WorldWideScience

Sample records for transferring secondary gas

  1. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  2. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  3. A Secondary Flow Effect on the Heat and Mass Transfer Processes in the Finned Rod Bundles of Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Dunaitsev

    2017-01-01

    Full Text Available In nuclear power engineering a need to justify an operability of products and their components is of great importance. In high-temperature gas reactors, the critical element affecting the facility reliability is the fuel rod cladding, which in turn leads to the need to gain knowledge in the field of gas dynamics and heat transfer in the reactor core and to increase the detail of the calculation results. For the time being, calculations of reactor core are performed using the proven techniques of per-channel calculations, which show good representativeness and count rate. However, these techniques require additional experimental studies to describe correctly the inter-channel exchange, which, being taken into account, largely affects the pattern of the temperature fields in the region under consideration. Increasingly more relevant and demandable are numerical simulation methods of fluid and gas dynamics, as well as of heat exchange, which consist in the direct solution of the system of differential equations of mass balance, kinetic moment, and energy. Calculation of reactor cores or rod bundles according these techniques does not require additional experimental studies and allows us to obtain the local distributions of flow characteristics in the bundle and the flow characteristics that are hard to measure in the physical experiment.The article shows the calculation results and their analysis for an infinite rod lattice of the reactor core. The results were obtained by the technique of modelling one rod of a regular lattice using the periodic boundary conditions, followed by translating the results to the neighbouring rods. In channels of complex shape, there are secondary flows caused by changes in the channel geometry along the flow and directed across the main front of the flow. These secondary flows in the reactor cores with rods spaced by the winding wire lead to a redistribution of the coolant along the channel section, which in turn

  4. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  5. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  6. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  7. Secondary mechanisms in a gas discharge

    International Nuclear Information System (INIS)

    Fletcher, J.; Blevin, H.A.

    1978-05-01

    The technique for studying swarms of electrons in a gas discharge by observing the photon flux from the discharge has been adapted to investigate the role of the secondary mechanisms. First results, reported here, show that, contrary to previous indications, ion bombardment of the cathode plays only a negligible, if any, part in the low pressure discharge in hydrogen at E/N approx. less than 200Td

  8. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    Heugel, J.

    1991-10-01

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  9. Nonsymmetric gas transfer phenomena in nanoporous media

    International Nuclear Information System (INIS)

    Kurchatov, I.M.

    2011-01-01

    The regularities of nonsymmetric gas (nitrogen, helium, hydrogen, carbon dioxide) transfer in nanoporous materials are investigated. The effects of anisotropy and hysteresis of permeability in nanoporous media with pore gradient and porosity in objects of various nature are found out. The following objects are studied: polyethylene terephthalate track membranes with asymmetric pore form, commercial polyvinyl trimethylsilane gas-separation membranes with continuous distribution of pores over the membrane thickness and porous composite membranes (born nitride, silicon carbide, aluminium oxide) prepared by self-propagating high-temperature synthesis with abrupt change of pore dimensions over the thickness. The possible mechanisms of nonsymmetric gas transfer effects are under consideration [ru

  10. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  11. Gas mass transfer for stratified flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1995-01-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature

  12. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  13. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    Science.gov (United States)

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  14. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  15. Secondary and subsequent DNA transfer during criminal investigation.

    Science.gov (United States)

    Fonneløp, Ane Elida; Egeland, Thore; Gill, Peter

    2015-07-01

    With the introduction of new multiplex PCR kits and instrumentation such as the Applied Biosystems 3500xl, there has recently been a rapid change in technology that has greatly increased sensitivity of detection so that a DNA profile can routinely be obtained from only a few cells. Research to evaluate the risks of passive transfer has not kept pace with this development; hence the risk of innocent DNA transfer at the crime-scene is currently not properly understood. The purpose of this study was to investigate the possibility of investigator-mediated transfer of DNA traces with disposable nitrile-gloves used during crime-scene examinations. We investigated the primary transfer of freshly deposited DNA from touched plastic, wood or metal substrates and secondary and tertiary transfer by a person wearing disposable nitrile-gloves and onto a third object. We show that with use of the new highly sensitive technologies available in forensic DNA analysis there is an enhanced probability to obtain a DNA-profile which has not been directly deposited on the object but is an outcome of one or more transfer events. The nitrile-gloves used by investigators during exhibit examination can act as a vector for DNA transfer from one item to another. We have shown that the amount of DNA deposited on an object affects the probability of transfer. Secondly, the type of substrate material that DNA is deposited onto has an impact on transfer rates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Charge transfer in gas electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ottnad, Jonathan; Ball, Markus; Ketzer, Bernhard; Ratza, Viktor; Razzaghi, Cina [HISKP, Bonn University, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-07-01

    In order to efficiently employ a Time Projection Chamber (TPC) at interaction rates higher than ∝1 kHz, as foreseen e.g. in the ALICE experiment (CERN) and at CB-ELSA (Bonn), a continuous operation and readout mode is required. A necessary prerequisite is to minimize the space charge coming from the amplification system and to maintain an excellent spatial and energy resolution. Unfortunately these two goals can be in conflict to each other. Gas Electron Multipliers (GEM) are one candidate to fulfill these requirements. It is necessary to understand the processes within the amplification structure to find optimal operation conditions. To do so, we measure the charge transfer processes in and between GEM foils with different geometries and field configurations, and use an analytical model to describe the results. This model can then be used to predict and optimize the performance. The talk gives the present status of the measurements and describes the model.

  17. Transferring pharmaceuticals into the gas phase

    Science.gov (United States)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  18. Review of RSG-GAS secondary cooling pump performance

    International Nuclear Information System (INIS)

    Marsahala, Y.B.

    1999-01-01

    The control system of RSG-GAS secondary pump is the study for the operation existence of RSG-GAS secondary pump. The research is about characteristic of the secondary pump and its control system. The measuring of characteristic parameter of secondary cooling pump was being done while the pump running. The pump was loading with capacity 1950 m3/hr. with ambient temperature 28.5 oC. The fault effect of public grid (PLN) such as the fluctuation of both voltage and frequency likes voltage drops (dip). Supply block out that effect of the electric motor performances directly will be analyzed. How far those faults will effect the overall performance of secondary cooling system. Analyzing. Will be done according to the control system was installed. Has be done to find the direct effects of the motor performances against the motor rotation fluctuation which run from 1450 rpm to 1475 rpm. The using of start-delta starting method with delay time about 6 seconds, is enough or not to reduce the inrush starting current also analyzed in this paper. From the research can be obtained that in the steady state condition , the electric motor runs with both power and current are still under tolerances permitted. According to the analyzed data above, it will be consider that the control system of secondary pump would be modified or not. Therefore the analyzed data can show the characteristic curve of the secondary cooling system performance

  19. 75 FR 66046 - Capacity Transfers on Intrastate Natural Gas Pipelines

    Science.gov (United States)

    2010-10-27

    ...] Capacity Transfers on Intrastate Natural Gas Pipelines October 21, 2010. AGENCY: Federal Energy Regulatory... comments on whether and how holders of firm capacity on intrastate natural gas pipelines providing interstate transportation and storage services under section 311 of the Natural Gas Policy Act of 1978 and...

  20. Transfer of chemicals in PWR systems: secondary side

    International Nuclear Information System (INIS)

    Jonas, O.

    1978-01-01

    Transfer of chemicals in the secondary side of pressurized water reactor systems with recirculating and once-through steam generators is considered. Chemical data on water, steam and deposit chemistry of twenty-six operating units are given and major physical-chemical processes and differences between the two systems and between fossil and PWR systems are discussed. It is concluded that the limited available data show the average water and steam chemistry to be within recommended limits, but large variations of impurity concentrations and corrosion problems encountered indicate that our knowledge of the system chemistry and chemical thermodynamics, system design, sampling, analysis and operation need improvement. (author)

  1. Property transfer assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1992-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most environmental assessments. These requirements come from lending regulators and state legislatures and affect single family, multifamily, and commercial properties. Fannie Mae and others have developed environmental investigation guidelines for protection from long term legal liabilities in the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more banks and state governments following this trend, radon gas testing should be performed during all property transfers and environmental assessments to protect the parties involved from any long term legal liabilities

  2. Numerical analysis of gas-liquid two-phase flow in secondary side of steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Michio; Nakamura, Akira; Yagi, Yoshinori [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The steam generator (SG) in a pressurized water reactor (PWR) is an important two-phase flow component as the boundary between the primary loop and the secondary loop. In this study, we performed gas-liquid two-phase flow analyses for SG reliability tests conduced by Nuclear Power Engineering Corporation (NUPEC) using the two-fluid model of a thermal-hydraulic computer code PHOENICS. In order to calculate the location of the boiling initiation accurately, detailed inputs were required for the friction coefficients affecting the velocity distribution and the heat transfer distribution. However, the velocity and heat transfer distributions did not greatly affect the void fractions in the upper region of the heat transfer tubes. The calculated void fractions agreed with the measured values within 4% as the local average and within 2% as an average in a cross-section, except the region of low void fractions. (author)

  3. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  4. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  5. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  6. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  7. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  8. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  9. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminary assessment of gas contents

    Energy Technology Data Exchange (ETDEWEB)

    Butland, Carol I. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Moore, Tim A. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Solid Energy NZ Ltd., P.O. Box 1303, Christchurch (New Zealand)

    2008-10-02

    Four coal cores, one from the Huntly (Eocene), two from the Ohai (Cretaceous) and one from the Greymouth (Cretaceous) coalfields, were sampled and analysed in terms of gas content and coal properties. The coals vary in rank from subbituminous B-A (Huntly) to subbituminous C-A (Ohai), and high volatile A bituminous (Greymouth). Average gas contents were 1.60 m{sup 3}/t (s 0.2) in the Huntly core, 4.80 m{sup 3}/t (s = 0.8) in the Ohai cores, and 2.39 m{sup 3}/t (s = 0.8) in the Greymouth core. The Ohai core not only contained more gas but also had the highest saturation (75%) compared with the Huntly (33%) and Greymouth (45%) cores. Carbon isotopes indicate that the Ohai gas is more mature, containing higher {delta}{sup 13}C isotopes values than either the Huntly or Greymouth gas samples. This may indicate that the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived solely from a secondary biogenic (by CO{sub 2} reduction) source. Although the data set is limited, preliminary analysis indicates that ash yield is the dominant control on gas volume in all samples where the ash yield was above 10%. Below 10%, the amount of gas variation is unrelated to ash yield. Although organic content has some influence on gas volume, associations are basin and/or rank dependent. In the Huntly core total gas content and structured vitrinite increase together. Although this relationship does not appear for the other core data for the Ohai SC3 core, lost gas and fusinite are associated whereas gelovitrinite (unstructured vitrinite) correlates positively with residual gas for the Greymouth data. (author)

  10. Electron transfer in gas surface collisions

    International Nuclear Information System (INIS)

    Wunnik, J.N.M. van.

    1983-01-01

    In this thesis electron transfer between atoms and metal surfaces in general is discussed and the negative ionization of hydrogen by scattering protons at a cesiated crystalline tungsten (110) surface in particular. Experimental results and a novel theoretical analysis are presented. In Chapter I a theoretical overview of resonant electron transitions between atoms and metals is given. In the first part of chapter II atom-metal electron transitions at a fixed atom-metal distance are described on the basis of a model developed by Gadzuk. In the second part the influence of the motion of the atom on the atomic charge state is incorporated. Measurements presented in chapter III show a strong dependence of the fraction of negatively charged H atoms scattered at cesiated tungsten, on the normal as well as the parallel velocity component. In chapter IV the proposed mechanism for the parallel velocity effect is incorporated in the amplitude method. The scattering process of protons incident under grazing angles on a cesium covered surface is studied in chapter V. (Auth.)

  11. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  12. Behaviour of and mass transfer at gas-evolving electrodes

    NARCIS (Netherlands)

    Janssen, L.J.J.

    1989-01-01

    A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into

  13. Study on charge transfer reaction of several organic molecules with accelerated rare gas ions

    International Nuclear Information System (INIS)

    Takahasi, Makoto; Okuda, Sachiko; Arai, Eiichi; Ichinose, Akira; Takakubo, Masaaki.

    1984-01-01

    Observing the charge transfer mass spectra of ethylbenzene, cyclobutane and methanol in Ar and Xe ion impacts, we investigated the dependence of the secondary ion peak intensities (normalized to primary ion current and target pressure) on the translational energy of primary ions (0-3500 eV).In the case of ethylbenzene, several maxima of the secondary i on peak intensities were observed in Ar and Xe ion impacts. The correlation between the maxima and the primary ion energy was examined in terms of near adiabatic theory of Massey. Supplementary studies on the energy distribution of primary ion, charge transfer cross section between methanol and Xe ion, and final product analysis in rare gas ion irradiation on cyclobutane were described. (author)

  14. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  15. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  16. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  17. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  18. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  19. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  20. Old Anticipations, New Anxieties? A Contemporary Perspective on Primary to Secondary Transfer

    Science.gov (United States)

    Mellor, David; Delamont, Sara

    2011-01-01

    The transfer from primary to secondary school in England and Wales is a status passage, from child to teenager. Research on the anxieties and anticipations surrounding that transfer over a 30-year period shows continuities and discontinuities. As well as the contrast of sociological approaches, the perceptions of children in 1977-1978 and…

  1. Horizontal transfer of bait in the German cockroach: indoxacarb causes secondary and tertiary mortality.

    Science.gov (United States)

    Buczkowski, Grzegorz; Scherer, Clay W; Bennett, Gary W

    2008-06-01

    Horizontal transfer of indoxacarb in the German cockroach, Blattella germanica (L.), was examined under laboratory conditions. Results show that a single bait-fed adult cockroach (i.e., the donor) transferred indoxacarb to numerous primary recipients (secondary mortality),which then became secondary donors. These recipients subsequently became donors to other cockroaches and caused significant mortality in other members of the aggregation, resulting in tertiary kill. Indoxacarb was effectively transferred among adult cockroaches and resulted in significant secondary mortality. When adult males served as donors and vectored the insecticide to adult males, the donor:recipient ratio affected the mortality of the recipients and the rate of secondary mortality increased with increasing the ratio of donors to recipients. Furthermore, secondary mortality in the untreated cockroaches was significantly affected by the freshness of excretions from the donors, the presence of alternative food, and the duration of contact between the donors and the recipients. Ingested indoxacarb was most effectively translocated when the recipients interacted with freshly symptomatic donors in the absence of alternative food. The transfer of indoxacarb continued beyond secondary mortality and resulted in significant tertiary mortality. Excretions from a single bait-fed adult killed 38/50 (76%) nymphs within 72 h. The dead nymphs then vectored indoxacarb to 20 adult males and killed 16/20 (81%) recipients within 72 h. Behavioral mechanisms involved in the horizontal transfer of indoxacarb may include: contact with excretions, necrophagy, emetophagy, and ingestion of other excretions that originate from the donors.

  2. Charge-transfer properties in the gas electron multiplier

    International Nuclear Information System (INIS)

    Han, Sanghyo; Kim, Yongkyun; Cho, Hyosung

    2004-01-01

    The charge transfer properties of a gas electron multiplier (GEM) were systematically investigated over a broad range of electric field configurations. The electron collection efficiency and the charge sharing were found to depend on the external fields, as well as on the GEM voltage. The electron collection efficiency increased with the collection field up to 90%, but was essentially independent of the drift field strength. A double conical GEM has a 10% gain increase with time due to surface charging by avalanche ions whereas this effect was eliminated with the cylindrical GEM. The positive-ion feedback is also estimated. (author)

  3. On infrared spectroscopic analysis of transfer RNA secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, M A; Starikov, E B

    1987-07-14

    Various techniques of IR spectroscopy in the 1550-1750 cm/sup -1/ region employed to analyse the tRNA secondary structure are discussed and a novel improved method is proposed. The main novel features of this method are the approximation of tRNA helical region spectra by catalogue carbonyl absorption bands and approximation of tRNA nonhelical region spectra by those of homopolyribonucleotides. The IR spectra of tRNA/sub yeast//sup phe/ and tRNA/sub E.coli//sup fmet/ in the carbonyl vibration region are explained on the basis of calculated transition moment coupling.

  4. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  5. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  6. Oil in the FFTF secondary loop cover gas piping. Final unusual occurrence report

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the discovery of oil in the FFTF secondary sodium system cover gas piping. A thorough evaluation has been performed and corrective actions have been implemented to prevent a recurrence of this event

  7. Construction and performance tests of a secondary hydrogen gas cooling system

    International Nuclear Information System (INIS)

    Sanokawa, K.; Hishida, M.

    1980-01-01

    With the aim of a multi-purpose use of nuclear energy, such as direct steel-making, an experimental multi-purpose high-temperature gas-cooled reactor (VHTR) is now being developed by the Japan Atomic Energy Research Institute (JAERI). In order to simulate a heat exchanging system between the primary helium gas loop and the secondary reducing gas system of the VHTR, a hydrogen gas loop as a secondary cooling system of the existing helium gas loop was completed in 1977, and was successfully operated for over 2000 hours. The objectives of constructing the H 2 secondary loop were: (1) To get basic knowledge for designing, constructing and operating a high-temperature and high-pressure gas facility; (2) To perform the following tests: (a) hydrogen permeation at the He/H 2 heat exchanger (the surfaces of the heat exchanger tubes are coated by calorizing to reduce hydrogen permeation), (b) thermal performance tests of the He/H 2 heat exchanger and the H 2 /H 2 regenerative heat exchanger, (c) performance test of internal insulation, and (d) performance tests of the components such as a H 2 gas heater and gas purifiers. These tests were carried out at He gas temperature of approximately 1000 0 C, H 2 gas temperature of approximately 900 0 C and gas pressures of approximately 40 kg/cm 2 G, which are almost the same as the operating conditions of the VHTR

  8. Stress analysis of secondary ramp and secondary tilting mechanism of inclined fuel transfer machine for 500 MWe PFBR

    International Nuclear Information System (INIS)

    Prabhakaran, K.M.; Vaze, K.K.; Ghosh, A.K.; Rai, Somesh; Sundarani, A.R.; Patel, R.J.; Agrawal, R.G.

    2004-10-01

    Inclined Fuel Transfer Machine (IFTM) is one of the important machine of the fuel handling system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It is used to transfer core sub-assemblies (CSA) from reactor vessel to fuel building and vice-versa. Secondary ramp and Secondary tilting mechanism (SR/STM) is a part of IFTM which acts as a passage to transfer CSA. This mechanism and components were designed by the Refuelling Technology Division of BARC as per the ASME design code as class 2 component. Being critical in nature and complicated in geometry it was required to check the design of these components by detailed finite element analysis. The loading considered in the present study was static, thermal and seismic conditions. This was done using FEM software COSMOS/M. The Stresses were categorised as per the requirement of the ASME code for various levels of loading (Level A, B and C). Based on the analysis performed, it was concluded that the SR/STM qualifies the requirement of ASME code Section-III NC (Class-2 components). This report gives the details of the studies performed. (author)

  9. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  10. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Haylett, T.; Thilo, L.

    1986-01-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D 1 , was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  11. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  12. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1998-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  13. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    Science.gov (United States)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  14. Charge amplification and transfer processes in the gas electron multiplier

    International Nuclear Information System (INIS)

    Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.

    1999-01-01

    We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers

  15. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  16. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Mingxin [Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, College of Resources Sciences and Technology, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shi, Baoguang; Wang, Wanchun; Li, Xiaobin; Gao, Bo [Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Jinying [Material and Environment College, Qindao University of Science and Technology, Qindao 266042 (China)

    2007-07-02

    In order to ascertain the origin of the coalbed gas in the Xinji area, Anhui Province of China, the paper examined the geochemical features and secondary changes of CH{sub 4}, C{sub 2}H{sub 6}, CO{sub 2} and N{sub 2} from the coalbed gas. The related gas composition, carbon isotope and tracer geochemical data are as follows: 0.993 to 1.0 for C{sub 1}/C{sub 1-n}, 188.6 to 2993.7 for C{sub 1}/C{sub 2}, < 2% for CO{sub 2}, 0.64 to 3.06% for [CO{sub 2}/(CO{sub 2} + CH{sub 4})]100%, - 50.7 permille to - 61.3 permille for {delta}{sup 13}C{sub 1} with the average value of - 56.6 permille, - 15.9 permille to - 26.7 permille for {delta}{sup 13}C{sub 2}, - 10.8 permille to - 25.3 permille for {delta}{sup 13}C{sub 3}, - 6.0 permille to - 39.0 permille for {delta}{sup 13}C{sub CO2} with the average value of - 17.9 permille, 30.7 permille to 43.9 permille for {delta}{delta}{sup 13}C{sub C2-C1}, and 17.2 permille to 50 permille for {delta}{delta}{sup 13}C{sub CO2-C1}, - 1 permille to + 1 permille for {delta}{sup 15}N{sub N2}, 1.13 x 10{sup -7} to 3.20 x 10{sup -7} for {sup 3}He/{sup 4}He with R/Ra ratios range from 0.08 to 0.23. The Ro values of the coal range from 0.88% to 0.91%. The trends of the {delta}{sup 13}C{sub 1} values and {delta}{sup 13}C{sub CO2} values downward in the stratigraphic profile are opposite: the former appears as a slight light-heavy-light trend, but the latter appears as a heavy-light-heavy trend. The {delta}{sup 13}C{sub 1} values have a negative correlation with the {delta}{sup 13}C{sub CO2} values. However, the {delta}{sup 13}C{sub 2} values have no correlation with the {delta}{sup 13}C{sub 1} values due to its complicated variation. The thermal evolution of the coal in the Xinji area is in the phase of a lot of wet gas generation, but most of the CO{sub 2} and heavy hydrocarbons have been reduced or degraded by microbes and have changed into biogenic methane. The coalbed gas is comprised of secondary biogenic methane, thermogenic methane, the

  17. Assessing the Risk of Secondary Transfer Via Fingerprint Brush Contamination Using Enhanced Sensitivity DNA Analysis Methods.

    Science.gov (United States)

    Bolivar, Paula-Andrea; Tracey, Martin; McCord, Bruce

    2016-01-01

    Experiments were performed to determine the extent of cross-contamination of DNA resulting from secondary transfer due to fingerprint brushes used on multiple items of evidence. Analysis of both standard and low copy number (LCN) STR was performed. Two different procedures were used to enhance sensitivity, post-PCR cleanup and increased cycle number. Under standard STR typing procedures, some additional alleles were produced that were not present in the controls or blanks; however, there was insufficient data to include the contaminant donor as a contributor. Inclusion of the contaminant donor did occur for one sample using post-PCR cleanup. Detection of the contaminant donor occurred for every replicate of the 31 cycle amplifications; however, using LCN interpretation recommendations for consensus profiles, only one sample would include the contaminant donor. Our results indicate that detection of secondary transfer of DNA can occur through fingerprint brush contamination and is enhanced using LCN-DNA methods. © 2015 American Academy of Forensic Sciences.

  18. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  19. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  20. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  1. A Simple Technique for Accurate Transfer of Secondary Copings in a Tooth-Supported Telescopic Prosthesis.

    Science.gov (United States)

    Shankargouda, Swapnil B; Sidhu, Preena; Kardalkar, Swetha; Desai, Pooja M

    2017-02-01

    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship. © 2015 by the American College of Prosthodontists.

  2. The potential role of sea spray droplets in facilitating air-sea gas transfer

    Science.gov (United States)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  3. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column

  4. Construction and performance testing of a secondary cooling system with hydrogen gas (I)

    International Nuclear Information System (INIS)

    Hishida, M.; Nekoya, S.; Takizuka, T.; Emori, K.; Ogawa, M.; Ouchi, M.; Okamoto, Y.; Sanokawa, K.; Nakano, T.; Hagiwara, T.

    1979-08-01

    An experimental multi-purpose High-Temperature Gas Cooled Reactor (VHTR) which is supposed to be used for a direct steel-making is now being developed in JAeRI. In order to simulate the heat exchanging system between the primary helium gas and the secondary reducing gas system of VHTR, a hydrogen gas loop was constructed as a secondary cooling system of the helium gas loop. The maximum temperature and the maximum pressure of the hydrogen gas are 900 degrees C and 42 kg/cm 2 x G respectively. The construction of the hydrogen gas loop was completed in January, 1977, and was successfully operated for 1.000 h. Various performance tests, such as the hydrogen permeation test of a He/H2 heat exchanger and the thermal performance test of heat exchangers, were made. Especially, it was proved that hydrogen permeation rate through the heat exchanger was reduced to 1/30 to approximately 1/50 by a method of calorized coating, and the coating was stable during 1.000 h's operation. It was also stable against the temperature changes. This report describes the outline of the facility and performance of the components. (orig.) [de

  5. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  6. Economics of secondary energy from GTL regarding natural gas reserves of Bolivia

    International Nuclear Information System (INIS)

    Udaeta, Miguel Edgar Morales; Burani, Geraldo Francisco; Arzabe Maure, Jose Omar; Oliva, Cidar Ramon

    2007-01-01

    This work aims the economics and the viability of Natural Gas Industrialization in Bolivia, by producing secondary fuels like gas to liquid (GTL)-diesel from natural gas (cleaner than the oil by-product), looking for a clean development with that environmentally well energy using this GTL process. Bolivia has resources that could fulfill these secondary energy resources from GTL. It is possible to process 30 MCMpd of gas obtaining profits from the gas and also from the liquid hydrocarbons that are found in it. Then the Bolivian GTL would present the following advantages: it would export diesel and/or gasoline and would not have to import it anymore.; the exportations of GTL-FT would reach 35 Mbpy, acquiring competitive prices; it would increase productive jobs not only due to the GTL itself, but also from secondary economy linked to GTL market; the use of GTL-FT diesel would bring a ''cleaner'' environment especially in the urban areas; finally, from the macroeconomic perspective, the investment in the plant construction and supporting works would generate a great amount of job offers. (author)

  7. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  8. Controls on gas transfer velocities in a large river

    Science.gov (United States)

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...

  9. Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil

    Directory of Open Access Journals (Sweden)

    Tommaso Campi

    2018-02-01

    Full Text Available This study deals with the design and the optimization of a wireless power transfer (WPT charging system based on magnetic resonant coupling applied to an electric vertical take-off and landing Unmanned Aerial Vehicle (UAV. In this study, a procedure for primary and secondary coil design is proposed. The primary circuit in the ground station consists of an array of coils in order to mitigate the negative effects on the coupling factor produced by the possible misalignment between the coils due to an imperfect landing. Key aspects for the design of the secondary coil onboard the UAV are the lightness and compactness of the WPT system components. A demonstrative prototype of the WPT system is applied to a commercial drone. The WPT electrical performances are calculated and measured. Finally, an automatic battery recharge station is built where the drone can autonomously land, recharge the battery and take off to continue its flight mission.

  10. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  11. DNA fingerprinting secondary transfer from different skin areas: Morphological and genetic studies.

    Science.gov (United States)

    Zoppis, Silvia; Muciaccia, Barbara; D'Alessio, Alessio; Ziparo, Elio; Vecchiotti, Carla; Filippini, Antonio

    2014-07-01

    The correct identification of the biological samples under analysis is crucial in forensic investigation in that it represents the pivotal issue attesting that the resulting genetic profiles are fully reliable in terms of weight of the evidence. The study reported herein shows that "touch DNA" secondary transfer is indeed possible from person to person and, in turn, from person to object depending on the specific sebaceous or non-sebaceous skin area previously touched. In addition, we demonstrate the presence of fragmented single stranded DNA specifically immunodetected in the vast majority of cells forming the sebaceous gland but not in the epidermis layers, strongly indicating that sebaceous fluid represents an important vector responsible for DNA transfer. In view of our results, forensic investigations need to take into account that the propensity to leave behind genetic material through contact could depend from the individual ability to shed sebaceous fluid on the skin surface. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  12. HTCC - a heat transfer model for gas-steam mixtures

    International Nuclear Information System (INIS)

    Papadimitriou, P.

    1983-01-01

    The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de

  13. CFD study of the heat transfer between a dilute gas particle suspension flow and an obstruction

    International Nuclear Information System (INIS)

    Nguyen, A.V.; Fletcher, C.A.J.

    1999-01-01

    The effect on heat transfer of solid particles suspended in a gas flow is of considerable importance in a number of industrial applications, ranging from coal combustion equipment and heat exchangers to catalytic reaction or cooling of nuclear reactors using gas graphite dust suspensions. Here, the heat transfer process between a dilute gas-particle suspension flow and an obstruction has been numerically investigated employing a novel Eulerian formulation for dilute gas particle suspension flows, which allows interaction of the key mechanisms to be quantified for the first time. As the particle reflection occurs around the obstruction, the heat transfer process has been modeled taking into account the incident and reflected particles explicitly. In the energy equations these particle families are treated separately. Only the effect on the gas convective heat transfer is expected to be of primary significance and investigated. The numerical computation is performed using the commercial computational fluid dynamics code, FLUENT, with the User Defined Subroutines. The authors study the heat transfer process between a dilute gas particle flow and an obstruction with simple geometries such as a 45 degree ramp and a cylindrical tube. The theoretical results for the latter case are compared with the available experimental data. The numerical simulation shows that both the particle size and the particle concentration (in the thermal boundary layer) affect the heat transfer process. Since both the particle incidence and reflection depend on the particle size and strongly influence the particle concentration distribution, they have to be physically correctly treated in the modeling of the heat transfer, as is demonstrated in the novel formulation. There is an optimum particle size for a maximum enhancement of the heat transfer. The particle concentration increases the efficiency of the heat transfer process expressed in terms of the local Nusselt numbers

  14. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  15. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  16. Heat transfer intensification within tube recuperator by inserting secondary emitters inside air channels

    International Nuclear Information System (INIS)

    Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.

    2009-01-01

    The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)

  17. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  18. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  19. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    International Nuclear Information System (INIS)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong

    2015-01-01

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k L a), interfacial area (a) and liquid side true mass transfer coefficient (k L ) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O 2 and chemical absorption of CO 2 in the column. The values of k L a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k L increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases

  20. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k{sub L}a), interfacial area (a) and liquid side true mass transfer coefficient (k{sub L}) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O{sub 2} and chemical absorption of CO{sub 2} in the column. The values of k{sub L}a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k{sub L} increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.

  1. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  2. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  3. Improvement in the heat transfer of a gas filled thermal switch

    International Nuclear Information System (INIS)

    Yamamoto, J.

