WorldWideScience

Sample records for transferring secondary gas

  1. Incremental natural gas resources through infield reserve growth/secondary natural gas recovery

    Energy Technology Data Exchange (ETDEWEB)

    Finley, R.J.; Levey, R.A.; Hardage, B.A.

    1993-12-31

    The primary objective of the Infield Reserve Growth/Secondary Natural Gas Recovery (SGR) project is to develop, test, and verify technologies and methodologies with near- to midterm potential for maximizing the recovery of natural gasfrom conventional reservoirs in known fields. Additional technical and technology transfer objectives of the SGR project include: To establish how depositional and diagenetic heterogeneities in reservoirs of conventional permeability cause reservoir compartmentalization and, hence, incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas gulf coast basin as a natural laboratory for developing concepts and testing applications to find secondary gas. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields. To transfer project results to a wide array of natural gas producers, not just as field case studies, but as conceptual models of how heterogeneities determine natural gas flow units and how to recognize the geologic and engineering clues that operators can use in a cost-effective manner to identify incremental, or secondary, gas.

  2. Gas transfer system

    International Nuclear Information System (INIS)

    Oberlin, J.C.; Frick, G.; Kempfer, C.; North, C.

    1988-09-01

    The state of work on the Vivitron gas transfer system and the system functions are summarized. The system has to: evacuate the Vivitron reservoir; transfer gas from storage tanks to the Vivitron; recirculate gas during operation; transfer gas from the Vivitron to storage tanks; and assure air input. The system is now being installed. Leak alarms are given by SF6 detectors, which set off a system of forced ventilation. Another system continuously monitors the amount of SF6 in the tanks [fr

  3. Penning transfer in argon-based gas mixtures

    CERN Document Server

    Sahin, O; Tapan, I; Ozmutlu, E N

    2010-01-01

    Penning transfers, a group of processes by which excitation energy is used to ionise the gas, increase the gas gain in some detectors. Both the probability that such transfers occur and the mechanism by which the transfer takes place, vary with the gas composition and pressure. With a view to developing a microscopic electron transport model that takes Penning transfers into account, we use this dependence to identify the transfer mechanisms at play. We do this for a number of argon-based gas mixtures, using gain curves from the literature.

  4. The performance of a new gas to gas heat exchanger with strip fin

    NARCIS (Netherlands)

    Wang, J.; Hirs, Gerard; Rollmann, P.

    1999-01-01

    A compact gas to gas heat exchanger needs large heat transfer areas on both fluid sides. This can be realised by adding secondary surfaces. The secondary surfaces are plate fin, strip fin, and louvered fin, etc. The fins extend the heat transfer surfaces and promote turbulence. This paper presents a

  5. Gas transfer in a bubbly wake flow

    Science.gov (United States)

    Karn, A.; Gulliver, J. S.; Monson, G. M.; Ellis, C.; Arndt, R. E. A.; Hong, J.

    2016-05-01

    The present work reports simultaneous bubble size and gas transfer measurements in a bubbly wake flow of a hydrofoil, designed to be similar to a hydroturbine blade. Bubble size was measured by a shadow imaging technique and found to have a Sauter mean diameter of 0.9 mm for a reference case. A lower gas flow rate, greater liquid velocities, and a larger angle of attack all resulted in an increased number of small size bubbles and a reduced weighted mean bubble size. Bubble-water gas transfer is measured by the disturbed equilibrium technique. The gas transfer model of Azbel (1981) is utilized to characterize the liquid film coefficient for gas transfer, with one scaling coefficient to reflect the fact that characteristic turbulent velocity is replaced by cross-sectional mean velocity. The coefficient was found to stay constant at a particular hydrofoil configuration while it varied within a narrow range of 0.52-0.60 for different gas/water flow conditions.

  6. Study on charge transfer reaction of several organic molecules with accelerated rare gas ions

    International Nuclear Information System (INIS)

    Takahasi, Makoto; Okuda, Sachiko; Arai, Eiichi; Ichinose, Akira; Takakubo, Masaaki.

    1984-01-01

    Observing the charge transfer mass spectra of ethylbenzene, cyclobutane and methanol in Ar and Xe ion impacts, we investigated the dependence of the secondary ion peak intensities (normalized to primary ion current and target pressure) on the translational energy of primary ions (0-3500 eV).In the case of ethylbenzene, several maxima of the secondary i on peak intensities were observed in Ar and Xe ion impacts. The correlation between the maxima and the primary ion energy was examined in terms of near adiabatic theory of Massey. Supplementary studies on the energy distribution of primary ion, charge transfer cross section between methanol and Xe ion, and final product analysis in rare gas ion irradiation on cyclobutane were described. (author)

  7. Modeling of Aerobrake Ballute Stagnation Point Temperature and Heat Transfer to Inflation Gas

    Science.gov (United States)

    Bahrami, Parviz A.

    2012-01-01

    A trailing Ballute drag device concept for spacecraft aerocapture is considered. A thermal model for calculation of the Ballute membrane temperature and the inflation gas temperature is developed. An algorithm capturing the most salient features of the concept is implemented. In conjunction with the thermal model, trajectory calculations for two candidate missions, Titan Explorer and Neptune Orbiter missions, are used to estimate the stagnation point temperature and the inflation gas temperature. Radiation from both sides of the membrane at the stagnation point and conduction to the inflating gas is included. The results showed that the radiation from the membrane and to a much lesser extent conduction to the inflating gas, are likely to be the controlling heat transfer mechanisms and that the increase in gas temperature due to aerodynamic heating is of secondary importance.

  8. Heat transfer to accelerating gas flows

    International Nuclear Information System (INIS)

    Kennedy, T.D.A.

    1978-01-01

    The development of fuels for gas-cooled reactors has resulted in a number of 'gas loop' experiments in materials-testing research reactors. In these experiments, efforts are made to reproduce the conditions expected in gas-cooled power reactors. Constant surface temperatures are sought over a short (300 mm) fuelled length, and because of entrance effects, an accelerating flow is required to increase the heat transfer down-stream from the entrance. Strong acceleration of a gas stream will laminarise the flow even at Reynolds Numbers up to 50000, far above values normally associated with laminar flow. A method of predicting heat transfer in this situation is presented here. An integral method is used to find the velocity profile; this profile is then used in an explicit finite-difference solution of the energy equation to give a temperature profile and resultant heat-transfer coefficient values. The Kline criterion, which compares viscous and disruptive forces, is used to predict whether the flow will be laminar. Experimental results are compared with predictions, and good agreement is found to exist. (author)

  9. Gas mass transfer for stratified flows

    International Nuclear Information System (INIS)

    Duffey, R.B.; Hughes, E.D.

    1995-01-01

    We analyzed gas absorption and release in water bodies using existing surface renewal theory. We show a new relation between turbulent momentum and mass transfer from gas to water, including the effects of waves and wave roughness, by evaluating the equilibrium integral turbulent dissipation due to energy transfer to the water from the wind. Using Kolmogoroff turbulence arguments the gas transfer velocity, or mass transfer coefficient, is then naturally and straightforwardly obtained as a non-linear function of the wind speed drag coefficient and the square root of the molecular diffusion coefficient. In dimensionless form, the theory predicts the turbulent Sherwood number to be Sh t = (2/√π)Sc 1/2 , where Sh t is based on an integral dissipation length scale in the air. The theory confirms the observed nonlinear variation of the mass transfer coefficient as a function of the wind speed; gives the correct transition with turbulence-centered models for smooth surfaces at low speeds; and predicts experimental data from both laboratory and environmental measurements within the data scatter. The differences between the available laboratory and field data measurements are due to the large differences in the drag coefficient between wind tunnels and oceans. The results also imply that the effect of direct aeration due to bubble entrainment at wave breaking is no more than a 20% increase in the mass transfer for the highest speeds. The theory has importance to mass transfer in both the geo-physical and chemical engineering literature

  10. Effect of flue gas recirculation on heat transfer in a supercritical circulating fluidized bed combustor

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2015-09-01

    Full Text Available This paper focuses on assessment of the effect of flue gas recirculation (FGR on heat transfer behavior in 1296t/h supercritical coal-fired circulating fluidized bed (CFB combustor. The performance test in supercritical CFB combustor with capacity 966 MWth was performed with the low level of flue gas recirculation rate 6.9% into furnace chamber, for 80% unit load at the bed pressure of 7.7 kPa and the ratio of secondary air to the primary air SA/PA = 0.33. Heat transfer behavior in a supercritical CFB furnace between the active heat transfer surfaces (membrane wall and superheater and bed material has been analyzed for Geldart B particle with Sauter mean diameters of 0.219 and 0.246 mm. Bed material used in the heat transfer experiments had particle density of 2700 kg/m3. A mechanistic heat transfer model based on cluster renewal approach was used in this work. A heat transfer analysis of CFB combustion system with detailed consideration of bed-to-wall heat transfer coefficient distributions along furnace height is investigated. Heat transfer data for FGR test were compared with the data obtained for representative conditions without recycled flue gases back to the furnace through star-up burners.

  11. Liquefied Natural Gas Transfer

    Science.gov (United States)

    1980-01-01

    Chicago Bridge & Iron Company's tanks and associated piping are parts of system for transferring liquefied natural gas from ship to shore and storing it. LNG is a "cryogenic" fluid meaning that it must be contained and transferred at very low temperatures, about 260 degrees below Fahrenheit. Before the LNG can be pumped from the ship to the storage tanks, the two foot diameter transfer pipes must be cooled in order to avoid difficulties associated with sharp differences of temperature between the supercold fluid and relatively warm pipes. Cooldown is accomplished by sending small steady flow of the cryogenic substance through the pipeline; the rate of flow must be precisely controlled or the transfer line will be subjected to undesirable thermal stress.

  12. Chemical composition, secondary metabolites, in vitro gas ...

    African Journals Online (AJOL)

    Chemical composition, secondary metabolites, in vitro gas production characteristics and acceptability study of some forage for ruminant feeding in South-Western Nigeria. ... Chemical composition and qualitative analysis of saponins, phenol and steroids of the plants were determined. In vitro gas production (IVGP) was ...

  13. Gas Transfer in Cellularized Collagen-Membrane Gas Exchange Devices.

    Science.gov (United States)

    Lo, Justin H; Bassett, Erik K; Penson, Elliot J N; Hoganson, David M; Vacanti, Joseph P

    2015-08-01

    Chronic lower respiratory disease is highly prevalent in the United States, and there remains a need for alternatives to lung transplant for patients who progress to end-stage lung disease. Portable or implantable gas oxygenators based on microfluidic technologies can address this need, provided they operate both efficiently and biocompatibly. Incorporating biomimetic materials into such devices can help replicate native gas exchange function and additionally support cellular components. In this work, we have developed microfluidic devices that enable blood gas exchange across ultra-thin collagen membranes (as thin as 2 μm). Endothelial, stromal, and parenchymal cells readily adhere to these membranes, and long-term culture with cellular components results in remodeling, reflected by reduced membrane thickness. Functionally, acellular collagen-membrane lung devices can mediate effective gas exchange up to ∼288 mL/min/m(2) of oxygen and ∼685 mL/min/m(2) of carbon dioxide, approaching the gas exchange efficiency noted in the native lung. Testing several configurations of lung devices to explore various physical parameters of the device design, we concluded that thinner membranes and longer gas exchange distances result in improved hemoglobin saturation and increases in pO2. However, in the design space tested, these effects are relatively small compared to the improvement in overall oxygen and carbon dioxide transfer by increasing the blood flow rate. Finally, devices cultured with endothelial and parenchymal cells achieved similar gas exchange rates compared with acellular devices. Biomimetic blood oxygenator design opens the possibility of creating portable or implantable microfluidic devices that achieve efficient gas transfer while also maintaining physiologic conditions.

  14. Nonsymmetric gas transfer phenomena in nanoporous media

    International Nuclear Information System (INIS)

    Kurchatov, I.M.

    2011-01-01

    The regularities of nonsymmetric gas (nitrogen, helium, hydrogen, carbon dioxide) transfer in nanoporous materials are investigated. The effects of anisotropy and hysteresis of permeability in nanoporous media with pore gradient and porosity in objects of various nature are found out. The following objects are studied: polyethylene terephthalate track membranes with asymmetric pore form, commercial polyvinyl trimethylsilane gas-separation membranes with continuous distribution of pores over the membrane thickness and porous composite membranes (born nitride, silicon carbide, aluminium oxide) prepared by self-propagating high-temperature synthesis with abrupt change of pore dimensions over the thickness. The possible mechanisms of nonsymmetric gas transfer effects are under consideration [ru

  15. Heat transfer in gas turbine engines and three-dimensional flows; Proceedings of the Symposium, ASME Winter Annual Meeting, Chicago, IL, Nov. 27-Dec. 2, 1988

    Science.gov (United States)

    Elovic, E. (Editor); O'Brien, J. E. (Editor); Pepper, D. W. (Editor)

    1988-01-01

    The present conference on heat transfer characteristics of gas turbines and three-dimensional flows discusses velocity-temperature fluctuation correlations at the flow stagnation flow of a circular cylinder in turbulent flow, heat transfer across turbulent boundary layers with pressure gradients, the effect of jet grid turbulence on boundary layer heat transfer, and heat transfer characteristics predictions for discrete-hole film cooling. Also discussed are local heat transfer in internally cooled turbine airfoil leading edges, secondary flows in vane cascades and curved ducts, three-dimensional numerical modeling in gas turbine coal combustor design, numerical and experimental results for tube-fin heat exchanger airflow and heating characteristics, and the computation of external hypersonic three-dimensional flow field and heat transfer characteristics.

  16. Numerical analysis of gas-liquid two-phase flow in secondary side of steam generator

    Energy Technology Data Exchange (ETDEWEB)

    Murase, Michio; Nakamura, Akira; Yagi, Yoshinori [Inst. of Nuclear Safety System Inc., Mihama, Fukui (Japan)

    2002-09-01

    The steam generator (SG) in a pressurized water reactor (PWR) is an important two-phase flow component as the boundary between the primary loop and the secondary loop. In this study, we performed gas-liquid two-phase flow analyses for SG reliability tests conduced by Nuclear Power Engineering Corporation (NUPEC) using the two-fluid model of a thermal-hydraulic computer code PHOENICS. In order to calculate the location of the boiling initiation accurately, detailed inputs were required for the friction coefficients affecting the velocity distribution and the heat transfer distribution. However, the velocity and heat transfer distributions did not greatly affect the void fractions in the upper region of the heat transfer tubes. The calculated void fractions agreed with the measured values within 4% as the local average and within 2% as an average in a cross-section, except the region of low void fractions. (author)

  17. Property transfer assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1992-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most environmental assessments. These requirements come from lending regulators and state legislatures and affect single family, multifamily, and commercial properties. Fannie Mae and others have developed environmental investigation guidelines for protection from long term legal liabilities in the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more banks and state governments following this trend, radon gas testing should be performed during all property transfers and environmental assessments to protect the parties involved from any long term legal liabilities

  18. Review of RSG-GAS secondary cooling pump performance

    International Nuclear Information System (INIS)

    Marsahala, Y.B.

    1999-01-01

    The control system of RSG-GAS secondary pump is the study for the operation existence of RSG-GAS secondary pump. The research is about characteristic of the secondary pump and its control system. The measuring of characteristic parameter of secondary cooling pump was being done while the pump running. The pump was loading with capacity 1950 m3/hr. with ambient temperature 28.5 oC. The fault effect of public grid (PLN) such as the fluctuation of both voltage and frequency likes voltage drops (dip). Supply block out that effect of the electric motor performances directly will be analyzed. How far those faults will effect the overall performance of secondary cooling system. Analyzing. Will be done according to the control system was installed. Has be done to find the direct effects of the motor performances against the motor rotation fluctuation which run from 1450 rpm to 1475 rpm. The using of start-delta starting method with delay time about 6 seconds, is enough or not to reduce the inrush starting current also analyzed in this paper. From the research can be obtained that in the steady state condition , the electric motor runs with both power and current are still under tolerances permitted. According to the analyzed data above, it will be consider that the control system of secondary pump would be modified or not. Therefore the analyzed data can show the characteristic curve of the secondary cooling system performance

  19. Evaporation and condensation heat transfer with a noncondensable gas present

    International Nuclear Information System (INIS)

    Murase, M.; Kataoka, Y.; Fujii, T.

    1993-01-01

    To evaluate the system pressure of an external water wall type containment vessel, which is one of the passive systems for containment cooling, the evaporation and condensation behavior under a noncondensable gas presence has been experimentally examined. In the system, steam evaporated from the suppression pool surface into the wetwell, filled with noncondensable gas, and condensed on the containment vessel wall. The system pressure was the sum of the noncondensable gas pressure and saturated steam pressure in the wetwell. The wetwell temperature was, however, lower than the suppression pool temperature and depended on the thermal resistance on the suppression pool surface. The evaporation and condensation heat transfer coefficients in the presence of air as noncondensable gas were measured and expressed by functions of steam/air mass ratio. The evaporation heat transfer coefficients were one order higher than the condensation heat transfer coefficients because the local noncondensable gas pressure was much lower on the evaporating pool surface than on the condensing liquid surface. Using logal properties of the heat transfer surfaces, there was a similar trend between evaporation and condensation even with a noncondensable gas present. (orig.)

  20. Construction and performance tests of a secondary hydrogen gas cooling system

    International Nuclear Information System (INIS)

    Sanokawa, K.; Hishida, M.

    1980-01-01

    With the aim of a multi-purpose use of nuclear energy, such as direct steel-making, an experimental multi-purpose high-temperature gas-cooled reactor (VHTR) is now being developed by the Japan Atomic Energy Research Institute (JAERI). In order to simulate a heat exchanging system between the primary helium gas loop and the secondary reducing gas system of the VHTR, a hydrogen gas loop as a secondary cooling system of the existing helium gas loop was completed in 1977, and was successfully operated for over 2000 hours. The objectives of constructing the H 2 secondary loop were: (1) To get basic knowledge for designing, constructing and operating a high-temperature and high-pressure gas facility; (2) To perform the following tests: (a) hydrogen permeation at the He/H 2 heat exchanger (the surfaces of the heat exchanger tubes are coated by calorizing to reduce hydrogen permeation), (b) thermal performance tests of the He/H 2 heat exchanger and the H 2 /H 2 regenerative heat exchanger, (c) performance test of internal insulation, and (d) performance tests of the components such as a H 2 gas heater and gas purifiers. These tests were carried out at He gas temperature of approximately 1000 0 C, H 2 gas temperature of approximately 900 0 C and gas pressures of approximately 40 kg/cm 2 G, which are almost the same as the operating conditions of the VHTR

  1. Heat transfer characteristics around a single heated rod immersed in sodium pool with gas jet injection

    International Nuclear Information System (INIS)

    Hideto Niikura; Kazuo Soga; Ken-ichiro Sugiyama; Akira Yamaguchi

    2005-01-01

    In a steam generator using liquid sodium, water intensely reacts with sodium when it leaks out from a heat transfer tube. It is important to evaluate the influence of sodium-water reaction to surrounding tubes and the shell. Hence, it has been desired to develop the simulation code for the evaluation of sodium-water reaction. From this viewpoint, the Japan Nuclear Cycle is now developing the SERAPHIM code. We reported a preliminary study to establish an experimental method for a single heated rod immersed in sodium pool with steam jet impingement planned in the near future as well as to obtain a preliminary data to verify the adequacy of SERAPHIM code. We first measured local and mean heat transfer coefficients around a horizontal single heated rod immersed in a water pool and a sodium pool with a limited volume in the experimental apparatus. It was confirmed that the mean heat transfer coefficients fairly agreed with the existing data for natural convection in water and sodium. Secondary we measured local and mean heat transfer coefficients around a horizontal single heated rod with Ar gas jet impingement immersed in the limited water pool and in the limited sodium pool. It was clearly observed that the local heat transfer coefficients in the sodium pool keep almost the same values in every angle regardless of increase in Ar gas jet velocity varied from about 8.7m/s to about 78m/s. On the other hand, it was confirmed in the water pool that local heat transfer coefficients on the forward stagnation side exposed in the Ar gas jet impingement increase with increasing the jet velocity while the local heat transfer coefficients on the opposite surface keep almost same values regardless of increase in the velocity. (authors)

  2. Exhaust gas heat recovery through secondary expansion cylinder and water injection in an internal combustion engine

    Directory of Open Access Journals (Sweden)

    Nassiri Toosi Ali

    2017-01-01

    Full Text Available To enhance thermal efficiency and increase performance of an internal combustion engine, a novel concept of coupling a conventional engine with a secondary 4-stroke cylinder and direct water injection process is proposed. The burned gases after working in a traditional 4-stroke combustion cylinder are transferred to a secondary cylinder and expanded even more. After re-compression of the exhaust gases, pre-heated water is injected at top dead center. The evaporation of injected water not only recovers heat from exhaust gases, but also increases the mass of working gas inside the cylinder, therefore improves the overall thermal efficiency. A 0-D/1-D model is used to numerically simulate the idea. The simulations outputs showed that the bottoming cycle will be more efficient at higher engines speeds, specifically in a supercharged/turbocharged engine, which have higher exhaust gas pressure that can reproduce more positive work. In the modeled supercharged engine, results showed that brake thermal efficiency can be improved by about 17%, and brake power by about 17.4%.

  3. Accident on the gas transfer system

    International Nuclear Information System (INIS)

    Heugel, J.

    1991-10-01

    An accident has happened on the Vivitron gas transfer system on the 7 th August 1991. This report presents the context, facts and inquiries, analyses the reasons and explains also how the repairing has been effected

  4. Steady Secondary Flows Generated by Periodic Compression and Expansion of an Ideal Gas in a Pulse Tube

    Science.gov (United States)

    Lee, Jeffrey M.

    1999-01-01

    This study establishes a consistent set of differential equations for use in describing the steady secondary flows generated by periodic compression and expansion of an ideal gas in pulse tubes. Also considered is heat transfer between the gas and the tube wall of finite thickness. A small-amplitude series expansion solution in the inverse Strouhal number is proposed for the two-dimensional axisymmetric mass, momentum and energy equations. The anelastic approach applies when shock and acoustic energies are small compared with the energy needed to compress and expand the gas. An analytic solution to the ordered series is obtained in the strong temperature limit where the zeroth-order temperature is constant. The solution shows steady velocities increase linearly for small Valensi number and can be of order I for large Valensi number. A conversion of steady work flow to heat flow occurs whenever temperature, velocity or phase angle gradients are present. Steady enthalpy flow is reduced by heat transfer and is scaled by the Prandtl times Valensi numbers. Particle velocities from a smoke-wire experiment were compared with predictions for the basic and orifice pulse tube configurations. The theory accurately predicted the observed steady streaming.

  5. Secondary mechanisms in a gas discharge

    International Nuclear Information System (INIS)

    Fletcher, J.; Blevin, H.A.

    1978-05-01

    The technique for studying swarms of electrons in a gas discharge by observing the photon flux from the discharge has been adapted to investigate the role of the secondary mechanisms. First results, reported here, show that, contrary to previous indications, ion bombardment of the cathode plays only a negligible, if any, part in the low pressure discharge in hydrogen at E/N approx. less than 200Td

  6. Horizontal transfer of bait in the German cockroach: indoxacarb causes secondary and tertiary mortality.

    Science.gov (United States)

    Buczkowski, Grzegorz; Scherer, Clay W; Bennett, Gary W

    2008-06-01

    Horizontal transfer of indoxacarb in the German cockroach, Blattella germanica (L.), was examined under laboratory conditions. Results show that a single bait-fed adult cockroach (i.e., the donor) transferred indoxacarb to numerous primary recipients (secondary mortality),which then became secondary donors. These recipients subsequently became donors to other cockroaches and caused significant mortality in other members of the aggregation, resulting in tertiary kill. Indoxacarb was effectively transferred among adult cockroaches and resulted in significant secondary mortality. When adult males served as donors and vectored the insecticide to adult males, the donor:recipient ratio affected the mortality of the recipients and the rate of secondary mortality increased with increasing the ratio of donors to recipients. Furthermore, secondary mortality in the untreated cockroaches was significantly affected by the freshness of excretions from the donors, the presence of alternative food, and the duration of contact between the donors and the recipients. Ingested indoxacarb was most effectively translocated when the recipients interacted with freshly symptomatic donors in the absence of alternative food. The transfer of indoxacarb continued beyond secondary mortality and resulted in significant tertiary mortality. Excretions from a single bait-fed adult killed 38/50 (76%) nymphs within 72 h. The dead nymphs then vectored indoxacarb to 20 adult males and killed 16/20 (81%) recipients within 72 h. Behavioral mechanisms involved in the horizontal transfer of indoxacarb may include: contact with excretions, necrophagy, emetophagy, and ingestion of other excretions that originate from the donors.

  7. Control Decisions for Flammable Gas Hazards in Waste Transfer Systems

    International Nuclear Information System (INIS)

    KRIPPS, L.J.

    2000-01-01

    This report describes the control decisions for flammable gas hazards in waste transfer systems (i.e., waste transfer piping and waste transfer-associated structures) made at control decision meetings on November 30, 1999a and April 19, 2000, and their basis. These control decisions, and the analyses that support them, will be documented in an amendment to the Final Safety Analysis Report (FSAR) (CHG 2000a) and Technical Safety Requirements (TSR) (CHG 2000b) to close the Flammable Gas Unreviewed Safety Question (USQ) (Bacon 1996 and Wagoner 1996). Following the Contractor Tier I review of the FSAR and TSR amendment, it will be submitted to the US. Department of Energy (DOE), Office of River Protection (ORP) for review and approval. The control decision meeting on November 30, 1999 to address flammable gas hazards in waste transfer systems followed the control decision process and the criteria for control decisions described in Section 3.3.1.5 of the FSAR. The control decision meeting agenda, attendance list, and introductory and background presentations are included in Attachments 1 through 4. The control decision discussions on existing and other possible controls for flammable gas hazards in waste transfer systems and the basis for selecting or not selecting specific controls are summarized in this report

  8. A Secondary Flow Effect on the Heat and Mass Transfer Processes in the Finned Rod Bundles of Gas-cooled Reactors

    Directory of Open Access Journals (Sweden)

    A. A. Dunaitsev

    2017-01-01

    Full Text Available In nuclear power engineering a need to justify an operability of products and their components is of great importance. In high-temperature gas reactors, the critical element affecting the facility reliability is the fuel rod cladding, which in turn leads to the need to gain knowledge in the field of gas dynamics and heat transfer in the reactor core and to increase the detail of the calculation results. For the time being, calculations of reactor core are performed using the proven techniques of per-channel calculations, which show good representativeness and count rate. However, these techniques require additional experimental studies to describe correctly the inter-channel exchange, which, being taken into account, largely affects the pattern of the temperature fields in the region under consideration. Increasingly more relevant and demandable are numerical simulation methods of fluid and gas dynamics, as well as of heat exchange, which consist in the direct solution of the system of differential equations of mass balance, kinetic moment, and energy. Calculation of reactor cores or rod bundles according these techniques does not require additional experimental studies and allows us to obtain the local distributions of flow characteristics in the bundle and the flow characteristics that are hard to measure in the physical experiment.The article shows the calculation results and their analysis for an infinite rod lattice of the reactor core. The results were obtained by the technique of modelling one rod of a regular lattice using the periodic boundary conditions, followed by translating the results to the neighbouring rods. In channels of complex shape, there are secondary flows caused by changes in the channel geometry along the flow and directed across the main front of the flow. These secondary flows in the reactor cores with rods spaced by the winding wire lead to a redistribution of the coolant along the channel section, which in turn

  9. Mass transfer between gas and particles in a gas-solid trickle flow reactor

    NARCIS (Netherlands)

    Kiel, J.H.A.; Kiel, J.H.A.; Prins, W.; van Swaaij, Willibrordus Petrus Maria

    1992-01-01

    Gas-solids mass transfer was studied for counter-current flow of gas and millimetre-sized solid particles over an inert packing at dilute phase or trickle flow conditions. Experimental data were obtained from the adsorption of water vapour on 640 and 2200 ¿m diameter molecular sieve spheres at

  10. Economics of secondary energy from GTL regarding natural gas reserves of Bolivia

    International Nuclear Information System (INIS)

    Udaeta, Miguel Edgar Morales; Burani, Geraldo Francisco; Arzabe Maure, Jose Omar; Oliva, Cidar Ramon

    2007-01-01

    This work aims the economics and the viability of Natural Gas Industrialization in Bolivia, by producing secondary fuels like gas to liquid (GTL)-diesel from natural gas (cleaner than the oil by-product), looking for a clean development with that environmentally well energy using this GTL process. Bolivia has resources that could fulfill these secondary energy resources from GTL. It is possible to process 30 MCMpd of gas obtaining profits from the gas and also from the liquid hydrocarbons that are found in it. Then the Bolivian GTL would present the following advantages: it would export diesel and/or gasoline and would not have to import it anymore.; the exportations of GTL-FT would reach 35 Mbpy, acquiring competitive prices; it would increase productive jobs not only due to the GTL itself, but also from secondary economy linked to GTL market; the use of GTL-FT diesel would bring a ''cleaner'' environment especially in the urban areas; finally, from the macroeconomic perspective, the investment in the plant construction and supporting works would generate a great amount of job offers. (author)

  11. Wireless Power Transfer System for Rotary Parts Telemetry of Gas Turbine Engine

    Directory of Open Access Journals (Sweden)

    Xiaoming He

    2018-04-01

    Full Text Available A novel wireless power transfer approach for the rotary parts telemetry of a gas turbine engine is proposed. The advantages of a wireless power transfer (WPT system in the power supply for the rotary parts telemetry of a gas turbine engine are introduced. By simplifying the circuit of the inductively-coupled WPT system and developing its equivalent circuit model, the mathematical expressions of transfer efficiency and transfer power of the system are derived. A mutual inductance model between receiving and transmitting coils of the WPT system is presented and studied. According to this model, the mutual inductance between the receiving and the transmitting coils can be calculated at different axial distances. Then, the transfer efficiency and transfer power can be calculated as well. Based on the test data, the relationship of the different distances between the two coils, the transfer efficiency, and transfer power is derived. The proper positions where the receiving and transmitting coils are installed in a gas turbine engine are determined under conditions of satisfying the transfer efficiency and transfer power that the telemetry system required.

  12. Transient heat transfer for forced convection flow of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Sasaki, Kenji; Yamamoto, Manabu

    1999-01-01

    Transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured using a forced convection test loop. The platinum heater with a diameter of 1.0 mm was heated by electric current with an exponential increase of Q 0 exp(t/τ). It was clarified that the heat transfer coefficient approaches the steady-state one for the period τ over 1 s, and it becomes higher for the period of τ shorter than 1 s. The transient heat transfer shows less dependent on the gas flowing velocity when the period becomes very shorter. Semi-empirical correlations for steady-state and transient heat transfer were developed based on the experimental data. (author)

  13. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    International Nuclear Information System (INIS)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong

    2015-01-01

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k L a), interfacial area (a) and liquid side true mass transfer coefficient (k L ) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O 2 and chemical absorption of CO 2 in the column. The values of k L a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k L increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases

  14. Characteristics of Gas-liquid Mass Transfer and Interfacial Area in a Bubble Column

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Dae Ho; Yoo, Dong Jun; Kang, Yong [Chungnam National University, Daejeon (Korea, Republic of)

    2015-02-15

    Characteristics of gas-liquid mass transfer and interfacial area were investigated in a bubble column of diameter and height of 0.102 m and 2.5 m, respectively. Effects of gas and liquid velocities on the volumetric gas-liquid mass transfer coefficient (k{sub L}a), interfacial area (a) and liquid side true mass transfer coefficient (k{sub L}) were examined. The interfacial area and volumetric gas-liquid mass transfer coefficient were determined directly by adopting the simultaneous physical desorption of O{sub 2} and chemical absorption of CO{sub 2} in the column. The values of k{sub L}a and a increased with increasing gas velocity but decreased with increasing liquid velocity in the bubble column which was operated in the churn turbulent flow regime. The value of k{sub L} increased with increasing gas velocity but did not change considerably with increasing liquid velocity. The liquid side mass transfer was found to be related closely to the liquid circulation as well as the effective contacting frequency between the bubbles and liquid phases.

