juci M. [Sao Paulo Univ., Sao Carlos, SP (Brazil). Inst. de Ciencias Matematicas; Cruvinel, Paulo E. [EMBRAPA, Sao Carlos, SP (Brazil). CNPDIA
1995-12-31
This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author) 10 refs., 5 figs.
Fourier transform based scalable image quality measure.
Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien
2012-08-01
We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.
Fast Algorithm for Computing the Discrete Hartley Transform of Type-II
Directory of Open Access Journals (Sweden)
Mounir Taha Hamood
2016-06-01
Full Text Available The generalized discrete Hartley transforms (GDHTs have proved to be an efficient alternative to the generalized discrete Fourier transforms (GDFTs for real-valued data applications. In this paper, the development of direct computation of radix-2 decimation-in-time (DIT algorithm for the fast calculation of the GDHT of type-II (DHT-II is presented. The mathematical analysis and the implementation of the developed algorithm are derived, showing that this algorithm possesses a regular structure and can be implemented in-place for efficient memory utilization.The performance of the proposed algorithm is analyzed and the computational complexity is calculated for different transform lengths. A comparison between this algorithm and existing DHT-II algorithms shows that it can be considered as a good compromise between the structural and computational complexities.
Fast parallel approach for 2-D DHT-based real-valued discrete Gabor transform.
Tao, Liang; Kwan, Hon Keung
2009-12-01
Two-dimensional fast Gabor transform algorithms are useful for real-time applications due to the high computational complexity of the traditional 2-D complex-valued discrete Gabor transform (CDGT). This paper presents two block time-recursive algorithms for 2-D DHT-based real-valued discrete Gabor transform (RDGT) and its inverse transform and develops a fast parallel approach for the implementation of the two algorithms. The computational complexity of the proposed parallel approach is analyzed and compared with that of the existing 2-D CDGT algorithms. The results indicate that the proposed parallel approach is attractive for real time image processing.
Simple sorting algorithm test based on CUDA
Meng, Hongyu; Guo, Fangjin
2015-01-01
With the development of computing technology, CUDA has become a very important tool. In computer programming, sorting algorithm is widely used. There are many simple sorting algorithms such as enumeration sort, bubble sort and merge sort. In this paper, we test some simple sorting algorithm based on CUDA and draw some useful conclusions.
SIFT based algorithm for point feature tracking
Directory of Open Access Journals (Sweden)
Adrian BURLACU
2007-12-01
Full Text Available In this paper a tracking algorithm for SIFT features in image sequences is developed. For each point feature extracted using SIFT algorithm a descriptor is computed using information from its neighborhood. Using an algorithm based on minimizing the distance between two descriptors tracking point features throughout image sequences is engaged. Experimental results, obtained from image sequences that capture scaling of different geometrical type object, reveal the performances of the tracking algorithm.
Iterative algorithm of discrete Fourier transform for processing randomly sampled NMR data sets
International Nuclear Information System (INIS)
Stanek, Jan; Kozminski, Wiktor
2010-01-01
Spectra obtained by application of multidimensional Fourier Transformation (MFT) to sparsely sampled nD NMR signals are usually corrupted due to missing data. In the present paper this phenomenon is investigated on simulations and experiments. An effective iterative algorithm for artifact suppression for sparse on-grid NMR data sets is discussed in detail. It includes automated peak recognition based on statistical methods. The results enable one to study NMR spectra of high dynamic range of peak intensities preserving benefits of random sampling, namely the superior resolution in indirectly measured dimensions. Experimental examples include 3D 15 N- and 13 C-edited NOESY-HSQC spectra of human ubiquitin.
Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye
2014-02-01
Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.
Normalization based K means Clustering Algorithm
Virmani, Deepali; Taneja, Shweta; Malhotra, Geetika
2015-01-01
K-means is an effective clustering technique used to separate similar data into groups based on initial centroids of clusters. In this paper, Normalization based K-means clustering algorithm(N-K means) is proposed. Proposed N-K means clustering algorithm applies normalization prior to clustering on the available data as well as the proposed approach calculates initial centroids based on weights. Experimental results prove the betterment of proposed N-K means clustering algorithm over existing...
Finite Countermodel Based Verification for Program Transformation (A Case Study
Directory of Open Access Journals (Sweden)
Alexei P. Lisitsa
2015-12-01
Full Text Available Both automatic program verification and program transformation are based on program analysis. In the past decade a number of approaches using various automatic general-purpose program transformation techniques (partial deduction, specialization, supercompilation for verification of unreachability properties of computing systems were introduced and demonstrated. On the other hand, the semantics based unfold-fold program transformation methods pose themselves diverse kinds of reachability tasks and try to solve them, aiming at improving the semantics tree of the program being transformed. That means some general-purpose verification methods may be used for strengthening program transformation techniques. This paper considers the question how finite countermodels for safety verification method might be used in Turchin's supercompilation method. We extract a number of supercompilation sub-algorithms trying to solve reachability problems and demonstrate use of an external countermodel finder for solving some of the problems.
Multi-resolution inversion algorithm for the attenuated radon transform
Barbano, Paolo Emilio; Fokas, Athanasios S.
2011-01-01
We present a FAST implementation of the Inverse Attenuated Radon Transform which incorporates accurate collimator response, as well as artifact rejection due to statistical noise and data corruption. This new reconstruction procedure is performed
An Efficient Algorithm for the Discrete Gabor Transform using full length Windows
DEFF Research Database (Denmark)
Søndergaard, Peter Lempel
2007-01-01
This paper extends the efficient factorization of the Gabor frame operator developed by Strohmer in [1] to the Gabor analysis/synthesis operator. This provides a fast method for computing the discrete Gabor transform (DGT) and several algorithms associated with it. The algorithm is used...
Specification of the Fast Fourier Transform algorithm as a term rewriting system
Rodenburg, P.H.; Hoekzema, D.J.
1987-01-01
We specify an algorithm for multiplying polynomials with complex coefficients incorporating, the Fast Fourier Transform algorithm of Cooley and Tukey [CT]. The specification formalism we use is a variant of the formalism ASF described in. [BHK]. The difference with ASF is essentially a matter of
An accurate projection algorithm for array processor based SPECT systems
International Nuclear Information System (INIS)
King, M.A.; Schwinger, R.B.; Cool, S.L.
1985-01-01
A data re-projection algorithm has been developed for use in single photon emission computed tomography (SPECT) on an array processor based computer system. The algorithm makes use of an accurate representation of pixel activity (uniform square pixel model of intensity distribution), and is rapidly performed due to the efficient handling of an array based algorithm and the Fast Fourier Transform (FFT) on parallel processing hardware. The algorithm consists of using a pixel driven nearest neighbour projection operation to an array of subdivided projection bins. This result is then convolved with the projected uniform square pixel distribution before being compressed to original bin size. This distribution varies with projection angle and is explicitly calculated. The FFT combined with a frequency space multiplication is used instead of a spatial convolution for more rapid execution. The new algorithm was tested against other commonly used projection algorithms by comparing the accuracy of projections of a simulated transverse section of the abdomen against analytically determined projections of that transverse section. The new algorithm was found to yield comparable or better standard error and yet result in easier and more efficient implementation on parallel hardware. Applications of the algorithm include iterative reconstruction and attenuation correction schemes and evaluation of regions of interest in dynamic and gated SPECT
a pyramid algorithm for the haar discrete wavelet packet transform
African Journals Online (AJOL)
PROF EKWUEME
computer-aided signal processing of non-stationary signals, this paper develops a pyramid algorithm for the discrete wavelet packet ... Edith T. Luhanga, School of Computational and Communication Sciences and Engineering, Nelson Mandela African. Institute of ..... Mathematics, Washington University. 134. EDITH T.
Program Transformation to Identify List-Based Parallel Skeletons
Directory of Open Access Journals (Sweden)
Venkatesh Kannan
2016-07-01
Full Text Available Algorithmic skeletons are used as building-blocks to ease the task of parallel programming by abstracting the details of parallel implementation from the developer. Most existing libraries provide implementations of skeletons that are defined over flat data types such as lists or arrays. However, skeleton-based parallel programming is still very challenging as it requires intricate analysis of the underlying algorithm and often uses inefficient intermediate data structures. Further, the algorithmic structure of a given program may not match those of list-based skeletons. In this paper, we present a method to automatically transform any given program to one that is defined over a list and is more likely to contain instances of list-based skeletons. This facilitates the parallel execution of a transformed program using existing implementations of list-based parallel skeletons. Further, by using an existing transformation called distillation in conjunction with our method, we produce transformed programs that contain fewer inefficient intermediate data structures.
Volkov transform generalized projection algorithm for attosecond pulse characterization
International Nuclear Information System (INIS)
Keathley, P D; Bhardwaj, S; Moses, J; Laurent, G; Kärtner, F X
2016-01-01
An algorithm for characterizing attosecond extreme ultraviolet pulses that is not bandwidth-limited, requires no interpolation of the experimental data, and makes no approximations beyond the strong-field approximation is introduced. This approach fully incorporates the dipole transition matrix element into the retrieval process. Unlike attosecond retrieval methods such as phase retrieval by omega oscillation filtering (PROOF), or improved PROOF, it simultaneously retrieves both the attosecond and infrared (IR) pulses, without placing fundamental restrictions on the IR pulse duration, intensity or bandwidth. The new algorithm is validated both numerically and experimentally, and is also found to have practical advantages. These include an increased robustness to noise, and relaxed requirements for the size of the experimental dataset and the intensity of the streaking pulse. (paper)
Quantum Image Encryption Algorithm Based on Image Correlation Decomposition
Hua, Tianxiang; Chen, Jiamin; Pei, Dongju; Zhang, Wenquan; Zhou, Nanrun
2015-02-01
A novel quantum gray-level image encryption and decryption algorithm based on image correlation decomposition is proposed. The correlation among image pixels is established by utilizing the superposition and measurement principle of quantum states. And a whole quantum image is divided into a series of sub-images. These sub-images are stored into a complete binary tree array constructed previously and then randomly performed by one of the operations of quantum random-phase gate, quantum revolving gate and Hadamard transform. The encrypted image can be obtained by superimposing the resulting sub-images with the superposition principle of quantum states. For the encryption algorithm, the keys are the parameters of random phase gate, rotation angle, binary sequence and orthonormal basis states. The security and the computational complexity of the proposed algorithm are analyzed. The proposed encryption algorithm can resist brute force attack due to its very large key space and has lower computational complexity than its classical counterparts.
Eigenvalue Decomposition-Based Modified Newton Algorithm
Directory of Open Access Journals (Sweden)
Wen-jun Wang
2013-01-01
Full Text Available When the Hessian matrix is not positive, the Newton direction may not be the descending direction. A new method named eigenvalue decomposition-based modified Newton algorithm is presented, which first takes the eigenvalue decomposition of the Hessian matrix, then replaces the negative eigenvalues with their absolute values, and finally reconstructs the Hessian matrix and modifies the searching direction. The new searching direction is always the descending direction. The convergence of the algorithm is proven and the conclusion on convergence rate is presented qualitatively. Finally, a numerical experiment is given for comparing the convergence domains of the modified algorithm and the classical algorithm.
Model Validation in Ontology Based Transformations
Directory of Open Access Journals (Sweden)
Jesús M. Almendros-Jiménez
2012-10-01
Full Text Available Model Driven Engineering (MDE is an emerging approach of software engineering. MDE emphasizes the construction of models from which the implementation should be derived by applying model transformations. The Ontology Definition Meta-model (ODM has been proposed as a profile for UML models of the Web Ontology Language (OWL. In this context, transformations of UML models can be mapped into ODM/OWL transformations. On the other hand, model validation is a crucial task in model transformation. Meta-modeling permits to give a syntactic structure to source and target models. However, semantic requirements have to be imposed on source and target models. A given transformation will be sound when source and target models fulfill the syntactic and semantic requirements. In this paper, we present an approach for model validation in ODM based transformations. Adopting a logic programming based transformational approach we will show how it is possible to transform and validate models. Properties to be validated range from structural and semantic requirements of models (pre and post conditions to properties of the transformation (invariants. The approach has been applied to a well-known example of model transformation: the Entity-Relationship (ER to Relational Model (RM transformation.
Ontology Based Model Transformation Infrastructure
Göknil, Arda; Topaloglu, N.Y.
2005-01-01
Using MDA in ontology development has been investigated in several works recently. The mappings and transformations between the UML constructs and the OWL elements to develop ontologies are the main concern of these research projects. We propose another approach in order to achieve the collaboration
Wei, B. G.; Wu, X. Y.; Yao, Z. F.; Huang, H.
2017-11-01
Transformers are essential devices of the power system. The accurate computation of the highest temperature (HST) of a transformer’s windings is very significant, as for the HST is a fundamental parameter in controlling the load operation mode and influencing the life time of the insulation. Based on the analysis of the heat transfer processes and the thermal characteristics inside transformers, there is taken into consideration the influence of factors like the sunshine, external wind speed etc. on the oil-immersed transformers. Experimental data and the neural network are used for modeling and protesting of the HST, and furthermore, investigations are conducted on the optimization of the structure and algorithms of neutral network are conducted. Comparison is made between the measured values and calculated values by using the recommended algorithm of IEC60076 and by using the neural network algorithm proposed by the authors; comparison that shows that the value computed with the neural network algorithm approximates better the measured value than the value computed with the algorithm proposed by IEC60076.
Directory of Open Access Journals (Sweden)
Shin'ya Nakano
2014-05-01
Full Text Available A hybrid algorithm that combines the ensemble transform Kalman filter (ETKF and the importance sampling approach is proposed. Since the ETKF assumes a linear Gaussian observation model, the estimate obtained by the ETKF can be biased in cases with nonlinear or non-Gaussian observations. The particle filter (PF is based on the importance sampling technique, and is applicable to problems with nonlinear or non-Gaussian observations. However, the PF usually requires an unrealistically large sample size in order to achieve a good estimation, and thus it is computationally prohibitive. In the proposed hybrid algorithm, we obtain a proposal distribution similar to the posterior distribution by using the ETKF. A large number of samples are then drawn from the proposal distribution, and these samples are weighted to approximate the posterior distribution according to the importance sampling principle. Since the importance sampling provides an estimate of the probability density function (PDF without assuming linearity or Gaussianity, we can resolve the bias due to the nonlinear or non-Gaussian observations. Finally, in the next forecast step, we reduce the sample size to achieve computational efficiency based on the Gaussian assumption, while we use a relatively large number of samples in the importance sampling in order to consider the non-Gaussian features of the posterior PDF. The use of the ETKF is also beneficial in terms of the computational simplicity of generating a number of random samples from the proposal distribution and in weighting each of the samples. The proposed algorithm is not necessarily effective in case that the ensemble is located distant from the true state. However, monitoring the effective sample size and tuning the factor for covariance inflation could resolve this problem. In this paper, the proposed hybrid algorithm is introduced and its performance is evaluated through experiments with non-Gaussian observations.
Fast parallel algorithms for the x-ray transform and its adjoint.
Gao, Hao
2012-11-01
Iterative reconstruction methods often offer better imaging quality and allow for reconstructions with lower imaging dose than classical methods in computed tomography. However, the computational speed is a major concern for these iterative methods, for which the x-ray transform and its adjoint are two most time-consuming components. The speed issue becomes even notable for the 3D imaging such as cone beam scans or helical scans, since the x-ray transform and its adjoint are frequently computed as there is usually not enough computer memory to save the corresponding system matrix. The purpose of this paper is to optimize the algorithm for computing the x-ray transform and its adjoint, and their parallel computation. The fast and highly parallelizable algorithms for the x-ray transform and its adjoint are proposed for the infinitely narrow beam in both 2D and 3D. The extension of these fast algorithms to the finite-size beam is proposed in 2D and discussed in 3D. The CPU and GPU codes are available at https://sites.google.com/site/fastxraytransform. The proposed algorithm is faster than Siddon's algorithm for computing the x-ray transform. In particular, the improvement for the parallel computation can be an order of magnitude. The authors have proposed fast and highly parallelizable algorithms for the x-ray transform and its adjoint, which are extendable for the finite-size beam. The proposed algorithms are suitable for parallel computing in the sense that the computational cost per parallel thread is O(1).
Design Transformations for Rule-based Procedural Modeling
Lienhard, Stefan; Lau, Cheryl; Mü ller, Pascal; Wonka, Peter; Pauly, Mark
2017-01-01
We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.
Design Transformations for Rule-based Procedural Modeling
Lienhard, Stefan
2017-05-24
We introduce design transformations for rule-based procedural models, e.g., for buildings and plants. Given two or more procedural designs, each specified by a grammar, a design transformation combines elements of the existing designs to generate new designs. We introduce two technical components to enable design transformations. First, we extend the concept of discrete rule switching to rule merging, leading to a very large shape space for combining procedural models. Second, we propose an algorithm to jointly derive two or more grammars, called grammar co-derivation. We demonstrate two applications of our work: we show that our framework leads to a larger variety of models than previous work, and we show fine-grained transformation sequences between two procedural models.
International Nuclear Information System (INIS)
Ramos Muñoz, Edgar; Razeghi, Ghazal; Zhang, Li; Jabbari, Faryar
2016-01-01
The need to reduce greenhouse gas emissions and fossil fuel consumption has increased the popularity of plug-in electric vehicles. However, a large penetration of plug-in electric vehicles can pose challenges at the grid and local distribution levels. Various charging strategies have been proposed to address such challenges, often separately. In this paper, it is shown that, with uncoordinated charging, distribution transformers and the grid can operate under highly undesirable conditions. Next, several strategies that require modest communication efforts are proposed to mitigate the burden created by high concentrations of plug-in electric vehicles, at the grid and local levels. Existing transformer and battery electric vehicle characteristics are used along with the National Household Travel Survey to simulate various charging strategies. It is shown through the analysis of hot spot temperature and equivalent aging factor that the coordinated strategies proposed here reduce the chances of transformer failure with the addition of plug-in electric vehicle loads, even for an under-designed transformer while uncontrolled and uncoordinated plug-in electric vehicle charging results in increased risk of transformer failure. - Highlights: • Charging algorithm for battery electric vehicles, for high penetration levels. • Algorithm reduces transformer overloading, for grid level valley filling. • Computation and communication requirements are minimal. • The distributed algorithm is implemented without large scale iterations. • Hot spot temperature and loss of life for transformers are evaluated.
A fast image encryption algorithm based on chaotic map
Liu, Wenhao; Sun, Kehui; Zhu, Congxu
2016-09-01
Derived from Sine map and iterative chaotic map with infinite collapse (ICMIC), a new two-dimensional Sine ICMIC modulation map (2D-SIMM) is proposed based on a close-loop modulation coupling (CMC) model, and its chaotic performance is analyzed by means of phase diagram, Lyapunov exponent spectrum and complexity. It shows that this map has good ergodicity, hyperchaotic behavior, large maximum Lyapunov exponent and high complexity. Based on this map, a fast image encryption algorithm is proposed. In this algorithm, the confusion and diffusion processes are combined for one stage. Chaotic shift transform (CST) is proposed to efficiently change the image pixel positions, and the row and column substitutions are applied to scramble the pixel values simultaneously. The simulation and analysis results show that this algorithm has high security, low time complexity, and the abilities of resisting statistical analysis, differential, brute-force, known-plaintext and chosen-plaintext attacks.
Improved implementation algorithms of the two-dimensional nonseparable linear canonical transform.
Ding, Jian-Jiun; Pei, Soo-Chang; Liu, Chun-Lin
2012-08-01
The two-dimensional nonseparable linear canonical transform (2D NSLCT), which is a generalization of the fractional Fourier transform and the linear canonical transform, is useful for analyzing optical systems. However, since the 2D NSLCT has 16 parameters and is very complicated, it is a great challenge to implement it in an efficient way. In this paper, we improved the previous work and propose an efficient way to implement the 2D NSLCT. The proposed algorithm can minimize the numerical error arising from interpolation operations and requires fewer chirp multiplications. The simulation results show that, compared with the existing algorithm, the proposed algorithms can implement the 2D NSLCT more accurately and the required computation time is also less.
Seizure detection algorithms based on EMG signals
DEFF Research Database (Denmark)
Conradsen, Isa
Background: the currently used non-invasive seizure detection methods are not reliable. Muscle fibers are directly connected to the nerves, whereby electric signals are generated during activity. Therefore, an alarm system on electromyography (EMG) signals is a theoretical possibility. Objective...... on the amplitude of the signal. The other algorithm was based on information of the signal in the frequency domain, and it focused on synchronisation of the electrical activity in a single muscle during the seizure. Results: The amplitude-based algorithm reliably detected seizures in 2 of the patients, while...... the frequency-based algorithm was efficient for detecting the seizures in the third patient. Conclusion: Our results suggest that EMG signals could be used to develop an automatic seizuredetection system. However, different patients might require different types of algorithms /approaches....
Algorithmic transformation of multi-loop master integrals to a canonical basis with CANONICA
Meyer, Christoph
2018-01-01
The integration of differential equations of Feynman integrals can be greatly facilitated by using a canonical basis. This paper presents the Mathematica package CANONICA, which implements a recently developed algorithm to automatize the transformation to a canonical basis. This represents the first publicly available implementation suitable for differential equations depending on multiple scales. In addition to the presentation of the package, this paper extends the description of some aspects of the algorithm, including a proof of the uniqueness of canonical forms up to constant transformations.
Hinchey, Michael G. (Inventor); Margaria, Tiziana (Inventor); Rash, James L. (Inventor); Rouff, Christopher A. (Inventor); Steffen, Bernard (Inventor)
2010-01-01
Systems, methods and apparatus are provided through which in some embodiments, automata learning algorithms and techniques are implemented to generate a more complete set of scenarios for requirements based programming. More specifically, a CSP-based, syntax-oriented model construction, which requires the support of a theorem prover, is complemented by model extrapolation, via automata learning. This may support the systematic completion of the requirements, the nature of the requirement being partial, which provides focus on the most prominent scenarios. This may generalize requirement skeletons by extrapolation and may indicate by way of automatically generated traces where the requirement specification is too loose and additional information is required.
Duality based optical flow algorithms with applications
DEFF Research Database (Denmark)
Rakêt, Lars Lau
We consider the popular TV-L1 optical flow formulation, and the so-called duality based algorithm for minimizing the TV-L1 energy. The original formulation is extended to allow for vector valued images, and minimization results are given. In addition we consider different definitions of total...... variation regularization, and related formulations of the optical flow problem that may be used with a duality based algorithm. We present a highly optimized algorithmic setup to estimate optical flows, and give five novel applications. The first application is registration of medical images, where X......-ray images of different hands, taken using different imaging devices are registered using a TV-L1 optical flow algorithm. We propose to regularize the input images, using sparsity enhancing regularization of the image gradient to improve registration results. The second application is registration of 2D...
Pal, Suvra; Balakrishnan, Narayanaswamy
2018-05-01
In this paper, we develop likelihood inference based on the expectation maximization algorithm for the Box-Cox transformation cure rate model assuming the lifetimes to follow a Weibull distribution. A simulation study is carried out to demonstrate the performance of the proposed estimation method. Through Monte Carlo simulations, we also study the effect of model misspecification on the estimate of cure rate. Finally, we analyze a well-known data on melanoma with the model and the inferential method developed here.
Quantum algorithms on Walsh transform and Hamming distance for Boolean functions
Xie, Zhengwei; Qiu, Daowen; Cai, Guangya
2018-06-01
Walsh spectrum or Walsh transform is an alternative description of Boolean functions. In this paper, we explore quantum algorithms to approximate the absolute value of Walsh transform W_f at a single point z0 (i.e., |W_f(z0)|) for n-variable Boolean functions with probability at least 8/π 2 using the number of O(1/|W_f(z_{0)|ɛ }) queries, promised that the accuracy is ɛ , while the best known classical algorithm requires O(2n) queries. The Hamming distance between Boolean functions is used to study the linearity testing and other important problems. We take advantage of Walsh transform to calculate the Hamming distance between two n-variable Boolean functions f and g using O(1) queries in some cases. Then, we exploit another quantum algorithm which converts computing Hamming distance between two Boolean functions to quantum amplitude estimation (i.e., approximate counting). If Ham(f,g)=t≠0, we can approximately compute Ham( f, g) with probability at least 2/3 by combining our algorithm and {Approx-Count(f,ɛ ) algorithm} using the expected number of Θ( √{N/(\\lfloor ɛ t\\rfloor +1)}+√{t(N-t)}/\\lfloor ɛ t\\rfloor +1) queries, promised that the accuracy is ɛ . Moreover, our algorithm is optimal, while the exact query complexity for the above problem is Θ(N) and the query complexity with the accuracy ɛ is O(1/ɛ 2N/(t+1)) in classical algorithm, where N=2n. Finally, we present three exact quantum query algorithms for two promise problems on Hamming distance using O(1) queries, while any classical deterministic algorithm solving the problem uses Ω(2n) queries.
Research on Palmprint Identification Method Based on Quantum Algorithms
Directory of Open Access Journals (Sweden)
Hui Li
2014-01-01
Full Text Available Quantum image recognition is a technology by using quantum algorithm to process the image information. It can obtain better effect than classical algorithm. In this paper, four different quantum algorithms are used in the three stages of palmprint recognition. First, quantum adaptive median filtering algorithm is presented in palmprint filtering processing. Quantum filtering algorithm can get a better filtering result than classical algorithm through the comparison. Next, quantum Fourier transform (QFT is used to extract pattern features by only one operation due to quantum parallelism. The proposed algorithm exhibits an exponential speed-up compared with discrete Fourier transform in the feature extraction. Finally, quantum set operations and Grover algorithm are used in palmprint matching. According to the experimental results, quantum algorithm only needs to apply square of N operations to find out the target palmprint, but the traditional method needs N times of calculation. At the same time, the matching accuracy of quantum algorithm is almost 100%.
Improvements on the minimax algorithm for the Laplace transformation of orbital energy denominators
Energy Technology Data Exchange (ETDEWEB)
Helmich-Paris, Benjamin, E-mail: b.helmichparis@vu.nl; Visscher, Lucas, E-mail: l.visscher@vu.nl
2016-09-15
We present a robust and non-heuristic algorithm that finds all extremum points of the error distribution function of numerically Laplace-transformed orbital energy denominators. The extremum point search is one of the two key steps for finding the minimax approximation. If pre-tabulation of initial guesses is supposed to be avoided, strategies for a sufficiently robust algorithm have not been discussed so far. We compare our non-heuristic approach with a bracketing and bisection algorithm and demonstrate that 3 times less function evaluations are required altogether when applying it to typical non-relativistic and relativistic quantum chemical systems.
Weighted least squares phase unwrapping based on the wavelet transform
Chen, Jiafeng; Chen, Haiqin; Yang, Zhengang; Ren, Haixia
2007-01-01
The weighted least squares phase unwrapping algorithm is a robust and accurate method to solve phase unwrapping problem. This method usually leads to a large sparse linear equation system. Gauss-Seidel relaxation iterative method is usually used to solve this large linear equation. However, this method is not practical due to its extremely slow convergence. The multigrid method is an efficient algorithm to improve convergence rate. However, this method needs an additional weight restriction operator which is very complicated. For this reason, the multiresolution analysis method based on the wavelet transform is proposed. By applying the wavelet transform, the original system is decomposed into its coarse and fine resolution levels and an equivalent equation system with better convergence condition can be obtained. Fast convergence in separate coarse resolution levels speeds up the overall system convergence rate. The simulated experiment shows that the proposed method converges faster and provides better result than the multigrid method.
Discrete cosine and sine transforms general properties, fast algorithms and integer approximations
Britanak, Vladimir; Rao, K R; Rao, K R
2006-01-01
The Discrete Cosine Transform (DCT) is used in many applications by the scientific, engineering and research communities and in data compression in particular. Fast algorithms and applications of the DCT Type II (DCT-II) have become the heart of many established international image/video coding standards. Since then other forms of the DCT and Discrete Sine Transform (DST) have been investigated in detail. This new edition presents the complete set of DCT and DST discrete trigonometric transforms, including their definitions, general mathematical properties, and relations to the optimal Karhune
Hough transform used on the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor
Chia, Chou-Min; Huang, Kuang-Yuh; Chang, Elmer
2016-01-01
An approach to the spot-centroiding algorithm for the Shack-Hartmann wavefront sensor (SHWS) is presented. The SHWS has a common problem, in that while measuring high-order wavefront distortion, the spots may exceed each of the subapertures, which are used to restrict the displacement of spots. This artificial restriction may limit the dynamic range of the SHWS. When using the SHWS to measure adaptive optics or aspheric lenses, the accuracy of the traditional spot-centroiding algorithm may be uncertain because the spots leave or cross the confined area of the subapertures. The proposed algorithm combines the Hough transform with an artificial neural network, which requires no confined subapertures, to increase the dynamic range of the SHWS. This algorithm is then explored in comprehensive simulations and the results are compared with those of the existing algorithm.
An algorithm for learning sparsifying transforms of multidimensional signals
Directory of Open Access Journals (Sweden)
Oscar Enrique Hurtado-Camacho
2017-01-01
Full Text Available Las señales multidimensionales contienen información de un objeto en más de una dimensión y, comúnmente, su procesamiento requiere métodos de mayor complejidad que las señales unidimensionales. En procesamiento de señales, la representación escasa de una señal es de gran importancia para fines de compresión. Convencionalmente, transformaciones analíticas como las transformadas de Fourier, Coseno o Wavelet, han sido utilizadas. Recientemente, se ha popularizado el uso de diccionarios entrenados, que se adaptan a una señal dada, en aplicaciones como clasificación de imágenes, eliminación de ruido, separación espectral, y reconstrucción de imágenes médicas. Este artículo presenta un algoritmo para entrenar bases de transformación para representación escasa de señales multidimensionales. El algoritmo propuesto alterna entre una codificación escasa que se resuelve por umbralización, y la actualización del diccionario que se resuelve mediante el método de gradiente conjugado. Además, el artículo incluye una comparación entre parches bidimensionales y tridimensionales en términos del nivel de escasez que ofrecen en diferentes tipos de señales multidimensionales como: imágenes hiperespectrales, imágenes de tomografía computarizada, e imágenes de resonancia magnética. Los resultados obtenidos son comparados contra transformaciones analíticas tradicionales y contra el método de entrenamiento de diccionarios más conocido en el estado del arte: K-SVD.
Transformation language integration based on profiles and higher order transformations
Van Gorp, P.M.E.; Keller, A.; Janssens, D.; Gaševic, D.; Lämmel, R.; Van Wyk, Eric
2009-01-01
For about two decades, researchers have been constructing tools for applying graph transformations on large model transformation case studies. Instead of incrementally extending a common core, these competitive tool builders have repeatedly reconstructed mechanisms that were already supported by
Structure-Based Algorithms for Microvessel Classification
Smith, Amy F.
2015-02-01
© 2014 The Authors. Microcirculation published by John Wiley & Sons Ltd. Objective: Recent developments in high-resolution imaging techniques have enabled digital reconstruction of three-dimensional sections of microvascular networks down to the capillary scale. To better interpret these large data sets, our goal is to distinguish branching trees of arterioles and venules from capillaries. Methods: Two novel algorithms are presented for classifying vessels in microvascular anatomical data sets without requiring flow information. The algorithms are compared with a classification based on observed flow directions (considered the gold standard), and with an existing resistance-based method that relies only on structural data. Results: The first algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules. The second algorithm, developed for networks with multiple inlets and outlets, correctly identifies more arterioles and venules, but is more sensitive to parameter changes. Conclusions: The algorithms presented here can be used to classify microvessels in large microvascular data sets lacking flow information. This provides a basis for analyzing the distinct geometrical properties and modelling the functional behavior of arterioles, capillaries, and venules.
2-D DOA Estimation of LFM Signals Based on Dechirping Algorithm and Uniform Circle Array
Directory of Open Access Journals (Sweden)
K. B. Cui
2017-04-01
Full Text Available Based on Dechirping algorithm and uniform circle array(UCA, a new 2-D direction of arrival (DOA estimation algorithm of linear frequency modulation (LFM signals is proposed in this paper. The algorithm uses the thought of Dechirping and regards the signal to be estimated which is received by the reference sensor as the reference signal and proceeds the difference frequency treatment with the signal received by each sensor. So the signal to be estimated becomes a single-frequency signal in each sensor. Then we transform the single-frequency signal to an isolated impulse through Fourier transform (FFT and construct a new array data model based on the prominent parts of the impulse. Finally, we respectively use multiple signal classification (MUSIC algorithm and rotational invariance technique (ESPRIT algorithm to realize 2-D DOA estimation of LFM signals. The simulation results verify the effectiveness of the algorithm proposed.
Tolerance based algorithms for the ATSP
Goldengorin, B; Sierksma, G; Turkensteen, M; Hromkovic, J; Nagl, M; Westfechtel, B
2004-01-01
In this paper we use arc tolerances, instead of arc costs, to improve Branch-and-Bound type algorithms for the Asymmetric Traveling Salesman Problem (ATSP). We derive new tighter lower bounds based on exact and approximate bottleneck upper tolerance values of the Assignment Problem (AP). It is shown
Model based development of engine control algorithms
Dekker, H.J.; Sturm, W.L.
1996-01-01
Model based development of engine control systems has several advantages. The development time and costs are strongly reduced because much of the development and optimization work is carried out by simulating both engine and control system. After optimizing the control algorithm it can be executed
WAVELET-BASED ALGORITHM FOR DETECTION OF BEARING FAULTS IN A GAS TURBINE ENGINE
Directory of Open Access Journals (Sweden)
Sergiy Enchev
2014-07-01
Full Text Available Presented is a gas turbine engine bearing diagnostic system that integrates information from various advanced vibration analysis techniques to achieve robust bearing health state awareness. This paper presents a computational algorithm for identifying power frequency variations and integer harmonics by using wavelet-based transform. The continuous wavelet transform with the complex Morlet wavelet is adopted to detect the harmonics presented in a power signal. The algorithm based on the discrete stationary wavelet transform is adopted to denoise the wavelet ridges.
Fukunaga-Koontz transform based dimensionality reduction for hyperspectral imagery
Ochilov, S.; Alam, M. S.; Bal, A.
2006-05-01
Fukunaga-Koontz Transform based technique offers some attractive properties for desired class oriented dimensionality reduction in hyperspectral imagery. In FKT, feature selection is performed by transforming into a new space where feature classes have complimentary eigenvectors. Dimensionality reduction technique based on these complimentary eigenvector analysis can be described under two classes, desired class and background clutter, such that each basis function best represent one class while carrying the least amount of information from the second class. By selecting a few eigenvectors which are most relevant to desired class, one can reduce the dimension of hyperspectral cube. Since the FKT based technique reduces data size, it provides significant advantages for near real time detection applications in hyperspectral imagery. Furthermore, the eigenvector selection approach significantly reduces computation burden via the dimensionality reduction processes. The performance of the proposed dimensionality reduction algorithm has been tested using real-world hyperspectral dataset.
NLSE: Parameter-Based Inversion Algorithm
Sabbagh, Harold A.; Murphy, R. Kim; Sabbagh, Elias H.; Aldrin, John C.; Knopp, Jeremy S.
Chapter 11 introduced us to the notion of an inverse problem and gave us some examples of the value of this idea to the solution of realistic industrial problems. The basic inversion algorithm described in Chap. 11 was based upon the Gauss-Newton theory of nonlinear least-squares estimation and is called NLSE in this book. In this chapter we will develop the mathematical background of this theory more fully, because this algorithm will be the foundation of inverse methods and their applications during the remainder of this book. We hope, thereby, to introduce the reader to the application of sophisticated mathematical concepts to engineering practice without introducing excessive mathematical sophistication.
Robust MST-Based Clustering Algorithm.