    1984-01-01

    This chapter attempts to clarify the heat transfer mechanism of a gas filled stainless steel tube, and shows how the maximum heat transfer rate is determined under various filling pressures. The thermal switch is a convenient device for a thermal link between the cold heat of a cryocooler and a magnet dewar, because the switch acts as an active thermal conductor at the precooling stage and as an insulator after collecting liquid helium in the dewar. Topics considered include the switch structure, the heat transfer process, the delay of condensation, and the precooling stage and switching. It is determined that the heat transfer mechanism of the gas filled switch is due to normal nucleate boiling at the bottom and condensation on the upper cone. The higher the initial pressure, the larger the maximum heat flow obtained. Evaporation and condensation surfaces play an important role in the heat transfer rate

  4. Theoretical and experimental studies on transient forced convection heat transfer of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto

    2008-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)

  5. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  6. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  7. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  8. Couette flow regimes with heat transfer in rarefied gas

    Energy Technology Data Exchange (ETDEWEB)

    Abramov, A. A., E-mail: alabr54@mail.ru; Butkovskii, A. V., E-mail: albutkov@mail.ru [Zhukovski Central Aerohydrodynamics Institute (Russian Federation)

    2013-06-15

    Based on numerical solution of the Boltzmann equation by direct statistic simulation, the Couette flow with heat transfer is studied in a broad range of ratios of plate temperatures and Mach numbers of a moving plate. Flow regime classification by the form of the dependences of the energy flux and friction stress on the Knudsen number Kn is proposed. These dependences can be simultaneously monotonic and nonmonotonic and have maxima. Situations are possible in which the dependence of the energy flux transferred to a plate on Kn has a minimum, while the dependence of the friction stress is monotonic or even has a maximum. Also, regimes exist in which the dependence of the energy flux on Kn has a maximum, while the dependence of the friction stress is monotonic, and vice versa.

  9. Gas flow environmental and heat transfer nonrotating 3D program

    Science.gov (United States)

    Geil, T.; Steinhoff, J.

    1983-01-01

    A complete set of benchmark quality data for the flow and heat transfer within a large rectangular turning duct is being compiled. These data will be used to evaluate and verify three dimensional internal viscous flow models and computational codes. The analytical objective is to select such a computational code and define the capabilities of this code to predict the experimental results. Details of the proper code operation will be defined and improvements to the code modeling capabilities will be formulated.

  10. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  11. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.

    Science.gov (United States)

    Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R

    2001-01-01

    Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.

  12. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  13. Subcooled boiling heat transfer correlation to calculate the effects of dissolved gas in a liquid

    International Nuclear Information System (INIS)

    Zarkasi, Amin S.; Chao, W.W.; Kunze, Jay F.

    2004-01-01

    The water coolant in most operating power reactor systems is kept free of dissolved gas, so as to minimize corrosion. However, in most research reactors, which operate at temperatures below 70 deg. C, and between 1 and 5 atm. pressure, the dissolved gas remains present in the water coolant system during operation. This dissolved gas can have a significant effect during accident conditions (i.e. a LOCA), when the fluid quickly reaches boiling, coincident with flow stagnation and subsequent flow reversal. A benchmark experiment was conducted, with an electrically heated, closed loop channel, modeling a research reactor fuel coolant channels (2 mm thick). The results showed 'boiling (bubble) noise' occurring before wall temperatures reached saturation, and a significant increase (up to 50%) in the heat transfer coefficient in the subcooled boiling region when in the presence of dissolved gas, compared to degassed water. Since power reactors do not involve dissolved gas, the RELAP safety analysis code does not include any provisions for the effect of dissolved gas on heat transfer. In this work, the effects of the dissolved gas are evaluated for inclusion in the RELAP code, including provision for initiating 'nucleate boiling' at a lower temperature, and a provision for enhancing the heat transfer coefficient during the subcooled boiling region. Instead of relying on Chen's correlation alone, a modification of the superposition method of Bjorge was adopted. (author)

  14. Secondary transfer effects of interracial contact: the moderating role of social status.

    Science.gov (United States)

    Bowman, Nicholas A; Griffin, Tiffany M

    2012-01-01

    The contact hypothesis asserts that intergroup attitudes can be improved when groups have opportunities to interact with each other. Recent research extending the contact hypothesis suggests that contact with a primary outgroup can decrease bias toward outgroups not directly involved in the interaction, which is known as the secondary transfer effect (STE). The present study contributes to growing research on STEs by investigating effects among Asian, Black, Hispanic, and White undergraduate students (N = 3,098) attending 28 selective colleges and universities. Using hierarchical linear modeling, our results reveal numerous positive STEs among Asian, Black, and Hispanic college students. No significant STEs were observed among White students. Mediated moderation analyses support an attitude generalization mechanism, because STEs were explained by changes in attitudes toward the primary outgroup. This research speaks to equivocal findings in the extant STE literature and highlights directions for future research on social cohesion and bias reduction.

  15. Proposed heat transfer model for the gas-liquid heat transfer effects observed in the Stanford Research Institute scaled tests

    International Nuclear Information System (INIS)

    Corradini, M.; Sonin, A.A.; Todreas, N.

    1976-12-01

    In 1971-72, the Stanford Research Institute conducted a series of scaled experiments which simulated a sodium-vapor expansion in a hypothetical core disruptive accident (HCDA) for the Fast Flux Test Facility. A non-condensible explosive source was used to model the pressure-volume expansion characteristics of sodium vapor as predicted by computer code calculations. Rigid piston-cylinder experiments ( 1 / 10 and 1 / 30 scale) were undertaken to determine these expansion characteristics. The results showed that the pressure-volume characteristics depend significantly on the presence of water in the cylinder reducing the work output by about 50 percent when a sufficient water depth was present. The study presented proposes that the mechanism of heat transfer between the water and high temperature gas was due to area enhancement by Taylor instabilities at the gas-liquid interface. A simple heat transfer model is proposed which describes this energy transport process and agrees well with the experimental data from both scaled experiments. The consequences of this analysis suggest that an estimate of the heat transfer to the cold slug during a full-scale HCDA due to sodium vapor expansion and the accompanying reduction in mechanical work energy warrants further investigation. The implication of this analysis is that for either sodium or fuel vapor expansion in an HCDA, there is an inherent heat transfer mechanism which significantly reduces the work output of the expanding bubble

  16. Gas phase emissions from cooking processes and their secondary aerosol production potential

    Science.gov (United States)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  17. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-07-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections.

  18. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-07-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections.

  19. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    International Nuclear Information System (INIS)

    Aase, Karina

    1997-01-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections

  20. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  1. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  2. Heat transfer by liquids in suspension in a turbulent gas stream (1960)

    International Nuclear Information System (INIS)

    Grison, E.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm 2 ), the temperature (until the boiling point) and the heat flux (until 250 W/cm 2 ). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [fr

  3. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  4. Modelling secondary instability of co-current a thin gas-sheared film

    Energy Technology Data Exchange (ETDEWEB)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G, E-mail: vozhakov@gmail.com [Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2016-12-15

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  5. Modelling secondary instability of co-current a thin gas-sheared film

    International Nuclear Information System (INIS)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G

    2016-01-01

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  6. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  7. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  8. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  9. Numerical simulation study of gas-liquid reactive mass transfer along corrugated sheets with interface tracking

    International Nuclear Information System (INIS)

    Haroun, Y.

    2008-11-01

    This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)

  10. CFD analysis of heat transfer in a vertical annular gas gap

    International Nuclear Information System (INIS)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2011-01-01

    Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)

  11. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  12. Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br

    2010-07-01

    This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)

  13. Heat transfer to a particle exposed to a rarefield ionized-gas flow

    International Nuclear Information System (INIS)

    Chen, X.; He, P.

    1986-01-01

    Analytical results are presented concerning the heat transfer to a spherical particle exposed to a high temperature, ionized- gas flow for the extreme case of free-molecule flow regime. It has been shown that the presence of relative velocity between the particle and the ionized gas reduces the floating potential on the particle, enhances the heat flux and causes appreciably non-uniform distribution of the local heat flux. Pronounced difference is found between metallic and non-metallic particles in the floating potential and the local heat flux distributions, in particular for the case with high gas-flow temperature. Relative contribution of atoms to the total heat flux is dominant for the case of low gas-flow temperature, while the heat flux is mainly caused by ions and electrons for the case of high gas-flow temperature

  14. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  15. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  16. Numerical calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds

    NARCIS (Netherlands)

    Kuipers, J.A.M.; Prins, W.; van Swaaij, W.P.M.

    1992-01-01

    A computer model for a hot gas-fluidized bed has been developed. The theoretical description is based on a two-fluid model (TFM) approach in which both phases are considered to be continuous and fully interpenetrating. Local wall-to-bed heat-transfer coefficients have been calculated by the

  17. Secondary and tertiary gas injection in fractured carbonate rock: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaie, H.; Torsaeter, O. [SPE, NTNU (Norway); Darvish, G.R. [SPE, STATOIL (Norway); Lindeberg, E. [SPE, SINTEF (Norway)

    2008-09-15

    The use of CO{sub 2} has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, as the number of CO{sub 2} injection projects increase, an alternative must be considered to meet the economic considerations. For this reason attention has been directed to nitrogen injection which may be a good substitute for CO{sub 2}. The purpose of the experiments described in this paper was to investigate the efficiency of oil recovery by CO{sub 2} and N{sub 2} in fractured carbonate rock. The combined effects of gravity drainage and component exchange between gas in fracture and oil in matrix on oil recovery in fractured reservoirs subjected to CO{sub 2} or nitrogen gas injection are experimentally studied. Laboratory experiments have been carried out on a low permeable outcrop chalk, as an analogue to a North Sea reservoir rock. This was surrounded by a fracture, established with a novel experimental set-up. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary CO{sub 2} and nitrogen gas injection at high pressure high temperature condition. The matrix block was saturated using recombined binary mixture live oil (C{sub 1}-C{sub 7}), while the fracture was filled with a sealing material to obtain a homogeneous saturation. The sealing material was then removed by increasing the temperature which in turn creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from secondary gas injection experiments indicate that CO{sub 2} injection at elevated pressure and temperature is more efficient than N{sub 2} injection. Results from tertiary gas injection experiments also show that injection of CO{sub 2} could significantly recover the oil, even after waterflooding, compared to N{sub 2} injection. (author)

  18. Contribution of the bubbles to gas transfer across the ocean-atmosphere interface

    International Nuclear Information System (INIS)

    Memery, Laurent

    1983-05-01

    A first theoretical approach to gas transfer by bubbles is undertaken. Certain parameters which are neglected by smooth air-water interface models are studied. It is found that transfer velocity increases when solubility decreases. Further, bubble overpressure leads to water supersaturation at equilibrium, this supersaturation being more significant for less soluble gases. Although the transfer velocity remains roughly constant for a variable concentration gradient far from equilibrium, its range of variation becomes infinite near equilibrium. Because the notion of transfer velocity is not useful near equilibrium, attention is turned directly to the flux itself: the flux is a linear function of the concentration gradient. At least for tracers the coefficients of this function are entirely defined by the physico-chemical properties of the gas and by the bubble distribution. The dissertation is divided in three parts: - a synthesis which sums up the main experimental and theoretical results of the study of the influence of the bubbles created by breaking waves on gas transfer, - an article published in 'Journal of Geophysical Research', - an article submitted to 'Tellus'. (author) [fr

  19. Heat Transfer between an Individual Carbon Nanotube and Gas Environment in a Wide Knudsen Number Regime

    Directory of Open Access Journals (Sweden)

    Hai-Dong Wang

    2013-01-01

    Full Text Available Applications of carbon nanotube (CNT and graphene in thermal management have recently attracted significant attention. However, the lack of efficient prediction formula for heat transfer coefficient between nanomaterials and gas environment limits the further development of this technique. In this work, a kinetic model has been established to predict the heat transfer coefficient of an individual CNT in gas environment. The heat dissipation around the CNT is governed by molecular collisions, and outside the collision layer, the heat conduction is dominant. At nanoscales, the natural convection can be neglected. In order to describe the intermolecular collisions around the CNT quantitatively, a correction factor 1/24 is introduced and agrees well with the experimental observation. The prediction of the present model is in good agreement with our experimental results in free molecular regime. Further, a maximum heat transfer coefficient occurs at a critical diameter of several nanometers, providing guidelines on the practical design of CNT-based heat spreaders.

  20. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)

    2015-06-15

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.

  1. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    International Nuclear Information System (INIS)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol

    2015-01-01

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained

  2. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  3. Simulation Of The Secondary Cooling System Failed For One Line Mode Of RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto; Susyadi; Sembiring, Tagor M; Isnaeni, Darwis

    2003-01-01

    Recently, an assessment of 15 MW power reactor RSG-GAS operated using one line cooling mode is under carried out, in which is in the same manner as BA TAN policy. At the power above mentioned, requirement for the research as well as isotop production has been fulfilled. To obtain the transient condition of 1 line-cooling mode, the simulation using RELAP5.MOD3.2 code was carried out. The simulation parameters interesting known are the inlet of primary coolant temperature after failed the secondary cooling system. At the first, reactor is operated at 15 MW steady state condition using 1 line-cooling mode. Primary coolant flow rate of 430 kg/s and secondary of 550 kg/s respectively. After that the decreasing is occurred due to stop of secondary cooling pump. Therefore the primary cooling inlet temperature to the core increase cause scram reactor by inserted control rod. During the transient occur, the characteristic of primary cooling temperature pattern change were obtained. The simulation result shows that the temperature increase (ΔT) temperature to the reactor is 5,1 o C at the second of 85.5. Here is lower than ΔT for the two cooling mode of 10 o C. That temperature characteristic still tolerable against acceptable safety margin to the flow instability

  4. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    Science.gov (United States)

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  5. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  6. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  7. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  8. Influence of vascular network design on gas transfer in lung assist device technology.

    Science.gov (United States)

    Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P

    2011-01-01

    Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.

  9. Installation design of pump motor control systems for supplied of the RSG-GAS secondary raw water cooling system

    International Nuclear Information System (INIS)

    Kiswanto; Teguh Sulistyo; M-Taufik

    2013-01-01

    It has designed already of an installation of the pump motor control system for supplied of raw water to fulfil the RSG-GAS secondary cooling system. The installation design of this plant is used to supply electrical energy from PLN and 3 phase generator to operate the pump motor embedded multilevel type, capacity, Q = 30 m 3 /h; electric power, PN = 4 kW; voltage, 380V/3-/50Hz, and Y connections that can be operated manually or automatically by using the automatic transfer switch. The results obtained recapitulation total load of 4 kW, the magnitude of the nominal current of 9.5 A; kind of safety and capacity are used NFB 16 A, use of this type of cable to the control panel is PLN NYY 6 mm 2 diameter maximum current capacity of 25 A cable and use the control panel to the pump motor cable type NYY 4 mm 2 diameter maximum current capacity of 20 A. The design of the pump motor control system installation is ready to be implemented. (author)

  10. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  11. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  12. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  13. Modeling the scooping phenomenon for the heat transfer in liquid–gas horizontal slug flows

    International Nuclear Information System (INIS)

    Bassani, Carlos L.; Pereira, Fernando H.G.; Barbuto, Fausto A.A.; Morales, Rigoberto E.M.

    2016-01-01

    Highlights: • A low computational tool for heat transfer prediction on slug flows is presented. • The scooping phenomenon is modeled on a stationary approach. • The scooping phenomenon improved in 8% the heat transfer results. - Abstract: The heat transfer between the deep sea waters and the oil and gas mixtures flowing through production lines is a common situation in the petroleum industry. The optimum prediction of the liquid–gas flow parameters along those lines, when the intermittent flow pattern known as slug flow is dominant, has extreme importance in facilities' design. The mixture temperature drop caused by the colder sea waters, which can be regarded as an infinite medium with constant temperature, directly affects physical properties of the fluids such as the viscosity and specific mass. Gas expansion may also occur due to pressure and temperature gradients, thus changing the flow hydrodynamics. Finally, the temperature gradient affects the thermodynamic equilibrium between the phases, favoring wax deposition and thus increasing pressure drops or even blocking the production line. With those issues in mind, the present work proposes a stationary model to predict the mixture temperature distribution and the two-phase flow heat transfer coefficient based on the mass, momentum and energy conservation equations applied to different unit cell regions. The main contribution of the present work is the modeling of the thermal scooping phenomenon, i.e., the heat transfer between two adjacent unit cells due to the mass flux known as scooping. The model was implemented as a structured Fortran95 code with an upwind difference scheme. The results were compared to experimental data and presented good agreement. The analysis showed that the inclusion of the scooping phenomenon into the model resulted in an averaged 8% improvement in the temperature gradient calculation and heat transfer coefficient prediction for the flowing mixture.

  14. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  15. Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model

    International Nuclear Information System (INIS)

    Park, Jehun; Lee, Jae W.

    2016-01-01

    This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.

  16. Wireless transfer of measured data. Continuous measurement of natural gas consumption in a liberalized market

    International Nuclear Information System (INIS)

    De Buisonje, B.

    2000-01-01

    In a deregulated market it is very important to be able to measure gas consumption per hour, or even every 5 minutes, on site and reliably transfer the data measured to the trader. It is common practice in the gas industry to make forecasts for each customer taking off more than 10 million m 3 . This requires the preparation of load profiles based on gas consumption during five minutes. For both the consumer and the trader it is important to be informed (semi-)continuously of the actual gas consumption, which can then be directly compared with the expected load profile, after which adjustments can be made. One of the gas distribution companies in the Netherlands, Essent, transfers wireless data in the case of remote metering. Essent uses Ferranti Computer Systems and the Mobitex network of RAM Mobile Data. Consumers also have access to the data measured through the Internet. They can use the actual load profile for billing purposes. Moreover, they can immediately adjust their energy consumption to stick to the offtake forecast as long as possible and thus save costs

  17. Mathematical modeling of heat transfer in production premises heated by gas infrared emitters

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.

  18. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, Gerard; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents a

  19. Experimental study on secondary depressurization action for PWR vessel bottom small break LOCA with HPI failure and gas inflow (ROSA-V/LSTF test SB-PV-03)

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

    2005-06-01

    A small break loss-of-coolant accident (SBLOCA) experiment was conducted at the Large Scale Test Facility (LSTF) of ROSA-V program to study effects of accident management (AM) measures on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a pressurized water reactor (PWR). The LSTF is a full-height and 1/48 volume-scaled facility simulating 4-loop Westinghouse-type PWR (3423 MWt). The experiment, SB-PV-03, simulated a PWR vessel bottom SBLOCA with a rupture of ten instrument-tubes which is equivalent to 0.2% cold leg break. Total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and operator AM actions on steam generator (SG) secondary depressurization at a rate of -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes were assumed as experiment conditions. It is clarified that the AM actions are effective on primary system depressurization until the end of AIS injection at 1.6 MPa, but thereafter become less effective due to inflow of the non-condensable gas, resulting in delay of low pressure injection (LPI) actuation and whole core heatup under continuous water discharge through the bottom break. The report describes these thermohydraulic phenomena related with transient primary coolant mass and AM actions in addition to estimation of non-condensable gas behavior which affected primary-to-secondary heat transfer. (author)

  20. Numerical investigation of heat transfer in high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, g.; Anghaie, S. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01

    This paper proposes a computational model for analysis of flow and heat transfer in high-temperature gas-cooled reactors. The formulation of the problem is based on using the axisymmetric, thin layer Navier-Stokes equations. A hybrid implicit-explicit method based on finite volume approach is used to numerically solve the governing equations. A fast converging scheme is developed to accelerate the Gauss-Siedel iterative method for problems involving the wall heat flux boundary condition. Several cases are simulated and results of temperature and pressure distribution in the core are presented. Results of a parametric analysis for the assessment of the impact of power density on the convective heat transfer rate and wall temperature are discussed. A comparative analysis is conducted to identify the Nusselt number correlation that best fits the physical conditions of the high-temperature gas-cooled reactors.

  1. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    International Nuclear Information System (INIS)

    Sidek, Mohd Zaidi; Kamarudin, Muhammad Syahidan

    2016-01-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m 2 K. (paper)

  2. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  3. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  4. Pneumatosis intestinalis and portal venous gas secondary to Gefitinib therapy for lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lee Joo

    2012-03-01

    Full Text Available Abstract Background Pneumatosis intestinalis (PI, defined as the presence of gas in the bowel wall, and portal venous gas (PVG are relatively rare radiological findings. Although several chemotherapeutic agents and anti-vascular endothelial growth factor agents are reported to be associated with PI and PVG, an association with anti-epidermal growth factor receptor (EGFR agents has not been described previously. Case presentation The present report describes a case of PI and PVG secondary to treatment with an EGFR tyrosine kinase inhibitor. A 66-year-old woman who had been diagnosed with metastatic lung adenocarcinoma presented with nausea, vomiting and abdominal distension after commencing gefitinib. A computed tomography (CT scan of the abdomen revealed PI extending from the ascending colon to the rectum, hepatic PVG, and infarction of the liver. Gefitinib therapy was discontinued immediately and the patient was managed conservatively. A follow-up CT scan 2 weeks later revealed that the PI and hepatic PVG had completely resolved. Conclusion This is the first report of PI and PVG caused by EGFR tyrosine kinase inhibitor. Although these complications are extremely rare, clinicians should be aware of the risk of PI and PVG in patients undergoing targeted molecular therapy.

  5. Pneumatosis intestinalis and portal venous gas secondary to Gefitinib therapy for lung adenocarcinoma

    International Nuclear Information System (INIS)

    Lee, Joo Young; Han, Hye-Suk; Lim, Sung-Nam; Shim, Young Kwang; Choi, Yong Hyeok; Lee, Ok-Jun; Lee, Ki Hyeong; Kim, Seung Taik

    2012-01-01

    Pneumatosis intestinalis (PI), defined as the presence of gas in the bowel wall, and portal venous gas (PVG) are relatively rare radiological findings. Although several chemotherapeutic agents and anti-vascular endothelial growth factor agents are reported to be associated with PI and PVG, an association with anti-epidermal growth factor receptor (EGFR) agents has not been described previously. The present report describes a case of PI and PVG secondary to treatment with an EGFR tyrosine kinase inhibitor. A 66-year-old woman who had been diagnosed with metastatic lung adenocarcinoma presented with nausea, vomiting and abdominal distension after commencing gefitinib. A computed tomography (CT) scan of the abdomen revealed PI extending from the ascending colon to the rectum, hepatic PVG, and infarction of the liver. Gefitinib therapy was discontinued immediately and the patient was managed conservatively. A follow-up CT scan 2 weeks later revealed that the PI and hepatic PVG had completely resolved. This is the first report of PI and PVG caused by EGFR tyrosine kinase inhibitor. Although these complications are extremely rare, clinicians should be aware of the risk of PI and PVG in patients undergoing targeted molecular therapy

  6. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    OpenAIRE

    Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich

    2015-01-01

    The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...

  7. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  8. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  9. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  10. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  11. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  12. Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Udot, A.V.; Yakushev, A.P.

    1987-01-01

    An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction

  13. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    Science.gov (United States)

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  14. Theoretical studies on membrane-based gas separation using computational fluid dynamics (CFD) of mass transfer

    International Nuclear Information System (INIS)

    Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.

    2011-01-01

    A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)

  15. Oil and gas property transfers: Analyzing the environmental risk through the environmental site assessment process

    International Nuclear Information System (INIS)

    Bratberg, D.; Hocker, S.

    1994-01-01

    The Superfund Act made anyone buying contaminated real estate liable for cleanup costs whether they know about the contamination or contributed to the contamination. In 1986, SARA amended the Superfund Act to include a provision known as the ''Innocent Landowner Defense.'' This provision created a defense for purchasers of contaminated property who did not contribute to the contamination and had no reason to believe that the property was contaminated at the time of the real estate transfer. SARA allows the purchasers and lenders to perform an environmental assessment using ''due diligence'' to identify contamination problems existing at a site. Since the passing of SARA, the environmental site assessment (ESA) process has become commonplace during the transfer of commercial real estate. Since the introduction of SARA, many professional associations, governmental agencies, and proposed federal legislation have struggled to produce a standard for conducting Phase 1 ESAs. Only recently has a standard been produced. Until recently, the domestic oil and gas industry has been relatively unconcerned about the Superfund liability issues. This approach was created by Congress's decision in 1980 to temporarily exempt the majority of oil and gas exploration and production wastes from federal hazardous waste rulings. However, new stringent rules governing oil and gas waste management practices are being considered by federal and state regulatory agencies. Based upon this knowledge and the awakening of public awareness, the use of ESAs for oil and gas transactions is increasing

  16. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  17. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    Science.gov (United States)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  18. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  19. Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system

    International Nuclear Information System (INIS)

    Sun, Zhongwei; Wang, Shengwei; Zhou, Qulan; Hui, Shi'en

    2010-01-01

    This paper presents a new liquid-screen gas-liquid two-phase flow pattern with discarded carbide slag as the liquid sorbent of sulfur dioxide (SO 2 ) in a wet flue gas desulfurization (WFGD) system. On the basis of experimental data, the correlations of the desulfurization efficiency with flue gas flow rate, slurry flow rate, pH value of slurry and liquid-gas ratio were investigated. A non-dimensional empirical model was developed which correlates the mass transfer coefficient with the liquid Reynolds number, gas Reynolds number and liquid-gas ratio (L/G) based on the available experimental data. The kinetic reaction between the SO 2 and the carbide slag depends on the pressure distribution in this desulfurizing tower, gas liquid flow field, flue gas component, pH value of slurry and liquid-gas ratio mainly. The transient gas-liquid mass transfer involving with chemical reaction was quantified by measuring the inlet and outlet SO 2 concentrations of flue gas as well as the characteristics of the liquid-screen two-phase flow. The mass transfer model provides a necessary quantitative understanding of the hydration kinetics of sulfur dioxide in the liquid-screen flue gas desulfurization system using discarded carbide slag which is essential for the practical application. (author)

  20. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    Science.gov (United States)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  1. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  2. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  3. Quasiclassical trajectory study of the energy transfer in CO2--rare gas systems

    International Nuclear Information System (INIS)

    Suzukawa, H.H. Jr.; Wolfsberg, M.; Thompson, D.L.

    1978-01-01

    Computational methods are presented for the study of collisions between a linear, symmetric triatomic molecule and an atom by three-dimensional quasiclassical trajectory calculations. Application is made to the investigation of translational to rotational and translational to vibrational energy transfer in the systems CO 2 --Kr, CO 2 --Ar, and CO 2 --Ne. Potential-energy surfaces based on spectroscopic and molecular beam scattering data are used. In most of the calculations, the CO 2 molecule is initially in the quantum mechanical zero-point vibrational state and in a rotational state picked from a Boltzmann distribution at 300 0 K. The energy transfer processes are investigated for translational energies ranging from 0.1 to 10 eV. Translational to rotational energy transfer is found to be the major process for CO 2 --rare gas collisions at these energies. Below 1 eV there is very little translational to vibrational energy transfer. The effects of changes in the internal energy of the molecule, in the masses of the collidants, and in the potential-energy parameters are studied in an attempt to gain understanding of the energy transfer processes

  4. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  5. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  6. Gas transfer under breaking waves: experiments and an improved vorticity-based model

    Directory of Open Access Journals (Sweden)

    V. K. Tsoukala

    2008-07-01

    Full Text Available In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.

  7. Characteristics of DC electrical braking method of the gas circulator to limit the temperature rise at the heat transfer pipes in the HTTR

    International Nuclear Information System (INIS)

    Kawasaki, K.; Saito, K.; Iyoku, T.

    2001-01-01

    In the safety evaluation of a High Temperature Engineering Test Reactor (HTTR), it must be confirmed that the core has no chance to be damaged and the barrier against the FP release is designed properly not to be affecting the influence of radiation around the reactor site. Especially the maximum temperature of the reactor pressure boundary such as the heat transfer pipes of pressurized water cooler (PWC) must not exceed the permissible values under an anticipated accident such as pipe of rupture in PWC. A requirement for the gas circulator which circulates helium gas in the primary cooling line and the secondary cooling line, is to be braked within 10 seconds by an electrical braking method after the HTTR reactor has scrammed under the accident in PWC. The reason is that the temperature rise of the heat transfer pipe at PWC has to be suppressed when the gas circulator has stopped, the revolution of the gas circulator decreases like the free coast down so that it takes about 90 seconds to be zero and the temperature rise of the pipe in the PWC exceeds the permissible value. By braking within 10 secs., the temperature of the pipe in the PWC reaches about 368 deg. C, less than the permissible value. Using a simplified equivalent circuit of an induction motor, braking time analysis was performed with obtained electrical resistance and inductance. The obtained braking time is about 10 secs., showing close agreement with analysis values. (author)

  8. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  9. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    Science.gov (United States)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  10. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    Science.gov (United States)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  11. Coefficient of solid-gas heat transfer in particle fixed bed; Coeficiente de transferencia de calor gas-solido em leito fixo de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Filho, Francisco

    1991-03-01

    The work presents a study on heat transfer between gas and solid phases for fixed beds in the absence of mass transfer and chemical reactions. Mathematical models presented in the literature were analyzed concerning to the assumptions made on axial dispersion in the fluid phase and interparticle thermal conductivity. Heat transfer coefficients and their dependency on flow conditions, particles and packed bed characteristics were experimentally determined through the solution of the previous mathematical models. Pressure drop behaviour for the packed beds used for the heat transfer study was also included. (author) 32 refs., 12 figs.

  12. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  13. Heat Transfer Analysis and Modification of Thermal Probe for Gas-Solid Measurement

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-01-01

    Full Text Available The presented work aims to measure the gas-solid two-phase mass flow-rate in pneumatic conveyor, and a novel modified thermal probe is applied. A new analysis of the local heat transfer coefficients of thermal probe is presented, while traditional investigations focus on global coefficients. Thermal simulations are performed in Fluent 6.2 and temperature distributions of the probe are presented. The results indicate that the probe has obviously stable and unstable heat transfer areas. Based on understanding of probe characteristics, a modified probe structure is designed, which makes the probe output signal more stable and widens the measuring range. The experiments are carried out in a special designed laboratory scale pneumatic conveyor, and the modified probe shows an unambiguous improvement of the performance compared with the traditional one.

  14. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  16. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  17. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  19. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors

    DEFF Research Database (Denmark)

    Tirunehe, Gossay; Norddahl, B.

    2016-01-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....

  20. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  1. Heat transfer tests of ribbed surfaces for gas-cooled reactors

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1975-07-01

    The performance of gas-cooled reactors is often limited by the heat transfer in the reactor core. Means for modifying core heat transfer surfaces to improve their performance were investigated. The 0.3-in.-OD stainless steel clad heater rods were photo-etched to produce external ribs 0.006 in. high and 0.12 in. wide with a pitch of 0.072 in. Helical ribs with a helix angle of 37 0 (to promote interchannel flow mixing in a multirod array) were provided on one surface. For comparison purposes, a transversely ribbed surface and a smooth rod were also studied. The test surfaces were 49 in. long with a 24-in. heated region, concentrically arranged inside a smooth 0.602-in.-ID stainless steel tube. Nitrogen gas at pressures up to 400 psig was used as the coolant; the linear heat rating ranged to 6.8 kW/ft at surface temperatures up to 1400 0 F; T/sub w/T/sub b/ varied from 1.2 to 2.4 at Re values up to 450,000. Annulus results were recalculated for rod geometry using two different transformations. Good agreement was observed with applicable literature values. The effectiveness of the surfaces was assessed as the ratio E of the heat transfer coefficients of the roughened rods to that of a smooth rod at the same pumping power. The effectiveness of the spiral ribs ranged from 1.3 to 1.4, and from 1.2 to 1.4 for the transverse ribs, spanning Re values from 60,000 to 400,000. These data include variations introduced by alternate transformation methods that were used to make annulus test results applicable to rod geometry. The surfaces investigated in these tests were considered for fast gas-cooled reactors; however, the range of parameters studied also applies to heat transfer from ribbed rod-type fuel elements in thermal gas-cooled reactors. (U.S.)