  15. Secondary and subsequent DNA transfer during criminal investigation.

    Science.gov (United States)

    Fonneløp, Ane Elida; Egeland, Thore; Gill, Peter

    2015-07-01

    With the introduction of new multiplex PCR kits and instrumentation such as the Applied Biosystems 3500xl, there has recently been a rapid change in technology that has greatly increased sensitivity of detection so that a DNA profile can routinely be obtained from only a few cells. Research to evaluate the risks of passive transfer has not kept pace with this development; hence the risk of innocent DNA transfer at the crime-scene is currently not properly understood. The purpose of this study was to investigate the possibility of investigator-mediated transfer of DNA traces with disposable nitrile-gloves used during crime-scene examinations. We investigated the primary transfer of freshly deposited DNA from touched plastic, wood or metal substrates and secondary and tertiary transfer by a person wearing disposable nitrile-gloves and onto a third object. We show that with use of the new highly sensitive technologies available in forensic DNA analysis there is an enhanced probability to obtain a DNA-profile which has not been directly deposited on the object but is an outcome of one or more transfer events. The nitrile-gloves used by investigators during exhibit examination can act as a vector for DNA transfer from one item to another. We have shown that the amount of DNA deposited on an object affects the probability of transfer. Secondly, the type of substrate material that DNA is deposited onto has an impact on transfer rates. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.

  16. Heat transfer across the interface between nanoscale solids and gas.

    Science.gov (United States)

    Cheng, Chun; Fan, Wen; Cao, Jinbo; Ryu, Sang-Gil; Ji, Jie; Grigoropoulos, Costas P; Wu, Junqiao

    2011-12-27

    When solid materials and devices scale down in size, heat transfer from the active region to the gas environment becomes increasingly significant. We show that the heat transfer coefficient across the solid-gas interface behaves very differently when the size of the solid is reduced to the nanoscale, such as that of a single nanowire. Unlike for macroscopic solids, the coefficient is strongly pressure dependent above ∼10 Torr, and at lower pressures it is much higher than predictions of the kinetic gas theory. The heat transfer coefficient was measured between a single, free-standing VO(2) nanowire and surrounding air using laser thermography, where the temperature distribution along the VO(2) nanowire was determined by imaging its domain structure of metal-insulator phase transition. The one-dimensional domain structure along the nanowire results from the balance between heat generation by the focused laser and heat dissipation to the substrate as well as to the surrounding gas, and thus serves as a nanoscale power-meter and thermometer. We quantified the heat loss rate across the nanowire-air interface, and found that it dominates over all other heat dissipation channels for small-diameter nanowires near ambient pressure. As the heat transfer across the solid-gas interface is nearly independent of the chemical identity of the solid, the results reveal a general scaling relationship for gaseous heat dissipation from nanostructures of all solid materials, which is applicable to nanoscale electronic and thermal devices exposed to gaseous environments.

  17. 75 FR 66046 - Capacity Transfers on Intrastate Natural Gas Pipelines

    Science.gov (United States)

    2010-10-27

    ...] Capacity Transfers on Intrastate Natural Gas Pipelines October 21, 2010. AGENCY: Federal Energy Regulatory... comments on whether and how holders of firm capacity on intrastate natural gas pipelines providing interstate transportation and storage services under section 311 of the Natural Gas Policy Act of 1978 and...

  18. Towards a Biohybrid Lung: Endothelial Cells Promote Oxygen Transfer through Gas Permeable Membranes.

    Science.gov (United States)

    Menzel, Sarah; Finocchiaro, Nicole; Donay, Christine; Thiebes, Anja Lena; Hesselmann, Felix; Arens, Jutta; Djeljadini, Suzana; Wessling, Matthias; Schmitz-Rode, Thomas; Jockenhoevel, Stefan; Cornelissen, Christian Gabriel

    2017-01-01

    In patients with respiratory failure, extracorporeal lung support can ensure the vital gas exchange via gas permeable membranes but its application is restricted by limited long-term stability and hemocompatibility of the gas permeable membranes, which are in contact with the blood. Endothelial cells lining these membranes promise physiological hemocompatibility and should enable prolonged application. However, the endothelial cells increase the diffusion barrier of the blood-gas interface and thus affect gas transfer. In this study, we evaluated how the endothelial cells affect the gas exchange to optimize performance while maintaining an integral cell layer. Human umbilical vein endothelial cells were seeded on gas permeable cell culture membranes and cultivated in a custom-made bioreactor. Oxygen transfer rates of blank and endothelialized membranes in endothelial culture medium were determined. Cell morphology was assessed by microscopy and immunohistochemistry. Both setups provided oxygenation of the test fluid featuring small standard deviations of the measurements. Throughout the measuring range, the endothelial cells seem to promote gas transfer to a certain extent exceeding the blank membranes gas transfer performance by up to 120%. Although the underlying principles hereof still need to be clarified, the results represent a significant step towards the development of a biohybrid lung.

  19. Measurement of dissolved hydrogen and hydrogen gas transfer in a hydrogen-producing reactor

    Energy Technology Data Exchange (ETDEWEB)

    Shizas, I.; Bagley, D.M. [Toronto Univ., ON (Canada). Dept. of Civil Engineering

    2004-07-01

    This paper presents a simple method to measure dissolved hydrogen concentrations in the laboratory using standard equipment and a series of hydrogen gas transfer tests. The method was validated by measuring hydrogen gas transfer parameters for an anaerobic reactor system that was purged with 10 per cent carbon dioxide and 90 per cent nitrogen using a coarse bubble diffuser stone. Liquid samples from the reactor were injected into vials and hydrogen was allowed to partition between the liquid and gaseous phases. The concentration of dissolved hydrogen was determined by comparing the headspace injections onto a gas chromatograph and a standard curve. The detection limit was 1.0 x 10{sup -5} mol/L of dissolved hydrogen. The gas transfer rate for hydrogen in basal medium and anaerobic digester sludge was used to validate the method. Results were compared with gas transfer models. In addition to monitoring dissolved hydrogen in reactor systems, this method can help improve hydrogen production potential. 1 ref., 4 figs.

  20. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  1. Experience transfer in Norwegian oil and gas industry: Approaches and organizational mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1998-12-31

    The main objective of this thesis has been to explore how experience transfer works in Norwegian oil and gas industry. This includes how the concept of experience transfer is defined, what the barriers to achieve experience transfer are, how the oil and gas companies address experience transfer, and how these approaches work. The thesis is organized in five papers: (1) describes how organizational members perceive experience transfer and then specifies the organizational and structural barriers that must be overcome to achieve efficient transfer. (2) discusses the organizational means an oil company implements to address experience transfer. (3) describes a process of improving and using requirement and procedure handbooks for experience transfer. (4) explores how the use of information technology influences experience transfer. (5) compares organizational members` perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. 277 refs., 3 figs., 29 tabs.

  2. Variation of air--water gas transfer with wind stress and surface viscoelasticity

    OpenAIRE

    Frew, Nelson M.; Bock, Erik J.; McGillis, Wade R.; Karachintsev, Andrey V.; Hara, Tetsu; Münsterer, Thomas; Jähne, Bernd

    1995-01-01

    Previous parameterizations of gas transfer velocity have attempted to cast this quantity as a function of wind speed or wind-stress. This study demonstrates that the presence of a surface film is effective at reducing the gas transfer velocity at constant wind-stress. Gas exchange experiments were performed at WHOI and UH using annular wind-wave tanks of different scales. Systematic variations of wind-stress and surfactant concentration (Triton-X-100) were explored to determ...

  3. The potential role of sea spray droplets in facilitating air-sea gas transfer

    Science.gov (United States)

    Andreas, E. L.; Vlahos, P.; Monahan, E. C.

    2016-05-01

    For over 30 years, air-sea interaction specialists have been evaluating and parameterizing the role of whitecap bubbles in air-sea gas exchange. To our knowledge, no one, however, has studied the mirror image process of whether sea spray droplets can facilitate air-sea gas exchange. We are therefore using theory, data analysis, and numerical modeling to quantify the role of spray on air-sea gas transfer. In this, our first formal work on this subject, we seek the rate-limiting step in spray-mediated gas transfer by evaluating the three time scales that govern the exchange: τ air , which quantifies the rate of transfer between the atmospheric gas reservoir and the surface of the droplet; τ int , which quantifies the exchange rate across the air-droplet interface; and τ aq , which quantifies gas mixing within the aqueous solution droplet.

  4. Old Anticipations, New Anxieties? A Contemporary Perspective on Primary to Secondary Transfer

    Science.gov (United States)

    Mellor, David; Delamont, Sara

    2011-01-01

    The transfer from primary to secondary school in England and Wales is a status passage, from child to teenager. Research on the anxieties and anticipations surrounding that transfer over a 30-year period shows continuities and discontinuities. As well as the contrast of sociological approaches, the perceptions of children in 1977-1978 and…

  5. Limited and selective transfer of plasma membrane glycoproteins to membrane of secondary lysosomes

    International Nuclear Information System (INIS)

    Haylett, T.; Thilo, L.

    1986-01-01

    Radioactive galactose, covalently bound to cell surface glycoconjugates on mouse macrophage cells, P388D 1 , was used as a membrane marker to study the composition, and the kinetics of exchange, of plasma membrane-derived constituents in the membrane of secondary lysosomes. Secondary lysosomes were separated from endosomes and plasma membrane by self-forming Percoll density gradients. Horseradish peroxidase, taken up by fluid-phase pinocytosis, served as a vesicle contents marker to monitor transfer of endosomal contents into secondary lysosomes. Concurrently, the fraction of plasma membrane-derived label of secondary lysosomes increased by first order kinetics from 4 PAGE, labeled molecules of M/sub r/ 160-190 kD were depleted and of the M/sub r/ 100-120 kD were enriched in lysosome membrane compared with the relative composition of label on the cell surface. No corresponding selectivity was observed for the degradation of label, with all M/sub r/ classes being affected to the same relative extent. The results indicate that endocytosis-derived transfer of plasma membrane constitutents to secondary lysosomes is a limited and selective process, and that only ∼1% of internalized membrane is recycled via a membrane pool of secondary lysosomes

  6. Biofilm structure and mass transfer in a gas phase trickle-bed biofilter.

    Science.gov (United States)

    Zhu, X; Suidan, M T; Alonso, C; Yu, T; Kim, B J; Kim, B R

    2001-01-01

    Mass transport phenomena occurring in the biofilms of gas phase trickle-bed biofilters are investigated in this study. The effect of biofilm structure on mass transfer mechanisms is examined using experimental observation from the operating of biofilters, microelectrode techniques and microscopic examination. Since the biofilms of biofilters used for waste gas treatment are not completely saturated with water, there is not a distinguishable liquid layer outside the biofilm. Results suggest that due to this characteristic, gas phase substrates (such as oxygen or volatile organic compounds) may not be limited by the aqueous phase because transport of the compound into the biofilm can occur directly through non-wetted areas. On the other hand, for substrates that are present only in the liquid phase, such as nitrate, the mass transfer limitation is more serious because of the limited liquid supply. Microscopic observations show that a layered structure with void spaces exists within the biofilm. Oxygen concentration distributions along the depth of the biofilms are examined using an oxygen microelectrode. Results indicate that there are some high dissolved oxygen zones inside the biofilm, which suggests the existence of passages for oxygen transfer into the deeper sections of the biofilm in a gas phase trickle-bed biofilter. Both the low gas-liquid mass transfer resistance and the resulting internal structure contribute to the high oxygen penetration within the biofilms in gas phase trickle-bed biofilters.

  7. Primary and secondary organic aerosol origin by combined gas-particle phase source apportionment

    Directory of Open Access Journals (Sweden)

    M. Crippa

    2013-08-01

    Full Text Available Secondary organic aerosol (SOA, a prominent fraction of particulate organic mass (OA, remains poorly constrained. Its formation involves several unknown precursors, formation and evolution pathways and multiple natural and anthropogenic sources. Here a combined gas-particle phase source apportionment is applied to wintertime and summertime data collected in the megacity of Paris in order to investigate SOA origin during both seasons. This was possible by combining the information provided by an aerosol mass spectrometer (AMS and a proton transfer reaction mass spectrometer (PTR-MS. A better constrained apportionment of primary OA (POA sources is also achieved using this methodology, making use of gas-phase tracers. These tracers made possible the discrimination between biogenic and continental/anthropogenic sources of SOA. We found that continental SOA was dominant during both seasons (24–50% of total OA, while contributions from photochemistry-driven SOA (9% of total OA and marine emissions (13% of total OA were also observed during summertime. A semi-volatile nighttime component was also identified (up to 18% of total OA during wintertime. This approach was successfully applied here and implemented in a new source apportionment toolkit.

  8. The Reference Laboratory for Radon Gas Activity Concentration Measurements at PSI; Das Referenzlabor fuer Radongas-Konzentrationsmessungen am PSI

    Energy Technology Data Exchange (ETDEWEB)

    Schuler, Christoph

    1998-09-01

    Active or passive radon gas measuring instruments are exposed during intercomparison exercises in the radon chamber of the Reference Laboratory for Radon Gas Concentration Measurements at Paul Scherrer Institut: The traceability of radon gas measurements to nationally and internationally acknowledged standards is inspected in the reference atmosphere of the chamber with calibrated {sup 222}Rn activity concentration. The use of secondary standards guarantees the traceability of the radon chamber reference atmosphere. Besides the principal secondary standard, a radon gas standard (secondary standard I), a {sup 226}Ra standard solution (secondary standard II) and a {sup 222}Rn emanation standard (secondary standard III) are used. The {sup 222}Rn activity delivered by one of these standards is quantitatively transferred into a reference volume and hence converted to an activity concentration serving for the calibration of a measuring instrument transfer standard consisting of scintillation cell and counter. By this way, the transfer standard calibration is related and traceable to the internationally acknowledged primary standard laboratories National Institute of Standards and Technology, Gaithersburg, Maryland (U.S.A.) or National Physical Laboratory, Teddington, Middlesex (UK). The calibrated transfer standard is then used to calibrate the radon gas activity concentration in the radon chamber. For a single grab sampling determination of the {sup 222}Rn activity concentration in the radon chamber with the transfer standard, the estimation of Type A and Type B uncertainties yields a relative expanded uncertainty (95% confidence level) of minimum 3% for high concentration levels (10 kBqm{sup -3}) and maximum 30% for low concentration levels (0.2 kBqm{sup -3}). Extended evaluations of the reproducibility of calibration factor measurements obtained by calibration of the transfer standard with the secondary standards I, II and III show a very good reproducibility quality

  9. Gas Temperature and Radiative Heat Transfer in Oxy-fuel Flames

    DEFF Research Database (Denmark)

    Bäckström, Daniel; Johansson, Robert; Andersson, Klas

    This work presents measurements of the gas temperature, including fluctuations, and its influence on the radiative heat transfer in oxy-fuel flames. The measurements were carried out in the Chalmers 100 kW oxy-fuel test unit. The in-furnace gas temperature was measured by a suction pyrometer...... on the radiative heat transfer shows no effect of turbulence-radiation interaction. However, by comparing with temperature fluctuations in other flames it can be seen that the fluctuations measured here are relatively small. Further research is needed to clarify to which extent the applied methods can account...

  10. Heat transfer by liquids in suspension in a turbulent gas stream (1960)

    International Nuclear Information System (INIS)

    Grison, E.; Commissariat a l'Energie Atomique, Saclay

    1960-01-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm 2 ), the temperature (until the boiling point) and the heat flux (until 250 W/cm 2 ). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [fr

  11. Contribution of the bubbles to gas transfer across the ocean-atmosphere interface

    International Nuclear Information System (INIS)

    Memery, Laurent

    1983-05-01

    A first theoretical approach to gas transfer by bubbles is undertaken. Certain parameters which are neglected by smooth air-water interface models are studied. It is found that transfer velocity increases when solubility decreases. Further, bubble overpressure leads to water supersaturation at equilibrium, this supersaturation being more significant for less soluble gases. Although the transfer velocity remains roughly constant for a variable concentration gradient far from equilibrium, its range of variation becomes infinite near equilibrium. Because the notion of transfer velocity is not useful near equilibrium, attention is turned directly to the flux itself: the flux is a linear function of the concentration gradient. At least for tracers the coefficients of this function are entirely defined by the physico-chemical properties of the gas and by the bubble distribution. The dissertation is divided in three parts: - a synthesis which sums up the main experimental and theoretical results of the study of the influence of the bubbles created by breaking waves on gas transfer, - an article published in 'Journal of Geophysical Research', - an article submitted to 'Tellus'. (author) [fr

  12. Improvement in the heat transfer of a gas filled thermal switch

    International Nuclear Information System (INIS)

    Yamamoto, J.

    1984-01-01

    This chapter attempts to clarify the heat transfer mechanism of a gas filled stainless steel tube, and shows how the maximum heat transfer rate is determined under various filling pressures. The thermal switch is a convenient device for a thermal link between the cold heat of a cryocooler and a magnet dewar, because the switch acts as an active thermal conductor at the precooling stage and as an insulator after collecting liquid helium in the dewar. Topics considered include the switch structure, the heat transfer process, the delay of condensation, and the precooling stage and switching. It is determined that the heat transfer mechanism of the gas filled switch is due to normal nucleate boiling at the bottom and condensation on the upper cone. The higher the initial pressure, the larger the maximum heat flow obtained. Evaporation and condensation surfaces play an important role in the heat transfer rate

  13. Air/sea DMS gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-05-01

    Shipboard measurements of eddy covariance DMS air/sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air/sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near surface water side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air/sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  14. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-07-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections.

  15. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    International Nuclear Information System (INIS)

    Aase, Karina

    1997-01-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections

  16. Stress analysis of secondary ramp and secondary tilting mechanism of inclined fuel transfer machine for 500 MWe PFBR

    International Nuclear Information System (INIS)

    Prabhakaran, K.M.; Vaze, K.K.; Ghosh, A.K.; Rai, Somesh; Sundarani, A.R.; Patel, R.J.; Agrawal, R.G.

    2004-10-01

    Inclined Fuel Transfer Machine (IFTM) is one of the important machine of the fuel handling system of 500 MWe Prototype Fast Breeder Reactor (PFBR). It is used to transfer core sub-assemblies (CSA) from reactor vessel to fuel building and vice-versa. Secondary ramp and Secondary tilting mechanism (SR/STM) is a part of IFTM which acts as a passage to transfer CSA. This mechanism and components were designed by the Refuelling Technology Division of BARC as per the ASME design code as class 2 component. Being critical in nature and complicated in geometry it was required to check the design of these components by detailed finite element analysis. The loading considered in the present study was static, thermal and seismic conditions. This was done using FEM software COSMOS/M. The Stresses were categorised as per the requirement of the ASME code for various levels of loading (Level A, B and C). Based on the analysis performed, it was concluded that the SR/STM qualifies the requirement of ASME code Section-III NC (Class-2 components). This report gives the details of the studies performed. (author)

  17. Construction and performance testing of a secondary cooling system with hydrogen gas (I)

    International Nuclear Information System (INIS)

    Hishida, M.; Nekoya, S.; Takizuka, T.; Emori, K.; Ogawa, M.; Ouchi, M.; Okamoto, Y.; Sanokawa, K.; Nakano, T.; Hagiwara, T.

    1979-08-01

    An experimental multi-purpose High-Temperature Gas Cooled Reactor (VHTR) which is supposed to be used for a direct steel-making is now being developed in JAeRI. In order to simulate the heat exchanging system between the primary helium gas and the secondary reducing gas system of VHTR, a hydrogen gas loop was constructed as a secondary cooling system of the helium gas loop. The maximum temperature and the maximum pressure of the hydrogen gas are 900 degrees C and 42 kg/cm 2 x G respectively. The construction of the hydrogen gas loop was completed in January, 1977, and was successfully operated for 1.000 h. Various performance tests, such as the hydrogen permeation test of a He/H2 heat exchanger and the thermal performance test of heat exchangers, were made. Especially, it was proved that hydrogen permeation rate through the heat exchanger was reduced to 1/30 to approximately 1/50 by a method of calorized coating, and the coating was stable during 1.000 h's operation. It was also stable against the temperature changes. This report describes the outline of the facility and performance of the components. (orig.) [de

  18. Carbon dioxide stripping in aquaculture -- part II: development of gas transfer models

    Science.gov (United States)

    Colt, John; Watten, Barnaby; Pfeiffer, Tim

    2012-01-01

    The basic mass transfer equation for gases such as oxygen and carbon dioxide can be derived from integration of the driving force equation. Because of the physical characteristics of the gas transfer processes, slightly different models are used for aerators tested under the non steady-state procedures, than for packed columns, or weirs. It is suggested that the standard condition for carbon dioxide should be 20 °C, 1 atm, CCO2=20 mg/kg, and XCO2=0.000285. The selection of the standard condition for carbon dioxide based on a fixed mole fraction ensures that standardized carbon dioxide transfer rates will be comparable even though the value of C*CO2 in the atmosphere is increasing with time. The computation of mass transfer for carbon dioxide is complicated by the impact of water depth and gas phase enrichment on the saturation concentration within the unit, although the importance of either factor depends strongly on the specific type of aerator. For some types of aerators, the most accurate gas phase model remains to be determined for carbon dioxide. The assumption that carbon dioxide can be treated as a non-reactive gas in packed columns may apply for cold acidic waters but not for warm alkaline waters.

  19. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    International Nuclear Information System (INIS)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik; Yasin, Muhammad; Park, Shinyoung; Chang, In Seop; Lee, Eun Yeol

    2015-01-01

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k L a). The feasibility of the new reactor was demonstrated by measuring k L a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k L a value of 102.9 h -1 was obtained

  20. Theoretical and experimental studies on transient forced convection heat transfer of helium gas

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya; Shibahara, Makoto

    2008-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder and a plate (ribbon) one was experimentally and theoretically studied. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder and a plate (ribbon) one under wide experimental conditions. Empirical correlations for quasi-steady-state heat transfer and transient heat transfer were obtained based on the experimental data. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. The values of numerical solution for surface temperature and heat flux were compared and discussed with authors' experimental data. (author)

  1. Air-sea dimethylsulfide (DMS) gas transfer in the North Atlantic: evidence for limited interfacial gas exchange at high wind speed

    Science.gov (United States)

    Bell, T. G.; De Bruyn, W.; Miller, S. D.; Ward, B.; Christensen, K.; Saltzman, E. S.

    2013-11-01

    Shipboard measurements of eddy covariance dimethylsulfide (DMS) air-sea fluxes and seawater concentration were carried out in the North Atlantic bloom region in June/July 2011. Gas transfer coefficients (k660) show a linear dependence on mean horizontal wind speed at wind speeds up to 11 m s-1. At higher wind speeds the relationship between k660 and wind speed weakens. At high winds, measured DMS fluxes were lower than predicted based on the linear relationship between wind speed and interfacial stress extrapolated from low to intermediate wind speeds. In contrast, the transfer coefficient for sensible heat did not exhibit this effect. The apparent suppression of air-sea gas flux at higher wind speeds appears to be related to sea state, as determined from shipboard wave measurements. These observations are consistent with the idea that long waves suppress near-surface water-side turbulence, and decrease interfacial gas transfer. This effect may be more easily observed for DMS than for less soluble gases, such as CO2, because the air-sea exchange of DMS is controlled by interfacial rather than bubble-mediated gas transfer under high wind speed conditions.

  2. Consideration of heat transfer performance of helium-gas/water coolers in HENDEL

    International Nuclear Information System (INIS)

    Inagaki, Yoshiyuki; Miyamoto, Yoshiaki

    1986-10-01

    The helium engineering loop (HENDEL) has four helium-gas/water coolers, where the cooling water flows in the tubes and the helium gas flows on the shell side. Their cooling performance depends on mainly the heat transfer of helium gas on the shell side. This report describes the operational data of the coolers and the consideration of the heat transfer performance which is important for the design of coolers. It becomes clear that Donohue's equation is close to the operational data and conservative for the segmental baffle type cooler and preduction by Fishenden-Saunders or Zukauskas' equation is conservation for the step-up baffle type cooler. (author)

  3. Experience Transfer in Norwegian Oil and Gas Industry: Approaches and Organizational Mechanisms

    Energy Technology Data Exchange (ETDEWEB)

    Aase, Karina

    1997-07-01

    The core aim of the study is to explore the concept of experience transfer in oil and gas industry, and how an oil company approaches this concept. The thesis consists of five papers which are combined in a general description entitled 'Experience transfer in Norwegian oil and gas industry: approaches and organizational mechanisms'. The first paper describes how organizational members perceive experience transfer, and then specifies the many organizational and structural barriers that have to be overcome to achieve efficient experience transfer. The second paper elaborates and assesses the organizational means an oil company implements to address experience transfer. The third paper describes a process of improving and using requirement and procedure handbooks for experience transfer. The fourth paper explores in more detail how the use of information technology influences experience transfer. And the fifth paper compares organizational members' perceptions of experience transfer means in an oil company and an engineering company involved in offshore development projects. Some of the papers are based upon the same data material. Therefore there are reiterations in parts of the contents, especially in the methodological sections.

  4. Tunable secondary dimension selectivity in comprehensive two-dimensional gas chromatography

    NARCIS (Netherlands)

    Mommers, J.; Pluimakers, G.; Knooren, J.; Dutriez, T.; van der Wal, S.

    2013-01-01

    In this paper two tunable two-dimensional gas chromatography setups are compared and described in which the secondary dimension consists of two different capillary columns coupled in series. In the first setup the selectivity of the second dimension can be tuned by adjusting the effective column

  5. Gas-liquid mass transfer coefficient of methane in bubble column reactor

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jaewon; Ha, Kyoung-Su; Lee, Jinwon; Kim, Choongik [Sogang University, Seoul (Korea, Republic of); Yasin, Muhammad; Park, Shinyoung; Chang, In Seop [Gwangju Institute of Science and Technology (GIST), Gwangju (Korea, Republic of); Lee, Eun Yeol [Kyung Hee University, Yongin (Korea, Republic of)

    2015-06-15

    Biological conversion of methane gas has been attracting considerable recent interest. However, methanotropic bioreactor is limited by low solubility of methane gas in aqueous solution. Although a large mass transfer coefficient of methane in water could possibly overcome this limitation, no dissolved methane probe in aqueous environment is commercially available. We have developed a reactor enabling the measurement of aqueous phase methane concentration and mass transfer coefficient (k{sub L}a). The feasibility of the new reactor was demonstrated by measuring k{sub L}a values as a function of spinning rate of impeller and flow rate of methane gas. Especially, at spinning rate of 300 rpm and flow rate of 3.0 L/min, a large k{sub L}a value of 102.9 h{sup -1} was obtained.

  6. Transient heat transfer for helium gas flowing over a horizontal cylinder with exponentially increasing heat input

    International Nuclear Information System (INIS)

    Liu, Qiusheng; Fukuda, Katsuya

    2003-01-01

    The transient heat transfer coefficients for forced convection flow of helium gas over a horizontal cylinder were measured under wide experimental conditions. The platinum cylinder with a diameter of 1.0 mm was used as test heater and heated by electric current with an exponentially increasing heat input of Q 0 exp(t/τ). The gas flow velocities ranged from 5 to 35 m/s, the gas temperatures ranged from 25 to 80degC, and the periods of heat generation rate, τ, ranged from 40 ms to 20 s. The surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The gas temperature in this study shows little influence on the heat transfer coefficient. Semi-empirical correlation for quasi-steady-state heat transfer was obtained based on the experimental data. The ratios of transient Nusselt number Nu tr to quasi-steady-state Nusselt number Nu st at various periods, flow velocities, and gas temperatures were obtained. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. Empirical correlation for transient heat transfer was also obtained based on the experimental data. (author)

  7. Status of the development of hot gas ducts for HTRs

    International Nuclear Information System (INIS)

    Stehle, H.; Klas, E.