Liu, Qidong; Zhang, Ruisheng; Zhao, Zhili; Wang, Zhenghai; Jiao, Mengyao; Wang, Guangjing
2018-06-01
Minimax similarity stresses the connectedness of points via mediating elements rather than favoring high mutual similarity. The grouping principle yields superior clustering results when mining arbitrarily-shaped clusters in data. However, it is not robust against noises and outliers in the data. There are two main problems with the grouping principle: first, a single object that is far away from all other objects defines a separate cluster, and second, two connected clusters would be regarded as two parts of one cluster. In order to solve such problems, we propose robust minimum spanning tree (MST)-based clustering algorithm in this letter. First, we separate the connected objects by applying a density-based coarsening phase, resulting in a low-rank matrix in which the element denotes the supernode by combining a set of nodes. Then a greedy method is presented to partition those supernodes through working on the low-rank matrix. Instead of removing the longest edges from MST, our algorithm groups the data set based on the minimax similarity. Finally, the assignment of all data points can be achieved through their corresponding supernodes. Experimental results on many synthetic and real-world data sets show that our algorithm consistently outperforms compared clustering algorithms.
A Fast Algorithm of Generalized Radon-Fourier Transform for Weak Maneuvering Target Detection
Directory of Open Access Journals (Sweden)
Weijie Xia
2016-01-01
Full Text Available The generalized Radon-Fourier transform (GRFT has been proposed to detect radar weak maneuvering targets by realizing coherent integration via jointly searching in motion parameter space. Two main drawbacks of GRFT are the heavy computational burden and the blind speed side lobes (BSSL which will cause serious false alarms. The BSSL learning-based particle swarm optimization (BPSO has been proposed before to reduce the computational burden of GRFT and solve the BSSL problem simultaneously. However, the BPSO suffers from an apparent loss in detection performance compared with GRFT. In this paper, a fast implementation algorithm of GRFT using the BSSL learning-based modified wind-driven optimization (BMWDO is proposed. In the BMWDO, the BSSL learning procedure is also used to deal with the BSSL phenomenon. Besides, the MWDO adjusts the coefficients in WDO with Levy distribution and uniform distribution, and it outperforms PSO in a noisy environment. Compared with BPSO, the proposed method can achieve better detection performance with a similar computational cost. Several numerical experiments are also provided to demonstrate the effectiveness of the proposed method.
Verification-Based Interval-Passing Algorithm for Compressed Sensing
Wu, Xiaofu; Yang, Zhen
2013-01-01
We propose a verification-based Interval-Passing (IP) algorithm for iteratively reconstruction of nonnegative sparse signals using parity check matrices of low-density parity check (LDPC) codes as measurement matrices. The proposed algorithm can be considered as an improved IP algorithm by further incorporation of the mechanism of verification algorithm. It is proved that the proposed algorithm performs always better than either the IP algorithm or the verification algorithm. Simulation resul...
Local structure information by EXAFS analysis using two algorithms for Fourier transform calculation
International Nuclear Information System (INIS)
Aldea, N; Pintea, S; Rednic, V; Matei, F; Hu Tiandou; Xie Yaning
2009-01-01
The present work is a comparison study between different algorithms of Fourier transform for obtaining very accurate local structure results using Extended X-ray Absorption Fine Structure technique. In this paper we focus on the local structural characteristics of supported nickel catalysts and Fe 3 O 4 core-shell nanocomposites. The radial distribution function could be efficiently calculated by the fast Fourier transform when the coordination shells are well separated while the Filon quadrature gave remarkable results for close-shell coordination.
Schaffrin, Burkhard; Felus, Yaron A.
2008-06-01
The multivariate total least-squares (MTLS) approach aims at estimating a matrix of parameters, Ξ, from a linear model ( Y- E Y = ( X- E X ) · Ξ) that includes an observation matrix, Y, another observation matrix, X, and matrices of randomly distributed errors, E Y and E X . Two special cases of the MTLS approach include the standard multivariate least-squares approach where only the observation matrix, Y, is perturbed by random errors and, on the other hand, the data least-squares approach where only the coefficient matrix X is affected by random errors. In a previous contribution, the authors derived an iterative algorithm to solve the MTLS problem by using the nonlinear Euler-Lagrange conditions. In this contribution, new lemmas are developed to analyze the iterative algorithm, modify it, and compare it with a new ‘closed form’ solution that is based on the singular-value decomposition. For an application, the total least-squares approach is used to estimate the affine transformation parameters that convert cadastral data from the old to the new Israeli datum. Technical aspects of this approach, such as scaling the data and fixing the columns in the coefficient matrix are investigated. This case study illuminates the issue of “symmetry” in the treatment of two sets of coordinates for identical point fields, a topic that had already been emphasized by Teunissen (1989, Festschrift to Torben Krarup, Geodetic Institute Bull no. 58, Copenhagen, Denmark, pp 335-342). The differences between the standard least-squares and the TLS approach are analyzed in terms of the estimated variance component and a first-order approximation of the dispersion matrix of the estimated parameters.
DE and NLP Based QPLS Algorithm
Yu, Xiaodong; Huang, Dexian; Wang, Xiong; Liu, Bo
As a novel evolutionary computing technique, Differential Evolution (DE) has been considered to be an effective optimization method for complex optimization problems, and achieved many successful applications in engineering. In this paper, a new algorithm of Quadratic Partial Least Squares (QPLS) based on Nonlinear Programming (NLP) is presented. And DE is used to solve the NLP so as to calculate the optimal input weights and the parameters of inner relationship. The simulation results based on the soft measurement of diesel oil solidifying point on a real crude distillation unit demonstrate that the superiority of the proposed algorithm to linear PLS and QPLS which is based on Sequential Quadratic Programming (SQP) in terms of fitting accuracy and computational costs.
Energy Technology Data Exchange (ETDEWEB)
He, Hongxing; Fang, Hengrui [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States); Miller, Mitchell D. [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Phillips, George N. Jr [Department of BioSciences, Rice University, Houston, Texas 77005 (United States); Department of Chemistry, Rice University, Houston, Texas 77005 (United States); Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706 (United States); Su, Wu-Pei, E-mail: wpsu@uh.edu [Department of Physics and Texas Center for Superconductivity, University of Houston, Houston, Texas 77204 (United States)
2016-07-15
An iterative transform algorithm is proposed to improve the conventional molecular-replacement method for solving the phase problem in X-ray crystallography. Several examples of successful trial calculations carried out with real diffraction data are presented. An iterative transform method proposed previously for direct phasing of high-solvent-content protein crystals is employed for enhancing the molecular-replacement (MR) algorithm in protein crystallography. Target structures that are resistant to conventional MR due to insufficient similarity between the template and target structures might be tractable with this modified phasing method. Trial calculations involving three different structures are described to test and illustrate the methodology. The relationship of the approach to PHENIX Phaser-MR and MR-Rosetta is discussed.
Multilayer modal actuator-based piezoelectric transformers.
Huang, Yao-Tien; Wu, Wen-Jong; Wang, Yen-Chieh; Lee, Chih-Kung
2007-02-01
An innovative, multilayer piezoelectric transformer equipped with a full modal filtering input electrode is reported herein. This modal-shaped electrode, based on the orthogonal property of structural vibration modes, is characterized by full modal filtering to ensure that only the desired vibration mode is excited during operation. The newly developed piezoelectric transformer is comprised of three layers: a multilayered input layer, an insulation layer, and a single output layer. The electrode shape of the input layer is derived from its structural vibration modal shape, which takes advantage of the orthogonal property of the vibration modes to achieve a full modal filtering effect. The insulation layer possesses two functions: first, to couple the mechanical vibration energy between the input and output, and second, to provide electrical insulation between the two layers. To meet the two functions, a low temperature, co-fired ceramic (LTCC) was used to provide the high mechanical rigidity and high electrical insulation. It can be shown that this newly developed piezoelectric transformer has the advantage of possessing a more efficient energy transfer and a wider optimal working frequency range when compared to traditional piezoelectric transformers. A multilayer piezoelectric, transformer-based inverter applicable for use in LCD monitors or portable displays is presented as well.
Genetic algorithm based reactive power dispatch for voltage stability improvement
Energy Technology Data Exchange (ETDEWEB)
Devaraj, D. [Department of Electrical and Electronics, Kalasalingam University, Krishnankoil 626 190 (India); Roselyn, J. Preetha [Department of Electrical and Electronics, SRM University, Kattankulathur 603 203, Chennai (India)
2010-12-15
Voltage stability assessment and control form the core function in a modern energy control centre. This paper presents an improved Genetic algorithm (GA) approach for voltage stability enhancement. The proposed technique is based on the minimization of the maximum of L-indices of load buses. Generator voltages, switchable VAR sources and transformer tap changers are used as optimization variables of this problem. The proposed approach permits the optimization variables to be represented in their natural form in the genetic population. For effective genetic processing, the crossover and mutation operators which can directly deal with the floating point numbers and integers are used. The proposed algorithm has been tested on IEEE 30-bus and IEEE 57-bus test systems and successful results have been obtained. (author)
Graph Transformation and Designing Parallel Sparse Matrix Algorithms beyond Data Dependence Analysis
Directory of Open Access Journals (Sweden)
H.X. Lin
2004-01-01
Full Text Available Algorithms are often parallelized based on data dependence analysis manually or by means of parallel compilers. Some vector/matrix computations such as the matrix-vector products with simple data dependence structures (data parallelism can be easily parallelized. For problems with more complicated data dependence structures, parallelization is less straightforward. The data dependence graph is a powerful means for designing and analyzing parallel algorithms. However, for sparse matrix computations, parallelization based on solely exploiting the existing parallelism in an algorithm does not always give satisfactory results. For example, the conventional Gaussian elimination algorithm for the solution of a tri-diagonal system is inherently sequential, so algorithms specially for parallel computation has to be designed. After briefly reviewing different parallelization approaches, a powerful graph formalism for designing parallel algorithms is introduced. This formalism will be discussed using a tri-diagonal system as an example. Its application to general matrix computations is also discussed. Its power in designing parallel algorithms beyond the ability of data dependence analysis is shown by means of a new algorithm called ACER (Alternating Cyclic Elimination and Reduction algorithm.
Automated Vectorization of Decision-Based Algorithms
James, Mark
2006-01-01
Virtually all existing vectorization algorithms are designed to only analyze the numeric properties of an algorithm and distribute those elements across multiple processors. This advances the state of the practice because it is the only known system, at the time of this reporting, that takes high-level statements and analyzes them for their decision properties and converts them to a form that allows them to automatically be executed in parallel. The software takes a high-level source program that describes a complex decision- based condition and rewrites it as a disjunctive set of component Boolean relations that can then be executed in parallel. This is important because parallel architectures are becoming more commonplace in conventional systems and they have always been present in NASA flight systems. This technology allows one to take existing condition-based code and automatically vectorize it so it naturally decomposes across parallel architectures.
Network-based recommendation algorithms: A review
Yu, Fei; Zeng, An; Gillard, Sébastien; Medo, Matúš
2016-06-01
Recommender systems are a vital tool that helps us to overcome the information overload problem. They are being used by most e-commerce web sites and attract the interest of a broad scientific community. A recommender system uses data on users' past preferences to choose new items that might be appreciated by a given individual user. While many approaches to recommendation exist, the approach based on a network representation of the input data has gained considerable attention in the past. We review here a broad range of network-based recommendation algorithms and for the first time compare their performance on three distinct real datasets. We present recommendation topics that go beyond the mere question of which algorithm to use-such as the possible influence of recommendation on the evolution of systems that use it-and finally discuss open research directions and challenges.
LSB Based Quantum Image Steganography Algorithm
Jiang, Nan; Zhao, Na; Wang, Luo
2016-01-01
Quantum steganography is the technique which hides a secret message into quantum covers such as quantum images. In this paper, two blind LSB steganography algorithms in the form of quantum circuits are proposed based on the novel enhanced quantum representation (NEQR) for quantum images. One algorithm is plain LSB which uses the message bits to substitute for the pixels' LSB directly. The other is block LSB which embeds a message bit into a number of pixels that belong to one image block. The extracting circuits can regain the secret message only according to the stego cover. Analysis and simulation-based experimental results demonstrate that the invisibility is good, and the balance between the capacity and the robustness can be adjusted according to the needs of applications.
A new JPEG-based steganographic algorithm for mobile devices
Agaian, Sos S.; Cherukuri, Ravindranath C.; Schneider, Erik C.; White, Gregory B.
2006-05-01
Currently, cellular phones constitute a significant portion of the global telecommunications market. Modern cellular phones offer sophisticated features such as Internet access, on-board cameras, and expandable memory which provide these devices with excellent multimedia capabilities. Because of the high volume of cellular traffic, as well as the ability of these devices to transmit nearly all forms of data. The need for an increased level of security in wireless communications is becoming a growing concern. Steganography could provide a solution to this important problem. In this article, we present a new algorithm for JPEG-compressed images which is applicable to mobile platforms. This algorithm embeds sensitive information into quantized discrete cosine transform coefficients obtained from the cover JPEG. These coefficients are rearranged based on certain statistical properties and the inherent processing and memory constraints of mobile devices. Based on the energy variation and block characteristics of the cover image, the sensitive data is hidden by using a switching embedding technique proposed in this article. The proposed system offers high capacity while simultaneously withstanding visual and statistical attacks. Based on simulation results, the proposed method demonstrates an improved retention of first-order statistics when compared to existing JPEG-based steganographic algorithms, while maintaining a capacity which is comparable to F5 for certain cover images.
Directory of Open Access Journals (Sweden)
K. Parvathi
2009-01-01
Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.
A feature extraction algorithm based on corner and spots in self-driving vehicles
Directory of Open Access Journals (Sweden)
Yupeng FENG
2017-06-01
Full Text Available To solve the poor real-time performance problem of the visual odometry based on embedded system with limited computing resources, an image matching method based on Harris and SIFT is proposed, namely the Harris-SIFT algorithm. On the basis of the review of SIFT algorithm, the principle of Harris-SIFT algorithm is provided. First, Harris algorithm is used to extract the corners of the image as candidate feature points, and scale invariant feature transform (SIFT features are extracted from those candidate feature points. At last, through an example, the algorithm is simulated by Matlab, then the complexity and other performance of the algorithm are analyzed. The experimental results show that the proposed method reduces the computational complexity and improves the speed of feature extraction. Harris-SIFT algorithm can be used in the real-time vision odometer system, and will bring about a wide application of visual odometry in embedded navigation system.
A novel method to design S-box based on chaotic map and genetic algorithm
International Nuclear Information System (INIS)
Wang, Yong; Wong, Kwok-Wo; Li, Changbing; Li, Yang
2012-01-01
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
A novel method to design S-box based on chaotic map and genetic algorithm
Energy Technology Data Exchange (ETDEWEB)
Wang, Yong, E-mail: wangyong_cqupt@163.com [State Key Laboratory of Power Transmission Equipment and System Security and New Technology, Chongqing University, Chongqing 400044 (China); Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Wong, Kwok-Wo [Department of Electronic Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon Tong (Hong Kong); Li, Changbing [Key Laboratory of Electronic Commerce and Logistics, Chongqing University of Posts and Telecommunications, Chongqing 400065 (China); Li, Yang [Department of Automatic Control and Systems Engineering, The University of Sheffield, Mapping Street, S1 3DJ (United Kingdom)
2012-01-30
The substitution box (S-box) is an important component in block encryption algorithms. In this Letter, the problem of constructing S-box is transformed to a Traveling Salesman Problem and a method for designing S-box based on chaos and genetic algorithm is proposed. Since the proposed method makes full use of the traits of chaotic map and evolution process, stronger S-box is obtained. The results of performance test show that the presented S-box has good cryptographic properties, which justify that the proposed algorithm is effective in generating strong S-boxes. -- Highlights: ► The problem of constructing S-box is transformed to a Traveling Salesman Problem. ► We present a new method for designing S-box based on chaos and genetic algorithm. ► The proposed algorithm is effective in generating strong S-boxes.
Gradient Evolution-based Support Vector Machine Algorithm for Classification
Zulvia, Ferani E.; Kuo, R. J.
2018-03-01
This paper proposes a classification algorithm based on a support vector machine (SVM) and gradient evolution (GE) algorithms. SVM algorithm has been widely used in classification. However, its result is significantly influenced by the parameters. Therefore, this paper aims to propose an improvement of SVM algorithm which can find the best SVMs’ parameters automatically. The proposed algorithm employs a GE algorithm to automatically determine the SVMs’ parameters. The GE algorithm takes a role as a global optimizer in finding the best parameter which will be used by SVM algorithm. The proposed GE-SVM algorithm is verified using some benchmark datasets and compared with other metaheuristic-based SVM algorithms. The experimental results show that the proposed GE-SVM algorithm obtains better results than other algorithms tested in this paper.
Parallel processing approach to transform-based image coding
Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.
1991-06-01
This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.
Towards discrete wavelet transform-based human activity recognition
Khare, Manish; Jeon, Moongu
2017-06-01
Providing accurate recognition of human activities is a challenging problem for visual surveillance applications. In this paper, we present a simple and efficient algorithm for human activity recognition based on a wavelet transform. We adopt discrete wavelet transform (DWT) coefficients as a feature of human objects to obtain advantages of its multiresolution approach. The proposed method is tested on multiple levels of DWT. Experiments are carried out on different standard action datasets including KTH and i3D Post. The proposed method is compared with other state-of-the-art methods in terms of different quantitative performance measures. The proposed method is found to have better recognition accuracy in comparison to the state-of-the-art methods.
International Nuclear Information System (INIS)
Pang Chaoyang; Hu Benqiong
2008-01-01
The discrete Fourier transform (DFT) is the base of modern signal processing. 1-dimensional fast Fourier transform (ID FFT) and 2D FFT have time complexity O (N log N) and O (N 2 log N) respectively. Since 1965, there has been no more essential breakthrough for the design of fast DFT algorithm. DFT has two properties. One property is that DFT is energy conservation transform. The other property is that many DFT coefficients are close to zero. The basic idea of this paper is that the generalized Grover's iteration can perform the computation of DFT which acts on the entangled states to search the big DFT coefficients until these big coefficients contain nearly all energy. One-dimensional quantum DFT (ID QDFT) and two-dimensional quantum DFT (2D QDFT) are presented in this paper. The quantum algorithm for convolution estimation is also presented in this paper. Compared with FFT, ID and 2D QDFT have time complexity O(√N) and O (N) respectively. QDFT and quantum convolution demonstrate that quantum computation to process classical signal is possible. (general)
Computation of watersheds based on parallel graph algorithms
Meijster, A.; Roerdink, J.B.T.M.; Maragos, P; Schafer, RW; Butt, MA
1996-01-01
In this paper the implementation of a parallel watershed algorithm is described. The algorithm has been implemented on a Cray J932, which is a shared memory architecture with 32 processors. The watershed transform has generally been considered to be inherently sequential, but recently a few research
Zhou, Junhe; Wu, Jianjie; Hu, Qinsong
2018-02-05
In this paper, we propose a novel tunable unitary transformer, which can achieve arbitrary discrete unitary transforms. The unitary transformer is composed of multiple sections of multi-core fibers with closely aligned coupled cores. Phase shifters are inserted before and after the sections to control the phases of the waves in the cores. A simple algorithm is proposed to find the optimal phase setup for the phase shifters to realize the desired unitary transforms. The proposed device is fiber based and is particularly suitable for the mode division multiplexing systems. A tunable mode MUX/DEMUX for a three-mode fiber is designed based on the proposed structure.
An Image Matching Method Based on Fourier and LOG-Polar Transform
Directory of Open Access Journals (Sweden)
Zhijia Zhang
2014-04-01
Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.
Frequency hopping signal detection based on wavelet decomposition and Hilbert-Huang transform
Zheng, Yang; Chen, Xihao; Zhu, Rui
2017-07-01
Frequency hopping (FH) signal is widely adopted by military communications as a kind of low probability interception signal. Therefore, it is very important to research the FH signal detection algorithm. The existing detection algorithm of FH signals based on the time-frequency analysis cannot satisfy the time and frequency resolution requirement at the same time due to the influence of window function. In order to solve this problem, an algorithm based on wavelet decomposition and Hilbert-Huang transform (HHT) was proposed. The proposed algorithm removes the noise of the received signals by wavelet decomposition and detects the FH signals by Hilbert-Huang transform. Simulation results show the proposed algorithm takes into account both the time resolution and the frequency resolution. Correspondingly, the accuracy of FH signals detection can be improved.
Ntekas, Konstantinos; The ATLAS collaboration
2018-01-01
The upgrade of the ATLAS first-level muon trigger for High- Luminosity LHC foresees incorporating the precise tracking of the Monitored Drift Tubes in the current system based on Resistive Plate Chambers and Thin Gap Chambers to improve the accuracy in the transverse momentum measurement and control the single muon trigger rate by suppressing low quality fake triggers. The core of the MDT trigger algorithm is the segment identification and reconstruction which is performed per MDT chamber. The reconstructed segment positions and directions are then combined to extract the muon candidate’s transverse momentum. A fast pattern recognition segment finding algorithm, called the Legendre transform, is proposed to be used for the MDT trigger, implemented in a FPGA housed on a ATCA blade.
Saturation Detection-Based Blocking Scheme for Transformer Differential Protection
Directory of Open Access Journals (Sweden)
Byung Eun Lee
2014-07-01
Full Text Available This paper describes a current differential relay for transformer protection that operates in conjunction with a core saturation detection-based blocking algorithm. The differential current for the magnetic inrush or over-excitation has a point of inflection at the start and end of each saturation period of the transformer core. At these instants, discontinuities arise in the first-difference function of the differential current. The second- and third-difference functions convert the points of inflection into pulses, the magnitudes of which are large enough to detect core saturation. The blocking signal is activated if the third-difference of the differential current is larger than the threshold and is maintained for one cycle. In addition, a method to discriminate between transformer saturation and current transformer (CT saturation is included. The performance of the proposed blocking scheme was compared with that of a conventional harmonic blocking method. The test results indicate that the proposed scheme successfully discriminates internal faults even with CT saturation from the magnetic inrush, over-excitation, and external faults with CT saturation, and can significantly reduce the operating time delay of the relay.
A Novel Robust Audio Watermarking Algorithm by Modifying the Average Amplitude in Transform Domain
Directory of Open Access Journals (Sweden)
Qiuling Wu
2018-05-01
Full Text Available In order to improve the robustness and imperceptibility in practical application, a novel audio watermarking algorithm with strong robustness is proposed by exploring the multi-resolution characteristic of discrete wavelet transform (DWT and the energy compaction capability of discrete cosine transform (DCT. The human auditory system is insensitive to the minor changes in the frequency components of the audio signal, so the watermarks can be embedded by slightly modifying the frequency components of the audio signal. The audio fragments segmented from the cover audio signal are decomposed by DWT to obtain several groups of wavelet coefficients with different frequency bands, and then the fourth level detail coefficient is selected to be divided into the former packet and the latter packet, which are executed for DCT to get two sets of transform domain coefficients (TDC respectively. Finally, the average amplitudes of the two sets of TDC are modified to embed the binary image watermark according to the special embedding rule. The watermark extraction is blind without the carrier audio signal. Experimental results confirm that the proposed algorithm has good imperceptibility, large payload capacity and strong robustness when resisting against various attacks such as MP3 compression, low-pass filtering, re-sampling, re-quantization, amplitude scaling, echo addition and noise corruption.
Algorithm Research of Individualized Travelling Route Recommendation Based on Similarity
Directory of Open Access Journals (Sweden)
Xue Shan
2015-01-01
Full Text Available Although commercial recommendation system has made certain achievement in travelling route development, the recommendation system is facing a series of challenges because of people’s increasing interest in travelling. It is obvious that the core content of the recommendation system is recommendation algorithm. The advantages of recommendation algorithm can bring great effect to the recommendation system. Based on this, this paper applies traditional collaborative filtering algorithm for analysis. Besides, illustrating the deficiencies of the algorithm, such as the rating unicity and rating matrix sparsity, this paper proposes an improved algorithm combing the multi-similarity algorithm based on user and the element similarity algorithm based on user, so as to compensate for the deficiencies that traditional algorithm has within a controllable range. Experimental results have shown that the improved algorithm has obvious advantages in comparison with the traditional one. The improved algorithm has obvious effect on remedying the rating matrix sparsity and rating unicity.
Research on AHP decision algorithms based on BP algorithm
Ma, Ning; Guan, Jianhe
2017-10-01
Decision making is the thinking activity that people choose or judge, and scientific decision-making has always been a hot issue in the field of research. Analytic Hierarchy Process (AHP) is a simple and practical multi-criteria and multi-objective decision-making method that combines quantitative and qualitative and can show and calculate the subjective judgment in digital form. In the process of decision analysis using AHP method, the rationality of the two-dimensional judgment matrix has a great influence on the decision result. However, in dealing with the real problem, the judgment matrix produced by the two-dimensional comparison is often inconsistent, that is, it does not meet the consistency requirements. BP neural network algorithm is an adaptive nonlinear dynamic system. It has powerful collective computing ability and learning ability. It can perfect the data by constantly modifying the weights and thresholds of the network to achieve the goal of minimizing the mean square error. In this paper, the BP algorithm is used to deal with the consistency of the two-dimensional judgment matrix of the AHP.
Searching for continuous gravitational wave signals. The hierarchical Hough transform algorithm
International Nuclear Information System (INIS)
Papa, M.; Schutz, B.F.; Sintes, A.M.
2001-01-01
It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk I will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere [8]. In this talk I will focus on some of the implementational aspects we are currently concerned with. (author)
NDT applications of the 3D radon transform algorithm for cone beam reconstruction
International Nuclear Information System (INIS)
Sire, P.; Grangeat, P.; Lemasson, P.; Molennec, P.; Rizo, P.
1990-01-01
The paper describes the authors' 3D X-ray CT algorithm RADON using attenuation measurements acquired with a bidimensional detector. The authors' inversion diagram uses the first derivative of the Radon transform synthesis then its inversion. The potentiality of that new method, particularly for the large aperture, prompted us to develop an optimized software offering convenience and high performances on a modern scientific computer. After a brief recall of the basic principle of X-ray imaging processing, the authors introduce theoretical developments resulting in the present inversion diagram. A general algorithm structure will be proposed afterwards. As a conclusion the authors present the performances and the results obtained with ceramic rotors examination
Directory of Open Access Journals (Sweden)
Chen Deyun
2013-01-01
Full Text Available According to the image reconstruction accuracy influenced by the “soft field” nature and ill-conditioned problems in electrical capacitance tomography, a superresolution image reconstruction algorithm based on Landweber is proposed in the paper, which is based on the working principle of the electrical capacitance tomography system. The method uses the algorithm which is derived by regularization of solutions derived and derives closed solution by fast Fourier transform of the convolution kernel. So, it ensures the certainty of the solution and improves the stability and quality of image reconstruction results. Simulation results show that the imaging precision and real-time imaging of the algorithm are better than Landweber algorithm, and this algorithm proposes a new method for the electrical capacitance tomography image reconstruction algorithm.
Low-dose multiple-information retrieval algorithm for X-ray grating-based imaging
International Nuclear Information System (INIS)
Wang Zhentian; Huang Zhifeng; Chen Zhiqiang; Zhang Li; Jiang Xiaolei; Kang Kejun; Yin Hongxia; Wang Zhenchang; Stampanoni, Marco
2011-01-01
The present work proposes a low dose information retrieval algorithm for X-ray grating-based multiple-information imaging (GB-MII) method, which can retrieve the attenuation, refraction and scattering information of samples by only three images. This algorithm aims at reducing the exposure time and the doses delivered to the sample. The multiple-information retrieval problem in GB-MII is solved by transforming a nonlinear equations set to a linear equations and adopting the nature of the trigonometric functions. The proposed algorithm is validated by experiments both on conventional X-ray source and synchrotron X-ray source, and compared with the traditional multiple-image-based retrieval algorithm. The experimental results show that our algorithm is comparable with the traditional retrieval algorithm and especially suitable for high Signal-to-Noise system.
[A peak recognition algorithm designed for chromatographic peaks of transformer oil].
Ou, Linjun; Cao, Jian
2014-09-01
In the field of the chromatographic peak identification of the transformer oil, the traditional first-order derivative requires slope threshold to achieve peak identification. In terms of its shortcomings of low automation and easy distortion, the first-order derivative method was improved by applying the moving average iterative method and the normalized analysis techniques to identify the peaks. Accurate identification of the chromatographic peaks was realized through using multiple iterations of the moving average of signal curves and square wave curves to determine the optimal value of the normalized peak identification parameters, combined with the absolute peak retention times and peak window. The experimental results show that this algorithm can accurately identify the peaks and is not sensitive to the noise, the chromatographic peak width or the peak shape changes. It has strong adaptability to meet the on-site requirements of online monitoring devices of dissolved gases in transformer oil.
Madrasah Culture Based Transformational Leadership Model
Directory of Open Access Journals (Sweden)
Nur Khoiri
2016-10-01
Full Text Available Leadership is the ability to influence, direct behavior, and have a particular expertise in the field of the group who want to achieve the goals. A dynamic organization requires transformational leadership model. A school principal as a leader at school aims to actualize good learning leadership. Leadership learning focuses on learning which components include curriculum, teaching and learning process, assessment, teacher assessment and development, good service in learning, and developing a learning community in schools based on organizational culture as value, assumption, belief evolved from the roots of member thought of the organization and believed by all members of the organization and implemented in everyday life that could give meaning Keywords: leadership, transformational leadership, headmaster, instructional leadership, organizational culture.
Tripathy, Manoj
2012-01-01
This paper describes a new approach for power transformer differential protection which is based on the wave-shape recognition technique. An algorithm based on neural network principal component analysis (NNPCA) with back-propagation learning is proposed for digital differential protection of power transformer. The principal component analysis is used to preprocess the data from power system in order to eliminate redundant information and enhance hidden pattern of differential current to disc...
Ship Block Transportation Scheduling Problem Based on Greedy Algorithm
Directory of Open Access Journals (Sweden)
Chong Wang
2016-05-01
Full Text Available Ship block transportation problems are crucial issues to address in reducing the construction cost and improving the productivity of shipyards. Shipyards aim to maximize the workload balance of transporters with time constraint such that all blocks should be transported during the planning horizon. This process leads to three types of penalty time: empty transporter travel time, delay time, and tardy time. This study aims to minimize the sum of the penalty time. First, this study presents the problem of ship block transportation with the generalization of the block transportation restriction on the multi-type transporter. Second, the problem is transformed into the classical traveling salesman problem and assignment problem through a reasonable model simplification and by adding a virtual node to the proposed directed graph. Then, a heuristic algorithm based on greedy algorithm is proposed to assign blocks to available transporters and sequencing blocks for each transporter simultaneously. Finally, the numerical experiment method is used to validate the model, and its result shows that the proposed algorithm is effective in realizing the efficient use of the transporters in shipyards. Numerical simulation results demonstrate the promising application of the proposed method to efficiently improve the utilization of transporters and to reduce the cost of ship block logistics for shipyards.
Dynamic route guidance algorithm based algorithm based on artificial immune system
Institute of Scientific and Technical Information of China (English)
无
2007-01-01
To improve the performance of the K-shortest paths search in intelligent traffic guidance systems,this paper proposes an optimal search algorithm based on the intelligent optimization search theory and the memphor mechanism of vertebrate immune systems.This algorithm,applied to the urban traffic network model established by the node-expanding method,can expediently realize K-shortest paths search in the urban traffic guidance systems.Because of the immune memory and global parallel search ability from artificial immune systems,K shortest paths can be found without any repeat,which indicates evidently the superiority of the algorithm to the conventional ones.Not only does it perform a better parallelism,the algorithm also prevents premature phenomenon that often occurs in genetic algorithms.Thus,it is especially suitable for real-time requirement of the traffic guidance system and other engineering optimal applications.A case study verifies the efficiency and the practicability of the algorithm aforementioned.
Image Blocking Encryption Algorithm Based on Laser Chaos Synchronization
Directory of Open Access Journals (Sweden)
Shu-Ying Wang
2016-01-01
Full Text Available In view of the digital image transmission security, based on laser chaos synchronization and Arnold cat map, a novel image encryption scheme is proposed. Based on pixel values of plain image a parameter is generated to influence the secret key. Sequences of the drive system and response system are pretreated by the same method and make image blocking encryption scheme for plain image. Finally, pixels position are scrambled by general Arnold transformation. In decryption process, the chaotic synchronization accuracy is fully considered and the relationship between the effect of synchronization and decryption is analyzed, which has characteristics of high precision, higher efficiency, simplicity, flexibility, and better controllability. The experimental results show that the encryption algorithm image has high security and good antijamming performance.
Retinal biometrics based on Iterative Closest Point algorithm.
Hatanaka, Yuji; Tajima, Mikiya; Kawasaki, Ryo; Saito, Koko; Ogohara, Kazunori; Muramatsu, Chisako; Sunayama, Wataru; Fujita, Hiroshi
2017-07-01
The pattern of blood vessels in the eye is unique to each person because it rarely changes over time. Therefore, it is well known that retinal blood vessels are useful for biometrics. This paper describes a biometrics method using the Jaccard similarity coefficient (JSC) based on blood vessel regions in retinal image pairs. The retinal image pairs were rough matched by the center of their optic discs. Moreover, the image pairs were aligned using the Iterative Closest Point algorithm based on detailed blood vessel skeletons. For registration, perspective transform was applied to the retinal images. Finally, the pairs were classified as either correct or incorrect using the JSC of the blood vessel region in the image pairs. The proposed method was applied to temporal retinal images, which were obtained in 2009 (695 images) and 2013 (87 images). The 87 images acquired in 2013 were all from persons already examined in 2009. The accuracy of the proposed method reached 100%.
A dual-adaptive support-based stereo matching algorithm
Zhang, Yin; Zhang, Yun
2017-07-01
Many stereo matching algorithms use fixed color thresholds and a rigid cross skeleton to segment supports (viz., Cross method), which, however, does not work well for different images. To address this issue, this paper proposes a novel dual adaptive support (viz., DAS)-based stereo matching method, which uses both appearance and shape information of a local region to segment supports automatically, and, then, integrates the DAS-based cost aggregation with the absolute difference plus census transform cost, scanline optimization and disparity refinement to develop a stereo matching system. The performance of the DAS method is also evaluated in the Middlebury benchmark and by comparing with the Cross method. The results show that the average error for the DAS method 25.06% lower than that for the Cross method, indicating that the proposed method is more accurate, with fewer parameters and suitable for parallel computing.
Algorithm comparison and benchmarking using a parallel spectra transform shallow water model
Energy Technology Data Exchange (ETDEWEB)
Worley, P.H. [Oak Ridge National Lab., TN (United States); Foster, I.T.; Toonen, B. [Argonne National Lab., IL (United States)
1995-04-01
In recent years, a number of computer vendors have produced supercomputers based on a massively parallel processing (MPP) architecture. These computers have been shown to be competitive in performance with conventional vector supercomputers for some applications. As spectral weather and climate models are heavy users of vector supercomputers, it is interesting to determine how these models perform on MPPS, and which MPPs are best suited to the execution of spectral models. The benchmarking of MPPs is complicated by the fact that different algorithms may be more efficient on different architectures. Hence, a comprehensive benchmarking effort must answer two related questions: which algorithm is most efficient on each computer and how do the most efficient algorithms compare on different computers. In general, these are difficult questions to answer because of the high cost associated with implementing and evaluating a range of different parallel algorithms on each MPP platform.
Development of GPT-based optimization algorithm
International Nuclear Information System (INIS)
White, J.R.; Chapman, D.M.; Biswas, D.
1985-01-01
The University of Lowell and Westinghouse Electric Corporation are involved in a joint effort to evaluate the potential benefits of generalized/depletion perturbation theory (GPT/DTP) methods for a variety of light water reactor (LWR) physics applications. One part of that work has focused on the development of a GPT-based optimization algorithm for the overall design, analysis, and optimization of LWR reload cores. The use of GPT sensitivity data in formulating the fuel management optimization problem is conceptually straightforward; it is the actual execution of the concept that is challenging. Thus, the purpose of this paper is to address some of the major difficulties, to outline our approach to these problems, and to present some illustrative examples of an efficient GTP-based optimization scheme
Directory of Open Access Journals (Sweden)
Shuo-Tsung Chen
2015-01-01
Full Text Available Purpose. Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. Methods. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Results. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Conclusion. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.