  2. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  3. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    OpenAIRE

    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric

    2016-01-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual...

  4. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    Science.gov (United States)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  5. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  7. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  8. Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee

    2010-01-01

    Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature

  9. Optimization techniques for the secondary development of old gas fields in the Sichuan Basin and their application

    Directory of Open Access Journals (Sweden)

    Chongshuang Xia

    2016-12-01

    Full Text Available After nearly 60 years of development, many old gas fields in the Sichuan Basin have come to middle–late development stages with low pressure and low yield, and some are even on the verge of abandonment, but there are plenty remaining gas resources still undeveloped. Analysis shows that gas fields which have the conditions for the secondary development are faced with many difficulties. For example, it is difficult to produce low permeable reserves and to unset the hydraulic seal which is formed by active formation water. In this paper, therefore, the technical route and selection conditions of old gas fields for the secondary development were comprehensively elaborated with its definition as the beginning. Firstly, geological model forward modeling and production performance inversion characteristic curve diagnosis are performed by using the pressure normalization curve and the identification and quantitative description method for multiple sets of storage–seepage body of complex karst fracture–cavity systems is put forward, after the multiple storage–seepage body mode of fracture–cavity systems is established. Combined with the new occurrence mode of gas and water in U-shape pipes, a new calculation technology for natural gas reserves of multiple fracture–cavity systems with strong water invasion is developed. Secondly, a numerical model of pore–cavity–fracture triple media is built, and simulation and result evaluation technology for the production pattern of “drainage by horizontal wells + gas production by vertical wells” in bottom-water fracture and cavity gas reservoirs with strong water invasion is developed. Thirdly, the geological model of gas reservoirs is reconstructed with the support of the integration technologies which are formed based on fine gas reservoir description. Low permeable reserves of gas reservoirs are evaluated based on each classification. The effective producing ratio is increased further by

  10. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  11. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  12. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    Science.gov (United States)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F

  13. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    International Nuclear Information System (INIS)

    Park, Sang Kyoo; Yang, Hei Cheon

    2017-01-01

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  14. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-06-15

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  15. Formation of secondary organic aerosols from gas-phase emissions of heated cooking oils

    Directory of Open Access Journals (Sweden)

    T. Liu

    2017-06-01

    Full Text Available Cooking emissions can potentially contribute to secondary organic aerosol (SOA but remain poorly understood. In this study, formation of SOA from gas-phase emissions of five heated vegetable oils (i.e., corn, canola, sunflower, peanut and olive oils was investigated in a potential aerosol mass (PAM chamber. Experiments were conducted at 19–20 °C and 65–70 % relative humidity (RH. The characterization instruments included a scanning mobility particle sizer (SMPS and a high-resolution time-of-flight aerosol mass spectrometer (HR-TOF-AMS. The efficiency of SOA production, in ascending order, was peanut oil, olive oil, canola oil, corn oil and sunflower oil. The major SOA precursors from heated cooking oils were related to the content of monounsaturated fat and omega-6 fatty acids in cooking oils. The average production rate of SOA, after aging at an OH exposure of 1. 7 × 1011 molecules cm−3 s, was 1. 35 ± 0. 30 µg min−1, 3 orders of magnitude lower compared with emission rates of fine particulate matter (PM2. 5 from heated cooking oils in previous studies. The mass spectra of cooking SOA highly resemble field-derived COA (cooking-related organic aerosol in ambient air, with R2 ranging from 0.74 to 0.88. The average carbon oxidation state (OSc of SOA was −1.51 to −0.81, falling in the range between ambient hydrocarbon-like organic aerosol (HOA and semi-volatile oxygenated organic aerosol (SV-OOA, indicating that SOA in these experiments was lightly oxidized.

  16. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  17. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    Science.gov (United States)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  18. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  19. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    Science.gov (United States)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this

  20. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  1. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  2. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  3. Field synergy characteristics in condensation heat transfer with non-condensable gas over a horizontal tube

    Directory of Open Access Journals (Sweden)

    Junxia Zhang

    2017-05-01

    Full Text Available Field synergy characteristics in condensation heat transfer with non-condensable gas (NCG over a horizontal tube were numerically simulated. Consequently, synergy angles between velocity and pressure or temperature gradient fields, gas film layer thickness, and induced velocity and shear stress on gas–liquid interface were obtained. Results show that synergy angles between velocity and temperature gradient fields are within 73.2°–88.7° and ascend slightly with the increment in mainstream velocity and that the synergy is poor. However, the synergy angle between velocity and pressure gradient fields decreases intensively with the increase in mainstream velocity at θ ≤ 30°, thereby improving the pressure loss. As NCG mass fraction increases, the gas film layer thickness enlarges and the induced velocity and shear stress on gas–liquid interface decreases. The synergy angles between velocity and temperature gradient fields increase, and the synergy angles between velocity and pressure gradient fields change at θ = 70°, decrease at θ 70°. When the horizontal tube circumference angle increases, the synergy angles between velocity and temperature or pressure gradient fields decrease, the synergy between velocity and pressure fields enhances, and the synergy between velocity and temperature fields degrades.

  4. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2014-01-01

    Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

  5. Heat transfer simulation in a furnace for steam reformer. Gas kaishitsu ronai no dennetsu simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Taniguchi, H; Guo, K [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Katayama, T; Nagata, T [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-01-10

    This paper discusses the heat transfer analysis in a furnace for LPG reforming to produce gas enriched hydrogen. The three-dimensional combined radiative and convective heat transfer processes in a furnace for LPG reforming is simulated by introducing the radiosity concept into the radiative heat ray method for an accurate radiative heat transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the reformed gas. From the results of the analysis, it was clarified that increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance, and that the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transfer effect by flame radiation is much more than that by convection of the combustion gas. 18 refs., 9 figs., 2 tabs.

  6. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  7. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  8. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.

  9. Analogy of convective heat transfer between developing laminar secondary flows in pipes

    OpenAIRE

    Ishigaki, Hiroshi; 石垣 博

    1998-01-01

    Analogy of convective heat transfer between developing laminar flows in curved pipes and orthogonally rotating pipes is described through similarity arguments and numerical computation. Governing parameters and a dimensionless axial distance are properly used for the respective flows. When the second parameter is large in each flow, it is shown that the temperature profiles and the Nusselt numbers of the two flows are approximately similar for the same values of the governing parameter, Prand...

  10. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    Science.gov (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  11. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  12. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  13. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  14. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    Science.gov (United States)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  15. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  16. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  17. Natural gas large volumes measurement: going for on-line custody transfer; Medicao de grandes volumes de gas natural: rumo a transferencia de custodia on-line

    Energy Technology Data Exchange (ETDEWEB)

    Mercon, Eduardo G.; Frisoli, Caetano [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper describes the structure of the natural gas flow measurement process in TRANSPETRO, and comments features and performance of existing or under-implantation equipment and systems, reviewing best practices and technology in use. This process runs through three interrelated segments: data flow measurement, strictly speaking; data transfer and acquisition; and data flow measurement certification (data consolidation to invoice). Initially, the work makes an approach to the data flow measurement segment, evaluating technical features of flow meters, and describing configurations and functions of the operating gas flow computers in TRANSPETRO's custody transfer stations. In this part it will also be presented the implantation of TRANSPETRO's system for gas chromatography data input on-line to flow computers. Further, in data transfer and acquisition, SCADA system technical aspects will be evaluated, considering communications protocols and programmable logic controllers functions in remote terminal units, and discussing their places in the measurement process. Additionally, TRANSPETRO's experience in data measurement certification tools is in discussion, as well as new upcoming tools and their potential features, from what new practices will be suggested. Finally, all the work has been conceived and carried out always aiming to the state-of-the-art technology in gas flow measurement: on-line custody transfer. (author)

  18. A gas dynamics scheme for a two moments model of radiative transfer

    International Nuclear Information System (INIS)

    Buet, Ch.; Despres, B.

    2007-01-01

    We address the discretization of the Levermore's two moments and entropy model of the radiative transfer equation. We present a new approach for the discretization of this model: first we rewrite the moment equations as a Compressible Gas Dynamics equation by introducing an additional quantity that plays the role of a density. After that we discretize using a Lagrange-projection scheme. The Lagrange-projection scheme permits us to incorporate the source terms in the fluxes of an acoustic solver in the Lagrange step, using the well-known piecewise steady approximation and thus to capture correctly the diffusion regime. Moreover we show that the discretization is entropic and preserve the flux-limited property of the moment model. Numerical examples illustrate the feasibility of our approach. (authors)

  19. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  20. Proposal for data acquisition system of gas chromatograph and natural gas transfer custody via web; Proposta para um sistema de aquisicao de dados de cromatografia e medicao fiscal de gas natural via web

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jose Paulo C.; Guimaraes, Marcelo F.; Zeitoune, Rafael J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this paper, is presented a proposal of a Chromatograph and Transfer Custody Measurement Data Acquisition System through Web, complementary to the SCADA System, responsible for control and monitoring PETROBRAS Gas Pipelines, intended to comply with the requirements of the Gerencias de Qualidade e Medicao (MQD) and Planejamento Integrado da Logistica (PCL) from PETROBRAS Gas e Energia, regarding the evaluation of the quality of the natural gas that is being commercialized, as well as its billing. (author)

  1. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Directory of Open Access Journals (Sweden)

    M. T. Johnson

    2010-10-01

    Full Text Available The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest. Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone, such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases, but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  2. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-10-01

    The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest). Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone), such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases), but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility) are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  3. Overview of LEI investigations on heat transfer and flow structure in gas-cooled spheres packings and channels

    International Nuclear Information System (INIS)

    Vilemas, J.; Uspuras, E.; Rimkevicius, S.; Kaliatka, A.; Pabarcius, R.

    2002-01-01

    In this paper experimental investigations on heat transfer and hydrodynamics in various gas-cooled channels over wide ranges of geometrical and performance parameters performed at Lithuanian Energy Institute are presented. Overview introduces long-term experience on investigations of local and average heat transfer, hydraulic drag in various types of sphere packings, in smooth, helical tubes and annular channels equipped with smooth/rough or helical inner lubes, such bundle of twisted tubes, as well as turbulent flow structure and the effects of variable physical properties of gas heat carriers on local heat transfer in channels of different cross sections. Lithuanian Energy Institute has accumulated long term experience in the field of heat transfer investigations and has good experimental basis for providing such studies and following analytical analysis. (author)

  4. The Application of Discontinuous Galerkin Methods in Conjugate Heat Transfer Simulations of Gas Turbines

    Directory of Open Access Journals (Sweden)

    Zeng-Rong Hao

    2014-11-01

    Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  6. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  7. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    International Nuclear Information System (INIS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-01-01

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach

  8. Gas phase detection of the NH-P hydrogen bond and importance of secondary interactions

    DEFF Research Database (Denmark)

    Møller, Kristian Holten; Hansen, Anne Schou; Kjærgaard, Henrik Grum

    2015-01-01

    bond compared to secondary interactions. We find that B3LYP favors the hydrogen bond and M06-2X favors the secondary interactions leading to under- and overestimation, respectively, of the hydrogen bond angle relative to a DF-LCCSD(T)-F12a calculated angle. The remaining functionals tested, B3LYP-D3, B......3LYP-D3BJ, CAM-B3LYP, and ωB97X-D, as well as MP2, show comparable contributions from the hydrogen bond and the secondary interactions and are close to DF-LCCSD(T)-F12a results....

  9. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  10. Effect of wall thermal conductivity on the heat transfer process in annular turbulent gas flow for constant wall temperature

    International Nuclear Information System (INIS)

    Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.

    1987-01-01

    The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  12. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  13. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa

    2018-03-06

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer polyhydroxybutyrate (PHB). Using the same medium in both stages, first, acetic acid is produced (3.2 g L−1) by Acetobacterium woodii from 5.2 L gas-mixture of CO2:H2 (15:85 v/v) under elevated pressure (≥2.0 bar) to increase H2-solubility in water. Second, acetic acid is converted to PHB (3 g L−1 acetate into 0.5 g L−1 PHB) by Ralstonia eutropha H16. The efficiencies and space-time yields were evaluated, and our data show the conversion of CO2 into PHB with a 33.3% microbial cell content (percentage of the ratio of PHB concentration to cell concentration) after 217 h. Collectively, our results provide a resourceful platform for future optimization and commercialization of a Bio-GTL for PHB production.

  14. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  15. UK-China review of opportunities for landfill gas (LFG) technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a project to identify opportunities to transfer UK skills with regard to landfill gas (LFG) technologies to China and other countries looking to develop LFG as a commercially viable clean energy source. The aim of the project was to develop all aspects of LFG extraction and utilisation techniques. The project involved: examining current Chinese waste disposal practices; identifying key technologies and methods for maximising LFG recovery; considering end use options and methods to optimise gas use; assessing the environmental benefits; and identifying potential opportunities for UK industry. The report consider: barriers to the development of LFG; waste disposal and landfill design in China; China's experience of LFG use; UN Development Programme (UNDP) and Global Environmental Forum (GEF) LFG demonstration projects in China; environmental regulation and controls in China; LFG technology in the UK; support for renewable energy in China and the UK; design and operational needs in China from a UK perspective; technology needs, barriers and opportunities; and recommendations for action and future work.

  16. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    Science.gov (United States)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  17. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  18. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  19. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  20. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  1. Conditional cash transfer impact evaluation: an evaluation of the costa rican secondary education program Avancemos

    Directory of Open Access Journals (Sweden)

    Catherine Mata

    2015-07-01

    Full Text Available This paper evaluates the impact of Avancemos, a conditional cash transfer program in Costa Rica. Specifically, this paper measures the impact on student desertion for the first year of the program using a panel created with the Household Surveys for Multiple Purposes for the years 2006 and 2007, elaborated by the National Institute of Statistics and Census. Using econometric tools and quasi-experimental methodologies such as Propensity Score Matching and difference-in-differences, we find a positive impact associated to the program for desertion and reinsertion. Specifically, for between 10 and 16 percent of the students who did not leave high school, it was only due to Avancemos, meaning that without the program they would have abandoned their studies. This is why we can conclude that Avancemos had a positive impact according to its planned objectives of preventing dropouts and ensuring their reinsertion.

  2. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    Science.gov (United States)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  3. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  4. Effects of entrance configuration on pressure loss and heat transfer of transitional gas flow in a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Kawamura, Hiroshi

    1986-01-01

    Pressure loss and heat transfer of a transitional gas flow are affected significantly by the entrance configuration. The friction factor and the heat transfer coefficient were measured using a circular tube with four different kinds of entrance configurations. The Reynolds number at the transition from laminar to intermittent flow was varied from about 1,940 to 9,120. The intermittency factor was measured for heated and unheated flows ; and the relation between the intermittency and the friction factor or heat transfer coefficient was examined. Several existing correlations were tested and found to correlate with the experimental results fairly well. (author)

  5. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  6. Quinone reduction via secondary B-branch electron transfer in mutant bacterial reaction centers.

    Science.gov (United States)

    Laible, Philip D; Kirmaier, Christine; Udawatte, Chandani S M; Hofman, Samuel J; Holten, Dewey; Hanson, Deborah K

    2003-02-18

    Symmetry-related branches of electron-transfer cofactors-initiating with a primary electron donor (P) and terminating in quinone acceptors (Q)-are common features of photosynthetic reaction centers (RC). Experimental observations show activity of only one of them-the A branch-in wild-type bacterial RCs. In a mutant RC, we now demonstrate that electron transfer can occur along the entire, normally inactive B-branch pathway to reduce the terminal acceptor Q(B) on the time scale of nanoseconds. The transmembrane charge-separated state P(+)Q(B)(-) is created in this manner in a Rhodobacter capsulatus RC containing the F(L181)Y-Y(M208)F-L(M212)H-W(M250)V mutations (YFHV). The W(M250)V mutation quantitatively blocks binding of Q(A), thereby eliminating Q(B) reduction via the normal A-branch pathway. Full occupancy of the Q(B) site by the native UQ(10) is ensured (without the necessity of reconstitution by exogenous quinone) by purification of RCs with the mild detergent, Deriphat 160-C. The lifetime of P(+)Q(B)(-) in the YFHV mutant RC is >6 s (at pH 8.0, 298 K). This charge-separated state is not formed upon addition of competitive inhibitors of Q(B) binding (terbutryn or stigmatellin). Furthermore, this lifetime is much longer than the value of approximately 1-1.5 s found when P(+)Q(B)(-) is produced in the wild-type RC by A-side activity alone. Collectively, these results demonstrate that P(+)Q(B)(-) is formed solely by activity of the B-branch carriers in the YFHV RC. In comparison, P(+)Q(B)(-) can form by either the A or B branches in the YFH RC, as indicated by the biexponential lifetimes of approximately 1 and approximately 6-10 s. These findings suggest that P(+)Q(B)(-) states formed via the two branches are distinct and that P(+)Q(B)(-) formed by the B side does not decay via the normal (indirect) pathway that utilizes the A-side cofactors when present. These differences may report on structural and energetic factors that further distinguish the functional

  7. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP

  8. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  9. Production of secondary particles and nuclei in cosmic rays collisions with the interstellar gas using the FLUKA code

    CERN Document Server

    Mazziotta, M N; Ferrari, A; Gaggero, D; Loparco, F; Sala, P R

    2016-01-01

    The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a ki...

  10. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  11. Experimental studies of direct contact heat transfer in a slurry bubble column at high gas temperature of a helium–water–alumina system

    International Nuclear Information System (INIS)

    Abdulrahman, M.W.

    2015-01-01

    In this paper, the direct contact heat transfer is investigated experimentally for a helium gas at 90 °C injected through a slurry of water at 22 °C and alumina solid particles in a slurry bubble column reactor. This work examines the effects of superficial gas velocity, static liquid height, solid particles concentration and solid particle size, on the volumetric heat transfer coefficient and slurry temperature of the slurry bubble column reactor. These effects are formulated in forms of empirical equations. From the experimental work, it is found that the volumetric heat transfer coefficient and the slurry temperature increase by increasing the superficial gas velocity with a higher rate of increase at lower superficial gas velocity. In addition, the volumetric heat transfer coefficient and the slurry temperature decrease by increasing the static liquid height and/or the solid concentration at any given superficial gas velocity. Furthermore, it is found that the rate of decrease of the volumetric heat transfer coefficient with the solid concentration is approximately the same for different superficial gas velocities, and the decrease of the slurry temperature with the solid concentration is negligible. - Highlights: • Direct contact heat transfer is investigated experimentally in a slurry bubble column. • Empirical equation of direct contact heat transfer Nusselt number is formulated. • The volumetric heat transfer coefficient increases with superficial gas velocity. • The volumetric heat transfer coefficient decreases with the static liquid height. • The volumetric heat transfer coefficient decreases with the solid concentration.

  12. Third party access pricing to the network, secondary capacity market and economic optimum: the case of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    David, L.; Percebois, J

    2002-09-01

    The gas deregulation process implies crucial choices concerning access to transportation networks. These choices deal with the nature, the structure and the level of access fees. This paper proposes an evaluation of different systems implemented both in Europe and North America, in relation to normative pricing references. The rules according to which shippers can buy or sell capacity represent another kind of choice that Regulators have to make. This paper proposes a simple model which demonstrates that secondary market prices should not be subject to a cap and emphasizes the need of a 'use-it-or-lose-it' rule on this market. (authors)

  13. Third party access pricing to the network, secondary capacity market and economic optimum: the case of natural gas

    International Nuclear Information System (INIS)

    David, L.; Percebois, J.

    2002-09-01

    The gas deregulation process implies crucial choices concerning access to transportation networks. These choices deal with the nature, the structure and the level of access fees. This paper proposes an evaluation of different systems implemented both in Europe and North America, in relation to normative pricing references. The rules according to which shippers can buy or sell capacity represent another kind of choice that Regulators have to make. This paper proposes a simple model which demonstrates that secondary market prices should not be subject to a cap and emphasizes the need of a 'use-it-or-lose-it' rule on this market. (authors)

  14. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  15. The effect of diffusivity on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated pressures

    NARCIS (Netherlands)

    Versteeg, G.F.; Blauwhoff, P.M.M.; Swaaij, W.P.M. van

    1987-01-01

    Mass transfer has been studied in gas-liquid stirred vessels with horizontal interfaces which appeared to the eye to be completely smooth. Special attention has been paid to the influence of the coefficient of molecular diffusion. The results are compared with those published before. The simplifying

  16. Wall-to-bed heat transfer in gas-solid fluidized beds: a computational and experimental study

    NARCIS (Netherlands)

    Patil, D.J.; Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2006-01-01

    The wall-to-bed heat transfer in gas-solid fluidized beds is mainly determined by phenomena prevailing in a thermal boundary layer with a thickness in the order of magnitude of the size of a single particle. In this thermal boundary layer the temperature gradients are very steep and the local

  17. Angular dependence of secondary ion emission from silicon bombarded with inert gas ions

    International Nuclear Information System (INIS)

    Wittmaack, K.

    1984-01-01

    The emission of positive and negative, atomic and molecular secondary ions sputtered from silicon has been studied under ultrahigh vacuum conditions. The sample was bombarded with 2-12 keV Ar + and Xe + ions at angles of incidence between 0 0 and 60 0 to the surface normal. The angular dependence of the secondary ion intensity as well as the energy spectra of Si + and Si - were found to differ significantly. The effect is attributed mostly do differences in the rate of neutralization. The stability of molecular ions appears to be independent of the charge state. Supporting evidence is provided for the idea that multiply charged secondary ions are due to Auger de-excitation of sputtered atoms in vacuum. (orig.)

  18. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  19. Application of the direct simulation Monte Carlo method to nanoscale heat transfer between a soot particle and the surrounding gas

    International Nuclear Information System (INIS)

    Yang, M.; Liu, F.; Smallwood, G.J.

    2004-01-01

    Laser-Induced Incandescence (LII) technique has been widely used to measure soot volume fraction and primary particle size in flames and engine exhaust. Currently there is lack of quantitative understanding of the shielding effect of aggregated soot particles on its conduction heat loss rate to the surrounding gas. The conventional approach for this problem would be the application of the Monte Carlo (MC) method. This method is based on simulation of the trajectories of individual molecules and calculation of the heat transfer at each of the molecule/molecule collisions and the molecule/particle collisions. As the first step toward calculating the heat transfer between a soot aggregate and the surrounding gas, the Direct Simulation Monte Carlo (DSMC) method was used in this study to calculate the heat transfer rate between a single spherical aerosol particle and its cooler surrounding gas under different conditions of temperature, pressure, and the accommodation coefficient. A well-defined and simple hard sphere model was adopted to describe molecule/molecule elastic collisions. A combination of the specular reflection and completely diffuse reflection model was used to consider molecule/particle collisions. The results obtained by DSMC are in good agreement with the known analytical solution of heat transfer rate for an isolated, motionless sphere in the free-molecular regime. Further the DSMC method was applied to calculate the heat transfer in the transition regime. Our present DSMC results agree very well with published DSMC data. (author)

  20. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  1. Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2009-01-01

    Full Text Available A series of photooxidation experiments were conducted in an atmospheric simulation chamber in order to investigate the oxidation mechanism and secondary organic aerosol (SOA formation potential of the model anthropogenic gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific aerosol measurements, comprehensive gas phase measurements, primarily by Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS, were carried out to provide detailed insight into the composition and behaviour of the organic components of the gas phase matrix during SOA formation. An array of gas phase organic compounds was measured during the oxidation process, including several previously unmeasured primary bicyclic compounds possessing various functional groups. Analysis of results obtained during this study implies that these peroxide bicyclic species along with a series of ring opening products and organic acids contribute to SOA growth. The effect of varying the VOC/NOx ratio on SOA formation was explored, as was the effect of acid seeding. It was found that low NOx conditions favour more rapid aerosol formation and a higher aerosol yield, a result that implies a role for organic peroxides in the nucleation process and SOA growth.

  2. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  3. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  5. Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins

    Directory of Open Access Journals (Sweden)

    Mohammed W. Al-Jibory

    2017-11-01

    Full Text Available In this paper, an experimental system  was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics.  Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.

  6. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  7. Influence of water–air ratio on the heat transfer and creep life of a high pressure gas turbine blade

    International Nuclear Information System (INIS)

    Eshati, S.; Abu, A.; Laskaridis, P.; Khan, F.

    2013-01-01

    An analytical model to investigate the influence of Water–Air Ratio (WAR) on turbine blade heat transfer and cooling processes (and thus the blade creep life) of industrial gas turbines is presented. The effects of WAR are emphasised for the modelling of the gas properties and the subsequent heat transfer process. The approach considers convective/film cooling and includes the influence of a thermal barrier coating. In addition, the approach is based on the thermodynamic outputs of a gas turbine performance simulation, heat transfer model, as well as a method that accounts for the changes in the properties of moist air as a function of WAR. For a given off-design point, the variation of WAR (0.0–0.10) was investigated using the heat transfer model. Results showed that with increasing WAR the blade inlet coolant temperature reduced along the blade span. The blade metal temperature at each section was reduced as WAR increased, which in turn increased the blade creep life. The increase in WAR increased the specific heat of the coolant and increased the heat transfer capacity of the coolant air flow. The model can be implemented by using the thermodynamic cycle of the engine, without knowing the turbine cooling details in the conceptual design stage. Also, this generic method assists the end user to understand the effect of operating conditions and design parameter on the creep life of a high pressure turbine blade. -- Highlights: • The influence of WAR on gas turbine blade heat transfer and creep life is examined. • Coolant specific heat capacity is the key property affected by changes in WAR. • Increase in WAR reduces the coolant and metal temperature along the blade span. • Creep life increases with increase in WAR even if ambient temperature is increased

  8. Duration and urgency of transfer in births planned at home and in freestanding midwifery units in England: secondary analysis of the birthplace national prospective cohort study.

    Science.gov (United States)

    Rowe, Rachel E; Townend, John; Brocklehurst, Peter; Knight, Marian; Macfarlane, Alison; McCourt, Christine; Newburn, Mary; Redshaw, Maggie; Sandall, Jane; Silverton, Louise; Hollowell, Jennifer

    2013-12-05

    In England, there is a policy of offering healthy women with straightforward pregnancies a choice of birth setting. Options may include home or a freestanding midwifery unit (FMU). Transfer rates from these settings are around 20%, and higher for nulliparous women. The duration of transfer is of interest because of the potential for delay in access to specialist care and is also of concern to women. We aimed to estimate the duration of transfer in births planned at home and in FMUs and explore the effects of distance and urgency on duration. This was a secondary analysis of data collected in a national prospective cohort study including 27,842 'low risk' women with singleton, term, 'booked' pregnancies, planning birth in FMUs or at home in England from April 2008 to April 2010. We described transfer duration using the median and interquartile range, for all transfers and those for reasons defined as potentially urgent or non-urgent, and used cumulative distribution curves to compare transfer duration by urgency. We explored the effect of distance for transfers from FMUs and described outcomes in women giving birth within 60 minutes of transfer. The median overall transfer time, from decision to transfer to first OU assessment, was shorter in transfers from home compared with transfers from FMUs (49 vs 60 minutes; p birth for potentially urgent reasons (home 42 minutes, FMU 50 minutes) was 8-10 minutes shorter compared with transfers for non-urgent reasons. In transfers for potentially urgent reasons, the median overall transfer time from FMUs within 20 km of an OU was 47 minutes, increasing to 55 minutes from FMUs 20-40 km away and 61 minutes in more remote FMUs. In women who gave birth within 60 minutes after transfer, adverse neonatal outcomes occurred in 1-2% of transfers. Transfers from home or FMU commonly take up to 60 minutes from decision to transfer, to first assessment in an OU, even for transfers for potentially urgent reasons. Most

  9. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  10. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  11. Acute Respiratory Distress Syndrome Secondary to Inhalation of Chlorine Gas in Sheep

    Science.gov (United States)

    2006-05-01

    Fort Sam Houston, TX 78234- 6315; email: lee.cancio@amedd.army.mil. DOI: 10.1097/01.ta.0000205862.57701.48 The Journal of TRAUMA Injury, Infection , and...wedge pressure (PAWP) were determined at each time point. Elec- trocardiogram (ECG), pulse oximetry ( SpO2 ) (Datex Ohmeda True Tech Plus 3900), central...6A-H; sensor GM-CDS-6-CL10-R; Matheson Tri Gas, Chi- cago, IL) to detect gas leaks (none occurred). Personnel performing Cl2 delivery wore full-face

  12. Experimental and numerical study on transient heat transfer for helium gas flowing over a twisted plate with different length

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Qiusheng; Fukuda, Katsuya

    2015-01-01

    This study was conducted to investigate the transient heat transfer process between the solid surface and the coolant (helium gas) in Very High Temperature Reactor (VHTR). Forced convection transient heat transfer for helium gas flowing over a twisted plate with different length was experimentally and theoretically studied. The heat generation rate of the twisted plate was increased with a function of Q = Q_0exp(t/τ)(where t is time, τ is period). Experiment was carried out at various periods ranged from 35 ms to 14 s and gas temperature of 303 K under 500 kPa. The flow velocities ranged from 4 m/s to 10 m/s. Platinum plates with a thickness of 0.1 mm and width of 4 mm were used as the test heaters. The plates were twisted with the same helical pitch of 20 mm, and length of 26.8 mm, 67.8 mm and 106.4 mm (pitch numbers of 1, 3 and 5), respectively. Based on the experimental data, it was found that the average heat transfer coefficient approaches the quasi-steady-state value when the dimensionless period τ* (τ* = τU/L, U is flow velocity, and L is effective length) is larger than about 100 and it becomes higher when τ* is small. The heat transfer coefficient decreases with the increase of twisted plate length under the same period of heat generation rate. According to the experimental data, the distribution for heat transfer coefficient along the heater is nonlinear. Numerical simulation results were obtained for average surface temperature difference, heat flux and heat transfer coefficient of the twisted plates with different length and showed reasonable agreement with experimental data. Based on the numerical simulation, mechanism of local heat transfer coefficient distribution was clarified. (author)

  13. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    Science.gov (United States)

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  14. Evaluation of Pentachlorophenol Residues in Some Hygienic Papers Prepared from Virgin and Secondary Pulp by Electron Capture Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Behrouz Akbari-adergani

    2016-01-01

    Full Text Available In this study, residual amount of pentachlorophenol (PCP as the most important paper preservative, which is extremely hazardous pollutant, was determined in some tissue papers and napkins. Twenty-five samples of two producing hygienic paper factories prepared from virgin and secondary pulp were analyzed for the presence of trace amount of PCP. The analytical procedure involved direct extraction of PCP from hygienic paper and its determination by gas chromatography with electron capture detection. The statistical results for the analysis of all samples revealed that there were significant differences between mean of PCP in hygienic papers prepared from virgin and secondary pulp (P<0.05. This method gave recoveries of 86-98% for hygienic paper made from virgin pulp and 79-92% for hygienic paper made from secondary pulp. The limit of detection (LOD and limit of quantification (LOQ for PCP were 6.3 and 21.0 mg/kg, respectively. The analytical method has the requisite sensitivity, accuracy, precision and specificity to assay PCP in hygienic papers. This study demonstrates a concern with exposition to PCP considering that hygienic paper is largely consumed in the society.