    1984-01-01

    In the PNP nuclear process heat system the heat generated in the helium cooled core is transferred to the steam reformer and to the successive steam generator or to the intermediate heat exchanger by the primary helium via suitable hot gas ducts. The heat is carried over to the steam gasifier by the intermediate heat exchanger and a secondary helium loop. In both the primary and the secondary loop, the hot gas ducts are internally insulated by a ceramic fibre insulation to protect the support tube and the pressure housing from the high helium temperatures. A graphite hot gas liner will be used for the coaxial primary duct with an annular gap between support tube and pressure shell for the cold gas counterflow. A metallic hot gas liner will be installed in the secondary duct

  8. An Experimental and Numerical Investigation of Endwall Aerodynamics and Heat Transfer in a Gas Turbine Nozzle Guide Vane with Slot Film Cooling

    Science.gov (United States)

    Alqefl, Mahmood Hasan

    In many regions of the high-pressure gas turbine, film cooling flows are used to protect the turbine components from the combustor exit hot gases. Endwalls are challenging to cool because of the complex system of secondary flows that disturb surface film coolant coverage. The secondary flow vortices wash the film coolant from the surface into the mainstream significantly decreasing cooling effectiveness. In addition to being effected by secondary flow structures, film cooling flow can also affect these structures by virtue of their momentum exchange. In addition, many studies in the literature have shown that endwall contouring affects the strength of passage secondary flows. Therefore, to develop better endwall cooling schemes, a good understanding of passage aerodynamics and heat transfer as affected by interactions of film cooling flows with secondary flows is required. This experimental and computational study presents results from a linear, stationary, two-passage cascade representing the first stage nozzle guide vane of a high-pressure gas turbine with an axisymmetrically contoured endwall. The sources of film cooling flows are upstream combustor liner coolant and endwall slot film coolant injected immediately upstream of the cascade passage inlet. The operating conditions simulate combustor exit flow features, with a high Reynolds number of 390,000 and approach flow turbulence intensity of 11% with an integral length scale of 21% of the chord length. Measurements are performed with varying slot film cooling mass flow to mainstream flow rate ratios (MFR). Aerodynamic effects are documented with five-hole probe measurements at the exit plane. Heat transfer is documented through recovery temperature measurements with a thermocouple. General secondary flow features are observed. Total pressure loss measurements show that varying the slot film cooling MFR has some effects on passage loss. Velocity vectors and vorticity distributions show a very thin, yet intense

  9. Secondary biological coalbed gas in the Xinji area, Anhui province, China: Evidence from the geochemical features and secondary changes

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Mingxin [Key Laboratory of Environmental Change and Natural Disaster of Ministry of Education, College of Resources Sciences and Technology, Beijing Normal University, Beijing 100875 (China); Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Shi, Baoguang; Wang, Wanchun; Li, Xiaobin; Gao, Bo [Key Laboratory of Gas Geochemistry, Institute of Geology and Geophysics, Chinese Academy of Sciences, Lanzhou 730000 (China); Li, Jinying [Material and Environment College, Qindao University of Science and Technology, Qindao 266042 (China)

    2007-07-02

    In order to ascertain the origin of the coalbed gas in the Xinji area, Anhui Province of China, the paper examined the geochemical features and secondary changes of CH{sub 4}, C{sub 2}H{sub 6}, CO{sub 2} and N{sub 2} from the coalbed gas. The related gas composition, carbon isotope and tracer geochemical data are as follows: 0.993 to 1.0 for C{sub 1}/C{sub 1-n}, 188.6 to 2993.7 for C{sub 1}/C{sub 2}, < 2% for CO{sub 2}, 0.64 to 3.06% for [CO{sub 2}/(CO{sub 2} + CH{sub 4})]100%, - 50.7 permille to - 61.3 permille for {delta}{sup 13}C{sub 1} with the average value of - 56.6 permille, - 15.9 permille to - 26.7 permille for {delta}{sup 13}C{sub 2}, - 10.8 permille to - 25.3 permille for {delta}{sup 13}C{sub 3}, - 6.0 permille to - 39.0 permille for {delta}{sup 13}C{sub CO2} with the average value of - 17.9 permille, 30.7 permille to 43.9 permille for {delta}{delta}{sup 13}C{sub C2-C1}, and 17.2 permille to 50 permille for {delta}{delta}{sup 13}C{sub CO2-C1}, - 1 permille to + 1 permille for {delta}{sup 15}N{sub N2}, 1.13 x 10{sup -7} to 3.20 x 10{sup -7} for {sup 3}He/{sup 4}He with R/Ra ratios range from 0.08 to 0.23. The Ro values of the coal range from 0.88% to 0.91%. The trends of the {delta}{sup 13}C{sub 1} values and {delta}{sup 13}C{sub CO2} values downward in the stratigraphic profile are opposite: the former appears as a slight light-heavy-light trend, but the latter appears as a heavy-light-heavy trend. The {delta}{sup 13}C{sub 1} values have a negative correlation with the {delta}{sup 13}C{sub CO2} values. However, the {delta}{sup 13}C{sub 2} values have no correlation with the {delta}{sup 13}C{sub 1} values due to its complicated variation. The thermal evolution of the coal in the Xinji area is in the phase of a lot of wet gas generation, but most of the CO{sub 2} and heavy hydrocarbons have been reduced or degraded by microbes and have changed into biogenic methane. The coalbed gas is comprised of secondary biogenic methane, thermogenic methane, the

  10. CFD study of the heat transfer between a dilute gas particle suspension flow and an obstruction

    International Nuclear Information System (INIS)

    Nguyen, A.V.; Fletcher, C.A.J.

    1999-01-01

    The effect on heat transfer of solid particles suspended in a gas flow is of considerable importance in a number of industrial applications, ranging from coal combustion equipment and heat exchangers to catalytic reaction or cooling of nuclear reactors using gas graphite dust suspensions. Here, the heat transfer process between a dilute gas-particle suspension flow and an obstruction has been numerically investigated employing a novel Eulerian formulation for dilute gas particle suspension flows, which allows interaction of the key mechanisms to be quantified for the first time. As the particle reflection occurs around the obstruction, the heat transfer process has been modeled taking into account the incident and reflected particles explicitly. In the energy equations these particle families are treated separately. Only the effect on the gas convective heat transfer is expected to be of primary significance and investigated. The numerical computation is performed using the commercial computational fluid dynamics code, FLUENT, with the User Defined Subroutines. The authors study the heat transfer process between a dilute gas particle flow and an obstruction with simple geometries such as a 45 degree ramp and a cylindrical tube. The theoretical results for the latter case are compared with the available experimental data. The numerical simulation shows that both the particle size and the particle concentration (in the thermal boundary layer) affect the heat transfer process. Since both the particle incidence and reflection depend on the particle size and strongly influence the particle concentration distribution, they have to be physically correctly treated in the modeling of the heat transfer, as is demonstrated in the novel formulation. There is an optimum particle size for a maximum enhancement of the heat transfer. The particle concentration increases the efficiency of the heat transfer process expressed in terms of the local Nusselt numbers

  11. Behaviour of and mass transfer at gas-evolving electrodes

    NARCIS (Netherlands)

    Janssen, L.J.J.

    1989-01-01

    A completes set of models for the mass transfer of indicator ions to gas-evolving electrodes with different behaviour of bubbles is described theoretically. Sliding bubbles, rising detached single bubbles, jumping detached coalescence bubbles and ensembles of these types of bubbles are taken into

  12. Heat transfer tests of ribbed surfaces for gas-cooled reactors

    International Nuclear Information System (INIS)

    Klepper, O.H.

    1975-07-01

    The performance of gas-cooled reactors is often limited by the heat transfer in the reactor core. Means for modifying core heat transfer surfaces to improve their performance were investigated. The 0.3-in.-OD stainless steel clad heater rods were photo-etched to produce external ribs 0.006 in. high and 0.12 in. wide with a pitch of 0.072 in. Helical ribs with a helix angle of 37 0 (to promote interchannel flow mixing in a multirod array) were provided on one surface. For comparison purposes, a transversely ribbed surface and a smooth rod were also studied. The test surfaces were 49 in. long with a 24-in. heated region, concentrically arranged inside a smooth 0.602-in.-ID stainless steel tube. Nitrogen gas at pressures up to 400 psig was used as the coolant; the linear heat rating ranged to 6.8 kW/ft at surface temperatures up to 1400 0 F; T/sub w/T/sub b/ varied from 1.2 to 2.4 at Re values up to 450,000. Annulus results were recalculated for rod geometry using two different transformations. Good agreement was observed with applicable literature values. The effectiveness of the surfaces was assessed as the ratio E of the heat transfer coefficients of the roughened rods to that of a smooth rod at the same pumping power. The effectiveness of the spiral ribs ranged from 1.3 to 1.4, and from 1.2 to 1.4 for the transverse ribs, spanning Re values from 60,000 to 400,000. These data include variations introduced by alternate transformation methods that were used to make annulus test results applicable to rod geometry. The surfaces investigated in these tests were considered for fast gas-cooled reactors; however, the range of parameters studied also applies to heat transfer from ribbed rod-type fuel elements in thermal gas-cooled reactors. (U.S.)

  13. NACOWA experiments on LMFBR cover gas aerosols, heat transfer, and fission product enrichment

    International Nuclear Information System (INIS)

    Minges, J.; Schuetz, W.

    1993-12-01

    Fifteen different NACOWA test series were carried out. The following items were investigated: sodium mass concentration in the cover gas, sodium aerosol particle size, radiative heat transfer across the cover gas, total heat transfer across the cover gas, sodium deposition on the cover plate, temperature profiles across the cover gas, phenomena if the argon cover gas is replaced by helium, enrichment of cesium, iodine, and zinc in the aerosol and in the deposits. The conditions were mainly related to the design parameters of the EFR. According to the first consistent design, a pool temperature of 545 C and a roof temperature of only 120 C were foreseen at a cover gas height of 85 cm. The experiments were carried out in a stainless steel test vessel of 0.6 m diameter and 1.14 m height. Pool temperature (up to 545 C), cover gas height (12.5 cm, 33 cm, and others), and roof temperature (from 110 C to 450 C) were the main parameters. (orig./HP) [de

  14. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  15. Transfer of chemicals in PWR systems: secondary side

    International Nuclear Information System (INIS)

    Jonas, O.

    1978-01-01

    Transfer of chemicals in the secondary side of pressurized water reactor systems with recirculating and once-through steam generators is considered. Chemical data on water, steam and deposit chemistry of twenty-six operating units are given and major physical-chemical processes and differences between the two systems and between fossil and PWR systems are discussed. It is concluded that the limited available data show the average water and steam chemistry to be within recommended limits, but large variations of impurity concentrations and corrosion problems encountered indicate that our knowledge of the system chemistry and chemical thermodynamics, system design, sampling, analysis and operation need improvement. (author)

  16. Fluid dynamics and mass transfer in a gas centrifuge

    International Nuclear Information System (INIS)

    Conlisk, A.T.; Foster, M.R.; Walker, J.D.A.

    1982-01-01

    The fluid motion, temperature distribution and the mass-transfer problem of a binary gas mixture in a rapidly rotating centrifuge are investigated. Solutions for the velocity, temperature and mass-fraction fields within the centrifuge are obtained for mechanically or thermally driven centrifuges. For the mass-transfer problem, a detailed analysis of the fluid-mechanical boundary layers is required, and, in particular, mass fluxes within the boundary layers are obtained for a wide range of source-sink geometries. Solutions to the mass-transfer problem are obtained for moderately and strongly forced flows in the container; the dependence of the separation (or enrichment) factor on centrifuge configuration, rotational speed and fraction of the volumetric flow rate extracted at the product port (the cut) are predicted. (author)

  17. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-02-01

    The transfer velocity determines the rate of exchange of a gas across the air-water interface for a given deviation from Henry's law equilibrium between the two phases. In the thin film model of gas exchange, which is commonly used for calculating gas exchange rates from measured concentrations of trace gases in the atmosphere and ocean/freshwaters, the overall transfer is controlled by diffusion-mediated films on either side of the air-water interface. Calculating the total transfer velocity (i.e. including the influence from both molecular layers) requires the Henry's law constant and the Schmidt number of the gas in question, the latter being the ratio of the viscosity of the medium and the molecular diffusivity of the gas in the medium. All of these properties are both temperature and (on the water side) salinity dependent and extensive calculation is required to estimate these properties where not otherwise available. The aim of this work is to standardize the application of the thin film approach to flux calculation from measured and modelled data, to improve comparability, and to provide a numerical framework into which future parameter improvements can be integrated. A detailed numerical scheme is presented for the calculation of the gas and liquid phase transfer velocities (ka and kw respectively) and the total transfer velocity, K. The scheme requires only basic physical chemistry data for any gas of interest and calculates K over the full range of temperatures, salinities and wind-speeds observed in and over the ocean. Improved relationships for the wind-speed dependence of ka and for the salinity-dependence of the gas solubility (Henry's law) are derived. Comparison with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general but significant improvements under certain conditions. The scheme is provided as a downloadable program in the supplementary material, along with input files containing molecular

  18. Influence of vascular network design on gas transfer in lung assist device technology.

    Science.gov (United States)

    Bassett, Erik K; Hoganson, David M; Lo, Justin H; Penson, Elliot J N; Vacanti, Joseph P

    2011-01-01

    Blood oxygenators are vital for the critically ill, but their use is limited to the hospital setting. A portable blood oxygenator or a lung assist device for ambulatory or long-term use would greatly benefit patients with chronic lung disease. In this work, a biomimetic blood oxygenator system was developed which consisted of a microfluidic vascular network covered by a gas permeable silicone membrane. This system was used to determine the influence of key microfluidic parameters-channel size, oxygen exposure length, and blood shear rate-on blood oxygenation and carbon dioxide removal. Total gas transfer increased linearly with flow rate, independent of channel size and oxygen exposure length. On average, CO(2) transfer was 4.3 times higher than oxygen transfer. Blood oxygen saturation was also found to depend on the flow rate per channel but in an inverse manner; oxygenation decreased and approached an asymptote as the flow rate per channel increased. These relationships can be used to optimize future biomimetic vascular networks for specific lung applications: gas transfer for carbon dioxide removal in patients with chronic obstructive pulmonary disease or oxygenation for premature infants requiring complete lung replacement therapy.

  19. 77 FR 10373 - Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid...

    Science.gov (United States)

    2012-02-22

    ... Greenhouse Gas Reporting Program: Electronics Manufacturing: Revisions to Heat Transfer Fluid Provisions... technical revisions to the electronics manufacturing source category of the Greenhouse Gas Reporting Rule... final rule will also be available through the WWW on the EPA's Greenhouse Gas Reporting Program Web site...

  20. Secondary biogenic coal seam gas reservoirs in New Zealand: A preliminary assessment of gas contents

    Energy Technology Data Exchange (ETDEWEB)

    Butland, Carol I. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Moore, Tim A. [Department of Geological Sciences, University of Canterbury, Private Bag 4800, Christchurch (New Zealand); Solid Energy NZ Ltd., P.O. Box 1303, Christchurch (New Zealand)

    2008-10-02

    Four coal cores, one from the Huntly (Eocene), two from the Ohai (Cretaceous) and one from the Greymouth (Cretaceous) coalfields, were sampled and analysed in terms of gas content and coal properties. The coals vary in rank from subbituminous B-A (Huntly) to subbituminous C-A (Ohai), and high volatile A bituminous (Greymouth). Average gas contents were 1.60 m{sup 3}/t (s 0.2) in the Huntly core, 4.80 m{sup 3}/t (s = 0.8) in the Ohai cores, and 2.39 m{sup 3}/t (s = 0.8) in the Greymouth core. The Ohai core not only contained more gas but also had the highest saturation (75%) compared with the Huntly (33%) and Greymouth (45%) cores. Carbon isotopes indicate that the Ohai gas is more mature, containing higher {delta}{sup 13}C isotopes values than either the Huntly or Greymouth gas samples. This may indicate that the gas was derived from a mixed biogenic and thermogenic source. The Huntly and Greymouth gases appear to be derived solely from a secondary biogenic (by CO{sub 2} reduction) source. Although the data set is limited, preliminary analysis indicates that ash yield is the dominant control on gas volume in all samples where the ash yield was above 10%. Below 10%, the amount of gas variation is unrelated to ash yield. Although organic content has some influence on gas volume, associations are basin and/or rank dependent. In the Huntly core total gas content and structured vitrinite increase together. Although this relationship does not appear for the other core data for the Ohai SC3 core, lost gas and fusinite are associated whereas gelovitrinite (unstructured vitrinite) correlates positively with residual gas for the Greymouth data. (author)

  1. A mechanistic model of heat transfer for gas-liquid flow in vertical wellbore annuli.

    Science.gov (United States)

    Yin, Bang-Tang; Li, Xiang-Fang; Liu, Gang

    2018-01-01

    The most prominent aspect of multiphase flow is the variation in the physical distribution of the phases in the flow conduit known as the flow pattern. Several different flow patterns can exist under different flow conditions which have significant effects on liquid holdup, pressure gradient and heat transfer. Gas-liquid two-phase flow in an annulus can be found in a variety of practical situations. In high rate oil and gas production, it may be beneficial to flow fluids vertically through the annulus configuration between well tubing and casing. The flow patterns in annuli are different from pipe flow. There are both casing and tubing liquid films in slug flow and annular flow in the annulus. Multiphase heat transfer depends on the hydrodynamic behavior of the flow. There are very limited research results that can be found in the open literature for multiphase heat transfer in wellbore annuli. A mechanistic model of multiphase heat transfer is developed for different flow patterns of upward gas-liquid flow in vertical annuli. The required local flow parameters are predicted by use of the hydraulic model of steady-state multiphase flow in wellbore annuli recently developed by Yin et al. The modified heat-transfer model for single gas or liquid flow is verified by comparison with Manabe's experimental results. For different flow patterns, it is compared with modified unified Zhang et al. model based on representative diameters.

  2. Carbon isotope evidence for the latitudinal distribution and wind speed dependence of the air-sea gas transfer velocity

    International Nuclear Information System (INIS)

    Krakauer, Nir Y.

    2006-01-01

    The air-sea gas transfer velocity is an important determinant of the exchange of gases, including CO 2 , between the atmosphere and ocean, but the magnitude of the transfer velocity and what factors control it remains poorly known. Here, we use oceanic and atmospheric observations of 14 C and 13 C to constrain the global mean gas transfer velocity as well as the exponent of its wind speed dependence, utilizing the distinct signatures left by the air-sea exchange of 14 CO 2 and 13 CO 2 . While the atmosphere and ocean inventories of 14 CO 2 and 13 CO 2 constrain the mean gas transfer velocity, the latitudinal pattern in the atmospheric and oceanic 14 C and 13 C distributions contain information about the wind speed dependence. We computed the uptake of bomb 14 C by the ocean for different transfer velocity patterns using pulse response functions from an ocean general circulation model, and evaluated the match between the predicted bomb 14 C concentrations and observationally based estimates for the 1970s-1990s. Using a wind speed climatology based on satellite measurements, we solved either for the best-fit global relationship between gas exchange and mean wind speed or for the mean gas transfer velocity over each of 11 ocean regions. We also compared the predicted consequences of different gas exchange relationships on the rate of change and interhemisphere gradient of 14 C in atmospheric CO 2 with tree-ring and atmospheric measurements. Our results suggest that globally, the dependence of the air-sea gas transfer velocity on wind speed is close to linear, with an exponent of 0.5 ± 0.4, and that the global mean gas transfer velocity at a Schmidt number of 660 is 20 ± 3 cm/hr, similar to the results of previous analyses. We find that the air-sea flux of 13 C estimated from atmosphere and ocean observations also suggests a lower than quadratic dependence of gas exchange on wind speed

  3. CFD analysis of heat transfer in a vertical annular gas gap

    International Nuclear Information System (INIS)

    Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.

    2011-01-01

    Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)

  4. Mountain scale modeling of transient, coupled gas flow, heat transfer and carbon-14 migration

    International Nuclear Information System (INIS)

    Lu, Ning; Ross, B.

    1993-01-01

    We simulate mountain-scale coupled heat transfer and gas flow at Yucca Mountain. A coupled rock-gas flow and heat transfer model, TGIF2, is used to simulate mountain-scale two-dimensional transient heat transfer and gas flow. The model is first verified against an analytical solution for the problem of an infinite horizontal layer of fluid heated from below. Our numerical results match very well with the analytical solution. Then, we obtain transient temperature and gas flow distributions inside the mountain. These distributions are used by a transient semianalytical particle tracker to obtain carbon-14 travel times for particles starting at different locations within the repository. Assuming that the repository is filled with 30-year-old waste at an initial areal power density of 57 kw/acre, we find that repository temperatures remain above 60 degrees C for more than 10,000 years. Carbon-14 travel times to the surface are mostly less than 1000 years, for particles starting at any time within the first 10,000 years

  5. Heat and mass transfer across gas-filled enclosed spaces between a hot liquid surface and a cooled roof

    Energy Technology Data Exchange (ETDEWEB)

    Ralph, J C; Bennett, A W [Atomic Energy Research Establishment, Harwell, Oxfordshire (United Kingdom)

    1977-01-01

    A detailed knowledge is required of the amounts of sodium vapour which may be transported from the hot surface of a fast reactor coolant pool through the cover gas to cooler regions of the structure. Evaporation from the unbounded liquid surfaces of lakes and seas has been studied extensively but the heat and mass transfer mechanisms in gas-vapour mixtures which occur in enclosed spaces have received less attention. Recent work at Harwell has provided a theoretical model from which the heat and mass transfer in idealised plane cavities can be calculated. An experimental study is reported in this paper which seeks to verify the theoretical prediction. Heat and mass transfer measurements have been made on a system in which a heated water pool transfers heat and mass across a gas-filled space to a cooled horizontal cover plate. Several cover gases were used in the experiments and the results show that, provided the partial density of the vapour is low compared with that of the gas, the heat transfer mechanism is that of combined convection and radiation. The enhancement in heat transfer due to the presence of the vapour is broadly consistent with assumption of a direct analogy between heat and mass transfer neglecting condensation in the interspace. The mass transfer measurements, in which water condensing on the cooled roof was measured directly, showed for low roof temperatures an imbalance between the mass and heat transfer. This observation is consistent with the theoretical predictions that heat transfer in the convecting system should be independent of the amount of condensation and 'rain-back' within the cavity. The results of tests with helium showed that convection was entirely suppressed by the presence of the water vapour. This confirms the behaviour predicted for gas-vapour mixtures in which the vapour density is of the same order as the gas density. (author)

  6. Experimental study on desulfurization efficiency and gas-liquid mass transfer in a new liquid-screen desulfurization system

    International Nuclear Information System (INIS)

    Sun, Zhongwei; Wang, Shengwei; Zhou, Qulan; Hui, Shi'en

    2010-01-01

    This paper presents a new liquid-screen gas-liquid two-phase flow pattern with discarded carbide slag as the liquid sorbent of sulfur dioxide (SO 2 ) in a wet flue gas desulfurization (WFGD) system. On the basis of experimental data, the correlations of the desulfurization efficiency with flue gas flow rate, slurry flow rate, pH value of slurry and liquid-gas ratio were investigated. A non-dimensional empirical model was developed which correlates the mass transfer coefficient with the liquid Reynolds number, gas Reynolds number and liquid-gas ratio (L/G) based on the available experimental data. The kinetic reaction between the SO 2 and the carbide slag depends on the pressure distribution in this desulfurizing tower, gas liquid flow field, flue gas component, pH value of slurry and liquid-gas ratio mainly. The transient gas-liquid mass transfer involving with chemical reaction was quantified by measuring the inlet and outlet SO 2 concentrations of flue gas as well as the characteristics of the liquid-screen two-phase flow. The mass transfer model provides a necessary quantitative understanding of the hydration kinetics of sulfur dioxide in the liquid-screen flue gas desulfurization system using discarded carbide slag which is essential for the practical application. (author)

  7. Heat transfer simulation in a furnace for steam reformer. Gas kaishitsu ronai no dennetsu simulation ni kansuru kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kudo, K; Taniguchi, H; Guo, K [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Katayama, T; Nagata, T [Tokyo Gas Co. Ltd., Tokyo (Japan)

    1991-01-10

    This paper discusses the heat transfer analysis in a furnace for LPG reforming to produce gas enriched hydrogen. The three-dimensional combined radiative and convective heat transfer processes in a furnace for LPG reforming is simulated by introducing the radiosity concept into the radiative heat ray method for an accurate radiative heat transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the reformed gas. From the results of the analysis, it was clarified that increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance, and that the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transfer effect by flame radiation is much more than that by convection of the combustion gas. 18 refs., 9 figs., 2 tabs.

  8. Gas-liquid mass transfer and flow phenomena in the Peirce-Smith converter: a water model study

    Science.gov (United States)

    Zhao, Xing; Zhao, Hong-liang; Zhang, Li-feng; Yang, Li-qiang

    2018-01-01

    A water model with a geometric similarity ratio of 1:5 was developed to investigate the gas-liquid mass transfer and flow characteristics in a Peirce-Smith converter. A gas mixture of CO2 and Ar was injected into a NaOH solution bath. The flow field, volumetric mass transfer coefficient per unit volume ( Ak/V; where A is the contact area between phases, V is the volume, and k is the mass transfer coefficient), and gas utilization ratio ( η) were then measured at different gas flow rates and blow angles. The results showed that the flow field could be divided into five regions, i.e., injection, strong loop, weak loop, splashing, and dead zone. Whereas the Ak/V of the bath increased and then decreased with increasing gas flow rate, and η steadily increased. When the converter was rotated clockwise, both Ak/V and η increased. However, the flow condition deteriorated when the gas flow rate and blow angle were drastically increased. Therefore, these parameters must be controlled to optimal conditions. In the proposed model, the optimal gas flow rate and blow angle were 7.5 m3·h-1 and 10°, respectively.

  9. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Directory of Open Access Journals (Sweden)

    M. T. Johnson

    2010-10-01

    Full Text Available The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest. Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone, such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases, but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  10. A numerical scheme to calculate temperature and salinity dependent air-water transfer velocities for any gas

    Science.gov (United States)

    Johnson, M. T.

    2010-10-01

    The ocean-atmosphere flux of a gas can be calculated from its measured or estimated concentration gradient across the air-sea interface and the transfer velocity (a term representing the conductivity of the layers either side of the interface with respect to the gas of interest). Traditionally the transfer velocity has been estimated from empirical relationships with wind speed, and then scaled by the Schmidt number of the gas being transferred. Complex, physically based models of transfer velocity (based on more physical forcings than wind speed alone), such as the NOAA COARE algorithm, have more recently been applied to well-studied gases such as carbon dioxide and DMS (although many studies still use the simpler approach for these gases), but there is a lack of validation of such schemes for other, more poorly studied gases. The aim of this paper is to provide a flexible numerical scheme which will allow the estimation of transfer velocity for any gas as a function of wind speed, temperature and salinity, given data on the solubility and liquid molar volume of the particular gas. New and existing parameterizations (including a novel empirical parameterization of the salinity-dependence of Henry's law solubility) are brought together into a scheme implemented as a modular, extensible program in the R computing environment which is available in the supplementary online material accompanying this paper; along with input files containing solubility and structural data for ~90 gases of general interest, enabling the calculation of their total transfer velocities and component parameters. Comparison of the scheme presented here with alternative schemes and methods for calculating air-sea flux parameters shows good agreement in general. It is intended that the various components of this numerical scheme should be applied only in the absence of experimental data providing robust values for parameters for a particular gas of interest.

  11. Secondary and tertiary gas injection in fractured carbonate rock: Experimental study

    Energy Technology Data Exchange (ETDEWEB)

    Karimaie, H.; Torsaeter, O. [SPE, NTNU (Norway); Darvish, G.R. [SPE, STATOIL (Norway); Lindeberg, E. [SPE, SINTEF (Norway)

    2008-09-15

    The use of CO{sub 2} has received considerable interest as a method of EOR but a major drawback is its availability and increasing cost. Therefore, as the number of CO{sub 2} injection projects increase, an alternative must be considered to meet the economic considerations. For this reason attention has been directed to nitrogen injection which may be a good substitute for CO{sub 2}. The purpose of the experiments described in this paper was to investigate the efficiency of oil recovery by CO{sub 2} and N{sub 2} in fractured carbonate rock. The combined effects of gravity drainage and component exchange between gas in fracture and oil in matrix on oil recovery in fractured reservoirs subjected to CO{sub 2} or nitrogen gas injection are experimentally studied. Laboratory experiments have been carried out on a low permeable outcrop chalk, as an analogue to a North Sea reservoir rock. This was surrounded by a fracture, established with a novel experimental set-up. The experiments aimed to investigate the potential of oil recovery by secondary and tertiary CO{sub 2} and nitrogen gas injection at high pressure high temperature condition. The matrix block was saturated using recombined binary mixture live oil (C{sub 1}-C{sub 7}), while the fracture was filled with a sealing material to obtain a homogeneous saturation. The sealing material was then removed by increasing the temperature which in turn creates the fracture surrounding the core. Gas was injected into the fracture at pressures above the bubble point of the oil. Oil recovery as a function of time was monitored during the experiments. Results from secondary gas injection experiments indicate that CO{sub 2} injection at elevated pressure and temperature is more efficient than N{sub 2} injection. Results from tertiary gas injection experiments also show that injection of CO{sub 2} could significantly recover the oil, even after waterflooding, compared to N{sub 2} injection. (author)

  12. Subcooled boiling heat transfer correlation to calculate the effects of dissolved gas in a liquid

    International Nuclear Information System (INIS)

    Zarkasi, Amin S.; Chao, W.W.; Kunze, Jay F.

    2004-01-01

    The water coolant in most operating power reactor systems is kept free of dissolved gas, so as to minimize corrosion. However, in most research reactors, which operate at temperatures below 70 deg. C, and between 1 and 5 atm. pressure, the dissolved gas remains present in the water coolant system during operation. This dissolved gas can have a significant effect during accident conditions (i.e. a LOCA), when the fluid quickly reaches boiling, coincident with flow stagnation and subsequent flow reversal. A benchmark experiment was conducted, with an electrically heated, closed loop channel, modeling a research reactor fuel coolant channels (2 mm thick). The results showed 'boiling (bubble) noise' occurring before wall temperatures reached saturation, and a significant increase (up to 50%) in the heat transfer coefficient in the subcooled boiling region when in the presence of dissolved gas, compared to degassed water. Since power reactors do not involve dissolved gas, the RELAP safety analysis code does not include any provisions for the effect of dissolved gas on heat transfer. In this work, the effects of the dissolved gas are evaluated for inclusion in the RELAP code, including provision for initiating 'nucleate boiling' at a lower temperature, and a provision for enhancing the heat transfer coefficient during the subcooled boiling region. Instead of relying on Chen's correlation alone, a modification of the superposition method of Bjorge was adopted. (author)

  13. Wind Speed and Sea State Dependencies of Air-Sea Gas Transfer: Results From the High Wind Speed Gas Exchange Study (HiWinGS)

    Science.gov (United States)

    Blomquist, B. W.; Brumer, S. E.; Fairall, C. W.; Huebert, B. J.; Zappa, C. J.; Brooks, I. M.; Yang, M.; Bariteau, L.; Prytherch, J.; Hare, J. E.; Czerski, H.; Matei, A.; Pascal, R. W.

    2017-10-01

    A variety of physical mechanisms are jointly responsible for facilitating air-sea gas transfer through turbulent processes at the atmosphere-ocean interface. The nature and relative importance of these mechanisms evolves with increasing wind speed. Theoretical and modeling approaches are advancing, but the limited quantity of observational data at high wind speeds hinders the assessment of these efforts. The HiWinGS project successfully measured gas transfer coefficients (k660) with coincident wave statistics under conditions with hourly mean wind speeds up to 24 m s-1 and significant wave heights to 8 m. Measurements of k660 for carbon dioxide (CO2) and dimethylsulfide (DMS) show an increasing trend with respect to 10 m neutral wind speed (U10N), following a power law relationship of the form: k660 CO2˜U10N1.68 and k660 dms˜U10N1.33. Among seven high wind speed events, CO2 transfer responded to the intensity of wave breaking, which depended on both wind speed and sea state in a complex manner, with k660 CO2 increasing as the wind sea approaches full development. A similar response is not observed for DMS. These results confirm the importance of breaking waves and bubble injection mechanisms in facilitating CO2 transfer. A modified version of the Coupled Ocean-Atmosphere Response Experiment Gas transfer algorithm (COAREG ver. 3.5), incorporating a sea state-dependent calculation of bubble-mediated transfer, successfully reproduces the mean trend in observed k660 with wind speed for both gases. Significant suppression of gas transfer by large waves was not observed during HiWinGS, in contrast to results from two prior field programs.

  14. Heat transfer and flow characteristics on a gas turbine shroud.

    Science.gov (United States)

    Obata, M; Kumada, M; Ijichi, N

    2001-05-01

    The work described in this paper is an experimental investigation of the heat transfer from the main flow to a turbine shroud surface, which may be applicable to ceramic gas turbines. Three kinds of turbine shrouds are considered with a flat surface, a taper surface and a spiral groove surface opposite to the blades in an axial flow turbine of actual turbo-charger. Heat transfer measurements were performed for the experimental conditions of a uniform heat flux or a uniform wall temperature. The effects of the inlet flow angle, rotational speed, and tip clearance on the heat transfer coefficient were clarified under on- and off-design flow conditions. The mean heat transfer coefficient was correlated to the blade Reynolds number and tip clearance, and compared with an experimental correlation and measurements of a flat surface. A comparison was also made for the measurement of static pressure distributions.