Chen, Shuo-Tsung; Wang, Tzung-Dau; Lee, Wen-Jeng; Huang, Tsai-Wei; Hung, Pei-Kai; Wei, Cheng-Yu; Chen, Chung-Ming; Kung, Woon-Man
2015-01-01
Most applications in the field of medical image processing require precise estimation. To improve the accuracy of segmentation, this study aimed to propose a novel segmentation method for coronary arteries to allow for the automatic and accurate detection of coronary pathologies. The proposed segmentation method included 2 parts. First, 3D region growing was applied to give the initial segmentation of coronary arteries. Next, the location of vessel information, HHH subband coefficients of the 3D DWT, was detected by the proposed vessel-texture discrimination algorithm. Based on the initial segmentation, 3D DWT integrated with the 3D neutrosophic transformation could accurately detect the coronary arteries. Each subbranch of the segmented coronary arteries was segmented correctly by the proposed method. The obtained results are compared with those ground truth values obtained from the commercial software from GE Healthcare and the level-set method proposed by Yang et al., 2007. Results indicate that the proposed method is better in terms of efficiency analyzed. Based on the initial segmentation of coronary arteries obtained from 3D region growing, one-level 3D DWT and 3D neutrosophic transformation can be applied to detect coronary pathologies accurately.
Archimedean copula estimation of distribution algorithm based on artificial bee colony algorithm
Institute of Scientific and Technical Information of China (English)
Haidong Xu; Mingyan Jiang; Kun Xu
2015-01-01
The artificial bee colony (ABC) algorithm is a com-petitive stochastic population-based optimization algorithm. How-ever, the ABC algorithm does not use the social information and lacks the knowledge of the problem structure, which leads to in-sufficiency in both convergent speed and searching precision. Archimedean copula estimation of distribution algorithm (ACEDA) is a relatively simple, time-economic and multivariate correlated EDA. This paper proposes a novel hybrid algorithm based on the ABC algorithm and ACEDA cal ed Archimedean copula estima-tion of distribution based on the artificial bee colony (ACABC) algorithm. The hybrid algorithm utilizes ACEDA to estimate the distribution model and then uses the information to help artificial bees to search more efficiently in the search space. Six bench-mark functions are introduced to assess the performance of the ACABC algorithm on numerical function optimization. Experimen-tal results show that the ACABC algorithm converges much faster with greater precision compared with the ABC algorithm, ACEDA and the global best (gbest)-guided ABC (GABC) algorithm in most of the experiments.
An assembly sequence planning method based on composite algorithm
Directory of Open Access Journals (Sweden)
Enfu LIU
2016-02-01
Full Text Available To solve the combination explosion problem and the blind searching problem in assembly sequence planning of complex products, an assembly sequence planning method based on composite algorithm is proposed. In the composite algorithm, a sufficient number of feasible assembly sequences are generated using formalization reasoning algorithm as the initial population of genetic algorithm. Then fuzzy knowledge of assembly is integrated into the planning process of genetic algorithm and ant algorithm to get the accurate solution. At last, an example is conducted to verify the feasibility of composite algorithm.
Cognitive radio resource allocation based on coupled chaotic genetic algorithm
International Nuclear Information System (INIS)
Zu Yun-Xiao; Zhou Jie; Zeng Chang-Chang
2010-01-01
A coupled chaotic genetic algorithm for cognitive radio resource allocation which is based on genetic algorithm and coupled Logistic map is proposed. A fitness function for cognitive radio resource allocation is provided. Simulations are conducted for cognitive radio resource allocation by using the coupled chaotic genetic algorithm, simple genetic algorithm and dynamic allocation algorithm respectively. The simulation results show that, compared with simple genetic and dynamic allocation algorithm, coupled chaotic genetic algorithm reduces the total transmission power and bit error rate in cognitive radio system, and has faster convergence speed
Infinitely oscillating wavelets and a efficient implementation algorithm based the FFT
Directory of Open Access Journals (Sweden)
Marcela Fabio
2015-01-01
Full Text Available In this work we present the design of an orthogonal wavelet, infinitely oscillating, located in time with decay 1/|t|n and limited-band. Its appli- cation leads to the signal decomposition in waves of instantaneous, well defined frequency. We also present the implementation algorithm for the analysis and synthesis based on the Fast Fourier Transform (FFT with the same complexity as Mallat’s algorithm.
Scheduling Two-Sided Transformations Using Tile Algorithms on Multicore Architectures
Directory of Open Access Journals (Sweden)
Hatem Ltaief
2010-01-01
Full Text Available The objective of this paper is to describe, in the context of multicore architectures, three different scheduler implementations for the two-sided linear algebra transformations, in particular the Hessenberg and Bidiagonal reductions which are the first steps for the standard eigenvalue problems and the singular value decompositions respectively. State-of-the-art dense linear algebra softwares, such as the LAPACK and ScaLAPACK libraries, suffer performance losses on multicore processors due to their inability to fully exploit thread-level parallelism. At the same time the fine-grain dataflow model gains popularity as a paradigm for programming multicore architectures. Buttari et al. (Parellel Comput. Syst. Appl. 35 (2009, 38–53 introduced the concept of tile algorithms in which parallelism is no longer hidden inside Basic Linear Algebra Subprograms but is brought to the fore to yield much better performance. Along with efficient scheduling mechanisms for data-driven execution, these tile two-sided reductions achieve high performance computing by reaching up to 75% of the DGEMM peak on a 12000×12000 matrix with 16 Intel Tigerton 2.4 GHz processors. The main drawback of the tile algorithms approach for two-sided transformations is that the full reduction cannot be obtained in one stage. Other methods have to be considered to further reduce the band matrices to the required forms.
New calibration algorithms for dielectric-based microwave moisture sensors
New calibration algorithms for determining moisture content in granular and particulate materials from measurement of the dielectric properties at a single microwave frequency are proposed. The algorithms are based on identifying empirically correlations between the dielectric properties and the par...
Efficient Algorithm and Architecture of Critical-Band Transform for Low-Power Speech Applications
Directory of Open Access Journals (Sweden)
Gan Woon-Seng
2007-01-01
Full Text Available An efficient algorithm and its corresponding VLSI architecture for the critical-band transform (CBT are developed to approximate the critical-band filtering of the human ear. The CBT consists of a constant-bandwidth transform in the lower frequency range and a Brown constant- transform (CQT in the higher frequency range. The corresponding VLSI architecture is proposed to achieve significant power efficiency by reducing the computational complexity, using pipeline and parallel processing, and applying the supply voltage scaling technique. A 21-band Bark scale CBT processor with a sampling rate of 16 kHz is designed and simulated. Simulation results verify its suitability for performing short-time spectral analysis on speech. It has a better fitting on the human ear critical-band analysis, significantly fewer computations, and therefore is more energy-efficient than other methods. With a 0.35 m CMOS technology, it calculates a 160-point speech in 4.99 milliseconds at 234 kHz. The power dissipation is 15.6 W at 1.1 V. It achieves 82.1 power reduction as compared to a benchmark 256-point FFT processor.
Fuzzy Genetic Algorithm Based on Principal Operation and Inequity Degree
Li, Fachao; Jin, Chenxia
In this paper, starting from the structure of fuzzy information, by distinguishing principal indexes and assistant indexes, give comparison of fuzzy information on synthesizing effect and operation of fuzzy optimization on principal indexes transformation, further, propose axiom system of fuzzy inequity degree from essence of constraint, and give an instructive metric method; Then, combining genetic algorithm, give fuzzy optimization methods based on principal operation and inequity degree (denoted by BPO&ID-FGA, for short); Finally, consider its convergence using Markov chain theory and analyze its performance through an example. All these indicate, BPO&ID-FGA can not only effectively merge decision consciousness into the optimization process, but possess better global convergence, so it can be applied to many fuzzy optimization problems.
Chaotic Image Scrambling Algorithm Based on S-DES
International Nuclear Information System (INIS)
Yu, X Y; Zhang, J; Ren, H E; Xu, G S; Luo, X Y
2006-01-01
With the security requirement improvement of the image on the network, some typical image encryption methods can't meet the demands of encryption, such as Arnold cat map and Hilbert transformation. S-DES system can encrypt the input binary flow of image, but the fixed system structure and few keys will still bring some risks. However, the sensitivity of initial value that Logistic chaotic map can be well applied to the system of S-DES, which makes S-DES have larger random and key quantities. A dual image encryption algorithm based on S-DES and Logistic map is proposed. Through Matlab simulation experiments, the key quantities will attain 10 17 and the encryption speed of one image doesn't exceed one second. Compared to traditional methods, it has some merits such as easy to understand, rapid encryption speed, large keys and sensitivity to initial value
A Trust-region-based Sequential Quadratic Programming Algorithm
DEFF Research Database (Denmark)
Henriksen, Lars Christian; Poulsen, Niels Kjølstad
This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints.......This technical note documents the trust-region-based sequential quadratic programming algorithm used in other works by the authors. The algorithm seeks to minimize a convex nonlinear cost function subject to linear inequalty constraints and nonlinear equality constraints....
Cui, Xinchun; Niu, Yuying; Zheng, Xiangwei; Han, Yingshuai
2018-01-01
In this paper, a new color watermarking algorithm based on differential evolution is proposed. A color host image is first converted from RGB space to YIQ space, which is more suitable for the human visual system. Then, apply three-level discrete wavelet transformation to luminance component Y and generate four different frequency sub-bands. After that, perform singular value decomposition on these sub-bands. In the watermark embedding process, apply discrete wavelet transformation to a watermark image after the scrambling encryption processing. Our new algorithm uses differential evolution algorithm with adaptive optimization to choose the right scaling factors. Experimental results show that the proposed algorithm has a better performance in terms of invisibility and robustness.
Genetic algorithm based separation cascade optimization
International Nuclear Information System (INIS)
Mahendra, A.K.; Sanyal, A.; Gouthaman, G.; Bera, T.K.
2008-01-01
The conventional separation cascade design procedure does not give an optimum design because of squaring-off, variation of flow rates and separation factor of the element with respect to stage location. Multi-component isotope separation further complicates the design procedure. Cascade design can be stated as a constrained multi-objective optimization. Cascade's expectation from the separating element is multi-objective i.e. overall separation factor, cut, optimum feed and separative power. Decision maker may aspire for more comprehensive multi-objective goals where optimization of cascade is coupled with the exploration of separating element optimization vector space. In real life there are many issues which make it important to understand the decision maker's perception of cost-quality-speed trade-off and consistency of preferences. Genetic algorithm (GA) is one such evolutionary technique that can be used for cascade design optimization. This paper addresses various issues involved in the GA based multi-objective optimization of the separation cascade. Reference point based optimization methodology with GA based Pareto optimality concept for separation cascade was found pragmatic and promising. This method should be explored, tested, examined and further developed for binary as well as multi-component separations. (author)
Algorithm Indicating Moment of P-Wave Arrival Based on Second-Moment Characteristic
Directory of Open Access Journals (Sweden)
Jakub Sokolowski
2016-01-01
Full Text Available The moment of P-wave arrival can provide us with many information about the nature of a seismic event. Without adequate knowledge regarding the onset moment, many properties of the events related to location, polarization of P-wave, and so forth are impossible to receive. In order to save time required to indicate P-wave arrival moment manually, one can benefit from automatic picking algorithms. In this paper two algorithms based on a method finding a regime switch point are applied to seismic event data in order to find P-wave arrival time. The algorithms are based on signals transformed via a basic transform rather than on raw recordings. They involve partitioning the transformed signal into two separate series and fitting logarithm function to the first subset (which corresponds to pure noise and therefore it is considered stationary, exponent or power function to the second subset (which corresponds to nonstationary seismic event, and finding the point at which these functions best fit the statistic in terms of sum of squared errors. Effectiveness of the algorithms is tested on seismic data acquired from O/ZG “Rudna” underground copper ore mine with moments of P-wave arrival initially picked by broadly known STA/LTA algorithm and then corrected by seismic station specialists. The results of proposed algorithms are compared to those obtained using STA/LTA.
Mushtaq Ismael Hasan
2017-01-01
In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25...
Kong, Gang; Dai, Dao-Qing; Zou, Lu-Min
2008-07-01
In order to remove the artifacts of peripheral digital subtraction angiography (DSA), an affine transformation-based automatic image registration algorithm is introduced here. The whole process is described as follows: First, rectangle feature templates are constructed with their centers of the extracted Harris corners in the mask, and motion vectors of the central feature points are estimated using template matching technology with the similarity measure of maximum histogram energy. And then the optimal parameters of the affine transformation are calculated with the matrix singular value decomposition (SVD) method. Finally, bilinear intensity interpolation is taken to the mask according to the specific affine transformation. More than 30 peripheral DSA registrations are performed with the presented algorithm, and as the result, moving artifacts of the images are removed with sub-pixel precision, and the time consumption is less enough to satisfy the clinical requirements. Experimental results show the efficiency and robustness of the algorithm.
32Still Image Compression Algorithm Based on Directional Filter Banks
Chunling Yang; Duanwu Cao; Li Ma
2010-01-01
Hybrid wavelet and directional filter banks (HWD) is an effective multi-scale geometrical analysis method. Compared to wavelet transform, it can better capture the directional information of images. But the ringing artifact, which is caused by the coefficient quantization in transform domain, is the biggest drawback of image compression algorithms in HWD domain. In this paper, by researching on the relationship between directional decomposition and ringing artifact, an improved decomposition ...
A. AL-Salhi, Yahya E.; Lu, Songfeng
2016-08-01
Quantum steganography can solve some problems that are considered inefficient in image information concealing. It researches on Quantum image information concealing to have been widely exploited in recent years. Quantum image information concealing can be categorized into quantum image digital blocking, quantum image stereography, anonymity and other branches. Least significant bit (LSB) information concealing plays vital roles in the classical world because many image information concealing algorithms are designed based on it. Firstly, based on the novel enhanced quantum representation (NEQR), image uniform blocks clustering around the concrete the least significant Qu-block (LSQB) information concealing algorithm for quantum image steganography is presented. Secondly, a clustering algorithm is proposed to optimize the concealment of important data. Finally, we used Con-Steg algorithm to conceal the clustered image blocks. Information concealing located on the Fourier domain of an image can achieve the security of image information, thus we further discuss the Fourier domain LSQu-block information concealing algorithm for quantum image based on Quantum Fourier Transforms. In our algorithms, the corresponding unitary Transformations are designed to realize the aim of concealing the secret information to the least significant Qu-block representing color of the quantum cover image. Finally, the procedures of extracting the secret information are illustrated. Quantum image LSQu-block image information concealing algorithm can be applied in many fields according to different needs.
2D non-separable linear canonical transform (2D-NS-LCT) based cryptography
Zhao, Liang; Muniraj, Inbarasan; Healy, John J.; Malallah, Ra'ed; Cui, Xiao-Guang; Ryle, James P.; Sheridan, John T.
2017-05-01
The 2D non-separable linear canonical transform (2D-NS-LCT) can describe a variety of paraxial optical systems. Digital algorithms to numerically evaluate the 2D-NS-LCTs are not only important in modeling the light field propagations but also of interest in various signal processing based applications, for instance optical encryption. Therefore, in this paper, for the first time, a 2D-NS-LCT based optical Double-random- Phase-Encryption (DRPE) system is proposed which offers encrypting information in multiple degrees of freedom. Compared with the traditional systems, i.e. (i) Fourier transform (FT); (ii) Fresnel transform (FST); (iii) Fractional Fourier transform (FRT); and (iv) Linear Canonical transform (LCT), based DRPE systems, the proposed system is more secure and robust as it encrypts the data with more degrees of freedom with an augmented key-space.
Grating geophone signal processing based on wavelet transform
Li, Shuqing; Zhang, Huan; Tao, Zhifei
2008-12-01
Grating digital geophone is designed based on grating measurement technique benefiting averaging-error effect and wide dynamic range to improve weak signal detected precision. This paper introduced the principle of grating digital geophone and its post signal processing system. The signal acquisition circuit use Atmega 32 chip as core part and display the waveform on the Labwindows through the RS232 data link. Wavelet transform is adopted this paper to filter the grating digital geophone' output signal since the signal is unstable. This data processing method is compared with the FIR filter that widespread use in current domestic. The result indicates that the wavelet algorithm has more advantages and the SNR of seismic signal improve obviously.
Scattering transform and LSPTSVM based fault diagnosis of rotating machinery
Ma, Shangjun; Cheng, Bo; Shang, Zhaowei; Liu, Geng
2018-05-01
This paper proposes an algorithm for fault diagnosis of rotating machinery to overcome the shortcomings of classical techniques which are noise sensitive in feature extraction and time consuming for training. Based on the scattering transform and the least squares recursive projection twin support vector machine (LSPTSVM), the method has the advantages of high efficiency and insensitivity for noise signal. Using the energy of the scattering coefficients in each sub-band, the features of the vibration signals are obtained. Then, an LSPTSVM classifier is used for fault diagnosis. The new method is compared with other common methods including the proximal support vector machine, the standard support vector machine and multi-scale theory by using fault data for two systems, a motor bearing and a gear box. The results show that the new method proposed in this study is more effective for fault diagnosis of rotating machinery.
MVDR Algorithm Based on Estimated Diagonal Loading for Beamforming
Directory of Open Access Journals (Sweden)
Yuteng Xiao
2017-01-01
Full Text Available Beamforming algorithm is widely used in many signal processing fields. At present, the typical beamforming algorithm is MVDR (Minimum Variance Distortionless Response. However, the performance of MVDR algorithm relies on the accurate covariance matrix. The MVDR algorithm declines dramatically with the inaccurate covariance matrix. To solve the problem, studying the beamforming array signal model and beamforming MVDR algorithm, we improve MVDR algorithm based on estimated diagonal loading for beamforming. MVDR optimization model based on diagonal loading compensation is established and the interval of the diagonal loading compensation value is deduced on the basis of the matrix theory. The optimal diagonal loading value in the interval is also determined through the experimental method. The experimental results show that the algorithm compared with existing algorithms is practical and effective.
Document localization algorithms based on feature points and straight lines
Skoryukina, Natalya; Shemiakina, Julia; Arlazarov, Vladimir L.; Faradjev, Igor
2018-04-01
The important part of the system of a planar rectangular object analysis is the localization: the estimation of projective transform from template image of an object to its photograph. The system also includes such subsystems as the selection and recognition of text fields, the usage of contexts etc. In this paper three localization algorithms are described. All algorithms use feature points and two of them also analyze near-horizontal and near- vertical lines on the photograph. The algorithms and their combinations are tested on a dataset of real document photographs. Also the method of localization quality estimation is proposed that allows configuring the localization subsystem independently of the other subsystems quality.
Quantum image encryption based on generalized affine transform and logistic map
Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run
2016-07-01
Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.
International Nuclear Information System (INIS)
Olsen, Jeppe
2014-01-01
A novel algorithm is introduced for the transformation of wave functions between the bases of Slater determinants (SD) and configuration state functions (CSF) in the genealogical coupling scheme. By modifying the expansion coefficients as each electron is spin-coupled, rather than performing a single many-electron transformation, the large transformation matrix that plagues previous approaches is avoided and the required number of operations is drastically reduced. As an example of the efficiency of the algorithm, the transformation for a configuration with 30 unpaired electrons and singlet spin is discussed. For this case, the 10 × 10 6 coefficients in the CSF basis is obtained from the 150 × 10 6 coefficients in the SD basis in 1 min, which should be compared with the seven years that the previously employed method is estimated to require
Generalized phase retrieval algorithm based on information measures
Shioya, Hiroyuki; Gohara, Kazutoshi
2006-01-01
An iterative phase retrieval algorithm based on the maximum entropy method (MEM) is presented. Introducing a new generalized information measure, we derive a novel class of algorithms which includes the conventionally used error reduction algorithm and a MEM-type iterative algorithm which is presented for the first time. These different phase retrieval methods are unified on the basis of the framework of information measures used in information theory.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Ullah, Azmat; Malik, Suheel Abdullah; Alimgeer, Khurram Saleem
2018-01-01
In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA) with Interior Point Algorithm (IPA) is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Evolutionary algorithm based heuristic scheme for nonlinear heat transfer equations.
Directory of Open Access Journals (Sweden)
Azmat Ullah
Full Text Available In this paper, a hybrid heuristic scheme based on two different basis functions i.e. Log Sigmoid and Bernstein Polynomial with unknown parameters is used for solving the nonlinear heat transfer equations efficiently. The proposed technique transforms the given nonlinear ordinary differential equation into an equivalent global error minimization problem. Trial solution for the given nonlinear differential equation is formulated using a fitness function with unknown parameters. The proposed hybrid scheme of Genetic Algorithm (GA with Interior Point Algorithm (IPA is opted to solve the minimization problem and to achieve the optimal values of unknown parameters. The effectiveness of the proposed scheme is validated by solving nonlinear heat transfer equations. The results obtained by the proposed scheme are compared and found in sharp agreement with both the exact solution and solution obtained by Haar Wavelet-Quasilinearization technique which witnesses the effectiveness and viability of the suggested scheme. Moreover, the statistical analysis is also conducted for investigating the stability and reliability of the presented scheme.
Algorithm of Particle Data Association for SLAM Based on Improved Ant Algorithm
Directory of Open Access Journals (Sweden)
KeKe Gen
2015-01-01
Full Text Available The article considers a problem of data association algorithm for simultaneous localization and mapping guidelines in determining the route of unmanned aerial vehicles (UAVs. Currently, these equipments are already widely used, but mainly controlled from the remote operator. An urgent task is to develop a control system that allows for autonomous flight. Algorithm SLAM (simultaneous localization and mapping, which allows to predict the location, speed, the ratio of flight parameters and the coordinates of landmarks and obstacles in an unknown environment, is one of the key technologies to achieve real autonomous UAV flight. The aim of this work is to study the possibility of solving this problem by using an improved ant algorithm.The data association for SLAM algorithm is meant to establish a matching set of observed landmarks and landmarks in the state vector. Ant algorithm is one of the widely used optimization algorithms with positive feedback and the ability to search in parallel, so the algorithm is suitable for solving the problem of data association for SLAM. But the traditional ant algorithm in the process of finding routes easily falls into local optimum. Adding random perturbations in the process of updating the global pheromone to avoid local optima. Setting limits pheromone on the route can increase the search space with a reasonable amount of calculations for finding the optimal route.The paper proposes an algorithm of the local data association for SLAM algorithm based on an improved ant algorithm. To increase the speed of calculation, local data association is used instead of the global data association. The first stage of the algorithm defines targets in the matching space and the observed landmarks with the possibility of association by the criterion of individual compatibility (IC. The second stage defines the matched landmarks and their coordinates using improved ant algorithm. Simulation results confirm the efficiency and
Filtered backprojection algorithm in RPCs based PET
International Nuclear Information System (INIS)
Cruceru, Ilie; Manea Ioana; Nicorescu, Carmen; Constantin Florin
2003-01-01
The basis of PET consists in administration of a radioactive isotope attached to a tracer that permits to reveal its molecular pathways in the human body. A 3-D Whole-Body-Scan is necessary in order to minimize the radiation exposure of the patient and to increase significantly the axial field of view (FOV). A major candidate for gamma pair detection in 3-D Whole-Body-Scan appear to be the RPCs (Resistive Plate Counters). They consist in a longitudinal microstrip grid 15 mm thick, spaced at 1 mm; the grid is placed between a large electric resistive glass anode (ρ = 10 12 Ωcm) and an aluminium cathode; the gap of around 300 μm is filled with a special gas and is polarized at around 6 kV. Several detecting structures based on Resistive Plate Counters (RPCs) are evaluated for use in a positron emission 3-Dimensional Whole-Body-Scan tomograph. The coincidence matrix is built for the specific detecting structure by means of random gamma pair ray generation and then the filtered backprojection algorithm is used to reconstruct the original picture. The accuracy of image reconstruction is examined for the four different detecting structures. (authors)
Parallel algorithms for quantum chemistry. I. Integral transformations on a hypercube multiprocessor
International Nuclear Information System (INIS)
Whiteside, R.A.; Binkley, J.S.; Colvin, M.E.; Schaefer, H.F. III
1987-01-01
For many years it has been recognized that fundamental physical constraints such as the speed of light will limit the ultimate speed of single processor computers to less than about three billion floating point operations per second (3 GFLOPS). This limitation is becoming increasingly restrictive as commercially available machines are now within an order of magnitude of this asymptotic limit. A natural way to avoid this limit is to harness together many processors to work on a single computational problem. In principle, these parallel processing computers have speeds limited only by the number of processors one chooses to acquire. The usefulness of potentially unlimited processing speed to a computationally intensive field such as quantum chemistry is obvious. If these methods are to be applied to significantly larger chemical systems, parallel schemes will have to be employed. For this reason we have developed distributed-memory algorithms for a number of standard quantum chemical methods. We are currently implementing these on a 32 processor Intel hypercube. In this paper we present our algorithm and benchmark results for one of the bottleneck steps in quantum chemical calculations: the four index integral transformation
Algorithm, applications and evaluation for protein comparison by Ramanujan Fourier transform.
Zhao, Jian; Wang, Jiasong; Hua, Wei; Ouyang, Pingkai
2015-12-01
The amino acid sequence of a protein determines its chemical properties, chain conformation and biological functions. Protein sequence comparison is of great importance to identify similarities of protein structures and infer their functions. Many properties of a protein correspond to the low-frequency signals within the sequence. Low frequency modes in protein sequences are linked to the secondary structures, membrane protein types, and sub-cellular localizations of the proteins. In this paper, we present Ramanujan Fourier transform (RFT) with a fast algorithm to analyze the low-frequency signals of protein sequences. The RFT method is applied to similarity analysis of protein sequences with the Resonant Recognition Model (RRM). The results show that the proposed fast RFT method on protein comparison is more efficient than commonly used discrete Fourier transform (DFT). RFT can detect common frequencies as significant feature for specific protein families, and the RFT spectrum heat-map of protein sequences demonstrates the information conservation in the sequence comparison. The proposed method offers a new tool for pattern recognition, feature extraction and structural analysis on protein sequences. Copyright © 2015 Elsevier Ltd. All rights reserved.
Structure-Based Algorithms for Microvessel Classification
Smith, Amy F.; Secomb, Timothy W.; Pries, Axel R.; Smith, Nicolas P.; Shipley, Rebecca J.
2015-01-01
algorithm, developed for networks with one arteriolar and one venular tree, performs well in identifying arterioles and venules and is robust to parameter changes, but incorrectly labels a significant number of capillaries as arterioles or venules
An Innovative Thinking-Based Intelligent Information Fusion Algorithm
Directory of Open Access Journals (Sweden)
Huimin Lu
2013-01-01
Full Text Available This study proposes an intelligent algorithm that can realize information fusion in reference to the relative research achievements in brain cognitive theory and innovative computation. This algorithm treats knowledge as core and information fusion as a knowledge-based innovative thinking process. Furthermore, the five key parts of this algorithm including information sense and perception, memory storage, divergent thinking, convergent thinking, and evaluation system are simulated and modeled. This algorithm fully develops innovative thinking skills of knowledge in information fusion and is a try to converse the abstract conception of brain cognitive science to specific and operable research routes and strategies. Furthermore, the influences of each parameter of this algorithm on algorithm performance are analyzed and compared with those of classical intelligent algorithms trough test. Test results suggest that the algorithm proposed in this study can obtain the optimum problem solution by less target evaluation times, improve optimization effectiveness, and achieve the effective fusion of information.
Multiscale Distance Coherence Vector Algorithm for Content-Based Image Retrieval
Jiexian, Zeng; Xiupeng, Liu
2014-01-01
Multiscale distance coherence vector algorithm for content-based image retrieval (CBIR) is proposed due to the same descriptor with different shapes and the shortcomings of antinoise performance of the distance coherence vector algorithm. By this algorithm, the image contour curve is evolved by Gaussian function first, and then the distance coherence vector is, respectively, extracted from the contour of the original image and evolved images. Multiscale distance coherence vector was obtained by reasonable weight distribution of the distance coherence vectors of evolved images contour. This algorithm not only is invariable to translation, rotation, and scaling transformation but also has good performance of antinoise. The experiment results show us that the algorithm has a higher recall rate and precision rate for the retrieval of images polluted by noise. PMID:24883416
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT
Directory of Open Access Journals (Sweden)
Cunsuo Pang
2016-09-01
Full Text Available This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT’s performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated pulse radar, SAR (Synthetic aperture radar, or ISAR (Inverse synthetic aperture radar, for improving the probability of target recognition.
Micro-Doppler Signal Time-Frequency Algorithm Based on STFRFT.
Pang, Cunsuo; Han, Yan; Hou, Huiling; Liu, Shengheng; Zhang, Nan
2016-09-24
This paper proposes a time-frequency algorithm based on short-time fractional order Fourier transformation (STFRFT) for identification of a complicated movement targets. This algorithm, consisting of a STFRFT order-changing and quick selection method, is effective in reducing the computation load. A multi-order STFRFT time-frequency algorithm is also developed that makes use of the time-frequency feature of each micro-Doppler component signal. This algorithm improves the estimation accuracy of time-frequency curve fitting through multi-order matching. Finally, experiment data were used to demonstrate STFRFT's performance in micro-Doppler time-frequency analysis. The results validated the higher estimate accuracy of the proposed algorithm. It may be applied to an LFM (Linear frequency modulated) pulse radar, SAR (Synthetic aperture radar), or ISAR (Inverse synthetic aperture radar), for improving the probability of target recognition.
Du, Pan; Kibbe, Warren A; Lin, Simon M
2006-09-01
A major problem for current peak detection algorithms is that noise in mass spectrometry (MS) spectra gives rise to a high rate of false positives. The false positive rate is especially problematic in detecting peaks with low amplitudes. Usually, various baseline correction algorithms and smoothing methods are applied before attempting peak detection. This approach is very sensitive to the amount of smoothing and aggressiveness of the baseline correction, which contribute to making peak detection results inconsistent between runs, instrumentation and analysis methods. Most peak detection algorithms simply identify peaks based on amplitude, ignoring the additional information present in the shape of the peaks in a spectrum. In our experience, 'true' peaks have characteristic shapes, and providing a shape-matching function that provides a 'goodness of fit' coefficient should provide a more robust peak identification method. Based on these observations, a continuous wavelet transform (CWT)-based peak detection algorithm has been devised that identifies peaks with different scales and amplitudes. By transforming the spectrum into wavelet space, the pattern-matching problem is simplified and in addition provides a powerful technique for identifying and separating the signal from the spike noise and colored noise. This transformation, with the additional information provided by the 2D CWT coefficients can greatly enhance the effective signal-to-noise ratio. Furthermore, with this technique no baseline removal or peak smoothing preprocessing steps are required before peak detection, and this improves the robustness of peak detection under a variety of conditions. The algorithm was evaluated with SELDI-TOF spectra with known polypeptide positions. Comparisons with two other popular algorithms were performed. The results show the CWT-based algorithm can identify both strong and weak peaks while keeping false positive rate low. The algorithm is implemented in R and will be
Algorithmic strategies for FPGA-based vision
Lim, Yoong Kang
2016-01-01
As demands for real-time computer vision applications increase, implementations on alternative architectures have been explored. These architectures include Field-Programmable Gate Arrays (FPGAs), which offer a high degree of flexibility and parallelism. A problem with this is that many computer vision algorithms have been optimized for serial processing, and this often does not map well to FPGA implementation. This thesis introduces the concept of FPGA-tailored computer vision algorithms...
Indian Academy of Sciences (India)
polynomial) division have been found in Vedic Mathematics which are dated much before Euclid's algorithm. A programming language Is used to describe an algorithm for execution on a computer. An algorithm expressed using a programming.
Model based analysis of piezoelectric transformers.
Hemsel, T; Priya, S
2006-12-22
Piezoelectric transformers are increasingly getting popular in the electrical devices owing to several advantages such as small size, high efficiency, no electromagnetic noise and non-flammable. In addition to the conventional applications such as ballast for back light inverter in notebook computers, camera flash, and fuel ignition several new applications have emerged such as AC/DC converter, battery charger and automobile lighting. These new applications demand high power density and wide range of voltage gain. Currently, the transformer power density is limited to 40 W/cm(3) obtained at low voltage gain. The purpose of this study was to investigate a transformer design that has the potential of providing higher power density and wider range of voltage gain. The new transformer design utilizes radial mode both at the input and output port and has the unidirectional polarization in the ceramics. This design was found to provide 30 W power with an efficiency of 98% and 30 degrees C temperature rise from the room temperature. An electro-mechanical equivalent circuit model was developed to describe the characteristics of the piezoelectric transformer. The model was found to successfully predict the characteristics of the transformer. Excellent matching was found between the computed and experimental results. The results of this study will allow to deterministically design unipoled piezoelectric transformers with specified performance. It is expected that in near future the unipoled transformer will gain significant importance in various electrical components.
A generic EEG artifact removal algorithm based on the multi-channel Wiener filter
Somers, Ben; Francart, Tom; Bertrand, Alexander
2018-06-01
Objective. The electroencephalogram (EEG) is an essential neuro-monitoring tool for both clinical and research purposes, but is susceptible to a wide variety of undesired artifacts. Removal of these artifacts is often done using blind source separation techniques, relying on a purely data-driven transformation, which may sometimes fail to sufficiently isolate artifacts in only one or a few components. Furthermore, some algorithms perform well for specific artifacts, but not for others. In this paper, we aim to develop a generic EEG artifact removal algorithm, which allows the user to annotate a few artifact segments in the EEG recordings to inform the algorithm. Approach. We propose an algorithm based on the multi-channel Wiener filter (MWF), in which the artifact covariance matrix is replaced by a low-rank approximation based on the generalized eigenvalue decomposition. The algorithm is validated using both hybrid and real EEG data, and is compared to other algorithms frequently used for artifact removal. Main results. The MWF-based algorithm successfully removes a wide variety of artifacts with better performance than current state-of-the-art methods. Significance. Current EEG artifact removal techniques often have limited applicability due to their specificity to one kind of artifact, their complexity, or simply because they are too ‘blind’. This paper demonstrates a fast, robust and generic algorithm for removal of EEG artifacts of various types, i.e. those that were annotated as unwanted by the user.
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
Star point centroid algorithm based on background forecast
Wang, Jin; Zhao, Rujin; Zhu, Nan
2014-09-01
The calculation of star point centroid is a key step of improving star tracker measuring error. A star map photoed by APS detector includes several noises which have a great impact on veracity of calculation of star point centroid. Through analysis of characteristic of star map noise, an algorithm of calculation of star point centroid based on background forecast is presented in this paper. The experiment proves the validity of the algorithm. Comparing with classic algorithm, this algorithm not only improves veracity of calculation of star point centroid, but also does not need calibration data memory. This algorithm is applied successfully in a certain star tracker.
Fuzzy Rules for Ant Based Clustering Algorithm
Directory of Open Access Journals (Sweden)
Amira Hamdi
2016-01-01
Full Text Available This paper provides a new intelligent technique for semisupervised data clustering problem that combines the Ant System (AS algorithm with the fuzzy c-means (FCM clustering algorithm. Our proposed approach, called F-ASClass algorithm, is a distributed algorithm inspired by foraging behavior observed in ant colonyT. The ability of ants to find the shortest path forms the basis of our proposed approach. In the first step, several colonies of cooperating entities, called artificial ants, are used to find shortest paths in a complete graph that we called graph-data. The number of colonies used in F-ASClass is equal to the number of clusters in dataset. Hence, the partition matrix of dataset founded by artificial ants is given in the second step, to the fuzzy c-means technique in order to assign unclassified objects generated in the first step. The proposed approach is tested on artificial and real datasets, and its performance is compared with those of K-means, K-medoid, and FCM algorithms. Experimental section shows that F-ASClass performs better according to the error rate classification, accuracy, and separation index.
Parallel image encryption algorithm based on discretized chaotic map
International Nuclear Information System (INIS)
Zhou Qing; Wong Kwokwo; Liao Xiaofeng; Xiang Tao; Hu Yue
2008-01-01
Recently, a variety of chaos-based algorithms were proposed for image encryption. Nevertheless, none of them works efficiently in parallel computing environment. In this paper, we propose a framework for parallel image encryption. Based on this framework, a new algorithm is designed using the discretized Kolmogorov flow map. It fulfills all the requirements for a parallel image encryption algorithm. Moreover, it is secure and fast. These properties make it a good choice for image encryption on parallel computing platforms
Flexible Electronics-Based Transformers for Extreme Environments
Quadrelli, Marco B.; Stoica, Adrian; Ingham, Michel; Thakur, Anubhav
2015-01-01
This paper provides a survey of the use of modular multifunctional systems, called Flexible Transformers, to facilitate the exploration of extreme and previously inaccessible environments. A novel dynamics and control model of a modular algorithm for assembly, folding, and unfolding of these innovative structural systems is also described, together with the control model and the simulation results.