  15. Gas tax/public transit annual expenditure report pursuant to the agreement on the transfer of federal gas tax revenue and the agreement on the transfer of public transit funds for the period April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    Binnie, B.; Taylor, R.; Gibson, B.

    2007-09-01

    Federal funding initiatives for local infrastructure and capacity building was discussed with particular reference to the unique partnerships between the Canada-British Columbia Agreement on the transfer of federal gas tax revenues and the Canada-British Columbia agreement on the transfer of funds for public transit. The agreements reflect the nature of intergovernmental relations in British Columbia where the Union of British Columbia Municipalities (UBCM) works together with both federal and provincial governments to promote sustainable communities. This report identified the initiatives that are underway in communities across British Columbia as they begin to implement Gas Tax and Public Transit funded projects. These projects span a broad range of eligible project categories. The leadership role taken by local governments in the province to reduce greenhouse gas emissions was highlighted. Some of the 141 projects reported in 2007 were highlighted in this report, including improvement to public transit in the District of Saanich; TransLink bus replacement and expansion; cycling and pedestrian infrastructure; improvements to local roads and bridges; alternative energy retrofits; collection of solid waste; improvement to water systems; stormwater and wastewater treatment; capacity building; watershed protection; and water acquisition strategies. Of the projects reported, 33 per cent anticipated gas tax spending in more than 1 year, indicating either payment of capital costs as they are incurred during a construction period that spans beyond a single year, or use of gas tax funding towards the debt servicing costs related to the eligible project. tabs., figs

  16. Specialists' meeting on heat and mass transfer in the reactor cover gas, Harwell, England, 8-10 October 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The specialists' meeting on ''Heat and Mass Transfer in the Reactor Cover Gas'' was held at Harwell, the United Kingdom, on 8-10 October 1985. It was attended by 24 participants from all IWGFR member-countries: France, the Federal Republic of Germany, India, Italy, Japan, the Union of Soviet Socialist Republics, the United Kingdom and the United States. The meeting was presided over by Dr K. Eickhoff of the United Kingdom. The following topical areas were reviewed and discussed during the meeting: 1. National review presentations on the status of activities on heat and mass transfer in the reactor cover gas - 2 papers; 2. Aerosol dynamics - 4 papers; 3. Aerosol trapping - 2 papers; 4. Heat and mass transfer through cover gas in annuli - 3 papers; 5. Radiative properties - 4 papers; 6. Modelling of cover gas - 4 papers. A separate abstract was prepared for each of these papers. On the basis of papers presented and discussed by participants, session summaries and conclusions were drafted on the above topical areas. These summaries, as well as general conclusions and recommendations of the meeting were reviewed and agreed upon by consensus at the end of the meeting

  17. Magnetic Emissions Reduction by Varying Secondary Side Capacitor for Ferrite Geometry based Series-Parallel Topology Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Magnetic fields in surroundings of wireless power transfer system depends upon the two coil currents, distance from the coils and space angle between the two coil fields in steady state conditions. Increase in value of the secondary capacitor leads to a phase shift between the two currents and as...

  18. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  19. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  1. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  2. Reduction of magnetic emission by increasing secondary side capacitor for ferrite geometry based series-series topology for wireless power transfer to vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2014-01-01

    Magnetic fields emitted by wireless power transfer to vehicles can potentially affect living organisms. As a result, minimizing the magnetic emissions without compromising with the power transferred is one of the most significant challenges in the success of this technology. Active and passive...... and secondary currents from the standard design. Therefore, a part of the secondary magnetic flux comes in phase opposition with the primary flux and the resultant field is reduced. Operation point is shifted with the new design from the maximum power transfer resonance point and hence the reflected resistance...... is reduced. In order to maintain the same power level, the primary current and voltage have to increased and decreased in the same proportion. Also, the primary capacitor needs to be increased for maintaining unity input power factor in the system. The above statements are provided first with help...

  3. Serpentine tube heat transfer characteristic under accident condition in gas cooled reactors

    International Nuclear Information System (INIS)

    Abouhadra, D.S.; Byrne, J.E.

    2004-01-01

    In nuclear reactors of the Magnox or advanced gas Cooled type, serpentine tubing is used in some designs to generate steam in a once through arrangement. The calculation of accident conditions using two phase flow codes requires knowledge of the heat transfer behavior of the boiler steam side. A series of experiments to study the blowdown characteristics of a typical serpentine boiler section was devised in order to validate the MARTHA section of the MACE code used by nuclear Electric. The tests were carried out on the Thermal Hydraulics Experimental Research Assembly (THERA) loop at Manchester University. The Thermal Hydraulic Experimental Research Assembly was designed to operate with pressures up to 180 bar and temperatures of 450degC. The geometry and dimensions of this test section were similar to part of a gas cooled reactor boiler of the Hinkley Point design. Blowdown from a pressure of 60 bar with subcoolings of 5degC, 50degC, 100degC formed the main part of the programme. A set of tests was conducted using discharge orifices of different sizes to produce depressurization times from 30 s to 10 mins, and in a few cases, the duration of blowdown approached 1 hour. These times were defined using the criterion of blowdown end as a final pressure of 10% of the initial pressure. Pressures, wall and fluid temperatures were all measured at average time intervals of 1.1s during the excursion and an inventory of the remaining water content in the serpentine was taken when the blowdown ended. Some tests were also conducted at an initial pressure of 30 bar. The results obtained show interesting stratification effects for the relatively fast discharge, with substantial wall circumferential temperature variations. For these tests, a relatively small water inventory remained after blowdown. The discharge characteristics of the serpentine in terms of orifice size have been mapped, and tests at 30 bar show the equivalence in terms of orifice size have been mapped

  4. The evaluation of stress and piping support loads on RSG-GAS secondary cooling system

    International Nuclear Information System (INIS)

    Pustandyo, W.; Sitandung, Y. B.; Sujalmo, S.

    1998-01-01

    The evaluation of stress and piping support loads was evaluated on piping segment of secondary cooling water piping. In this paper, the analysis methods are presented with the use of computer code PS + CAEPIPE Version 3. 4. 05. W. From the selected pipe segment, the data of pipe characteristic, material properties, operation and design condition, equipment and support were used as inputs. The result of analysis show that stress and support loads if using location, kind and number of support equal with the system that have been installed for sustain load 3638 psi (node 160), thermal 13517 psi (node 90) and combination of sustain and thermal (node 90) 16747 psi. Meanwhile,if the optimization support, stress and support load for sustain load are respectively 4238 psi (node 10), thermal 13517 psi (node 90) and combination of sustain + thermal (node 90) 17350 psi. The limit values of permitted support based on Code PS+CAEPIPE of sustain load are 15000 psi, thermal 22500 psi and combination of sustain + thermal 37500 psi. The conclusion of evaluation result, that stress support load of pipe secondary cooling system are sufficiently low and using support show excessive and not economic

  5. A survey of gas-side fouling in industrial heat-transfer equipment

    Science.gov (United States)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  6. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  7. A how-to approach for a 3D simulation of charge transfer characteristics in a gas electron multiplier (GEM)

    CERN Document Server

    Sharma, A

    1999-01-01

    In this paper a detailed description of how to simulate charge transfer processes in a gaseous device is presented, taking the gas electron multiplier (GEM) as an example. A 3-dimensional simulation of the electric field and avalanche is performed. Results on charge transport are compared to experiment and agree within experimental errors; the avalanche mechanism and positive ion feedback are studied. The procedures used in the simulation are described in detail, and program scripts are appended. (15 refs).

  8. Modelling of gas-liquid reactors - stability and dynamic behaviour of gas-liquid mass transfer accompanied by irreversible reaction

    NARCIS (Netherlands)

    Elk, E.P. van; Borman, P.C.; Kuipers, J.A.M.; Versteeg, G.F.

    1999-01-01

    The dynamic behaviour and stability of single-phase reacting systems has been investigated thoroughly in the past and design rules for stable operation are available from literature. The dynamic behaviour of gas-liquid processes is considerably more complex and has received relatively little

  9. Effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Kroshilin, A.E.; Kroshilin, V.E.

    1979-01-01

    The effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer is analyzed. It is taken into account that inclusions (bubbles or drops) are not in a pure carrier phase, but in a disperse medium, mean properties of which are determined by the presence of other inclusions in it and by a temperature field around them. The consideration is carried out in the framework of two model of monodisperse mixture, i.e. that with a chaotic distribution of inclusions, and that with a regular distribution, when the distance between centers of inclusions is fixed. The correlation functions method is shown to be effective for the both models. Mean temperature fields around inclusions are determined along with the intensity of interphase heat and mass transfer. The dependences obtained are in a satisfactory agreement with experimental data. The dependence of interphase heat and mass transfer on the structure of disperse mixture is analyzed

  10. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  11. Numerical prediction on turbulent heat transfer of a spacer ribbed fuel rod for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1994-11-01

    The turbulent heat transfer of a fuel rod with three-dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors was analyzed numerically using the k-ε turbulence model, and investigated experimentally using a simulated fuel rod under the helium gas condition of a maximum outlet temperature of 1000degC and pressure of 4MPa. From the experimental results, it found that the turbulent heat transfer coefficients of the fuel rod were 18 to 80% higher than those of a concentric smooth annulus at a region of Reynolds number exceeding 2000. On the other hand, the predicted average Nusselt number of the fuel rod agreed well with the heat transfer correlation obtained from the experimental data within a relative error of 10% with Reynolds number of more than 5000. It was verified that the numerical analysis results had sufficient accuracy. Furthermore, the numerical prediction could clarify quantitatively the effects of the heat transfer augmentation by the spacer rib and the axial velocity increase due to a reduction in the annular channel cross-section. (author)

  12. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang; Zeng, Gaofeng; Pan, Yichang; Lai, Zhiping

    2011-01-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  13. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang

    2011-09-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  14. Determination of the main parameters of the cyclone separator of the flue gas produced during the smelting of secondary aluminum

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav

    2016-06-01

    One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.

  15. Experimental and analytical studies of iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool

    International Nuclear Information System (INIS)

    Miyahara, S.; Sagawa, N.; Shimoyama, K.

    1996-01-01

    In the fuel pin failure accident of a liquid metal fast reactor, volatile fission products play an important role in the assessment of radiological consequences. Especially the radioisotopes of elemental iodine are important because of their high volatility and of the low permissible dose to human thyroid. The released iodines are known to be retained in the coolant sodium as sodium iodide due to the chemical affinity between alkali metals and halogens. However, the xenon and krypton released with iodines into the sodium pool as bubbles may influence the reaction rate of iodine with sodium during the bubble rising. So far, the only few experimental results have been available concerning the decontamination factor (DF: the ratio of the initial iodine mass in the mixed gas bubble to the released mass into the cover gas) of iodine in this phenomenon. Therefore, experimental and analytical studies were carried out to study the mass transfer of iodine from a xenon-iodine mixed gas bubble to the liquid sodium pool. In the experiments, the bubble was generated in the sodium pool by cracking a quartz ball which contains the xenon-iodine mixed gas and then, the mixed gas released into the argon cover gas was collected to determine the transferred iodine mass into the pool. A rising velocity of the bubble was measured by Chen-type void sensors arranged vertically in the pool. From the measured rising velocity and another observation of bubble behavior in simulated water experiments, it is found that the generated bubble breaks up into several smaller bubbles of spherical cap type during the rising period. Transferred iodine mass per unit initial bubble volume from the bubble to the sodium pool shows increases with increasing time and the initial iodine concentration. A mass transfer rate obtained by differentiating the transferred iodine mass with respect to the time indicates a rapid decrease just after the bubble generation and a slow decrease for the successive period

  16. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    Science.gov (United States)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  17. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  18. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  19. The missing dimension of knowledge transfer from subsidiaries to headquarters: The case of Oil and Gas companies in CEE region

    Directory of Open Access Journals (Sweden)

    Emil Velinov

    2016-12-01

    Full Text Available The paper identifies knowledge management determinants of knowledge transfer from subsidiaries to headquarters in the top Oil & Gas companies in Central and Eastern Europe as their level of innovations, internationalization and economic importance are emerging. The paper sheds a light not only on the process of knowledge transfer parent-subsidiary but via versa as it is critical in the 21st century for better adapting to specific business needs in certain geographical regions. Thus, this reversed knowledge from subsidiaries to headquarters is critical for the given business sector where the level of innovation and amount of R&D investments are enormous. The study argues that the reversed process of knowledge transfers from subsidiary to parent company is positively related to company performance and business diversification. Nowadays the knowledge formed in the subsidiaries of Multinational Corporations (MNCs is transferred to headquarters by investing in R&D centres, building new exploration and testing sites abroad. In the reversed knowledge transfer process we can identify main challenges, which are very critical to analyse and determine the exact process.

  20. Modelling of bubble-mediated gas transfer: Fundamental principles and a laboratory test

    NARCIS (Netherlands)

    Woolf, D.K.; Leifer, I.S.; Nightingale, P.D.; Rhee, T.S.; Bowyer, P.; Caulliez, G.; Leeuw, G. de; Larsen, S.E.; Liddicoat, M.; Baker, J.; Andreae, M.O.

    2007-01-01

    The air-water exchange of gases can be substantially enhanced by wave breaking and specifically by bubble-mediated transfer. A feature of bubble-mediated transfer is the additional pressure on bubbles resulting from the hydrostatic forces on a submerged bubble and from surface tension and curvature.

  1. Determination of the gas-to-membrane mass transfer coefficient in a catalytic membrane reactor

    NARCIS (Netherlands)

    Veldsink, J.W.; Versteeg, G.F.; Swaaij, W.P.M. van

    1995-01-01

    A novel method to determine the external mass transfer coefficient in catalytic membrane reactors (Sloot et al., 1992a, b) was presented in this study. In a catalytically active membrane reactor, in which a very fast reaction occurs, the external transfer coefficient can conveniently be measured by

  2. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  3. Hydrodynamics and mass transfer deaeration of water on thermal power plants when used natural gas as a desorbing agent

    Science.gov (United States)

    Sharapov, V. I.; Kudryavtseva, E. V.

    2017-11-01

    The technology of low-temperature deaeration of water in thermal power plants was developed. It is proposed to use natural gas supplied to the furnace as desorbing agent in the deaerator instead steam or superheated water. Natural gas has low, often - negative temperature after reducing installs. At the same time, it contains virtually no corrosive gases, oxygen and carbon dioxide, thereby successfully may be used as a stripping agent in water deaeration. The calculation of the energy efficiency of the technology for a typical unit of CHP has shown that achieved a significant annual saving of fuel equivalent in the transition from the traditional method of deaeration of water in the low temperature deaeration. Hydrodynamic and mass transfer indicators were determined for the deaerator thermal power plants using as stripping medium natural gas supplied to the boiler burners. Theoretically required amount and the real specific consumption of natural gas were estimated for deaeration of water standard quality. The calculation of the hydrodynamic characteristics was presented for jet-bubbling atmospheric deaerator with undescended perforated plate when operating on natural gas. The calculation shows the possibility of using commercially available atmospheric deaerators for the application of the new low-temperature water deaeration technology.

  4. Simulating progressive social transfers. Gas subsidies and solidarity bonds in Ecuador

    International Nuclear Information System (INIS)

    Cuesta, J.; Ponce, J.; Leon, M.

    2004-02-01

    After two decades of neglect, social expending has become a cornerstone in the current fight against poverty in Ecuador. Ecuador is presently considering the elimination of regressive gas subsidies and the shift of these resources into pro-poor targeted Solidarity Bonds. Great distributive gains are expected from this reform. There are, however, a number of considerations that may prevent this policy shift from obtaining substantial poverty and equality gains. Despite their regressivity, implicit gas subsidies still represent a considerable proportion of total household consumption among poor households. Also, solidarity bonds siphon off a substantial share of their total benefits to middle income groups. This paper estimates the redistributive consequences of policy reforms on gas subsidies and solidarity bonds in Ecuador. A simulation methodology estimates both direct and indirect (labour-driven) distributive effects of four alternative scenarios: (1) total elimination of gas subsidies; (2) selective elimination of gas subsidies among non-poor households; (3) total elimination of gas subsidies and shift of resources to solidarity bonds targeted to the poor; (4) selective elimination of gas subsidies and shift of resources to solidarity bonds targeted to the poor. Estimates confirm that the redistributive gains from these reforms are rather small both for poverty and inequality. Incentives to work following the elimination of subsidies compensate, or even outdo, immediate poverty rises. Also, the elimination of gas subsidies without further expansion of subsidy bonds will unambiguously increase poverty in Ecuador between one and one and a half percent points

  5. Oscillatory conductive heat transfer for a fiber in an ideal gas

    Science.gov (United States)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  6. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    International Nuclear Information System (INIS)

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    , most of these studies, especially the gas migration tests, were conducted in European sedimentary rocks (Opalinus Clay in Benken and Mont Terri, Callovo-Oxfordian Clay at Bure). At present, gas transport data specific for Ontario sedimentary rocks are not available; the input parameters for mathematical models have to be inferred from the European database. This paper presents a methodological approach and the results of a study to assess the usefulness and transferability of geo-data from European to Ontario sedimentary rocks to model the THMC processes associated with gas migration in Ontario. Furthermore, predictive models (based on advanced soft-computing methods) to estimate the gas transport parameters of the Ontario rocks from data on European sedimentary rocks are presented and discussed. The paper is divided into three main parts: - In the first part, the main similarities and differences between the thermal, hydraulic, geochemical and geomechanical properties of the host rocks of the proposed Ontario DGR and European DGRs are highlighted and discussed, based on a comparison of the collected technical information on sedimentary rocks in Ontario and Europe. - The second part includes an analysis of the quality (e.g., uncertainties), suitability and transferability of the data gathered with respect to the investigation of gas generation and migration in a potential repository in Ontario's sedimentary rocks. - In the third part, a quantitative analysis of the transferability of the data is conducted by using advanced soft computing methods (e.g., Self Organizing Neuro-Fuzzy Inference System (SONFIS)). Predictive models are developed to predict the relevant parameters that are necessary to model and analyze gas transport in the study DGR in Ontario. The validation results show good agreement between the predicted and measured field values. In conclusion, this study has allowed us to identify the similarities and differences between the Ontario and European

  7. Validation of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer within the European project THINS

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, A., E-mail: angel.papukchiev@grs.de; Buchholz, S.

    2017-02-15

    Highlights: • ANSYS CFX is validated for gas and liquid metal flows. • L-STAR and TALL-3D experiments are simulated. • Complex flow and heat transfer phenomena are modelled. • Conjugate heat transfer has to be considered in CFD analyses. - Abstract: Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), numerical tools for the simulation of the thermal-hydraulics of next generation rector systems were developed, applied and validated for innovative coolants. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH participated in THINS with activities related to the development and validation of computational fluid dynamics (CFD) and coupled System Thermal Hydraulics (STH) – CFD codes. High quality measurements from the L-STAR and TALL-3D experiments were used to assess the numerical results. Two-equation eddy viscosity and scale resolving turbulence models were used in the validation process of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer. This paper provides a brief overview on the main results achieved at GRS within the project.

  8. Experimental investigation of heat transfer and flow using V and broken V ribs within gas turbine blade cooling passage

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.

    2015-05-01

    Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements

  9. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  10. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  11. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    Science.gov (United States)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  12. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  13. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  14. Air–Sea CO2 Gas Transfer Velocity in a Shallow Estuary

    DEFF Research Database (Denmark)

    Mørk, Eva Thorborg; Sørensen, Lise Lotte; Jensen, Bjarne

    2014-01-01

    The air–sea transfer velocity of CO2(kCO2) was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of CO2 fluxes and measured air–sea CO2 partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order......, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m s−1 , believed to be caused by early-breaking waves and the large fetch...... (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity....

  15. Radiation heat transfer through the gas of a sodium cooled fast breeder reactor

    International Nuclear Information System (INIS)

    Pradel, P.; Frachet, S.; Petit, D.

    1984-04-01

    Analysis based on results from the COCA test campaign and Germinal mockup of Super Phenix upper shuttings, of the heat transfers and radiation attenuation due to sodium aerosols between the free surface of sodium and the upper shuttings

  16. Heat Transfer Characteristics on the Squealer Tip of gas turbine blade in a linear cascade

    International Nuclear Information System (INIS)

    Lee, Woo Jin; Lee, Dong Hyun; Kim, Kyung Min; Cho, Hyung Hee; Lee, Dong Ho; Kang, Shin Hyoung

    2007-01-01

    The present study investigates local heat/mass transfer characteristics on blade tip surfaces with squealer rim in a linear cascade. A cascade experiment setup consists of three airfoils. The airfoil has variable tip clearance(1, 2, 3% of axial chord length) and rim height(3, 6, 9% of axial chord length). Main flow Reynolds number based on axial chord is 1.5 x 10 5 . The axial chord length and turning angle is 237mm and 126 .deg. respectively. Naphthalene sublimation method is used to measure detailed mass transfer coefficient on the blade. The results show that as the tip clearance increases, high heat transfer region moves from upstream to downstream. Also, as the rim height increases, high heat transfer region tends to move toward the suction side

  17. Primary gas- and particle-phase emissions and secondary organic aerosol production from gasoline and diesel off-road engines.

    Science.gov (United States)

    Gordon, Timothy D; Tkacik, Daniel S; Presto, Albert A; Zhang, Mang; Jathar, Shantanu H; Nguyen, Ngoc T; Massetti, John; Truong, Tin; Cicero-Fernandez, Pablo; Maddox, Christine; Rieger, Paul; Chattopadhyay, Sulekha; Maldonado, Hector; Maricq, M Matti; Robinson, Allen L

    2013-12-17

    Dilution and smog chamber experiments were performed to characterize the primary emissions and secondary organic aerosol (SOA) formation from gasoline and diesel small off-road engines (SOREs). These engines are high emitters of primary gas- and particle-phase pollutants relative to their fuel consumption. Two- and 4-stroke gasoline SOREs emit much more (up to 3 orders of magnitude more) nonmethane organic gases (NMOGs), primary PM and organic carbon than newer on-road gasoline vehicles (per kg of fuel burned). The primary emissions from a diesel transportation refrigeration unit were similar to those of older, uncontrolled diesel engines used in on-road vehicles (e.g., premodel year 2007 heavy-duty diesel trucks). Two-strokes emitted the largest fractional (and absolute) amount of SOA precursors compared to diesel and 4-stroke gasoline SOREs; however, 35-80% of the NMOG emissions from the engines could not be speciated using traditional gas chromatography or high-performance liquid chromatography. After 3 h of photo-oxidation in a smog chamber, dilute emissions from both 2- and 4-stroke gasoline SOREs produced large amounts of semivolatile SOA. The effective SOA yield (defined as the ratio of SOA mass to estimated mass of reacted precursors) was 2-4% for 2- and 4-stroke SOREs, which is comparable to yields from dilute exhaust from older passenger cars and unburned gasoline. This suggests that much of the SOA production was due to unburned fuel and/or lubrication oil. The total PM contribution of different mobile source categories to the ambient PM burden was calculated by combining primary emission, SOA production and fuel consumption data. Relative to their fuel consumption, SOREs are disproportionately high total PM sources; however, the vastly greater fuel consumption of on-road vehicles renders them (on-road vehicles) the dominant mobile source of ambient PM in the Los Angeles area.

  18. The effect of gas-phase polycyclic aromatic hydrocarbons on the formation and properties of biogenic secondary organic aerosol particles

    Energy Technology Data Exchange (ETDEWEB)

    Zelenyuk, Alla [Pacific Northwest National Laboratory; USA; Imre, Dan G. [Imre Consulting; USA; Wilson, Jacqueline [Pacific Northwest National Laboratory; USA; Bell, David M. [Pacific Northwest National Laboratory; USA; Suski, Kaitlyn J. [Pacific Northwest National Laboratory; USA; Shrivastava, Manish [Pacific Northwest National Laboratory; USA; Beránek, Josef [Pacific Northwest National Laboratory; USA; Alexander, M. Lizabeth [Pacific Northwest National Laboratory; USA; Kramer, Amber L. [Department of Chemistry; Oregon State University; USA; Massey Simonich, Staci L. [Department of Chemistry; Oregon State University; USA; Environmental and Molecular Toxicology; Oregon State University

    2017-01-01

    When secondary organic aerosol (SOA) particles are formed by ozonolysis in the presence of gas-phase polycyclic aromatic hydrocarbons (PAHs), their formation and properties are significantly different from SOA particles formed without PAHs. For all SOA precursors and all PAHs, discussed in this study, the presence of the gas-phase PAHs during SOA formation significantly affects particle mass loadings, composition, growth, evaporation kinetics, and viscosity. SOA particles formed in the presence of PAHs have, as part of their compositions, trapped unreacted PAHs and products of heterogeneous reactions between PAHs and ozone. Compared to ‘pure’ SOA particles, these particles exhibit slower evaporation kinetics, have higher fractions of non-volatile components, like oligomers, and higher viscosities, assuring their longer atmospheric lifetimes. In turn, the increased viscosity and decreased volatility provide a shield that protects PAHs from chemical degradation and evaporation, allowing for the long-range transport of these toxic pollutants. The magnitude of the effect of PAHs on SOA formation is surprisingly large. The presence of PAHs during SOA formation increases mass loadings by factors of two to five, and particle number concentrations, in some cases, by more than a factor of 100. Increases in SOA mass, particle number concentrations, and lifetime have important implications to many atmospheric processes related to climate, weather, visibility, and human health, all of which relate to the interactions between biogenic SOA and anthropogenic PAHs. The synergistic relationship between SOA and PAHs presented here are clearly complex and call for future research to elucidate further the underlying processes and their exact atmospheric implications.

  19. Mass transfer with complex chemical reactions in gas-liquid systems: two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas bhat, R.D.; Kuipers, J.A.M.; Versteeg, Geert

    2000-01-01

    An absorption model to study gas¿liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  20. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  1. Numerical simulation of gas-liquid two-phase flow behavior with condensation heat transfer

    International Nuclear Information System (INIS)

    Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi.

    1995-01-01

    In this study, condensation heat transfer experiments were performed in order to verify a condensation heat transfer model coupled with a three-dimensional two-phase flow analysis. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for steam velocity effect. In the experiments, 112 horizontal staggered tubes with an outer diameter of 16 mm and length of 0.55 m were used. Steam and spray water were supplied to the test section, and inlet quality was controlled by the spray water flow rate. The temperature was 100degC and the pressure was 0.1 MPa. The overall heat transfer coefficients were measured for inlet quality of 13-100%. From parameter calculations for the falling liquid film ratio from the upper tubes to the lower tubes, the calculated overall heat transfer coefficients agreed with the data to within ±5% at the falling liquid film ratio of 0.7. (author)

  2. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    Science.gov (United States)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  3. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  4. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    Science.gov (United States)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  5. Decay heat removal and heat transfer under normal and accident conditions in gas cooled reactors

    International Nuclear Information System (INIS)

    1994-08-01

    The meeting was convened by the International Atomic Energy Agency on the recommendation of the IAEA's International Working Group on Gas Cooled Reactors. It was attended by participants from China, France, Germany, Japan, Poland, the Russian Federation, Switzerland, the United Kingdom and the United States of America. The meeting was chaired by Prof. Dr. K. Kugeler and Prof. Dr. E. Hicken, Directors of the Institute for Safety Research Technology of the KFA Research Center, and covered the following: Design and licensing requirements for gas cooled reactors; concepts for decay heat removal in modern gas cooled reactors; analytical methods for predictions of thermal response, accuracy of predictions; experimental data for validation of predictive methods - operational experience from gas cooled reactors and experimental data from test facilities. Refs, figs and tabs

  6. Equations for nickel-chromium wire heaters of column transfer lines in gas chromatographic-electroantennographic detection (GC-EAD).

    Science.gov (United States)

    Byers, John A

    2004-05-30

    Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.

  7. Numerical and Experimental Investigations of Design Parameters Defining Gas Turbine Nozzle Guide Vane Endwall Heat Transfer

    OpenAIRE

    Rubensdörffer, Frank G.

    2006-01-01

    The primary requirements for a modern industrial gas turbine consist of a continuous trend of an increasing efficiency combined with very low emissions in a robust, cost-effective manner. To fulfil these tasks a high turbine inlet temperature together with advanced dry low NOX combustion chambers are employed. These dry low NOX combustion chambers generate a rather flat temperature profile compared to previous generation gas turbines, which have a rather parabolic temperature profile before t...

  8. Use of Polyurethane Coating to Prevent Corrosion in Oil and Gas Pipelines Transfer

    OpenAIRE

    Amir Samimi

    2012-01-01

    Corrosion is one of the major problems in the oil and gas industry is one that automatically allocates huge sums annually. Polyurethane is a thermoses polymer with various applications. Using form this polymer has spread for military applications by Otto Bayer in 1930. In one general look polyurethane is product of Iso Syanate and ploy with each other, So that: Iso + ploy = polyurethane. Spend large cost for application and launching oil and gas transitions, has cleared the necessity protecti...

  9. Numerical analysis of gas transfer by natural convection in a fluid saturated porous medium

    International Nuclear Information System (INIS)

    Akbal, S.; Filiz Baytas, A.

    2005-01-01

    The concentration distribution of a radioactive gas in a square porous cavity is investigated in this study. The decay of the radioactive gas is taken into account in the concentration equation. The governing equations are solved using alternating direction implicit method (ADI) and Finite volume method. Numerical results for velocity and concentration profiles are presented for an extensive range of parameter like Grashof number (Gr c ), Schmidt number (Sc) and the non-dimensional constant of radioactive decay. (authors)

  10. Numerical analysis of gas transfer by natural convection in a fluid saturated porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Akbal, S. [Cekmece Nuclear Research and Training Center (Turkey); Filiz Baytas, A. [Istanbul Technical Univ. (Turkey). Inst. for Energy

    2005-07-01

    The concentration distribution of a radioactive gas in a square porous cavity is investigated in this study. The decay of the radioactive gas is taken into account in the concentration equation. The governing equations are solved using alternating direction implicit method (ADI) and Finite volume method. Numerical results for velocity and concentration profiles are presented for an extensive range of parameter like Grashof number (Gr{sub c}), Schmidt number (Sc) and the non-dimensional constant of radioactive decay. (authors)

  11. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...... and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...