  15. Numerical investigation of heat transfer in high-temperature gas-cooled reactors

    Energy Technology Data Exchange (ETDEWEB)

    Chen, g.; Anghaie, S. [Univ. of Florida, Gainesville, FL (United States)

    1995-09-01

    This paper proposes a computational model for analysis of flow and heat transfer in high-temperature gas-cooled reactors. The formulation of the problem is based on using the axisymmetric, thin layer Navier-Stokes equations. A hybrid implicit-explicit method based on finite volume approach is used to numerically solve the governing equations. A fast converging scheme is developed to accelerate the Gauss-Siedel iterative method for problems involving the wall heat flux boundary condition. Several cases are simulated and results of temperature and pressure distribution in the core are presented. Results of a parametric analysis for the assessment of the impact of power density on the convective heat transfer rate and wall temperature are discussed. A comparative analysis is conducted to identify the Nusselt number correlation that best fits the physical conditions of the high-temperature gas-cooled reactors.

  16. Oil in the FFTF secondary loop cover gas piping. Final unusual occurrence report

    International Nuclear Information System (INIS)

    Kuechle, J.D.

    1981-01-01

    The final unusual occurrence report describes the discovery of oil in the FFTF secondary sodium system cover gas piping. A thorough evaluation has been performed and corrective actions have been implemented to prevent a recurrence of this event

  17. Characteristics of DC electrical braking method of the gas circulator to limit the temperature rise at the heat transfer pipes in the HTTR

    International Nuclear Information System (INIS)

    Kawasaki, K.; Saito, K.; Iyoku, T.

    2001-01-01

    In the safety evaluation of a High Temperature Engineering Test Reactor (HTTR), it must be confirmed that the core has no chance to be damaged and the barrier against the FP release is designed properly not to be affecting the influence of radiation around the reactor site. Especially the maximum temperature of the reactor pressure boundary such as the heat transfer pipes of pressurized water cooler (PWC) must not exceed the permissible values under an anticipated accident such as pipe of rupture in PWC. A requirement for the gas circulator which circulates helium gas in the primary cooling line and the secondary cooling line, is to be braked within 10 seconds by an electrical braking method after the HTTR reactor has scrammed under the accident in PWC. The reason is that the temperature rise of the heat transfer pipe at PWC has to be suppressed when the gas circulator has stopped, the revolution of the gas circulator decreases like the free coast down so that it takes about 90 seconds to be zero and the temperature rise of the pipe in the PWC exceeds the permissible value. By braking within 10 secs., the temperature of the pipe in the PWC reaches about 368 deg. C, less than the permissible value. Using a simplified equivalent circuit of an induction motor, braking time analysis was performed with obtained electrical resistance and inductance. The obtained braking time is about 10 secs., showing close agreement with analysis values. (author)

  18. Heat and momentum transfer in a gas coolant flow through a circular pipe in a high temperature gas cooled reactor

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1989-07-01

    In Japan Atomic Energy Research Institute (JAERI), a very high temperature gas cooled reactor (VHTR) has been researched and developed with a purpose of attaining a coolant temperature of around 1000degC at the reactor outlet. In order to design VHTR, comprehensive knowledge is required on thermo-hydraulic characteristics of laminar-turbulent transition, of coolant flow with large thermal property variation due to temperature difference, and of heat transfer deterioration. In the present investigation, experimental and analytical studies are made on a gas flow in a circular tube to elucidate the thermo-hydraulic characteristics. Friction factors and heat transfer coefficients in transitional flows are obtained. Influence of thermal property variation on the friction factor is qualitatively determined. Heat transfer deterioration in the turbulent flow subjected to intense heating is experimentally found to be caused by flow laminarization. The analysis based on a k-kL two-equation model of turbulence predicts well the experimental results on friction factors and heat transfer coefficients in flows with thermal property variation and in laminarizing flows. (author)

  19. Heat transfer characteristics of liquid-gas Taylor flows incorporating microencapsulated phase change materials

    International Nuclear Information System (INIS)

    Howard, J A; Walsh, P A

    2014-01-01

    This paper presents an investigation on the heat transfer characteristics associated with liquid-gas Taylor flows in mini channels incorporating microencapsulated phase change materials (MPCM). Taylor flows have been shown to result in heat transfer enhancements due to the fluid recirculation experienced within liquid slugs which is attributable to the alternating liquid slug and gas bubble flow structure. Microencapsulated phase change materials (MPCM) also offer significant potential with increased thermal capacity due to the latent heat required to cause phase change. The primary aim of this work was to examine the overall heat transfer potential associated with combining these two novel liquid cooling technologies. By investigating the local heat transfer characteristics, the augmentation/degradation over single phase liquid cooling was quantified while examining the effects of dimensionless variables, including Reynolds number, liquid slug length and gas void fraction. An experimental test facility was developed which had a heated test section and allowed MPCM-air Taylor flows to be subjected to a constant heat flux boundary condition. Infrared thermography was used to record high resolution experimental wall temperature measurements and determine local heat transfer coefficients from the thermal entrance point. 30.2% mass particle concentration of the MPCM suspension fluid was examined as it provided the maximum latent heat for absorption. Results demonstrate a significant reduction in experimental wall temperatures associated with MPCM-air Taylor flows when compared with the Graetz solution for conventional single phase coolants. Total enhancement in the thermally developed region is observed to be a combination of the individual contributions due to recirculation within the liquid slugs and also absorption of latent heat. Overall, the study highlights the potential heat transfer enhancements that are attainable within heat exchange devices employing MPCM

  20. Investigation of Condensation Heat Transfer Correlation of Heat Exchanger Design in Secondary Passive Cooling System

    Energy Technology Data Exchange (ETDEWEB)

    Ju, Yun Jae; Lee, Hee Joon [Kookmin Univ., Seoul (Korea, Republic of); Kang, Hanok; Lee, Taeho; Park, Cheontae [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-12-15

    Recently, condensation heat exchangers have been studied for applications to the passive cooling systems of nuclear plants. To design vertical-type condensation heat exchangers in secondary passive cooling systems, TSCON (Thermal Sizing of CONdenser), a thermal sizing program for a condensation heat exchanger, was developed at KAERI (Korea Atomic Energy Research Institute). In this study, the existing condensation heat transfer correlation of TSCON was evaluated using 1,157 collected experimental data points from the heat exchanger of a secondary passive cooling system for the case of pure steam condensation. The investigation showed that the Shah correlation, published in 2009, provided the most satisfactory results for the heat transfer coefficient with a mean absolute error of 34.8%. It is suggested that the Shah correlation is appropriate for designing a condensation heat exchanger in TSCON.

  1. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  2. Experimental studies of direct contact heat transfer in a slurry bubble column at high gas temperature of a helium–water–alumina system

    International Nuclear Information System (INIS)

    Abdulrahman, M.W.

    2015-01-01

    In this paper, the direct contact heat transfer is investigated experimentally for a helium gas at 90 °C injected through a slurry of water at 22 °C and alumina solid particles in a slurry bubble column reactor. This work examines the effects of superficial gas velocity, static liquid height, solid particles concentration and solid particle size, on the volumetric heat transfer coefficient and slurry temperature of the slurry bubble column reactor. These effects are formulated in forms of empirical equations. From the experimental work, it is found that the volumetric heat transfer coefficient and the slurry temperature increase by increasing the superficial gas velocity with a higher rate of increase at lower superficial gas velocity. In addition, the volumetric heat transfer coefficient and the slurry temperature decrease by increasing the static liquid height and/or the solid concentration at any given superficial gas velocity. Furthermore, it is found that the rate of decrease of the volumetric heat transfer coefficient with the solid concentration is approximately the same for different superficial gas velocities, and the decrease of the slurry temperature with the solid concentration is negligible. - Highlights: • Direct contact heat transfer is investigated experimentally in a slurry bubble column. • Empirical equation of direct contact heat transfer Nusselt number is formulated. • The volumetric heat transfer coefficient increases with superficial gas velocity. • The volumetric heat transfer coefficient decreases with the static liquid height. • The volumetric heat transfer coefficient decreases with the solid concentration.

  3. Thermal analysis of a gas centrifuge

    International Nuclear Information System (INIS)

    Andrade, D.A.; Bastos, J.L.F.; Maiorino, J.R.

    1996-01-01

    The centrifuge separation efficiency is the result of the composition of the centrifuge field to the secondary flow in the axial direction near to the rotor wall. For a given machine, the centrifuge field can not be altered and the effort to augment the separation efficiency should be concentrated on the secondary flow. The secondary flow has a mechanical and a thermal component. The mechanical component is due to the deceleration of the gas at the scoop region. The thermal component is due to the temperature differences at the rotor. This paper presents a thermal model of a centrifuge in order to understand the main heat transfer mechanisms and to establish the boundary conditions for a fluid flow computer code. The heat transfer analysis takes into account conduction at the structure parts of the rotor and shell, radiation with multi-reflections between the rotor and the shell, and convection to the ambient. (author)

  4. Transferring pharmaceuticals into the gas phase

    Science.gov (United States)

    Christen, Wolfgang; Krause, Tim; Rademann, Klaus

    2008-11-01

    The dissolution of molecules of biological interest in supercritical carbon dioxide is investigated using pulsed molecular beam mass spectrometry. Due to the mild processing temperatures of most supercritical fluids, their adiabatic expansion into vacuum permits to transfer even thermally very sensitive substances into the gas phase, which is particularly attractive for pharmaceutical and biomedical applications. In addition, supercritical CO2constitutes a chemically inert solvent that is compatible with hydrocarbon-free ultrahigh vacuum conditions. Here, we report on the dissolution and pulsed supersonic jet expansion of caffeine (C8H10N4O2), the provitamin menadione (C11H8O2), and the amino acid derivative l-phenylalanine tert-butyl ester hydrochloride (C6H5CH2CH(NH2)COOC(CH3)3[dot operator]HCl), into vacuum. An on-axis residual gas analyzer is used to monitor the relative amounts of solute and solvent in the molecular beam as a function of solvent densityE The excellent selectivity and sensitivity provided by mass spectrometry permits to probe even trace amounts of solutes. The strong density variation of CO2 close to the critical point results in a pronounced pressure dependence of the relative ion currents of solute and solvent molecules, reflecting a substantial change in solubility.

  5. Heat Transfer in Gas Turbines

    Science.gov (United States)

    Garg, Vijay K.

    2001-01-01

    The turbine gas path is a very complex flow field. This is due to a variety of flow and heat transfer phenomena encountered in turbine passages. This manuscript provides an overview of the current work in this field at the NASA Glenn Research Center. Also, based on the author's preference, more emphasis is on the computational work. There is much more experimental work in progress at GRC than that reported here. While much has been achieved, more needs to be done in terms of validating the predictions against experimental data. More experimental data, especially on film cooled and rough turbine blades, are required for code validation. Also, the combined film cooling and internal cooling flow computation for a real blade is yet to be performed. While most computational work to date has assumed steady state conditions, the flow is clearly unsteady due to the presence of wakes. All this points to a long road ahead. However, we are well on course.

  6. Test beam results of a low-pressure micro-strip gas chamber with a secondary-electron emitter

    International Nuclear Information System (INIS)

    Kwan, S.; Anderson, D.F.; Zimmerman, J.; Sbarra, C.; Salomon, M.

    1994-10-01

    We present recent results, from a beam test, on the angular dependence of the efficiency and the distribution of the signals on the anode strips of a low-pressure microstrip gas chamber with a thick CsI layer as a secondary-electron emitter. New results of CVD diamond films as secondary-electron emitters are discussed

  7. Modelling secondary instability of co-current a thin gas-sheared film

    Energy Technology Data Exchange (ETDEWEB)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G, E-mail: vozhakov@gmail.com [Kutateladze Institute of Thermophysics, Novosibirsk (Russian Federation)

    2016-12-15

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  8. Modelling secondary instability of co-current a thin gas-sheared film

    International Nuclear Information System (INIS)

    Vozhakov, I S; Cherdantsev, A V; Arkhipov, D G

    2016-01-01

    Recent experimental works found the existence of two types of waves on the surface of gas-sheared thin films. Slower short-living ‘secondary waves’ appear due to the instability of the rear slopes of faster long-living ‘primary waves’. In this paper, modelling of spatiotemporal evolution of liquid film in such kind of flows is performed using relatively simple theoretical models. The modelling results are directly compared with the experimental data. It is found that the phenomenon of secondary waves generation at the rear slopes of the primary waves is reproduced by the model. This allows us to reduce the number of hypotheses which explain the mechanism responsible for such instability. Recommendations for future theoretical investigations are proposed. (paper)

  9. Natural gas large volumes measurement: going for on-line custody transfer; Medicao de grandes volumes de gas natural: rumo a transferencia de custodia on-line

    Energy Technology Data Exchange (ETDEWEB)

    Mercon, Eduardo G.; Frisoli, Caetano [PETROBRAS Transporte S.A. (TRANSPETRO), Rio de Janeiro, RJ (Brazil)

    2005-07-01

    This paper describes the structure of the natural gas flow measurement process in TRANSPETRO, and comments features and performance of existing or under-implantation equipment and systems, reviewing best practices and technology in use. This process runs through three interrelated segments: data flow measurement, strictly speaking; data transfer and acquisition; and data flow measurement certification (data consolidation to invoice). Initially, the work makes an approach to the data flow measurement segment, evaluating technical features of flow meters, and describing configurations and functions of the operating gas flow computers in TRANSPETRO's custody transfer stations. In this part it will also be presented the implantation of TRANSPETRO's system for gas chromatography data input on-line to flow computers. Further, in data transfer and acquisition, SCADA system technical aspects will be evaluated, considering communications protocols and programmable logic controllers functions in remote terminal units, and discussing their places in the measurement process. Additionally, TRANSPETRO's experience in data measurement certification tools is in discussion, as well as new upcoming tools and their potential features, from what new practices will be suggested. Finally, all the work has been conceived and carried out always aiming to the state-of-the-art technology in gas flow measurement: on-line custody transfer. (author)

  10. Mathematical Investigation of Fluid Flow, Mass Transfer, and Slag-steel Interfacial Behavior in Gas-stirred Ladles

    Science.gov (United States)

    Cao, Qing; Nastac, Laurentiu

    2018-06-01

    In this study, the Euler-Euler and Euler-Lagrange modeling approaches were applied to simulate the multiphase flow in the water model and gas-stirred ladle systems. Detailed comparisons of the computational and experimental results were performed to establish which approach is more accurate for predicting the gas-liquid multiphase flow phenomena. It was demonstrated that the Euler-Lagrange approach is more accurate than the Euler-Euler approach. The Euler-Lagrange approach was applied to study the effects of the free surface setup, injected bubble size, gas flow rate, and slag layer thickness on the slag-steel interaction and mass transfer behavior. Detailed discussions on the flat/non-flat free surface assumption were provided. Significant inaccuracies in the prediction of the surface fluid flow characteristics were found when the flat free surface was assumed. The variations in the main controlling parameters (bubble size, gas flow rate, and slag layer thickness) and their potential impact on the multiphase fluid flow and mass transfer characteristics (turbulent intensity, mass transfer rate, slag-steel interfacial area, flow patterns, etc.,) in gas-stirred ladles were quantitatively determined to ensure the proper increase in the ladle refining efficiency. It was revealed that by injecting finer bubbles as well as by properly increasing the gas flow rate and the slag layer thickness, the ladle refining efficiency can be enhanced significantly.

  11. Computer program /P1-GAS/ calculates the P-0 and P-1 transfer matrices for neutron moderation in a monatomic gas

    Science.gov (United States)

    Collier, G.; Gibson, G.

    1968-01-01

    FORTRAN 4 program /P1-GAS/ calculates the P-O and P-1 transfer matrices for neutron moderation in a monatomic gas. The equations used are based on the conditions that there is isotropic scattering in the center-of-mass coordinate system, the scattering cross section is constant, and the target nuclear velocities satisfy a Maxwellian distribution.

  12. Proposed heat transfer model for the gas-liquid heat transfer effects observed in the Stanford Research Institute scaled tests

    International Nuclear Information System (INIS)

    Corradini, M.; Sonin, A.A.; Todreas, N.

    1976-12-01

    In 1971-72, the Stanford Research Institute conducted a series of scaled experiments which simulated a sodium-vapor expansion in a hypothetical core disruptive accident (HCDA) for the Fast Flux Test Facility. A non-condensible explosive source was used to model the pressure-volume expansion characteristics of sodium vapor as predicted by computer code calculations. Rigid piston-cylinder experiments ( 1 / 10 and 1 / 30 scale) were undertaken to determine these expansion characteristics. The results showed that the pressure-volume characteristics depend significantly on the presence of water in the cylinder reducing the work output by about 50 percent when a sufficient water depth was present. The study presented proposes that the mechanism of heat transfer between the water and high temperature gas was due to area enhancement by Taylor instabilities at the gas-liquid interface. A simple heat transfer model is proposed which describes this energy transport process and agrees well with the experimental data from both scaled experiments. The consequences of this analysis suggest that an estimate of the heat transfer to the cold slug during a full-scale HCDA due to sodium vapor expansion and the accompanying reduction in mechanical work energy warrants further investigation. The implication of this analysis is that for either sodium or fuel vapor expansion in an HCDA, there is an inherent heat transfer mechanism which significantly reduces the work output of the expanding bubble

  13. An evaluation of gas transfer velocity parameterizations during natural convection using DNS

    Science.gov (United States)

    Fredriksson, Sam T.; Arneborg, Lars; Nilsson, Hâkan; Zhang, Qi; Handler, Robert A.

    2016-02-01

    Direct numerical simulations (DNS) of free surface flows driven by natural convection are used to evaluate different methods of estimating air-water gas exchange at no-wind conditions. These methods estimate the transfer velocity as a function of either the horizontal flow divergence at the surface, the turbulent kinetic energy dissipation beneath the surface, the heat flux through the surface, or the wind speed above the surface. The gas transfer is modeled via a passive scalar. The Schmidt number dependence is studied for Schmidt numbers of 7, 150 and 600. The methods using divergence, dissipation and heat flux estimate the transfer velocity well for a range of varying surface heat flux values, and domain depths. The two evaluated empirical methods using wind (in the limit of no wind) give reasonable estimates of the transfer velocity, depending however on the surface heat flux and surfactant saturation. The transfer velocity is shown to be well represented by the expression, ks=A |Bν|1/4 Sc-n, where A is a constant, B is the buoyancy flux, ν is the kinematic viscosity, Sc is the Schmidt number, and the exponent n depends on the water surface characteristics. The results suggest that A=0.39 and n≈1/2 and n≈2/3 for slip and no-slip boundary conditions at the surface, respectively. It is further shown that slip and no-slip boundary conditions predict the heat transfer velocity corresponding to the limits of clean and highly surfactant contaminated surfaces, respectively. This article was corrected on 22 MAR 2016. See the end of the full text for details.

  14. Oil and gas technology transfer activities and potential in eight major producing states. Volume 1

    Energy Technology Data Exchange (ETDEWEB)

    1993-07-01

    In 1990, the Interstate Oil and Gas Compact Commission (the Compact) performed a study that identified the structure and deficiencies of the system by which oil and gas producers receive information about the potential of new technologies and communicate their problems and technology needs back to the research community. The conclusions of that work were that major integrated companies have significantly more and better sources of technology information than independent producers. The majors also have significantly better mechanisms for communicating problems to the research and development (R&D) community. As a consequence, the Compact recommended analyzing potential mechanisms to improve technology transfer channels for independents and to accelerate independents acceptance and use of existing and emerging technologies. Building on this work, the Compact, with a grant from the US Department Energy, has reviewed specific technology transfer organizations in each of eight major oil producing states to identify specific R&D and technology transfer organizations, characterize their existing activities, and identify potential future activities that could be performed to enhance technology transfer to oil and gas producers. The profiles were developed based on information received from organizations,follow-up interviews, site visit and conversations, and participation in their sponsored technology transfer activities. The results of this effort are reported in this volume. In addition, the Compact has also developed a framework for the development of evaluation methodologies to determine the effectiveness of technology transfer programs in performing their intended functions and in achieving desired impacts impacts in the producing community. The results of that work are provided in a separate volume.

  15. Two-phase heat and mass transfer in turbulent parallel and countercurrent flows of liquid film and gas

    International Nuclear Information System (INIS)

    Kholpanov, L.P.; Babak, T.B.; Babak, V.N.; Malyusov, V.A.; Zhavoronkov, N.M.; AN SSSR, Moscow. Inst. Obshchej i Neorganicheskoj Khimii)

    1980-01-01

    To determine the ways of intensification of heat and mass transfer processes, the direct flow and counterflow heat and mass transfer is analytically investigated during the turbulent flow of a liquid and gas film on the basis of solving the energy equation for liquid and gas film, i.e. the two-phase film heat transfer is investigated from the position of a conjugate task. The analysis of the two-phase heat transfer has shown that it is necessary to know the position of each point in a plane before using this or that formula. Depending on its position on this plane, the heat transfer process will be determined by one or two phases only. It is found, that in the case of a single-phase heat transfer the temperature on the surface remains stable over the channel length. In the case of a two-phase heat transfer it can significantly change over the channel length [ru

  16. Modeling the scooping phenomenon for the heat transfer in liquid–gas horizontal slug flows

    International Nuclear Information System (INIS)

    Bassani, Carlos L.; Pereira, Fernando H.G.; Barbuto, Fausto A.A.; Morales, Rigoberto E.M.

    2016-01-01

    Highlights: • A low computational tool for heat transfer prediction on slug flows is presented. • The scooping phenomenon is modeled on a stationary approach. • The scooping phenomenon improved in 8% the heat transfer results. - Abstract: The heat transfer between the deep sea waters and the oil and gas mixtures flowing through production lines is a common situation in the petroleum industry. The optimum prediction of the liquid–gas flow parameters along those lines, when the intermittent flow pattern known as slug flow is dominant, has extreme importance in facilities' design. The mixture temperature drop caused by the colder sea waters, which can be regarded as an infinite medium with constant temperature, directly affects physical properties of the fluids such as the viscosity and specific mass. Gas expansion may also occur due to pressure and temperature gradients, thus changing the flow hydrodynamics. Finally, the temperature gradient affects the thermodynamic equilibrium between the phases, favoring wax deposition and thus increasing pressure drops or even blocking the production line. With those issues in mind, the present work proposes a stationary model to predict the mixture temperature distribution and the two-phase flow heat transfer coefficient based on the mass, momentum and energy conservation equations applied to different unit cell regions. The main contribution of the present work is the modeling of the thermal scooping phenomenon, i.e., the heat transfer between two adjacent unit cells due to the mass flux known as scooping. The model was implemented as a structured Fortran95 code with an upwind difference scheme. The results were compared to experimental data and presented good agreement. The analysis showed that the inclusion of the scooping phenomenon into the model resulted in an averaged 8% improvement in the temperature gradient calculation and heat transfer coefficient prediction for the flowing mixture.

  17. Molecular theory of mass transfer kinetics and dynamics at gas-water interface

    International Nuclear Information System (INIS)

    Morita, Akihiro; Garrett, Bruce C

    2008-01-01

    The mass transfer mechanism across gas-water interface is studied with molecular dynamics (MD) simulation. The MD results provide a robust and qualitatively consistent picture to previous studies about microscopic aspects of mass transfer, including interface structure, free energy profiles for the uptake, scattering dynamics and energy relaxation of impinging molecules. These MD results are quantitatively compared with experimental uptake measurements, and we find that the apparent inconsistency between MD and experiment could be partly resolved by precise decomposition of the observed kinetics into elemental steps. Remaining issues and future perspectives toward constructing a comprehensive multi-scale description of interfacial mass transfer are summarized.

  18. Heat transfer to a particle exposed to a rarefield ionized-gas flow

    International Nuclear Information System (INIS)

    Chen, X.; He, P.

    1986-01-01

    Analytical results are presented concerning the heat transfer to a spherical particle exposed to a high temperature, ionized- gas flow for the extreme case of free-molecule flow regime. It has been shown that the presence of relative velocity between the particle and the ionized gas reduces the floating potential on the particle, enhances the heat flux and causes appreciably non-uniform distribution of the local heat flux. Pronounced difference is found between metallic and non-metallic particles in the floating potential and the local heat flux distributions, in particular for the case with high gas-flow temperature. Relative contribution of atoms to the total heat flux is dominant for the case of low gas-flow temperature, while the heat flux is mainly caused by ions and electrons for the case of high gas-flow temperature

  19. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    International Nuclear Information System (INIS)

    Kirschen, Marcus; Velikorodov, Viktor; Pfeifer, Herbert

    2006-01-01

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently

  20. Mathematical modelling of heat transfer in dedusting plants and comparison to off-gas measurements at electric arc furnaces

    Energy Technology Data Exchange (ETDEWEB)

    Kirschen, Marcus [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)]. E-mail: kirschen@iob.rwth-aachen.de; Velikorodov, Viktor [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany); Pfeifer, Herbert [Institute for Industrial Furnaces and Heat Engineering, RWTH Aachen, Kopernikusstrasse 16, 52074 Aachen (Germany)

    2006-11-15

    A mathematical simulation tool is presented in order to model enthalpy flow rates of off-gas and heat transfer of cooling systems at dedusting plants in electric steel making sites. The flexibility of the simulation tool is based on a user-defined series of modular units that describe elementary units of industrial dedusting systems, e.g. water-cooled hot gas duct, air injector, drop-out box, mixing chamber, post-combustion chamber, filter, etc. Results of simulation were checked with measurements at industrial electric steel making plants in order to validate the models for turbulence, heat transfer and chemical reaction kinetics. Comparison between computed and measured gas temperature and composition yield excellent agreement. The simulation tool is used to calculate off-gas temperature and volume flow rate, where off-gas measurements are very difficult to apply due to high gas temperatures and high dust load. Heat transfer from the off-gas to the cooling system was calculated in detail for a pressurised hot water EAF cooling system in order to investigate the impact of the cooling system and the dedusting plant operation on the energy sinks of the electric arc furnace. It is shown that optimum efficiency of post-combustion of EAF off-gas in the water-cooled hot gas duct requires continuous off-gas analysis. Common operation parameters of EAF dedusting systems do not consider the non-steady-state of the EAF off-gas emission efficiently.

  1. R + D work on gas-cooled breeder development

    International Nuclear Information System (INIS)

    Dalle Donne, M.; Dorner, S.; Jacobs, G.; Meyer, L.; Rehme, K.; Schumacher, G.; Wilhelm, D.

    1978-01-01

    The development work for the gas-cooled breeder in the Karlsruhe Nuclear Research Center may be assigned to two different groups: a) Investigations on fuel elements. b) Studies concerning the safety of gas-cooled fast breeder reactors. To the first group there belongs the work related to the: - heat transfer between fuel elements and coolant gas, - influence of increased content of water vapor in helium or the fuel rods. The second group concerns: - establishing a computer code for transient calculations in the primary and secondary circuit of a gas-cooled fast breeder reactor, - steam reactivity coefficients, - the core destruction phase of hypothetical accidents, - the core-catcher using borax. (orig./RW) [de

  2. Coefficient of solid-gas heat transfer in particle fixed bed; Coeficiente de transferencia de calor gas-solido em leito fixo de particulas

    Energy Technology Data Exchange (ETDEWEB)

    Fernandes Filho, Francisco

    1991-03-01

    The work presents a study on heat transfer between gas and solid phases for fixed beds in the absence of mass transfer and chemical reactions. Mathematical models presented in the literature were analyzed concerning to the assumptions made on axial dispersion in the fluid phase and interparticle thermal conductivity. Heat transfer coefficients and their dependency on flow conditions, particles and packed bed characteristics were experimentally determined through the solution of the previous mathematical models. Pressure drop behaviour for the packed beds used for the heat transfer study was also included. (author) 32 refs., 12 figs.

  3. Wireless transfer of measured data. Continuous measurement of natural gas consumption in a liberalized market

    International Nuclear Information System (INIS)

    De Buisonje, B.

    2000-01-01

    In a deregulated market it is very important to be able to measure gas consumption per hour, or even every 5 minutes, on site and reliably transfer the data measured to the trader. It is common practice in the gas industry to make forecasts for each customer taking off more than 10 million m 3 . This requires the preparation of load profiles based on gas consumption during five minutes. For both the consumer and the trader it is important to be informed (semi-)continuously of the actual gas consumption, which can then be directly compared with the expected load profile, after which adjustments can be made. One of the gas distribution companies in the Netherlands, Essent, transfers wireless data in the case of remote metering. Essent uses Ferranti Computer Systems and the Mobitex network of RAM Mobile Data. Consumers also have access to the data measured through the Internet. They can use the actual load profile for billing purposes. Moreover, they can immediately adjust their energy consumption to stick to the offtake forecast as long as possible and thus save costs

  4. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Science.gov (United States)

    Alanen, Jenni; Simonen, Pauli; Saarikoski, Sanna; Timonen, Hilkka; Kangasniemi, Oskari; Saukko, Erkka; Hillamo, Risto; Lehtoranta, Kati; Murtonen, Timo; Vesala, Hannu; Keskinen, Jorma; Rönkkö, Topi

    2017-07-01

    Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM) chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6-268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA) formation potential was measured to be 9-20 mg kgfuel-1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize - more than half an hour - which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission source and system temperatures. Sulfate was

  5. Comparison of primary and secondary particle formation from natural gas engine exhaust and of their volatility characteristics

    Directory of Open Access Journals (Sweden)

    J. Alanen

    2017-07-01

    Full Text Available Natural gas usage in the traffic and energy production sectors is a growing trend worldwide; thus, an assessment of its effects on air quality, human health and climate is required. Engine exhaust is a source of primary particulate emissions and secondary aerosol precursors, which both contribute to air quality and can cause adverse health effects. Technologies, such as cleaner engines or fuels, that produce less primary and secondary aerosols could potentially significantly decrease atmospheric particle concentrations and their adverse effects. In this study, we used a potential aerosol mass (PAM chamber to investigate the secondary aerosol formation potential of natural gas engine exhaust. The PAM chamber was used with a constant UV-light voltage, which resulted in relatively long equivalent atmospheric ages of 11 days at most. The studied retro-fitted natural gas engine exhaust was observed to form secondary aerosol. The mass of the total aged particles, i.e., particle mass measured downstream of the PAM chamber, was 6–268 times as high as the mass of the emitted primary exhaust particles. The secondary organic aerosol (SOA formation potential was measured to be 9–20 mg kgfuel−1. The total aged particles mainly consisted of organic matter, nitrate, sulfate and ammonium, with the fractions depending on exhaust after-treatment and the engine parameters used. Also, the volatility, composition and concentration of the total aged particles were found to depend on the engine operating mode, catalyst temperature and catalyst type. For example, a high catalyst temperature promoted the formation of sulfate particles, whereas a low catalyst temperature promoted nitrate formation. However, in particular, the concentration of nitrate needed a long time to stabilize – more than half an hour – which complicated the conclusions but also indicates the sensitivity of nitrate measurements on experimental parameters such as emission

  6. Conjugated heat transfer and temperature distributions in a gas turbine combustion liner under base-load operation

    International Nuclear Information System (INIS)

    Kim, Kyung Min; Yun, Nam Geon; Jeon, Yun Heung; Lee, Dong Hyun; Cho, Yung Hee

    2010-01-01

    Prediction of temperature distributions on hot components is important in development of a gas turbine combustion liner. The present study investigated conjugated heat transfer to obtain temperature distributions in a combustion liner with six combustion nozzles. 3D numerical simulations using FVM commercial codes, Fluent and CFX were performed to calculate combustion and heat transfer distributions. The temperature distributions in the combustor liner were calculated by conjugation of conduction and convection (heat transfer coefficients) obtained by combustion and cooling flow analysis. The wall temperature was the highest on the attachment points of the combustion gas from combustion nozzles, but the temperature gradient was high at the after shell section with low wall temperature

  7. Numerical analysis of mass transfer with graphite oxidation in a laminar flow of multi-component gas mixture through a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro

    1992-10-01

    In the present paper, mass transfer has been numerically studied in a laminar flow through a circular graphite tube to evaluate graphite corrosion rate and generation rate of carbon monoxide during a pipe rupture accident in a high temperature gas cooled reactor. In the analysis, heterogeneous (graphite oxidation and graphite/carbon dioxide reaction) and homogeneous (carbon monoxide combustion) chemical reactions were dealt in the multi-component gas mixture; helium, oxygen, carbon monoxide and carbon dioxide. Multi-component diffusion coefficients were used in a diffusion term. Mass conservation equations of each gas component, mass conservation equation and momentum conservation equations of the gas mixture were solved by using SIMPLE algorism. Chemical reactions between graphite and oxygen, graphite and carbon dioxide, and carbon monoxide combustion were taken into account in the present numerical analysis. An energy equation for the gas mixture was not solved and temperature was held to be constant in order to understand basic mass transfer characteristics without heat transfer. But, an energy conservation equation for single component gas was added to know heat transfer characteristics without mass transfer. The effects of these chemical reactions on the mass transfer coefficients were quantitatively and qualitatively clarified in the range of 50 to 1000 of inlet Reynolds numbers, 0 to 0.5 of inlet oxygen mass fraction and 800 to 1600degC of temperature. (author)

  8. Gas sensors boosted by two-dimensional h-BN enabled transfer on thin substrate foils: towards wearable and portable applications.