Method of fault diagnosis in nuclear power plant base on genetic algorithm and knowledge base
International Nuclear Information System (INIS)
Zhou Yangping; Zhao Bingquan
2000-01-01
Via using the knowledge base, combining Genetic Algorithm and classical probability and contraposing the characteristic of the fault diagnosis of NPP. The authors put forward a method of fault diagnosis. In the process of fault diagnosis, this method contact the state of NPP with the colony in GA and transform the colony to get the individual that adapts to the condition. On the 950MW full size simulator in Beijing NPP simulation training center, experimentation shows it has comparative adaptability to the imperfection of expert knowledge, illusive signal and other instance
Efficient sampling algorithms for Monte Carlo based treatment planning
International Nuclear Information System (INIS)
DeMarco, J.J.; Solberg, T.D.; Chetty, I.; Smathers, J.B.
1998-01-01
Efficient sampling algorithms are necessary for producing a fast Monte Carlo based treatment planning code. This study evaluates several aspects of a photon-based tracking scheme and the effect of optimal sampling algorithms on the efficiency of the code. Four areas were tested: pseudo-random number generation, generalized sampling of a discrete distribution, sampling from the exponential distribution, and delta scattering as applied to photon transport through a heterogeneous simulation geometry. Generalized sampling of a discrete distribution using the cutpoint method can produce speedup gains of one order of magnitude versus conventional sequential sampling. Photon transport modifications based upon the delta scattering method were implemented and compared with a conventional boundary and collision checking algorithm. The delta scattering algorithm is faster by a factor of six versus the conventional algorithm for a boundary size of 5 mm within a heterogeneous geometry. A comparison of portable pseudo-random number algorithms and exponential sampling techniques is also discussed
McKinney, Mark C; Riley, Jeffrey B
2007-12-01
The incidence of heparin resistance during adult cardiac surgery with cardiopulmonary bypass has been reported at 15%-20%. The consistent use of a clinical decision-making algorithm may increase the consistency of patient care and likely reduce the total required heparin dose and other problems associated with heparin dosing. After a directed survey of practicing perfusionists regarding treatment of heparin resistance and a literature search for high-level evidence regarding the diagnosis and treatment of heparin resistance, an evidence-based decision-making algorithm was constructed. The face validity of the algorithm decisive steps and logic was confirmed by a second survey of practicing perfusionists. The algorithm begins with review of the patient history to identify predictors for heparin resistance. The definition for heparin resistance contained in the algorithm is an activated clotting time 450 IU/kg heparin loading dose. Based on the literature, the treatment for heparin resistance used in the algorithm is anti-thrombin III supplement. The algorithm seems to be valid and is supported by high-level evidence and clinician opinion. The next step is a human randomized clinical trial to test the clinical procedure guideline algorithm vs. current standard clinical practice.
Study on Huizhou architecture of point cloud registration based on optimized ICP algorithm
Zhang, Runmei; Wu, Yulu; Zhang, Guangbin; Zhou, Wei; Tao, Yuqian
2018-03-01
In view of the current point cloud registration software has high hardware requirements, heavy workload and moltiple interactive definition, the source of software with better processing effect is not open, a two--step registration method based on normal vector distribution feature and coarse feature based iterative closest point (ICP) algorithm is proposed in this paper. This method combines fast point feature histogram (FPFH) algorithm, define the adjacency region of point cloud and the calculation model of the distribution of normal vectors, setting up the local coordinate system for each key point, and obtaining the transformation matrix to finish rough registration, the rough registration results of two stations are accurately registered by using the ICP algorithm. Experimental results show that, compared with the traditional ICP algorithm, the method used in this paper has obvious time and precision advantages for large amount of point clouds.
REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM
Directory of Open Access Journals (Sweden)
Heung K. Lee
1996-06-01
Full Text Available In this paper, we present an image compression algorithm that is capable of significantly reducing the vast mount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet trans-form to remove the spatial redundancy. The transformed images are than encoded by hilbert-curve scanning and run-length-encoding, followed by huffman coding. We also present the performance of the proposed algorithm with KITSAT-1 image as well as the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by peak signal to noise ratio (PSNR and classification capability.
A Power Transformers Fault Diagnosis Model Based on Three DGA Ratios and PSO Optimization SVM
Ma, Hongzhe; Zhang, Wei; Wu, Rongrong; Yang, Chunyan
2018-03-01
In order to make up for the shortcomings of existing transformer fault diagnosis methods in dissolved gas-in-oil analysis (DGA) feature selection and parameter optimization, a transformer fault diagnosis model based on the three DGA ratios and particle swarm optimization (PSO) optimize support vector machine (SVM) is proposed. Using transforming support vector machine to the nonlinear and multi-classification SVM, establishing the particle swarm optimization to optimize the SVM multi classification model, and conducting transformer fault diagnosis combined with the cross validation principle. The fault diagnosis results show that the average accuracy of test method is better than the standard support vector machine and genetic algorithm support vector machine, and the proposed method can effectively improve the accuracy of transformer fault diagnosis is proved.
Function-Based Algorithms for Biological Sequences
Mohanty, Pragyan Sheela P.
2015-01-01
Two problems at two different abstraction levels of computational biology are studied. At the molecular level, efficient pattern matching algorithms in DNA sequences are presented. For gene order data, an efficient data structure is presented capable of storing all gene re-orderings in a systematic manner. A common characteristic of presented…
Borodinov, A. A.; Myasnikov, V. V.
2018-04-01
The present work is devoted to comparing the accuracy of the known qualification algorithms in the task of recognizing local objects on radar images for various image preprocessing methods. Preprocessing involves speckle noise filtering and normalization of the object orientation in the image by the method of image moments and by a method based on the Hough transform. In comparison, the following classification algorithms are used: Decision tree; Support vector machine, AdaBoost, Random forest. The principal component analysis is used to reduce the dimension. The research is carried out on the objects from the base of radar images MSTAR. The paper presents the results of the conducted studies.
A Parallel Encryption Algorithm Based on Piecewise Linear Chaotic Map
Directory of Open Access Journals (Sweden)
Xizhong Wang
2013-01-01
Full Text Available We introduce a parallel chaos-based encryption algorithm for taking advantage of multicore processors. The chaotic cryptosystem is generated by the piecewise linear chaotic map (PWLCM. The parallel algorithm is designed with a master/slave communication model with the Message Passing Interface (MPI. The algorithm is suitable not only for multicore processors but also for the single-processor architecture. The experimental results show that the chaos-based cryptosystem possesses good statistical properties. The parallel algorithm provides much better performance than the serial ones and would be useful to apply in encryption/decryption file with large size or multimedia.
Competition: A Means to Transform the Defense Industrial Base
National Research Council Canada - National Science Library
Hansen, Richard
2003-01-01
.... The defense acquisition process and its industrial base comprise a significant economic institution in need of transformation to ensure that research, development, and acquisition efforts remain...
Using the transformer oil-based nanofluid for cooling of power distribution transformer
Mushtaq Ismael Hasan
2017-01-01
Thermal behavior of electrical distribution transformer has been numerically studied with the effect of surrounding air temperature. 250 KVA distribution transformer is chosen as a study model and studied in temperature range cover the weather conditions of hot places. Transformer oil-based nanofluids were used as a cooling medium instead of pure transformer oil. Four types of solid particles (Cu, Al2O3, TiO2 and SiC) were used to compose nanofluids with volume fractions (1%, 3%, 5%, 7%, and ...
Human resource recommendation algorithm based on ensemble learning and Spark
Cong, Zihan; Zhang, Xingming; Wang, Haoxiang; Xu, Hongjie
2017-08-01
Aiming at the problem of “information overload” in the human resources industry, this paper proposes a human resource recommendation algorithm based on Ensemble Learning. The algorithm considers the characteristics and behaviours of both job seeker and job features in the real business circumstance. Firstly, the algorithm uses two ensemble learning methods-Bagging and Boosting. The outputs from both learning methods are then merged to form user interest model. Based on user interest model, job recommendation can be extracted for users. The algorithm is implemented as a parallelized recommendation system on Spark. A set of experiments have been done and analysed. The proposed algorithm achieves significant improvement in accuracy, recall rate and coverage, compared with recommendation algorithms such as UserCF and ItemCF.
Dataflow-Based Mapping of Computer Vision Algorithms onto FPGAs
Directory of Open Access Journals (Sweden)
Ivan Corretjer
2007-01-01
Full Text Available We develop a design methodology for mapping computer vision algorithms onto an FPGA through the use of coarse-grain reconfigurable dataflow graphs as a representation to guide the designer. We first describe a new dataflow modeling technique called homogeneous parameterized dataflow (HPDF, which effectively captures the structure of an important class of computer vision applications. This form of dynamic dataflow takes advantage of the property that in a large number of image processing applications, data production and consumption rates can vary, but are equal across dataflow graph edges for any particular application iteration. After motivating and defining the HPDF model of computation, we develop an HPDF-based design methodology that offers useful properties in terms of verifying correctness and exposing performance-enhancing transformations; we discuss and address various challenges in efficiently mapping an HPDF-based application representation into target-specific HDL code; and we present experimental results pertaining to the mapping of a gesture recognition application onto the Xilinx Virtex II FPGA.
Solution of the weighted symmetric similarity transformations based on quaternions
Mercan, H.; Akyilmaz, O.; Aydin, C.
2017-12-01
A new method through Gauss-Helmert model of adjustment is presented for the solution of the similarity transformations, either 3D or 2D, in the frame of errors-in-variables (EIV) model. EIV model assumes that all the variables in the mathematical model are contaminated by random errors. Total least squares estimation technique may be used to solve the EIV model. Accounting for the heteroscedastic uncertainty both in the target and the source coordinates, that is the more common and general case in practice, leads to a more realistic estimation of the transformation parameters. The presented algorithm can handle the heteroscedastic transformation problems, i.e., positions of the both target and the source points may have full covariance matrices. Therefore, there is no limitation such as the isotropic or the homogenous accuracy for the reference point coordinates. The developed algorithm takes the advantage of the quaternion definition which uniquely represents a 3D rotation matrix. The transformation parameters: scale, translations, and the quaternion (so that the rotation matrix) along with their covariances, are iteratively estimated with rapid convergence. Moreover, prior least squares (LS) estimation of the unknown transformation parameters is not required to start the iterations. We also show that the developed method can also be used to estimate the 2D similarity transformation parameters by simply treating the problem as a 3D transformation problem with zero (0) values assigned for the z-components of both target and source points. The efficiency of the new algorithm is presented with the numerical examples and comparisons with the results of the previous studies which use the same data set. Simulation experiments for the evaluation and comparison of the proposed and the conventional weighted LS (WLS) method is also presented.
A New Approach to High-accuracy Road Orthophoto Mapping Based on Wavelet Transform
Directory of Open Access Journals (Sweden)
Ming Yang
2011-12-01
Full Text Available Existing orthophoto map based on satellite photography and aerial photography is not precise enough for road marking. This paper proposes a new approach to high-accuracy orthophoto mapping. The approach uses inverse perspective transformation to process the image information and generates the orthophoto fragment. The offline interpolation algorithm is used to process the location information. It processes the dead reckoning and the EKF location information, and uses the result to transform the fragments to the global coordinate system. At last it uses wavelet transform to divides the image to two frequency bands and uses weighted median algorithm to deal with them separately. The result of experiment shows that the map produced with this method has high accuracy.
Wei, Xiuyan; Song, Xinyue; Dong, Dong; Keyhani, Nemat O; Yao, Lindan; Zang, Xiangyun; Dong, Lili; Gu, Zijian; Fu, Delai; Liu, Xingzhong; Qiu, Junzhi; Guan, Xiong
2016-07-01
The insect pathogenic fungus Aschersonia placenta is a highly effective pathogen of whiteflies and scale insects. However, few genetic tools are currently available for studying this organism. Here we report on the conditions for the production of transformable A. placenta protoplasts using an optimized protocol based on the response surface method (RSM). Critical parameters for protoplast production were modelled by using a Box-Behnken design (BBD) involving 3 levels of 3 variables that was subsequently tested to verify its ability to predict protoplast production (R(2) = 0.9465). The optimized conditions resulted in the highest yield of protoplasts ((4.41 ± 0.02) × 10(7) cells/mL of culture, mean ± SE) when fungal cells were treated with 26.1 mg/mL of lywallzyme for 4 h of digestion, and subsequently allowed to recover for 64.6 h in 0.7 mol/L NaCl-Tris buffer. The latter was used as an osmotic stabilizer. The yield of protoplasts was approximately 10-fold higher than that of the nonoptimized conditions. Generated protoplasts were transformed with vector PbarGPE containing the bar gene as the selection marker. Transformation efficiency was 300 colonies/(μg DNA·10(7) protoplasts), and integration of the vector DNA was confirmed by PCR. The results show that rational design strategies (RSM and BBD methods) are useful to increase the production of fungal protoplasts for a variety of downstream applications.
Seismic active control by a heuristic-based algorithm
International Nuclear Information System (INIS)
Tang, Yu.
1996-01-01
A heuristic-based algorithm for seismic active control is generalized to permit consideration of the effects of control-structure interaction and actuator dynamics. Control force is computed at onetime step ahead before being applied to the structure. Therefore, the proposed control algorithm is free from the problem of time delay. A numerical example is presented to show the effectiveness of the proposed control algorithm. Also, two indices are introduced in the paper to assess the effectiveness and efficiency of control laws
Stereo Matching Based On Election Campaign Algorithm
Directory of Open Access Journals (Sweden)
Xie Qing Hua
2016-01-01
Full Text Available Stereo matching is one of the significant problems in the study of the computer vision. By getting the distance information through pixels, it is possible to reproduce a three-dimensional stereo. In this paper, the edges are the primitives for matching, the grey values of the edges and the magnitude and direction of the edge gradient were figured out as the properties of the edge feature points, according to the constraints for stereo matching, the energy function was built for finding the route minimizing by election campaign optimization algorithm during the process of stereo matching was applied to this problem the energy function. Experiment results show that this algorithm is more stable and it can get the matching result with better accuracy.
Compressive sensing based algorithms for electronic defence
Mishra, Amit Kumar
2017-01-01
This book details some of the major developments in the implementation of compressive sensing in radio applications for electronic defense and warfare communication use. It provides a comprehensive background to the subject and at the same time describes some novel algorithms. It also investigates application value and performance-related parameters of compressive sensing in scenarios such as direction finding, spectrum monitoring, detection, and classification.
A Novel Entropy-Based Decoding Algorithm for a Generalized High-Order Discrete Hidden Markov Model
Directory of Open Access Journals (Sweden)
Jason Chin-Tiong Chan
2018-01-01
Full Text Available The optimal state sequence of a generalized High-Order Hidden Markov Model (HHMM is tracked from a given observational sequence using the classical Viterbi algorithm. This classical algorithm is based on maximum likelihood criterion. We introduce an entropy-based Viterbi algorithm for tracking the optimal state sequence of a HHMM. The entropy of a state sequence is a useful quantity, providing a measure of the uncertainty of a HHMM. There will be no uncertainty if there is only one possible optimal state sequence for HHMM. This entropy-based decoding algorithm can be formulated in an extended or a reduction approach. We extend the entropy-based algorithm for computing the optimal state sequence that was developed from a first-order to a generalized HHMM with a single observational sequence. This extended algorithm performs the computation exponentially with respect to the order of HMM. The computational complexity of this extended algorithm is due to the growth of the model parameters. We introduce an efficient entropy-based decoding algorithm that used reduction approach, namely, entropy-based order-transformation forward algorithm (EOTFA to compute the optimal state sequence of any generalized HHMM. This EOTFA algorithm involves a transformation of a generalized high-order HMM into an equivalent first-order HMM and an entropy-based decoding algorithm is developed based on the equivalent first-order HMM. This algorithm performs the computation based on the observational sequence and it requires OTN~2 calculations, where N~ is the number of states in an equivalent first-order model and T is the length of observational sequence.
A time-dependent semiclassical wavepacket method using a fast Fourier transform (FFT) algorithm
International Nuclear Information System (INIS)
Gauss, J.; Heller, E.J.
1991-01-01
A new semiclassical propagator based on a local expansion of the potential up to second order around the moving center of the wavepackt is proposed. Formulas for the propagator are derived and the implementation using grid and fast Fourier transform (FFT) methods is discussed. The semiclassical propagator can be improved up to the exact quantum mechanical limit by including anharmonic corrections using a split operator approach. Preliminary applications to the CH 3 I photodissociation problem show the applicability and accuracy of the proposed method. (orig.)D
Transformative leadership based on nursing science.
Clarke, Pamela N; Cody, William; Cowling, Richard
2014-04-01
The dialogue for this column is a summary of a dialogue among two preeminent nursing scholars and myself that took place "live" at the 40th Meeting of the American Academy of Nursing, focused on transforming healthcare. The dialogue was recorded and transcribed verbatim. In editing the dialogue I tried to leave it conversational which was the nature of the interaction. The paper that follows reflects the thinking of two executive nurse leaders who use different nursing frameworks as the basis for their practice. Translation of their practice models to leadership is presented as a natural transition to transformation.
Wavelet based edge detection algorithm for web surface inspection of coated board web
Energy Technology Data Exchange (ETDEWEB)
Barjaktarovic, M; Petricevic, S, E-mail: slobodan@etf.bg.ac.r [School of Electrical Engineering, Bulevar Kralja Aleksandra 73, 11000 Belgrade (Serbia)
2010-07-15
This paper presents significant improvement of the already installed vision system. System was designed for real time coated board inspection. The improvement is achieved with development of a new algorithm for edge detection. The algorithm is based on the redundant (undecimated) wavelet transform. Compared to the existing algorithm better delineation of edges is achieved. This yields to better defect detection probability and more accurate geometrical classification, which will provide additional reduction of waste. Also, algorithm will provide detailed classification and more reliably tracking of defects. This improvement requires minimal changes in processing hardware, only a replacement of the graphic card would be needed, adding only negligibly to the system cost. Other changes are accomplished entirely in the image processing software.
A joint image encryption and watermarking algorithm based on compressive sensing and chaotic map
International Nuclear Information System (INIS)
Xiao Di; Cai Hong-Kun; Zheng Hong-Ying
2015-01-01
In this paper, a compressive sensing (CS) and chaotic map-based joint image encryption and watermarking algorithm is proposed. The transform domain coefficients of the original image are scrambled by Arnold map firstly. Then the watermark is adhered to the scrambled data. By compressive sensing, a set of watermarked measurements is obtained as the watermarked cipher image. In this algorithm, watermark embedding and data compression can be performed without knowing the original image; similarly, watermark extraction will not interfere with decryption. Due to the characteristics of CS, this algorithm features compressible cipher image size, flexible watermark capacity, and lossless watermark extraction from the compressed cipher image as well as robustness against packet loss. Simulation results and analyses show that the algorithm achieves good performance in the sense of security, watermark capacity, extraction accuracy, reconstruction, robustness, etc. (paper)
Cultural-Based Genetic Tabu Algorithm for Multiobjective Job Shop Scheduling
Directory of Open Access Journals (Sweden)
Yuzhen Yang
2014-01-01
Full Text Available The job shop scheduling problem, which has been dealt with by various traditional optimization methods over the decades, has proved to be an NP-hard problem and difficult in solving, especially in the multiobjective field. In this paper, we have proposed a novel quadspace cultural genetic tabu algorithm (QSCGTA to solve such problem. This algorithm provides a different structure from the original cultural algorithm in containing double brief spaces and population spaces. These spaces deal with different levels of populations globally and locally by applying genetic and tabu searches separately and exchange information regularly to make the process more effective towards promising areas, along with modified multiobjective domination and transform functions. Moreover, we have presented a bidirectional shifting for the decoding process of job shop scheduling. The computational results we presented significantly prove the effectiveness and efficiency of the cultural-based genetic tabu algorithm for the multiobjective job shop scheduling problem.
Qian, Fang; Wu, Yihui; Hao, Peng
2017-11-01
Baseline correction is a very important part of pre-processing. Baseline in the spectrum signal can induce uneven amplitude shifts across different wavenumbers and lead to bad results. Therefore, these amplitude shifts should be compensated before further analysis. Many algorithms are used to remove baseline, however fully automated baseline correction is convenient in practical application. A fully automated algorithm based on wavelet feature points and segment interpolation (AWFPSI) is proposed. This algorithm finds feature points through continuous wavelet transformation and estimates baseline through segment interpolation. AWFPSI is compared with three commonly introduced fully automated and semi-automated algorithms, using simulated spectrum signal, visible spectrum signal and Raman spectrum signal. The results show that AWFPSI gives better accuracy and has the advantage of easy use.
Indian Academy of Sciences (India)
to as 'divide-and-conquer'. Although there has been a large effort in realizing efficient algorithms, there are not many universally accepted algorithm design paradigms. In this article, we illustrate algorithm design techniques such as balancing, greedy strategy, dynamic programming strategy, and backtracking or traversal of ...
Text Clustering Algorithm Based on Random Cluster Core
Directory of Open Access Journals (Sweden)
Huang Long-Jun
2016-01-01
Full Text Available Nowadays clustering has become a popular text mining algorithm, but the huge data can put forward higher requirements for the accuracy and performance of text mining. In view of the performance bottleneck of traditional text clustering algorithm, this paper proposes a text clustering algorithm with random features. This is a kind of clustering algorithm based on text density, at the same time using the neighboring heuristic rules, the concept of random cluster is introduced, which effectively reduces the complexity of the distance calculation.
Agent-based Algorithm for Spatial Distribution of Objects
Collier, Nathan
2012-06-02
In this paper we present an agent-based algorithm for the spatial distribution of objects. The algorithm is a generalization of the bubble mesh algorithm, initially created for the point insertion stage of the meshing process of the finite element method. The bubble mesh algorithm treats objects in space as bubbles, which repel and attract each other. The dynamics of each bubble are approximated by solving a series of ordinary differential equations. We present numerical results for a meshing application as well as a graph visualization application.
Optimization algorithm based on densification and dynamic canonical descent
Bousson, K.; Correia, S. D.
2006-07-01
Stochastic methods have gained some popularity in global optimization in that most of them do not assume the cost functions to be differentiable. They have capabilities to avoid being trapped by local optima, and may converge even faster than gradient-based optimization methods on some problems. The present paper proposes an optimization method, which reduces the search space by means of densification curves, coupled with the dynamic canonical descent algorithm. The performances of the new method are shown on several known problems classically used for testing optimization algorithms, and proved to outperform competitive algorithms such as simulated annealing and genetic algorithms.
Teaching learning based optimization algorithm and its engineering applications
Rao, R Venkata
2016-01-01
Describing a new optimization algorithm, the “Teaching-Learning-Based Optimization (TLBO),” in a clear and lucid style, this book maximizes reader insights into how the TLBO algorithm can be used to solve continuous and discrete optimization problems involving single or multiple objectives. As the algorithm operates on the principle of teaching and learning, where teachers influence the quality of learners’ results, the elitist version of TLBO algorithm (ETLBO) is described along with applications of the TLBO algorithm in the fields of electrical engineering, mechanical design, thermal engineering, manufacturing engineering, civil engineering, structural engineering, computer engineering, electronics engineering, physics and biotechnology. The book offers a valuable resource for scientists, engineers and practitioners involved in the development and usage of advanced optimization algorithms.
Improved artificial bee colony algorithm based gravity matching navigation method.
Gao, Wei; Zhao, Bo; Zhou, Guang Tao; Wang, Qiu Ying; Yu, Chun Yang
2014-07-18
Gravity matching navigation algorithm is one of the key technologies for gravity aided inertial navigation systems. With the development of intelligent algorithms, the powerful search ability of the Artificial Bee Colony (ABC) algorithm makes it possible to be applied to the gravity matching navigation field. However, existing search mechanisms of basic ABC algorithms cannot meet the need for high accuracy in gravity aided navigation. Firstly, proper modifications are proposed to improve the performance of the basic ABC algorithm. Secondly, a new search mechanism is presented in this paper which is based on an improved ABC algorithm using external speed information. At last, modified Hausdorff distance is introduced to screen the possible matching results. Both simulations and ocean experiments verify the feasibility of the method, and results show that the matching rate of the method is high enough to obtain a precise matching position.
Image Registration Algorithm Based on Parallax Constraint and Clustering Analysis
Wang, Zhe; Dong, Min; Mu, Xiaomin; Wang, Song
2018-01-01
To resolve the problem of slow computation speed and low matching accuracy in image registration, a new image registration algorithm based on parallax constraint and clustering analysis is proposed. Firstly, Harris corner detection algorithm is used to extract the feature points of two images. Secondly, use Normalized Cross Correlation (NCC) function to perform the approximate matching of feature points, and the initial feature pair is obtained. Then, according to the parallax constraint condition, the initial feature pair is preprocessed by K-means clustering algorithm, which is used to remove the feature point pairs with obvious errors in the approximate matching process. Finally, adopt Random Sample Consensus (RANSAC) algorithm to optimize the feature points to obtain the final feature point matching result, and the fast and accurate image registration is realized. The experimental results show that the image registration algorithm proposed in this paper can improve the accuracy of the image matching while ensuring the real-time performance of the algorithm.
Analog Circuit Design Optimization Based on Evolutionary Algorithms
Directory of Open Access Journals (Sweden)
Mansour Barari
2014-01-01
Full Text Available This paper investigates an evolutionary-based designing system for automated sizing of analog integrated circuits (ICs. Two evolutionary algorithms, genetic algorithm and PSO (Parswal particle swarm optimization algorithm, are proposed to design analog ICs with practical user-defined specifications. On the basis of the combination of HSPICE and MATLAB, the system links circuit performances, evaluated through specific electrical simulation, to the optimization system in the MATLAB environment, for the selected topology. The system has been tested by typical and hard-to-design cases, such as complex analog blocks with stringent design requirements. The results show that the design specifications are closely met. Comparisons with available methods like genetic algorithms show that the proposed algorithm offers important advantages in terms of optimization quality and robustness. Moreover, the algorithm is shown to be efficient.
Local Community Detection Algorithm Based on Minimal Cluster
Directory of Open Access Journals (Sweden)
Yong Zhou
2016-01-01
Full Text Available In order to discover the structure of local community more effectively, this paper puts forward a new local community detection algorithm based on minimal cluster. Most of the local community detection algorithms begin from one node. The agglomeration ability of a single node must be less than multiple nodes, so the beginning of the community extension of the algorithm in this paper is no longer from the initial node only but from a node cluster containing this initial node and nodes in the cluster are relatively densely connected with each other. The algorithm mainly includes two phases. First it detects the minimal cluster and then finds the local community extended from the minimal cluster. Experimental results show that the quality of the local community detected by our algorithm is much better than other algorithms no matter in real networks or in simulated networks.
Effectiveness of firefly algorithm based neural network in time series ...
African Journals Online (AJOL)
Effectiveness of firefly algorithm based neural network in time series forecasting. ... In the experiments, three well known time series were used to evaluate the performance. Results obtained were compared with ... Keywords: Time series, Artificial Neural Network, Firefly Algorithm, Particle Swarm Optimization, Overfitting ...
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed
2014-11-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
New MPPT algorithm based on hybrid dynamical theory
Elmetennani, Shahrazed; Laleg-Kirati, Taous-Meriem; Benmansour, K.; Boucherit, M. S.; Tadjine, M.
2014-01-01
This paper presents a new maximum power point tracking algorithm based on the hybrid dynamical theory. A multiceli converter has been considered as an adaptation stage for the photovoltaic chain. The proposed algorithm is a hybrid automata switching between eight different operating modes, which has been validated by simulation tests under different working conditions. © 2014 IEEE.
Peng, Jiangtao; Peng, Silong; Xie, Qiong; Wei, Jiping
2011-04-01
In order to eliminate the lower order polynomial interferences, a new quantitative calibration algorithm "Baseline Correction Combined Partial Least Squares (BCC-PLS)", which combines baseline correction and conventional PLS, is proposed. By embedding baseline correction constraints into PLS weights selection, the proposed calibration algorithm overcomes the uncertainty in baseline correction and can meet the requirement of on-line attenuated total reflectance Fourier transform infrared (ATR-FTIR) quantitative analysis. The effectiveness of the algorithm is evaluated by the analysis of glucose and marzipan ATR-FTIR spectra. BCC-PLS algorithm shows improved prediction performance over PLS. The root mean square error of cross-validation (RMSECV) on marzipan spectra for the prediction of the moisture is found to be 0.53%, w/w (range 7-19%). The sugar content is predicted with a RMSECV of 2.04%, w/w (range 33-68%). Copyright © 2011 Elsevier B.V. All rights reserved.
A Tomographic method based on genetic algorithms
International Nuclear Information System (INIS)
Turcanu, C.; Alecu, L.; Craciunescu, T.; Niculae, C.
1997-01-01
Computerized tomography being a non-destructive and non-evasive technique is frequently used in medical application to generate three dimensional images of objects. Genetic algorithms are efficient, domain independent for a large variety of problems. The proposed method produces good quality reconstructions even in case of very small number of projection angles. It requests no a priori knowledge about the solution and takes into account the statistical uncertainties. The main drawback of the method is the amount of computer memory and time needed. (author)
A Spherical Model Based Keypoint Descriptor and Matching Algorithm for Omnidirectional Images
Directory of Open Access Journals (Sweden)
Guofeng Tong
2014-04-01
Full Text Available Omnidirectional images generally have nonlinear distortion in radial direction. Unfortunately, traditional algorithms such as scale-invariant feature transform (SIFT and Descriptor-Nets (D-Nets do not work well in matching omnidirectional images just because they are incapable of dealing with the distortion. In order to solve this problem, a new voting algorithm is proposed based on the spherical model and the D-Nets algorithm. Because the spherical-based keypoint descriptor contains the distortion information of omnidirectional images, the proposed matching algorithm is invariant to distortion. Keypoint matching experiments are performed on three pairs of omnidirectional images, and comparison is made among the proposed algorithm, the SIFT and the D-Nets. The result shows that the proposed algorithm is more robust and more precise than the SIFT, and the D-Nets in matching omnidirectional images. Comparing with the SIFT and the D-Nets, the proposed algorithm has two main advantages: (a there are more real matching keypoints; (b the coverage range of the matching keypoints is wider, including the seriously distorted areas.
Fast image matching algorithm based on projection characteristics
Zhou, Lijuan; Yue, Xiaobo; Zhou, Lijun
2011-06-01
Based on analyzing the traditional template matching algorithm, this paper identified the key factors restricting the speed of matching and put forward a brand new fast matching algorithm based on projection. Projecting the grayscale image, this algorithm converts the two-dimensional information of the image into one-dimensional one, and then matches and identifies through one-dimensional correlation, meanwhile, because of normalization has been done, when the image brightness or signal amplitude increasing in proportion, it could also perform correct matching. Experimental results show that the projection characteristics based image registration method proposed in this article could greatly improve the matching speed, which ensuring the matching accuracy as well.
Joint Calibration of 3d Laser Scanner and Digital Camera Based on Dlt Algorithm
Gao, X.; Li, M.; Xing, L.; Liu, Y.
2018-04-01
Design a calibration target that can be scanned by 3D laser scanner while shot by digital camera, achieving point cloud and photos of a same target. A method to joint calibrate 3D laser scanner and digital camera based on Direct Linear Transformation algorithm was proposed. This method adds a distortion model of digital camera to traditional DLT algorithm, after repeating iteration, it can solve the inner and external position element of the camera as well as the joint calibration of 3D laser scanner and digital camera. It comes to prove that this method is reliable.
Adaptive Watermarking Algorithm in DCT Domain Based on Chaos
Directory of Open Access Journals (Sweden)
Wenhao Wang
2013-05-01
Full Text Available In order to improve the security, robustness and invisibility of the digital watermarking, a new adaptive watermarking algorithm is proposed in this paper. Firstly, this algorithm uses chaos sequence, which Logistic chaotic mapping produces, to encrypt the watermark image. And then the original image is divided into many sub-blocks and discrete cosine transform (DCT.The watermark information is embedded into sub-blocks medium coefficients. With the features of Human Visual System (HVS and image texture sufficiently taken into account during embedding, the embedding intensity of watermark is able to adaptively adjust according to HVS and texture characteristic. The watermarking is embedded into the different sub-blocks coefficients. Experiment results haven shown that the proposed algorithm is robust against the attacks of general image processing methods, such as noise, cut, filtering and JPEG compression, and receives a good tradeoff between invisible and robustness, and better security.
A transport-based condensed history algorithm
International Nuclear Information System (INIS)
Tolar, D. R. Jr.
1999-01-01
Condensed history algorithms are approximate electron transport Monte Carlo methods in which the cumulative effects of multiple collisions are modeled in a single step of (user-specified) path length s 0 . This path length is the distance each Monte Carlo electron travels between collisions. Current condensed history techniques utilize a splitting routine over the range 0 le s le s 0 . For example, the PEnELOPE method splits each step into two substeps; one with length ξs 0 and one with length (1 minusξ)s 0 , where ξ is a random number from 0 0 is fixed (not sampled from an exponential distribution), conventional condensed history schemes are not transport processes. Here the authors describe a new condensed history algorithm that is a transport process. The method simulates a transport equation that approximates the exact Boltzmann equation. The new transport equation has a larger mean free path than, and preserves two angular moments of, the Boltzmann equation. Thus, the new process is solved more efficiently by Monte Carlo, and it conserves both particles and scattering power
CUDT: A CUDA Based Decision Tree Algorithm
Directory of Open Access Journals (Sweden)
Win-Tsung Lo
2014-01-01
Full Text Available Decision tree is one of the famous classification methods in data mining. Many researches have been proposed, which were focusing on improving the performance of decision tree. However, those algorithms are developed and run on traditional distributed systems. Obviously the latency could not be improved while processing huge data generated by ubiquitous sensing node in the era without new technology help. In order to improve data processing latency in huge data mining, in this paper, we design and implement a new parallelized decision tree algorithm on a CUDA (compute unified device architecture, which is a GPGPU solution provided by NVIDIA. In the proposed system, CPU is responsible for flow control while the GPU is responsible for computation. We have conducted many experiments to evaluate system performance of CUDT and made a comparison with traditional CPU version. The results show that CUDT is 5∼55 times faster than Weka-j48 and is 18 times speedup than SPRINT for large data set.
An iris recognition algorithm based on DCT and GLCM
Feng, G.; Wu, Ye-qing
2008-04-01
With the enlargement of mankind's activity range, the significance for person's status identity is becoming more and more important. So many different techniques for person's status identity were proposed for this practical usage. Conventional person's status identity methods like password and identification card are not always reliable. A wide variety of biometrics has been developed for this challenge. Among those biologic characteristics, iris pattern gains increasing attention for its stability, reliability, uniqueness, noninvasiveness and difficult to counterfeit. The distinct merits of the iris lead to its high reliability for personal identification. So the iris identification technique had become hot research point in the past several years. This paper presents an efficient algorithm for iris recognition using gray-level co-occurrence matrix(GLCM) and Discrete Cosine transform(DCT). To obtain more representative iris features, features from space and DCT transformation domain are extracted. Both GLCM and DCT are applied on the iris image to form the feature sequence in this paper. The combination of GLCM and DCT makes the iris feature more distinct. Upon GLCM and DCT the eigenvector of iris extracted, which reflects features of spatial transformation and frequency transformation. Experimental results show that the algorithm is effective and feasible with iris recognition.