  12. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  13. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    Science.gov (United States)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  14. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    Science.gov (United States)

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Isotope effects for base-promoted, gas-phase proton transfer reactions

    International Nuclear Information System (INIS)

    Grabowski, J.J.; Cheng, Xueheng

    1991-01-01

    Proton transfer reactions are among the most basic, the most common and the most important of chemical transformations; despite their apparent simplicity, much is unknown about this most fundamental of all chemical processes. Active interest in understanding the underlying principles of organic proton transfer reactions continues because of efforts being made to develop the theory of elementary chemical processes, because of the resurgence of interest in mechanistic organic chemistry and because of the resurgence of interest in mechanistic organic chemistry processes, because of the resurgence of interest in mechanistic organic chemistry and because of the dynamic role played by proton transfers in biochemical transformations. As organic chemists, the authors have used the flowing afterglow technique to gain an appreciation of the fundamental issues involved in reaction mechanisms by examining such processes in a solvent-free environment under thermally-equilibrated (300 K) conditions. Recent characterization of the facile production of both acetate and the monoenolate anion from the interaction of hydroxide or fluoride with acetic acid reinforces the idea that much yet must be learned about proton transfers/proton abstractions in general. Earlier work by Riveros and co-workers on competitive H vs D abstraction from α-d 1 -toluenes and by Noest and Nibbering on competitive H vs D abstraction from α,α,α-d 3 -acetone, in combination with the acetic acid results, challenged the author's to assemble a comprehensive picture of the competitive nature of proton transfer reactions for anionic base-promoted processes

  16. A novel technique based on 85Kr for quantification of gas-liquid mass transfer in bioreactors

    International Nuclear Information System (INIS)

    Pedersen, A.G.; Andersen, H.; Nielsen, J.; Villadsen, J.

    1994-01-01

    A promising technique for quantification of the mass transfer coefficient k l a for oxygen in bioreactors is described. The method is based on injection of the volatile, inert 85 Kr isotope into the medium followed by measurement of the radioactivity in the gas leaving the head space. The measured response is interpreted using a simple model for the gas flow through the bioreactor. The method is compared with two other methods: (1) a dynamic method based on N 2 and (2) the classical sulphite method. The isotope method compares well with the dynamic method and, from the comparison with the sulphite method, it is concluded that the sulphite method gives an overestimation of k l a which cannot be explained solely by reduced coalescence due to the electrolyte. The extra effect is probably due to chemical reaction in the liquid film. The isotope method has been used to study the influence of the medium composition on the oxygen mass transfer. A major advantage of the 85 Kr method is that it can by applied during real process conditions as illustrated in an experiment with growth of Aspergillus oryzae. (Author)

  17. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  18. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  19. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    Science.gov (United States)

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. The Effect of a Serious Digital Game on Students’ Ability to Transfer Knowledge in Secondary Agricultural Education: An Exploratory Study

    Directory of Open Access Journals (Sweden)

    J. C. Bunch

    2016-06-01

    Full Text Available This study’s purpose was to compare the effectiveness of the traditional, lecture and discussion method to a digital game-based learning (DGBL approach on students’ near and far knowledge transfer abilities in agriculture and mathematics regarding a unit on swine diseases in animal science courses. Two research questions guided the study, which employed a quasi-experimental, between-groups design. No statistically significant differences (p > .05 were found between the counterfactual group and the treatment group regarding students’ near and far knowledge transfer. Based on this result, it can be recommended that professional development opportunities be created with an emphasis on using serious games to teach course content for in-service teachers without diminishing students’ knowledge transfer. Specifically, the creators of this professional development should consider emphasizing Technological Pedagogical Content Knowledge development in teachers. In addition, future investigations should focus on the kind of transfer that occurred, whether positive, negative, or zero.

  1. Wind and Wave Characteristics Observed During the LUMINY Gas Transfer Experiments

    NARCIS (Netherlands)

    Caulliez, G.; Jaouen, L.; Larsen, S.E.; Hansen, F.Aa.; Lund, S.; Leeuw, G. de; Woolf, D.K.; Bowyer, P.A.; Leifer, I.; Kunz, G.J.; Nightingale, P.D.; Rhee, T.S.; Liddicoat, M.I.; Baker, J.; Rapsomanikis, S.; Hassoun, S.; Cohen, L.H.

    1999-01-01

    The parameterization of the greenhouse gas fluxes between the atmosphere and oceans as function of wind and sea state parameters remains a challenging problem, of key importance for climate modelling. It is well-known that exchange across the air-water interface of gases of poor solubility as carbon

  2. Modeling bubble heat transfer in gas-solid fluidized beds using DEM

    NARCIS (Netherlands)

    Patil, A.V.; Peters, E.A.J.F.; Kolkman, T.; Kuipers, J.A.M.

    2014-01-01

    Discrete element method (DEM) simulations of a pseudo 2-D fluidized bed at non-isothermal conditions are presented. First implementation details are discussed. This is followed by a validation study where heating of a packed column by a flow of heated fluid is considered. Next hot gas injected into

  3. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  4. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    Science.gov (United States)

    Pipa, A. V.; Koskulics, J.; Brandenburg, R.; Hoder, T.

    2012-11-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge qmax, and (iii) the development of a graphical method for the determination of qmax from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of qmax is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current jR(t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance Cd. Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the Cd is important.

  5. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    International Nuclear Information System (INIS)

    Pipa, A. V.; Brandenburg, R.; Hoder, T.; Koskulics, J.

    2012-01-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge q max , and (iii) the development of a graphical method for the determination of q max from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of q max is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current j R (t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance C d . Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the C d is important.

  6. Extension of weighted sum of gray gas data to mathematical simulation of radiative heat transfer in a boiler with gas-soot media.

    Science.gov (United States)

    Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman

    2014-01-01

    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  7. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  8. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  9. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  10. Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube

    International Nuclear Information System (INIS)

    Fukagata, Koji; Kasagi, Nobuhide; Ua-arayaporn, Poychat; Himeno, Takehiro

    2007-01-01

    Numerical simulation of an air and water two-phase flow in a 20 μm ID tube is carried out. A focus is laid upon the flow and heat transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gradient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34-13 and 16-490, respectively, and the capillary number is 0.0087-0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The computed wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number beneath the bubble is found notably higher than that of single-phase flow

  11. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  12. Multiple mechanisms generate a universal scaling with dissipation for the air-water gas transfer velocity

    Science.gov (United States)

    Katul, Gabriel; Liu, Heping

    2017-02-01

    A large corpus of field and laboratory experiments support the finding that the water side transfer velocity kL of sparingly soluble gases near air-water interfaces scales as kL˜(νɛ)1/4, where ν is the kinematic water viscosity and ɛ is the mean turbulent kinetic energy dissipation rate. Originally predicted from surface renewal theory, this scaling appears to hold for marine and coastal systems and across many environmental conditions. It is shown that multiple approaches to representing the effects of turbulence on kL lead to this expression when the Kolmogorov microscale is assumed to be the most efficient transporting eddy near the interface. The approaches considered range from simplified surface renewal schemes with distinct models for renewal durations, scaling and dimensional considerations, and a new structure function approach derived using analogies between scalar and momentum transfer. The work offers a new perspective as to why the aforementioned 1/4 scaling is robust.

  13. Gas and aerosol radionuclide transfers in complex environments: experimental studies of atmospheric dispersion and interfaces exchanges

    International Nuclear Information System (INIS)

    Maro, Denis

    2011-01-01

    In situations of chronic or accidental releases, the atmosphere is the main pathway of radioactive releases from nuclear facilities to the environment and, consequently, to humans. It is therefore necessary to have sufficient information on this pathway to accurately assess the radiological impact on man and his environment. Institute for Radioprotection and Nuclear Safety develops its own tools of dispersion and atmospheric transfer for its expertise, under normal operation conditions of a facility, but especially in crisis or post-accident. These tools must have a national and international recognition in particular through scientific validation against benchmark experiments performed internationally, nationally or within the IRSN. The Radioecology Laboratory of Cherbourg-Octeville provides, and will increasingly make, a significant contribution to the scientific influence of the Institute in this field. The work presented in this report has contributed to the development or improvement of experimental techniques in the fields of atmospheric dispersion of radionuclides and transfer at interfaces, in complex environments (complex topography, urban area). These experimental techniques, applied during field campaigns, have allowed to acquire new data in order to get a better understanding of radionuclide transfers in the form of gases and aerosols. (author)

  14. Sensitivity of secondary production and export flux to choice of trophic transfer formulation in marine ecosystem models

    Science.gov (United States)

    Anderson, Thomas R.; Hessen, Dag O.; Mitra, Aditee; Mayor, Daniel J.; Yool, Andrew

    2013-09-01

    The performance of four contemporary formulations describing trophic transfer, which have strongly contrasting assumptions as regards the way that consumer growth is calculated as a function of food C:N ratio and in the fate of non-limiting substrates, was compared in two settings: a simple steady-state ecosystem model and a 3D biogeochemical general circulation model. Considerable variation was seen in predictions for primary production, transfer to higher trophic levels and export to the ocean interior. The physiological basis of the various assumptions underpinning the chosen formulations is open to question. Assumptions include Liebig-style limitation of growth, strict homeostasis in zooplankton biomass, and whether excess C and N are released by voiding in faecal pellets or via respiration/excretion post-absorption by the gut. Deciding upon the most appropriate means of formulating trophic transfer is not straightforward because, despite advances in ecological stoichiometry, the physiological mechanisms underlying these phenomena remain incompletely understood. Nevertheless, worrying inconsistencies are evident in the way in which fundamental transfer processes are justified and parameterised in the current generation of marine ecosystem models, manifested in the resulting simulations of ocean biogeochemistry. Our work highlights the need for modellers to revisit and appraise the equations and parameter values used to describe trophic transfer in marine ecosystem models.

  15. Numerical investigation of energy transfer for fast gas heating in an atmospheric nanosecond-pulsed DBD under different negative slopes

    International Nuclear Information System (INIS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-01-01

    A validated one-dimensional air plasma kinetics model (13 species and 37 processes) for a nanosecond discharge under atmospheric pressure was developed to reveal the energy transfer mechanism for fast gas heating of a plane-to-plane dielectric barrier discharge (DBD). Calculations for voltage profiles with three different negative slopes were performed. Results have shown that 72% of the total heating energy goes to quench heating, which results in a temperature rise across the gap, the remaining 28% goes to ion collisions, thus heating the cathode sheath in a higher power density. The relationships between ion collision heating, quench heating and reduced electric field are given as two functions, which indicates that 10 13  W m −3 is the peak magnitude of power density produced by ion collisions in the nanosecond-pulsed DBD under atmospheric pressure, and a further increase in E/N does not increase the higher quench heating power. The steepness of the negative slope mainly affects the energy transfer efficiency, and the percentage of two heating sources in the total heating power. A short pulse will couple positive and negative slopes and provide a higher transient total heating power but lower energy transfer efficiency. By uncoupling the positive slope, steady stage and negative slope, the energy transfer efficiency under a certain voltage amplitude (20 kV in this paper) is found to have a maximum value of 68.5%. Two wave crests of temperature rise near the cathode sheath are observed, one is caused by a positive slope and the other by a negative slope. (paper)

  16. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Wells, BE; Meyer, P.E.; Chen, G.

    2000-01-01

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000

  17. Experimental study of gas combustion fluidized bed and radiation contribution to heat transfer inside the bed. Gas nensho ryudoso to sono sonai netsudentatsu ni okeru fukusha no kiyo ni tsuite no jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y; Takahashi, S [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan); Maki, H [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1992-11-25

    Fluidized bed as a coal combustion boiler has a practical application, but, there is not an example of which gas like helium as a cooling medium flow in a thin tube with diameter of 6 mm like a stirling engine and necessary data for selecting the medium of fluidized bed and estimating the heat transfer coefficient. Specially, it is difficult to correctly estimate the radiation effect concerned with the heat transfer coefficient in case of interposing the heat transfer tube at 800 [degree]C in the high-temperature fluidized bed at more than 900 [degree]C. Therefore, for investigating the thermal characteristics when the temperature of pipe itself is at high temperature, in the gas combustion fluidized bed in which alumina particle as fluidized medium is filled, the cooling tubes by using carbonic acid gas as a cooling medium was interposed, heat transfer coefficient was measured, radiation effect was clarified by experiment, and characteristics of the gas combustion and of the exhaust gas of fluidized bed when gas is used for a fuel was investigated. 13 refs., 12 figs., 1 tab.

  18. Influence of heat transfer on the dynamic response of a spherical gas/vapour bubble

    International Nuclear Information System (INIS)

    Hegedus, Ferenc; Hos, Csaba; Kullmann, Laszlo

    2010-01-01

    The standard approach to analyse the bubble motion is the well known Rayleigh-Plesset equation. When applying the toolbox of nonlinear dynamical systems to this problem several aspects of physical modelling are usually sacrificed. Particularly in vapour bubbles the heat transfer in the liquid domain has a significant effect on the bubble motion; therefore the nonlinear energy equation coupled with the Rayleigh-Plesset equation must be solved. The main aim of this paper is to find an efficient numerical method to transform the energy equation into an ODE system, which, after coupling with the Rayleigh-Plesset equation can be analysed with the help of bifurcation theory. Due to the strong nonlinearity and violent bubble motions the computational effort can be high, thus it is essential to reduce the size of the problem as much as possible. In the first part of the paper finite difference, Galerkin and spectral collocation methods are examined and compared in terms of efficiency. In the second part free and forced oscillations are analysed with an emphasis on the influence of heat transfer. In the case of forced oscillations the unstable branches of the amplification diagrams are also computed.

  19. Aerosol formation from heat and mass transfer in vapour-gas mixtures

    International Nuclear Information System (INIS)

    Clement, C.F.

    1985-01-01

    Heat and mass transfer equations and their coupling to the equation for the aerosol size distribution are examined for mixtures in which pressure changes are slow. Specific results in terms of Cn (the condensation number) and Le (the Lewis number - the ratio of the relative rates of evaporation and condensation) are obtained for the proportion of vapour condensing as a aerosol during the cooling and heating of a mixture in a well-mixed cavity. The assumption of allowing no supersaturations, the validity of which is examined, is shown to lead to maximum aerosol formation. For water vapour-air mixtures predictions are made as to temperature regions in which aerosols will evaporate or not form in cooling processes. The results are also qualitatively applied to some atmospheric effects as well as to water aerosols formed in the containment of a pressurized water reactor following a possible accident. In this context, the present conclusion that the whereabouts of vapour condensation is controlled by heat and mass transfer, contrasts with previous assumptions that the controlling factor is relative surface areas. (U.K.)

  20. Soil Microbial Communities and Gas Dynamics Contribute to Arbuscular Mycorrhizal Nitrogen Uptake and Transfer to Plants

    Science.gov (United States)

    Hestrin, R.; Harrison, M. J.; Lehmann, J.

    2016-12-01

    Arbuscular mycorrhizal fungi (AMF) associate with most terrestrial plants and influence ecosystem ecology and biogeochemistry. There is evidence that AMF play a role in soil nitrogen cycling, in part by taking up nitrogen and transferring it to plants. However, many aspects of this process are poorly understood, including the factors that control fungal access to nitrogen stored in soil organic matter. In this study, we used stable isotopes and root exclusion to track nitrogen movement from organic matter into AMF and host plants. AMF significantly increased total plant biomass and nitrogen content, but both AMF and other soil microbes seemed to compete with plants for nitrogen. Surprisingly, gaseous nitrogen species also contributed significantly to plant nitrogen content under alkaline soil conditions. Our current experiments investigate whether free-living microbial communities that have evolved under a soil nitrogen gradient influence AMF access to soil organic nitrogen and subsequent nitrogen transfer to plants. This research links interactions between plants, mycorrhizal symbionts, and free-living microbes with terrestrial carbon and nitrogen dynamics.

  1. Numerical Modeling of Fluid Flow, Heat Transfer and Arc-Melt Interaction in Tungsten Inert Gas Welding

    Science.gov (United States)

    Li, Linmin; Li, Baokuan; Liu, Lichao; Motoyama, Yuichi

    2017-04-01

    The present work develops a multi-region dynamic coupling model for fluid flow, heat transfer and arc-melt interaction in tungsten inert gas (TIG) welding using the dynamic mesh technique. The arc-weld pool unified model is developed on basis of magnetohydrodynamic (MHD) equations and the interface is tracked using the dynamic mesh method. The numerical model for arc is firstly validated by comparing the calculated temperature profiles and essential results with the former experimental data. For weld pool convection solution, the drag, Marangoni, buoyancy and electromagnetic forces are separately validated, and then taken into account. Moreover, the model considering interface deformation is adopted in a stationary TIG welding process with SUS304 stainless steel and the effect of interface deformation is investigated. The depression of weld pool center and the lifting of pool periphery are both predicted. The results show that the weld pool shape calculated with considering the interface deformation is more accurate.

  2. Flow and Heat Transfer Characteristics of Turbulent Gas Flow in Microtube with Constant Heat Flux

    International Nuclear Information System (INIS)

    Hong, Chungpyo; Matsushita, Shinichi; Ueno, Ichiro; Asako, Yutaka

    2012-01-01

    Local friction factors for turbulent gas flows in circular microtubes with constant wall heat flux were obtained numerically. The numerical methodology is based on arbitrary-Lagrangian-Eulerian method to solve two-dimensional compressible momentum and energy equations. The Lam-Bremhorst's Low-Reynolds number turbulence model was employed to calculate eddy viscosity coefficient and turbulence energy. The simulations were performed for a wide flow range of Reynolds numbers and Mach numbers with different constant wall heat fluxes. The stagnation pressure was chosen in such a way that the outlet Mach number ranged from 0.07 to 1.0. Both Darcy friction factor and Fanning friction factor were locally obtained. The result shows that the obtained both friction factors were evaluated as a function of Reynolds number on the Moody chart. The values of Darcy friction factor differ from Blasius correlation due to the compressibility effects but the values of Fanning friction factor almost coincide with Blasius correlation. The wall heat flux varied from 100 to 10000 W/m 2 . The wall and bulk temperatures with positive heat flux are compared with those of incompressible flow. The result shows that the Nusselt number of turbulent gas flow is different from that of incompressible flow.

  3. Gas

    International Nuclear Information System (INIS)

    1996-01-01

    The French government has decided to modify the conditions of extension of local natural gas authorities to neighbouring districts. The European Union is studying the conditions of internal gas market with the objective of more open markets although considering public service requirements

  4. Effect of jet nozzle geometry on flow and heat transfer performance of vortex cooling for gas turbine blade leading edge

    International Nuclear Information System (INIS)

    Du, Changhe; Li, Liang; Wu, Xin; Feng, Zhenping

    2016-01-01

    Highlights: • We establish a suitable vortex chamber model for gas turbine blade leading edge. • Mechanism of vortex cooling is further discussed and presented. • Influences of jet nozzle geometry on vortex cooling characteristics are researched. • This paper focuses on assessment of flow field and thermal performance for different jet nozzle aspect ratio and area. - Abstract: In this paper, 3D viscous steady Reynolds Averaged Navier–Stokes (RANS) equations are utilized to investigate the influence of jet nozzle geometry on flow and thermal behavior of vortex cooling for gas turbine blades. Comparison between calculation with different turbulence models and the experimental data is conducted, and results show that the standard k-ω model provides the best accuracy. The grid independence analysis is performed to obtain the proper mesh number. First, the mechanism of vortex cooling is further discussed, and the pronounced impact of kinetic turbulence intensity, thin thermal boundary layer, violent radial convection and complex vortices on enhanced heat transfer performance is confirmed. Then, seven jet nozzle aspect ratios and seven jet nozzle to chamber cross section area ratios are selected to research the flow field and thermal characteristics of vortex cooling focusing on the streamline, static pressure ratio, total pressure loss ratio and Nusselt number. It is presented that the jet nozzle aspect ratio and jet nozzle to chamber cross section area ratio both impose a significant effect on the flow and thermal parameters. The averaged Nusselt number decreases at first and then increases with the increasing jet nozzle aspect ratio, reaching highest when aspect ratio equals to 1. The effect of area ratio on averaged Nusselt number is complex. Finally, the heat transfer results in this study are compared with other previous works. Results indicate that good agreement with previous data is achieved, and the enhanced thermal behavior may be acquired by

  5. Charge transfer processes during ion scattering and stimulated desorption of secondary ions from gas-condensed dielectric surfaces

    CERN Document Server

    Souda, R

    2002-01-01

    The ion emission mechanism from weakly-interacting solid surfaces has been investigated. The H sup + ion captures a valence electron via transient chemisorption, so that the ion neutralization probability is related to the nature of bonding of adsorbates. The H sup + ion is scattered from physisorbed Ar at any coverage whereas the H sup + yield from solid H sub 2 O decays considerably due to covalency in the hydrogen bond. In electron- and ion-stimulated desorption, the ion ejection probability is correlated intimately with the physisorption/chemisorption of parent atoms or molecules. The emission of F sup + ions is rather exceptional because they arise from the screened F 2s core-hole state followed by the ionization via the intra-atomic Auger decay after bond breakage. In electron-stimulated desorption of H sub 2 O, hydrated protons are emitted effectively from nanoclusters formed on a solid Ar substrate due to Coulomb repulsion between confined valence holes.

  6. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  7. Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications.

    Science.gov (United States)

    Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2017-11-09

    The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.

  8. Water Quality Research Program: Abstracts of the International Symposium on Gas Transfer at Water Surfaces (2nd) Held in Minneapolis, Minnesota on 11-14 September 1990

    Science.gov (United States)

    1990-08-01

    layer on the surface) it is 2 - 3 times less. Many in- situ observations show that different patterns of temperature distribution in the surface water...Coeficiente de Reaeracao dos Escoamentos Naturais da Agua com o Emprego de Tracador Gasoso. M.Sc Dissertation, Universidade de Sao Paulo, EESC, Depto. de...structure. If methane is present in measurable quantities it may prove to be an excellent in- situ tracer of gas transfer. Transfer efficiency has been used

  9. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  10. A thermodynamic and heat transfer model for LNG ageing during ship transportation. Towards an efficient boil-off gas management

    Science.gov (United States)

    Krikkis, Rizos N.

    2018-06-01

    A non-equilibrium thermodynamic and heat transfer model for LNG ageing during ship transportation has been developed based on experimental data. The measurements reveal that the liquid temperature remains nearly constant, whereas significant variations are observed for the gas temperature. The measurement of the liquid temperature along the tank height suggests that a small scale rollover phenomenon may have taken place in one cargo tank. A time dependent heat transfer mechanism has been considered by taking into account the temperature variations of the atmospheric air, the seawater and the cofferdam environment which affect the cargo tanks. An important finding is that the evaporation rate (boil-of rate) is forced to follow the fuel flow consumption profile imposed by the vessel's propulsion system in order to match the tank pressure and volume constraints. The theoretical model is favorably compared to a comprehensive set on per hour basis of on board measurements of cargo temperatures and pressures, recorded during laden voyages, providing a better understanding of the underlying processes involved. The dominant role of the fuel consumption on the evaporation rate may be utilized in order to devise an efficient cargo management strategy during the laden voyage.

  11. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    OpenAIRE

    Zhongchao Zhao; Kai Zhao; Dandan Jia; Pengpeng Jiang; Rendong Shen

    2017-01-01

    As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as working fluid. The thermal properties of supercritical LNG were tested by utilizing t...

  12. Direct measurements of wind-water momentum coupling in a marsh with emergent vegetation and implications for gas transfer estimates

    Science.gov (United States)

    Tse, I.; Poindexter, C.; Variano, E. A.

    2013-12-01

    Among the numerous ecological benefits of restoring wetlands is carbon sequestration. As emergent vegetation thrive, atmospheric CO2 is removed and converted into biomass that gradually become additional soil. Forecasts and management for these systems rely on accurate knowledge of gas exchange between the atmosphere and the wetland surface waters. Our previous work showed that the rate of gas transfer across the air-water interface is affected by the amount of water column mixing caused by winds penetrating through the plant canopy. Here, we present the first direct measurements of wind-water momentum coupling made within a tule marsh. This work in Twitchell Island in the California Delta shows how momentum is imparted into the water from wind stress and that this wind stress interacts with the surface waters in an interesting way. By correlating three-component velocity signals from a sonic anemometer placed within the plant canopy with data from a novel Volumetric Particle Imager (VoPI) placed in the water, we measure the flux of kinetic energy through the plant canopy and the time-scale of the response. We also use this unique dataset to estimate the air-water drag coefficient using an adjoint method.

  13. Heat transfer in gas-cooled piles; Echanges thermiques dans les piles a gaz

    Energy Technology Data Exchange (ETDEWEB)

    Le Foll, J; Gelin, P; Robert, E de [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1958-07-01

    Measurements under steady flow conditions gave the distribution of the local heat transfer coefficient along the cross section perimeter of a longitudinally finned can. The distribution is generally affected by strong irregularities which make the elementary theory of heat transfer along the fins inapplicable. We studied systematically the above mentioned distribution and established however that heat transfer properties were rendered similar to those of an annular channel cross-section with isotherms heat exchange perimeter by application of two non-dimensional parameters. These parameters may be calculated by integration on the specific channel cross section and will generally permit to reach a sufficient approximation. Although the computation is rather difficult the evaluation of the parameters is more easily done by electrical analogy measurements and there even exits a possibility to learn directly about the effect of slight changes of the can outer perimeter. Now, the channel as a whole is rated to such performances as are apt to keep the can temperature below a given limiting value, generally by making the assumption that the properties of the cross section remain identical through-out the channel. Usually, however, there are many separate fuel elements along the channel and consequently flux and heat transfer coefficient distribution and local temperature values on the can may be significantly disturbed compared to the simpler case above mentioned. We must therefore bear in mind to design the fuel elements to avoid end caps becoming in turn overheated. Moreover, fuel end caps may be more heavily stressed than the other parts of the can which results in a lower value of the temperature limit and it must be remembered they lie nearer fuel hotter parts on the rod axis, precisely where fuel discontinuity, to make matters worse, may cause the flux to show a rise. The flux rise was computed on an electronic machine and subsequently measured directly

  14. Solid particle effects on heat transfer in a multi-layered molten pool with gas injection

    International Nuclear Information System (INIS)

    Bilbao y Leon, Rosa Marina; Corradini, Michael L.

    2006-01-01

    In the very unlikely event of a severe reactor accident involving core melt and pressure vessel failure, it is important to identify the circumstances that would allow the molten core material to cool down and resolidify, bringing core debris to a stable coolable state. To achieve this, it has been proposed to flood the cavity with water from above forming a layered structure where upward heat loss from the molten pool to the water will cause the core material to quench and solidify. In this situation the molten pool would become a three-phase mixture: e.g., a solid and liquid slurry formed by the molten pool as it cools to a temperature below the temperature of liquidus, agitated by the gases formed in the concrete ablation process. The present work quantifies the partition of the heat losses upward and downward in this multi-layered configuration, considering the influence of the viscosity and the solid fraction in the pool, from test data obtained from intermediate scale experiments at the University of Wisconsin-Madison. These experimental results show heat transfer behavior for multi-layered pools for a range of viscosities and solid fractions. These results are compared to previous experimental studies and well known correlations and models

  15. Heat transfer in a compact heat exchanger containing rectangular channels and using helium gas

    Science.gov (United States)

    Olson, D. A.

    1991-01-01

    Development of a National Aerospace Plane (NASP), which will fly at hypersonic speeds, require novel cooling techniques to manage the anticipated high heat fluxes on various components. A compact heat exchanger was constructed consisting of 12 parallel, rectangular channels in a flat piece of commercially pure nickel. The channel specimen was radiatively heated on the top side at heat fluxes of up to 77 W/sq cm, insulated on the back side, and cooled with helium gas flowing in the channels at 3.5 to 7.0 MPa and Reynolds numbers of 1400 to 28,000. The measured friction factor was lower than that of the accepted correlation for fully developed turbulent flow, although the uncertainty was high due to uncertainty in the channel height and a high ratio of dynamic pressure to pressure drop. The measured Nusselt number, when modified to account for differences in fluid properties between the wall and the cooling fluid, agreed with past correlations for fully developed turbulent flow in channels. Flow nonuniformity from channel-to-channel was as high as 12 pct above and 19 pct below the mean flow.

  16. Italian position paper on heat and mass transfer in the reactor cover gas

    International Nuclear Information System (INIS)

    Caponetti, R.; Olivieri, P.; Petrazzuolo, F.

    1986-01-01

    The major effort being made in Italy with regard to the development of fast nuclear reactors is concentrated, as is known, in the construction of the PEC reactor, whose mechanical completion is expected early in 1988. The 116MWt PEC (Prova Elementi di Combustibile; i.e. Fuel Element Testing) reactor is sodium cooled. It is being built to study the behavior of fuel elements under thermal and neutronic conditions similar to those of fast nuclear power stations. Particular attention is being dedicated to safety aspects. This document furnishes a number of construction solutions with regard to that reactor and preparatory approaches to its operation, namely: a brief description of the construction solutions as far as concerns the Closure Head Assembly and the cover gas circuit together with its main components; the description of some test facilities arranged for abatement and measurement of sodium aerosol concentration; a number of preliminary evaluation results obtained thus far with regard to the formation, transport and depositing of sodium aerosols

  17. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  18. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  19. SIMS of Organic Materials—Interface Location in Argon Gas Cluster Depth Profiles Using Negative Secondary Ions

    Science.gov (United States)

    Havelund, R.; Seah, M. P.; Tiddia, M.; Gilmore, I. S.

    2018-02-01

    A procedure has been established to define the interface position in depth profiles accurately when using secondary ion mass spectrometry and the negative secondary ions. The interface position varies strongly with the extent of the matrix effect and so depends on the secondary ion measured. Intensity profiles have been measured at both fluorenylmethyloxycarbonyl-uc(l)-pentafluorophenylalanine (FMOC) to Irganox 1010 and Irganox 1010 to FMOC interfaces for many secondary ions. These profiles show separations of the two interfaces that vary over some 10 nm depending on the secondary ion selected. The shapes of these profiles are strongly governed by matrix effects, slightly weakened by a long wavelength roughening. The matrix effects are separately measured using homogeneous, known mixtures of these two materials. Removal of the matrix and roughening effects give consistent compositional profiles for all ions that are described by an integrated exponentially modified Gaussian (EMG) profile. Use of a simple integrated Gaussian may lead to significant errors. The average interface positions in the compositional profiles are determined to standard uncertainties of 0.19 and 0.14 nm, respectively, using the integrated EMG function. Alternatively, and more simply, it is shown that interface positions and profiles may be deduced from data for several secondary ions with measured matrix factors by simply extrapolating the result to Ξ = 0. Care must be taken in quoting interface resolutions since those measured for predominantly Gaussian interfaces with Ξ above or below zero, without correction, appear significantly better than the true resolution.

  20. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  1. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow

    NARCIS (Netherlands)

    Stemmet, C.P.; Bartelds, F.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    The gas–liquid mass transfer coefficient and other hydrodynamic parameters such as liquid holdup and frictional pressure drop are presented for gas and liquid moving in co-current upflow and downflow through solid foam packings of 10 and of 40 pores per linear inch (ppi). The effect of increasing

  2. Submm Observations of Massive Star Formation in the Giant Molecular Cloud NGC 6334 : Gas Kinematics with Radiative Transfer Models

    Science.gov (United States)

    Zernickel, A.