    Science.gov (United States)

    Ayari, Taha; Bishop, Chris; Jordan, Matthew B; Sundaram, Suresh; Li, Xin; Alam, Saiful; ElGmili, Youssef; Patriarche, Gilles; Voss, Paul L; Salvestrini, Jean Paul; Ougazzaden, Abdallah

    2017-11-09

    The transfer of GaN based gas sensors to foreign substrates provides a pathway to enhance sensor performance, lower the cost and extend the applications to wearable, mobile or disposable systems. The main keys to unlocking this pathway is to grow and fabricate the sensors on large h-BN surface and to transfer them to the flexible substrate without any degradation of the performances. In this work, we develop a new generation of AlGaN/GaN gas sensors with boosted performances on a low cost flexible substrate. We fabricate 2-inch wafer scale AlGaN/GaN gas sensors on sacrificial two-dimensional (2D) nano-layered h-BN without any delamination or cracks and subsequently transfer sensors to an acrylic surface on metallic foil. This technique results in a modification of relevant device properties, leading to a doubling of the sensitivity to NO 2 gas and a response time that is more than 6 times faster than before transfer. This new approach for GaN-based sensor design opens new avenues for sensor improvement via transfer to more suitable substrates, and is promising for next-generation wearable and portable opto-electronic devices.

  9. Surface shear stress dependence of gas transfer velocity parameterizations using DNS

    Science.gov (United States)

    Fredriksson, S. T.; Arneborg, L.; Nilsson, H.; Handler, R. A.

    2016-10-01

    Air-water gas-exchange is studied in direct numerical simulations (DNS) of free-surface flows driven by natural convection and weak winds. The wind is modeled as a constant surface-shear-stress and the gas-transfer is modeled via a passive scalar. The simulations are characterized via a Richardson number Ri=Bν/u*4 where B, ν, and u* are the buoyancy flux, kinematic viscosity, and friction velocity respectively. The simulations comprise 0Ric or kg=AShearu*Sc-n, Ri

  10. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors.

    Science.gov (United States)

    Tirunehe, Gossaye; Norddahl, B

    2016-04-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air-water and air-CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas-liquid mediums. CMC solutions were employed in the study to simulate rheological properties of bioreactor broth. Gas holdup, bubble size distribution, interfacial area and gas-liquid mass transfer were studied in the homogeneous bubbly flow hydrodynamic regime with superficial gas velocity (U(G)) range of 0.0004-0.0025 m/s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (K(L)a) by a factor of 1.2-1.9 compared to the flat sheet membrane.

  11. Overview of LEI investigations on heat transfer and flow structure in gas-cooled spheres packings and channels

    International Nuclear Information System (INIS)

    Vilemas, J.; Uspuras, E.; Rimkevicius, S.; Kaliatka, A.; Pabarcius, R.

    2002-01-01

    In this paper experimental investigations on heat transfer and hydrodynamics in various gas-cooled channels over wide ranges of geometrical and performance parameters performed at Lithuanian Energy Institute are presented. Overview introduces long-term experience on investigations of local and average heat transfer, hydraulic drag in various types of sphere packings, in smooth, helical tubes and annular channels equipped with smooth/rough or helical inner lubes, such bundle of twisted tubes, as well as turbulent flow structure and the effects of variable physical properties of gas heat carriers on local heat transfer in channels of different cross sections. Lithuanian Energy Institute has accumulated long term experience in the field of heat transfer investigations and has good experimental basis for providing such studies and following analytical analysis. (author)

  12. Charge-transfer properties in the gas electron multiplier

    International Nuclear Information System (INIS)

    Han, Sanghyo; Kim, Yongkyun; Cho, Hyosung

    2004-01-01

    The charge transfer properties of a gas electron multiplier (GEM) were systematically investigated over a broad range of electric field configurations. The electron collection efficiency and the charge sharing were found to depend on the external fields, as well as on the GEM voltage. The electron collection efficiency increased with the collection field up to 90%, but was essentially independent of the drift field strength. A double conical GEM has a 10% gain increase with time due to surface charging by avalanche ions whereas this effect was eliminated with the cylindrical GEM. The positive-ion feedback is also estimated. (author)

  13. Determination of heat transfer coefficient for an interaction of sub-cooled gas and metal

    International Nuclear Information System (INIS)

    Sidek, Mohd Zaidi; Kamarudin, Muhammad Syahidan

    2016-01-01

    Heat transfer coefficient (HTC) for a hot metal surface and their surrounding is one of the need be defined parameter in hot forming process. This study has been conducted to determine the HTC for an interaction between sub-cooled gas sprayed on a hot metal surface. Both experiments and finite element have been adopted in this work. Initially, the designated experiment was conducted to obtain temperature history of spray cooling process. Then, an inverse method was adopted to calculate the HTC value before we validate in a finite element simulation model. The result shows that the heat transfer coefficient for interaction of subcooled gas and hot metal surface is 1000 W/m 2 K. (paper)

  14. Charge Transfer Properties Through Graphene Layers in Gas Detectors

    CERN Document Server

    Thuiner, P.; Jackman, R.B.; Müller, H.; Nguyen, T.T.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.A.; van Stenis, M.; Veenhof, R.

    2016-01-01

    Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical, electrical and optical properties. For the first time graphene layers suspended on copper meshes were installed into a gas detector equipped with a gaseous electron multiplier. Measurements of low energy electron and ion transfer through graphene were conducted. In this paper we describe the sample preparation for suspended graphene layers, the testing procedures and we discuss the preliminary results followed by a prospect of further applications.

  15. Thermal-Flow Code for Modeling Gas Dynamics and Heat Transfer in Space Shuttle Solid Rocket Motor Joints

    Science.gov (United States)

    Wang, Qunzhen; Mathias, Edward C.; Heman, Joe R.; Smith, Cory W.

    2000-01-01

    A new, thermal-flow simulation code, called SFLOW. has been developed to model the gas dynamics, heat transfer, as well as O-ring and flow path erosion inside the space shuttle solid rocket motor joints by combining SINDA/Glo, a commercial thermal analyzer. and SHARPO, a general-purpose CFD code developed at Thiokol Propulsion. SHARP was modified so that friction, heat transfer, mass addition, as well as minor losses in one-dimensional flow can be taken into account. The pressure, temperature and velocity of the combustion gas in the leak paths are calculated in SHARP by solving the time-dependent Navier-Stokes equations while the heat conduction in the solid is modeled by SINDA/G. The two codes are coupled by the heat flux at the solid-gas interface. A few test cases are presented and the results from SFLOW agree very well with the exact solutions or experimental data. These cases include Fanno flow where friction is important, Rayleigh flow where heat transfer between gas and solid is important, flow with mass addition due to the erosion of the solid wall, a transient volume venting process, as well as some transient one-dimensional flows with analytical solutions. In addition, SFLOW is applied to model the RSRM nozzle joint 4 subscale hot-flow tests and the predicted pressures, temperatures (both gas and solid), and O-ring erosions agree well with the experimental data. It was also found that the heat transfer between gas and solid has a major effect on the pressures and temperatures of the fill bottles in the RSRM nozzle joint 4 configuration No. 8 test.

  16. Theoretical and experimental studies on transient heat transfer for forced convection flow of helium gas over a horizontal cylinder

    International Nuclear Information System (INIS)

    Liu Qiusheng; Katsuya Fukuda; Zhang Zheng

    2005-01-01

    Forced convection transient heat transfer for helium gas at various periods of exponential increase of heat input to a horizontal cylinder (heater) was theoretically and experimentally studied. In the theoretical study, transient heat transfer was numerically solved based on a turbulent flow model. It was clarified that the surface superheat and heat flux increase exponentially as the heat generation rate increases with the exponential function. The temperature distribution near the cylinder becomes larger as the surface temperature increases. The values of numerical solution for surface temperature and heat flux agree well with the experimental data for the cylinder diameter of 1 mm. However, the heat flux shows difference from the experimental values for the cylinder diameters of 0.7 mm and 2.0 mm. In the experimental studies, the authors measured heat flux, surface temperature, and transient heat transfer coefficients for forced convection flow of helium gas over horizontal cylinders under wide experimental conditions. The platinum cylinders with diameters of 1.0 mm, 0.7 mm, and 2.0 mm were used as test heaters and heated by electric current with an exponential increase of Q 0exp (t/τ) . The gas flow velocities ranged from 2 to 10 m/s, the gas temperatures ranged from 303 to 353 K, and the periods ranged from 50 ms to 20 s. It was clarified that the heat transfer coefficient approaches the quasi-steady-state one for the period τ longer than about 1 s, and it becomes higher for the period shorter than around 1 s. The transient heat transfer shows less dependence on the gas flowing velocity when the period becomes very shorter. The heat transfer shifts to the quasi-steady-state heat transfer for longer periods and shifts to the transient heat transfer for shorter periods at the same flow velocity. It also approaches the quasi-steady-state one for higher flow velocity at the same period. The transient heat transfer coefficients show significant dependence on

  17. Analysis of small scale turbulent structures and the effect of spatial scales on gas transfer

    Science.gov (United States)

    Schnieders, Jana; Garbe, Christoph

    2014-05-01

    The exchange of gases through the air-sea interface strongly depends on environmental conditions such as wind stress and waves which in turn generate near surface turbulence. Near surface turbulence is a main driver of surface divergence which has been shown to cause highly variable transfer rates on relatively small spatial scales. Due to the cool skin of the ocean, heat can be used as a tracer to detect areas of surface convergence and thus gather information about size and intensity of a turbulent process. We use infrared imagery to visualize near surface aqueous turbulence and determine the impact of turbulent scales on exchange rates. Through the high temporal and spatial resolution of these types of measurements spatial scales as well as surface dynamics can be captured. The surface heat pattern is formed by distinct structures on two scales - small-scale short lived structures termed fish scales and larger scale cold streaks that are consistent with the footprints of Langmuir Circulations. There are two key characteristics of the observed surface heat patterns: 1. The surface heat patterns show characteristic features of scales. 2. The structure of these patterns change with increasing wind stress and surface conditions. In [2] turbulent cell sizes have been shown to systematically decrease with increasing wind speed until a saturation at u* = 0.7 cm/s is reached. Results suggest a saturation in the tangential stress. Similar behaviour has been observed by [1] for gas transfer measurements at higher wind speeds. In this contribution a new model to estimate the heat flux is applied which is based on the measured turbulent cell size und surface velocities. This approach allows the direct comparison of the net effect on heat flux of eddies of different sizes and a comparison to gas transfer measurements. Linking transport models with thermographic measurements, transfer velocities can be computed. In this contribution, we will quantify the effect of small scale

  18. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    International Nuclear Information System (INIS)

    Park, Sang Kyoo; Yang, Hei Cheon

    2017-01-01

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  19. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-06-15

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  20. Gas Turbine/Solar Parabolic Trough Hybrid Design Using Molten Salt Heat Transfer Fluid: Preprint

    Energy Technology Data Exchange (ETDEWEB)

    Turchi, C. S.; Ma, Z.

    2011-08-01

    Parabolic trough power plants can provide reliable power by incorporating either thermal energy storage (TES) or backup heat from fossil fuels. This paper describes a gas turbine / parabolic trough hybrid design that combines a solar contribution greater than 50% with gas heat rates that rival those of natural gas combined-cycle plants. Previous work illustrated benefits of integrating gas turbines with conventional oil heat-transfer-fluid (HTF) troughs running at 390?C. This work extends that analysis to examine the integration of gas turbines with salt-HTF troughs running at 450 degrees C and including TES. Using gas turbine waste heat to supplement the TES system provides greater operating flexibility while enhancing the efficiency of gas utilization. The analysis indicates that the hybrid plant design produces solar-derived electricity and gas-derived electricity at lower cost than either system operating alone.

  1. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    OpenAIRE

    Li Shaobai; Fan Jungeng; Xu Shuang; Li Rundong; Luan Jingde

    2017-01-01

    In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa), liquid side mass transfer coefficient (kL), and specific interfacial area (a) were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH). It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liqui...

  2. Dynamic modeling of fixed-bed adsorption of flue gas using a variable mass transfer model

    International Nuclear Information System (INIS)

    Park, Jehun; Lee, Jae W.

    2016-01-01

    This study introduces a dynamic mass transfer model for the fixed-bed adsorption of a flue gas. The derivation of the variable mass transfer coefficient is based on pore diffusion theory and it is a function of effective porosity, temperature, and pressure as well as the adsorbate composition. Adsorption experiments were done at four different pressures (1.8, 5, 10 and 20 bars) and three different temperatures (30, 50 and 70 .deg. C) with zeolite 13X as the adsorbent. To explain the equilibrium adsorption capacity, the Langmuir-Freundlich isotherm model was adopted, and the parameters of the isotherm equation were fitted to the experimental data for a wide range of pressures and temperatures. Then, dynamic simulations were performed using the system equations for material and energy balance with the equilibrium adsorption isotherm data. The optimal mass transfer and heat transfer coefficients were determined after iterative calculations. As a result, the dynamic variable mass transfer model can estimate the adsorption rate for a wide range of concentrations and precisely simulate the fixed-bed adsorption process of a flue gas mixture of carbon dioxide and nitrogen.

  3. Geological and geochemical characteristics of the secondary biogenic gas in coalbed gases, Huainan coalfield

    Energy Technology Data Exchange (ETDEWEB)

    Xiaojun, Zhang; Zhenglin, Cao; Mingxin, Tao; Wanchun, Wang; Jinlong, Ma

    2010-09-15

    The research results show that the compositions of coalbed gases in Huainan coalfield have high content methane, low content heavy hydrocarbons and carbon dioxide, and special dry gas. The evolution coal is at the stage of generation of thermogenic gases, but the d13C1 values within the range of biogenic gas (d13C1 values from -56.7{per_thousand} to -67.9{per_thousand}). The d13C2 value of coalbed gases in Huainan coalfield shows not only the features of the thermogenic ethane, but also the mixed features of the biogenic methane and thermogenic ethane. In geological characteristics, Huainan coalfield has favorable conditions of generation of secondary biogenic gas.

  4. Experimental study on secondary depressurization action for PWR vessel bottom small break LOCA with HPI failure and gas inflow (ROSA-V/LSTF test SB-PV-03)

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro; Takeda, Takeshi; Asaka, Hideaki; Nakamura, Hideo

    2005-06-01

    A small break loss-of-coolant accident (SBLOCA) experiment was conducted at the Large Scale Test Facility (LSTF) of ROSA-V program to study effects of accident management (AM) measures on core cooling, which is important in case of high pressure injection (HPI) system failure during an SBLOCA at a pressurized water reactor (PWR). The LSTF is a full-height and 1/48 volume-scaled facility simulating 4-loop Westinghouse-type PWR (3423 MWt). The experiment, SB-PV-03, simulated a PWR vessel bottom SBLOCA with a rupture of ten instrument-tubes which is equivalent to 0.2% cold leg break. Total HPI failure, non-condensable gas inflow from accumulator injection system (AIS) and operator AM actions on steam generator (SG) secondary depressurization at a rate of -55 K/h and auxiliary feedwater (AFW) supply for 30 minutes were assumed as experiment conditions. It is clarified that the AM actions are effective on primary system depressurization until the end of AIS injection at 1.6 MPa, but thereafter become less effective due to inflow of the non-condensable gas, resulting in delay of low pressure injection (LPI) actuation and whole core heatup under continuous water discharge through the bottom break. The report describes these thermohydraulic phenomena related with transient primary coolant mass and AM actions in addition to estimation of non-condensable gas behavior which affected primary-to-secondary heat transfer. (author)

  5. Experimental study of gas combustion fluidized bed and radiation contribution to heat transfer inside the bed. Gas nensho ryudoso to sono sonai netsudentatsu ni okeru fukusha no kiyo ni tsuite no jikkenteki kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Yamada, Y; Takahashi, S [Mechanical Engineering Lab., Tsukuba, Ibaraki (Japan); Maki, H [Science Univ. of Tokyo, Noda, Chiba (Japan). Faculty of Science and Technology

    1992-11-25

    Fluidized bed as a coal combustion boiler has a practical application, but, there is not an example of which gas like helium as a cooling medium flow in a thin tube with diameter of 6 mm like a stirling engine and necessary data for selecting the medium of fluidized bed and estimating the heat transfer coefficient. Specially, it is difficult to correctly estimate the radiation effect concerned with the heat transfer coefficient in case of interposing the heat transfer tube at 800 [degree]C in the high-temperature fluidized bed at more than 900 [degree]C. Therefore, for investigating the thermal characteristics when the temperature of pipe itself is at high temperature, in the gas combustion fluidized bed in which alumina particle as fluidized medium is filled, the cooling tubes by using carbonic acid gas as a cooling medium was interposed, heat transfer coefficient was measured, radiation effect was clarified by experiment, and characteristics of the gas combustion and of the exhaust gas of fluidized bed when gas is used for a fuel was investigated. 13 refs., 12 figs., 1 tab.

  6. Gas-liquid mass transfer in a cross-flow hollow fiber module : Analytical model and experimental validation

    NARCIS (Netherlands)

    Dindore, V. Y.; Versteeg, G. F.

    2005-01-01

    The cross-flow operation of hollow fiber membrane contactors offers many advantages and is preferred over the parallel-flow contactors for gas-liquid mass transfer operations. However, the analysis of such a cross-flow membrane gas-liquid contactor is complicated due to the change in concentrations

  7. Gas transfer under breaking waves: experiments and an improved vorticity-based model

    Directory of Open Access Journals (Sweden)

    V. K. Tsoukala

    2008-07-01

    Full Text Available In the present paper a modified vorticity-based model for gas transfer under breaking waves in the absence of significant wind forcing is presented. A theoretically valid and practically applicable mathematical expression is suggested for the assessment of the oxygen transfer coefficient in the area of wave-breaking. The proposed model is based on the theory of surface renewal that expresses the oxygen transfer coefficient as a function of both the wave vorticity and the Reynolds wave number for breaking waves. Experimental data were collected in wave flumes of various scales: a small-scale experiments were carried out using both a sloping beach and a rubble-mound breakwater in the wave flume of the Laboratory of Harbor Works, NTUA, Greece; b large-scale experiments were carried out with a sloping beach in the wind-wave flume of Delft Hydraulics, the Netherlands, and with a three-layer rubble mound breakwater in the Schneideberg Wave Flume of the Franzius Institute, University of Hannover, Germany. The experimental data acquired from both the small- and large-scale experiments were in good agreement with the proposed model. Although the apparent transfer coefficients from the large-scale experiments were lower than those determined from the small-scale experiments, the actual oxygen transfer coefficients, as calculated using a discretized form of the transport equation, are in the same order of magnitude for both the small- and large-scale experiments. The validity of the proposed model is compared to experimental results from other researchers. Although the results are encouraging, additional research is needed, to incorporate the influence of bubble mediated gas exchange, before these results are used for an environmental friendly design of harbor works, or for projects involving waste disposal at sea.

  8. The potential for buoyant displacement gas release events in Tank 241-SY-102 after waste transfer from Tank 241-SY-101

    International Nuclear Information System (INIS)

    Wells, BE; Meyer, P.E.; Chen, G.

    2000-01-01

    Tank 241-SY-101 (SY-101) is a double-shell, radioactive waste storage tank with waste that, before the recent transfer and water back-dilution operations, was capable of retaining gas and producing buoyant displacement (BD) gas release events (GREs). Some BD GREs caused gas concentrations in the tank headspace to exceed the lower flammability limit (LFL). A BD GRE occurs when a portion of the nonconvective layer retains enough gas to become buoyant, rises to the waste surface, breaks up, and releases some of its stored gas. The installation of a mixer pump in 1993 successfully mitigated gas retention in the settled solids layer in SY-101 and has since prevented BD GREs. However, operation of the mixer pump over the years caused gas retention in the floating crust layer and a corresponding accelerated waste level growth. The accelerating crust growth trend observed in 1997--98 led to initiation of sequences of waste removal and water back-dilutions in December 1999. Waste is removed from the mixed slurry layer in Tank SY-101 and transferred into Tank 241-Sy-102 (SY-102). Water is then added back to dissolve soluble solids that retain gas. The initial transfer of 89,500 gallons of SY-101 waste, diluted in-line at 0.94:1 by volume with water, to SY-102 was conducted in December 1999. The second transfer of 230,000 gallons of original SY-101 waste, diluted approximately 0.9:1, was completed in January 2000, and the third transfer of 205,500 gallons of original SY-101 waste diluted at 0.9:1 was completed in March 2000

  9. Charge transfer in gas electron multipliers

    Energy Technology Data Exchange (ETDEWEB)

    Ottnad, Jonathan; Ball, Markus; Ketzer, Bernhard; Ratza, Viktor; Razzaghi, Cina [HISKP, Bonn University, Nussallee 14-16, D-53115 Bonn (Germany)

    2015-07-01

    In order to efficiently employ a Time Projection Chamber (TPC) at interaction rates higher than ∝1 kHz, as foreseen e.g. in the ALICE experiment (CERN) and at CB-ELSA (Bonn), a continuous operation and readout mode is required. A necessary prerequisite is to minimize the space charge coming from the amplification system and to maintain an excellent spatial and energy resolution. Unfortunately these two goals can be in conflict to each other. Gas Electron Multipliers (GEM) are one candidate to fulfill these requirements. It is necessary to understand the processes within the amplification structure to find optimal operation conditions. To do so, we measure the charge transfer processes in and between GEM foils with different geometries and field configurations, and use an analytical model to describe the results. This model can then be used to predict and optimize the performance. The talk gives the present status of the measurements and describes the model.

  10. Assessing the Risk of Secondary Transfer Via Fingerprint Brush Contamination Using Enhanced Sensitivity DNA Analysis Methods.

    Science.gov (United States)

    Bolivar, Paula-Andrea; Tracey, Martin; McCord, Bruce

    2016-01-01

    Experiments were performed to determine the extent of cross-contamination of DNA resulting from secondary transfer due to fingerprint brushes used on multiple items of evidence. Analysis of both standard and low copy number (LCN) STR was performed. Two different procedures were used to enhance sensitivity, post-PCR cleanup and increased cycle number. Under standard STR typing procedures, some additional alleles were produced that were not present in the controls or blanks; however, there was insufficient data to include the contaminant donor as a contributor. Inclusion of the contaminant donor did occur for one sample using post-PCR cleanup. Detection of the contaminant donor occurred for every replicate of the 31 cycle amplifications; however, using LCN interpretation recommendations for consensus profiles, only one sample would include the contaminant donor. Our results indicate that detection of secondary transfer of DNA can occur through fingerprint brush contamination and is enhanced using LCN-DNA methods. © 2015 American Academy of Forensic Sciences.

  11. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-05-01

    During FY00, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTTC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY00, which lay the groundwork for further growth in the future.

  12. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    1999-12-01

    During FY99, the Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions. PTfC's national organization has active grassroots programs that connect with independents through its 10 Regional Lead Organizations (RLOs). These activities--including technology workshops, resource centers, websites, newsletters, and other outreach efforts--are guided by regional Producer Advisory Groups (PAGs). The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. This technical progress report summarizes PTTC's accomplishments during FY99, which lay the groundwork for further growth in the future.

  13. Effect of wind waves on air-sea gas exchange: proposal of an overall CO2 transfer velocity formula as a function of breaking-wave parameter

    International Nuclear Information System (INIS)

    Zhao, D.; Suzuki, Y.; Komori, S.

    2003-01-01

    A new formula for gas transfer velocity as a function of the breaking-wave parameter is proposed based on correlating gas transfer with whitecap coverage. The new formula for gas transfer across an air-sea interface depends not only on wind speed but also on wind-wave state. At the same wind speed, a higher gas transfer velocity will be obtained for a more developed wind-sea, which is represented by a smaller spectral peak frequency of wind waves. We suggest that the large uncertainties in the traditional relationship of gas transfer velocity with wind speed be ascribed to the neglect of the effect of wind waves. The breaking-wave parameter can be regarded as a Reynolds number that characterizes the intensity of turbulence associated with wind waves in the downward-bursting boundary layer (DBBL). DBBL provides an effective way to exchange gas across the air-sea interface, which might be related to the surface renewal

  14. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  15. A Simple Technique for Accurate Transfer of Secondary Copings in a Tooth-Supported Telescopic Prosthesis.

    Science.gov (United States)

    Shankargouda, Swapnil B; Sidhu, Preena; Kardalkar, Swetha; Desai, Pooja M

    2017-02-01

    Residual ridge resorption is a rapid, progressive, irreversible, and inevitable process of bone resorption. Long-standing teeth and implants have been shown to have maintained the bone around them without resorption. Thus, overdenture therapy has been proven to be beneficial in situations where few remaining teeth are present. In addition to the various advantages seen with tooth-supported telescopic overdentures, a few shortcomings can also be expected, including unseating of the overdenture, increased bulk of the prosthesis, secondary caries, etc. The precise transfer of the secondary telescopic copings to maintain the spatial relationship, without any micromovement, remains the most critical step in ensuring the success of the tooth-supported telescopic prosthesis. Thus, a simple and innovative technique of splinting the secondary copings was devised to prevent distortion and micromovement and maintain its spatial relationship. © 2015 by the American College of Prosthodontists.

  16. Heat transfer analysis of porous media receiver with different transport and thermophysical models using mixture as feeding gas

    International Nuclear Information System (INIS)

    Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang

    2014-01-01

    Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver

  17. Quantitative and Qualitative Aspects of Gas-Metal-Oxide Mass Transfer in High-Temperature Confocal Scanning Laser Microscopy

    Science.gov (United States)

    Piva, Stephano P. T.; Pistorius, P. Chris; Webler, Bryan A.

    2018-05-01

    During high-temperature confocal scanning laser microscopy (HT-CSLM) of liquid steel samples, thermal Marangoni flow and rapid mass transfer between the sample and its surroundings occur due to the relatively small sample size (diameter around 5 mm) and large temperature gradients. The resulting evaporation and steel-slag reactions tend to change the chemical composition in the metal. Such mass transfer effects can change observed nonmetallic inclusions. This work quantifies oxide-metal-gas mass transfer of solutes during HT-CSLM experiments using computational simulations and experimental data for (1) dissolution of MgO inclusions in the presence and absence of slag and (2) Ca, Mg-silicate inclusion changes upon exposure of a Si-Mn-killed steel to an oxidizing gas atmosphere.

  18. DNA fingerprinting secondary transfer from different skin areas: Morphological and genetic studies.

    Science.gov (United States)

    Zoppis, Silvia; Muciaccia, Barbara; D'Alessio, Alessio; Ziparo, Elio; Vecchiotti, Carla; Filippini, Antonio

    2014-07-01

    The correct identification of the biological samples under analysis is crucial in forensic investigation in that it represents the pivotal issue attesting that the resulting genetic profiles are fully reliable in terms of weight of the evidence. The study reported herein shows that "touch DNA" secondary transfer is indeed possible from person to person and, in turn, from person to object depending on the specific sebaceous or non-sebaceous skin area previously touched. In addition, we demonstrate the presence of fragmented single stranded DNA specifically immunodetected in the vast majority of cells forming the sebaceous gland but not in the epidermis layers, strongly indicating that sebaceous fluid represents an important vector responsible for DNA transfer. In view of our results, forensic investigations need to take into account that the propensity to leave behind genetic material through contact could depend from the individual ability to shed sebaceous fluid on the skin surface. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  19. Dimensionless groups for multidimensional heat and mass transfer in adsorbed natural gas storage

    Energy Technology Data Exchange (ETDEWEB)

    Sphaier, L.A. [Universidade Federal Fluminense (UFF), Niteroi, RJ (Brazil). Programa de Pos-Graduacao em Engenharia Mecanica. Lab. de Mecanica Teorica e Aplicada], E-mail: lasphaier@mec.uff.br

    2010-07-01

    This paper provides a new methodology for analyzing heat and mass transfer in gas storage via adsorption. The foundation behind the proposed methodology comprises a set of physically meaningful dimensionless groups. A discussion regarding the development of such groups is herein presented, providing a fully normalized multidimensional formulation for describing the transport mechanisms involved in adsorbed gas storage. After such presentation, data from previous literature studies associated with the problem of adsorbed natural gas storage are employed for determining realistic values for the developed parameters. Then, a one-dimensional test-case problem is selected for illustrating the application of the dimensionless formulation for simulating the operation of adsorbed gas reservoirs. The test problem is focused on analyzing an adsorbed gas discharge operation. This problem is numerically solved, and the solution is verified against previously published literature data. The presented results demonstrate how a higher heat of sorption values lead to reduced discharge capacities. (author)

  20. A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations

    Directory of Open Access Journals (Sweden)

    Gautham Krishnamoorthy

    2014-01-01

    Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.

  1. Identity confirmation of drugs and explosives in ion mobility spectrometry using a secondary drift gas.

    Science.gov (United States)

    Kanu, Abu B; Hill, Herbert H

    2007-10-15

    This work demonstrated the potential of using a secondary drift gas of differing polarizability from the primary drift gas for confirmation of a positive response for drugs or explosives by ion mobility spectrometry (IMS). The gas phase mobilities of response ions for selected drugs and explosives were measured in four drift gases. The drift gases chosen for this study were air, nitrogen, carbon dioxide and nitrous oxide providing a range of polarizability and molecular weights. Four other drift gases (helium, neon, argon and sulfur hexafluoride) were also investigated but design limitations of the commercial instrument prevented their use for this application. When ion mobility was plotted against drift gas polarizability, the resulting slopes were often unique for individual ions, indicating that selectivity factors between any two analytes varied with the choice of drift gas. In some cases, drugs like THC and heroin, which are unresolved in air or nitrogen, were well resolved in carbon dioxide or nitrous oxide.