Wavelet Based Hilbert Transform with Digital Design and Application to QCM-SS Watermarking
Directory of Open Access Journals (Sweden)
S. P. Maity
2008-04-01
Full Text Available In recent time, wavelet transforms are used extensively for efficient storage, transmission and representation of multimedia signals. Hilbert transform pairs of wavelets is the basic unit of many wavelet theories such as complex filter banks, complex wavelet and phaselet etc. Moreover, Hilbert transform finds various applications in communications and signal processing such as generation of single sideband (SSB modulation, quadrature carrier multiplexing (QCM and bandpass representation of a signal. Thus wavelet based discrete Hilbert transform design draws much attention of researchers for couple of years. This paper proposes an (i algorithm for generation of low computation cost Hilbert transform pairs of symmetric filter coefficients using biorthogonal wavelets, (ii approximation to its rational coefficients form for its efficient hardware realization and without much loss in signal representation, and finally (iii development of QCM-SS (spread spectrum image watermarking scheme for doubling the payload capacity. Simulation results show novelty of the proposed Hilbert transform design and its application to watermarking compared to existing algorithms.
Real-Coded Quantum-Inspired Genetic Algorithm-Based BP Neural Network Algorithm
Directory of Open Access Journals (Sweden)
Jianyong Liu
2015-01-01
Full Text Available The method that the real-coded quantum-inspired genetic algorithm (RQGA used to optimize the weights and threshold of BP neural network is proposed to overcome the defect that the gradient descent method makes the algorithm easily fall into local optimal value in the learning process. Quantum genetic algorithm (QGA is with good directional global optimization ability, but the conventional QGA is based on binary coding; the speed of calculation is reduced by the coding and decoding processes. So, RQGA is introduced to explore the search space, and the improved varied learning rate is adopted to train the BP neural network. Simulation test shows that the proposed algorithm is effective to rapidly converge to the solution conformed to constraint conditions.
Surface Design Based on Discrete Conformal Transformations
Duque, Carlos; Santangelo, Christian; Vouga, Etienne
Conformal transformations are angle-preserving maps from one domain to another. Although angles are preserved, the lengths between arbitrary points are not generally conserved. As a consequence there is always a given amount of distortion associated to any conformal map. Different uses of such transformations can be found in various fields, but have been used by us to program non-uniformly swellable gel sheets to buckle into prescribed three dimensional shapes. In this work we apply circle packings as a kind of discrete conformal map in order to find conformal maps from the sphere to the plane that can be used as nearly uniform swelling patterns to program non-Euclidean sheets to buckle into spheres. We explore the possibility of tuning the area distortion to fit the experimental range of minimum and maximum swelling by modifying the boundary of the planar domain through the introduction of different cutting schemes.
Madrasah Culture Based Transformational Leadership Model
Nur Khoiri
2016-01-01
Leadership is the ability to influence, direct behavior, and have a particular expertise in the field of the group who want to achieve the goals. A dynamic organization requires transformational leadership model. A school principal as a leader at school aims to actualize good learning leadership. Leadership learning focuses on learning which components include curriculum, teaching and learning process, assessment, teacher assessment and development, good service in learning, and developing a ...
Directory of Open Access Journals (Sweden)
Mushtaq Ismael Hasan
2017-04-01
Full Text Available In this paper the electrical distribution transformer has been studied numerically and the effect of outside temperature on its cooling performance has been investigated. The temperature range studied covers the hot climate regions. 250 KVA distribution transformer is chosen as a study model. A novel cooling fluid is proposed to improve the cooling performance of this transformer, transformer oil-based microencapsulated phase change materials suspension is used with volume concentration (5–25% as a cooling fluid instead of pure transformer oil. Paraffin wax is used as a phase change material to make the suspension, in addition to the ability of heat absorption due to melting, the paraffin wax considered as a good electrical insulator. Results obtained show that, using of MEPCM suspension instead of pure transformer oil lead to improve the cooling performance of transformer by reducing its temperature and as a consequence increasing its protection against the breakdown. The melting fraction increased with increasing outside temperature up to certain temperature after which the melting fraction reach maximum constant value (MF = 1 which indicate that, the choosing of PCM depend on the environment in which the transformer is used.
Genetic Algorithm Based Microscale Vehicle Emissions Modelling
Directory of Open Access Journals (Sweden)
Sicong Zhu
2015-01-01
Full Text Available There is a need to match emission estimations accuracy with the outputs of transport models. The overall error rate in long-term traffic forecasts resulting from strategic transport models is likely to be significant. Microsimulation models, whilst high-resolution in nature, may have similar measurement errors if they use the outputs of strategic models to obtain traffic demand predictions. At the microlevel, this paper discusses the limitations of existing emissions estimation approaches. Emission models for predicting emission pollutants other than CO2 are proposed. A genetic algorithm approach is adopted to select the predicting variables for the black box model. The approach is capable of solving combinatorial optimization problems. Overall, the emission prediction results reveal that the proposed new models outperform conventional equations in terms of accuracy and robustness.
Invariant object recognition based on the generalized discrete radon transform
Easley, Glenn R.; Colonna, Flavia
2004-04-01
We introduce a method for classifying objects based on special cases of the generalized discrete Radon transform. We adjust the transform and the corresponding ridgelet transform by means of circular shifting and a singular value decomposition (SVD) to obtain a translation, rotation and scaling invariant set of feature vectors. We then use a back-propagation neural network to classify the input feature vectors. We conclude with experimental results and compare these with other invariant recognition methods.
International Nuclear Information System (INIS)
Li Tianduo; Xiao Gang; Di Yuming; Han Feng; Qiu Xiaoling
1999-01-01
The γ energy spectrum is expanded in allied energy-frequency space. By the different characterization of the evolution of wavelet transform modulus maxima across scales between energy spectrum and noise, the algorithm for removing the noise from γ energy spectrum by analyzing the evolution of the wavelet transform maxima across scales is presented. The results show, in contrast to the methods in energy space or in frequency space, the method has the advantages that the peak of energy spectrum can be indicated accurately and the energy spectrum can be reconstructed with a good approximation
A SAT-Based Algorithm for Reparameterization in Symbolic Simulation
National Research Council Canada - National Science Library
Chauhan, Pankaj; Kroening, Daniel; Clarke, Edmund
2003-01-01
.... Efficient SAT solvers have been applied successfully for many verification problems. This paper presents a novel SAT-based reparameterization algorithm that is largely immune to the large number of input variables that need to be quantified...
A novel line segment detection algorithm based on graph search
Zhao, Hong-dan; Liu, Guo-ying; Song, Xu
2018-02-01
To overcome the problem of extracting line segment from an image, a method of line segment detection was proposed based on the graph search algorithm. After obtaining the edge detection result of the image, the candidate straight line segments are obtained in four directions. For the candidate straight line segments, their adjacency relationships are depicted by a graph model, based on which the depth-first search algorithm is employed to determine how many adjacent line segments need to be merged. Finally we use the least squares method to fit the detected straight lines. The comparative experimental results verify that the proposed algorithm has achieved better results than the line segment detector (LSD).
Zhang, Yu-xin; Cheng, Zhi-feng; Xu, Zheng-ping; Bai, Jing
2015-01-01
In order to solve the problems such as complex operation, consumption for the carrier gas and long test period in traditional power transformer fault diagnosis approach based on dissolved gas analysis (DGA), this paper proposes a new method which is detecting 5 types of characteristic gas content in transformer oil such as CH4, C2H2, C2H4, C2H6 and H2 based on photoacoustic Spectroscopy and C2H2/C2H4, CH4/H2, C2H4/C2H6 three-ratios data are calculated. The support vector machine model was constructed using cross validation method under five support vector machine functions and four kernel functions, heuristic algorithms were used in parameter optimization for penalty factor c and g, which to establish the best SVM model for the highest fault diagnosis accuracy and the fast computing speed. Particles swarm optimization and genetic algorithm two types of heuristic algorithms were comparative studied in this paper for accuracy and speed in optimization. The simulation result shows that SVM model composed of C-SVC, RBF kernel functions and genetic algorithm obtain 97. 5% accuracy in test sample set and 98. 333 3% accuracy in train sample set, and genetic algorithm was about two times faster than particles swarm optimization in computing speed. The methods described in this paper has many advantages such as simple operation, non-contact measurement, no consumption for the carrier gas, long test period, high stability and sensitivity, the result shows that the methods described in this paper can instead of the traditional transformer fault diagnosis by gas chromatography and meets the actual project needs in transformer fault diagnosis.
A Chinese text classification system based on Naive Bayes algorithm
Directory of Open Access Journals (Sweden)
Cui Wei
2016-01-01
Full Text Available In this paper, aiming at the characteristics of Chinese text classification, using the ICTCLAS(Chinese lexical analysis system of Chinese academy of sciences for document segmentation, and for data cleaning and filtering the Stop words, using the information gain and document frequency feature selection algorithm to document feature selection. Based on this, based on the Naive Bayesian algorithm implemented text classifier , and use Chinese corpus of Fudan University has carried on the experiment and analysis on the system.
Novel structures for Discrete Hartley Transform based on first-order moments
Xiong, Jun; Zheng, Wenjuan; Wang, Hao; Liu, Jianguo
2018-03-01
Discrete Hartley Transform (DHT) is an important tool in digital signal processing. In the present paper, the DHT is firstly transformed into the first-order moments-based form, then a new fast algorithm is proposed to calculate the first-order moments without multiplication. Based on the algorithm theory, the corresponding hardware architecture for DHT is proposed, which only contains shift operations and additions with no need for multipliers and large memory. To verify the availability and effectiveness, the proposed design is implemented with hardware description language and synthesized by Synopsys Design Compiler with 0.18-μm SMIC library. A series of experiments have proved that the proposed architecture has better performance in terms of the product of the hardware consumption and computation time.
Directory of Open Access Journals (Sweden)
V. M. Demko
2018-01-01
Full Text Available The mathematical substantiation of the algorithm for synthesis of the proper transformation and finding the eigenvalue formulae of a persymmetric matrix of dimension N = 2 k ( k =1, 4 based on orthogonal rotation operators is given. The proposed algorithm made it possible to improve the author's approach to calculating eigenvalues based on numerical examples for the maximal dimension of matrices 64×64, resulting the possibility to obtain analytical relations for calculating the eigenvalues of the persymmetric matrix. It is shown that the proper transformation has a factorized structure in the form of a product of rotation operators, each of which is a direct sum of elementary Givens and Jacobian rotation matrices.
Parallel implementation of geometric transformations
Energy Technology Data Exchange (ETDEWEB)
Clarke, K A; Ip, H H.S.
1982-10-01
An implementation of digitized picture rotation and magnification based on Weiman's algorithm is presented. In a programmable array machine routines to perform small transformations code efficiently. The method illustrates the interpolative nature of the algorithm. 6 references.
A sparse matrix based full-configuration interaction algorithm
International Nuclear Information System (INIS)
Rolik, Zoltan; Szabados, Agnes; Surjan, Peter R.
2008-01-01
We present an algorithm related to the full-configuration interaction (FCI) method that makes complete use of the sparse nature of the coefficient vector representing the many-electron wave function in a determinantal basis. Main achievements of the presented sparse FCI (SFCI) algorithm are (i) development of an iteration procedure that avoids the storage of FCI size vectors; (ii) development of an efficient algorithm to evaluate the effect of the Hamiltonian when both the initial and the product vectors are sparse. As a result of point (i) large disk operations can be skipped which otherwise may be a bottleneck of the procedure. At point (ii) we progress by adopting the implementation of the linear transformation by Olsen et al. [J. Chem Phys. 89, 2185 (1988)] for the sparse case, getting the algorithm applicable to larger systems and faster at the same time. The error of a SFCI calculation depends only on the dropout thresholds for the sparse vectors, and can be tuned by controlling the amount of system memory passed to the procedure. The algorithm permits to perform FCI calculations on single node workstations for systems previously accessible only by supercomputers
Transform Decoding of Reed-Solomon Codes. Volume I. Algorithm and Signal Processing Structure
1982-11-01
systematic channel co.’e. 1. lake the inverse transform of the r- ceived se, - nee. 2. Isolate the error syndrome from the inverse transform and use... inverse transform is identic l with interpolation of the polynomial a(z) from its n values. In order to generate a Reed-Solomon (n,k) cooce, we let the set...in accordance with the transform of equation (4). If we were to apply the inverse transform of equa- tion (6) to the coefficient sequence of A(z), we
Robust and unobtrusive algorithm based on position independence for step detection
Qiu, KeCheng; Li, MengYang; Luo, YiHan
2018-04-01
Running is becoming one of the most popular exercises among the people, monitoring steps can help users better understand their running process and improve exercise efficiency. In this paper, we design and implement a robust and unobtrusive algorithm based on position independence for step detection under real environment. It applies Butterworth filter to suppress high frequency interference and then employs the projection based on mathematics to transform system to solve the problem of unknown position of smartphone. Finally, using sliding window to suppress the false peak. The algorithm was tested for eight participants on the Android 7.0 platform. In our experiments, the results show that the proposed algorithm can achieve desired effect in spite of device pose.
Plate-shaped transformation products in zirconium-base alloys
International Nuclear Information System (INIS)
Banerjee, S.; Dey, G.K.; Srivastava, D.
1997-01-01
Plate-shaped products resulting from martensitic, diffusional, and mixed mode transformations in zirconium-base alloys are compared in the present study. These alloys are particularly suitable for the comparison in view of the fact that the lattice correspondence between the parent β (bcc) and the product α (hcp) or γ-hydride (fct) phases are remarkably similar for different types of transformations. Crystallographic features such as orientation relations, habit planes, and interface structures associated with these transformations have been compared, with a view toward examining whether the transformation mechanisms have characteristic imprints on these experimental observables
Gear Fault Detection Based on Teager-Huang Transform
Directory of Open Access Journals (Sweden)
Hui Li
2010-01-01
Full Text Available Gear fault detection based on Empirical Mode Decomposition (EMD and Teager Kaiser Energy Operator (TKEO technique is presented. This novel method is named as Teager-Huang transform (THT. EMD can adaptively decompose the vibration signal into a series of zero mean Intrinsic Mode Functions (IMFs. TKEO can track the instantaneous amplitude and instantaneous frequency of the Intrinsic Mode Functions at any instant. The experimental results provide effective evidence that Teager-Huang transform has better resolution than that of Hilbert-Huang transform. The Teager-Huang transform can effectively diagnose the fault of the gear, thus providing a viable processing tool for gearbox defect detection and diagnosis.
Active Power Measurement Based on Multiwavelet Transforms
Directory of Open Access Journals (Sweden)
Xiao-Bing Zhang
2014-01-01
Full Text Available This paper discusses a new method for calculating active power in the multiwavelet domain. When the voltage and current waveforms are analyzed using multiwavelet, the active power can be calculated by simply adding the products of the multiwavelet coefficients without having to reconstruct the signals back to the time domain first and then using the traditional integration. From the simulation result, we can see that the results using multiwavelet are better than the ones using wavelet and Fourier Transforms no matter which prefilter is used.
Cloud Computing Task Scheduling Based on Cultural Genetic Algorithm
Directory of Open Access Journals (Sweden)
Li Jian-Wen
2016-01-01
Full Text Available The task scheduling strategy based on cultural genetic algorithm(CGA is proposed in order to improve the efficiency of task scheduling in the cloud computing platform, which targets at minimizing the total time and cost of task scheduling. The improved genetic algorithm is used to construct the main population space and knowledge space under cultural framework which get independent parallel evolution, forming a mechanism of mutual promotion to dispatch the cloud task. Simultaneously, in order to prevent the defects of the genetic algorithm which is easy to fall into local optimum, the non-uniform mutation operator is introduced to improve the search performance of the algorithm. The experimental results show that CGA reduces the total time and lowers the cost of the scheduling, which is an effective algorithm for the cloud task scheduling.
A novel clustering algorithm based on quantum games
International Nuclear Information System (INIS)
Li Qiang; He Yan; Jiang Jingping
2009-01-01
Enormous successes have been made by quantum algorithms during the last decade. In this paper, we combine the quantum game with the problem of data clustering, and then develop a quantum-game-based clustering algorithm, in which data points in a dataset are considered as players who can make decisions and implement quantum strategies in quantum games. After each round of a quantum game, each player's expected payoff is calculated. Later, he uses a link-removing-and-rewiring (LRR) function to change his neighbors and adjust the strength of links connecting to them in order to maximize his payoff. Further, algorithms are discussed and analyzed in two cases of strategies, two payoff matrixes and two LRR functions. Consequently, the simulation results have demonstrated that data points in datasets are clustered reasonably and efficiently, and the clustering algorithms have fast rates of convergence. Moreover, the comparison with other algorithms also provides an indication of the effectiveness of the proposed approach.
GPU-based fast pencil beam algorithm for proton therapy
International Nuclear Information System (INIS)
Fujimoto, Rintaro; Nagamine, Yoshihiko; Kurihara, Tsuneya
2011-01-01
Performance of a treatment planning system is an essential factor in making sophisticated plans. The dose calculation is a major time-consuming process in planning operations. The standard algorithm for proton dose calculations is the pencil beam algorithm which produces relatively accurate results, but is time consuming. In order to shorten the computational time, we have developed a GPU (graphics processing unit)-based pencil beam algorithm. We have implemented this algorithm and calculated dose distributions in the case of a water phantom. The results were compared to those obtained by a traditional method with respect to the computational time and discrepancy between the two methods. The new algorithm shows 5-20 times faster performance using the NVIDIA GeForce GTX 480 card in comparison with the Intel Core-i7 920 processor. The maximum discrepancy of the dose distribution is within 0.2%. Our results show that GPUs are effective for proton dose calculations.
A New Augmentation Based Algorithm for Extracting Maximal Chordal Subgraphs.
Bhowmick, Sanjukta; Chen, Tzu-Yi; Halappanavar, Mahantesh
2015-02-01
A graph is chordal if every cycle of length greater than three contains an edge between non-adjacent vertices. Chordal graphs are of interest both theoretically, since they admit polynomial time solutions to a range of NP-hard graph problems, and practically, since they arise in many applications including sparse linear algebra, computer vision, and computational biology. A maximal chordal subgraph is a chordal subgraph that is not a proper subgraph of any other chordal subgraph. Existing algorithms for computing maximal chordal subgraphs depend on dynamically ordering the vertices, which is an inherently sequential process and therefore limits the algorithms' parallelizability. In this paper we explore techniques to develop a scalable parallel algorithm for extracting a maximal chordal subgraph. We demonstrate that an earlier attempt at developing a parallel algorithm may induce a non-optimal vertex ordering and is therefore not guaranteed to terminate with a maximal chordal subgraph. We then give a new algorithm that first computes and then repeatedly augments a spanning chordal subgraph. After proving that the algorithm terminates with a maximal chordal subgraph, we then demonstrate that this algorithm is more amenable to parallelization and that the parallel version also terminates with a maximal chordal subgraph. That said, the complexity of the new algorithm is higher than that of the previous parallel algorithm, although the earlier algorithm computes a chordal subgraph which is not guaranteed to be maximal. We experimented with our augmentation-based algorithm on both synthetic and real-world graphs. We provide scalability results and also explore the effect of different choices for the initial spanning chordal subgraph on both the running time and on the number of edges in the maximal chordal subgraph.
The inertia system coordinate transformation based on the Lobachevsky function
International Nuclear Information System (INIS)
Fadeev, N.G.
2001-01-01
Based on the interpretation of the Lobachevsky function cosΠ(ρ/k) = thρ/k as the function which expresses the constant light velocity principle at k = c (k is the Lobachevsky constant, c is the light velocity), the inertia system coordinate transformation of two kinds (one of them known as Lorentz transformation) have been obtained
Arikan and Alamouti matrices based on fast block-wise inverse Jacket transform
Lee, Moon Ho; Khan, Md Hashem Ali; Kim, Kyeong Jin
2013-12-01
Recently, Lee and Hou (IEEE Signal Process Lett 13: 461-464, 2006) proposed one-dimensional and two-dimensional fast algorithms for block-wise inverse Jacket transforms (BIJTs). Their BIJTs are not real inverse Jacket transforms from mathematical point of view because their inverses do not satisfy the usual condition, i.e., the multiplication of a matrix with its inverse matrix is not equal to the identity matrix. Therefore, we mathematically propose a fast block-wise inverse Jacket transform of orders N = 2 k , 3 k , 5 k , and 6 k , where k is a positive integer. Based on the Kronecker product of the successive lower order Jacket matrices and the basis matrix, the fast algorithms for realizing these transforms are obtained. Due to the simple inverse and fast algorithms of Arikan polar binary and Alamouti multiple-input multiple-output (MIMO) non-binary matrices, which are obtained from BIJTs, they can be applied in areas such as 3GPP physical layer for ultra mobile broadband permutation matrices design, first-order q-ary Reed-Muller code design, diagonal channel design, diagonal subchannel decompose for interference alignment, and 4G MIMO long-term evolution Alamouti precoding design.
Collaborative filtering recommendation model based on fuzzy clustering algorithm
Yang, Ye; Zhang, Yunhua
2018-05-01
As one of the most widely used algorithms in recommender systems, collaborative filtering algorithm faces two serious problems, which are the sparsity of data and poor recommendation effect in big data environment. In traditional clustering analysis, the object is strictly divided into several classes and the boundary of this division is very clear. However, for most objects in real life, there is no strict definition of their forms and attributes of their class. Concerning the problems above, this paper proposes to improve the traditional collaborative filtering model through the hybrid optimization of implicit semantic algorithm and fuzzy clustering algorithm, meanwhile, cooperating with collaborative filtering algorithm. In this paper, the fuzzy clustering algorithm is introduced to fuzzy clustering the information of project attribute, which makes the project belong to different project categories with different membership degrees, and increases the density of data, effectively reduces the sparsity of data, and solves the problem of low accuracy which is resulted from the inaccuracy of similarity calculation. Finally, this paper carries out empirical analysis on the MovieLens dataset, and compares it with the traditional user-based collaborative filtering algorithm. The proposed algorithm has greatly improved the recommendation accuracy.
Energy Technology Data Exchange (ETDEWEB)
Du Weiliang; Yang, James [Department of Radiation Physics, University of Texas M D Anderson Cancer Center, 1515 Holcombe Blvd, Unit 94, Houston, TX 77030 (United States)], E-mail: wdu@mdanderson.org
2009-02-07
Uncertainty in localizing the radiation field center is among the major components that contribute to the overall positional error and thus must be minimized. In this study, we developed a Hough transform (HT)-based computer algorithm to localize the radiation center of a circular or rectangular field with subpixel accuracy. We found that the HT method detected the centers of the test circular fields with an absolute error of 0.037 {+-} 0.019 pixels. On a typical electronic portal imager with 0.5 mm image resolution, this mean detection error was translated to 0.02 mm, which was much finer than the image resolution. It is worth noting that the subpixel accuracy described here does not include experimental uncertainties such as linac mechanical instability or room laser inaccuracy. The HT method was more accurate and more robust to image noise and artifacts than the traditional center-of-mass method. Application of the HT method in Winston-Lutz tests was demonstrated to measure the ball-radiation center alignment with subpixel accuracy. Finally, the method was applied to quantitative evaluation of the radiation center wobble during collimator rotation.
International Nuclear Information System (INIS)
Milickovic, N.; Lahanas, M.; Papagiannopoulou, M.; Zamboglou, N.; Baltas, D.
2002-01-01
In high dose rate (HDR) brachytherapy, conventional dose optimization algorithms consider multiple objectives in the form of an aggregate function that transforms the multiobjective problem into a single-objective problem. As a result, there is a loss of information on the available alternative possible solutions. This method assumes that the treatment planner exactly understands the correlation between competing objectives and knows the physical constraints. This knowledge is provided by the Pareto trade-off set obtained by single-objective optimization algorithms with a repeated optimization with different importance vectors. A mapping technique avoids non-feasible solutions with negative dwell weights and allows the use of constraint free gradient-based deterministic algorithms. We compare various such algorithms and methods which could improve their performance. This finally allows us to generate a large number of solutions in a few minutes. We use objectives expressed in terms of dose variances obtained from a few hundred sampling points in the planning target volume (PTV) and in organs at risk (OAR). We compare two- to four-dimensional Pareto fronts obtained with the deterministic algorithms and with a fast-simulated annealing algorithm. For PTV-based objectives, due to the convex objective functions, the obtained solutions are global optimal. If OARs are included, then the solutions found are also global optimal, although local minima may be present as suggested. (author)
A Flocking Based algorithm for Document Clustering Analysis
Energy Technology Data Exchange (ETDEWEB)
Cui, Xiaohui [ORNL; Gao, Jinzhu [ORNL; Potok, Thomas E [ORNL
2006-01-01
Social animals or insects in nature often exhibit a form of emergent collective behavior known as flocking. In this paper, we present a novel Flocking based approach for document clustering analysis. Our Flocking clustering algorithm uses stochastic and heuristic principles discovered from observing bird flocks or fish schools. Unlike other partition clustering algorithm such as K-means, the Flocking based algorithm does not require initial partitional seeds. The algorithm generates a clustering of a given set of data through the embedding of the high-dimensional data items on a two-dimensional grid for easy clustering result retrieval and visualization. Inspired by the self-organized behavior of bird flocks, we represent each document object with a flock boid. The simple local rules followed by each flock boid result in the entire document flock generating complex global behaviors, which eventually result in a clustering of the documents. We evaluate the efficiency of our algorithm with both a synthetic dataset and a real document collection that includes 100 news articles collected from the Internet. Our results show that the Flocking clustering algorithm achieves better performance compared to the K- means and the Ant clustering algorithm for real document clustering.
AdaBoost-based algorithm for network intrusion detection.
Hu, Weiming; Hu, Wei; Maybank, Steve
2008-04-01
Network intrusion detection aims at distinguishing the attacks on the Internet from normal use of the Internet. It is an indispensable part of the information security system. Due to the variety of network behaviors and the rapid development of attack fashions, it is necessary to develop fast machine-learning-based intrusion detection algorithms with high detection rates and low false-alarm rates. In this correspondence, we propose an intrusion detection algorithm based on the AdaBoost algorithm. In the algorithm, decision stumps are used as weak classifiers. The decision rules are provided for both categorical and continuous features. By combining the weak classifiers for continuous features and the weak classifiers for categorical features into a strong classifier, the relations between these two different types of features are handled naturally, without any forced conversions between continuous and categorical features. Adaptable initial weights and a simple strategy for avoiding overfitting are adopted to improve the performance of the algorithm. Experimental results show that our algorithm has low computational complexity and error rates, as compared with algorithms of higher computational complexity, as tested on the benchmark sample data.
A range-based predictive localization algorithm for WSID networks
Liu, Yuan; Chen, Junjie; Li, Gang
2017-11-01
Most studies on localization algorithms are conducted on the sensor networks with densely distributed nodes. However, the non-localizable problems are prone to occur in the network with sparsely distributed sensor nodes. To solve this problem, a range-based predictive localization algorithm (RPLA) is proposed in this paper for the wireless sensor networks syncretizing the RFID (WSID) networks. The Gaussian mixture model is established to predict the trajectory of a mobile target. Then, the received signal strength indication is used to reduce the residence area of the target location based on the approximate point-in-triangulation test algorithm. In addition, collaborative localization schemes are introduced to locate the target in the non-localizable situations. Simulation results verify that the RPLA achieves accurate localization for the network with sparsely distributed sensor nodes. The localization accuracy of the RPLA is 48.7% higher than that of the APIT algorithm, 16.8% higher than that of the single Gaussian model-based algorithm and 10.5% higher than that of the Kalman filtering-based algorithm.
A Novel Image Encryption Algorithm Based on DNA Subsequence Operation
Directory of Open Access Journals (Sweden)
Qiang Zhang
2012-01-01
Full Text Available We present a novel image encryption algorithm based on DNA subsequence operation. Different from the traditional DNA encryption methods, our algorithm does not use complex biological operation but just uses the idea of DNA subsequence operations (such as elongation operation, truncation operation, deletion operation, etc. combining with the logistic chaotic map to scramble the location and the value of pixel points from the image. The experimental results and security analysis show that the proposed algorithm is easy to be implemented, can get good encryption effect, has a wide secret key's space, strong sensitivity to secret key, and has the abilities of resisting exhaustive attack and statistic attack.
Validation of Agent Based Distillation Movement Algorithms
National Research Council Canada - National Science Library
Gill, Andrew
2003-01-01
Agent based distillations (ABD) are low-resolution abstract models, which can be used to explore questions associated with land combat operations in a short period of time Movement of agents within the EINSTein and MANA ABDs...
Single image super resolution algorithm based on edge interpolation in NSCT domain
Zhang, Mengqun; Zhang, Wei; He, Xinyu
2017-11-01
In order to preserve the texture and edge information and to improve the space resolution of single frame, a superresolution algorithm based on Contourlet (NSCT) is proposed. The original low resolution image is transformed by NSCT, and the directional sub-band coefficients of the transform domain are obtained. According to the scale factor, the high frequency sub-band coefficients are amplified by the interpolation method based on the edge direction to the desired resolution. For high frequency sub-band coefficients with noise and weak targets, Bayesian shrinkage is used to calculate the threshold value. The coefficients below the threshold are determined by the correlation among the sub-bands of the same scale to determine whether it is noise and de-noising. The anisotropic diffusion filter is used to effectively enhance the weak target in the low contrast region of the target and background. Finally, the high-frequency sub-band is amplified by the bilinear interpolation method to the desired resolution, and then combined with the high-frequency subband coefficients after de-noising and small target enhancement, the NSCT inverse transform is used to obtain the desired resolution image. In order to verify the effectiveness of the proposed algorithm, the proposed algorithm and several common image reconstruction methods are used to test the synthetic image, motion blurred image and hyperspectral image, the experimental results show that compared with the traditional single resolution algorithm, the proposed algorithm can obtain smooth edges and good texture features, and the reconstructed image structure is well preserved and the noise is suppressed to some extent.
A Modularity Degree Based Heuristic Community Detection Algorithm
Directory of Open Access Journals (Sweden)
Dongming Chen
2014-01-01
Full Text Available A community in a complex network can be seen as a subgroup of nodes that are densely connected. Discovery of community structures is a basic problem of research and can be used in various areas, such as biology, computer science, and sociology. Existing community detection methods usually try to expand or collapse the nodes partitions in order to optimize a given quality function. These optimization function based methods share the same drawback of inefficiency. Here we propose a heuristic algorithm (MDBH algorithm based on network structure which employs modularity degree as a measure function. Experiments on both synthetic benchmarks and real-world networks show that our algorithm gives competitive accuracy with previous modularity optimization methods, even though it has less computational complexity. Furthermore, due to the use of modularity degree, our algorithm naturally improves the resolution limit in community detection.
Research on personalized recommendation algorithm based on spark
Li, Zeng; Liu, Yu
2018-04-01
With the increasing amount of data in the past years, the traditional recommendation algorithm has been unable to meet people's needs. Therefore, how to better recommend their products to users of interest, become the opportunities and challenges of the era of big data development. At present, each platform enterprise has its own recommendation algorithm, but how to make efficient and accurate push information is still an urgent problem for personalized recommendation system. In this paper, a hybrid algorithm based on user collaborative filtering and content-based recommendation algorithm is proposed on Spark to improve the efficiency and accuracy of recommendation by weighted processing. The experiment shows that the recommendation under this scheme is more efficient and accurate.
Otsu Based Optimal Multilevel Image Thresholding Using Firefly Algorithm
Directory of Open Access Journals (Sweden)
N. Sri Madhava Raja
2014-01-01
Full Text Available Histogram based multilevel thresholding approach is proposed using Brownian distribution (BD guided firefly algorithm (FA. A bounded search technique is also presented to improve the optimization accuracy with lesser search iterations. Otsu’s between-class variance function is maximized to obtain optimal threshold level for gray scale images. The performances of the proposed algorithm are demonstrated by considering twelve benchmark images and are compared with the existing FA algorithms such as Lévy flight (LF guided FA and random operator guided FA. The performance assessment comparison between the proposed and existing firefly algorithms is carried using prevailing parameters such as objective function, standard deviation, peak-to-signal ratio (PSNR, structural similarity (SSIM index, and search time of CPU. The results show that BD guided FA provides better objective function, PSNR, and SSIM, whereas LF based FA provides faster convergence with relatively lower CPU time.
Visual Perception Based Rate Control Algorithm for HEVC
Feng, Zeqi; Liu, PengYu; Jia, Kebin
2018-01-01
For HEVC, rate control is an indispensably important video coding technology to alleviate the contradiction between video quality and the limited encoding resources during video communication. However, the rate control benchmark algorithm of HEVC ignores subjective visual perception. For key focus regions, bit allocation of LCU is not ideal and subjective quality is unsatisfied. In this paper, a visual perception based rate control algorithm for HEVC is proposed. First bit allocation weight of LCU level is optimized based on the visual perception of luminance and motion to ameliorate video subjective quality. Then λ and QP are adjusted in combination with the bit allocation weight to improve rate distortion performance. Experimental results show that the proposed algorithm reduces average 0.5% BD-BR and maximum 1.09% BD-BR at no cost in bitrate accuracy compared with HEVC (HM15.0). The proposed algorithm devotes to improving video subjective quality under various video applications.
A Developed Artificial Bee Colony Algorithm Based on Cloud Model
Directory of Open Access Journals (Sweden)
Ye Jin
2018-04-01
Full Text Available The Artificial Bee Colony (ABC algorithm is a bionic intelligent optimization method. The cloud model is a kind of uncertainty conversion model between a qualitative concept T ˜ that is presented by nature language and its quantitative expression, which integrates probability theory and the fuzzy mathematics. A developed ABC algorithm based on cloud model is proposed to enhance accuracy of the basic ABC algorithm and avoid getting trapped into local optima by introducing a new select mechanism, replacing the onlooker bees’ search formula and changing the scout bees’ updating formula. Experiments on CEC15 show that the new algorithm has a faster convergence speed and higher accuracy than the basic ABC and some cloud model based ABC variants.
A new edge detection algorithm based on Canny idea
Feng, Yingke; Zhang, Jinmin; Wang, Siming
2017-10-01
The traditional Canny algorithm has poor self-adaptability threshold, and it is more sensitive to noise. In order to overcome these drawbacks, this paper proposed a new edge detection method based on Canny algorithm. Firstly, the media filtering and filtering based on the method of Euclidean distance are adopted to process it; secondly using the Frei-chen algorithm to calculate gradient amplitude; finally, using the Otsu algorithm to calculate partial gradient amplitude operation to get images of thresholds value, then find the average of all thresholds that had been calculated, half of the average is high threshold value, and the half of the high threshold value is low threshold value. Experiment results show that this new method can effectively suppress noise disturbance, keep the edge information, and also improve the edge detection accuracy.
Algorithmic Algebraic Combinatorics and Gröbner Bases
Klin, Mikhail; Jurisic, Aleksandar
2009-01-01
This collection of tutorial and research papers introduces readers to diverse areas of modern pure and applied algebraic combinatorics and finite geometries with a special emphasis on algorithmic aspects and the use of the theory of Grobner bases. Topics covered include coherent configurations, association schemes, permutation groups, Latin squares, the Jacobian conjecture, mathematical chemistry, extremal combinatorics, coding theory, designs, etc. Special attention is paid to the description of innovative practical algorithms and their implementation in software packages such as GAP and MAGM
A Learning Algorithm based on High School Teaching Wisdom
Philip, Ninan Sajeeth
2010-01-01
A learning algorithm based on primary school teaching and learning is presented. The methodology is to continuously evaluate a student and to give them training on the examples for which they repeatedly fail, until, they can correctly answer all types of questions. This incremental learning procedure produces better learning curves by demanding the student to optimally dedicate their learning time on the failed examples. When used in machine learning, the algorithm is found to train a machine...
Quantum signature scheme based on a quantum search algorithm
International Nuclear Information System (INIS)
Yoon, Chun Seok; Kang, Min Sung; Lim, Jong In; Yang, Hyung Jin
2015-01-01
We present a quantum signature scheme based on a two-qubit quantum search algorithm. For secure transmission of signatures, we use a quantum search algorithm that has not been used in previous quantum signature schemes. A two-step protocol secures the quantum channel, and a trusted center guarantees non-repudiation that is similar to other quantum signature schemes. We discuss the security of our protocol. (paper)
Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm
Zeng, Yong; Liu, Dacheng; Lei, Zhou
2014-01-01
The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history si...