    2015-05-01

    Context. How massive stars (M>8 Ms) form and how they accrete gas is still an open research field, but it is known that their influence on the interstellar medium (ISM) is immense. Star formation involves the gravitational collapse of gas from scales of giant molecular clouds (GMCs) down to dense hot molecular cores (HMCs). Thus, it is important to understand the mass flows and kinematics in the ISM. Aims. This dissertation focuses on the detailed study of the region NGC 6334, located in the Galaxy at a distance of 1.7 kpc. It is aimed to trace the gas velocities in the filamentary, massive star-forming region NGC 6334 at several scales and to explain its dynamics. For that purpose, different scales are examined from 0.01-10 pc to collect information about the density, molecular abundance, temperature and velocity, and consequently to gain insights about the physio-chemical conditions of molecular clouds. The two embedded massive protostellar clusters NGC 6334I and I(N), which are at different stages of development, were selected to determine their infall velocities and mass accretion rates. Methods. This astronomical source was surveyed by a combination of different observatories, namely with the Submillimeter Array (SMA), the single-dish telescope Atacama Pathfinder Experiment (APEX), and the Herschel Space Observatory (HSO). It was mapped with APEX in carbon monoxide (13CO and C18O, J=2-1) at 220.4 GHz to study the filamentary structure and turbulent kinematics on the largest scales of 10 pc. The spectral line profiles are decomposed by Gaussian fitting and a dendrogram algorithm is applied to distinguish velocity-coherent structures and to derive statistical properties. The velocity gradient method is used to derive mass flow rates. The main filament was mapped with APEX in hydrogen cyanide (HCN) and oxomethylium (HCO+, J=3-2) at 267.6 GHz to trace the dense gas. To reproduce the position- velocity diagram (PVD), a cylindrical model with the radiative transfer

  3. Characteristics of lesional and extra-lesional cortical grey matter in relapsing-remitting and secondary progressive multiple sclerosis: A magnetisation transfer and diffusion tensor imaging study.

    Science.gov (United States)

    Yaldizli, Özgür; Pardini, Matteo; Sethi, Varun; Muhlert, Nils; Liu, Zheng; Tozer, Daniel J; Samson, Rebecca S; Wheeler-Kingshott, Claudia Am; Yousry, Tarek A; Miller, David H; Chard, Declan T

    2016-02-01

    In multiple sclerosis (MS), diffusion tensor and magnetisation transfer imaging are both abnormal in lesional and extra-lesional cortical grey matter, but differences between clinical subtypes and associations with clinical outcomes have only been partly assessed. To compare mean diffusivity, fractional anisotropy and magnetisation transfer ratio (MTR) in cortical grey matter lesions (detected using phase-sensitive inversion recovery (PSIR) imaging) and extra-lesional cortical grey matter, and assess associations with disability in relapse-onset MS. Seventy-two people with MS (46 relapsing-remitting (RR), 26 secondary progressive (SP)) and 36 healthy controls were included in this study. MTR, mean diffusivity and fractional anisotropy were measured in lesional and extra-lesional cortical grey matter. Mean fractional anisotropy was higher and MTR lower in lesional compared with extra-lesional cortical grey matter. In extra-lesional cortical grey matter mean fractional anisotropy and MTR were lower, and mean diffusivity was higher in the MS group compared with controls. Mean MTR was lower and mean diffusivity was higher in lesional and extra-lesional cortical grey matter in SPMS when compared with RRMS. These differences were independent of disease duration. In multivariate analyses, MTR in extra-lesional more so than lesional cortical grey matter was associated with disability. Magnetic resonance abnormalities in lesional and extra-lesional cortical grey matter are greater in SPMS than RRMS. Changes in extra-lesional compared with lesional cortical grey matter are more consistently associated with disability. © The Author(s), 2015.

  4. Pharmacologically increasing collateral perfusion during acute stroke using a carboxyhemoglobin gas transfer agent (Sanguinate™) in spontaneously hypertensive rats.

    Science.gov (United States)

    Cipolla, Marilyn J; Linfante, Italo; Abuchowski, Abe; Jubin, Ronald; Chan, Siu-Lung

    2018-05-01

    Similar to patients with chronic hypertension, spontaneously hypertensive rats (SHR) develop fast core progression during middle cerebral artery occlusion (MCAO) resulting in large final infarct volumes. We investigated the effect of Sanguinate™ (SG), a PEGylated carboxyhemoglobin (COHb) gas transfer agent, on changes in collateral and reperfusion cerebral blood flow and brain injury in SHR during 2 h of MCAO. SG (8 mL/kg) or vehicle ( n = 6-8/group) was infused i.v. after 30 or 90 min of ischemia with 2 h reperfusion. Multi-site laser Doppler probes simultaneously measured changes in core MCA and collateral flow during ischemia and reperfusion using a validated method. Brain injury was measured using TTC. Animals were anesthetized with choral hydrate. Collateral flow changed little in vehicle-treated SHR during ischemia (-8 ± 9% vs. prior to infusion) whereas flow increased in SG-treated animals (29 ± 10%; p collateral flow in SHR during MCAO is consistent with small penumbra and large infarction. The ability to increase collateral flow in SHR with SG suggests that this compound may be useful as an adjunct to endovascular therapy and extend the time window for treatment.

  5. Heat transfer modelling in the vertical tubes of a natural circulation passive containment loop with noncondensable gas

    International Nuclear Information System (INIS)

    Herranz, L.E.; Munoz-Cobo, J.L.; Tachenko, I.; Sancho, J.; Escriva, A.; Verdu, G.

    1994-01-01

    One of the key safety systems of the Simplified Boiling Water Reactor (SBWR) of General Electric is the Passive Containment Cooling System (PCCS). This system is designed to behave as a heat sink without need of operator actions in case of a reactor accident. Such a function relies on setting up a natural circulation loop between drywell and wetwell. Along this loop heat is removed by condensing the steam coming from the drywell onto the inner surface of externally cooled vertical tubes. Therefore, a successful design of the condenser requires a good knowledge of the local heat transmission coefficients. In this paper a model of steam condensation into vertical tubes is presented. Based on a modified diffusion boundary layer approach for noncondensables, this model accounts for the effect of shear stress caused by the cocurrent steam-gas mixture on the liquid film thickness. An approximate method to calculate film thickness, avoiding iterative algorithms, has been proposed. At present, this model has been implemented in HTCPIPE code and its results are being checked in terms of local heat transfer coefficients against the experimental data available. A good agreement between measurements and predictions is being observed for tests at atmospheric pressure. Further development and validation of the model is needed to consider aspects such as mist formation, wavy flow and high pressure. (author)

  6. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  7. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2

    Science.gov (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.

    2017-11-01

    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  8. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  9. An Evaluation of Gas Law Webquest Based on Active Learning Style in a Secondary School in Malaysia

    Science.gov (United States)

    Alias, Norlidah; DeWitt, Dorothy; Siraj, Saedah

    2014-01-01

    In this study, the PTEchLS WebQuest on Gas Laws was evaluated. It was designed for Form Four students with active learning styles. The focus of the evaluation was on the usability and effectiveness of the PTechLS WebQuest. Data were collected from interviews and students' achievement scores. Two teachers and eight students volunteered to…

  10. The secondary release of mercury in coal fly ash-based flue-gas mercury removal technology.

    Science.gov (United States)

    He, Jingfeng; Duan, Chenlong; Lei, Mingzhe; Zhu, Xuemei

    2016-01-01

    The secondary release of mercury from coal fly ash is a negative by-product from coal-fired power plants, and requires effective control to reduce environmental pollution. Analysing particle size distribution and composition of the coal fly ash produced by different mercury removing technologies indicates that the particles are generally less than 0.5 mm in size and are composed mainly of SiO2, Al2O3, and Fe2O3. The relationships between mercury concentration in the coal fly ash, its particle size, and loss of ignition were studied using different mercury removing approaches. The research indicates that the coal fly ash's mercury levels are significantly higher after injecting activated carbon or brominating activated carbon when compared to regular cooperating-pollution control technology. This is particularly true for particle size ranges of >0.125, 0.075-0.125, and 0.05-0.075 mm. Leaching experiments revealed the secondary release of mercury in discarded coal fly ash. The concentration of mercury in the coal fly ash increases as the quantity of injecting activated carbon or brominating activated carbon increases. The leached concentrations of mercury increase as the particle size of the coal fly ash increases. Therefore, the secondary release of mercury can be controlled by adding suitable activated carbon or brominating activated carbon when disposing of coal fly ash. Adding CaBr2 before coal combustion in the boiler also helps control the secondary release of mercury, by increasing the Hg(2+) concentration in the leachate. This work provides a theoretical foundation for controlling and removing mercury in coal fly ash disposal.

  11. MARS-KS Code Assessment for Condensation Heat Transfer in Horizontal Tube with the Presence of Non-Condensable Gas using Purdue Experiment

    International Nuclear Information System (INIS)

    Jeon, Seong Su; Lee, Byung Chul; Park, Ju Yeop; Seul, Kwang Won

    2011-01-01

    In South Korea, advanced power reactor plus (APR+), as a Korean specific reactor, is currently under development for the export strategy. In order to raise competitiveness of the APR+ in the world market, it is necessary to develop the original technology for the improved technology, economics, and safety features. For this purpose, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept of APR+: and then there have been many efforts to develop the PAFS. According to PAFS design concept, PAFS can completely replace the auxiliary feedwater system. When the design basis accident, in which feedwater is unavailable, occurs, the PAFS can remove the residual heat in the core and then prevent the core damage. In the PAFS with the horizontal type heat exchanger, two-phase natural circulation, condensation heat transfer in tube, boiling heat transfer in pool, natural convection in pool, etc. are considered as very important thermalhydraulic phenomena (see Fig. 1). Compared with the vertical heat exchanger from these phenomena, the major difference of the horizontal heat exchanger is the condensation heat transfer phenomena in the tube side. There have been many efforts to understand the condensation heat transfer with in the presence of NC gas in tube but most researches focused on the condensation heat transfer in vertical tube. Therefore the details of the condensation heat transfer in the presence of NC gas in horizontal condenser tubes are not well understood. In order to develop the safety evaluation system for APR+ PAFS, it is required to evaluate the capability and applicability of the MARS-KS code for modeling the condensation heat transfer in the horizontal tube with NC gas because many heat transfer correlations in MARS-KS are known to have much uncertainty. In particular, there is no reliable model for the condensation phenomena in horizontal tube with NC gas. In order to assess the MARS-KS code results and identify the

  12. Analysis of expiration gas in intensive care patients with SIRS/sepsis using proton-transfer-reaction-mass-spectrometry

    International Nuclear Information System (INIS)

    Bodrogi, F.B.M.

    2003-11-01

    In 1971, Pauling and co-workers were the first to detect volatile organic compounds (VOC) in human breath. Since then, a number of technical applications for breath gas analyses have been designed and processed, among them gas chromatography and proton transfer reaction-mass spectrometry (PTR-MS). Due to this technical progress it is meanwhile possible to correlate different kinds and stages of diseases with measurable changes in the patient's VOC profile. The aim of the present study was to investigate the composition of VOC in exhaled air of patients with sepsis via PTR-MS. To isolate distinct volatile organic compounds that may serve as clinical markers for the onset, the progress, as well as the outcome of the disease, the results obtained from septic patients were compared with two different control groups: 25 healthy, non-smoking volunteers enrolled in the day-case-surgery and 25 post-operative in-patients residing in post-anaesthetic care units (PACU). PTR-MS is capable to analyze VOC according to their molecular weight with a range between 21-230 Da. A total of 210 different masses has been detected in the present study. 54 masses were significantly different in exhaled air of septic patients as compared to healthy controls as well as post-operative patients. Among them, mass 69 representing isoprene might be of special interest for the diagnosis of sepsis. Although no exact biochemical properties of isoprene have been described to date, it is known that isoprene synthesis is increased in plants following exposure to oxidative stress. Chronic, systemic infectious diseases like sepsis are accompanied by the production of reactive oxygen species, indicating that isoprene might be increased in the course of sepsis, too. In the present study, isoprene values were markedly higher in septic patients as compared to PACU residents (3.3-fold increase in mean value) and to healthy volunteers (2.2-fold increase in mean value). In addition (and in contrast to other VOC

  13. Description of dedusting in wet flue gas scrubbers with purposeful utilization of the secondary dispersion; Detailliertere Simulation der Staubabscheidung in Nasswaeschern durch Beruecksichtigung der Sekundaerdispersion

    Energy Technology Data Exchange (ETDEWEB)

    Feldkamp, M.; Lessmann, B.; Neumann, J.; Fahlenkamp, H. [Dortmund Univ. (Germany). Lehrstuhl Umwelttechnik

    2003-07-01

    Modern wet gas scrubbers are used in the power plant technology for the flue gas desulphurisation of coal-fired plants. For this the washing liquid is sprayed by numerous nozzles. The specific arrangement of the nozzles in several levels makes it possible for the spray to penetrate mutually. The penetration and overlapping of the spray in the wet scrubber causes the effect of secondary dispersion. This effect can be used effectively to improve the efficiency of the atomisation and to improve the absorption of the pollution gases in a flue gas desulphurisation scrubber. Analyses show that the cleaning efficiency of a wet scrubber depends on the distribution and the size of the drops. (orig.) [German] Moderne Gaswaescher werden in der Kraftwerkstechnik fuer die Rauchgasentschwefelung kohlebefeuerter Anlagen eingesetzt. Hierzu wird Waschfluessigkeit mit Hilfe zahlreicher Duesen zerstaeubt. Eine gezielte Anordnung der Duesen in mehreren Spruehebenen ermoeglicht es den Sprays der Duesen, sich gegenseitig zu durchdringen. Der Effekt der Sekundaerdisperson, der beim Ueberschneiden und Durchdringen der Sprays waehrend der Zerstaeubung im Rauchgaswaescher auftritt, laesst sich wirksam zur Verbesserung des Wirkungsgrades einer Rauchgasentschwefelungsanlage nutzen. Durchgefuehrte Untersuchungen zeigen, dass die Reinigungsleistung eines nassen REA-Waeschers von der Verteilung und der Groesse der Tropfen abhaengt. (orig.)

  14. Microporous hollow fibre membrane modules as gas-liquid contactors. Part 2. Mass transfer with chemical reaction

    NARCIS (Netherlands)

    Kreulen, H.; Versteeg, G.F.; Swaaij, W.P.M. van

    1993-01-01

    Absorption determined by mass transfer in the liquid is described well with the Graetz-Lévèque equation adapted from heat transfer. The influence of a chemical reaction on the mass transfer was simulated with a numerical model and tested on the absorption of CO2 in a hydroxide solution. Absorption

  15. Interaction of chemical reactions and radiant heat transfer with temperature turbulent pulsations and its effect on heat traner in high-temperature gas flows

    International Nuclear Information System (INIS)

    Petukhov, B.S.; Zal'tsman, I.G.; Shikov, V.K.

    1980-01-01

    Methods of taking account of mutual effect of chemical transformations, radiation and turbulence in the calculations of heat transfer in gas flows are considered. Exponential functions of medium parameters are used to describe chemical sources and optical properties of media. It is shown using as an example the dissociation reaction C 2 reversible 2C that the effect of temperature and composition pulsations on recombination rates is negligibly small. It is also shown on the example of turbulent flow of hot molecular gas in a flat channel with cold walls that at moderate temperatures the effect of temperature pulsations on heat radiation flow can be significant (30-40%). The calculational results also show that there is a region in a turbulent boundary layer where the radiation greatly affects the coefficient of turbulent heat transfer

  16. Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102

    International Nuclear Information System (INIS)

    Stewart, C.W.; Erian, F.F.; Meyer, P.A.

    1997-07-01

    The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual open-quotes fluffing factorclose quotes for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around ± 10%

  17. Mechanical properties of steel for construction of gas transfer pipelines and their modification resulting from expanding of gas pipelines during hydraulic pressure testing

    International Nuclear Information System (INIS)

    Kopczynski, A.

    1997-01-01

    There are discussed the mechanical properties of the new generation of steel as per European Standard EN 10208.2: 1996. on the basis of the mechanical parameters of steel the normalized graphs of steel tensioning are presented. Analysis of influence of expanding gas pipelines on changes of steel tensioning graphs were performed. Advantages, resulting from expanding of gas pipelines, were shown. (author)

  18. The relationship between vapour pressure, vaporization enthalpy, and enthalpy of transfer from solution to gas: An extension of the Martin equation

    International Nuclear Information System (INIS)

    Srisaipet, A.; Aryusuk, K.; Lilitchan, S.; Krisnangkura, K.

    2007-01-01

    Martin's equation, Δ sln g G=Δ sln g G o +zδ sln g G, is extended to cover vaporization free energy (Δ l g G). The extended equation is further expanded in terms of enthalpy and entropy and then used to correlate vaporization enthalpy (Δ l g H) and enthalpy of transfer from solution to gas (Δ sln g H). Data available in the literatures are used to validate and support the speculations derived from the proposed equation

  19. 75 FR 39680 - Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid...

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10-46-000; Docket No. PR10-48- 000; Docket No. PR10-49-000; Docket No. PR10-50-000] Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid Continent Market Center, L.L.C...

  20. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  1. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  2. Influence of fluid-mechanical characteristics of the system on the volumetric mass transfer coefficient and gas dispersion in three-phase system

    Directory of Open Access Journals (Sweden)

    Knežević Milena M.

    2014-01-01

    Full Text Available Distribution of gas bubbles and volumetric mass transfer coefficient, Kla, in a three phase system, with different types of solid particles at different operation conditions were studied in this paper. The ranges of superficial gas and liquid velocities used in this study were 0,03-0,09 m/s and 0-0,1 m/s, respectively. The three different types of solid particles were used as a bed in the column (glass dp=3 mm, dp=6 mm; ceramic dp=6 mm. The experiments were carried out in a 2D plexiglas column, 278 x 20,4 x 500 mm and in a cylindrical plexiglas column, with a diameter of 64 mm and a hight of 2000 mm. The Kla coefficient increased with gas and liquid velocities. Results showed that the volumetric mass transfer coefficient has a higher values in three phase system, with solid particles, compared with two phase system. The particles properties (diameter and density have a major impact on oxygen mass transfer in three phase systems.

  3. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  4. Flow prediction and heat transfer in a cooling square duch of a gas turbine blade using CFD; Predicciones de flujo y transferencia de calor en un conductor de alabe enfriado de turbina de gas utilizando CFD

    Energy Technology Data Exchange (ETDEWEB)

    Urquiza B, Gustavo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Sierra E, Fernando [Universidad Nacional Autonoma de Mexico, Mexico D.F. (Mexico); Kubiak S, Janusz; Campos A, Rafael [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-10-15

    A numerical investigation has been conducted to study the turbulent flow and the heat transfer in a blade turbine coolant passage involving a 180 degrees turn. The study provides a comparison test for two turbulence models. The numerical solution was conducted employing two models for turbulence, the renormalization Group Theory (RNG) and the Reynolds Stress Model (RSM), using a refined grid to model with detail the recirculating flow. Computations are performed with a commercial finite volume code which solves three dimensional, incompressible, Navier-Stokes and Energy equations. At the passage turn, significant secondary flows are present, formed by a pair of symmetrical vortices. Results have been compared against published experimental data for Re = 53 000. Very good agreement is achieved for the prediction of the local static pressure distribution along the passage. A strong effect of rotation has been observed mainly in the flow field as described in detail in the paper. [Spanish] En este trabajo se presenta una investigacion numerica para estudiar el flujo turbulento y la transferencia de calor en un conducto de enfriamiento de un alabes de turbina de gas con giro de 180 grados. El estudio proporciona una comparacion de resultados para dos modelos de turbulencia. La solucion numerica emplea dos modelos de turbulencia: el modelo de esfuerzos de Reynolds (RSM) y el modelo de la teoria del grupo de renormalizacion (RNG), utilizando una malla refinada para modelar con detalle el flujo de recirculacion. Los calculos fueron realizados con un codigo comercial de volumenes finitos el cual resuelve las ecuaciones tridimensionales de Navier-Stoke y de energia para flujo incompresible. En la seccion de giro del conductor, aparecen flujos secundarios significativos, formados por un par de celulas simetricas. Los resultados han sido comparados contra datos experimentales de la literatura para Re = 53 000. se obtuvo un buen acuerdo para la prediccion de la distribucion de

  5. One-nucleon transfer reactions induced by secondary beam of 11Be: study of the nuclear structure of the exotic nuclei 11Be and 10Li

    International Nuclear Information System (INIS)

    Pita, S.

    2000-09-01

    The structure of the neutron rich light nuclei 11 Be and 10 Li has been investigated by means of one nucleon transfer reactions. The experiments have been carried out at GANIL in inverse kinematics using 11 Be secondary beams. The 11 Be(p,d) 10 Be reaction bas been studied at 35.3 MeV/u. The 10 Be ejectiles were analyzed by the spectrometer SPEG, and coincident deuterons were detected in the position sensitive silicon detector CHARISSA. Transfer cross sections to 0 + 1 and 2 + 1 , states in 10 Be were measured up to θ CM = 16 deg. and compared to DWBA and CRC predictions. The effects of neutron-cure couplings on reaction form factors have been studied by solving coupled equations in the framework of a vibrational model. It is shown that the rate of core excitation 10 Be 2+ in the 11 Be gs wave function is overestimated by a standard analysis with form factors given by the usual Separation Energy prescription. The former model predicts a rate of core excitation of 16% and leads to theoretical cross sections which are in good agreement with the experimental data. The aim of the 11 Be(d, 3 He) 10 Li experiment, realized at 37 MeV/u, was to measure the distribution of the 2s neutron strength in the unbound nucleus 10 Li. The energy spectrum was deduced from the 3 He energy and angle measured by the silicon strip detector array MUST. An asymmetric peak is clearly observed near the threshold, with a maximum at -S n = 130 keV. This constitutes a direct proof of the inversion of 2s and 1p 1/2 shells in 10 Li, which was until now a controversial question in spite of many experimental efforts. On the other band the analysis of the 11 Be(d,t) 10 Be reaction studied in the same experiment confirms the results obtained in the 11 Be(p,d) 10 Be reaction concerning the 11 Be gs structure. This work shows the interest and feasibility of studies of the shell properties of exotic nuclei using transfer reactions induced by radioactive beams and constitutes the beginning of a program

  6. Physical Therapy Intervention to Augment Outcomes Of Lymph Node Transfer Surgery for a Breast Cancer Survivor with Secondary Upper Extremity Lymphedema: A Case Report.

    Science.gov (United States)

    McKey, Katelyn P; Alappattu, Meryl J

    Lymphedema is an incurable complication of breast cancer treatment that affects roughly 20 percent of women. It is often managed via complete decongestive therapy, which includes manual lymph drainage, therapeutic compression, skin care, and exercise. Lymph node transfer is a new and expensive surgical intervention that uses one's own lymph nodes and implants them in the affected upper extremity. Previous research has investigated augmenting lymph node transfer surgery with complete decongestive therapy, but there is a lack of evidence regarding the success of focusing lymph drainage against the normal pressure gradient toward a surgical flap located on the wrist. The patient's main motivation for the surgical intervention was to alleviate her daily burden of complete decongestive therapy. The purpose of this case report was to compare the methods and results of pre-surgical complete decongestive physical therapy to a post-operation modified approach that directed lymph fluid away from the major lymphatic ducts and instead toward a surgical flap on the wrist of a patient with lymphedema. A 65-year-old female presented with secondary upper extremity lymphedema following breast cancer treatment. Her circumferential measurements and L-Dex score corroborated this diagnosis, and she had functional deficits in upper extremity range of motion. She was seen for 10 visits of traditional complete decongestive therapy prior to her lymph node transfer surgery and 24 treatments of modified complete decongestive therapy over the course of six months following surgery. At six months, the patient had minor improvements in the Functional Assessment of Chronic Illness Therapy-Fatigue, Disabilities of the Arm, Shoulder and Hand questionnaire, range of motion, and upper extremity strength. However, her circumferential measurements and L-Dex scores showed a meaningful increase in limb girth. The patient's smallest upper extremity volumes were documented before the operation after two

  7. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Science.gov (United States)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  8. Humidity influence on gas-particle phase partitioning of α-pinene + O3 secondary organic aerosol

    Science.gov (United States)

    Prisle, N. L.; Engelhart, G. J.; Bilde, M.; Donahue, N. M.

    2010-01-01

    Water vapor uptake to particles could potentially affect organic-aerosol mass in three ways: first, water in the organic phase could reduce organic (equilibrium) partial pressures according to Raoult's law; second, an aqueous phase could attract water soluble organics according to Henry's law; finally, deliquescence of inorganic particle cores could mix the organic and inorganic particle phases, significantly diluting the organics and again reducing organic partial pressures according to Raoult's law. We present experiments using initially dry α-pinene + ozone secondary organic aerosol (SOA) on ammonium sulfate (AS) seeds at atmospheric concentrations in a smog chamber. After SOA formation, the chamber relative humidity is increased steadily by addition of steam to near 100%. Little subsequent SOA mass growth is observed, suggesting that none of these potential effects play a strong role in this system.

  9. Solution and gas phase evidence of anion binding through the secondary bonding interactions of a bidentate bis-antimony(iii) anion receptor.

    Science.gov (United States)

    Qiu, J; Song, B; Li, X; Cozzolino, A F

    2017-12-20

    The solution and gas phase halide binding to a bis-antimony(iii) anion receptor was studied. This new class of anion receptors utilizes the strong Sb-centered secondary bonding interactions (SBIs) that are formed opposite to the polar Sb-O primary bond. 1 H NMR titration data were fitted statistically to binding models and solution-phase binding energetics were extracted, while the formation of anion-to-receptor complexes was observed using ESI-MS. Density functional theory calculations suggest that their affinity towards binding halide anions is mitigated by the strong explicit solvation effect in DMSO, which gives insights into future designs that circumvent direct solvent binding and are anticipated to yield tighter and perhaps more selectivity in anion binding.

  10. Electrochemical characteristics of silver- and nickel-coated synthetic graphite prepared by a gas suspension spray coating method for the anode of lithium secondary batteries

    International Nuclear Information System (INIS)

    Choi, Won Chang; Byun, Dongjin; Lee, Joong Kee; Cho, Byung won

    2004-01-01

    Four kinds of synthetic graphite coated with silver and nickel for the anodes of lithium secondary batteries were prepared by a gas suspension spray coating method. The electrode coated with silver showed higher charge-discharge capacities due to a Ag-Li alloy, but rate capability decreased at higher charge-discharge rate. This result can be explained by the formation of an artificial Ag oxidation film with higher impedance, this lowered the rate capability at high charge-discharge rate due to its low electrical conductivity. Rate capability is improved, however, by coating nickel and silver together on the surface of synthetic graphite. The nickel which is inactive with oxidation reaction plays an important role as a conducting agent which enhanced the conductivity of the electrode

  11. Dimethylamine as a Replacement for Ammonia Dosing in the Secondary Circuit of an Advanced Gas-Cooled Reactor (AGR) Power Station

    International Nuclear Information System (INIS)

    Armstrong, C.; Mitchell, M.; Bull, A.; Quirk, G.P.; Rudge, A.

    2012-09-01

    Increasing flow resistance observed over recent years within the helical once-through boilers in the four Advanced Gas-Cooled Reactors (AGRs) at Hartlepool and Heysham 1 Power stations have reduced boiler performance, resulting in reductions in feedwater flow, steam temperatures, power output and the need to carry out periodic chemical cleaning. The root cause is believed to be the development of magnetite deposits with high flow impedance in the 9%Cr evaporator section of the boiler tubing. To prevent continued increases in boiler flow resistance, dimethylamine is being trialled, in one of the four affected units, as a replacement to the conventional ammonia dosing. Dimethylamine increases the pH at temperature around the secondary circuit and, based on full scale boiler rig simulations, is expected to reduce iron transport and prevent flow resistance increases within the evaporator section of the boiler. The dimethylamine plant trial commenced in January 2011 and is ongoing. The feedwater concentration of dimethylamine has been increased progressively towards a final target value of 900 μg kg -1 and its effect on iron transport and boiler pressure loss is being closely monitored. The high steam temperatures (>500 deg. C) of the secondary circuit lead to some decomposition of dimethylamine, which is being carefully monitored at various locations around the circuit. The decomposition products identified with dimethylamine dosing include ammonia, methylamine, formic acid, carbon dioxide and, as yet, unidentified neutral organic species. The effect of dimethylamine dosing on iron transport, boiler pressure drops and its decomposition behaviour around the secondary circuit during the plant trial will be presented in this paper. (authors)

  12. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  13. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  14. Homogenization and two scales convergence of some stationary and non-stationary heat transfer problems, application to gas cooled nuclear rectors

    International Nuclear Information System (INIS)

    Habibi, Z.

    2011-01-01

    We are interested in the homogenization of heat transfer in periodic porous media modelling the geometry of a gas cooled nuclear reactor. This geometry is made of a solid media perforated by several long thin parallel cylinders, the diameter of which is of the same order than the period. The heat is transported by conduction in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the cylinders). A non-local boundary condition models the radiative heat transfer on the cylinder walls. It is a stationary analysis corresponding to a nominal performance of the reactor core, and also non-stationary corresponding to a normal shut-down of the core. To obtain the homogenized problem we first use a formal two-scale asymptotic expansion method. The mathematical justification of our results is based on the notion of two-scale convergence. One feature of this work in dimension 3 is that it combines homogenization with a 3D to 2D asymptotic analysis since the radiative transfer in the limit cell problem is purely two-dimensional. A second feature of this work is the study of this heat transfer when it contains an oscillating thermal source at the microscopic level and a thermal exchange with the perforations. In this context, our numerical analysis shows a non-negligible contribution of the second order corrector which helps us to model the gradients appearing between the source area and the perforations. (author) [fr

  15. A comparison of fuzzy logic and cluster renewal approaches for heat transfer modeling in a 1296 t/h CFB boiler with low level of flue gas recirculation

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2017-03-01

    Full Text Available The interrelation between fuzzy logic and cluster renewal approaches for heat transfer modeling in a circulating fluidized bed (CFB has been established based on a local furnace data. The furnace data have been measured in a 1296 t/h CFB boiler with low level of flue gas recirculation. In the present study, the bed temperature and suspension density were treated as experimental variables along the furnace height. The measured bed temperature and suspension density were varied in the range of 1131-1156 K and 1.93-6.32 kg/m3, respectively. Using the heat transfer coefficient for commercial CFB combustor, two empirical heat transfer correlation were developed in terms of important operating parameters including bed temperature and also suspension density. The fuzzy logic results were found to be in good agreement with the corresponding experimental heat transfer data obtained based on cluster renewal approach. The predicted bed-to-wall heat transfer coefficient covered a range of 109-241 W/(m2K and 111-240 W/(m2K, for fuzzy logic and cluster renewal approach respectively. The divergence in calculated heat flux recovery along the furnace height between fuzzy logic and cluster renewal approach did not exceeded ±2%.

  16. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    International Nuclear Information System (INIS)

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.

    2006-01-01

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas

  17. Gas-chromatographic resolution of enantiomeric secondary alcohols. Stereoselective reductive metabolism of ketones in rabbit-liver cytosol.