  2. Saclay Reactor: acquired knowledge by two years experience in heat transfer using compressed gas

    International Nuclear Information System (INIS)

    Yvon, J.

    1955-01-01

    Describes the conception and functioning of a new reactor (EL-2) using compressed gas as primary coolant. The aim of the use of compressed gas as primary coolant is to reduce the quantity of heavy water used in the functioning of the reactor. Description of the reactor vessel (dimensions, materials, reflector and protection). Description of the cells and the circulation of the gas within the cells. A complete explanation of the control and regulating of the reaction by the ionization chamber is given. Heavy water is used as modulator: it describes the heavy water system and its recombination system. The fuel slugs are cooled by compressed gas: its system is described as well as the blower and the heat exchanger system. Water is supplied by a cooling tower which means the reactor power is dependant of the atmospheric conditions. Particular attention has been given to the tightness of the different systems used. The relation between neutron flow and the thermal output is discussed: the thermal output can be calculated by measuring the gas flow and its heating or by measuring the neutron flow within the reactor, both methods gives closed results. Reactivity study: determination of the different factors which induce a variation of reactivity. Heat transfer: discussion on the use of different heat transfer systems, determination of the required chemical and physical properties of the primary coolant as well as the discussion of the nuclear and thermal requirements for the choice of it. A comparison between the use of nitrogen and carbon dioxide gas shows an advantage in using nitrogen with the existing knowledge. Reflexion on the relevance of this work and the future perspectives of the use of compressed gas as primary coolant. (M.P.)

  3. Specialists' meeting on heat and mass transfer in the reactor cover gas, Harwell, England, 8-10 October 1985

    International Nuclear Information System (INIS)

    1986-07-01

    The specialists' meeting on ''Heat and Mass Transfer in the Reactor Cover Gas'' was held at Harwell, the United Kingdom, on 8-10 October 1985. It was attended by 24 participants from all IWGFR member-countries: France, the Federal Republic of Germany, India, Italy, Japan, the Union of Soviet Socialist Republics, the United Kingdom and the United States. The meeting was presided over by Dr K. Eickhoff of the United Kingdom. The following topical areas were reviewed and discussed during the meeting: 1. National review presentations on the status of activities on heat and mass transfer in the reactor cover gas - 2 papers; 2. Aerosol dynamics - 4 papers; 3. Aerosol trapping - 2 papers; 4. Heat and mass transfer through cover gas in annuli - 3 papers; 5. Radiative properties - 4 papers; 6. Modelling of cover gas - 4 papers. A separate abstract was prepared for each of these papers. On the basis of papers presented and discussed by participants, session summaries and conclusions were drafted on the above topical areas. These summaries, as well as general conclusions and recommendations of the meeting were reviewed and agreed upon by consensus at the end of the meeting

  4. Numerical calculation of wall-to-bed heat transfer coefficients in gas-fluidized beds

    NARCIS (Netherlands)

    Kuipers, J.A.M.; Prins, W.; van Swaaij, W.P.M.

    1992-01-01

    A computer model for a hot gas-fluidized bed has been developed. The theoretical description is based on a two-fluid model (TFM) approach in which both phases are considered to be continuous and fully interpenetrating. Local wall-to-bed heat-transfer coefficients have been calculated by the

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2003-04-30

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency.

  6. CONVECTIVE HEAT TRANSFER IN CYCLONE DEVICE WITH EXTERNAL GAS RECIRCULATION

    Directory of Open Access Journals (Sweden)

    S. V. Karpov

    2016-01-01

    Full Text Available The article considers the convective heat transfer on the surface of a hollow cylinder or several billets in a cyclone device with the new principle of external gas recirculation. According to this principle, transport of coolant from the lateral surface of the chamber, where the temperature is the highest, in the axial region is being fulfilled due to the pressure drop between the wall and axial areas of cyclonic flow. Dependency analysis of average and local heat transfer coefficients from operational and geometrical parameters has been performed; the generalized similarity equations for the calculation of the latter have been suggested. It is demonstrated that in case of download of a cyclone chamber with several billets, the use of the considered scheme of the external recirculation due to the specific characteristics of aerodynamics practically does not lead to noticeable changes in the intensity of convective heat transfer. Both experimental data and the numerical simulation results obtained with the use of OpenFOAM platform were used in the work. The investigations fulfilled will expand the area of the use of cyclone heating devices.

  7. Installation design of pump motor control systems for supplied of the RSG-GAS secondary raw water cooling system

    International Nuclear Information System (INIS)

    Kiswanto; Teguh Sulistyo; M-Taufik

    2013-01-01

    It has designed already of an installation of the pump motor control system for supplied of raw water to fulfil the RSG-GAS secondary cooling system. The installation design of this plant is used to supply electrical energy from PLN and 3 phase generator to operate the pump motor embedded multilevel type, capacity, Q = 30 m 3 /h; electric power, PN = 4 kW; voltage, 380V/3-/50Hz, and Y connections that can be operated manually or automatically by using the automatic transfer switch. The results obtained recapitulation total load of 4 kW, the magnitude of the nominal current of 9.5 A; kind of safety and capacity are used NFB 16 A, use of this type of cable to the control panel is PLN NYY 6 mm 2 diameter maximum current capacity of 25 A cable and use the control panel to the pump motor cable type NYY 4 mm 2 diameter maximum current capacity of 20 A. The design of the pump motor control system installation is ready to be implemented. (author)

  8. Numerical simulation of the gas-solid flow in a square circulating fluidized bed with secondary air injection

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Zhengyang [Harbin Institute of Technology, Harbin (China). Post-doctor Station of Civil Engineering; Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Sun, Shaozeng; Zhao, Ningbo; Wu, Shaohua [Harbin Institute of Technology, Harbin (China). Combustion Engineering Research Inst.; Tan, Yufei [Harbin Institute of Technology, Harbin (China). School of Municipal and Environmental Engineering

    2013-07-01

    The dynamic behavior of gas-solid flow in an experimental square circulating fluidized bed setup (0.25 m x 0.25 m x 6.07 m) is predicted with numerical simulation based on the theory of Euler-Euler gas-solid two-phase flow and the kinetic theory of granular flows. The simulation includes the operation cases with secondary injection and without air-staging. The pressure drop profile, local solids concentration and particle velocity was compared with experimental results. Both simulation and experimental results show that solids concentration increases significantly below the secondary air injection ports when air-staging is adopted. Furthermore, the flow asymmetry in the solid entrance region of the bed was investigated based on the particle concentration/velocity profile. The simulation results are in agreement with the experimental results qualitatively.

  9. Mixed convection heat transfer between a steam/non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    De Cachard, F.; Lompersky, S.; Monauni, G.R. [Paul Scherrer Institute, Villigen (Switzerland). Thermal Hydraulic Lab.

    1999-07-01

    An experimental and analytical program was performed at PSI (Paul Scherrer Institute) to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. On the gas, heat transfer correlations are used, and the condensation rate is calculated using the heat/mass transfer analogy. A combination of various available correlations for forced convection in staggered finned tube bundles is used, together with a correction accounting for superimposed natural convection. For the condensate heat transfer resistance, the beatty and Katz model for gravity driven liquid films on the tubes is used. The fine efficiency is accounted for using classical iterative calculations. Evaporative heat transfer inside the tubes is predicted using the Chen correlation. The finned tube condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less then 10% standard deviation between experimental and predicted results.

  10. Optimization techniques for the secondary development of old gas fields in the Sichuan Basin and their application

    Directory of Open Access Journals (Sweden)

    Chongshuang Xia

    2016-12-01

    Full Text Available After nearly 60 years of development, many old gas fields in the Sichuan Basin have come to middle–late development stages with low pressure and low yield, and some are even on the verge of abandonment, but there are plenty remaining gas resources still undeveloped. Analysis shows that gas fields which have the conditions for the secondary development are faced with many difficulties. For example, it is difficult to produce low permeable reserves and to unset the hydraulic seal which is formed by active formation water. In this paper, therefore, the technical route and selection conditions of old gas fields for the secondary development were comprehensively elaborated with its definition as the beginning. Firstly, geological model forward modeling and production performance inversion characteristic curve diagnosis are performed by using the pressure normalization curve and the identification and quantitative description method for multiple sets of storage–seepage body of complex karst fracture–cavity systems is put forward, after the multiple storage–seepage body mode of fracture–cavity systems is established. Combined with the new occurrence mode of gas and water in U-shape pipes, a new calculation technology for natural gas reserves of multiple fracture–cavity systems with strong water invasion is developed. Secondly, a numerical model of pore–cavity–fracture triple media is built, and simulation and result evaluation technology for the production pattern of “drainage by horizontal wells + gas production by vertical wells” in bottom-water fracture and cavity gas reservoirs with strong water invasion is developed. Thirdly, the geological model of gas reservoirs is reconstructed with the support of the integration technologies which are formed based on fine gas reservoir description. Low permeable reserves of gas reservoirs are evaluated based on each classification. The effective producing ratio is increased further by

  11. Theoretical studies on membrane-based gas separation using computational fluid dynamics (CFD) of mass transfer

    International Nuclear Information System (INIS)

    Sohrabi, M.R.; Marjani, A.; Davallo, M.; Moradi, S.; Shirazian, S.

    2011-01-01

    A 2D mass transfer model was developed to study carbon dioxide removal by absorption in membrane contactors. The model predicts the steady state absorbent and carbon dioxide concentrations in the membrane by solving the conservation equations. The continuity equations for three sub domains of the membrane contactor involving the tube; membrane and shell were obtained and solved by finite element method (FEM). The model was based on 'non-wetted mode' in which the gas phase filled the membrane pores. Laminar parabolic velocity profile was used for the liquid flow in the tube side; whereas, the gas flow in the shell side was characterized by Happel's free surface model. Axial and radial diffusion transport inside the shell, through the membrane, and within the tube side of the contactor was considered in the mass transfer model. The predictions of percent CO/sub 2/ removal obtained by modeling were compared with the experimental values obtained from literature. They were the experimental results for CO/sub 2/ removal from CO/sub 2//N/sub 2/ gas mixture with amines aqueous solutions as the liquid solvent using polypropylene membrane contactor. The modeling predictions were in good agreement with the experimental values for different values of gas and liquid flow rates. (author)

  12. Heat Transfer between an Individual Carbon Nanotube and Gas Environment in a Wide Knudsen Number Regime

    Directory of Open Access Journals (Sweden)

    Hai-Dong Wang

    2013-01-01

    Full Text Available Applications of carbon nanotube (CNT and graphene in thermal management have recently attracted significant attention. However, the lack of efficient prediction formula for heat transfer coefficient between nanomaterials and gas environment limits the further development of this technique. In this work, a kinetic model has been established to predict the heat transfer coefficient of an individual CNT in gas environment. The heat dissipation around the CNT is governed by molecular collisions, and outside the collision layer, the heat conduction is dominant. At nanoscales, the natural convection can be neglected. In order to describe the intermolecular collisions around the CNT quantitatively, a correction factor 1/24 is introduced and agrees well with the experimental observation. The prediction of the present model is in good agreement with our experimental results in free molecular regime. Further, a maximum heat transfer coefficient occurs at a critical diameter of several nanometers, providing guidelines on the practical design of CNT-based heat spreaders.

  13. The influence of pH on gas-liquid mass transfer in non-Newtonian fluids

    Directory of Open Access Journals (Sweden)

    Li Shaobai

    2017-01-01

    Full Text Available In this study, the effect of pH on the mass transfer of oxygen bubble swarms in non-Newtonian fluids was experimentally studied. The volumetric liquid side mass transfer coefficient (kLa, liquid side mass transfer coefficient (kL, and specific interfacial area (a were investigated. The pH was regulated by the addition of hydrochloric acid and sodium hydroxide (NaOH. It was found that the kLa increased with the gas flow rate increasing and decreased with the apparent viscosity of the liquid increasing. In the case of pH 7 was attributed to the decomposition of the Xanthan molecular structure by the hydroxyl of NaOH.

  14. Numerical simulation study of gas-liquid reactive mass transfer along corrugated sheets with interface tracking

    International Nuclear Information System (INIS)

    Haroun, Y.

    2008-11-01

    This work is done within the framework of gas treatment and CO 2 capture process development. The main objective of the present work is to fill the gap between classical experiments and industrial conditions by the use of Computational Fluid Dynamics (CFD). The physical problem considered corresponds to the liquid film flow down a corrugate surface under gravity in present of a gas phase. The chemical species in the gas phase absorb in the liquid phase and react. Numerical calculations are carried out in order to determine the impact of physical and geometrical properties on reactive mass transfer in industrial operating conditions. (author)

  15. Influence of water–air ratio on the heat transfer and creep life of a high pressure gas turbine blade

    International Nuclear Information System (INIS)

    Eshati, S.; Abu, A.; Laskaridis, P.; Khan, F.

    2013-01-01

    An analytical model to investigate the influence of Water–Air Ratio (WAR) on turbine blade heat transfer and cooling processes (and thus the blade creep life) of industrial gas turbines is presented. The effects of WAR are emphasised for the modelling of the gas properties and the subsequent heat transfer process. The approach considers convective/film cooling and includes the influence of a thermal barrier coating. In addition, the approach is based on the thermodynamic outputs of a gas turbine performance simulation, heat transfer model, as well as a method that accounts for the changes in the properties of moist air as a function of WAR. For a given off-design point, the variation of WAR (0.0–0.10) was investigated using the heat transfer model. Results showed that with increasing WAR the blade inlet coolant temperature reduced along the blade span. The blade metal temperature at each section was reduced as WAR increased, which in turn increased the blade creep life. The increase in WAR increased the specific heat of the coolant and increased the heat transfer capacity of the coolant air flow. The model can be implemented by using the thermodynamic cycle of the engine, without knowing the turbine cooling details in the conceptual design stage. Also, this generic method assists the end user to understand the effect of operating conditions and design parameter on the creep life of a high pressure turbine blade. -- Highlights: • The influence of WAR on gas turbine blade heat transfer and creep life is examined. • Coolant specific heat capacity is the key property affected by changes in WAR. • Increase in WAR reduces the coolant and metal temperature along the blade span. • Creep life increases with increase in WAR even if ambient temperature is increased

  16. Heat transfer problems in gas-cooled solid blankets

    International Nuclear Information System (INIS)

    Fillo, J.A.; Powell, J.R.

    1976-01-01

    In all fusion reactors using the deuterium-tritium fuel cycle, a large fraction approximately 80 percent of the fusion energy will be released as approximately 14 MeV neutrons which must be slowed down in a relatively thick blanket surrounding the plasma, thereby, converting their kinetic energy to high temperature heat which can be continuously removed by a coolant stream and converted in part to electricity in a conventional power turbine. Because of the primary goal of achieving minimum radioactivity, to date Brookhaven blanket concepts have been restricted to the use of some form of solid lithium, with inert gas-cooling and in some design cases, water-cooling of the shell structure. Aluminum and graphite have been identified as very promising structural materials for fusion blankets, and conceptual designs based on these materials have been made. Depending on the thermal loading on the ''first'' wall which surrounds the plasma as well as blanket design, heat transfer problems may be noticeably different in gas-cooled solid blankets. Approaches to solution of heat removal problems as well as explanation of: (a) the after-heat problems in blankets; (b) tritium breeding in solids; and (c) materials selection for radiation shields relative to the minimum activity blanket efforts at Brookhaven are discussed

  17. Heat transfer from the roughened surface of gas cooled fast breeder reactor fuel element

    International Nuclear Information System (INIS)

    Tang, I.M.

    1979-01-01

    The temperature distributions and the augmentation of heat transfer performance by artificial roughening of a gas cooled fast breeder reactor (GCFR) fuel rod cladding are studied. Numerical solutions are based on the axisymmetric assumption for a two-dimensional model for one rib pitch of axial distance. The local and axial clad temperature distributions are obtained for both the rectangular and ramp rib roughened surface geometries. The transformation of experimentally measured convective heat transfer coefficients, in terms of Stanton number, into GCFR values is studied. In addition, the heat transfer performance of a GCFR fuel rod cladding roughened surface design is evaluated. Approximate analytical solution for correlating an average Stanton number is also obtained and satisfactorily compared with the corresponding numerical result for a GCFR design. The analytical correlation is useful in assessing roughened surface heat transfer performance in scoping studies and conceptual design

  18. Distributed secondary gas injection via a fractal injector : A nature-inspired approach to improving conversion in fluidized bed reactors

    NARCIS (Netherlands)

    Christensen, D.O.

    2008-01-01

    The conversion in bubbling fluidized bed reactors is suppressed because the interphase mass transfer and gas-solid contact in bubbling fluidized bed reactors are often poor. Most of the gas is present in the form of bubbles, which have low surface-to-volume ratios and are nearly devoid of catalyst

  19. Proposal for data acquisition system of gas chromatograph and natural gas transfer custody via web; Proposta para um sistema de aquisicao de dados de cromatografia e medicao fiscal de gas natural via web

    Energy Technology Data Exchange (ETDEWEB)

    Santana, Jose Paulo C.; Guimaraes, Marcelo F.; Zeitoune, Rafael J. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2005-07-01

    In this paper, is presented a proposal of a Chromatograph and Transfer Custody Measurement Data Acquisition System through Web, complementary to the SCADA System, responsible for control and monitoring PETROBRAS Gas Pipelines, intended to comply with the requirements of the Gerencias de Qualidade e Medicao (MQD) and Planejamento Integrado da Logistica (PCL) from PETROBRAS Gas e Energia, regarding the evaluation of the quality of the natural gas that is being commercialized, as well as its billing. (author)

  20. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, F. E-mail: faustgr@usc.es; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A

    2003-10-21

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 {mu}m thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm{sup 2} with a pixel size of 1.27x1.27 mm{sup 2}. Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring.

  1. A two-dimensional position sensitive gas chamber with scanned charge transfer readout

    International Nuclear Information System (INIS)

    Gomez, F.; Iglesias, A.; Lobato, R.; Mosquera, J.; Pardo, J.; Pena, J.; Pazos, A.; Pombar, M.; Rodriguez, A.

    2003-01-01

    We have constructed and tested a two-dimensional position sensitive parallel-plate gas ionization chamber with scanned charge transfer readout. The scan readout method described here is based on the development of a new position-dependent charge transfer technique. It has been implemented by using gate strips perpendicularly oriented to the collector strips. This solution reduces considerably the number of electronic readout channels needed to cover large detector areas. The use of a 25 μm thick kapton etched circuit allows high charge transfer efficiency with a low gating voltage, consequently needing a very simple commutating circuit. The present prototype covers 8x8 cm 2 with a pixel size of 1.27x1.27 mm 2 . Depending on the intended use and beam characteristics a smaller effective pixel is feasible and larger active areas are possible. This detector can be used for X-ray or other continuous beam intensity profile monitoring

  2. Effect of internal pressure and gas/liquid interface area on the CO mass transfer coefficient using hollow fibre membranes as a high mass transfer gas diffusing system for microbial syngas fermentation.

    Science.gov (United States)

    Yasin, Muhammad; Park, Shinyoung; Jeong, Yeseul; Lee, Eun Yeol; Lee, Jinwon; Chang, In Seop

    2014-10-01

    This study proposed a submerged hollow fibre membrane bioreactor (HFMBR) system capable of achieving high carbon monoxide (CO) mass transfer for applications in microbial synthesis gas conversion systems. Hydrophobic polyvinylidene fluoride (PVDF) membrane fibres were used to fabricate a membrane module, which was used for pressurising CO in water phase. Pressure through the hollow fibre lumen (P) and membrane surface area per unit working volume of the liquid (A(S)/V(L)) were used as controllable parameters to determine gas-liquid volumetric mass transfer coefficient (k(L)a) values. We found a k(L)a of 135.72 h(-1) when P was 93.76 kPa and AS/VL was fixed at 27.5m(-1). A higher k(L)a of 155.16 h(-1) was achieved by increasing AS/VL to 62.5m(-1) at a lower P of 37.23 kPa. Practicality of HFMBR to support microbial growth and organic product formation was assessed by CO/CO2 fermentation using Eubacterium limosum KIST612. Copyright © 2014 Elsevier Ltd. All rights reserved.

  3. Heat transfer intensification within tube recuperator by inserting secondary emitters inside air channels

    International Nuclear Information System (INIS)

    Sandor, P.; Soroka, B.; Kudryavtsev, V.; Zgurskyy, V.

    2009-01-01

    The research program was stipulated by reduction the service life of the tube recuperators of reheating furnaces at DUNAFERR metallurgical works in Dunaujvaros (Hungary) while replacement the natural gas by coke - oven gas as a furnace fuel took place and air preheating temperature was increased. The tests procedure consists in comparison of temperature and pressure distributions by air flows preheating under air moving inside the tube loops. Advantages of new recuperator design compared to ordinary one have been proven by validation of concept for adequacy to the testing results. The first tests have demonstrated enhancement of local specific and total heat fluxes transferred from flue gases to air flow within the MD tube loops in comparison with those for BD loops by 25 to 45% - dependence on temperature level within the heating (furnace) chamber and on preheated air flow rate. (author)

  4. A Computational Fluid Dynamic and Heat Transfer Model for Gaseous Core and Gas Cooled Space Power and Propulsion Reactors

    Science.gov (United States)

    Anghaie, S.; Chen, G.

    1996-01-01

    A computational model based on the axisymmetric, thin-layer Navier-Stokes equations is developed to predict the convective, radiation and conductive heat transfer in high temperature space nuclear reactors. An implicit-explicit, finite volume, MacCormack method in conjunction with the Gauss-Seidel line iteration procedure is utilized to solve the thermal and fluid governing equations. Simulation of coolant and propellant flows in these reactors involves the subsonic and supersonic flows of hydrogen, helium and uranium tetrafluoride under variable boundary conditions. An enthalpy-rebalancing scheme is developed and implemented to enhance and accelerate the rate of convergence when a wall heat flux boundary condition is used. The model also incorporated the Baldwin and Lomax two-layer algebraic turbulence scheme for the calculation of the turbulent kinetic energy and eddy diffusivity of energy. The Rosseland diffusion approximation is used to simulate the radiative energy transfer in the optically thick environment of gas core reactors. The computational model is benchmarked with experimental data on flow separation angle and drag force acting on a suspended sphere in a cylindrical tube. The heat transfer is validated by comparing the computed results with the standard heat transfer correlations predictions. The model is used to simulate flow and heat transfer under a variety of design conditions. The effect of internal heat generation on the heat transfer in the gas core reactors is examined for a variety of power densities, 100 W/cc, 500 W/cc and 1000 W/cc. The maximum temperature, corresponding with the heat generation rates, are 2150 K, 2750 K and 3550 K, respectively. This analysis shows that the maximum temperature is strongly dependent on the value of heat generation rate. It also indicates that a heat generation rate higher than 1000 W/cc is necessary to maintain the gas temperature at about 3500 K, which is typical design temperature required to achieve high

  5. Statistics of surface divergence and their relation to air-water gas transfer velocity

    Science.gov (United States)

    Asher, William E.; Liang, Hanzhuang; Zappa, Christopher J.; Loewen, Mark R.; Mukto, Moniz A.; Litchendorf, Trina M.; Jessup, Andrew T.

    2012-05-01

    Air-sea gas fluxes are generally defined in terms of the air/water concentration difference of the gas and the gas transfer velocity,kL. Because it is difficult to measure kLin the ocean, it is often parameterized using more easily measured physical properties. Surface divergence theory suggests that infrared (IR) images of the water surface, which contain information concerning the movement of water very near the air-water interface, might be used to estimatekL. Therefore, a series of experiments testing whether IR imagery could provide a convenient means for estimating the surface divergence applicable to air-sea exchange were conducted in a synthetic jet array tank embedded in a wind tunnel. Gas transfer velocities were measured as a function of wind stress and mechanically generated turbulence; laser-induced fluorescence was used to measure the concentration of carbon dioxide in the top 300 μm of the water surface; IR imagery was used to measure the spatial and temporal distribution of the aqueous skin temperature; and particle image velocimetry was used to measure turbulence at a depth of 1 cm below the air-water interface. It is shown that an estimate of the surface divergence for both wind-shear driven turbulence and mechanically generated turbulence can be derived from the surface skin temperature. The estimates derived from the IR images are compared to velocity field divergences measured by the PIV and to independent estimates of the divergence made using the laser-induced fluorescence data. Divergence is shown to scale withkLvalues measured using gaseous tracers as predicted by conceptual models for both wind-driven and mechanically generated turbulence.

  6. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    Energy Technology Data Exchange (ETDEWEB)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-04-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: • Identifies pre-conceptual design requirements • Develops test loop equipment schematics and layout • Identifies space allocations for each of the facility functions, as required • Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems • Identifies pre-conceptual utility and support system needs • Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs.

  7. Facility Configuration Study of the High Temperature Gas-Cooled Reactor Component Test Facility

    International Nuclear Information System (INIS)

    S. L. Austad; L. E. Guillen; D. S. Ferguson; B. L. Blakely; D. M. Pace; D. Lopez; J. D. Zolynski; B. L. Cowley; V. J. Balls; E.A. Harvego, P.E.; C.W. McKnight, P.E.; R.S. Stewart; B.D. Christensen

    2008-01-01

    A test facility, referred to as the High Temperature Gas-Cooled Reactor Component Test Facility or CTF, will be sited at Idaho National Laboratory for the purposes of supporting development of high temperature gas thermal-hydraulic technologies (helium, helium-Nitrogen, CO2, etc.) as applied in heat transport and heat transfer applications in High Temperature Gas-Cooled Reactors. Such applications include, but are not limited to: primary coolant; secondary coolant; intermediate, secondary, and tertiary heat transfer; and demonstration of processes requiring high temperatures such as hydrogen production. The facility will initially support completion of the Next Generation Nuclear Plant. It will secondarily be open for use by the full range of suppliers, end-users, facilitators, government laboratories, and others in the domestic and international community supporting the development and application of High Temperature Gas-Cooled Reactor technology. This pre-conceptual facility configuration study, which forms the basis for a cost estimate to support CTF scoping and planning, accomplishes the following objectives: (1) Identifies pre-conceptual design requirements; (2) Develops test loop equipment schematics and layout; (3) Identifies space allocations for each of the facility functions, as required; (4) Develops a pre-conceptual site layout including transportation, parking and support structures, and railway systems; (5) Identifies pre-conceptual utility and support system needs; and (6) Establishes pre-conceptual electrical one-line drawings and schedule for development of power needs

  8. Reduction of magnetic emission by increasing secondary side capacitor for ferrite geometry based series-series topology for wireless power transfer to vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik; Ahn, Seungyoung

    2014-01-01

    Magnetic fields emitted by wireless power transfer to vehicles can potentially affect living organisms. As a result, minimizing the magnetic emissions without compromising with the power transferred is one of the most significant challenges in the success of this technology. Active and passive...... and secondary currents from the standard design. Therefore, a part of the secondary magnetic flux comes in phase opposition with the primary flux and the resultant field is reduced. Operation point is shifted with the new design from the maximum power transfer resonance point and hence the reflected resistance...... is reduced. In order to maintain the same power level, the primary current and voltage have to increased and decreased in the same proportion. Also, the primary capacitor needs to be increased for maintaining unity input power factor in the system. The above statements are provided first with help...

  9. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    Science.gov (United States)

    Couldrey, Matthew P.; Oliver, Kevin I. C.; Yool, Andrew; Halloran, Paul R.; Achterberg, Eric P.

    2016-05-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature- and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual) timescales. Previous work shows that in the North Atlantic, ΔpCO2 and k both contribute significantly to interannual F variability but that k is unimportant for multidecadal variability. On some timescale between interannual and multidecadal, gas transfer velocity variability and its associated uncertainty become negligible. Here we quantify this critical timescale for the first time. Using an ocean model, we determine the importance of k, ΔpCO2, and α on a range of timescales. On interannual and shorter timescales, both ΔpCO2 and k are important controls on F. In contrast, pentadal to multidecadal North Atlantic flux variability is driven almost entirely by ΔpCO2; k contributes less than 25%. Finally, we explore how accurately one can estimate North Atlantic F without a knowledge of nonseasonal k variability, finding it possible for interannual and longer timescales. These findings suggest that continued efforts to better constrain gas transfer velocities are necessary to quantify interannual variability in the North Atlantic carbon sink. However, uncertainty in k variability is unlikely to limit the accuracy of estimates of longer-term flux variability.

  10. Quasiclassical trajectory study of the energy transfer in CO2--rare gas systems

    International Nuclear Information System (INIS)

    Suzukawa, H.H. Jr.; Wolfsberg, M.; Thompson, D.L.

    1978-01-01

    Computational methods are presented for the study of collisions between a linear, symmetric triatomic molecule and an atom by three-dimensional quasiclassical trajectory calculations. Application is made to the investigation of translational to rotational and translational to vibrational energy transfer in the systems CO 2 --Kr, CO 2 --Ar, and CO 2 --Ne. Potential-energy surfaces based on spectroscopic and molecular beam scattering data are used. In most of the calculations, the CO 2 molecule is initially in the quantum mechanical zero-point vibrational state and in a rotational state picked from a Boltzmann distribution at 300 0 K. The energy transfer processes are investigated for translational energies ranging from 0.1 to 10 eV. Translational to rotational energy transfer is found to be the major process for CO 2 --rare gas collisions at these energies. Below 1 eV there is very little translational to vibrational energy transfer. The effects of changes in the internal energy of the molecule, in the masses of the collidants, and in the potential-energy parameters are studied in an attempt to gain understanding of the energy transfer processes

  11. Analysis of a multicomponent gas absorption system with carrier gas coabsorption

    International Nuclear Information System (INIS)

    Merriman, J.R.

    1975-03-01

    Conventional integrated versions of the packed gas absorber design equations do not account for significant coabsorption of the carrier gas along with the dilute transferring species. These equations, as a result, also neglect the relationship between dilute component transfer and carrier gas coabsorption. In the absorption of Kr and Xe from various carrier gases, using CCl 2 F 2 as the process solvent, carrier coabsorption is substantial. Consequently, a design package was developed to deal with multicomponent gas absorption in systems characterized by carrier gas coabsorption. Developed within the general film theory framework, the basic feature of this design approach is a view of dilute component mass-transfer as a conventional diffusive transfer superimposed on a net flux caused by carrier absorption. Other supporting elements of the design package include predictive techniques for various fluid properties, estimating procedures for carrier gas equilibrium constants, and correlations for carrier gas and dilute gas mass-transfer coefficients. When applied to systems using CCl 2 F 2 as the solvent; He, N 2 , air, or Ar as the carrier gas; and Kr or Xe as the dilute gas; the design approach gave good results, even when extended to conditions well beyond those of its development. (U.S.)

  12. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-10-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidising gas, (3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger, and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  13. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  14. Highly sensitive and selective room-temperature NO_2 gas sensor based on bilayer transferred chemical vapor deposited graphene

    International Nuclear Information System (INIS)

    Seekaew, Yotsarayuth; Phokharatkul, Ditsayut; Wisitsoraat, Anurat; Wongchoosuk, Chatchawal

    2017-01-01

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO_2 gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO_2 sensitivity of 1.409 ppm"−"1. • The NO_2-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO_2 detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO_2 than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm"−"1 towards NO_2 over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO_2-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO_2 molecules.