Catalytic Transformation of Ethylbenzene over Y-Zeolite-based Catalysts
Al-Khattaf, Sulaiman
2008-01-01
Catalytic transformation of ethylbenzene (EB) has been investigated over ultrastable Y (USY)-zeolite-based catalysts in a novel riser simulator at different operating conditions. The effect of reaction conditions on EB conversion is reported
An improved Hough transform-based fingerprint alignment approach
CSIR Research Space (South Africa)
Mlambo, CS
2014-11-01
Full Text Available An improved Hough Transform based fingerprint alignment approach is presented, which improves computing time and memory usage with accurate alignment parameter (rotation and translation) results. This is achieved by studying the strengths...
The Research and Application of SURF Algorithm Based on Feature Point Selection Algorithm
Directory of Open Access Journals (Sweden)
Zhang Fang Hu
2014-04-01
Full Text Available As the pixel information of depth image is derived from the distance information, when implementing SURF algorithm with KINECT sensor for static sign language recognition, there can be some mismatched pairs in palm area. This paper proposes a feature point selection algorithm, by filtering the SURF feature points step by step based on the number of feature points within adaptive radius r and the distance between the two points, it not only greatly improves the recognition rate, but also ensures the robustness under the environmental factors, such as skin color, illumination intensity, complex background, angle and scale changes. The experiment results show that the improved SURF algorithm can effectively improve the recognition rate, has a good robustness.
A prediction method based on wavelet transform and multiple models fusion for chaotic time series
International Nuclear Information System (INIS)
Zhongda, Tian; Shujiang, Li; Yanhong, Wang; Yi, Sha
2017-01-01
In order to improve the prediction accuracy of chaotic time series, a prediction method based on wavelet transform and multiple models fusion is proposed. The chaotic time series is decomposed and reconstructed by wavelet transform, and approximate components and detail components are obtained. According to different characteristics of each component, least squares support vector machine (LSSVM) is used as predictive model for approximation components. At the same time, an improved free search algorithm is utilized for predictive model parameters optimization. Auto regressive integrated moving average model (ARIMA) is used as predictive model for detail components. The multiple prediction model predictive values are fusion by Gauss–Markov algorithm, the error variance of predicted results after fusion is less than the single model, the prediction accuracy is improved. The simulation results are compared through two typical chaotic time series include Lorenz time series and Mackey–Glass time series. The simulation results show that the prediction method in this paper has a better prediction.
Indian Academy of Sciences (India)
ticians but also forms the foundation of computer science. Two ... with methods of developing algorithms for solving a variety of problems but ... applications of computers in science and engineer- ... numerical calculus are as important. We will ...
List-Based Simulated Annealing Algorithm for Traveling Salesman Problem
Directory of Open Access Journals (Sweden)
Shi-hua Zhan
2016-01-01
Full Text Available Simulated annealing (SA algorithm is a popular intelligent optimization algorithm which has been successfully applied in many fields. Parameters’ setting is a key factor for its performance, but it is also a tedious work. To simplify parameters setting, we present a list-based simulated annealing (LBSA algorithm to solve traveling salesman problem (TSP. LBSA algorithm uses a novel list-based cooling schedule to control the decrease of temperature. Specifically, a list of temperatures is created first, and then the maximum temperature in list is used by Metropolis acceptance criterion to decide whether to accept a candidate solution. The temperature list is adapted iteratively according to the topology of the solution space of the problem. The effectiveness and the parameter sensitivity of the list-based cooling schedule are illustrated through benchmark TSP problems. The LBSA algorithm, whose performance is robust on a wide range of parameter values, shows competitive performance compared with some other state-of-the-art algorithms.
AES Encryption Algorithm Optimization Based on 64-bit Processor Android Platform
Directory of Open Access Journals (Sweden)
ZHAO Jun
2017-06-01
Full Text Available Algorithm implemented on the mobile phone is different from one on PC． It requires little storage space and low power consumption． Standard AES S-box design uses look up table，and has high complexity and high power consumption，so it needs to be optimized when used in mobile phones． In our optimization AES encryption algorithm，the packet length is expanded to 256 bits，which would increase the security of our algorithm; look up table is replaced by adding the affine transformation based on inversion，which would reduce the storage space; operation is changed into 16-bit input and 64-bit output by merging the three steps，namely SubWords，ShiftＲows MixColumns and AddＲoundKey，which would improve the operation efficiency of the algorithm． The experimental results show that our algorithm not only can greatly enhance the encryption strength，but also maintain high computing efficiency．
Approximation Algorithms for Model-Based Diagnosis
Feldman, A.B.
2010-01-01
Model-based diagnosis is an area of abductive inference that uses a system model, together with observations about system behavior, to isolate sets of faulty components (diagnoses) that explain the observed behavior, according to some minimality criterion. This thesis presents greedy approximation
Electron dose map inversion based on several algorithms
International Nuclear Information System (INIS)
Li Gui; Zheng Huaqing; Wu Yican; Fds Team
2010-01-01
The reconstruction to the electron dose map in radiation therapy was investigated by constructing the inversion model of electron dose map with different algorithms. The inversion model of electron dose map based on nonlinear programming was used, and this model was applied the penetration dose map to invert the total space one. The realization of this inversion model was by several inversion algorithms. The test results with seven samples show that except the NMinimize algorithm, which worked for just one sample, with great error,though,all the inversion algorithms could be realized to our inversion model rapidly and accurately. The Levenberg-Marquardt algorithm, having the greatest accuracy and speed, could be considered as the first choice in electron dose map inversion.Further tests show that more error would be created when the data close to the electron range was used (tail error). The tail error might be caused by the approximation of mean energy spectra, and this should be considered to improve the method. The time-saving and accurate algorithms could be used to achieve real-time dose map inversion. By selecting the best inversion algorithm, the clinical need in real-time dose verification can be satisfied. (authors)
Directory of Open Access Journals (Sweden)
Liuhui Zhao
2017-01-01
Full Text Available A shockwave-based speed harmonization algorithm for the longitudinal movement of automated vehicles is presented in this paper. In the advent of Connected/Automated Vehicle (C/AV environment, the proposed algorithm can be applied to capture instantaneous shockwaves constructed from vehicular speed profiles shared by individual equipped vehicles. With a continuous wavelet transform (CWT method, the algorithm detects abnormal speed drops in real-time and optimizes speed to prevent the shockwave propagating to the upstream traffic. A traffic simulation model is calibrated to evaluate the applicability and efficiency of the proposed algorithm. Based on 100% C/AV market penetration, the simulation results show that the CWT-based algorithm accurately detects abnormal speed drops. With the improved accuracy of abnormal speed drop detection, the simulation results also demonstrate that the congestion can be mitigated by reducing travel time and delay up to approximately 9% and 18%, respectively. It is also found that the shockwave caused by nonrecurrent congestion is quickly dissipated even with low market penetration.
Designers' Cognitive Thinking Based on Evolutionary Algorithms
Zhang Shutao; Jianning Su; Chibing Hu; Peng Wang
2013-01-01
The research on cognitive thinking is important to construct the efficient intelligent design systems. But it is difficult to describe the model of cognitive thinking with reasonable mathematical theory. Based on the analysis of design strategy and innovative thinking, we investigated the design cognitive thinking model that included the external guide thinking of "width priority - depth priority" and the internal dominated thinking of "divergent thinking - convergent thinking", built a reaso...
A compressed sensing based 3D resistivity inversion algorithm for hydrogeological applications
Ranjan, Shashi; Kambhammettu, B. V. N. P.; Peddinti, Srinivasa Rao; Adinarayana, J.
2018-04-01
Image reconstruction from discrete electrical responses pose a number of computational and mathematical challenges. Application of smoothness constrained regularized inversion from limited measurements may fail to detect resistivity anomalies and sharp interfaces separated by hydro stratigraphic units. Under favourable conditions, compressed sensing (CS) can be thought of an alternative to reconstruct the image features by finding sparse solutions to highly underdetermined linear systems. This paper deals with the development of a CS assisted, 3-D resistivity inversion algorithm for use with hydrogeologists and groundwater scientists. CS based l1-regularized least square algorithm was applied to solve the resistivity inversion problem. Sparseness in the model update vector is introduced through block oriented discrete cosine transformation, with recovery of the signal achieved through convex optimization. The equivalent quadratic program was solved using primal-dual interior point method. Applicability of the proposed algorithm was demonstrated using synthetic and field examples drawn from hydrogeology. The proposed algorithm has outperformed the conventional (smoothness constrained) least square method in recovering the model parameters with much fewer data, yet preserving the sharp resistivity fronts separated by geologic layers. Resistivity anomalies represented by discrete homogeneous blocks embedded in contrasting geologic layers were better imaged using the proposed algorithm. In comparison to conventional algorithm, CS has resulted in an efficient (an increase in R2 from 0.62 to 0.78; a decrease in RMSE from 125.14 Ω-m to 72.46 Ω-m), reliable, and fast converging (run time decreased by about 25%) solution.
Transformer Temperature Measurment Using Optical Fiber Based Microbend Sensor
Directory of Open Access Journals (Sweden)
Deepika YADAV
2007-10-01
Full Text Available Breakdown of transformers proves to be very expensive and inconvenient because it takes a lot of time for their replacement. During breakdown the industry also incurs heavy losses because of stoppage in production line. A system for monitoring the temperature of transformers is required. Existing sensors cannot be used for monitoring the temperature of transformers because they are sensitive to electrical signals and can cause sparking which can trigger fire since there is oil in transformers cooling coils. Optical fibers are electrically inert so this system will prove to be ideal for this application. Results of investigations carried out by simulating a configuration of Optical Fiber Temperature Sensor for transformers based on microbending using Matlab as a simulation tool to evaluate the effectiveness of this sensor have been communicated through this manuscript. The results are in the form of graphs of intensity modulation vs. the temperature.
Threshold quantum cryptograph based on Grover's algorithm
International Nuclear Information System (INIS)
Du Jianzhong; Qin Sujuan; Wen Qiaoyan; Zhu Fuchen
2007-01-01
We propose a threshold quantum protocol based on Grover's operator and permutation operator on one two-qubit signal. The protocol is secure because the dishonest parties can only extract 2 bits from 3 bits information of operation on one two-qubit signal while they have to introduce error probability 3/8. The protocol includes a detection scheme to resist Trojan horse attack. With probability 1/2, the detection scheme can detect a multi-qubit signal that is used to replace a single-qubit signal, while it makes every legitimate qubit invariant
Plagiarism Detection Based on SCAM Algorithm
DEFF Research Database (Denmark)
Anzelmi, Daniele; Carlone, Domenico; Rizzello, Fabio
2011-01-01
Plagiarism is a complex problem and considered one of the biggest in publishing of scientific, engineering and other types of documents. Plagiarism has also increased with the widespread use of the Internet as large amount of digital data is available. Plagiarism is not just direct copy but also...... paraphrasing, rewording, adapting parts, missing references or wrong citations. This makes the problem more difficult to handle adequately. Plagiarism detection techniques are applied by making a distinction between natural and programming languages. Our proposed detection process is based on natural language...... document. Our plagiarism detection system, like many Information Retrieval systems, is evaluated with metrics of precision and recall....
Directory of Open Access Journals (Sweden)
Nan YU
2014-09-01
Full Text Available The interference signal in magneto-hydro-dynamics (MHD may be the disturbance from the power supply, the equipment itself, or the electromagnetic radiation. Interference signal mixed in normal signal, brings difficulties for signal analysis and processing. Recently proposed S-Transform algorithm combines advantages of short time Fourier transform and wavelet transform. It uses Fourier kernel and wavelet like Gauss window whose width is inversely proportional to the frequency. Therefore, S-Transform algorithm not only preserves the phase information of the signals but also has variable resolution like wavelet transform. This paper proposes a new method to establish a MHD signal classifier using S-transform algorithm and radial basis function neural network (RBFNN. Because RBFNN centers ascertained by k-means clustering algorithm probably are the local optimum, this paper analyzes the characteristics of k-means clustering algorithm and proposes an improved k-means clustering algorithm called GCW (Group-cluster-weight k-means clustering algorithm to improve the centers distribution. The experiment results show that the improvement greatly enhances the RBFNN performance.
Research on machine learning framework based on random forest algorithm
Ren, Qiong; Cheng, Hui; Han, Hai
2017-03-01
With the continuous development of machine learning, industry and academia have released a lot of machine learning frameworks based on distributed computing platform, and have been widely used. However, the existing framework of machine learning is limited by the limitations of machine learning algorithm itself, such as the choice of parameters and the interference of noises, the high using threshold and so on. This paper introduces the research background of machine learning framework, and combined with the commonly used random forest algorithm in machine learning classification algorithm, puts forward the research objectives and content, proposes an improved adaptive random forest algorithm (referred to as ARF), and on the basis of ARF, designs and implements the machine learning framework.
Algorithms and procedures in the model based control of accelerators
International Nuclear Information System (INIS)
Bozoki, E.
1987-10-01
The overall design of a Model Based Control system was presented. The system consists of PLUG-IN MODULES, governed by a SUPERVISORY PROGRAM and communicating via SHARED DATA FILES. Models can be ladded or replaced without affecting the oveall system. There can be more then one module (algorithm) to perform the same task. The user can choose the most appropriate algorithm or can compare the results using different algorithms. Calculations, algorithms, file read and write, etc. which are used in more than one module, will be in a subroutine library. This feature will simplify the maintenance of the system. A partial list of modules is presented, specifying the task they perform. 19 refs., 1 fig
Facial Affect Recognition Using Regularized Discriminant Analysis-Based Algorithms
Directory of Open Access Journals (Sweden)
Cheng-Yuan Shih
2010-01-01
Full Text Available This paper presents a novel and effective method for facial expression recognition including happiness, disgust, fear, anger, sadness, surprise, and neutral state. The proposed method utilizes a regularized discriminant analysis-based boosting algorithm (RDAB with effective Gabor features to recognize the facial expressions. Entropy criterion is applied to select the effective Gabor feature which is a subset of informative and nonredundant Gabor features. The proposed RDAB algorithm uses RDA as a learner in the boosting algorithm. The RDA combines strengths of linear discriminant analysis (LDA and quadratic discriminant analysis (QDA. It solves the small sample size and ill-posed problems suffered from QDA and LDA through a regularization technique. Additionally, this study uses the particle swarm optimization (PSO algorithm to estimate optimal parameters in RDA. Experiment results demonstrate that our approach can accurately and robustly recognize facial expressions.
Digital Image Encryption Algorithm Design Based on Genetic Hyperchaos
Directory of Open Access Journals (Sweden)
Jian Wang
2016-01-01
Full Text Available In view of the present chaotic image encryption algorithm based on scrambling (diffusion is vulnerable to choosing plaintext (ciphertext attack in the process of pixel position scrambling, we put forward a image encryption algorithm based on genetic super chaotic system. The algorithm, by introducing clear feedback to the process of scrambling, makes the scrambling effect related to the initial chaos sequence and the clear text itself; it has realized the image features and the organic fusion of encryption algorithm. By introduction in the process of diffusion to encrypt plaintext feedback mechanism, it improves sensitivity of plaintext, algorithm selection plaintext, and ciphertext attack resistance. At the same time, it also makes full use of the characteristics of image information. Finally, experimental simulation and theoretical analysis show that our proposed algorithm can not only effectively resist plaintext (ciphertext attack, statistical attack, and information entropy attack but also effectively improve the efficiency of image encryption, which is a relatively secure and effective way of image communication.
Flowbca : A flow-based cluster algorithm in Stata
Meekes, J.; Hassink, W.H.J.
In this article, we introduce the Stata implementation of a flow-based cluster algorithm written in Mata. The main purpose of the flowbca command is to identify clusters based on relational data of flows. We illustrate the command by providing multiple applications, from the research fields of
Development of Base Transceiver Station Selection Algorithm for ...
African Journals Online (AJOL)
TEMS) equipment was carried out on the existing BTSs, and a linear algorithm optimization program based on the spectral link efficiency of each BTS was developed, the output of this site optimization gives the selected number of base station sites ...
Iterative-Transform Phase Diversity: An Object and Wavefront Recovery Algorithm
Smith, J. Scott
2011-01-01
Presented is a solution for recovering the wavefront and an extended object. It builds upon the VSM architecture and deconvolution algorithms. Simulations are shown for recovering the wavefront and extended object from noisy data.
Directory of Open Access Journals (Sweden)
Khaled Loukhaoukha
2017-12-01
Full Text Available Among emergent applications of digital watermarking are copyright protection and proof of ownership. Recently, Makbol and Khoo (2013 have proposed for these applications a new robust blind image watermarking scheme based on the redundant discrete wavelet transform (RDWT and the singular value decomposition (SVD. In this paper, we present two ambiguity attacks on this algorithm that have shown that this algorithm fails when used to provide robustness applications like owner identification, proof of ownership, and transaction tracking. Keywords: Ambiguity attack, Image watermarking, Singular value decomposition, Redundant discrete wavelet transform
ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform
Directory of Open Access Journals (Sweden)
Yong Wang
2015-09-01
Full Text Available Inverse synthetic aperture radar (ISAR imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS based on the modified discrete polynomial-phase transform (MDPT is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.
A new approach to voltage sag detection based on wavelet transform
Energy Technology Data Exchange (ETDEWEB)
Gencer, Oezguer; Oeztuerk, Semra; Erfidan, Tarik [Kocaeli University, Faculty of Engineering, Department of Electrical Engineering, Veziroglu Kampuesue, Eski Goelcuek Yolu, Kocaeli (Turkey)
2010-02-15
In this work, a new voltage sag detection method based on wavelet transform is developed. Voltage sag detection algorithms, so far have proved their efficiency and computational ability. Using several windowing techniques take long computational times for disturbance detection. Also researchers have been working on separating voltage sags from other voltage disturbances for the last decade. Due to increasing power quality standards new high performance disturbance detection algorithms are necessary to obtain high power quality standards. For this purpose, the wavelet technique is used for detecting voltage sag duration and magnitude. The developed voltage sag detection algorithm is implemented with high speed microcontroller. Test results show that, the new approach provides very accurate and satisfactory voltage sag detection. (author)
Spectrums Transform Operators in Bases of Fourier and Walsh Functions
Directory of Open Access Journals (Sweden)
V. V. Syuzev
2017-01-01
Full Text Available The problems of synthesis of the efficient algorithms for digital processing of discrete signals require transforming the signal spectra from one basis system into other. The rational solution to this problem is to construct the Fourier kernel, which is a spectrum of some basis functions, according to the system of functions of the other basis. However, Fourier kernel properties are not equally studied and described for all basis systems of practical importance. The article sets a task and presents an original way to solve the problem of mutual transformation of trigonometric Fourier spectrum into Walsh spectrum of different basis systems.The relevance of this theoretical and applied problem is stipulated, on the one hand, by the prevalence of trigonometric Fourier basis for harmonic representation of digital signals, and, on the other hand, by the fact that Walsh basis systems allow us to have efficient algorithms to simulate signals. The problem solution is achieved through building the Fourier kernel of a special structure that allows us to establish independent groups of Fourier and Walsh spectrum coefficients for further reducing the computational complexity of the transform algorithms.The article analyzes the properties of the system of trigonometric Fourier functions and shows its completeness. Considers the Walsh function basis systems in three versions, namely those of Hadamard, Paley, and Hartmut giving different ordering and analytical descriptions of the functions that make up the basis. Proves a completeness of these systems.Sequentially, for each of the three Walsh systems the analytical curves for the Fourier kernel components are obtained, and Fourier kernel themselves are built with binary rational number of samples of basis functions. The kernels are presented in matrix form and, as an example, recorded for a particular value of the discrete interval of N, equal to 8. The analysis spectral coefficients of the Fourier kernel
A splitting algorithm for the wavelet transform of cubic splines on a nonuniform grid
Sulaimanov, Z. M.; Shumilov, B. M.
2017-10-01
For cubic splines with nonuniform nodes, splitting with respect to the even and odd nodes is used to obtain a wavelet expansion algorithm in the form of the solution to a three-diagonal system of linear algebraic equations for the coefficients. Computations by hand are used to investigate the application of this algorithm for numerical differentiation. The results are illustrated by solving a prediction problem.
A Turn-Projected State-Based Conflict Resolution Algorithm
Butler, Ricky W.; Lewis, Timothy A.
2013-01-01
State-based conflict detection and resolution (CD&R) algorithms detect conflicts and resolve them on the basis on current state information without the use of additional intent information from aircraft flight plans. Therefore, the prediction of the trajectory of aircraft is based solely upon the position and velocity vectors of the traffic aircraft. Most CD&R algorithms project the traffic state using only the current state vectors. However, the past state vectors can be used to make a better prediction of the future trajectory of the traffic aircraft. This paper explores the idea of using past state vectors to detect traffic turns and resolve conflicts caused by these turns using a non-linear projection of the traffic state. A new algorithm based on this idea is presented and validated using a fast-time simulator developed for this study.
DEFF Research Database (Denmark)
Bock, Lars Nicolai
2011-01-01
Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....
Energy Technology Data Exchange (ETDEWEB)
LACKS,S.A.
2003-10-09
Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).
A survey and comparison of transformation tools based on the transformation tool contest
Jakumeit, E.; Van Gorp, P.; Buchwald, S.; Rose, L.; Wagelaar, D.; Dan, L.; Hegedüs, Á; Hermannsdörfer, M.; Horn, T.; Kalnina, E.; Krause, C.; Lano, K.; Lepper, M.; Rensink, Arend; Rose, L.M.; Wätzoldt, S.; Mazanek, S.
Model transformation is one of the key tasks in model-driven engineering and relies on the efficient matching and modification of graph-based data structures; its sibling graph rewriting has been used to successfully model problems in a variety of domains. Over the last years, a wide range of graph
A Line-Based Adaptive-Weight Matching Algorithm Using Loopy Belief Propagation
Directory of Open Access Journals (Sweden)
Hui Li
2015-01-01
Full Text Available In traditional adaptive-weight stereo matching, the rectangular shaped support region requires excess memory consumption and time. We propose a novel line-based stereo matching algorithm for obtaining a more accurate disparity map with low computation complexity. This algorithm can be divided into two steps: disparity map initialization and disparity map refinement. In the initialization step, a new adaptive-weight model based on the linear support region is put forward for cost aggregation. In this model, the neural network is used to evaluate the spatial proximity, and the mean-shift segmentation method is used to improve the accuracy of color similarity; the Birchfield pixel dissimilarity function and the census transform are adopted to establish the dissimilarity measurement function. Then the initial disparity map is obtained by loopy belief propagation. In the refinement step, the disparity map is optimized by iterative left-right consistency checking method and segmentation voting method. The parameter values involved in this algorithm are determined with many simulation experiments to further improve the matching effect. Simulation results indicate that this new matching method performs well on standard stereo benchmarks and running time of our algorithm is remarkably lower than that of algorithm with rectangle-shaped support region.
International Nuclear Information System (INIS)
Leung Shingyu; Qian Jianliang
2010-01-01
We propose the backward phase flow method to implement the Fourier-Bros-Iagolnitzer (FBI)-transform-based Eulerian Gaussian beam method for solving the Schroedinger equation in the semi-classical regime. The idea of Eulerian Gaussian beams has been first proposed in . In this paper we aim at two crucial computational issues of the Eulerian Gaussian beam method: how to carry out long-time beam propagation and how to compute beam ingredients rapidly in phase space. By virtue of the FBI transform, we address the first issue by introducing the reinitialization strategy into the Eulerian Gaussian beam framework. Essentially we reinitialize beam propagation by applying the FBI transform to wavefields at intermediate time steps when the beams become too wide. To address the second issue, inspired by the original phase flow method, we propose the backward phase flow method which allows us to compute beam ingredients rapidly. Numerical examples demonstrate the efficiency and accuracy of the proposed algorithms.
Human Body Image Edge Detection Based on Wavelet Transform
Institute of Scientific and Technical Information of China (English)
李勇; 付小莉
2003-01-01
Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.
Polynomial Phase Estimation Based on Adaptive Short-Time Fourier Transform.
Jing, Fulong; Zhang, Chunjie; Si, Weijian; Wang, Yu; Jiao, Shuhong
2018-02-13
Polynomial phase signals (PPSs) have numerous applications in many fields including radar, sonar, geophysics, and radio communication systems. Therefore, estimation of PPS coefficients is very important. In this paper, a novel approach for PPS parameters estimation based on adaptive short-time Fourier transform (ASTFT), called the PPS-ASTFT estimator, is proposed. Using the PPS-ASTFT estimator, both one-dimensional and multi-dimensional searches and error propagation problems, which widely exist in PPSs field, are avoided. In the proposed algorithm, the instantaneous frequency (IF) is estimated by S-transform (ST), which can preserve information on signal phase and provide a variable resolution similar to the wavelet transform (WT). The width of the ASTFT analysis window is equal to the local stationary length, which is measured by the instantaneous frequency gradient (IFG). The IFG is calculated by the principal component analysis (PCA), which is robust to the noise. Moreover, to improve estimation accuracy, a refinement strategy is presented to estimate signal parameters. Since the PPS-ASTFT avoids parameter search, the proposed algorithm can be computed in a reasonable amount of time. The estimation performance, computational cost, and implementation of the PPS-ASTFT are also analyzed. The conducted numerical simulations support our theoretical results and demonstrate an excellent statistical performance of the proposed algorithm.
Web page sorting algorithm based on query keyword distance relation
Yang, Han; Cui, Hong Gang; Tang, Hao
2017-08-01
In order to optimize the problem of page sorting, according to the search keywords in the web page in the relationship between the characteristics of the proposed query keywords clustering ideas. And it is converted into the degree of aggregation of the search keywords in the web page. Based on the PageRank algorithm, the clustering degree factor of the query keyword is added to make it possible to participate in the quantitative calculation. This paper proposes an improved algorithm for PageRank based on the distance relation between search keywords. The experimental results show the feasibility and effectiveness of the method.
A Novel Multiobjective Evolutionary Algorithm Based on Regression Analysis
Directory of Open Access Journals (Sweden)
Zhiming Song
2015-01-01
Full Text Available As is known, the Pareto set of a continuous multiobjective optimization problem with m objective functions is a piecewise continuous (m-1-dimensional manifold in the decision space under some mild conditions. However, how to utilize the regularity to design multiobjective optimization algorithms has become the research focus. In this paper, based on this regularity, a model-based multiobjective evolutionary algorithm with regression analysis (MMEA-RA is put forward to solve continuous multiobjective optimization problems with variable linkages. In the algorithm, the optimization problem is modelled as a promising area in the decision space by a probability distribution, and the centroid of the probability distribution is (m-1-dimensional piecewise continuous manifold. The least squares method is used to construct such a model. A selection strategy based on the nondominated sorting is used to choose the individuals to the next generation. The new algorithm is tested and compared with NSGA-II and RM-MEDA. The result shows that MMEA-RA outperforms RM-MEDA and NSGA-II on the test instances with variable linkages. At the same time, MMEA-RA has higher efficiency than the other two algorithms. A few shortcomings of MMEA-RA have also been identified and discussed in this paper.
International Nuclear Information System (INIS)
Novitsky, Andrey; Qiu, C-W; Zouhdi, Said
2009-01-01
Based on the concept of the cloak generating function, we propose an implicit transformation-independent method for the required parameters of spherical cloaks without knowing the needed coordinate transformation beforehand. A non-ideal discrete model is used to calculate and optimize the total scattering cross-sections of different profiles of the generating function. A bell-shaped quadratic spherical cloak is found to be the best candidate, which is further optimized by controlling the design parameters involved. Such improved invisibility is steady even when the model is highly discretized.
Texture orientation-based algorithm for detecting infrared maritime targets.
Wang, Bin; Dong, Lili; Zhao, Ming; Wu, Houde; Xu, Wenhai
2015-05-20
Infrared maritime target detection is a key technology for maritime target searching systems. However, in infrared maritime images (IMIs) taken under complicated sea conditions, background clutters, such as ocean waves, clouds or sea fog, usually have high intensity that can easily overwhelm the brightness of real targets, which is difficult for traditional target detection algorithms to deal with. To mitigate this problem, this paper proposes a novel target detection algorithm based on texture orientation. This algorithm first extracts suspected targets by analyzing the intersubband correlation between horizontal and vertical wavelet subbands of the original IMI on the first scale. Then the self-adaptive wavelet threshold denoising and local singularity analysis of the original IMI is combined to remove false alarms further. Experiments show that compared with traditional algorithms, this algorithm can suppress background clutter much better and realize better single-frame detection for infrared maritime targets. Besides, in order to guarantee accurate target extraction further, the pipeline-filtering algorithm is adopted to eliminate residual false alarms. The high practical value and applicability of this proposed strategy is backed strongly by experimental data acquired under different environmental conditions.
Hybrid Genetic Algorithm Optimization for Case Based Reasoning Systems
International Nuclear Information System (INIS)
Mohamed, A.H.
2008-01-01
The success of a CBR system largely depen ds on an effective retrieval of useful prior case for the problem. Nearest neighbor and induction are the main CBR retrieval algorithms. Each of them can be more suitable in different situations. Integrated the two retrieval algorithms can catch the advantages of both of them. But, they still have some limitations facing the induction retrieval algorithm when dealing with a noisy data, a large number of irrelevant features, and different types of data. This research utilizes a hybrid approach using genetic algorithms (GAs) to case-based induction retrieval of the integrated nearest neighbor - induction algorithm in an attempt to overcome these limitations and increase the overall classification accuracy. GAs can be used to optimize the search space of all the possible subsets of the features set. It can deal with the irrelevant and noisy features while still achieving a significant improvement of the retrieval accuracy. Therefore, the proposed CBR-GA introduces an effective general purpose retrieval algorithm that can improve the performance of CBR systems. It can be applied in many application areas. CBR-GA has proven its success when applied for different problems in real-life
Indian Academy of Sciences (India)
algorithm design technique called 'divide-and-conquer'. One of ... Turtle graphics, September. 1996. 5. ... whole list named 'PO' is a pointer to the first element of the list; ..... Program for computing matrices X and Y and placing the result in C *).
Indian Academy of Sciences (India)
algorithm that it is implicitly understood that we know how to generate the next natural ..... Explicit comparisons are made in line (1) where maximum and minimum is ... It can be shown that the function T(n) = 3/2n -2 is the solution to the above ...
Quantum Behaved Particle Swarm Optimization Algorithm Based on Artificial Fish Swarm
Yumin, Dong; Li, Zhao
2014-01-01
Quantum behaved particle swarm algorithm is a new intelligent optimization algorithm; the algorithm has less parameters and is easily implemented. In view of the existing quantum behaved particle swarm optimization algorithm for the premature convergence problem, put forward a quantum particle swarm optimization algorithm based on artificial fish swarm. The new algorithm based on quantum behaved particle swarm algorithm, introducing the swarm and following activities, meanwhile using the a...
Healy, John J; Sheridan, John T
2011-05-01
The product of the spatial and spatial frequency extents of a wave field has proven useful in the analysis of the sampling requirements of numerical simulations. We propose that the ratio of these quantities is also illuminating. We have shown that the distance at which the so-called "direct method" becomes more efficient than the so-called "spectral method" for simulations of Fresnel transforms may be written in terms of this space-bandwidth ratio. We have proposed generalizations of these algorithms for numerical simulations of general ABCD systems and derived expressions for the "transition space-bandwidth ratio," above which the generalization of the spectral method is the more efficient algorithm and below which the generalization of the direct method is preferable.
Secondary Coordinated Control of Islanded Microgrids Based on Consensus Algorithms
DEFF Research Database (Denmark)
Wu, Dan; Dragicevic, Tomislav; Vasquez, Juan Carlos
2014-01-01
systems. Nevertheless, the conventional decentralized secondary control, although does not need to be implemented in a microgrid central controller (MGCC), it has the limitation that all decentralized controllers must be mutually synchronized. In a clear cut contrast, the proposed secondary control......This paper proposes a decentralized secondary control for islanded microgrids based on consensus algorithms. In a microgrid, the secondary control is implemented in order to eliminate the frequency changes caused by the primary control when coordinating renewable energy sources and energy storage...... requires only a more simplified communication protocol and a sparse communication network. Moreover, the proposed approach based on dynamic consensus algorithms is able to achieve the coordinated secondary performance even when all units are initially out-of-synchronism. The control algorithm implemented...
Effective ANT based Routing Algorithm for Data Replication in MANETs
Directory of Open Access Journals (Sweden)
N.J. Nithya Nandhini
2013-12-01
Full Text Available In mobile ad hoc network, the nodes often move and keep on change its topology. Data packets can be forwarded from one node to another on demand. To increase the data accessibility data are replicated at nodes and made as sharable to other nodes. Assuming that all mobile host cooperative to share their memory and allow forwarding the data packets. But in reality, all nodes do not share the resources for the benefits of others. These nodes may act selfishly to share memory and to forward the data packets. This paper focuses on selfishness of mobile nodes in replica allocation and routing protocol based on Ant colony algorithm to improve the efficiency. The Ant colony algorithm is used to reduce the overhead in the mobile network, so that it is more efficient to access the data than with other routing protocols. This result shows the efficiency of ant based routing algorithm in the replication allocation.
Node-Dependence-Based Dynamic Incentive Algorithm in Opportunistic Networks
Directory of Open Access Journals (Sweden)
Ruiyun Yu
2014-01-01
Full Text Available Opportunistic networks lack end-to-end paths between source nodes and destination nodes, so the communications are mainly carried out by the “store-carry-forward” strategy. Selfish behaviors of rejecting packet relay requests will severely worsen the network performance. Incentive is an efficient way to reduce selfish behaviors and hence improves the reliability and robustness of the networks. In this paper, we propose the node-dependence-based dynamic gaming incentive (NDI algorithm, which exploits the dynamic repeated gaming to motivate nodes relaying packets for other nodes. The NDI algorithm presents a mechanism of tolerating selfish behaviors of nodes. Reward and punishment methods are also designed based on the node dependence degree. Simulation results show that the NDI algorithm is effective in increasing the delivery ratio and decreasing average latency when there are a lot of selfish nodes in the opportunistic networks.
Algorithm for Wireless Sensor Networks Based on Grid Management
Directory of Open Access Journals (Sweden)
Geng Zhang
2014-05-01
Full Text Available This paper analyzes the key issues for wireless sensor network trust model and describes a method to build a wireless sensor network, such as the definition of trust for wireless sensor networks, computing and credibility of trust model application. And for the problem that nodes are vulnerable to attack, this paper proposed a grid-based trust algorithm by deep exploration trust model within the framework of credit management. Algorithm for node reliability screening and rotation schedule to cover parallel manner based on the implementation of the nodes within the area covered by trust. And analyze the results of the size of trust threshold has great influence on the safety and quality of coverage throughout the coverage area. The simulation tests the validity and correctness of the algorithm.
Image segmentation algorithm based on T-junctions cues
Qian, Yanyu; Cao, Fengyun; Wang, Lu; Yang, Xuejie
2016-03-01
To improve the over-segmentation and over-merge phenomenon of single image segmentation algorithm,a novel approach of combing Graph-Based algorithm and T-junctions cues is proposed in this paper. First, a method by L0 gradient minimization is applied to the smoothing of the target image eliminate artifacts caused by noise and texture detail; Then, the initial over-segmentation result of the smoothing image using the graph-based algorithm; Finally, the final results via a region fusion strategy by t-junction cues. Experimental results on a variety of images verify the new approach's efficiency in eliminating artifacts caused by noise,segmentation accuracy and time complexity has been significantly improved.
An Improved FCM Medical Image Segmentation Algorithm Based on MMTD
Directory of Open Access Journals (Sweden)
Ningning Zhou
2014-01-01
Full Text Available Image segmentation plays an important role in medical image processing. Fuzzy c-means (FCM is one of the popular clustering algorithms for medical image segmentation. But FCM is highly vulnerable to noise due to not considering the spatial information in image segmentation. This paper introduces medium mathematics system which is employed to process fuzzy information for image segmentation. It establishes the medium similarity measure based on the measure of medium truth degree (MMTD and uses the correlation of the pixel and its neighbors to define the medium membership function. An improved FCM medical image segmentation algorithm based on MMTD which takes some spatial features into account is proposed in this paper. The experimental results show that the proposed algorithm is more antinoise than the standard FCM, with more certainty and less fuzziness. This will lead to its practicable and effective applications in medical image segmentation.