    Science.gov (United States)

    Gal, J; DeVito, D; Harper, T W

    1981-01-01

    Chiral secondary alcohols were treated with (S)-(-)-1-phenylethyl isocyanate. For each racemic alcohol, the resulting diastereomeric urethane derivatives were resolved on flexible fused-silica capillary GLC columns with retention times of 15 min or less. Derivatization of individual enantiomers showed that the urethane derivatives of (R)-(-)-2-octanol, (R)-(+)-1-phenylethyl alcohol, and (S)-(+)-2,2,2-trifluoro-1-phenylethanol are eluted before the corresponding diastereomers. The procedure is simple and rapid, and is suitable for the determination of the enantiomeric composition of chiral alcohols extracted from biological media. A series of aliphatic alcohols, aryl alkyl carbinols, and arylalkyl alkyl carbinols were resolved with the procedure, and the degree of resolution varied from good to excellent. Eight achiral ketones were incubated, individually, with rabbit-liver 90,000 g supernatant fractions, and the enantiomeric composition of the alcohol metabolites was determined with the GLC procedure. The reductions proceeded with high stereoselectivity to give alcohol products of 90% or greater enantiomeric purity. The reduction of 2-octanone and acetophenone gave predominant alcohols of (S)-configuration, in agreement with the Baumann-Prelog rule. The configuration of the predominant alcohols arising in the reduction of the remainder of the ketones could not be firmly established, but the evidence suggests that they are also of the (S)-configuration. Fluorine or methyl substitution in the ortho position of acetophenone produced an increase in the stereoselectivity, and the alcohol produced from ortho-methylacetophenone was enantiomerically greater than 99% pure.

  18. Mapping gas-phase organic reactivity and concomitant secondary organic aerosol formation: chemometric dimension reduction techniques for the deconvolution of complex atmospheric data sets

    Science.gov (United States)

    Wyche, K. P.; Monks, P. S.; Smallbone, K. L.; Hamilton, J. F.; Alfarra, M. R.; Rickard, A. R.; McFiggans, G. B.; Jenkin, M. E.; Bloss, W. J.; Ryan, A. C.; Hewitt, C. N.; MacKenzie, A. R.

    2015-07-01

    Highly non-linear dynamical systems, such as those found in atmospheric chemistry, necessitate hierarchical approaches to both experiment and modelling in order to ultimately identify and achieve fundamental process-understanding in the full open system. Atmospheric simulation chambers comprise an intermediate in complexity, between a classical laboratory experiment and the full, ambient system. As such, they can generate large volumes of difficult-to-interpret data. Here we describe and implement a chemometric dimension reduction methodology for the deconvolution and interpretation of complex gas- and particle-phase composition spectra. The methodology comprises principal component analysis (PCA), hierarchical cluster analysis (HCA) and positive least-squares discriminant analysis (PLS-DA). These methods are, for the first time, applied to simultaneous gas- and particle-phase composition data obtained from a comprehensive series of environmental simulation chamber experiments focused on biogenic volatile organic compound (BVOC) photooxidation and associated secondary organic aerosol (SOA) formation. We primarily investigated the biogenic SOA precursors isoprene, α-pinene, limonene, myrcene, linalool and β-caryophyllene. The chemometric analysis is used to classify the oxidation systems and resultant SOA according to the controlling chemistry and the products formed. Results show that "model" biogenic oxidative systems can be successfully separated and classified according to their oxidation products. Furthermore, a holistic view of results obtained across both the gas- and particle-phases shows the different SOA formation chemistry, initiating in the gas-phase, proceeding to govern the differences between the various BVOC SOA compositions. The results obtained are used to describe the particle composition in the context of the oxidised gas-phase matrix. An extension of the technique, which incorporates into the statistical models data from anthropogenic (i

  19. PTAC 2002 annual report : creating value through innovation : facilitating innovation, technology transfer, and collaborative research and development in the upstream oil and gas industry

    International Nuclear Information System (INIS)

    2003-01-01

    Petroleum Technology Alliance Canada (PTAC) is Canada's leading organization that helps in the development and transfer of petroleum technology. This annual report listed the key accomplishments of PTAC in 2002. These include a record participation in PTAC workshops and conferences, the co-hosting of the world's largest unconventional gas and coalbed methane conference with the Canadian Society for Unconventional Gas, and the co-hosting of a conference on climate change and greenhouse gas technology with Climate Change Central. In 2002 PTAC launched an Industrial Energy Audit Incentive with Natural Resources Canada. It also proposed an extension to its mandate to help energy efficiency and greenhouse gas technologies for the hydrocarbon energy industry. In addition, PTAC helped launch 32 research and development projects in 2002. PTAC expects that 2003 will see a shift in focus to sustainable, eco-efficiency and greenhouse gas-reducing technologies for the hydrocarbon energy industry. This annual report includes an auditor's report of PTAC's financial statements. The report includes summarized balance sheet of assets, liabilities/surplus and net assets. It also includes summarized statements of revenues, expenses and surplus for the year ended December 31, 2002 with comparative figures for 2001. 1 tab., 2 figs

  20. Enhancement of oxygen mass transfer and gas holdup using palm oil in stirred tank bioreactors with xanthan solutions as simulated viscous fermentation broths.

    Science.gov (United States)

    Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  1. Enhancement of Oxygen Mass Transfer and Gas Holdup Using Palm Oil in Stirred Tank Bioreactors with Xanthan Solutions as Simulated Viscous Fermentation Broths

    Directory of Open Access Journals (Sweden)

    Suhaila Mohd Sauid

    2013-01-01

    Full Text Available Volumetric mass transfer coefficient (kLa is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h−1. It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  2. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon; Kang, Sun Kil; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Kumaresan, Yogeenth; Lee, Sungeun; Lee, Chaedeok; Ham, Moon-Ho; Jung, Gun Young

    2017-01-01

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  3. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon

    2017-08-05

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  4. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero

    2013-05-01

    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  5. Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)

    2006-01-15

    This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)

  6. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  7. 77 FR 2293 - AmeriGas Propane, L.P., AmeriGas Propane, Inc., Energy Transfer Partners, L.P., and Energy...

    Science.gov (United States)

    2012-01-17

    ... consumers. AmeriGas is the second largest supplier and marketer of propane exchange cylinders. ETP GP is a... Express division. Heritage Propane Express is the third largest supplier and marketer of propane exchange... Propane Express played the role of a disruptive ``maverick,'' offering lower prices and better terms and...

  8. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  9. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tejal Manish; Nath, Kaushik [G H Patel College of Engineering and Technology, Gujarat (India)

    2014-10-15

    A semi-empirical model has been applied to predict the permeate flux and mass transfer resistances during the cross flow nanofiltration of molasses wastewater in flat-sheet module. The model includes laminar flow regime as well as flow in presence of gas sparging at two different gas velocities. Membrane hydraulic resistance (R{sub m}), osmotic pressure resistance (R{sub osm}) and the concentration polarization resistance (R{sub cp}) were considered in series. The concentration polarization resistance was correlated to the operating conditions, namely, the feed concentration, the trans-membrane pressure difference and the cross flow velocity for a selected range of experiments. There was an appreciable reduction of concentration polarization resistance R{sub cp}{sup spar} in presence of gas sparging. Both the concentration polarization resistance R{sub cp}{sup lam} and osmotic pressure resistance R{sub osm} decreased with cross-flow velocity, but increased with feed concentration and the operating pressure. Experimental and theoretical permeate flux values as a function of cross flow velocity for both the cases, in the presence and absence of gas sparging, were also compared.

  10. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration

    International Nuclear Information System (INIS)

    Patel, Tejal Manish; Nath, Kaushik

    2014-01-01

    A semi-empirical model has been applied to predict the permeate flux and mass transfer resistances during the cross flow nanofiltration of molasses wastewater in flat-sheet module. The model includes laminar flow regime as well as flow in presence of gas sparging at two different gas velocities. Membrane hydraulic resistance (R m ), osmotic pressure resistance (R osm ) and the concentration polarization resistance (R cp ) were considered in series. The concentration polarization resistance was correlated to the operating conditions, namely, the feed concentration, the trans-membrane pressure difference and the cross flow velocity for a selected range of experiments. There was an appreciable reduction of concentration polarization resistance R cp spar in presence of gas sparging. Both the concentration polarization resistance R cp lam and osmotic pressure resistance R osm decreased with cross-flow velocity, but increased with feed concentration and the operating pressure. Experimental and theoretical permeate flux values as a function of cross flow velocity for both the cases, in the presence and absence of gas sparging, were also compared

  11. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  12. Bio-sniffer (gas-phase biosensor) with secondary alcohol dehydrogenase (S-ADH) for determination of isopropanol in exhaled air as a potential volatile biomarker.

    Science.gov (United States)

    Chien, Po-Jen; Suzuki, Takuma; Tsujii, Masato; Ye, Ming; Toma, Koji; Arakawa, Takahiro; Iwasaki, Yasuhiko; Mitsubayashi, Kohji

    2017-05-15

    Exhaled breath analysis has attracted lots of researchers attention in the past decades due to its advantages such as its non-invasive property and the possibility of continuous monitoring. In addition, several volatile organic compounds in breath have been identified as biomarkers for some diseases. Particularly, studies have pointed out that concentration of isopropanol (IPA) in exhaled air might relate with certain illnesses such as liver disease, chronic obstructive pulmonary (COPD), and lung cancer. In this study, a highly sensitive and selective biochemical gas sensor (bio-sniffer) for the breath IPA concentration determination was constructed and optimized. This bio-sniffer measures the concentration of IPA according to the fluorescence intensity of oxidized nicotinamide adenine dinucleotide (NADH), which was produced by an enzymatic reaction of secondary alcohol dehydrogenase (S-ADH). The NADH detection system employed an UV-LED as the excitation light, and a highly sensitive photomultiplier tube (PMT) as a fluorescence intensity detector. A gas-sensing region was developed using an optical fiber probe equipped with a flow-cell and enzyme immobilized membrane, and connected to the NADH measurement system. The calibration range of the IPA bio-sniffer was confirmed from 1ppb to 9060ppb that was comparable to other IPA analysis methods. The results of the analysis of breath IPA concentration in healthy subjects using the bio-sniffer showed a mean concentration of 16.0ppb, which was similar to other studies. These results have demonstrated that this highly sensitive and selective bio-sniffer could be used to measure the IPA in exhaled air, and it is expected to apply for breath IPA research and investigation of biomarkers for clinical diagnosis. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. The effects of a household conditional cash transfer programme on coverage and quality of antenatal care: a secondary analysis of Indonesia's pilot programme.

    Science.gov (United States)

    Triyana, Margaret; Shankar, Anuraj H

    2017-10-22

    To analyse the effectiveness of a household conditional cash transfer programme (CCT) on antenatal care (ANC) coverage reported by women and ANC quality reported by midwives. The CCT was piloted as a cluster randomised control trial in 2007. Intent-to-treat parameters were estimated using linear regression and logistic regression. Secondary analysis of the longitudinal CCT impact evaluation survey, conducted in 2007 and 2009. This included 6869 pregnancies and 1407 midwives in 180 control subdistricts and 180 treated subdistricts in Indonesia. ANC component coverage index, a composite measure of each ANC service component as self-reported by women, and ANC provider quality index, a composite measure of ANC service provided as self-reported by midwives. Each index was created by principal component analysis (PCA). Specific ANC component items were also assessed. The CCT was associated with improved ANC component coverage index by 0.07 SD (95% CI 0.002 to 0.141). Women were more likely to receive the following assessments: weight (OR 1.56 (95% CI 1.25 to 1.95)), height (OR 1.41 (95% CI 1.247 to 1.947)), blood pressure (OR 1.36 (95% CI 1.045 to 1.761)), fundal height measurements (OR 1.65 (95% CI 1.372 to 1.992)), fetal heart beat monitoring (OR 1.29 (95% CI 1.006 to 1.653)), external pelvic examination (OR 1.28 (95% CI 1.086 to 1.505)), iron-folic acid pills (OR 1.42 (95% CI 1.081 to 1.859)) and information on pregnancy complications (OR 2.09 (95% CI 1.724 to 2.551)). On the supply side, the CCT had no significant effect on the ANC provider quality index based on reports from midwives. The CCT programme improved ANC coverage for women, but midwives did not improve ANC quality. The results suggest that enhanced ANC utilisation may not be sufficient to improve health outcomes, and steps to improve ANC quality are essential for programme impact. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No

  14. Field investigation with regard to the impermeability of clay formations. Helium-4 soil gas surveys in sedimentary basins as a tentative study of secondary permeability in clayey sequences

    International Nuclear Information System (INIS)

    Lombardi, S.; Benvegnu, F.; Brondi, A.; Polizzano, C.

    1993-01-01

    This report deals with a tentative study for the detection of the secondary permeability in clayey formations conducted in several sedimentary basins in Central Italy, by means of geochemical methods. The main purposes are: to try a geochemical method, based on the distribution of deep origin gases in soil gas ( 4 He and 222 Rn), to detect buried fault systems and to study the permeability of clay as a potential migration pathway for nuclides of radioactive waste deposits; to verify the effectiveness of this method for the selection of suitable sites for radwaste disposal. This research programme consists in a collaboration between ENEA and the University of Rome within the communitarian programme for the disposal of high level and long-live radwaste. Investigations concerned sedimentary basins filled by sand-clay formations 1000-2000 meters thick and characterized by different tectonic: Era and Chiani-Paglia Valleys (Tuscany and North Latium), structural trenches due to extensive tectonics along the tyrrhenian edge, and Vasto region, a basin in the 'Adriatic foretrench', characterized by compressive tectonics. The investigated areas are near or directly correspond to geothermal fields or to hydrocarbon reservoirs supplying gases which may migrate upward along fractures. Almost 4000 soil gas samples were collected in the three surveyed areas; the sampling density was of about 1.5 points / km 2 , normally used in the regional scale surveys. The obtained results show that the observed helium anomalies are distributed or elongated according to the main tectonic features of the substratum (fault systems, fractures, deep structures); the magnitude of anomalies seems to correlate with the nature of the deep gas reservoir (i.e. oil in Vasto), geothermal reservoir in the Paglia valley. These observations seem to confirm that the presence of deep origin gases in soils is controlled by tectonics. Clay thickness does not significantly control the uprising of deep gases: in

  15. Improving estimations of greenhouse gas transfer velocities by atmosphere-ocean couplers in Earth-System and regional models

    Science.gov (United States)

    Vieira, V. M. N. C. S.; Sahlée, E.; Jurus, P.; Clementi, E.; Pettersson, H.; Mateus, M.

    2015-09-01

    Earth-System and regional models, forecasting climate change and its impacts, simulate atmosphere-ocean gas exchanges using classical yet too simple generalizations relying on wind speed as the sole mediator while neglecting factors as sea-surface agitation, atmospheric stability, current drag with the bottom, rain and surfactants. These were proved fundamental for accurate estimates, particularly in the coastal ocean, where a significant part of the atmosphere-ocean greenhouse gas exchanges occurs. We include several of these factors in a customizable algorithm proposed for the basis of novel couplers of the atmospheric and oceanographic model components. We tested performances with measured and simulated data from the European coastal ocean, having found our algorithm to forecast greenhouse gas exchanges largely different from the forecasted by the generalization currently in use. Our algorithm allows calculus vectorization and parallel processing, improving computational speed roughly 12× in a single cpu core, an essential feature for Earth-System models applications.

  16. Transference and natural gas distribution system analysis utilizing hybrid modelling; Analise de sistemas de transferencia e distribuicao de gas natural utilizando modelagem hibrida

    Energy Technology Data Exchange (ETDEWEB)

    Calvo, Robson A.; Martinkoski, Ricardo [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil); Neves Junior, Flavio [Centro Federal de Educacao Tecnologica do Parana (CEFET), Curitiba, PR (Brazil). Programa de Pos-Graduacao em Engenharia Eletrica e Informatica Industrial

    2003-07-01

    The objective of this article is to apply techniques of formal specification in modelling of natural gas transmission and distribution systems. In this case the formal models are characterized by using hybrid automata. Initially the existent components in the net are modeled and represented by independent hybrid automata. The global dynamics is obtained through the product hybrid automata. Languages representing the desirable states of the system are obtained from the hybrid automata, allowing a hybrid control procedure. An automatic tool as SHIFT must be used to modelling and simulation. (author)

  17. Dissociation of protonated N-(3-phenyl-2H-chromen-2-ylidene)-benzenesulfonamide in the gas phase: cyclization via sulfonyl cation transfer.

    Science.gov (United States)

    Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi

    2016-01-15

    In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  18. Study of the influence of surfactants on the activity coefficients and mass transfer coefficients of methanol in aqueous mixtures by reversed-flow gas chromatography.

    Science.gov (United States)

    Kotsalos, Efthimios; Brezovska, Boryana; Sevastos, Dimitrios; Vagena, Artemis; Koliadima, Athanasia; Kapolos, John; Karaiskakis, George

    2017-11-17

    This work focuses on the influences of surfactants on the activity coefficients, γ, of methanol in binary mixtures with water, as well as on the mass transfer coefficients, k c , for the evaporation of methanol, which is a ubiquitous component in the troposphere, from mixtures of methanol with water at various surfactant's and methanol's concentrations. The technique used is the Reversed-Flow Gas Chromatography (R.F.G.C.), a version of Inverse Gas Chromatography, which allows determining both parameters by performing only one experiment for the k c parameter and two experiments for the γ parameter. The k c and γ values decrease in the presence of the three surfactants used (CTAB, SDS, TRITON X-100) at all methanol's and surfactant's concentrations. The decrease in the methanol's molar fraction, at constant number of surfactant films leads to a decrease in the k c and γ values, while the decrease in the surfactant's concentration, at constant methanol's molar fraction leads to an increase in both the k c and γ parameters. Mass transfer coefficients for the evaporation of methanol at the surfactant films, are also calculated which are approximately between 4 and 5 orders of magnitude larger than the corresponding mass transfer coefficients at the liquid films. Finally, thicknesses of the boundary layer of methanol in the mixtures of methanol with water were determined. The quantities found are compared with those given in the literature or calculated theoretically using various empirical equations. The precision of the R.F.G.C. method for measuring γ and k c parameters is approximately high (94.3-98.0%), showing that R.F.G.C. can be used with success not only for the thermodynamic study of solutions, but also for the interphase transport. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    Science.gov (United States)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal

  20. The effect of water vapor in the reactor cavity in a MHTGR [Modular High Temperature Gas Cooled Reactor] on the radiation heat transfer

    International Nuclear Information System (INIS)

    Cappiello, M.W.

    1991-01-01

    Analyses have been completed to determine the effect of the presence of water vapor in the reactor cavity in a modular high temperature gas cooled reactor on the predicted radiation heat transfer from the vessel wall to the reactor cavity cooling system. The analysis involves the radiation heat transfer between two parallel plates with an absorbing and emitting medium present. Because the absorption in the water vapor is spectrally dependent, the solution is difficult even for simple geometries. A computer code was written to solve the problem using the Monte Carlo method. The code was validated against closed form solutions, and shows excellent agreement. In the analysis of the reactor problem, the results show that the reduction in heat transfer, and the consequent increase in the vessel wall temperature, can be significant. This effect can be cast in terms of a reduction in the wall surface emissivities from 0.8 to 0.59. Because of the insulating effect of the water vapor, increasing the gap distance between the vessel wall and the cooling system will cause the vessel wall temperature to increase further. Care should be taken in the design of the facility to minimize the gap distance and keep temperature increase within allowable limits. 3 refs., 6 figs., 4 tabs

  1. Rare gas dependence of vibration--vibration energy transfer processes: A diagnostic technique. Applications to CH2D2 and CH3F

    International Nuclear Information System (INIS)

    Apkarian, V.A.; Weitz, E.

    1979-01-01

    The rare gas dependence of V--V rates can be used as a diagnostic technique to identify different mechanisms of vibrational energy transfer and determine the rate constants for individual kinetic steps. The method is especially useful for the identification and measurement of rates of resonant vibrational energy transfer processes. Analytical and numerical solutions of pertinent model equations are presented and their range of applicability is discussed. The technique is applied to CH 2 D 2 and CH 3 F. In CH 2 D 2 results of studies on ν 9 , [ν 1 , ν 6 ] and states in the 2000 cm -1 region are presented where the application of the technique has made it possible to identify the pathways leading to population of these states and to assign rate constants to some of the steps involved. In CH 3 F, by studying the Ar dependence of the V--V rates of the [ν 2 , ν 5 ] and [ν 1 , ν 4 ] states it has been possible to construct a complete map of energy transfer pathways which can explain all experimental observations for this system, to date. The general applicability of the technique and its potential application to other systems is also considered

  2. The effect of buoyancy on flow and heat transfer for a gas passing down a vertical pipe at low turbulent reynolds numbers

    International Nuclear Information System (INIS)

    Easby, J.P.

    1978-01-01

    For the analysis of low-flow situations in the core of the High-Temperature Gas-Cooled reactor it is necessary to have a knowledge of the variation of pressure drop and heat transfer with flow and buoyancy influence. Nitrogen at 4 bar has been used to simulate the high pressure helium in the reactor and an experiment performed for downward flow in a heated vertical pipe. The measurements show that for the range of flow and buoyancy influence parameters investigated, (2000 6 ), friction factors are reduced by up to 20% compared with a correlation for isothermal flows and heat transfer is increased by up to 40% compared with a correlation for constant fluid properties. Agreement with the limit amount of previous data is quite satisfactory. The changes in heat transfer and friction factor with buoyancy influence can be attributed to distortion of the normally linear, radial shear stress profile. Simple equations have been determined to correlate the present results but extrapolation to conditions of high flow and buoyancy influence, where the interaction of forced and free convection may be different, is not advised. (author)

  3. Jet array impingement flow distributions and heat transfer characteristics. Effects of initial crossflow and nonuniform array geometry. [gas turbine engine component cooling

    Science.gov (United States)

    Florschuetz, L. W.; Metzger, D. E.; Su, C. C.; Isoda, Y.; Tseng, H. H.

    1982-01-01

    Two-dimensional arrays of circular air jets impinging on a heat transfer surface parallel to the jet orifice plate are considered. The jet flow, after impingement, is constrained to exit in a single direction along the channel formed by the jet orifice plate and the heat transfer surface. The configurations considered are intended to model those of interest in current and contemplated gas turbine airfoil midchord cooling applications. The effects of an initial crossflow which approaches the array through an upstream extension of the channel are considered. Flow distributions as well as heat transfer coefficients and adiabatic wall temperatures resolved to one streamwise hole spacing were measured as a function of the initial crossflow rate and temperature relative to the jet flow rate and temperature. Both Nusselt number profiles and dimensionless adiabatic wall temperature (effectiveness) profiles are presented and discussed. Special test results which show a significant reduction of jet orifice discharge coefficients owing to the effect of a confined crossflow are also presented, along with a flow distribution model which incorporates those effects. A nonuniform array flow distribution model is developed and validated.

  4. Flow and heat and mass transfer in laminar and turbulent mist gas-droplets stream over a flat plate

    CERN Document Server

    Terekhov, Victor I

    2014-01-01

    In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressur...

  5. Experimental Investigation in Order to Determine Catalytic Package Performances in Case of Tritium Transfer from Water to Gas

    International Nuclear Information System (INIS)

    Bornea, Anisia; Peculea, M.; Zamfirache, M.; Varlam, Carmen

    2005-01-01

    The processes for hydrogen isotope's separation are very important for nuclear technology. One of the most important processes for tritium separation, is the catalyst isotope exchange water-hydrogen.Our catalytic package consists of Romanian patented catalysts with platinum on charcoal and polytetrafluoretylene (Pt/C/PTFE) and the ordered Romanian patented package B7 type. The catalytic package was tested in an isotope exchange facility for water detritiation at the Experimental Pilot Plant from ICIT Rm.Valcea.In a column of isotope exchange tritium is transferred from liquid phase (tritiated heavy water) in gaseous phase (hydrogen). In the experimental set-up, which was used, the column of catalytic isotope exchange is filled with successive layers of catalyst and ordered package. The catalyst consists of 95.5 wt.% of PTFE, 4.1 wt. % of carbon and 0.40 wt. % of platinum and was of Raschig rings 10 x 10 x 2 mm. The ordered package was B7 type consists of wire mesh phosphor bronze 4 x 1 wire and the mesh dimension is 0.18 x 0.48 mm.We analyzed the transfer phenomena of tritium from liquid to gaseous phase, in this system.The mass transfer coefficient which characterized the isotopic exchange on the package, were determined as function of experimental parameters

  6. Heat Transfer and Flow on the First Stage Blade Tip of a Power Generation Gas Turbine. Part 1; Experimental Results

    Science.gov (United States)

    Bunker, Ronald S.; Bailey, Jeremy C.; Ameri, Ali A.

    1999-01-01

    A combined computational and experimental study has been performed to investigate the detailed distribution of convective heat transfer coefficients on the first stage blade tip surface for a geometry typical of large power generation turbines(>100MW). This paper is concerned with the design and execution of the experimental portion of the study. A stationary blade cascade experiment has been run consisting of three airfoils, the center airfoil having a variable tip gap clearance. The airfoil models the aerodynamic tip section of a high pressure turbine blade with inlet Mach number of 0.30, exit Mach number of 0.75, pressure ratio of 1.45, exit Reynolds number based on axial chord of 2.57 x 10(exp 6), and total turning of about 110 degrees. A hue detection based liquid crystal method is used to obtain the detailed heat transfer coefficient distribution on the blade tip surface for flat, smooth tip surfaces with both sharp and rounded edges. The cascade inlet turbulence intensity level took on values of either 5% or 9%. The cascade also models the casing recess in the shroud surface ahead of the blade. Experimental results are shown for the pressure distribution measurements on the airfoil near the tip gap, on the blade tip surface, and on the opposite shroud surface. Tip surface heat transfer coefficient distributions are shown for sharp-edge and rounded-edge tip geometries at each of the inlet turbulence intensity levels.

  7. Research and development of asymmetrical heat transfer augmentation method in radial channels of blades for high temperature gas turbines

    Science.gov (United States)

    Shevchenko, I. V.; Rogalev, A. N.; Garanin, I. V.; Vegera, A. N.; Kindra, V. O.

    2017-11-01

    The serpentine-like one and half-pass cooling channel systems are primarily used in blades fabricated by the lost-wax casting process. The heat transfer turbulators like cross-sectional or angled ribs used in channels of the midchord region failed to eliminate the temperature irregularity from the suction and pressure sides, which is reaching 200°C for a first stage blade of the high-pressure turbine for an aircraft engine. This paper presents the results of a numerical and experimental test of an advanced heat transfer augmentation system in radial channels developed for alignment of the temperature field from the suction and pressure sides. A numerical simulation of three-dimensional coolant flow for a wide range of Reynolds numbers was carried out using ANSYS CFX software. Effect of geometrical parameters on the heat removal asymmetry was determined. The test results of a blade with the proposed intensification system conducted in a liquid-metal thermostat confirmed the accuracy of calculations. Based on the experimental data, the dependencies for calculation of heat transfer coefficients to the cooling air in the blade studied were obtained.

  8. Secondary Hypertension

    Science.gov (United States)

    Secondary hypertension Overview Secondary hypertension (secondary high blood pressure) is high blood pressure that's caused by another medical condition. Secondary hypertension can be caused by conditions that affect your kidneys, ...

  9. Heat transfer by liquids in suspension in a turbulent gas stream (1960); Transfert de chaleur par liquides entraines dans un ecoulement gazeux turbulent (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Lab. de Physique-Chimie et basses temperatures, Grenoble (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm{sup 2}), the temperature (until the boiling point) and the heat flux (until 250 W/cm{sup 2}). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [French] L'introduction d'un faible volume de liquide dans un ecoulement gazeux turbulent utilise comme fluide refrigerant permet une amelioration considerable des coefficients d'echanges thermiques que l'on aurait si le gaz etait employe seul (nous avons obtenu un facteur d'amelioration superieur a 10). En regime turbulent etabli, on observe dans un tube deux modes d'ecoulements selon que le liquide mouille ou ne mouille pas la paroi. Dans le premier cas, on obtient sur la paroi un film annulaire liquide et des gouttelettes en suspension dans le coeur gazeux. Dans le deuxieme cas, il se forme un veritable brouillard sans film liquide sur la paroi. Les etudes experimentales ont ete effectuees avec les melanges eau-hydrogene, eau-azote, ethanol-azote (liquides

  10. Hematopoiesis stimulation test by interleukin 1α gene transfer in the Cynomolgus macaque: application to secondary medullary aplasia from an accidental irradiation

    International Nuclear Information System (INIS)

    De Revel, Th.

    2002-12-01

    After a description of the context of medullary aplasia (haematological radiobiology, radiation acute syndrome, therapeutic care), and an overview of knowledge about the interleukin-1 and medullary stroma cells, this research thesis aims at investigating therapeutic alternatives for radio-accidental aplasia. More precisely, it aims at defining means to get cytokines which are efficient for haematopoiesis. Interleukin-1 is chosen for its properties and tests are performed on a macaque with two approaches for gene transfer: an ex vivo transfer by retroviral vector enabling an integration in the target cell genome, and an in situ transfer by adeno-viral vector directly applied in the animal osseous medulla

  11. Three-dimensional simulation of beam propagation and heat transfer in static gas Cs DPALs using wave optics and fluid dynamics models

    Science.gov (United States)

    Waichman, Karol; Barmashenko, Boris D.; Rosenwaks, Salman

    2017-10-01

    Analysis of beam propagation, kinetic and fluid dynamic processes in Cs diode pumped alkali lasers (DPALs), using wave optics model and gasdynamic code, is reported. The analysis is based on a three-dimensional, time-dependent computational fluid dynamics (3D CFD) model. The Navier-Stokes equations for momentum, heat and mass transfer are solved by a commercial Ansys FLUENT solver based on the finite volume discretization technique. The CFD code which solves the gas conservation equations includes effects of natural convection and temperature diffusion of the species in the DPAL mixture. The DPAL kinetic processes in the Cs/He/C2H6 gas mixture dealt with in this paper involve the three lowest energy levels of Cs, (1) 62S1/2, (2) 62P1/2 and (3) 62P3/2. The kinetic processes include absorption due to the 1->3 D2 transition followed by relaxation the 3 to 2 fine structure levels and stimulated emission due to the 2->1 D1 transition. Collisional quenching of levels 2 and 3 and spontaneous emission from these levels are also considered. The gas flow conservation equations are coupled to fast-Fourier-transform algorithm for transverse mode propagation to obtain a solution of the scalar paraxial propagation equation for the laser beam. The wave propagation equation is solved by the split-step beam propagation method where the gain and refractive index in the DPAL medium affect the wave amplitude and phase. Using the CFD and beam propagation models, the gas flow pattern and spatial distributions of the pump and laser intensities in the resonator were calculated for end-pumped Cs DPAL. The laser power, DPAL medium temperature and the laser beam quality were calculated as a function of pump power. The results of the theoretical model for laser power were compared to experimental results of Cs DPAL.