  15. Influence of Metal Transfer Stability and Shielding Gas Composition on CO and CO2 Emissions during Short-circuiting MIG/MAG Welding

    Directory of Open Access Journals (Sweden)

    Valter Alves de Meneses

    Full Text Available Abstract: Several studies have demonstrated the influence of parameters and shielding gas on metal transfer stability or on the generation of fumes in MIG/MAG welding, but little or nothing has been discussed regarding the emission of toxic and asphyxiating gases, particularly as it pertains to parameterization of the process. The purpose of this study was to analyze and evaluate the effect of manufacturing aspects of welding processes (short-circuit metal transfer stability and shielding gas composition on the gas emission levels during MIG/MAG welding (occupational health and environmental aspects. Using mixtures of Argon with CO2 and O2 and maintaining the same average current and the same weld bead volume, short-circuit welding was performed with carbon steel welding wire in open (welder’s breathing zone and confined environments. The welding voltage was adjusted to gradually vary the transfer stability. It was found that the richer the composition of the shielding gas is in CO2, the more CO and CO2 are generated by the arc. However, unlike fume emission, voltage and transfer stability had no effect on the generation of these gases. It was also found that despite the large quantity of CO and CO2 emitted by the arc, especially when using pure CO2 shielding gas, there was no high level residual concentration of CO and CO2 in or near the worker’s breathing zone, even in confined work cells.

  16. Wireless power transfer system

    Science.gov (United States)

    Wu, Hunter; Sealy, Kylee; Gilchrist, Aaron

    2016-02-23

    A system includes a first stage of an inductive power transfer system with an LCL load resonant converter with a switching section, an LCL tuning circuit, and a primary receiver pad. The IPT system includes a second stage with a secondary receiver pad, a secondary resonant circuit, a secondary rectification circuit, and a secondary decoupling converter. The secondary receiver pad connects to the secondary resonant circuit. The secondary resonant circuit connects to the secondary rectification circuit. The secondary rectification circuit connects to the secondary decoupling converter. The second stage connects to a load. The load includes an energy storage element. The second stage and load are located on a vehicle and the first stage is located at a fixed location. The primary receiver pad wirelessly transfers power to the secondary receiver pad across a gap when the vehicle positions the secondary receiver pad with respect to the primary receiver pad.

  17. Numerical prediction on turbulent heat transfer of a spacer ribbed fuel rod for high temperature gas-cooled reactors

    International Nuclear Information System (INIS)

    Takase, Kazuyuki

    1994-11-01

    The turbulent heat transfer of a fuel rod with three-dimensional trapezoidal spacer ribs for high temperature gas-cooled reactors was analyzed numerically using the k-ε turbulence model, and investigated experimentally using a simulated fuel rod under the helium gas condition of a maximum outlet temperature of 1000degC and pressure of 4MPa. From the experimental results, it found that the turbulent heat transfer coefficients of the fuel rod were 18 to 80% higher than those of a concentric smooth annulus at a region of Reynolds number exceeding 2000. On the other hand, the predicted average Nusselt number of the fuel rod agreed well with the heat transfer correlation obtained from the experimental data within a relative error of 10% with Reynolds number of more than 5000. It was verified that the numerical analysis results had sufficient accuracy. Furthermore, the numerical prediction could clarify quantitatively the effects of the heat transfer augmentation by the spacer rib and the axial velocity increase due to a reduction in the annular channel cross-section. (author)

  18. Experimental and numerical study on transient heat transfer for helium gas flowing over a twisted plate with different length

    International Nuclear Information System (INIS)

    Wang, Li; Liu, Qiusheng; Fukuda, Katsuya

    2015-01-01

    This study was conducted to investigate the transient heat transfer process between the solid surface and the coolant (helium gas) in Very High Temperature Reactor (VHTR). Forced convection transient heat transfer for helium gas flowing over a twisted plate with different length was experimentally and theoretically studied. The heat generation rate of the twisted plate was increased with a function of Q = Q_0exp(t/τ)(where t is time, τ is period). Experiment was carried out at various periods ranged from 35 ms to 14 s and gas temperature of 303 K under 500 kPa. The flow velocities ranged from 4 m/s to 10 m/s. Platinum plates with a thickness of 0.1 mm and width of 4 mm were used as the test heaters. The plates were twisted with the same helical pitch of 20 mm, and length of 26.8 mm, 67.8 mm and 106.4 mm (pitch numbers of 1, 3 and 5), respectively. Based on the experimental data, it was found that the average heat transfer coefficient approaches the quasi-steady-state value when the dimensionless period τ* (τ* = τU/L, U is flow velocity, and L is effective length) is larger than about 100 and it becomes higher when τ* is small. The heat transfer coefficient decreases with the increase of twisted plate length under the same period of heat generation rate. According to the experimental data, the distribution for heat transfer coefficient along the heater is nonlinear. Numerical simulation results were obtained for average surface temperature difference, heat flux and heat transfer coefficient of the twisted plates with different length and showed reasonable agreement with experimental data. Based on the numerical simulation, mechanism of local heat transfer coefficient distribution was clarified. (author)

  19. Heat Transfer Analysis and Modification of Thermal Probe for Gas-Solid Measurement

    Directory of Open Access Journals (Sweden)

    Hong Zhang

    2016-01-01

    Full Text Available The presented work aims to measure the gas-solid two-phase mass flow-rate in pneumatic conveyor, and a novel modified thermal probe is applied. A new analysis of the local heat transfer coefficients of thermal probe is presented, while traditional investigations focus on global coefficients. Thermal simulations are performed in Fluent 6.2 and temperature distributions of the probe are presented. The results indicate that the probe has obviously stable and unstable heat transfer areas. Based on understanding of probe characteristics, a modified probe structure is designed, which makes the probe output signal more stable and widens the measuring range. The experiments are carried out in a special designed laboratory scale pneumatic conveyor, and the modified probe shows an unambiguous improvement of the performance compared with the traditional one.

  20. Mathematical modeling of heat transfer in production premises heated by gas infrared emitters

    Directory of Open Access Journals (Sweden)

    Maksimov Vyacheslav I.

    2017-01-01

    Full Text Available The results of numerical modeling of the process of free convective heat transfer in the regime of turbulent convection in a closed rectangular region heated by an infrared radiator are presented. The system of Navier-Stokes equations in the Boussinesq approximation is solved, the energy equation for the gas and the heat conduction equations for the enclosing vertical and horizontal walls. A comparative analysis of the heat transfer regimes in the considered region for different Grashof numbers is carried out. The features of the formation of heated air flows relative to the infrared emitter located at some distance from the upper horizontal boundary of the region are singled out.

  1. Multiscale solutions of radiative heat transfer by the discrete unified gas kinetic scheme

    Science.gov (United States)

    Luo, Xiao-Ping; Wang, Cun-Hai; Zhang, Yong; Yi, Hong-Liang; Tan, He-Ping

    2018-06-01

    The radiative transfer equation (RTE) has two asymptotic regimes characterized by the optical thickness, namely, optically thin and optically thick regimes. In the optically thin regime, a ballistic or kinetic transport is dominant. In the optically thick regime, energy transport is totally dominated by multiple collisions between photons; that is, the photons propagate by means of diffusion. To obtain convergent solutions to the RTE, conventional numerical schemes have a strong dependence on the number of spatial grids, which leads to a serious computational inefficiency in the regime where the diffusion is predominant. In this work, a discrete unified gas kinetic scheme (DUGKS) is developed to predict radiative heat transfer in participating media. Numerical performances of the DUGKS are compared in detail with conventional methods through three cases including one-dimensional transient radiative heat transfer, two-dimensional steady radiative heat transfer, and three-dimensional multiscale radiative heat transfer. Due to the asymptotic preserving property, the present method with relatively coarse grids gives accurate and reliable numerical solutions for large, small, and in-between values of optical thickness, and, especially in the optically thick regime, the DUGKS demonstrates a pronounced computational efficiency advantage over the conventional numerical models. In addition, the DUGKS has a promising potential in the study of multiscale radiative heat transfer inside the participating medium with a transition from optically thin to optically thick regimes.

  2. Influence of internal channel geometry of gas turbine blade on flow structure and heat transfer

    Science.gov (United States)

    Szwaba, Ryszard; Kaczynski, Piotr; Telega, Janusz; Doerffer, Piotr

    2017-12-01

    This paper presents the study of the influence of channel geometry on the flow structure and heat transfer, and also their correlations on all the walls of a radial cooling passage model of a gas turbine blade. The investigations focus on the heat transfer and aerodynamic measurements in the channel, which is an accurate representation of the configuration used in aeroengines. Correlations for the heat transfer coefficient and the pressure drop used in the design of internal cooling passages are often developed from simplified models. It is important to note that real engine passages do not have perfect rectangular cross sections, but include a corner fillets, ribs with fillet radii and a special orientation. Therefore, this work provides detailed fluid flow and heat transfer data for a model of radial cooling geometry which has very realistic features.

  3. Gas turbine electric generator

    International Nuclear Information System (INIS)

    Nemoto, Masaaki; Yuhara, Tetsuo.

    1993-01-01

    When troubles are caused to a boundary of a gas turbine electric generator, there is a danger that water as an operation medium for secondary circuits leaks to primary circuits, to stop a plant and the plant itself can not resume. Then in the present invention, helium gases are used as the operation medium not only for the primary circuits but also for the secondary circuits, to provide so-called a direct cycle gas turbine system. Further, the operation media of the primary and secondary circuits are recycled by a compressor driven by a primary circuit gas turbine, and the turbine/compressor is supported by helium gas bearings. Then, problems of leakage of oil and water from the bearings or the secondary circuits can be solved, further, the cooling device in the secondary circuit is constituted as a triple-walled tube structure by way of helium gas, to prevent direct leakage of coolants into the reactor core even if cracks are formed to pipes. (N.H.)

  4. Oil and gas property transfers: Analyzing the environmental risk through the environmental site assessment process

    International Nuclear Information System (INIS)

    Bratberg, D.; Hocker, S.

    1994-01-01

    The Superfund Act made anyone buying contaminated real estate liable for cleanup costs whether they know about the contamination or contributed to the contamination. In 1986, SARA amended the Superfund Act to include a provision known as the ''Innocent Landowner Defense.'' This provision created a defense for purchasers of contaminated property who did not contribute to the contamination and had no reason to believe that the property was contaminated at the time of the real estate transfer. SARA allows the purchasers and lenders to perform an environmental assessment using ''due diligence'' to identify contamination problems existing at a site. Since the passing of SARA, the environmental site assessment (ESA) process has become commonplace during the transfer of commercial real estate. Since the introduction of SARA, many professional associations, governmental agencies, and proposed federal legislation have struggled to produce a standard for conducting Phase 1 ESAs. Only recently has a standard been produced. Until recently, the domestic oil and gas industry has been relatively unconcerned about the Superfund liability issues. This approach was created by Congress's decision in 1980 to temporarily exempt the majority of oil and gas exploration and production wastes from federal hazardous waste rulings. However, new stringent rules governing oil and gas waste management practices are being considered by federal and state regulatory agencies. Based upon this knowledge and the awakening of public awareness, the use of ESAs for oil and gas transactions is increasing

  5. Effect of non-condensable gas on heat transfer in steam turbine condenser and modelling of ejector pump system by controlling the gas extraction rate through extraction tubes

    International Nuclear Information System (INIS)

    Strušnik, Dušan; Golob, Marjan; Avsec, Jurij

    2016-01-01

    Graphical abstract: Control of the amount of the pumped gases through extraction tubes. The connecting locations interconnect the extraction tubes for STC gas pumping. The extraction tubes are fitted with 3 control valves to control the amount of the pumped gas depending on the temperature of the pumped gas. The amount of the pumped gas increases through the extraction tubes, where the pumped gases are cooler and decreases, at the same time, through the extraction tubes, where the pumped gases are warmer. As a result, pumping of a larger amount of NCG is ensured and of a smaller amount of CG, given that the NCG concentration is the highest on the colder places. This way, the total amount of the pumped gases from the STC can be reduced, the SEPS operates more efficiently and consumes less energy for its operation. - Highlights: • Impact of non-condensable gas on heat transfer in a steam turbine condenser. • The ejector system is optimised by selecting a Laval nozzle diameter. • Simulation model of the control of the amount of pumped gases through extraction tubes. • Neural network and fuzzy logic systems used to control gas extraction rate. • Simulation model was designed by using real process data from the thermal power plant. - Abstract: The paper describes the impact of non-condensable gas (NCG) on heat transfer in a steam turbine condenser (STC) and modelling of the steam ejector pump system (SEPS) by controlling the gas extraction rate through extraction tubes. The ideal connection points for the NCG extraction from the STC are identified by analysing the impact of the NCG on the heat transfer and measuring the existing system at a thermal power plant in Slovenia. A simulation model is designed using the Matlab software and Simulink, Neural Net Work, Fuzzy Logic and Curve Fitting Toolboxes, to control gas extraction rate through extraction tubes of the gas pumped from the STC, thus optimising the operation of the steam ejector pump system (SEPS). The

  6. Condensation heat transfer with noncondensable gas for passive containment cooling of nuclear reactors

    Energy Technology Data Exchange (ETDEWEB)

    Leonardi, Tauna [Schlumberger, 14910 Airline Rd., Rosharon, TX 77583 (United States)]. E-mail: Tleonardi@slb.com; Ishii, Mamoru [School of Nuclear Engineering, Purdue University, West Lafayette, IN 47907 (United States)]. E-mail: Ishii@ecn.purdue.edu

    2006-09-15

    Noncondensable gases that come from the containment and the interaction of cladding and steam during a severe accident deteriorate a passive containment cooling system's performance by degrading the heat transfer capabilities of the condensers in passive containment cooling systems. This work contributes to the area of modeling condensation heat transfer with noncondensable gases in integral facilities. Previously existing correlations and models are for the through-flow of the mixture of steam and the noncondensable gases and this may not be applicable to passive containment cooling systems where there is no clear passage for the steam to escape. This work presents a condensation heat transfer model for the downward cocurrent flow of a steam/air mixture through a condenser tube, taking into account the atypical characteristics of the passive containment cooling system. An empirical model is developed that depends on the inlet conditions, including the mixture Reynolds number and noncondensable gas concentration.

  7. Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores

    International Nuclear Information System (INIS)

    El Ganaoui, K.

    2006-09-01

    In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)

  8. Experimental and analytical studies of iodine mass transfer from xenon-iodine mixed gas bubble to liquid sodium pool

    International Nuclear Information System (INIS)

    Miyahara, S.; Sagawa, N.; Shimoyama, K.

    1996-01-01

    In the fuel pin failure accident of a liquid metal fast reactor, volatile fission products play an important role in the assessment of radiological consequences. Especially the radioisotopes of elemental iodine are important because of their high volatility and of the low permissible dose to human thyroid. The released iodines are known to be retained in the coolant sodium as sodium iodide due to the chemical affinity between alkali metals and halogens. However, the xenon and krypton released with iodines into the sodium pool as bubbles may influence the reaction rate of iodine with sodium during the bubble rising. So far, the only few experimental results have been available concerning the decontamination factor (DF: the ratio of the initial iodine mass in the mixed gas bubble to the released mass into the cover gas) of iodine in this phenomenon. Therefore, experimental and analytical studies were carried out to study the mass transfer of iodine from a xenon-iodine mixed gas bubble to the liquid sodium pool. In the experiments, the bubble was generated in the sodium pool by cracking a quartz ball which contains the xenon-iodine mixed gas and then, the mixed gas released into the argon cover gas was collected to determine the transferred iodine mass into the pool. A rising velocity of the bubble was measured by Chen-type void sensors arranged vertically in the pool. From the measured rising velocity and another observation of bubble behavior in simulated water experiments, it is found that the generated bubble breaks up into several smaller bubbles of spherical cap type during the rising period. Transferred iodine mass per unit initial bubble volume from the bubble to the sodium pool shows increases with increasing time and the initial iodine concentration. A mass transfer rate obtained by differentiating the transferred iodine mass with respect to the time indicates a rapid decrease just after the bubble generation and a slow decrease for the successive period

  9. Transferability of geodata from European to Canadian (Ontario) sedimentary rocks to study gas transport from nuclear wastes repositories

    International Nuclear Information System (INIS)

    Fall, M.; Ghafari, H.; Evgin, E.; Nguyen, T.S.

    2010-01-01

    , most of these studies, especially the gas migration tests, were conducted in European sedimentary rocks (Opalinus Clay in Benken and Mont Terri, Callovo-Oxfordian Clay at Bure). At present, gas transport data specific for Ontario sedimentary rocks are not available; the input parameters for mathematical models have to be inferred from the European database. This paper presents a methodological approach and the results of a study to assess the usefulness and transferability of geo-data from European to Ontario sedimentary rocks to model the THMC processes associated with gas migration in Ontario. Furthermore, predictive models (based on advanced soft-computing methods) to estimate the gas transport parameters of the Ontario rocks from data on European sedimentary rocks are presented and discussed. The paper is divided into three main parts: - In the first part, the main similarities and differences between the thermal, hydraulic, geochemical and geomechanical properties of the host rocks of the proposed Ontario DGR and European DGRs are highlighted and discussed, based on a comparison of the collected technical information on sedimentary rocks in Ontario and Europe. - The second part includes an analysis of the quality (e.g., uncertainties), suitability and transferability of the data gathered with respect to the investigation of gas generation and migration in a potential repository in Ontario's sedimentary rocks. - In the third part, a quantitative analysis of the transferability of the data is conducted by using advanced soft computing methods (e.g., Self Organizing Neuro-Fuzzy Inference System (SONFIS)). Predictive models are developed to predict the relevant parameters that are necessary to model and analyze gas transport in the study DGR in Ontario. The validation results show good agreement between the predicted and measured field values. In conclusion, this study has allowed us to identify the similarities and differences between the Ontario and European

  10. Heat-and-mass transfer during a laminar dissociating gas flow in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Udot, A.V.; Yakushev, A.P.

    1987-01-01

    An algorithm to calculate heat-and-mass transfer processes during dissociating gas laminar flow in an eccentric annular channels is considered. Analytical solutions of the heat transfer equations for a rod clodding and gap with boundary conditions of conjugation of temperatures and heat fluxes have been used to determine temperature field. This has made it possible to proceed from slution of the conjugate problem to solution of the equation of energy only for the coolant. The results of calculation of temperature distribution along the cladding for different values of its eccentricity and thermal conductivity coefficient both for the case of frozen flow and in the presence of chemical reactions in the flow are given. When calculating temperatures with conjugation boundary conditions temperature gradients in azimuthal direction are far less and heat transfer in concentration diffusion is carried out mainly in radial direction

  11. Optimization of Heat Transfer on Thermal Barrier Coated Gas Turbine Blade

    Science.gov (United States)

    Aabid, Abdul; Khan, S. A.

    2018-05-01

    In the field of Aerospace Propulsion technology, material required to resist the maximum temperature. In this paper, using thermal barrier coatings (TBCs) method in gas turbine blade is used to protect hot section component from high-temperature effect to extend the service life and reduce the maintenance costs. The TBCs which include three layers of coating corresponding initial coat is super alloy-INCONEL 718 with 1 mm thickness, bond coat is Nano-structured ceramic-metallic composite-NiCoCrAIY with 0.15 mm thickness and top coat is ceramic composite-La2Ce2O7 with 0.09 mm thickness on the nickel alloy turbine blade which in turn increases the strength, efficiency and life span of the blades. Modeling a gas turbine blade using CATIA software and determining the amount of heat transfer on thermal barrier coated blade using ANSYS software has been performed. Thermal stresses and effects of different TBCs blade base alloys are considered using CATIA and ANSYS.

  12. Experimental and numerical investigation of heat transfer and pressure drop for innovative gas cooled systems

    Energy Technology Data Exchange (ETDEWEB)

    Gomez, R., E-mail: rodrigo.leija@kit.edu [Karlsruhe Institute of Technology, Institute for Neutron Physics and Reactor Technology, Hermann-von-Helmholtz No. 1, 76344 Eggenstein-Leopoldshafen (Germany); Buchholz, S. [Gesellschaft für Anlagen- und Reaktorsicherheit GRS mbH, Boltzmannstraße 2, 85748 Garching (Germany); Suikkanen, H. [Lappeenranta University of Technology, LUT Energy, PO Box 20, FI-53851 Lappeenranta (Finland)

    2015-08-15

    Highlights: • Experimental results of the L-STAR within the first stage of THINS project. • CFD validation for the heat transfer and pressure losses in innovative gas cooled systems. • The results indicate a strong dependency Turbulent Prandtl at the rod wall temperature distribution. • Gas loop facility suitable for the investigation of thermohydraulic issues of GFR, however there might be flow instabilities when flow is very low. - Abstract: Heat transfer enhancement through turbulence augmentation is recognized as a key factor for improving the safety and economic conditions in the development of both critical and subcritical innovative advanced gas cooled fast reactors (GFR) and transmutation systems. The L-STAR facility has been designed and erected at the Karlsruhe Institute of Technology (KIT) to study turbulent flow behavior and its heat transfer enhancement characteristics in gas cooled annular channels under a wide range of conditions. The test section consists of an annular hexagonal cross section channel with an inner electrical heater rod element, placed concentrically within the test section, which seeks to simulate the flow area of a fuel rod element in a GFR. The long term objective of the experimental study is to investigate and improve the understanding of complex turbulent convective enhancement mechanisms as well as the friction loss penalties of roughened fuel rods compared to smooth ones and to generate an accurate database for further development of physical models. In the first step, experimental results of the fluid flow with uniform heat release conditions for the smooth heater rod are presented. The pressure drops, as well as the axial temperature profiles along the heater rod surface have been measured at Reynolds numbers in the range from 4000 to 35,000. The experimental results of the first stage were compared with independently conducted CFD analyses performed at Lappeenranta University of Technology (LUT) with the code ANSYS

  13. Highly sensitive and selective room-temperature NO{sub 2} gas sensor based on bilayer transferred chemical vapor deposited graphene

    Energy Technology Data Exchange (ETDEWEB)

    Seekaew, Yotsarayuth [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand); Phokharatkul, Ditsayut; Wisitsoraat, Anurat [Nanoelectronics and MEMS Laboratory, National Electronics and Computer Technology Center, Klong Luang, Pathumthani 12120 (Thailand); Wongchoosuk, Chatchawal, E-mail: chatchawal.w@ku.ac.th [Department of Physics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900 (Thailand)

    2017-05-15

    Highlights: • Simple and low-cost fabrication of bilayer graphene gas sensor was presented. • Layer effects of graphene on NO{sub 2} gas-sensing properties were investigated. • Bilayer graphene sensor exhibited a high linear NO{sub 2} sensitivity of 1.409 ppm{sup −1}. • The NO{sub 2}-sensing mechanisms based on band diagram were highlighted. - Abstract: This work presents a highly sensitive room-temperature gas sensor based on bilayer graphene fabricated by an interfacial transfer of chemical vapor deposited graphene onto nickel interdigitated electrodes. Scanning electron microscopic and Raman spectroscopic characterizations confirm the presence of graphene on interdigitated nickel electrodes with varying numbers of graphene layers. The NO{sub 2} detection performances of bilayer graphene gas sensor have been investigated in comparison with those of monolayer and multilayer graphene gas sensors at room temperature. From results, the bilayer graphene gas sensor exhibits higher response, sensitivity and selectivity to NO{sub 2} than monolayer and multilayer graphene. The sensitivity of bilayer graphene gas sensor is 1.409 ppm{sup −1} towards NO{sub 2} over a concentration range of 1–25 ppm, which is more than twice higher than that of monolayer graphene. The NO{sub 2}-sensing mechanism of graphene sensing film has been explained based on the direct charge transfer process due to the adsorption of NO{sub 2} molecules.

  14. Heat transfer to immersed horizontal tubes in gas fluidized bed dryers

    Energy Technology Data Exchange (ETDEWEB)

    Jonassen, Ola

    1999-07-01

    The main objective of this study was to construct heat pump fluidized bed dryers of the FHT type with improved dewatering capacity for a given size of the dryer. The use of heat exchangers immersed in the fluidized bed drying chambers is an important part of the FHT (Fluidized Bed High Temperature Heat Pump Dryer) concept. A pilot plant FHT dryer was built and successfully tested on fish meal raw material and seaweed. The plant included two fluidized bed drying chambers with immersed heat exchangers. The gain in water vapor of the drying air through the chambers was increased up to four times that of adiabatic drying. The energy saving concept was retained as a SMER ratio of 3.5 to 4.7 was measured in the same tests. Therefore optimization of the immersed heat exchangers was considered the most important single objective for this work. The optimization study of the heat exchangers was confined to the actual operating conditions for the dryers using: (1) Bubbling gas fluidized beds were used, (2) air as the only type of fluidizing gas,(3) beds at atmospheric pressure, (4) bed temperatures below 100 {sup o}C, (5) fluidized particles of Geldart classes B and D, (6) horizontal tube banks for the immersed heat exchanger and the influence of radiation heat transfer was ignored. The heat transfer study was confined to the fluidized bed side of the heat exchanger surface. It was concluded early in this work that the bubbles play a major role in generating the particle circulation inside the bed and hence also in heat transfer. Publications describing the most important bubble induced mechanisms contributing to high rates of heat transfer were found to be limited. Therefore the first part of this study was aimed at establishing a method for locating and measuring the size and rise velocity of bubbles inside the bed. The method established through this work using differential pressure measurements from two static pressure probes was used later in the study of heat transfer

  15. Experimental investigation of the liquid volumetric mass transfer coefficient for upward gas-liquid two-phase flow in rectangular microchannels

    Directory of Open Access Journals (Sweden)

    X. Y. Ji

    2010-12-01

    Full Text Available The gas-liquid two-phase mass transfer process in microchannels is complicated due to the special dynamical characteristics. In this work, a novel method was explored to measure the liquid side volumetric mass transfer coefficient kLa. Pressure transducers were utilized to measure the pressure variation of upward gas-liquid two-phase flow in three vertical rectangular microchannels and the liquid side volumetric mass transfer coefficient kLa was calculated through the Pressure-Volume-Temperature correlation of the gas phase. Carbon dioxide-water, carbon dioxide-ethanol and carbon dioxide-n-propanol were used as working fluids, respectively. The dimensions of the microchannels were 40 µm×240 µm (depth×width, 100 µm×800 µm and 100 µm×2000 µm, respectively. Results showed that the channel diameter and the capillary number influence kLa remarkably and that the maximum value of kLa occurs in the annular flow regime. A new correlation of kLa was proposed based on the Sherwood number, Schmidt number and the capillary number. The predicted values of kLa agreed well with the experimental data.

  16. Wall-to-bed heat transfer in gas-solid fluidized beds: a computational and experimental study

    NARCIS (Netherlands)

    Patil, D.J.; Smit, J.; van Sint Annaland, M.; Kuipers, J.A.M.

    2006-01-01

    The wall-to-bed heat transfer in gas-solid fluidized beds is mainly determined by phenomena prevailing in a thermal boundary layer with a thickness in the order of magnitude of the size of a single particle. In this thermal boundary layer the temperature gradients are very steep and the local

  17. Application of the direct simulation Monte Carlo method to nanoscale heat transfer between a soot particle and the surrounding gas

    International Nuclear Information System (INIS)

    Yang, M.; Liu, F.; Smallwood, G.J.

    2004-01-01

    Laser-Induced Incandescence (LII) technique has been widely used to measure soot volume fraction and primary particle size in flames and engine exhaust. Currently there is lack of quantitative understanding of the shielding effect of aggregated soot particles on its conduction heat loss rate to the surrounding gas. The conventional approach for this problem would be the application of the Monte Carlo (MC) method. This method is based on simulation of the trajectories of individual molecules and calculation of the heat transfer at each of the molecule/molecule collisions and the molecule/particle collisions. As the first step toward calculating the heat transfer between a soot aggregate and the surrounding gas, the Direct Simulation Monte Carlo (DSMC) method was used in this study to calculate the heat transfer rate between a single spherical aerosol particle and its cooler surrounding gas under different conditions of temperature, pressure, and the accommodation coefficient. A well-defined and simple hard sphere model was adopted to describe molecule/molecule elastic collisions. A combination of the specular reflection and completely diffuse reflection model was used to consider molecule/particle collisions. The results obtained by DSMC are in good agreement with the known analytical solution of heat transfer rate for an isolated, motionless sphere in the free-molecular regime. Further the DSMC method was applied to calculate the heat transfer in the transition regime. Our present DSMC results agree very well with published DSMC data. (author)

  18. Comparison of Direct and Indirect Gas Reactor Brayton Systems for Nuclear Electric Space Propulsion

    International Nuclear Information System (INIS)

    M Postlehwait; P DiLorenzo; S Belanger; J Ashcroft

    2005-01-01

    Gas reactor systems are being considered as candidates for use in generating power for the Prometheus-1 spacecraft, along with other NASA missions as part of the Prometheus program. Gas reactors offer a benign coolant, which increases core and structural materials options. However, the gas coolant has inferior thermal transport properties, relative to other coolant candidates such as liquid metals. This leads to concerns for providing effective heat transfer and for minimizing pressure drop within the reactor core. In direct gas Brayton systems, i.e. those with one or more Brayton turbines in the reactor cooling loop, the ability to provide effective core cooling and low pressure drop is further constrained by the need for a low pressure, high molecular weight gas, typically a mixture of helium and xenon. Use of separate primary and secondary gas loops, one for the reactor and one or more for the Brayton system(s) separated by heat exchanger(s), allows for independent optimization of the pressure and gas composition of each loop. The reactor loop can use higher pressure pure helium, which provides improved heat transfer and heat transport properties, while the Brayton loop can utilize lower pressure He-Xe. However, this approach requires a separate primary gas circulator and also requires gas to gas heat exchangers. This paper focuses on the trade-offs between the direct gas reactor Brayton system and the indirect gas Brayton system. It discusses heat exchanger arrangement and materials options and projects heat exchanger mass based on heat transfer area and structural design needs. Analysis indicates that these heat exchangers add considerable mass, but result in reactor cooling and system resiliency improvements

  19. Mass transfer with complex chemical reactions in gas-liquid systems: two-step reversible reactions with unit stoichiometric and kinetic orders

    NARCIS (Netherlands)

    Vas bhat, R.D.; Kuipers, J.A.M.; Versteeg, Geert

    2000-01-01

    An absorption model to study gas¿liquid mass transfer accompanied by reversible two-step reactions in the liquid phase has been presented. This model has been used to determine mass transfer rates, enhancement factors and concentration profiles over a wide range of process conditions. Although

  20. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2000-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2000 (FY00). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) who bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors connect with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the Regional Lead Organizations. The role of the national headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation-wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies. This technical progress report summarizes PTTC's accomplishments during FY00, which lays the groundwork for further growth in the future. At a time of many industry changes and market movements, the organization has built a reputation and expectation to address industry needs of getting information distributed quickly which can impact the bottom line immediately.