Baker, W.R.
1959-08-25
Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.
Environmental transformations and ecological effects of iron-based nanoparticles.
Lei, Cheng; Sun, Yuqing; Tsang, Daniel C W; Lin, Daohui
2018-01-01
The increasing application of iron-based nanoparticles (NPs), especially high concentrations of zero-valent iron nanoparticles (nZVI), has raised concerns regarding their environmental behavior and potential ecological effects. In the environment, iron-based NPs undergo physical, chemical, and/or biological transformations as influenced by environmental factors such as pH, ions, dissolved oxygen, natural organic matter (NOM), and biotas. This review presents recent research advances on environmental transformations of iron-based NPs, and articulates their relationships with the observed toxicities. The type and extent of physical, chemical, and biological transformations, including aggregation, oxidation, and bio-reduction, depend on the properties of NPs and the receiving environment. Toxicities of iron-based NPs to bacteria, algae, fish, and plants are increasingly observed, which are evaluated with a particular focus on the underlying mechanisms. The toxicity of iron-based NPs is a function of their properties, tolerance of test organisms, and environmental conditions. Oxidative stress induced by reactive oxygen species is considered as the primary toxic mechanism of iron-based NPs. Factors influencing the toxicity of iron-based NPs are addressed and environmental transformations play a significant role, for example, surface oxidation or coating by NOM generally lowers the toxicity of nZVI. Research gaps and future directions are suggested with an aim to boost concerted research efforts on environmental transformations and toxicity of iron-based NPs, e.g., toxicity studies of transformed NPs in field, expansion of toxicity endpoints, and roles of laden contaminants and surface coating. This review will enhance our understanding of potential risks of iron-based NPs and proper uses of environmentally benign NPs. Copyright © 2017 Elsevier Ltd. All rights reserved.
Agrobacterium-Mediated Transformation of Leaf Base Segments.
Gasparis, Sebastian
2017-01-01
Agrobacterium-mediated transformation has become a routine method of genetic engineering of cereals, gradually replacing the biolistic protocols. Simple integration patterns of transgenic loci, decent transformation efficiency, and technical simplicity are the main advantages offered by this method. Here we present a detailed protocol for the production of transgenic oat plants by Agrobacterium-mediated transformation of leaf base segments. The use of leaf explants as target tissues for transformation and in vitro regeneration of transgenic plants may be a good alternative for genotypes which are not susceptible to regeneration from immature or mature embryos. We also describe the biochemical and molecular analysis procedures of the transgenic plants including a GUS histochemical assay, and Southern blot, both of which are optimized for application in oat.
Mulyadi, Y.; Sucita, T.; Sumarto; Alpani, M.
2018-02-01
Electricity supply demand is increasing every year. It makes PT. PLN (Persero) is required to provide optimal customer service and satisfaction. Optimal service depends on the performance of the equipment of the power system owned, especially the transformer. Power transformer is an electrical equipment that transforms electricity from high voltage to low voltage or vice versa. However, in the electrical power system, is inseparable from interference included in the transformer. But, the disturbance can be minimized by the protection system. The main protection transformer is differential relays. Differential relays working system using Kirchoff law where inflows equal outflows. If there are excessive currents that interfere then the relays will work. But, the relay can also experience decreased performance. Therefore, this final project aims to analyze the reliability of the differential relay on the transformer in three different substations. Referring to the standard applied by the transmission line protection officer, the differential relay shall have slope characteristics of 30% in the first slope and 80% in the second slope when using two slopes and 80% when using one slope with an instant time and the corresponding ratio. So, the results obtained on the Siemens differential release have a reliable slope characteristic with a value of 30 on the fuzzy logic system. In a while, ABB a differential relay is only 80% reliable because two experiments are not reliable. For the time, all the differential relays are instant with a value of 0.06 on the fuzzy logic system. For ratios, the differential relays ABB have a better value than others brand with a value of 151 on the fuzzy logic system.
Parameter Selection for Ant Colony Algorithm Based on Bacterial Foraging Algorithm
Directory of Open Access Journals (Sweden)
Peng Li
2016-01-01
Full Text Available The optimal performance of the ant colony algorithm (ACA mainly depends on suitable parameters; therefore, parameter selection for ACA is important. We propose a parameter selection method for ACA based on the bacterial foraging algorithm (BFA, considering the effects of coupling between different parameters. Firstly, parameters for ACA are mapped into a multidimensional space, using a chemotactic operator to ensure that each parameter group approaches the optimal value, speeding up the convergence for each parameter set. Secondly, the operation speed for optimizing the entire parameter set is accelerated using a reproduction operator. Finally, the elimination-dispersal operator is used to strengthen the global optimization of the parameters, which avoids falling into a local optimal solution. In order to validate the effectiveness of this method, the results were compared with those using a genetic algorithm (GA and a particle swarm optimization (PSO, and simulations were conducted using different grid maps for robot path planning. The results indicated that parameter selection for ACA based on BFA was the superior method, able to determine the best parameter combination rapidly, accurately, and effectively.
RESEARCH ON FOREST FLAME RECOGNITION ALGORITHM BASED ON IMAGE FEATURE
Directory of Open Access Journals (Sweden)
Z. Wang
2017-09-01
Full Text Available In recent years, fire recognition based on image features has become a hotspot in fire monitoring. However, due to the complexity of forest environment, the accuracy of forest fireworks recognition based on image features is low. Based on this, this paper proposes a feature extraction algorithm based on YCrCb color space and K-means clustering. Firstly, the paper prepares and analyzes the color characteristics of a large number of forest fire image samples. Using the K-means clustering algorithm, the forest flame model is obtained by comparing the two commonly used color spaces, and the suspected flame area is discriminated and extracted. The experimental results show that the extraction accuracy of flame area based on YCrCb color model is higher than that of HSI color model, which can be applied in different scene forest fire identification, and it is feasible in practice.
Cryptanalysis of a chaos-based image encryption algorithm
International Nuclear Information System (INIS)
Cokal, Cahit; Solak, Ercan
2009-01-01
A chaos-based image encryption algorithm was proposed in [Z.-H. Guan, F. Huang, W. Guan, Phys. Lett. A 346 (2005) 153]. In this Letter, we analyze the security weaknesses of the proposal. By applying chosen-plaintext and known-plaintext attacks, we show that all the secret parameters can be revealed
Security Analysis of A Chaos-based Image Encryption Algorithm
Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan
2006-01-01
The security of Fridrich Image Encryption Algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.
Security analysis of a chaos-based image encryption algorithm
Lian, Shiguo; Sun, Jinsheng; Wang, Zhiquan
2005-06-01
The security of Fridrich's algorithm against brute-force attack, statistical attack, known-plaintext attack and select-plaintext attack is analyzed by investigating the properties of the involved chaotic maps and diffusion functions. Based on the given analyses, some means are proposed to strengthen the overall performance of the focused cryptosystem.
Measuring Disorientation Based on the Needleman-Wunsch Algorithm
Güyer, Tolga; Atasoy, Bilal; Somyürek, Sibel
2015-01-01
This study offers a new method to measure navigation disorientation in web based systems which is powerful learning medium for distance and open education. The Needleman-Wunsch algorithm is used to measure disorientation in a more precise manner. The process combines theoretical and applied knowledge from two previously distinct research areas,…
Resource allocation in smart homes based on Banker's algorithm
Virag, A.; Bogdan, S.
2011-01-01
This paper proposes a method for improved energy management in smart homes by means of resource allocation. For this purpose, a Banker's algorithm based strategy has been developed. It is used to control the system and decide which of the given processes should be provided with resources at the
Model-based remote sensing algorithms for particulate organic carbon
Indian Academy of Sciences (India)
PCA algorithms based on the first three, four, and five modes accounted for 90, 95, and 98% of total variance and yielded significant correlations with POC with 2 = 0.89, 0.92, and 0.93. These full waveband approaches provided robust estimates of POC in various water types. Three different analyses (root mean square ...
Indian Academy of Sciences (India)
will become clear in the next article when we discuss a simple logo like programming language. ... Rod B may be used as an auxiliary store. The problem is to find an algorithm which performs this task. ... No disks are moved from A to Busing C as auxiliary rod. • move _disk (A, C);. (No + l)th disk is moved from A to C directly ...
We describe the development and evaluation of two new model algorithms for NOx chemistry in the R-LINE near-road dispersion model for traffic sources. With increased urbanization, there is increased mobility leading to higher amount of traffic related activity on a global scale. ...
Model-based Bayesian signal extraction algorithm for peripheral nerves
Eggers, Thomas E.; Dweiri, Yazan M.; McCallum, Grant A.; Durand, Dominique M.
2017-10-01
Objective. Multi-channel cuff electrodes have recently been investigated for extracting fascicular-level motor commands from mixed neural recordings. Such signals could provide volitional, intuitive control over a robotic prosthesis for amputee patients. Recent work has demonstrated success in extracting these signals in acute and chronic preparations using spatial filtering techniques. These extracted signals, however, had low signal-to-noise ratios and thus limited their utility to binary classification. In this work a new algorithm is proposed which combines previous source localization approaches to create a model based method which operates in real time. Approach. To validate this algorithm, a saline benchtop setup was created to allow the precise placement of artificial sources within a cuff and interference sources outside the cuff. The artificial source was taken from five seconds of chronic neural activity to replicate realistic recordings. The proposed algorithm, hybrid Bayesian signal extraction (HBSE), is then compared to previous algorithms, beamforming and a Bayesian spatial filtering method, on this test data. An example chronic neural recording is also analyzed with all three algorithms. Main results. The proposed algorithm improved the signal to noise and signal to interference ratio of extracted test signals two to three fold, as well as increased the correlation coefficient between the original and recovered signals by 10-20%. These improvements translated to the chronic recording example and increased the calculated bit rate between the recovered signals and the recorded motor activity. Significance. HBSE significantly outperforms previous algorithms in extracting realistic neural signals, even in the presence of external noise sources. These results demonstrate the feasibility of extracting dynamic motor signals from a multi-fascicled intact nerve trunk, which in turn could extract motor command signals from an amputee for the end goal of
Multiple Lookup Table-Based AES Encryption Algorithm Implementation
Gong, Jin; Liu, Wenyi; Zhang, Huixin
Anew AES (Advanced Encryption Standard) encryption algorithm implementation was proposed in this paper. It is based on five lookup tables, which are generated from S-box(the substitution table in AES). The obvious advantages are reducing the code-size, improving the implementation efficiency, and helping new learners to understand the AES encryption algorithm and GF(28) multiplication which are necessary to correctly implement AES[1]. This method can be applied on processors with word length 32 or above, FPGA and others. And correspondingly we can implement it by VHDL, Verilog, VB and other languages.
Core Business Selection Based on Ant Colony Clustering Algorithm
Directory of Open Access Journals (Sweden)
Yu Lan
2014-01-01
Full Text Available Core business is the most important business to the enterprise in diversified business. In this paper, we first introduce the definition and characteristics of the core business and then descript the ant colony clustering algorithm. In order to test the effectiveness of the proposed method, Tianjin Port Logistics Development Co., Ltd. is selected as the research object. Based on the current situation of the development of the company, the core business of the company can be acquired by ant colony clustering algorithm. Thus, the results indicate that the proposed method is an effective way to determine the core business for company.
Analysis of velocity planning interpolation algorithm based on NURBS curve
Zhang, Wanjun; Gao, Shanping; Cheng, Xiyan; Zhang, Feng
2017-04-01
To reduce interpolation time and Max interpolation error in NURBS (Non-Uniform Rational B-Spline) inter-polation caused by planning Velocity. This paper proposed a velocity planning interpolation algorithm based on NURBS curve. Firstly, the second-order Taylor expansion is applied on the numerator in NURBS curve representation with parameter curve. Then, velocity planning interpolation algorithm can meet with NURBS curve interpolation. Finally, simulation results show that the proposed NURBS curve interpolator meet the high-speed and high-accuracy interpolation requirements of CNC systems. The interpolation of NURBS curve should be finished.
Algorithmic fault tree construction by component-based system modeling
International Nuclear Information System (INIS)
Majdara, Aref; Wakabayashi, Toshio
2008-01-01
Computer-aided fault tree generation can be easier, faster and less vulnerable to errors than the conventional manual fault tree construction. In this paper, a new approach for algorithmic fault tree generation is presented. The method mainly consists of a component-based system modeling procedure an a trace-back algorithm for fault tree synthesis. Components, as the building blocks of systems, are modeled using function tables and state transition tables. The proposed method can be used for a wide range of systems with various kinds of components, if an inclusive component database is developed. (author)
A SAR IMAGE REGISTRATION METHOD BASED ON SIFT ALGORITHM
Directory of Open Access Journals (Sweden)
W. Lu
2017-09-01
Full Text Available In order to improve the stability and rapidity of synthetic aperture radar (SAR images matching, an effective method was presented. Firstly, the adaptive smoothing filtering was employed for image denoising in image processing based on Wallis filtering to avoid the follow-up noise is amplified. Secondly, feature points were extracted by a simplified SIFT algorithm. Finally, the exact matching of the images was achieved with these points. Compared with the existing methods, it not only maintains the richness of features, but a-lso reduces the noise of the image. The simulation results show that the proposed algorithm can achieve better matching effect.
Analog Group Delay Equalizers Design Based on Evolutionary Algorithm
Directory of Open Access Journals (Sweden)
M. Laipert
2006-04-01
Full Text Available This paper deals with a design method of the analog all-pass filter designated for equalization of the group delay frequency response of the analog filter. This method is based on usage of evolutionary algorithm, the Differential Evolution algorithm in particular. We are able to design such equalizers to be obtained equal-ripple group delay frequency response in the pass-band of the low-pass filter. The procedure works automatically without an input estimation. The method is presented on solving practical examples.
Effectiveness of Discovery Learning-Based Transformation Geometry Module
Febriana, R.; Haryono, Y.; Yusri, R.
2017-09-01
Development of transformation geometry module is conducted because the students got difficulties to understand the existing book. The purpose of the research was to find out the effectiveness of discovery learning-based transformation geometry module toward student’s activity. Model of the development was Plomp model consisting preliminary research, prototyping phase and assessment phase. The research was focused on assessment phase where it was to observe the designed product effectiveness. The instrument was observation sheet. The observed activities were visual activities, oral activities, listening activities, mental activities, emotional activities and motor activities. Based on the result of the research, it is found that visual activities, learning activities, writing activities, the student’s activity is in the criteria very effective. It can be concluded that the use of discovery learning-based transformation geometry module use can increase the positive student’s activity and decrease the negative activity.
Osler, James Edward
2013-01-01
This paper discusses the implementation of the Tri-Squared Test as an advanced statistical measure used to verify and validate the research outcomes of Educational Technology software. A mathematical and epistemological rational is provided for the transformative process of qualitative data into quantitative outcomes through the Tri-Squared Test…
A Multi-Scale Settlement Matching Algorithm Based on ARG
Yue, Han; Zhu, Xinyan; Chen, Di; Liu, Lingjia
2016-06-01
Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG) is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
The Heeger & Bergen Pyramid Based Texture Synthesis Algorithm
Directory of Open Access Journals (Sweden)
Thibaud Briand
2014-11-01
Full Text Available This contribution deals with the Heeger-Bergen pyramid-based texture analysis/synthesis algorithm. It brings a detailed explanation of the original algorithm tested on many characteristic examples. Our analysis reproduces the original results, but also brings a minor improvement concerning non-periodic textures. Inspired by visual perception theories, Heeger and Bergen proposed to characterize a texture by its first-order statistics of both its color and its responses to multiscale and multi-orientation filters, namely the steerable pyramid. The Heeger-Bergen algorithm consists in the following procedure: starting from a white noise image, histogram matchings are performed to the noise alternatively in both the image domain and steerable pyramid domain, so that the corresponding histograms match the ones of the input texture.
Algorithm of Defect Segmentation for AFP Based on Prepregs
Directory of Open Access Journals (Sweden)
CAI Zhiqiang
2017-04-01
Full Text Available In order to ensure the performance of the automated fiber placement forming parts, according to the homogeneity of the image of the prepreg surface along the fiber direction, a defect segmentation algorithm which was the combination of gray compensation and substraction algorithm based on image processing technology was proposed. The gray compensation matrix of image was used to compensate the gray image, and the maximum error point of the image matrix was eliminated according to the characteristics that the gray error obeys the normal distribution. The standard image was established, using the allowed deviation coefficient K as a criterion for substraction segmentation. Experiments show that the algorithm has good effect, fast speed in segmenting two kinds of typical laying defect of bubbles or foreign objects, and provides a good theoretical basis to realize automatic laying defect online monitoring.
Design of synthetic biological logic circuits based on evolutionary algorithm.
Chuang, Chia-Hua; Lin, Chun-Liang; Chang, Yen-Chang; Jennawasin, Tanagorn; Chen, Po-Kuei
2013-08-01
The construction of an artificial biological logic circuit using systematic strategy is recognised as one of the most important topics for the development of synthetic biology. In this study, a real-structured genetic algorithm (RSGA), which combines general advantages of the traditional real genetic algorithm with those of the structured genetic algorithm, is proposed to deal with the biological logic circuit design problem. A general model with the cis-regulatory input function and appropriate promoter activity functions is proposed to synthesise a wide variety of fundamental logic gates such as NOT, Buffer, AND, OR, NAND, NOR and XOR. The results obtained can be extended to synthesise advanced combinational and sequential logic circuits by topologically distinct connections. The resulting optimal design of these logic gates and circuits are established via the RSGA. The in silico computer-based modelling technology has been verified showing its great advantages in the purpose.
A homology sound-based algorithm for speech signal interference
Jiang, Yi-jiao; Chen, Hou-jin; Li, Ju-peng; Zhang, Zhan-song
2015-12-01
Aiming at secure analog speech communication, a homology sound-based algorithm for speech signal interference is proposed in this paper. We first split speech signal into phonetic fragments by a short-term energy method and establish an interference noise cache library with the phonetic fragments. Then we implement the homology sound interference by mixing the randomly selected interferential fragments and the original speech in real time. The computer simulation results indicated that the interference produced by this algorithm has advantages of real time, randomness, and high correlation with the original signal, comparing with the traditional noise interference methods such as white noise interference. After further studies, the proposed algorithm may be readily used in secure speech communication.
A Multi-Scale Settlement Matching Algorithm Based on ARG
Directory of Open Access Journals (Sweden)
H. Yue
2016-06-01
Full Text Available Homonymous entity matching is an important part of multi-source spatial data integration, automatic updating and change detection. Considering the low accuracy of existing matching methods in dealing with matching multi-scale settlement data, an algorithm based on Attributed Relational Graph (ARG is proposed. The algorithm firstly divides two settlement scenes at different scales into blocks by small-scale road network and constructs local ARGs in each block. Then, ascertains candidate sets by merging procedures and obtains the optimal matching pairs by comparing the similarity of ARGs iteratively. Finally, the corresponding relations between settlements at large and small scales are identified. At the end of this article, a demonstration is presented and the results indicate that the proposed algorithm is capable of handling sophisticated cases.
Community Clustering Algorithm in Complex Networks Based on Microcommunity Fusion
Directory of Open Access Journals (Sweden)
Jin Qi
2015-01-01
Full Text Available With the further research on physical meaning and digital features of the community structure in complex networks in recent years, the improvement of effectiveness and efficiency of the community mining algorithms in complex networks has become an important subject in this area. This paper puts forward a concept of the microcommunity and gets final mining results of communities through fusing different microcommunities. This paper starts with the basic definition of the network community and applies Expansion to the microcommunity clustering which provides prerequisites for the microcommunity fusion. The proposed algorithm is more efficient and has higher solution quality compared with other similar algorithms through the analysis of test results based on network data set.
Dynamic Sensor Management Algorithm Based on Improved Efficacy Function
Directory of Open Access Journals (Sweden)
TANG Shujuan
2016-01-01
Full Text Available A dynamic sensor management algorithm based on improved efficacy function is proposed to solve the multi-target and multi-sensory management problem. The tracking task precision requirements (TPR, target priority and sensor use cost were considered to establish the efficacy function by weighted sum the normalized value of the three factors. The dynamic sensor management algorithm was accomplished through control the diversities of the desired covariance matrix (DCM and the filtering covariance matrix (FCM. The DCM was preassigned in terms of TPR and the FCM was obtained by the centralized sequential Kalman filtering algorithm. The simulation results prove that the proposed method could meet the requirements of desired tracking precision and adjust sensor selection according to target priority and cost of sensor source usage. This makes sensor management scheme more reasonable and effective.
Pilot-based parametric channel estimation algorithm for DCO-OFDM-based visual light communications
Qian, Xuewen; Deng, Honggui; He, Hailang
2017-10-01
Due to wide modulation bandwidth in optical communication, multipath channels may be non-sparse and deteriorate communication performance heavily. Traditional compressive sensing-based channel estimation algorithm cannot be employed in this kind of situation. In this paper, we propose a practical parametric channel estimation algorithm for orthogonal frequency division multiplexing (OFDM)-based visual light communication (VLC) systems based on modified zero correlation code (ZCC) pair that has the impulse-like correlation property. Simulation results show that the proposed algorithm achieves better performances than existing least squares (LS)-based algorithm in both bit error ratio (BER) and frequency response estimation.
FACT. New image parameters based on the watershed-algorithm
Energy Technology Data Exchange (ETDEWEB)
Linhoff, Lena; Bruegge, Kai Arno; Buss, Jens [TU Dortmund (Germany). Experimentelle Physik 5b; Collaboration: FACT-Collaboration
2016-07-01
FACT, the First G-APD Cherenkov Telescope, is the first imaging atmospheric Cherenkov telescope that is using Geiger-mode avalanche photodiodes (G-APDs) as photo sensors. The raw data produced by this telescope are processed in an analysis chain, which leads to a classification of the primary particle that induce a shower and to an estimation of its energy. One important step in this analysis chain is the parameter extraction from shower images. By the application of a watershed algorithm to the camera image, new parameters are computed. Perceiving the brightness of a pixel as height, a set of pixels can be seen as 'landscape' with hills and valleys. A watershed algorithm groups all pixels to a cluster that belongs to the same hill. From the emerging segmented image, one can find new parameters for later analysis steps, e.g. number of clusters, their shape and containing photon charge. For FACT data, the FellWalker algorithm was chosen from the class of watershed algorithms, because it was designed to work on discrete distributions, in this case the pixels of a camera image. The FellWalker algorithm is implemented in FACT-tools, which provides the low level analysis framework for FACT. This talk will focus on the computation of new, FellWalker based, image parameters, which can be used for the gamma-hadron separation. Additionally, their distributions concerning real and Monte Carlo Data are compared.
LAI inversion algorithm based on directional reflectance kernels.
Tang, S; Chen, J M; Zhu, Q; Li, X; Chen, M; Sun, R; Zhou, Y; Deng, F; Xie, D
2007-11-01
Leaf area index (LAI) is an important ecological and environmental parameter. A new LAI algorithm is developed using the principles of ground LAI measurements based on canopy gap fraction. First, the relationship between LAI and gap fraction at various zenith angles is derived from the definition of LAI. Then, the directional gap fraction is acquired from a remote sensing bidirectional reflectance distribution function (BRDF) product. This acquisition is obtained by using a kernel driven model and a large-scale directional gap fraction algorithm. The algorithm has been applied to estimate a LAI distribution in China in mid-July 2002. The ground data acquired from two field experiments in Changbai Mountain and Qilian Mountain were used to validate the algorithm. To resolve the scale discrepancy between high resolution ground observations and low resolution remote sensing data, two TM images with a resolution approaching the size of ground plots were used to relate the coarse resolution LAI map to ground measurements. First, an empirical relationship between the measured LAI and a vegetation index was established. Next, a high resolution LAI map was generated using the relationship. The LAI value of a low resolution pixel was calculated from the area-weighted sum of high resolution LAIs composing the low resolution pixel. The results of this comparison showed that the inversion algorithm has an accuracy of 82%. Factors that may influence the accuracy are also discussed in this paper.
Kriging-based algorithm for nuclear reactor neutronic design optimization
International Nuclear Information System (INIS)
Kempf, Stephanie; Forget, Benoit; Hu, Lin-Wen
2012-01-01
Highlights: ► A Kriging-based algorithm was selected to guide research reactor optimization. ► We examined impacts of parameter values upon the algorithm. ► The best parameter values were incorporated into a set of best practices. ► Algorithm with best practices used to optimize thermal flux of concept. ► Final design produces thermal flux 30% higher than other 5 MW reactors. - Abstract: Kriging, a geospatial interpolation technique, has been used in the present work to drive a search-and-optimization algorithm which produces the optimum geometric parameters for a 5 MW research reactor design. The technique has been demonstrated to produce an optimal neutronic solution after a relatively small number of core calculations. It has additionally been successful in producing a design which significantly improves thermal neutron fluxes by 30% over existing reactors of the same power rating. Best practices for use of this algorithm in reactor design were identified and indicated the importance of selecting proper correlation functions.
Evolving Stochastic Learning Algorithm based on Tsallis entropic index
Anastasiadis, A. D.; Magoulas, G. D.
2006-03-01
In this paper, inspired from our previous algorithm, which was based on the theory of Tsallis statistical mechanics, we develop a new evolving stochastic learning algorithm for neural networks. The new algorithm combines deterministic and stochastic search steps by employing a different adaptive stepsize for each network weight, and applies a form of noise that is characterized by the nonextensive entropic index q, regulated by a weight decay term. The behavior of the learning algorithm can be made more stochastic or deterministic depending on the trade off between the temperature T and the q values. This is achieved by introducing a formula that defines a time-dependent relationship between these two important learning parameters. Our experimental study verifies that there are indeed improvements in the convergence speed of this new evolving stochastic learning algorithm, which makes learning faster than using the original Hybrid Learning Scheme (HLS). In addition, experiments are conducted to explore the influence of the entropic index q and temperature T on the convergence speed and stability of the proposed method.
Incident Light Frequency-Based Image Defogging Algorithm
Directory of Open Access Journals (Sweden)
Wenbo Zhang
2017-01-01
Full Text Available To solve the color distortion problem produced by the dark channel prior algorithm, an improved method for calculating transmittance of all channels, respectively, was proposed in this paper. Based on the Beer-Lambert Law, the influence between the frequency of the incident light and the transmittance was analyzed, and the ratios between each channel’s transmittance were derived. Then, in order to increase efficiency, the input image was resized to a smaller size before acquiring the refined transmittance which will be resized to the same size of original image. Finally, all the transmittances were obtained with the help of the proportion between each color channel, and then they were used to restore the defogging image. Experiments suggest that the improved algorithm can produce a much more natural result image in comparison with original algorithm, which means the problem of high color saturation was eliminated. What is more, the improved algorithm speeds up by four to nine times compared to the original algorithm.
Localized Ambient Solidity Separation Algorithm Based Computer User Segmentation
Sun, Xiao; Zhang, Tongda; Chai, Yueting; Liu, Yi
2015-01-01
Most of popular clustering methods typically have some strong assumptions of the dataset. For example, the k-means implicitly assumes that all clusters come from spherical Gaussian distributions which have different means but the same covariance. However, when dealing with datasets that have diverse distribution shapes or high dimensionality, these assumptions might not be valid anymore. In order to overcome this weakness, we proposed a new clustering algorithm named localized ambient solidity separation (LASS) algorithm, using a new isolation criterion called centroid distance. Compared with other density based isolation criteria, our proposed centroid distance isolation criterion addresses the problem caused by high dimensionality and varying density. The experiment on a designed two-dimensional benchmark dataset shows that our proposed LASS algorithm not only inherits the advantage of the original dissimilarity increments clustering method to separate naturally isolated clusters but also can identify the clusters which are adjacent, overlapping, and under background noise. Finally, we compared our LASS algorithm with the dissimilarity increments clustering method on a massive computer user dataset with over two million records that contains demographic and behaviors information. The results show that LASS algorithm works extremely well on this computer user dataset and can gain more knowledge from it. PMID:26221133
A Plagiarism Detection Algorithm based on Extended Winnowing
Directory of Open Access Journals (Sweden)
Duan Xuliang
2017-01-01
Full Text Available Plagiarism is a common problem faced by academia and education. Mature commercial plagiarism detection system has the advantages of comprehensive and high accuracy, but the expensive detection costs make it unsuitable for real-time, lightweight application environment such as the student assignments plagiarism detection. This paper introduces the method of extending classic Winnowing plagiarism detection algorithm, expands the algorithm in functionality. The extended algorithm can retain the text location and length information in original document while extracting the fingerprints of a document, so that the locating and marking for plagiarism text fragment are much easier to achieve. The experimental results and several years of running practice show that the expansion of the algorithm has little effect on its performance, normal hardware configuration of PC will be able to meet small and medium-sized applications requirements. Based on the characteristics of lightweight, high efficiency, reliability and flexibility of Winnowing, the extended algorithm further enhances the adaptability and extends the application areas.
A Greedy Algorithm for Neighborhood Overlap-Based Community Detection
Directory of Open Access Journals (Sweden)
Natarajan Meghanathan
2016-01-01
Full Text Available The neighborhood overlap (NOVER of an edge u-v is defined as the ratio of the number of nodes who are neighbors for both u and v to that of the number of nodes who are neighbors of at least u or v. In this paper, we hypothesize that an edge u-v with a lower NOVER score bridges two or more sets of vertices, with very few edges (other than u-v connecting vertices from one set to another set. Accordingly, we propose a greedy algorithm of iteratively removing the edges of a network in the increasing order of their neighborhood overlap and calculating the modularity score of the resulting network component(s after the removal of each edge. The network component(s that have the largest cumulative modularity score are identified as the different communities of the network. We evaluate the performance of the proposed NOVER-based community detection algorithm on nine real-world network graphs and compare the performance against the multi-level aggregation-based Louvain algorithm, as well as the original and time-efficient versions of the edge betweenness-based Girvan-Newman (GN community detection algorithm.
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing
Directory of Open Access Journals (Sweden)
Jiayin Liu
2017-06-01
Full Text Available Remote sensing technologies have been widely applied in urban environments’ monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the “salt and pepper” phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC, which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF, which is estimated by Kernel Density Estimation (KDE with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.
Local Competition-Based Superpixel Segmentation Algorithm in Remote Sensing.
Liu, Jiayin; Tang, Zhenmin; Cui, Ying; Wu, Guoxing
2017-06-12
Remote sensing technologies have been widely applied in urban environments' monitoring, synthesis and modeling. Incorporating spatial information in perceptually coherent regions, superpixel-based approaches can effectively eliminate the "salt and pepper" phenomenon which is common in pixel-wise approaches. Compared with fixed-size windows, superpixels have adaptive sizes and shapes for different spatial structures. Moreover, superpixel-based algorithms can significantly improve computational efficiency owing to the greatly reduced number of image primitives. Hence, the superpixel algorithm, as a preprocessing technique, is more and more popularly used in remote sensing and many other fields. In this paper, we propose a superpixel segmentation algorithm called Superpixel Segmentation with Local Competition (SSLC), which utilizes a local competition mechanism to construct energy terms and label pixels. The local competition mechanism leads to energy terms locality and relativity, and thus, the proposed algorithm is less sensitive to the diversity of image content and scene layout. Consequently, SSLC could achieve consistent performance in different image regions. In addition, the Probability Density Function (PDF), which is estimated by Kernel Density Estimation (KDE) with the Gaussian kernel, is introduced to describe the color distribution of superpixels as a more sophisticated and accurate measure. To reduce computational complexity, a boundary optimization framework is introduced to only handle boundary pixels instead of the whole image. We conduct experiments to benchmark the proposed algorithm with the other state-of-the-art ones on the Berkeley Segmentation Dataset (BSD) and remote sensing images. Results demonstrate that the SSLC algorithm yields the best overall performance, while the computation time-efficiency is still competitive.
Embedded algorithms within an FPGA-based system to process nonlinear time series data
Jones, Jonathan D.; Pei, Jin-Song; Tull, Monte P.
2008-03-01
This paper presents some preliminary results of an ongoing project. A pattern classification algorithm is being developed and embedded into a Field-Programmable Gate Array (FPGA) and microprocessor-based data processing core in this project. The goal is to enable and optimize the functionality of onboard data processing of nonlinear, nonstationary data for smart wireless sensing in structural health monitoring. Compared with traditional microprocessor-based systems, fast growing FPGA technology offers a more powerful, efficient, and flexible hardware platform including on-site (field-programmable) reconfiguration capability of hardware. An existing nonlinear identification algorithm is used as the baseline in this study. The implementation within a hardware-based system is presented in this paper, detailing the design requirements, validation, tradeoffs, optimization, and challenges in embedding this algorithm. An off-the-shelf high-level abstraction tool along with the Matlab/Simulink environment is utilized to program the FPGA, rather than coding the hardware description language (HDL) manually. The implementation is validated by comparing the simulation results with those from Matlab. In particular, the Hilbert Transform is embedded into the FPGA hardware and applied to the baseline algorithm as the centerpiece in processing nonlinear time histories and extracting instantaneous features of nonstationary dynamic data. The selection of proper numerical methods for the hardware execution of the selected identification algorithm and consideration of the fixed-point representation are elaborated. Other challenges include the issues of the timing in the hardware execution cycle of the design, resource consumption, approximation accuracy, and user flexibility of input data types limited by the simplicity of this preliminary design. Future work includes making an FPGA and microprocessor operate together to embed a further developed algorithm that yields better
Lagrangian relaxation based algorithm for trigeneration planning with storages
DEFF Research Database (Denmark)
Rong, Aiying; Lahdelma, Risto; Luh, Peter
2008-01-01
of three energy commodities follows a joint characteristic. This paper presents a Lagrangian relaxation (LR) based algorithm for trigeneration planning with storages based on deflected subgradient optimization method. The trigeneration planning problem is modeled as a linear programming (LP) problem...... an effective method for the long-term planning problem based on the proper strategy to form Lagrangian subproblems and solve the Lagrangian dual (LD) problem based on deflected subgradient optimization method. We also develop a heuristic for restoring feasibility from the LD solution. Numerical results based...
Community-Based Ecotourism: The Transformation of Local Community
Directory of Open Access Journals (Sweden)
Pookhao Nantira
2014-01-01
Full Text Available Community-based ecotourism (CBET is considered a sustainable form of tourism that improves the quality of life of hosts at the tourist destination. Scholars have yet to explore the long-term operation of CBET in relation to its effects on the local way of life. Consequently, the purpose of this paper is to examine the transformation of a local community due to the operation of CBET in relation to sociocultural, economic and environmental aspects. The findings reveal that the community encounters both positive and negative impacts of transformation. However, unintended impacts of the CBET operation lay embedded in the transformation of relationships among the community members. The study identifies that close relationships among the villagers has been initially transformed to loose relationships due to forgotten communal goals; CBET has transformed from being a conservation tool to being a business-oriented goal which causes conflicts of interest among local people and alters traditional social structure. The study also agrees with the notion of social exchange theory for villagers to enhance environmental sustainability, and proposes that slight inequalities of benefits received from CBET causes social transformation at the local level.
QR code-based non-linear image encryption using Shearlet transform and spiral phase transform
Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan
2018-02-01
In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.
A Novel Image Encryption Based on Algebraic S-box and Arnold Transform
Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail
2017-09-01
Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.