  12. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Yeon Gun; Kim, Sin [Jeju National Univ., Jeju (Korea, Republic of); Jerng, Dong Wook [Chung Ang Univ., Seoul (Korea, Republic of)

    2013-10-15

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  13. A Preliminary Study of Transverse Curvature Effects on Condensation Heat Transfer on Vertical Tube in the Presence of Non-condensable Gas

    International Nuclear Information System (INIS)

    Lee, Yeon Gun; Kim, Sin; Jerng, Dong Wook

    2013-01-01

    In this study, the effect of the transverse curvature on the condensation HTC on a vertical tube in the presence of air is preliminarily investigated by using the analysis of boundary layer for free convective heat transfer. The results indicate that the heat transfer performance can be enhanced as the outer diameter of condenser tubes is small. To confirm this curvature effect, an experimental program to obtain the condensation heat transfer data for various values of tube diameter is indispensable. Currently, by a joint research project of Jeju National University and Chung-Ang University, a condensation test facility is being designed and constructed to acquire the condensation HTC data as shown in Fig. 3. From a series of experiment on a single vertical tube, the effects of not only the tube diameter but the inclination, the existence of fins and the local velocity of a bulk mixture by natural circulation will be evaluated precisely. An empirical correlation for the condensation heat transfer of a steam-air mixture will also be developed for design optimization and performance evaluation of the PCCS. The Passive Containment Cooling System (PCCS) provides passive means to remove the decay heat and protect the integrity of the containment during severe accidents. Korea, in which all the NPPs employ the concrete containment, may adopt a PCCS using internal condensers. In the event of the loss-of-coolant accident (LOCA), steam released from the reactor coolant system is mixed with air inside the containment and condensed on the outer surface of inclined condenser tubes. It is noted that, among previous theoretical and empirical models for condensation on outer wall in the presence of non-condensable gas, no one took into account the effect of a tube diameter. Though the condensation heat transfer coefficient may vary with transverse curvature of condenser tubes, such a curvature effect has not been reported so far. In this study, a preliminary analysis is conducted

  14. Heat transfer performance comparison of steam and air in gas turbine cooling channels with different rib angles

    Science.gov (United States)

    Shi, Xiaojun; Gao, Jianmin; Xu, Liang; Li, Fajin

    2013-11-01

    Using steam as working fluid to replace compressed air is a promising cooling technology for internal cooling passages of blades and vanes. The local heat transfer characteristics and the thermal performance of steam flow in wide aspect ratio channels ( W/ H = 2) with different angled ribs on two opposite walls have been experimentally investigated in this paper. The averaged Nusselt number ratios and the friction factor ratios of steam and air in four ribbed channels were also measured under the same test conditions for comparison. The Reynolds number range is 6,000-70,000. The rib angles are 90°, 60°, 45°, and 30°, respectively. The rib height to hydraulic diameter ratio is 0.047. The pitch-to-rib height ratio is 10. The results show that the Nusselt number ratios of steam are 1.19-1.32 times greater than those of air over the range of Reynolds numbers studied. For wide aspect ratio channels using steam as the coolant, the 60° angled ribs has the best heat transfer performance and is recommended for cooling design.

  15. Loss of ammonia during electron-transfer dissociation of deuterated peptides as an inherent gauge of gas-phase hydrogen scrambling

    DEFF Research Database (Denmark)

    Rand, Kasper D; Zehl, Martin; Jensen, Ole Nørregaard

    2010-01-01

    detected by a depletion of deuterium when deuterated ammonia is lost from peptides during ETD. This straightforward method requires no modifications to the experimental workflow and has the great advantage that the occurrence of hydrogen scrambling can be directly detected in the actual peptides analyzed......The application of electron-transfer dissociation (ETD) to obtain single-residue resolution in hydrogen exchange-mass spectrometry (HX-MS) experiments has recently been demonstrated. For such measurements, it is critical to ensure that the level of gas-phase hydrogen scrambling is negligible. Here...... we utilize the abundant loss of ammonia upon ETD of peptide ions as a universal reporter of positional randomization of the exchangeable hydrogens (hydrogen scrambling) during HX-ETD experiments. We show that the loss of ammonia from peptide ions proceeds without depletion of deuterium when employing...

  16. A gas dynamics scheme for a two moments model of radiative transfer; Un schema de type dynamique des gaz pour un modele a deux moments en transfert radiatif

    Energy Technology Data Exchange (ETDEWEB)

    Buet, Ch.; Despres, B

    2007-07-01

    We address the discretization of the Levermore's two moments and entropy model of the radiative transfer equation. We present a new approach for the discretization of this model: first we rewrite the moment equations as a Compressible Gas Dynamics equation by introducing an additional quantity that plays the role of a density. After that we discretize using a Lagrange-projection scheme. The Lagrange-projection scheme permits us to incorporate the source terms in the fluxes of an acoustic solver in the Lagrange step, using the well-known piecewise steady approximation and thus to capture correctly the diffusion regime. Moreover we show that the discretization is entropic and preserve the flux-limited property of the moment model. Numerical examples illustrate the feasibility of our approach. (authors)

  17. Spectra of the linear energy transfer measured with a track etch spectrometer in the beam of 1 GeV protons and the contribution of secondary charged particles to the dose

    International Nuclear Information System (INIS)

    Spurny, F.; Vlcek, B.; Bamblevskij, V.P.; Timoshenko, G.N.

    1999-01-01

    A spectrometer of the linear energy transfer (LET) on the base of CR-39 detector was used to establish the spectra of LET in the beam of protons with the primary energy of 1 GeV. It was found out that the LET spectra of secondary charged particles between 100 and 7000 MeV cm 2 g -1 do not depend on the radiator. The average quality factors for the LET region mentioned were obtained about 11.6 with ICRP 26 quality factors and about 14.0 with ICRP 60 quality factors. The spectra obtained permitted to calculate the contributions of these secondary charged particles to the dosimetric quantities. It was observed that these contributions were about 7.0% for the total absorbed dose of protons and close 90% in the case of the equivalent doses. It is more than it was found out for few hundred MeV protons

  18. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  19. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    International Nuclear Information System (INIS)

    Wang Yueshe; Wang Yanling; Wang, G.-X.; Honda, Hiroshi

    2009-01-01

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr 0 = G/[gd e ρ v (ρ l - ρ v )] 0.5 may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr 0 > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  20. Prediction of evaporation heat transfer coefficient based on gas-liquid two-phase annular flow regime in horizontal microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Wang Yueshe, E-mail: wangys@mail.xjtu.edu.cn [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Yanling, Wang [State Key Laboratory of Multiphase Flow in Power Engineering, Xi' an Jiaotong University, Xi' an 710049 (China); Wang, G -X [Mechanical Engineering Department, The University of Akron, Akron, OH 44325-3903 (United States); Honda, Hiroshi [Kyushu University, 337 Kasuya-machi, Kasuya-gun, Kukuoka 811-2307 (Japan)

    2009-10-15

    A physical model of gas-liquid two-phase annular flow regime is presented for predicting the enhanced evaporation heat transfer characteristics in horizontal microfin tubes. The model is based on the equivalence of a periodical distortion of the disturbance wave in the substrate layer. Corresponding to the stratified flow model proposed previously by authors, the dimensionless quantity Fr{sub 0} = G/[gd{sub e}{rho}{sub v}({rho}{sub l} - {rho}{sub v})]{sup 0.5} may be used as a measure for determining the applicability of the present theoretical model, which was used to restrict the transition boundary between the stratified-wavy flow and the annular/intermittent flows. Comparison of the prediction of the circumferential average heat transfer coefficient with available experimental data for four tubes and three refrigerants reveals that a good agreement is obtained or the trend is better than that of the previously developed stratified flow model for Fr{sub 0} > 4.0 as long as the partial dry out of tube does not occur. Obviously, the developed annular model is applicable and reliable for evaporation in horizontal microfin tubes under the case of high heat flux and high mass flux.

  1. CORTAP: a coupled neutron kinetics-heat transfer digital computer program for the dynamic simulation of the high temperature gas cooled reactor core

    International Nuclear Information System (INIS)

    Cleveland, J.C.

    1977-01-01

    CORTAP (Core Transient Analysis Program) was developed to predict the dynamic behavior of the High Temperature Gas Cooled Reactor (HTGR) core under normal operational transients and postulated accident conditions. CORTAP is used both as a stand-alone component simulation and as part of the HTGR nuclear steam supply (NSS) system simulation code ORTAP. The core thermal neutronic response is determined by solving the heat transfer equations for the fuel, moderator and coolant in an average powered region of the reactor core. The space independent neutron kinetics equations are coupled to the heat transfer equations through a rapidly converging iterative technique. The code has the capability to determine conservative fuel, moderator, and coolant temperatures in the ''hot'' fuel region. For transients involving a reactor trip, the core heat generation rate is determined from an expression for decay heat following a scram. Nonlinear effects introduced by temperature dependent fuel, moderator, and coolant properties are included in the model. CORTAP predictions will be compared with dynamic test results obtained from the Fort St. Vrain reactor owned by Public Service of Colorado, and, based on these comparisons, appropriate improvements will be made in CORTAP

  2. Experimental Study of Heating of a Liquid Cathode and Transfer of Its Components into the Gas Phase under the Action of a DC Discharge

    Science.gov (United States)

    Sirotkin, N. A.; Titov, V. A.

    2018-04-01

    An atmospheric-pressure dc discharge in air ( i = 10-50 mA) with metal and liquid electrolyte electrodes was studied experimentally. An aqueous solution of sodium chloride (0.5 mol/L) was used as the cathode or anode. The electric field strength in the plasma and the cathode (anode) voltage drops were obtained from the measured dependences of the discharge voltage on the electrode gap length. The gas temperature was deduced from the spectral distribution of nitrogen emission in the band N2( C 3Π u → B 3Π g , 0-2). The time dependences of the temperatures of the liquid electrolyte electrodes during the discharge and in its afterglow, as well as the evaporation rate of the solution, were determined experimentally. The contributions of ion bombardment and heat flux from the plasma to the heating of the liquid electrode and transfer of solvent (water) into the gas phase are discussed using the experimental data obtained.

  3. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    Directory of Open Access Journals (Sweden)

    Zhongchao Zhao

    2017-11-01

    Full Text Available As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG as working fluid. The thermal properties of supercritical LNG were tested by utilizing the REFPROF software database. Numerical simulations were performed using FLUENT. The inlet temperature of supercritical LNG was 121 K, and its pressure was 10.5 MPa. The reference mass flow rate of LNG was set as 1.22 g/s for the vertical pitch Lv = 1.67 mm and the staggered pitch Ls = 0 mm, with the Reynolds number of about 3750. The SST k-ω model was selected and verified by comparing with the experimental data using supercritical liquid nitrogen as cold fluid. The airfoil fin PCHE had better thermal-hydraulic performance than that of the straight channel PCHE. Moreover, the airfoil fins with staggered arrangement displayed better thermal performance than that of the fins with parallel arrangement. The thermal-hydraulic performance of airfoil fin PCHE was improved with increasing Ls and Lv. Moreover, Lv affected the Nusselt number and pressure drop of airfoil fin PCHE more obviously. In conclusion, a sparser staggered arrangement of fins showed a better thermal-hydraulic performance in airfoil fin PCHE.

  4. Use of nitrogen to remove solvent from through oven transfer adsorption desorption interface during analysis of polycyclic aromatic hydrocarbons by large volume injection in gas chromatography.

    Science.gov (United States)

    Áragón, Alvaro; Toledano, Rosa M; Cortés, José M; Vázquez, Ana M; Villén, Jesús

    2014-04-25

    The through oven transfer adsorption desorption (TOTAD) interface allows large volume injection (LVI) in gas chromatography and the on-line coupling of liquid chromatography and gas chromatography (LC-GC), enabling the LC step to be carried out in normal as well as in reversed phase. However, large amounts of helium, which is both expensive and scarce, are necessary for solvent elimination. We describe how slight modification of the interface and the operating mode allows nitrogen to be used during the solvent elimination steps. In order to evaluate the performance of the new system, volumes ranging from 20 to 100μL of methanolic solutions of four polycyclic aromatic hydrocarbons (PAHs) were sampled. No significant differences were found in the repeatability and sensitivity of the analyses of standard PAH solutions when using nitrogen or helium. The performance using the proposed modification was similar and equally satisfactory when using nitrogen or helium for solvent elimination in the TOTAD interface. In conclusion, the use of nitrogen will make analyses less expensive. Copyright © 2014 Elsevier B.V. All rights reserved.

  5. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  6. The Effects of a Serious Digital Game on the Animal Science Competency, Mathematical Competency, Knowledge Transfer Ability, and Motivation of Secondary Agricultural Education Students

    Science.gov (United States)

    Bunch, James Charles

    2012-01-01

    The purpose of this study was twofold: 1) to compare the effectiveness of two teaching methods (i.e., lecture/discussion and digital game-based learning) on student achievement in agriculture and mathematics regarding a unit on swine diseases in animal science courses offered through secondary agricultural education programs in Oklahoma; 2) to…

  7. Analysis of conjugated heat transfer, in transient state of the first stage of a gas turbine; Analisis de transferencia de calor conjugada, en estado transitorio, de la primera etapa de una turbina de gas

    Energy Technology Data Exchange (ETDEWEB)

    Campos Amezcua, Alfonso; Mazur C, Zdzislaw [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico); Gallegos Munoz, Armando [Facultad de Ingenieria Mecanica, Electrica y Electronica (FIMEE), Universidad de Guanajuato, Guanajuato (Mexico)

    2007-11-15

    This article presents an analysis of conjugated heat transfer in the first stage of movable blades during the starting of a gas turbine, covering a period of 1,012 seconds. The developed computer model is in 3D and uses as initial and border conditions typical starting curves for stack gases, the cooling air and the angular velocity of the blades. As a result of the numerical predictions, the temperature distributions in stack gases, the trowel of the blade and the cooling air are included, doing emphasis in the results obtained in the solid (body of the blade), since these are used for thermo-mechanical stress analysis and later estimation of the blade residual life. [Spanish] Este articulo presenta un analisis de transferencia de calor conjugada en la primera etapa de alabes moviles, durante el arranque de una turbina de gas, cubriendo un periodo de 1.012 segundos. El modelo computacional desarrollado es en tres dimensiones y utiliza como condiciones iniciales y de frontera curvas de arranque tipicas para los gases de combustion, el aire de enfriamiento y la velocidad angular de los alabes. Como resultado de las predicciones numericas, se incluyen las distribuciones de temperatura en los gases de combustion, la paleta del alabe y el aire de enfriamiento, haciendo enfasis en los resultados obtenidos en el solido (cuerpo del alabe), ya que estos se utilizan para analisis de esfuerzos termomecanicos y posterior estimacion de vida residual del alabe.

  8. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  9. Weighted Domain Transfer Extreme Learning Machine and Its Online Version for Gas Sensor Drift Compensation in E-Nose Systems

    Directory of Open Access Journals (Sweden)

    Zhiyuan Ma

    2018-01-01

    Full Text Available Machine learning approaches have been widely used to tackle the problem of sensor array drift in E-Nose systems. However, labeled data are rare in practice, which makes supervised learning methods hard to be applied. Meanwhile, current solutions require updating the analytical model in an offline manner, which hampers their uses for online scenarios. In this paper, we extended Target Domain Adaptation Extreme Learning Machine (DAELM_T to achieve high accuracy with less labeled samples by proposing a Weighted Domain Transfer Extreme Learning Machine, which uses clustering information as prior knowledge to help select proper labeled samples and calculate sensitive matrix for weighted learning. Furthermore, we converted DAELM_T and the proposed method into their online learning versions under which scenario the labeled data are selected beforehand. Experimental results show that, for batch learning version, the proposed method uses around 20% less labeled samples while achieving approximately equivalent or better accuracy. As for the online versions, the methods maintain almost the same accuracies as their offline counterparts do, but the time cost remains around a constant value while that of offline versions grows with the number of samples.

  10. MHD free convection flow of a visco-elastic (Kuvshiniski type dusty gas through a semi infinite plate moving with velocity decreasing exponentially with time and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2011-06-01

    Full Text Available The present paper is concerned with the study of MHD free convective flow of a visco-elastic (Kuvshinski type dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with time. The expressions for velocity distribution of a dusty gas and dust particles, concentration profile and temperature field are obtained. The effect of Schmidt number (Sc, Magnetic field parameter (M and Radiation parameter (N on velocity distribution of dusty gas and dust particles, concentration and temperature distribution are discussed graphically.

  11. On the Clouds of Bubbles Formed by Breaking Wind-Waves in Deep Water, and their Role in Air -- Sea Gas Transfer

    Science.gov (United States)

    Thorpe, S. A.

    1982-02-01

    the gas diffusion rates from individual bubbles at wind speeds up to 16 m s-1, except perhaps very close to the surface. The vertical variation of {M}v, and the trend with increasing wind speed is moderately well predicted by a `cell model' taken to represent turbulent motions in the water. Analytical and numerical models in which the tendency of bubbles to rise is balanced by turbulent diffusion, and the effects of solubility of the gas within the bubbles are accounted for, are in reasonable agreement with the observations. An eddy diffusion coefficient is taken (in neutral conditions) to be equal to that in the atmospheric boundary layer over a rigid surface, linearly proportional to depth and friction velocity. The effects of stable or unstable conditions, and those of varying the saturation level in the water, are briefly examined. Estimates are also made, by using the observed values of {M}v supported by the analytical results, of the gas flux from the bubbles. Most of the flux occurs in the upper 2m of the water column. This flux is compared with existing measurement of the net gas flux across the air-water interface. It is concluded that in Loch Ness the component of the flux via the bubbles is small at wind speeds up to 12 m s-1 but that at sea the contribution is significant at wind speeds of 12 m s-1 (at least when the water is close to being saturated) and that at higher wind speeds the bubble contribution may dominate in the processes of air-water gas transfer.

  12. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  13. Steric effects on the primary isotope dependence of secondary kinetic isotope effects in hydride transfer reactions in solution: caused by the isotopically different tunneling ready state conformations?

    Science.gov (United States)

    Maharjan, Binita; Raghibi Boroujeni, Mahdi; Lefton, Jonathan; White, Ormacinda R; Razzaghi, Mortezaali; Hammann, Blake A; Derakhshani-Molayousefi, Mortaza; Eilers, James E; Lu, Yun

    2015-05-27

    The observed 1° isotope effect on 2° KIEs in H-transfer reactions has recently been explained on the basis of a H-tunneling mechanism that uses the concept that the tunneling of a heavier isotope requires a shorter donor-acceptor distance (DAD) than that of a lighter isotope. The shorter DAD in D-tunneling, as compared to H-tunneling, could bring about significant spatial crowding effect that stiffens the 2° H/D vibrations, thus decreasing the 2° KIE. This leads to a new physical organic research direction that examines how structure affects the 1° isotope dependence of 2° KIEs and how this dependence provides information about the structure of the tunneling ready states (TRSs). The hypothesis is that H- and D-tunneling have TRS structures which have different DADs, and pronounced 1° isotope effect on 2° KIEs should be observed in tunneling systems that are sterically hindered. This paper investigates the hypothesis by determining the 1° isotope effect on α- and β-2° KIEs for hydride transfer reactions from various hydride donors to different carbocationic hydride acceptors in solution. The systems were designed to include the interactions of the steric groups and the targeted 2° H/D's in the TRSs. The results substantiate our hypothesis, and they are not consistent with the traditional model of H-tunneling and 1°/2° H coupled motions that has been widely used to explain the 1° isotope dependence of 2° KIEs in the enzyme-catalyzed H-transfer reactions. The behaviors of the 1° isotope dependence of 2° KIEs in solution are compared to those with alcohol dehydrogenases, and sources of the observed "puzzling" 2° KIE behaviors in these enzymes are discussed using the concept of the isotopically different TRS conformations.

  14. Computational Replication of the Primary Isotope Dependence of Secondary Kinetic Isotope Effects in Solution Hydride-Transfer Reactions: Supporting the Isotopically Different Tunneling Ready State Conformations.

    Science.gov (United States)

    Derakhshani-Molayousefi, Mortaza; Kashefolgheta, Sadra; Eilers, James E; Lu, Yun

    2016-06-30

    We recently reported a study of the steric effect on the 1° isotope dependence of 2° KIEs for several hydride-transfer reactions in solution (J. Am. Chem. Soc. 2015, 137, 6653). The unusual 2° KIEs decrease as the 1° isotope changes from H to D, and more in the sterically hindered systems. These were explained in terms of a more crowded tunneling ready state (TRS) conformation in D-tunneling, which has a shorter donor-acceptor distance (DAD) than in H-tunneling. To examine the isotopic DAD difference explanation, in this paper, following an activated motion-assisted H-tunneling model that requires a shorter DAD in a heavier isotope transfer process, we computed the 2° KIEs at various H/D positions at different DADs (2.9 Å to 3.5 Å) for the hydride-transfer reactions from 2-propanol to the xanthylium and thioxanthylium ions (Xn(+) and TXn(+)) and their 9-phenyl substituted derivatives (Ph(T)Xn(+)). The calculated 2° KIEs match the experiments and the calculated DAD effect on the 2° KIEs fits the observed 1° isotope effect on the 2° KIEs. These support the motion-assisted H-tunneling model and the isotopically different TRS conformations. Furthermore, it was found that the TRS of the sterically hindered Ph(T)Xn(+) system does not possess a longer DAD than that of the (T)Xn(+) system. This predicts a no larger 1° KIE in the former system than in the latter. The observed 1° KIE order is, however, contrary to the prediction. This implicates the stronger DAD-compression vibrations coupled to the bulky Ph(T)Xn(+) reaction coordinate.

  15. The effect of dry spots on heat transfer in a locally heated liquid film moving under the action of gas flow in a channel

    Science.gov (United States)

    Zaitsev, D. V.; Tkachenko, E. M.; Bykovskaya, E. F.

    2017-11-01

    Intensive evaporation of a thin liquid film, moving in a flat micro-/minichannel under the action of gas flow is very promising for the use in cooling systems of modern semiconductor devices with localized heat sources of high intensity. In this work, using the high-speed visualization, the effect of the formation of dry spots on heat transfer in a locally heated liquid film shear-driven in a channel was investigated. It was found that the maximum intensity of heat removal from the heater is achieved in the mode, when the film flow continuity is broken. During the experiment the total area of dry spots increases with increasing heat flux and heater temperature, but when the heater reaches a certain temperature (≈100°C), the total area begins to decrease. However, the length of contact line increases with increasing heat flux and reaches a maximum in the pre-crisis regime. Intensive evaporation in the region of the contact line may explain the achievement of high heat fluxes in the shear-driven liquid film.

  16. Optimal Control Method of Parabolic Partial Differential Equations and Its Application to Heat Transfer Model in Continuous Cast Secondary Cooling Zone

    Directory of Open Access Journals (Sweden)

    Yuan Wang

    2015-01-01

    Full Text Available Our work is devoted to a class of optimal control problems of parabolic partial differential equations. Because of the partial differential equations constraints, it is rather difficult to solve the optimization problem. The gradient of the cost function can be found by the adjoint problem approach. Based on the adjoint problem approach, the gradient of cost function is proved to be Lipschitz continuous. An improved conjugate method is applied to solve this optimization problem and this algorithm is proved to be convergent. This method is applied to set-point values in continuous cast secondary cooling zone. Based on the real data in a plant, the simulation experiments show that the method can ensure the steel billet quality. From these experiment results, it is concluded that the improved conjugate gradient algorithm is convergent and the method is effective in optimal control problem of partial differential equations.

  17. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  18. Proceedings of the natural gas research and development contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W. (eds.)

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  19. Agreement between Autorita per l'energia elettrica e il gas and commission de regulation de l'electricite on transfer capacity allocation over the grid interconnecting Italy and France for the year 2002

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-07-01

    The present document contains the general outlines adopted by the Autorita per l'energia elettrica e il gas (hereafter AEEG) and the Commission de Regulation de l'Electricite (hereafter CRE) with respect to terms and conditions for allocating the transfer capacity over the interconnected grid between Italy, France and, with reference to a technically-coupled portion of the interconnection, Switzerland for the year 2002. Same conditions will be applied by AEEG, to a possible extent, to the transfer capacity allocation over the interconnected grid between Italy. Austria and Slovenia for the year 2002.

  20. Efficient models for photoionization produced by non-thermal gas discharges in air based on radiative transfer and the Helmholtz equations

    International Nuclear Information System (INIS)

    Bourdon, A; Pasko, V P; Liu, N Y; Celestin, S; Segur, P; Marode, E

    2007-01-01

    This paper presents formulation of computationally efficient models of photoionization produced by non-thermal gas discharges in air based on three-group Eddington and improved Eddington (SP 3 ) approximations to the radiative transfer equation, and on effective representation of the classic integral model for photoionization in air developed by Zheleznyak et al (1982) by a set of three Helmholtz differential equations. The reported formulations represent extensions of ideas advanced recently by Segur et al (2006) and Luque et al (2007), and allow fast and accurate solution of photoionization problems at different air pressures for the range 0.1 O 2 O 2 is the partial pressure of molecular oxygen in air in units of Torr ( p O 2 = 150 Torr) at atmospheric pressure) and R in cm is an effective geometrical size of the physical system of interest. The presented formulations can be extended to other gases and gas mixtures subject to availability of related emission, absorption and photoionization coefficients. The validity of the developed models is demonstrated by performing direct comparisons of the results from these models and results obtained from the classic integral model. Specific validation comparisons are presented for a set of artificial sources of photoionizing radiation with different Gaussian dimensions, and for a realistic problem involving development of a double-headed streamer at ground pressure. The reported results demonstrate the importance of accurate definition of the boundary conditions for the photoionization production rate for the solution of second order partial differential equations involved in the Eddington, SP 3 and the Helmholtz formulations. The specific algorithms derived from the classic photoionization model of Zheleznyak et al (1982), allowing accurate calculations of boundary conditions for differential equations involved in all three new models described in this paper, are presented. It is noted that the accurate formulation of

  1. A Web-based, computer-tailored smoking prevention program to prevent children from starting to smoke after transferring to secondary school: randomized controlled trial.

    Science.gov (United States)

    Cremers, Henricus-Paul; Mercken, Liesbeth; Candel, Math; de Vries, Hein; Oenema, Anke

    2015-03-09

    Smoking prevalence rates among Dutch children increase rapidly after they transit to secondary school, in particular among children with a low socioeconomic status (SES). Web-based, computer-tailored programs supplemented with prompt messages may be able to empower children to prevent them from starting to smoke when they transit to secondary school. The main aim of this study is to evaluate whether computer-tailored feedback messages, with and without prompt messages, are effective in decreasing children's smoking intentions and smoking behavior after 12 and 25 months of follow-up. Data were gathered at baseline (T0), and after 12 months (T1) and 25 months (T2) of follow-up of a smoking prevention intervention program called Fun without Smokes. A total of 162 schools were randomly allocated to a no-intervention control group, an intervention prompt group, or an intervention no-prompt group. A total of 3213 children aged 10 to 12 years old participated in the study and completed a Web-based questionnaire assessing their smoking intention, smoking behavior, and sociocognitive factors, such as attitude, social influence, and self-efficacy, related to smoking. After completion, children in the intervention groups received computer-tailored feedback messages in their own email inbox and those messages could be accessed on the intervention website. Children in the prompt group received prompt messages, via email and short message service (SMS) text messaging, to stimulate them to reuse the intervention website with nonsmoking content. Multilevel logistic regression analyses were performed using multiple imputations to assess the program effects on smoking intention and smoking behavior at T1 and T2. A total of 3213 children participated in the Fun without Smokes study at T0. Between T0 and T1 a total of 1067 children out of the original 3213 (33.21%) dropped out of the study. Between T0 and T2 the number of children that did not participate in the final measurement was

  2. Buoyancy-Driven Heat Transfer During Application of a Thermal Gradient for the Study of Vapor Deposition at Low Pressure Using and Ideal Gas

    Science.gov (United States)

    Frazier, D. O.; Hung, R. J.; Paley, M. S.; Penn, B. G.; Long, Y. T.

    1996-01-01

    A mathematical model has been developed to determine heat transfer during vapor deposition of source materials under a variety of orientations relative to gravitational accelerations. The model demonstrates that convection can occur at total pressures as low as 10-2 mm Hg. Through numerical computation, using physical material parameters of air, a series of time steps demonstrates the development of flow and temperature profiles during the course of vapor deposition. These computations show that in unit gravity vapor deposition occurs by transport through a fairly complicated circulating flow pattern when applying heat to the bottom of the vessel with parallel orientation with respect to the gravity vector. The model material parameters for air predict the effect of kinematic viscosity to be of the same order as thermal diffusivity, which is the case for Prandtl number approx. 1 fluids. Qualitative agreement between experiment and the model indicates that 6-(2-methyl-4-nitroanilino)-2,4-hexadiyn-l-ol (DAMNA) at these pressures indeed approximates an ideal gas at the experiment temperatures, and may validate the use of air physical constants. It is apparent that complicated nonuniform temperature distribution in the vapor could dramatically affect the homogeneity, orientation, and quality of deposited films. The experimental test i's a qualitative comparison of film thickness using ultraviolet-visible spectroscopy on films generated in appropriately oriented vapor deposition cells. In the case where heating of the reaction vessel occurs from the top, deposition of vapor does not normally occur by convection due to a stable stratified medium. When vapor deposition occurs in vessels heated at the bottom, but oriented relative to the gravity vector between these two extremes, horizontal thermal gradients induce a complex flow pattern. In the plane parallel to the tilt axis, the flow pattern is symmetrical and opposite in direction from that where the vessel is

  3. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas; La pile de Saclay experience acquise en deux ans sur le transfert de chaleur par gaz comprime

    Energy Technology Data Exchange (ETDEWEB)

    Yvon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires

    1955-07-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  4. Modification of the motor control system of secondary cooling pumps of the multipurpose reactor - GA Siwabessy (RSG-GAS) to overcome the electrical flicking

    International Nuclear Information System (INIS)

    Yayan Andriyanto; Tufiq, M.; Adin Sudirman; Koes Indrakoesoema

    2012-01-01

    Modification of the motor control system of secondary cooling pumps that have been carried out to overcome the electrical flicking. Consequences of unanticipated flicking is the cooling pumps will shut down. Modification is done by replacing the control system PLN to Uninterruptible Power Supply (UPS), plus a component of Miniature Circuit Breaker (MCB) 220 Volt 2 Amp 2 Pole, 2 Auxiliary Contactor-type 3RH1131-1APOO with 1 NO auxiliary contact (normally Open) and two time-1BP30-3RP1505 type relay (off delay). Delay time to overcome the electrical flicking is set to 1 seconds and 2 seconds, taking into calculate the electrical flicking that occurred while in the setting of time limits, the predicted secondary cooling water pressure inside the pipeline is still eligible and the motor cooling system operation can still continue to operate. In the flicking of an electrical incident on 13 April 2010 at 0:45 Pm showed that the modifications of the secondary coolant pump motors operation when the reactor operates with a power of 15 MW. (author)

  5. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 ta