Segment-based dose optimization using a genetic algorithm
International Nuclear Information System (INIS)
Cotrutz, Cristian; Xing Lei
2003-01-01
Intensity modulated radiation therapy (IMRT) inverse planning is conventionally done in two steps. Firstly, the intensity maps of the treatment beams are optimized using a dose optimization algorithm. Each of them is then decomposed into a number of segments using a leaf-sequencing algorithm for delivery. An alternative approach is to pre-assign a fixed number of field apertures and optimize directly the shapes and weights of the apertures. While the latter approach has the advantage of eliminating the leaf-sequencing step, the optimization of aperture shapes is less straightforward than that of beamlet-based optimization because of the complex dependence of the dose on the field shapes, and their weights. In this work we report a genetic algorithm for segment-based optimization. Different from a gradient iterative approach or simulated annealing, the algorithm finds the optimum solution from a population of candidate plans. In this technique, each solution is encoded using three chromosomes: one for the position of the left-bank leaves of each segment, the second for the position of the right-bank and the third for the weights of the segments defined by the first two chromosomes. The convergence towards the optimum is realized by crossover and mutation operators that ensure proper exchange of information between the three chromosomes of all the solutions in the population. The algorithm is applied to a phantom and a prostate case and the results are compared with those obtained using beamlet-based optimization. The main conclusion drawn from this study is that the genetic optimization of segment shapes and weights can produce highly conformal dose distribution. In addition, our study also confirms previous findings that fewer segments are generally needed to generate plans that are comparable with the plans obtained using beamlet-based optimization. Thus the technique may have useful applications in facilitating IMRT treatment planning
A New Method for Multisensor Data Fusion Based on Wavelet Transform in a Chemical Plant
Directory of Open Access Journals (Sweden)
Karim Salahshoor
2014-07-01
Full Text Available This paper presents a new multi-sensor data fusion method based on the combination of wavelet transform (WT and extended Kalman filter (EKF. Input data are first filtered by a wavelet transform via Daubechies wavelet “db4” functions and the filtered data are then fused based on variance weights in terms of minimum mean square error. The fused data are finally treated by extended Kalman filter for the final state estimation. The recent data are recursively utilized to apply wavelet transform and extract the variance of the updated data, which makes it suitable to be applied to both static and dynamic systems corrupted by noisy environments. The method has suitable performance in state estimation in comparison with the other alternative algorithms. A three-tank benchmark system has been adopted to comparatively demonstrate the performance merits of the method compared to a known algorithm in terms of efficiently satisfying signal-tonoise (SNR and minimum square error (MSE criteria.
A New Curve Tracing Algorithm Based on Local Feature in the Vectorization of Paper Seismograms
Directory of Open Access Journals (Sweden)
Maofa Wang
2014-02-01
Full Text Available History paper seismograms are very important information for earthquake monitoring and prediction. The vectorization of paper seismograms is an import problem to be resolved. Auto tracing of waveform curves is a key technology for the vectorization of paper seismograms. It can transform an original scanning image into digital waveform data. Accurately tracing out all the key points of each curve in seismograms is the foundation for vectorization of paper seismograms. In the paper, we present a new curve tracing algorithm based on local feature, applying to auto extraction of earthquake waveform in paper seismograms.
Rezaee, Kh; Haddadnia, J
2013-09-01
Breast cancer is currently one of the leading causes of death among women worldwide. The diagnosis and separation of cancerous tumors in mammographic images require accuracy, experience and time, and it has always posed itself as a major challenge to the radiologists and physicians. This paper proposes a new algorithm which draws on discrete wavelet transform and adaptive K-means techniques to transmute the medical images implement the tumor estimation and detect breast cancer tumors in mammograms in early stages. It also allows the rapid processing of the input data. In the first step, after designing a filter, the discrete wavelet transform is applied to the input images and the approximate coefficients of scaling components are constructed. Then, the different parts of image are classified in continuous spectrum. In the next step, by using adaptive K-means algorithm for initializing and smart choice of clusters' number, the appropriate threshold is selected. Finally, the suspicious cancerous mass is separated by implementing the image processing techniques. We Received 120 mammographic images in LJPEG format, which had been scanned in Gray-Scale with 50 microns size, 3% noise and 20% INU from clinical data taken from two medical databases (mini-MIAS and DDSM). The proposed algorithm detected tumors at an acceptable level with an average accuracy of 92.32% and sensitivity of 90.24%. Also, the Kappa coefficient was approximately 0.85, which proved the suitable reliability of the system performance. The exact positioning of the cancerous tumors allows the radiologist to determine the stage of disease progression and suggest an appropriate treatment in accordance with the tumor growth. The low PPV and high NPV of the system is a warranty of the system and both clinical specialists and patients can trust its output.
Phase Retrieval Using a Genetic Algorithm on the Systematic Image-Based Optical Alignment Testbed
Taylor, Jaime R.
2003-01-01
NASA s Marshall Space Flight Center s Systematic Image-Based Optical Alignment (SIBOA) Testbed was developed to test phase retrieval algorithms and hardware techniques. Individuals working with the facility developed the idea of implementing phase retrieval by breaking the determination of the tip/tilt of each mirror apart from the piston motion (or translation) of each mirror. Presented in this report is an algorithm that determines the optimal phase correction associated only with the piston motion of the mirrors. A description of the Phase Retrieval problem is first presented. The Systematic Image-Based Optical Alignment (SIBOA) Testbeb is then described. A Discrete Fourier Transform (DFT) is necessary to transfer the incoming wavefront (or estimate of phase error) into the spatial frequency domain to compare it with the image. A method for reducing the DFT to seven scalar/matrix multiplications is presented. A genetic algorithm is then used to search for the phase error. The results of this new algorithm on a test problem are presented.
Fast intersection detection algorithm for PC-based robot off-line programming
Fedrowitz, Christian H.
1994-11-01
This paper presents a method for fast and reliable collision detection in complex production cells. The algorithm is part of the PC-based robot off-line programming system of the University of Siegen (Ropsus). The method is based on a solid model which is managed by a simplified constructive solid geometry model (CSG-model). The collision detection problem is divided in two steps. In the first step the complexity of the problem is reduced in linear time. In the second step the remaining solids are tested for intersection. For this the Simplex algorithm, which is known from linear optimization, is used. It computes a point which is common to two convex polyhedra. The polyhedra intersect, if such a point exists. Regarding the simplified geometrical model of Ropsus the algorithm runs also in linear time. In conjunction with the first step a resultant collision detection algorithm is found which requires linear time in all. Moreover it computes the resultant intersection polyhedron using the dual transformation.
A similarity based agglomerative clustering algorithm in networks
Liu, Zhiyuan; Wang, Xiujuan; Ma, Yinghong
2018-04-01
The detection of clusters is benefit for understanding the organizations and functions of networks. Clusters, or communities, are usually groups of nodes densely interconnected but sparsely linked with any other clusters. To identify communities, an efficient and effective community agglomerative algorithm based on node similarity is proposed. The proposed method initially calculates similarities between each pair of nodes, and form pre-partitions according to the principle that each node is in the same community as its most similar neighbor. After that, check each partition whether it satisfies community criterion. For the pre-partitions who do not satisfy, incorporate them with others that having the biggest attraction until there are no changes. To measure the attraction ability of a partition, we propose an attraction index that based on the linked node's importance in networks. Therefore, our proposed method can better exploit the nodes' properties and network's structure. To test the performance of our algorithm, both synthetic and empirical networks ranging in different scales are tested. Simulation results show that the proposed algorithm can obtain superior clustering results compared with six other widely used community detection algorithms.
Learning-based meta-algorithm for MRI brain extraction.
Shi, Feng; Wang, Li; Gilmore, John H; Lin, Weili; Shen, Dinggang
2011-01-01
Multiple-segmentation-and-fusion method has been widely used for brain extraction, tissue segmentation, and region of interest (ROI) localization. However, such studies are hindered in practice by their computational complexity, mainly coming from the steps of template selection and template-to-subject nonlinear registration. In this study, we address these two issues and propose a novel learning-based meta-algorithm for MRI brain extraction. Specifically, we first use exemplars to represent the entire template library, and assign the most similar exemplar to the test subject. Second, a meta-algorithm combining two existing brain extraction algorithms (BET and BSE) is proposed to conduct multiple extractions directly on test subject. Effective parameter settings for the meta-algorithm are learned from the training data and propagated to subject through exemplars. We further develop a level-set based fusion method to combine multiple candidate extractions together with a closed smooth surface, for obtaining the final result. Experimental results show that, with only a small portion of subjects for training, the proposed method is able to produce more accurate and robust brain extraction results, at Jaccard Index of 0.956 +/- 0.010 on total 340 subjects under 6-fold cross validation, compared to those by the BET and BSE even using their best parameter combinations.
Development of antibiotic regimens using graph based evolutionary algorithms.
Corns, Steven M; Ashlock, Daniel A; Bryden, Kenneth M
2013-12-01
This paper examines the use of evolutionary algorithms in the development of antibiotic regimens given to production animals. A model is constructed that combines the lifespan of the animal and the bacteria living in the animal's gastro-intestinal tract from the early finishing stage until the animal reaches market weight. This model is used as the fitness evaluation for a set of graph based evolutionary algorithms to assess the impact of diversity control on the evolving antibiotic regimens. The graph based evolutionary algorithms have two objectives: to find an antibiotic treatment regimen that maintains the weight gain and health benefits of antibiotic use and to reduce the risk of spreading antibiotic resistant bacteria. This study examines different regimens of tylosin phosphate use on bacteria populations divided into Gram positive and Gram negative types, with a focus on Campylobacter spp. Treatment regimens were found that provided decreased antibiotic resistance relative to conventional methods while providing nearly the same benefits as conventional antibiotic regimes. By using a graph to control the information flow in the evolutionary algorithm, a variety of solutions along the Pareto front can be found automatically for this and other multi-objective problems. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Nearby Search Indekos Based Android Using A Star (A*) Algorithm
Siregar, B.; Nababan, EB; Rumahorbo, JA; Andayani, U.; Fahmi, F.
2018-03-01
Indekos or rented room is a temporary residence for months or years. Society of academicians who come from out of town need a temporary residence, such as Indekos or rented room during their education, teaching, or duties. They are often found difficulty in finding a Indekos because lack of information about the Indekos. Besides, new society of academicians don’t recognize the areas around the campus and desire the shortest path from Indekos to get to the campus. The problem can be solved by implementing A Star (A*) algorithm. This algorithm is one of the shortest path algorithm to a finding shortest path from campus to the Indekos application, where the faculties in the campus as the starting point of the finding. Determination of the starting point used in this study aims to allow students to determine the starting point in finding the Indekos. The mobile based application facilitates the finding anytime and anywhere. Based on the experimental results, A* algorithm can find the shortest path with 86,67% accuracy.
A Dynamic Neighborhood Learning-Based Gravitational Search Algorithm.
Zhang, Aizhu; Sun, Genyun; Ren, Jinchang; Li, Xiaodong; Wang, Zhenjie; Jia, Xiuping
2018-01-01
Balancing exploration and exploitation according to evolutionary states is crucial to meta-heuristic search (M-HS) algorithms. Owing to its simplicity in theory and effectiveness in global optimization, gravitational search algorithm (GSA) has attracted increasing attention in recent years. However, the tradeoff between exploration and exploitation in GSA is achieved mainly by adjusting the size of an archive, named , which stores those superior agents after fitness sorting in each iteration. Since the global property of remains unchanged in the whole evolutionary process, GSA emphasizes exploitation over exploration and suffers from rapid loss of diversity and premature convergence. To address these problems, in this paper, we propose a dynamic neighborhood learning (DNL) strategy to replace the model and thereby present a DNL-based GSA (DNLGSA). The method incorporates the local and global neighborhood topologies for enhancing the exploration and obtaining adaptive balance between exploration and exploitation. The local neighborhoods are dynamically formed based on evolutionary states. To delineate the evolutionary states, two convergence criteria named limit value and population diversity, are introduced. Moreover, a mutation operator is designed for escaping from the local optima on the basis of evolutionary states. The proposed algorithm was evaluated on 27 benchmark problems with different characteristic and various difficulties. The results reveal that DNLGSA exhibits competitive performances when compared with a variety of state-of-the-art M-HS algorithms. Moreover, the incorporation of local neighborhood topology reduces the numbers of calculations of gravitational force and thus alleviates the high computational cost of GSA.
A Novel Assembly Line Balancing Method Based on PSO Algorithm
Directory of Open Access Journals (Sweden)
Xiaomei Hu
2014-01-01
Full Text Available Assembly line is widely used in manufacturing system. Assembly line balancing problem is a crucial question during design and management of assembly lines since it directly affects the productivity of the whole manufacturing system. The model of assembly line balancing problem is put forward and a general optimization method is proposed. The key data on assembly line balancing problem is confirmed, and the precedence relations diagram is described. A double objective optimization model based on takt time and smoothness index is built, and balance optimization scheme based on PSO algorithm is proposed. Through the simulation experiments of examples, the feasibility and validity of the assembly line balancing method based on PSO algorithm is proved.
Effective pathfinding for four-wheeled robot based on combining Theta* and hybrid A* algorithms
Directory of Open Access Journals (Sweden)
Віталій Геннадійович Михалько
2016-07-01
Full Text Available Effective pathfinding algorithm based on Theta* and Hybrid A* algorithms was developed for four-wheeled robot. Pseudocode for algorithm was showed and explained. Algorithm and simulator for four-wheeled robot were implemented using Java programming language. Algorithm was tested on U-obstacles, complex maps and for parking problem
Genetic algorithm based on qubits and quantum gates
International Nuclear Information System (INIS)
Silva, Joao Batista Rosa; Ramos, Rubens Viana
2003-01-01
Full text: Genetic algorithm, a computational technique based on the evolution of the species, in which a possible solution of the problem is coded in a binary string, called chromosome, has been used successfully in several kinds of problems, where the search of a minimal or a maximal value is necessary, even when local minima are present. A natural generalization of a binary string is a qubit string. Hence, it is possible to use the structure of a genetic algorithm having a sequence of qubits as a chromosome and using quantum operations in the reproduction in order to find the best solution in some problems of quantum information. For example, given a unitary matrix U what is the pair of qubits that, when applied at the input, provides the output state with maximal entanglement? In order to solve this problem, a population of chromosomes of two qubits was created. The crossover was performed applying the quantum gates CNOT and SWAP at the pair of qubits, while the mutation was performed applying the quantum gates Hadamard, Z and Not in a single qubit. The result was compared with a classical genetic algorithm used to solve the same problem. A hundred simulations using the same U matrix was performed. Both algorithms, hereafter named by CGA (classical) and QGA (using qu bits), reached good results close to 1 however, the number of generations needed to find the best result was lower for the QGA. Another problem where the QGA can be useful is in the calculation of the relative entropy of entanglement. We have tested our algorithm using 100 pure states chosen randomly. The stop criterion used was the error lower than 0.01. The main advantages of QGA are its good precision, robustness and very easy implementation. The main disadvantage is its low velocity, as happen for all kind of genetic algorithms. (author)
A test sheet generating algorithm based on intelligent genetic algorithm and hierarchical planning
Gu, Peipei; Niu, Zhendong; Chen, Xuting; Chen, Wei
2013-03-01
In recent years, computer-based testing has become an effective method to evaluate students' overall learning progress so that appropriate guiding strategies can be recommended. Research has been done to develop intelligent test assembling systems which can automatically generate test sheets based on given parameters of test items. A good multisubject test sheet depends on not only the quality of the test items but also the construction of the sheet. Effective and efficient construction of test sheets according to multiple subjects and criteria is a challenging problem. In this paper, a multi-subject test sheet generation problem is formulated and a test sheet generating approach based on intelligent genetic algorithm and hierarchical planning (GAHP) is proposed to tackle this problem. The proposed approach utilizes hierarchical planning to simplify the multi-subject testing problem and adopts genetic algorithm to process the layered criteria, enabling the construction of good test sheets according to multiple test item requirements. Experiments are conducted and the results show that the proposed approach is capable of effectively generating multi-subject test sheets that meet specified requirements and achieve good performance.
Spike sorting based upon machine learning algorithms (SOMA).
Horton, P M; Nicol, A U; Kendrick, K M; Feng, J F
2007-02-15
We have developed a spike sorting method, using a combination of various machine learning algorithms, to analyse electrophysiological data and automatically determine the number of sampled neurons from an individual electrode, and discriminate their activities. We discuss extensions to a standard unsupervised learning algorithm (Kohonen), as using a simple application of this technique would only identify a known number of clusters. Our extra techniques automatically identify the number of clusters within the dataset, and their sizes, thereby reducing the chance of misclassification. We also discuss a new pre-processing technique, which transforms the data into a higher dimensional feature space revealing separable clusters. Using principal component analysis (PCA) alone may not achieve this. Our new approach appends the features acquired using PCA with features describing the geometric shapes that constitute a spike waveform. To validate our new spike sorting approach, we have applied it to multi-electrode array datasets acquired from the rat olfactory bulb, and from the sheep infero-temporal cortex, and using simulated data. The SOMA sofware is available at http://www.sussex.ac.uk/Users/pmh20/spikes.
Wang, Xiaogang; Chen, Wen; Chen, Xudong
2014-09-22
We present a novel image hiding method based on phase retrieval algorithm under the framework of nonlinear double random phase encoding in fractional Fourier domain. Two phase-only masks (POMs) are efficiently determined by using the phase retrieval algorithm, in which two cascaded phase-truncated fractional Fourier transforms (FrFTs) are involved. No undesired information disclosure, post-processing of the POMs or digital inverse computation appears in our proposed method. In order to achieve the reduction in key transmission, a modified image hiding method based on the modified phase retrieval algorithm and logistic map is further proposed in this paper, in which the fractional orders and the parameters with respect to the logistic map are regarded as encryption keys. Numerical results have demonstrated the feasibility and effectiveness of the proposed algorithms.
The algorithm of fast image stitching based on multi-feature extraction
Yang, Chunde; Wu, Ge; Shi, Jing
2018-05-01
This paper proposed an improved image registration method combining Hu-based invariant moment contour information and feature points detection, aiming to solve the problems in traditional image stitching algorithm, such as time-consuming feature points extraction process, redundant invalid information overload and inefficiency. First, use the neighborhood of pixels to extract the contour information, employing the Hu invariant moment as similarity measure to extract SIFT feature points in those similar regions. Then replace the Euclidean distance with Hellinger kernel function to improve the initial matching efficiency and get less mismatching points, further, estimate affine transformation matrix between the images. Finally, local color mapping method is adopted to solve uneven exposure, using the improved multiresolution fusion algorithm to fuse the mosaic images and realize seamless stitching. Experimental results confirm high accuracy and efficiency of method proposed in this paper.
Exploring Phonetic Realization in Danish by Transformation-Based Learning
DEFF Research Database (Denmark)
Uneson, Marcus; Schachtenhaufen, Ruben
2011-01-01
We align phonemic and semi-narrow phonetic transcriptions in the DanPASS corpus and extend the phonemic description with sound classes and with traditional phonetic features. From this representation, we induce rules for phonetic realization by Transformation-Based Learning (TBL). The rules thus ...
Piezoelectric transformer based power converters; design and control
DEFF Research Database (Denmark)
Rødgaard, Martin Schøler
The last two decades of research into piezoelectric transformer (PT) based power converters have led to some extensive improvements of the technology, but it still struggles to get its commercial success. This calls for further research and has been the subject of this work, in order to enable...
Quantitative Comparison of Tolerance-Based Feature Transforms
Reniers, Dennie; Telea, Alexandru
2006-01-01
Tolerance-based feature transforms (TFTs) assign to each pixel in an image not only the nearest feature pixels on the boundary (origins), but all origins from the minimum distance up to a user-defined tolerance. In this paper, we compare four simple-to-implement methods for computing TFTs for binary
A MUSIC-Based Algorithm for Blind User Identification in Multiuser DS-CDMA
Directory of Open Access Journals (Sweden)
M. Reza Soleymani
2005-04-01
Full Text Available A blind scheme based on multiple-signal classification (MUSIC algorithm for user identification in a synchronous multiuser code-division multiple-access (CDMA system is suggested. The scheme is blind in the sense that it does not require prior knowledge of the spreading codes. Spreading codes and users' power are acquired by the scheme. Eigenvalue decomposition (EVD is performed on the received signal, and then all the valid possible signature sequences are projected onto the subspaces. However, as a result of this process, some false solutions are also produced and the ambiguity seems unresolvable. Our approach is to apply a transformation derived from the results of the subspace decomposition on the received signal and then to inspect their statistics. It is shown that the second-order statistics of the transformed signal provides a reliable means for removing the false solutions.
Khoje, Suchitra
2018-02-01
Images of four qualities of mangoes and guavas are evaluated for color and textural features to characterize and classify them, and to model the fruit appearance grading. The paper discusses three approaches to identify most discriminating texture features of both the fruits. In the first approach, fruit's color and texture features are selected using Mahalanobis distance. A total of 20 color features and 40 textural features are extracted for analysis. Using Mahalanobis distance and feature intercorrelation analyses, one best color feature (mean of a* [L*a*b* color space]) and two textural features (energy a*, contrast of H*) are selected as features for Guava while two best color features (R std, H std) and one textural features (energy b*) are selected as features for mangoes with the highest discriminate power. The second approach studies some common wavelet families for searching the best classification model for fruit quality grading. The wavelet features extracted from five basic mother wavelets (db, bior, rbior, Coif, Sym) are explored to characterize fruits texture appearance. In third approach, genetic algorithm is used to select only those color and wavelet texture features that are relevant to the separation of the class, from a large universe of features. The study shows that image color and texture features which were identified using a genetic algorithm can distinguish between various qualities classes of fruits. The experimental results showed that support vector machine classifier is elected for Guava grading with an accuracy of 97.61% and artificial neural network is elected from Mango grading with an accuracy of 95.65%. The proposed method is nondestructive fruit quality assessment method. The experimental results has proven that Genetic algorithm along with wavelet textures feature has potential to discriminate fruit quality. Finally, it can be concluded that discussed method is an accurate, reliable, and objective tool to determine fruit
A street rubbish detection algorithm based on Sift and RCNN
Yu, XiPeng; Chen, Zhong; Zhang, Shuo; Zhang, Ting
2018-02-01
This paper presents a street rubbish detection algorithm based on image registration with Sift feature and RCNN. Firstly, obtain the rubbish region proposal on the real-time street image and set up the CNN convolution neural network trained by the rubbish samples set consists of rubbish and non-rubbish images; Secondly, for every clean street image, obtain the Sift feature and do image registration with the real-time street image to obtain the differential image, the differential image filters a lot of background information, obtain the rubbish region proposal rect where the rubbish may appear on the differential image by the selective search algorithm. Then, the CNN model is used to detect the image pixel data in each of the region proposal on the real-time street image. According to the output vector of the CNN, it is judged whether the rubbish is in the region proposal or not. If it is rubbish, the region proposal on the real-time street image is marked. This algorithm avoids the large number of false detection caused by the detection on the whole image because the CNN is used to identify the image only in the region proposal on the real-time street image that may appear rubbish. Different from the traditional object detection algorithm based on the region proposal, the region proposal is obtained on the differential image not whole real-time street image, and the number of the invalid region proposal is greatly reduced. The algorithm has the high mean average precision (mAP).
Digital Correlation based on Wavelet Transform for Image Detection
International Nuclear Information System (INIS)
Barba, L; Vargas, L; Torres, C; Mattos, L
2011-01-01
In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.
Process identification method based on the Z transformation
International Nuclear Information System (INIS)
Zwingelstein, G.
1968-01-01
A simple method is described for identifying the transfer function of a linear retard-less system, based on the inversion of the Z transformation of the transmittance using a computer. It is assumed in this study that the signals at the entrance and at the exit of the circuit considered are of the deterministic type. The study includes: the theoretical principle of the inversion of the Z transformation, details about programming simulation, and identification of filters whose degrees vary from the first to the fifth order. (authors) [fr
Directory of Open Access Journals (Sweden)
Vivek Patel
2012-08-01
Full Text Available Nature inspired population based algorithms is a research field which simulates different natural phenomena to solve a wide range of problems. Researchers have proposed several algorithms considering different natural phenomena. Teaching-Learning-based optimization (TLBO is one of the recently proposed population based algorithm which simulates the teaching-learning process of the class room. This algorithm does not require any algorithm-specific control parameters. In this paper, elitism concept is introduced in the TLBO algorithm and its effect on the performance of the algorithm is investigated. The effects of common controlling parameters such as the population size and the number of generations on the performance of the algorithm are also investigated. The proposed algorithm is tested on 35 constrained benchmark functions with different characteristics and the performance of the algorithm is compared with that of other well known optimization algorithms. The proposed algorithm can be applied to various optimization problems of the industrial environment.
International Nuclear Information System (INIS)
Huang, Young-Sea
2010-01-01
The differential Lorentz transformation is formulated solely from the principle of relativity and the invariance of the speed of light. The differential Lorentz transformation transforms physical quantities, instead of space-time coordinates, to keep laws of nature form-invariant among inertial frames. The new relativistic transformation fulfills the principle of relativity, whereas the usual Lorentz transformation of space-time coordinates does not. Furthermore, the new relativistic transformation is compatible with quantum mechanics. The formulation herein provides theoretical foundations for the differential Lorentz transformation as the fundamental relativistic transformation.
A symplectic Poisson solver based on Fast Fourier Transformation. The first trial
International Nuclear Information System (INIS)
Vorobiev, L.G.; Hirata, Kohji.
1995-11-01
A symplectic Poisson solver calculates numerically a potential and fields due to a 2D distribution of particles in a way that the symplecticity and smoothness are assured automatically. Such a code, based on Fast Fourier Transformation combined with Bicubic Interpolation, is developed for the use in multi-turn particle simulation in circular accelerators. Beside that, it may have a number of applications, where computations of space charge forces should obey a symplecticity criterion. Detailed computational schemes of all algorithms will be outlined to facilitate practical programming. (author)
Historical feature pattern extraction based network attack situation sensing algorithm.
Zeng, Yong; Liu, Dacheng; Lei, Zhou
2014-01-01
The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE). First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.
Historical Feature Pattern Extraction Based Network Attack Situation Sensing Algorithm
Directory of Open Access Journals (Sweden)
Yong Zeng
2014-01-01
Full Text Available The situation sequence contains a series of complicated and multivariate random trends, which are very sudden, uncertain, and difficult to recognize and describe its principle by traditional algorithms. To solve the above questions, estimating parameters of super long situation sequence is essential, but very difficult, so this paper proposes a situation prediction method based on historical feature pattern extraction (HFPE. First, HFPE algorithm seeks similar indications from the history situation sequence recorded and weighs the link intensity between occurred indication and subsequent effect. Then it calculates the probability that a certain effect reappears according to the current indication and makes a prediction after weighting. Meanwhile, HFPE method gives an evolution algorithm to derive the prediction deviation from the views of pattern and accuracy. This algorithm can continuously promote the adaptability of HFPE through gradual fine-tuning. The method preserves the rules in sequence at its best, does not need data preprocessing, and can track and adapt to the variation of situation sequence continuously.
Phase unwrapping in digital holography based on non-subsampled contourlet transform
Zhang, Xiaolei; Zhang, Xiangchao; Xu, Min; Zhang, Hao; Jiang, Xiangqian
2018-01-01
In the digital holographic measurement of complex surfaces, phase unwrapping is a critical step for accurate reconstruction. The phases of the complex amplitudes calculated from interferometric holograms are disturbed by speckle noise, thus reliable unwrapping results are difficult to be obtained. Most of existing unwrapping algorithms implement denoising operations first to obtain noise-free phases and then conduct phase unwrapping pixel by pixel. This approach is sensitive to spikes and prone to unreliable results in practice. In this paper, a robust unwrapping algorithm based on the non-subsampled contourlet transform (NSCT) is developed. The multiscale and directional decomposition of NSCT enhances the boundary between adjacent phase levels and henceforth the influence of local noise can be eliminated in the transform domain. The wrapped phase map is segmented into several regions corresponding to different phase levels. Finally, an unwrapped phase map is obtained by elevating the phases of a whole segment instead of individual pixels to avoid unwrapping errors caused by local spikes. This algorithm is suitable for dealing with complex and noisy wavefronts. Its universality and superiority in the digital holographic interferometry have been demonstrated by both numerical analysis and practical experiments.
Quantum Cryptography Based on the Deutsch-Jozsa Algorithm
Nagata, Koji; Nakamura, Tadao; Farouk, Ahmed
2017-09-01
Recently, secure quantum key distribution based on Deutsch's algorithm using the Bell state is reported (Nagata and Nakamura, Int. J. Theor. Phys. doi: 10.1007/s10773-017-3352-4, 2017). Our aim is of extending the result to a multipartite system. In this paper, we propose a highly speedy key distribution protocol. We present sequre quantum key distribution based on a special Deutsch-Jozsa algorithm using Greenberger-Horne-Zeilinger states. Bob has promised to use a function f which is of one of two kinds; either the value of f( x) is constant for all values of x, or else the value of f( x) is balanced, that is, equal to 1 for exactly half of the possible x, and 0 for the other half. Here, we introduce an additional condition to the function when it is balanced. Our quantum key distribution overcomes a classical counterpart by a factor O(2 N ).
Memoryless cooperative graph search based on the simulated annealing algorithm
International Nuclear Information System (INIS)
Hou Jian; Yan Gang-Feng; Fan Zhen
2011-01-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment. (interdisciplinary physics and related areas of science and technology)
A Survey on Evolutionary Algorithm Based Hybrid Intelligence in Bioinformatics
Directory of Open Access Journals (Sweden)
Shan Li
2014-01-01
Full Text Available With the rapid advance in genomics, proteomics, metabolomics, and other types of omics technologies during the past decades, a tremendous amount of data related to molecular biology has been produced. It is becoming a big challenge for the bioinformatists to analyze and interpret these data with conventional intelligent techniques, for example, support vector machines. Recently, the hybrid intelligent methods, which integrate several standard intelligent approaches, are becoming more and more popular due to their robustness and efficiency. Specifically, the hybrid intelligent approaches based on evolutionary algorithms (EAs are widely used in various fields due to the efficiency and robustness of EAs. In this review, we give an introduction about the applications of hybrid intelligent methods, in particular those based on evolutionary algorithm, in bioinformatics. In particular, we focus on their applications to three common problems that arise in bioinformatics, that is, feature selection, parameter estimation, and reconstruction of biological networks.
Fuzzy Sets-based Control Rules for Terminating Algorithms
Directory of Open Access Journals (Sweden)
Jose L. VERDEGAY
2002-01-01
Full Text Available In this paper some problems arising in the interface between two different areas, Decision Support Systems and Fuzzy Sets and Systems, are considered. The Model-Base Management System of a Decision Support System which involves some fuzziness is considered, and in that context the questions on the management of the fuzziness in some optimisation models, and then of using fuzzy rules for terminating conventional algorithms are presented, discussed and analyzed. Finally, for the concrete case of the Travelling Salesman Problem, and as an illustration of determination, management and using the fuzzy rules, a new algorithm easy to implement in the Model-Base Management System of any oriented Decision Support System is shown.
APPECT: An Approximate Backbone-Based Clustering Algorithm for Tags
DEFF Research Database (Denmark)
Zong, Yu; Xu, Guandong; Jin, Pin
2011-01-01
algorithm for Tags (APPECT). The main steps of APPECT are: (1) we execute the K-means algorithm on a tag similarity matrix for M times and collect a set of tag clustering results Z={C1,C2,…,Cm}; (2) we form the approximate backbone of Z by executing a greedy search; (3) we fix the approximate backbone...... as the initial tag clustering result and then assign the rest tags into the corresponding clusters based on the similarity. Experimental results on three real world datasets namely MedWorm, MovieLens and Dmoz demonstrate the effectiveness and the superiority of the proposed method against the traditional...... Agglomerative Clustering on tagging data, which possess the inherent drawbacks, such as the sensitivity of initialization. In this paper, we instead make use of the approximate backbone of tag clustering results to find out better tag clusters. In particular, we propose an APProximate backbonE-based Clustering...
An Alternative to Chaid Segmentation Algorithm Based on Entropy.
Directory of Open Access Journals (Sweden)
María Purificación Galindo Villardón
2010-07-01
Full Text Available The CHAID (Chi-Squared Automatic Interaction Detection treebased segmentation technique has been found to be an effective approach for obtaining meaningful segments that are predictive of a K-category (nominal or ordinal criterion variable. CHAID was designed to detect, in an automatic way, the nteraction between several categorical or ordinal predictors in explaining a categorical response, but, this may not be true when Simpson’s paradox is present. This is due to the fact that CHAID is a forward selection algorithm based on the marginal counts. In this paper we propose a backwards elimination algorithm that starts with the full set of predictors (or full tree and eliminates predictors progressively. The elimination procedure is based on Conditional Independence contrasts using the concept of entropy. The proposed procedure is compared to CHAID.
Modal Analysis Based on the Random Decrement Transform
DEFF Research Database (Denmark)
Asmussen, J. C.; Brincker, Rune; Ibrahim, S. R.
of this paper is to present a state-of-the-art description of the Random Decrement technique where the statistical theory is outlined and examples are given. But also new results such as estimation of frequency response functions and quality assessment are introduced. Special attention is given......During the last years several papers utilizing the Random Decrement transform as a basis for extraction of modal parameters from the response of linear systems subjected to unknown ambient loads have been presented. Although the Random Decrement technique was developed in a decade starting from...... the introduktion in 1968 the technique seems still to be attractive. This is probably due to the simplicity and the speed of the algorithm and the fact that the theory of the technique has been extended by introducing statistical measures such as correlation functions or spectral densities. The purpose...
Adaboost-based algorithm for human action recognition
Zerrouki, Nabil
2017-11-28
This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.
Adaboost-based algorithm for human action recognition
Zerrouki, Nabil; Harrou, Fouzi; Sun, Ying; Houacine, Amrane
2017-01-01
This paper presents a computer vision-based methodology for human action recognition. First, the shape based pose features are constructed based on area ratios to identify the human silhouette in images. The proposed features are invariance to translation and scaling. Once the human body features are extracted from videos, different human actions are learned individually on the training frames of each class. Then, we apply the Adaboost algorithm for the classification process. We assessed the proposed approach using the UR Fall Detection dataset. In this study six classes of activities are considered namely: walking, standing, bending, lying, squatting, and sitting. Results demonstrate the efficiency of the proposed methodology.
Variable Step Size Maximum Correntropy Criteria Based Adaptive Filtering Algorithm
Directory of Open Access Journals (Sweden)
S. Radhika
2016-04-01
Full Text Available Maximum correntropy criterion (MCC based adaptive filters are found to be robust against impulsive interference. This paper proposes a novel MCC based adaptive filter with variable step size in order to obtain improved performance in terms of both convergence rate and steady state error with robustness against impulsive interference. The optimal variable step size is obtained by minimizing the Mean Square Deviation (MSD error from one iteration to the other. Simulation results in the context of a highly impulsive system identification scenario show that the proposed algorithm has faster convergence and lesser steady state error than the conventional MCC based adaptive filters.
DNA-based watermarks using the DNA-Crypt algorithm
Heider, Dominik; Barnekow, Angelika
2007-01-01
Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms. PMID:17535434
DNA-based watermarks using the DNA-Crypt algorithm
Directory of Open Access Journals (Sweden)
Barnekow Angelika
2007-05-01
Full Text Available Abstract Background The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. Results The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. Conclusion The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.
DNA-based watermarks using the DNA-Crypt algorithm.
Heider, Dominik; Barnekow, Angelika
2007-05-29
The aim of this paper is to demonstrate the application of watermarks based on DNA sequences to identify the unauthorized use of genetically modified organisms (GMOs) protected by patents. Predicted mutations in the genome can be corrected by the DNA-Crypt program leaving the encrypted information intact. Existing DNA cryptographic and steganographic algorithms use synthetic DNA sequences to store binary information however, although these sequences can be used for authentication, they may change the target DNA sequence when introduced into living organisms. The DNA-Crypt algorithm and image steganography are based on the same watermark-hiding principle, namely using the least significant base in case of DNA-Crypt and the least significant bit in case of the image steganography. It can be combined with binary encryption algorithms like AES, RSA or Blowfish. DNA-Crypt is able to correct mutations in the target DNA with several mutation correction codes such as the Hamming-code or the WDH-code. Mutations which can occur infrequently may destroy the encrypted information, however an integrated fuzzy controller decides on a set of heuristics based on three input dimensions, and recommends whether or not to use a correction code. These three input dimensions are the length of the sequence, the individual mutation rate and the stability over time, which is represented by the number of generations. In silico experiments using the Ypt7 in Saccharomyces cerevisiae shows that the DNA watermarks produced by DNA-Crypt do not alter the translation of mRNA into protein. The program is able to store watermarks in living organisms and can maintain the original information by correcting mutations itself. Pairwise or multiple sequence alignments show that DNA-Crypt produces few mismatches between the sequences similar to all steganographic algorithms.