  1. A simple technique for continuous measurement of time-variable gas transfer in surface waters

    Science.gov (United States)

    Tobias, Craig R.; Bohlke, John Karl; Harvey, Judson W.; Busenberg, Eurybiades

    2009-01-01

    Mass balance models of dissolved gases in streams, lakes, and rivers serve as the basis for estimating wholeecosystem rates for various biogeochemical processes. Rates of gas exchange between water and the atmosphere are important and error-prone components of these models. Here we present a simple and efficient modification of the SF6 gas tracer approach that can be used concurrently while collecting other dissolved gas samples for dissolved gas mass balance studies in streams. It consists of continuously metering SF6-saturated water directly into the stream at a low rate of flow. This approach has advantages over pulse injection of aqueous solutions or bubbling large amounts of SF6 into the stream. By adding the SF6 as a saturated solution, we minimize the possibility that other dissolved gas measurements are affected by sparging and/or bubble injecta. Because the SF6 is added continuously we have a record of changing gas transfer velocity (GTV) that is contemporaneous with the sampling of other nonconservative ambient dissolved gases. Over a single diel period, a 30% variation in GTV was observed in a second-order stream (Sugar Creek, Indiana, USA). The changing GTV could be attributed in part to changes in temperature and windspeed that occurred on hourly to diel timescales.

  2. Influence of the combustion chamber during the transient performance of gas turbines; Influencias da camara de combustao durante o transitorio de turbinas a gas

    Energy Technology Data Exchange (ETDEWEB)

    Cunha Alves, M.A. da [Centro Tecnico Aeroespacial, Sao Jose dos Campos, SP (Brazil). Inst. de Pesquisas e Desenvolvimento

    1991-12-31

    It has been realised that heat transfer and others secondary effects have an important influence on the transient performance of a gas turbine, but until very recently, modelling was carried out either assuming adiabatic conditions, or using expedient but unrealistic models to simulate these effects. This work describes the effects of combustion chamber heat storage and of dead time lag of the combustion process, during a gas turbine transient. These effects have been investigated and the analysis has indicated that these effects do not play an important role in the transient performance of the engine analysed, but in certain circumstances they may become important. (author). 5 refs., 4 figs.

  3. Resonant line transfer in a fog: using Lyman-alpha to probe tiny structures in atomic gas

    Science.gov (United States)

    Gronke, Max; Dijkstra, Mark; McCourt, Michael; Peng Oh, S.

    2017-11-01

    Motivated by observational and theoretical work that suggest very small-scale (≲ 1 pc) structure in the circumgalactic medium of galaxies and in other environments, we study Lyman-α (Lyα) radiative transfer in an extremely clumpy medium with many clouds of neutral gas along the line of sight. While previous studies have typically considered radiative transfer through sightlines intercepting ≲ 10 clumps, we explored the limit of a very large number of clumps per sightline (up to fc 1000). Our main finding is that, for covering factors greater than some critical threshold, a multiphase medium behaves similarly to a homogeneous medium in terms of the emergent Lyα spectrum. The value of this threshold depends on both the clump column density and the movement of the clumps. We estimated this threshold analytically and compare our findings to radiative transfer simulations with a range of covering factors, clump column densities, radii, and motions. Our results suggest that (I) the success in fitting observed Lyα spectra using homogeneous "shell models" (and the corresponding failure of multiphase models) hints at the presence of very small-scale structure in neutral gas, which is in agreement within a number of other observations; and (II) the recurrent problems of reproducing realistic line profiles from hydrodynamical simulations may be due to their inability to resolve small-scale structure, which causes simulations to underestimate the effective covering factor of neutral gas clouds. The movie associated to Fig. B.2 is available at http://www.aanda.org

  4. Variability in the primary emissions and secondary gas and particle formation from vehicles using bioethanol mixtures.

    Science.gov (United States)

    Gramsch, E; Papapostolou, V; Reyes, F; Vásquez, Y; Castillo, M; Oyola, P; López, G; Cádiz, A; Ferguson, S; Wolfson, M; Lawrence, J; Koutrakis, P

    2018-04-01

    Bioethanol for use in vehicles is becoming a substantial part of global energy infrastructure because it is renewable and some emissions are reduced. Carbon monoxide (CO) emissions and total hydrocarbons (THC) are reduced, but there is still controversy regarding emissions of nitrogen oxides (NO x ), aldehydes, and ethanol; this may be a concern because all these compounds are precursors of ozone and secondary organic aerosol (SOA). The amount of emissions depends on the ethanol content, but it also may depend on the engine quality and ethanol origin. Thus, a photochemical chamber was used to study secondary gas and aerosol formation from two flex-fueled vehicles using different ethanol blends in gasoline. One vehicle and the fuel used were made in the United States, and the others were made in Brazil. Primary emissions of THC, CO, carbon dioxide (CO 2 ), and nonmethane hydrocarbons (NMHC) from both vehicles decreased as the amount of ethanol in gasoline increased. NO x emissions in the U.S. and Brazilian cars decreased with ethanol content. However, emissions of THC, CO, and NO x from the Brazilian car were markedly higher than those from the U.S. car, showing high variability between vehicle technologies. In the Brazilian car, formation of secondary nitrogen dioxide (NO 2 ) and ozone (O 3 ) was lower for higher ethanol content in the fuel. In the U.S. car, NO 2 and O 3 had a small increase. Secondary particle (particulate matter [PM]) formation in the chamber decreased for both vehicles as the fraction of ethanol in fuel increased, consistent with previous studies. Secondary to primary PM ratios for pure gasoline is 11, also consistent with previous studies. In addition, the time required to form secondary PM is longer for higher ethanol blends. These results indicate that using higher ethanol blends may have a positive impact on air quality. The use of bioethanol can significantly reduce petroleum use and greenhouse gas emissions worldwide. Given the extent of

  5. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers make timely, informed technology decisions by providing access to information during Fiscal Year 2002 (FY02). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs) and three satellite offices that efficiently extend the program reach. They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with state and industry funding to achieve important goals for all of these sectors. This integrated funding base is combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff to achieve notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact with R&D efforts. The DOE participation is managed through the National Energy Technology Laboratory (NETL), which deploys a national natural gas program via the Strategic Center for Natural Gas (SCNG) and a national oil program through the National Petroleum Technology Office (NTPO). This technical progress report summarizes PTTC

  6. Spatially distributed flame transfer functions for predicting combustion dynamics in lean premixed gas turbine combustors

    Energy Technology Data Exchange (ETDEWEB)

    Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)

    2010-09-15

    The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)

  7. The Influence of Flow and Bed Slope on Gas Transfer in Steep Streams and Their Implications for Evasion of CO2

    Science.gov (United States)

    Maurice, L.; Rawlins, B. G.; Farr, G.; Bell, R.; Gooddy, D. C.

    2017-11-01

    The evasion of greenhouse gases (including CO2, CH4, and N2O) from streams and rivers to the atmosphere is an important process in global biogeochemical cycles, but our understanding of gas transfer in steep (>10%) streams, and under varying flows, is limited. We investigated gas transfer using combined tracer injections of SF6 and salt. We used a novel experimental design in which we compared four very steep (18.4-29.4%) and four moderately steep (3.7-7.6%) streams and conducted tests in each stream under low flow conditions and during a high-discharge event. Most dissolved gas evaded over short distances ( 100 and 200-400 m, respectively), so accurate estimates of evasion fluxes will require sampling of dissolved gases at these scales to account for local sources. We calculated CO2 gas transfer coefficients (KCO2) and found statistically significant differences between larger KCO2 values for steeper (mean 0.465 min-1) streams compared to those with shallower slopes (mean 0.109 min-1). Variations in flow had an even greater influence. KCO2 was substantially larger under high (mean 0.497 min-1) compared to low flow conditions (mean 0.077 min-1). We developed a statistical model to predict KCO2 using values of streambed slope × discharge which accounted for 94% of the variation. We show that two models using slope and velocity developed by Raymond et al. (2012) for streams and rivers with shallower slopes also provide reasonable estimates of our CO2 gas transfer velocities (kCO2; m d-1). We developed a robust field protocol which could be applied in future studies.

  8. Determination of volumetric gas-liquid mass transfer coefficient of carbon monoxide in a batch cultivation system using kinetic simulations.

    Science.gov (United States)

    Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop

    2017-09-01

    A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  9. MARS-KS Code Assessment for Condensation Heat Transfer in Horizontal Tube with the Presence of Non-Condensable Gas using Purdue Experiment

    International Nuclear Information System (INIS)

    Jeon, Seong Su; Lee, Byung Chul; Park, Ju Yeop; Seul, Kwang Won

    2011-01-01

    In South Korea, advanced power reactor plus (APR+), as a Korean specific reactor, is currently under development for the export strategy. In order to raise competitiveness of the APR+ in the world market, it is necessary to develop the original technology for the improved technology, economics, and safety features. For this purpose, a passive auxiliary feedwater system (PAFS) was adopted as an improved safety design concept of APR+: and then there have been many efforts to develop the PAFS. According to PAFS design concept, PAFS can completely replace the auxiliary feedwater system. When the design basis accident, in which feedwater is unavailable, occurs, the PAFS can remove the residual heat in the core and then prevent the core damage. In the PAFS with the horizontal type heat exchanger, two-phase natural circulation, condensation heat transfer in tube, boiling heat transfer in pool, natural convection in pool, etc. are considered as very important thermalhydraulic phenomena (see Fig. 1). Compared with the vertical heat exchanger from these phenomena, the major difference of the horizontal heat exchanger is the condensation heat transfer phenomena in the tube side. There have been many efforts to understand the condensation heat transfer with in the presence of NC gas in tube but most researches focused on the condensation heat transfer in vertical tube. Therefore the details of the condensation heat transfer in the presence of NC gas in horizontal condenser tubes are not well understood. In order to develop the safety evaluation system for APR+ PAFS, it is required to evaluate the capability and applicability of the MARS-KS code for modeling the condensation heat transfer in the horizontal tube with NC gas because many heat transfer correlations in MARS-KS are known to have much uncertainty. In particular, there is no reliable model for the condensation phenomena in horizontal tube with NC gas. In order to assess the MARS-KS code results and identify the

  10. A Novel Method for Determining the Gas Transfer Velocity of Carbon Dioxide in Streams

    Science.gov (United States)

    McDowell, M. J.; Johnson, M. S.

    2016-12-01

    Characterization of the global carbon cycle relies on the accurate quantification of carbon fluxes into and out of natural and human-dominated ecosystems. Among these fluxes, carbon dioxide (CO2) evasion from surface water has received increasing attention in recent years. However, limitations of current methods, including determination of the gas transfer velocity (k), compromise our ability to evaluate the significance of CO2 fluxes between freshwater systems and the atmosphere. We developed an automated method to determine gas transfer velocities of CO2 (kCO2), and tested it under a range of flow conditions for a first-order stream of a headwater catchment in southwestern British Columbia, Canada. Our method uses continuous in situ measurements of CO2 concentrations using two non-dispersive infrared (NDIR) sensors enclosed in water impermeable, gas permeable membranes (Johnson et al., 2010) downstream from a gas diffuser. CO2 was injected into the stream at regular intervals via a compressed gas tank connected to the diffuser. CO2 injections were controlled by a datalogger at fixed time intervals and in response to storm-induced changes in streamflow. Following the injection, differences in CO2 concentrations at known distances downstream from the diffuser relative to pre-injection baseline levels allowed us to calculate kCO2. Here we present relationships between kCO2 and hydro-geomorphologic (flow velocity, streambed slope, stream width, stream depth), atmospheric (wind speed and direction), and water quality (stream temperature, pH, electrical conductivity) variables. This method has advantages of being automatable and field-deployable, and it does not require supplemental gas chromatography, as is the case for propane injections typically used to determine k. The dataset presented suggests the potential role of this method to further elucidate the role that CO2 fluxes from headwater streams play in the global carbon cycle. Johnson, M. S., Billett, M. F

  11. Hydraulic and Mechanical Effects from Gas Hydrate Conversion and Secondary Gas Hydrate Formation during Injection of CO2 into CH4-Hydrate-Bearing Sediments

    Science.gov (United States)

    Bigalke, N.; Deusner, C.; Kossel, E.; Schicks, J. M.; Spangenberg, E.; Priegnitz, M.; Heeschen, K. U.; Abendroth, S.; Thaler, J.; Haeckel, M.

    2014-12-01

    The injection of CO2 into CH4-hydrate-bearing sediments has the potential to drive natural gas production and simultaneously sequester CO2 by hydrate conversion. The process aims at maintaining the in situ hydrate saturation and structure and causing limited impact on soil hydraulic properties and geomechanical stability. However, to increase hydrate conversion yields and rates it must potentially be assisted by thermal stimulation or depressurization. Further, secondary formation of CO2-rich hydrates from pore water and injected CO2 enhances hydrate conversion and CH4 production yields [1]. Technical stimulation and secondary hydrate formation add significant complexity to the bulk conversion process resulting in spatial and temporal effects on hydraulic and geomechanical properties that cannot be predicted by current reservoir simulation codes. In a combined experimental and numerical approach, it is our objective to elucidate both hydraulic and mechanical effects of CO2 injection and CH4-CO2-hydrate conversion in CH4-hydrate bearing soils. For the experimental approach we used various high-pressure flow-through systems equipped with different online and in situ monitoring tools (e.g. Raman microscopy, MRI and ERT). One particular focus was the design of triaxial cell experimental systems, which enable us to study sample behavior even during large deformations and particle flow. We present results from various flow-through high-pressure experimental studies on different scales, which indicate that hydraulic and geomechanical properties of hydrate-bearing sediments are drastically altered during and after injection of CO2. We discuss the results in light of the competing processes of hydrate dissociation, hydrate conversion and secondary hydrate formation. Our results will also contribute to the understanding of effects of temperature and pressure changes leading to dissociation of gas hydrates in ocean and permafrost systems. [1] Deusner C, Bigalke N, Kossel E

  12. Gas tax/public transit annual expenditure report pursuant to the agreement on the transfer of federal gas tax revenue and the agreement on the transfer of public transit funds for the period April 1, 2006 to March 31, 2007

    International Nuclear Information System (INIS)

    Binnie, B.; Taylor, R.; Gibson, B.

    2007-09-01

    Federal funding initiatives for local infrastructure and capacity building was discussed with particular reference to the unique partnerships between the Canada-British Columbia Agreement on the transfer of federal gas tax revenues and the Canada-British Columbia agreement on the transfer of funds for public transit. The agreements reflect the nature of intergovernmental relations in British Columbia where the Union of British Columbia Municipalities (UBCM) works together with both federal and provincial governments to promote sustainable communities. This report identified the initiatives that are underway in communities across British Columbia as they begin to implement Gas Tax and Public Transit funded projects. These projects span a broad range of eligible project categories. The leadership role taken by local governments in the province to reduce greenhouse gas emissions was highlighted. Some of the 141 projects reported in 2007 were highlighted in this report, including improvement to public transit in the District of Saanich; TransLink bus replacement and expansion; cycling and pedestrian infrastructure; improvements to local roads and bridges; alternative energy retrofits; collection of solid waste; improvement to water systems; stormwater and wastewater treatment; capacity building; watershed protection; and water acquisition strategies. Of the projects reported, 33 per cent anticipated gas tax spending in more than 1 year, indicating either payment of capital costs as they are incurred during a construction period that spans beyond a single year, or use of gas tax funding towards the debt servicing costs related to the eligible project. tabs., figs

  13. Investigation on the heat transfer characteristics during flow boiling of liquefied natural gas in a vertical micro-fin tube

    Science.gov (United States)

    Xu, Bin; Shi, Yumei; Chen, Dongsheng

    2014-03-01

    This paper presents an experimental investigation on the heat transfer characteristics of liquefied natural gas flow boiling in a vertical micro-fin tube. The effect of heat flux, mass flux and inlet pressure on the flow boiling heat transfer coefficients was analyzed. The Kim, Koyama, and two kinds of Wellsandt correlations with different Ftp coefficients were used to predict the flow boiling heat transfer coefficients. The predicted results showed that the Koyama correlation was the most accurate over the range of experimental conditions.

  14. Fluctuation theorem for entropy production during effusion of an ideal gas with momentum transfer.

    Science.gov (United States)

    Wood, Kevin; Van den Broeck, C; Kawai, R; Lindenberg, Katja

    2007-06-01

    We derive an exact expression for entropy production during effusion of an ideal gas driven by momentum transfer in addition to energy and particle flux. Following the treatment in Cleuren [Phys. Rev. E 74, 021117 (2006)], we construct a master equation formulation of the process and explicitly verify the thermodynamic fluctuation theorem, thereby directly exhibiting its extended applicability to particle flows and hence to hydrodynamic systems.

  15. Influence of forced internal air circulation on airflow distribution and heat transfer in a gas double-dynamic solid-state fermentation bioreactor.

    Science.gov (United States)

    Chen, Hongzhang; Qin, Lanzhi; Li, Hongqiang

    2014-02-01

    Internal air circulation affects the temperature field distribution in a gas double-dynamic solid-state fermentation bioreactor (GDSFB). To enhance heat transfer through strengthening internal air circulation in a GDSFB, we put an air distribution plate (ADP) into the bioreactor and studied the effects of forced internal air circulation on airflow, heat transfer, and cellulase activity of Trichoderma viride L3. Results showed that ADP could help form a steady and uniform airflow distribution, and with gas-guide tubes, air reversal was formed inside the bioreactor, thus resulting in a smaller temperature difference between medium and air by enhancing convective heat transfer inside the bioreactor. Using an ADP of 5.35 % aperture ratio caused a 1 °C decrease in the average temperature difference during the solid-state fermentation process of T. viride L3. Meanwhile, the cellulase activity of T. viride L3 increased by 13.5 %. The best heat-transfer effect was attained when using an ADP of 5.35 % aperture ratio and setting the fan power to 125 V (4.81 W) in the gas double-dynamic solid-state fermentation (GDSF) process. An option of suitable aperture ratio and fan power may be conducive to ADPs' industrial amplification.

  16. Wireless Power Transfer Technology Applied to an Autonomous Electric UAV with a Small Secondary Coil

    Directory of Open Access Journals (Sweden)

    Tommaso Campi

    2018-02-01

    Full Text Available This study deals with the design and the optimization of a wireless power transfer (WPT charging system based on magnetic resonant coupling applied to an electric vertical take-off and landing Unmanned Aerial Vehicle (UAV. In this study, a procedure for primary and secondary coil design is proposed. The primary circuit in the ground station consists of an array of coils in order to mitigate the negative effects on the coupling factor produced by the possible misalignment between the coils due to an imperfect landing. Key aspects for the design of the secondary coil onboard the UAV are the lightness and compactness of the WPT system components. A demonstrative prototype of the WPT system is applied to a commercial drone. The WPT electrical performances are calculated and measured. Finally, an automatic battery recharge station is built where the drone can autonomously land, recharge the battery and take off to continue its flight mission.

  17. EFFECTS OF ALTERNATE ANTIFOAM AGENTS, NOBLE METALS, MIXING SYSTEMS AND MASS TRANSFER ON GAS HOLDUP AND RELEASE FROM NONNEWTONIAN SLURRIES

    Energy Technology Data Exchange (ETDEWEB)

    Guerrero, H; Mark Fowley, M; Charles Crawford, C; Michael Restivo, M; Robert Leishear, R

    2007-12-24

    Gas holdup tests performed in a small-scale mechanically-agitated mixing system at the Savannah River National Laboratory (SRNL) were reported in 2006. The tests were for a simulant of waste from the Hanford Tank 241-AZ-101 and featured additions of DOW Corning Q2-3183A Antifoam agent. Results indicated that this antifoam agent (AFA) increased gas holdup in the waste simulant by about a factor of four and, counter intuitively, that the holdup increased as the simulant shear strength decreased (apparent viscosity decreased). These results raised questions about how the AFA might affect gas holdup in Hanford Waste Treatment and Immobilization Plant (WTP) vessels mixed by air sparging and pulse-jet mixers (PJMs). And whether the WTP air supply system being designed would have the capacity to handle a demand for increased airflow to operate the sparger-PJM mixing systems should the AFA increase retention of the radiochemically generated flammable gases in the waste by making the gas bubbles smaller and less mobile, or decrease the size of sparger bubbles making them mix less effectively for a given airflow rate. A new testing program was developed to assess the potential effects of adding the DOW Corning Q2-3183A AFA to WTP waste streams by first confirming the results of the work reported in 2006 by Stewart et al. and then determining if the AFA in fact causes such increased gas holdup in a prototypic sparger-PJM mixing system, or if the increased holdup is just a feature of the small-scale agitation system. Other elements of the new program include evaluating effects other variables could have on gas holdup in systems with AFA additions such as catalysis from trace noble metals in the waste, determining mass transfer coefficients for the AZ-101 waste simulant, and determining whether other AFA compositions such as Dow Corning 1520-US could also increase gas holdup in Hanford waste. This new testing program was split into two investigations, prototypic sparger

  18. Influence of fluid-mechanical characteristics of the system on the volumetric mass transfer coefficient and gas dispersion in three-phase system

    Directory of Open Access Journals (Sweden)

    Knežević Milena M.

    2014-01-01

    Full Text Available Distribution of gas bubbles and volumetric mass transfer coefficient, Kla, in a three phase system, with different types of solid particles at different operation conditions were studied in this paper. The ranges of superficial gas and liquid velocities used in this study were 0,03-0,09 m/s and 0-0,1 m/s, respectively. The three different types of solid particles were used as a bed in the column (glass dp=3 mm, dp=6 mm; ceramic dp=6 mm. The experiments were carried out in a 2D plexiglas column, 278 x 20,4 x 500 mm and in a cylindrical plexiglas column, with a diameter of 64 mm and a hight of 2000 mm. The Kla coefficient increased with gas and liquid velocities. Results showed that the volumetric mass transfer coefficient has a higher values in three phase system, with solid particles, compared with two phase system. The particles properties (diameter and density have a major impact on oxygen mass transfer in three phase systems.

  19. Magnetic Emissions Reduction by Varying Secondary Side Capacitor for Ferrite Geometry based Series-Parallel Topology Wireless Power Transfer to Vehicles

    DEFF Research Database (Denmark)

    Batra, Tushar; Schaltz, Erik

    2014-01-01

    Magnetic fields in surroundings of wireless power transfer system depends upon the two coil currents, distance from the coils and space angle between the two coil fields in steady state conditions. Increase in value of the secondary capacitor leads to a phase shift between the two currents and as...

  20. UK-China review of opportunities for landfill gas (LFG) technology transfer

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    This report presents the results of a project to identify opportunities to transfer UK skills with regard to landfill gas (LFG) technologies to China and other countries looking to develop LFG as a commercially viable clean energy source. The aim of the project was to develop all aspects of LFG extraction and utilisation techniques. The project involved: examining current Chinese waste disposal practices; identifying key technologies and methods for maximising LFG recovery; considering end use options and methods to optimise gas use; assessing the environmental benefits; and identifying potential opportunities for UK industry. The report consider: barriers to the development of LFG; waste disposal and landfill design in China; China's experience of LFG use; UN Development Programme (UNDP) and Global Environmental Forum (GEF) LFG demonstration projects in China; environmental regulation and controls in China; LFG technology in the UK; support for renewable energy in China and the UK; design and operational needs in China from a UK perspective; technology needs, barriers and opportunities; and recommendations for action and future work.

  1. Effects of entrance configuration on pressure loss and heat transfer of transitional gas flow in a circular tube

    International Nuclear Information System (INIS)

    Ogawa, Masuro; Kawamura, Hiroshi

    1986-01-01

    Pressure loss and heat transfer of a transitional gas flow are affected significantly by the entrance configuration. The friction factor and the heat transfer coefficient were measured using a circular tube with four different kinds of entrance configurations. The Reynolds number at the transition from laminar to intermittent flow was varied from about 1,940 to 9,120. The intermittency factor was measured for heated and unheated flows ; and the relation between the intermittency and the friction factor or heat transfer coefficient was examined. Several existing correlations were tested and found to correlate with the experimental results fairly well. (author)

  2. A Mathematical Model of Membrane Gas Separation with Energy Transfer by Molecules of Gas Flowing in a Channel to Molecules Penetrating this Channel from the Adjacent Channel

    Directory of Open Access Journals (Sweden)

    Szwast Maciej

    2015-06-01

    Full Text Available The paper presents the mathematical modelling of selected isothermal separation processes of gaseous mixtures, taking place in plants using membranes, in particular nonporous polymer membranes. The modelling concerns membrane modules consisting of two channels - the feeding and the permeate channels. Different shapes of the channels cross-section were taken into account. Consideration was given to co-current and counter-current flows, for feeding and permeate streams, respectively, flowing together with the inert gas receiving permeate. In the proposed mathematical model it was considered that pressure of gas changes along the length of flow channels was the result of both - the drop of pressure connected with flow resistance, and energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel. The literature on membrane technology takes into account only the drop of pressure connected with flow resistance. Consideration given to energy transfer by molecules of gas flowing in a given channel to molecules which penetrate this channel from the adjacent channel constitute the essential novelty in the current study. The paper also presents results of calculations obtained by means of a computer program which used equations of the derived model. Physicochemical data concerning separation of the CO2/CH4 mixture with He as the sweep gas and data concerning properties of the membrane made of PDMS were assumed for calculations.

  3. Fast reactor cover gas purification - The UK position

    Energy Technology Data Exchange (ETDEWEB)

    Thorley, A W

    1987-07-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O{sub 2}, H{sub 2}) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H{sub 2}, CO/CO{sub 2} and CH{sub 4}; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O{sub 2}, N{sub 2} and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N{sub 2} which are potentially damaging if certain

  4. Fast reactor cover gas purification - The UK position

    International Nuclear Information System (INIS)

    Thorley, A.W.

    1987-01-01

    The cover gas in the Prototype Fast Reactor (PFR) provides an inert gas blanket for both primary and secondary sodium circuits, ensures inert gas padding exists between the upper seals associated with penetrations through the reactor roof and provides argon to items of plant such as the control rods and the rotating shield and also to on line instruments such as the secondary circuit Katharometers. In order to meet these and other requirements purification of the argon cover gas is important to ensure: gas fed to purge gaps in the area of the magnetic hold device in the control rod mechanisms is not laden with sodium aerosols and reactive impurities (O 2 , H 2 ) which could cause blocking both within the gaps and pipelines; gas phase detection systems which provide early warning of steam generator failures or oil ingress into the sodium are not affected by the presence of gaseous impurities such as H 2 , CO/CO 2 and CH 4 ; mass transfer processes involving both corrosion products and interstitial atoms cannot be sustained in the cover gas environment due to the presence of high levels of O 2 , N 2 and carburising gases; background levels of radioactivity (eg Xe 133) are sufficiently low to enable gas phase detection of failed fuel pins, and the primary circuit gas blanket activity is sufficiently reduced so that discharges to the atmosphere are minimised. This paper describes how the PFR cover gas purification system is coping with these various items and how current thinking regarding the design of cover gas purification systems for a Civil Demonstration Fast Reactor (CDFR), where larger gas volumes and higher levels of radioactivity may be involved, is being guided by current experience on PFR. The paper also briefly review the experimental work planned to study aerosol and caesium behaviour in cove gas environments and discusses the behaviour of those impurities such as Zn, oil and N 2 which are potentially damaging if certain levels are exceeded in operating

  5. Heat exchanger for transfering heat produced in a high temperature reactor to an intermediate circuit gas

    International Nuclear Information System (INIS)

    Barchewitz, E.; Baumgaertner, H.

    1985-01-01

    The invention is concerned with improving the arrangement of a heat exchanger designed to transfer heat from the coolant gas circuit of a high temperature reactor to a gas which is to be used for a process heat plant. In the plant the material stresses are to be kept low at high differential pressures and temperatures. According to the invention the tube bundles designed as boxes are fixed within the heat exchanger closure by means of supply pipes having got loops. For conducting the hot gas the heat exchanger has got a central pipe leading out of the reactor vessel through the pod closure and having got only one point of fixation, lying in this closure. Additional advantageous designs are mentioned. (orig./PW)

  6. Collisions of fast multicharged ions in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1981-05-01

    Measurements of cross sections for charge transfer and ionization of H 2 and rare-gas targets have been made with fast, highly stripped projectiles in charge states as high as 59+. We have found an empirical scaling rule for electron-capture cross section in H 2 valid at energies above 275 keV/amu. Similar scaling might exist for other target gases. Cross sections are generally in good agreement with theory. We have found a scaling rule for electron loss from H in collisions with a fast highly stripped projectile, based on Olson's classical-trajectory Monte-Carlo calculations, and confirmed by measurements in an H 2 target. We have found a similar scaling rule for net ionization of rare-gas targets, based on Olson's CTMC calculations and the independent-electron model. Measurements are essentially consistent with the scaled cross sections. Calculations and measurements of recoil-ion charge-state spectra show large cross sections for the production of highly charged slow recoil ions

  7. Gas phase precursors to anthropogenic secondary organic aerosol: detailed observations of 1,3,5-trimethylbenzene photooxidation

    Directory of Open Access Journals (Sweden)

    K. P. Wyche

    2009-01-01

    Full Text Available A series of photooxidation experiments were conducted in an atmospheric simulation chamber in order to investigate the oxidation mechanism and secondary organic aerosol (SOA formation potential of the model anthropogenic gas phase precursor, 1,3,5-trimethylbenzene. Alongside specific aerosol measurements, comprehensive gas phase measurements, primarily by Chemical Ionisation Reaction Time-of-Flight Mass Spectrometry (CIR-TOF-MS, were carried out to provide detailed insight into the composition and behaviour of the organic components of the gas phase matrix during SOA formation. An array of gas phase organic compounds was measured during the oxidation process, including several previously unmeasured primary bicyclic compounds possessing various functional groups. Analysis of results obtained during this study implies that these peroxide bicyclic species along with a series of ring opening products and organic acids contribute to SOA growth. The effect of varying the VOC/NOx ratio on SOA formation was explored, as was the effect of acid seeding. It was found that low NOx conditions favour more rapid aerosol formation and a higher aerosol yield, a result that implies a role for organic peroxides in the nucleation process and SOA growth.

  8. Thermalization of secondary electrons under AMSGEMP conditions

    International Nuclear Information System (INIS)

    Bloomberg, H.W.; Pine, V.W.

    1984-01-01

    A Monte Carlo algorithm is used to determine the time behavior of source secondary electrons for ranges of the electric field to pressure ratio E/p of interest in AMSGEMP. The algorithm contains a very detailed cross section set describing electron interactions with the background gas. The authors show that the delay in the attainment of the peak time independent ionization frequency (or ionization coefficient) may result in negligible ionization over times of interest. In any case the behavior is shown to behave much differently than in examples where limited cross section sets, common in currently employed predictive codes, are employed. In particular, the importance of momentum transfer is indicated. A critique of the scaling implications of the phenomena is made

  9. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald Duttlinger

    2001-11-01

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and gas producers make timely, informed technology decisions during Fiscal Year 2001 (FY01). Functioning as a cohesive national organization, PTTC has active grassroots programs through its ten Regional Lead Organizations (RLOs). They bring research and academia to the table via their association with geological surveys and engineering departments. The regional directors interact with independent oil and gas producers through technology workshops, resource centers, websites, newsletters, various technical publications and other outreach efforts. These are guided by regional Producer Advisory Groups (PAGs), who are area operators and service companies working with the regional networks. The role of the national Headquarters (HQ) staff includes planning and managing the PTTC program, conducting nation wide technology transfer activities, and implementing a comprehensive communications effort. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy, state, and industry funding to achieve important goals for all of these sectors. This integrated funding base, combined with industry volunteers guiding PTTC's activities and the dedication of national and regional staff, are achieving notable results. PTTC is increasingly recognized as a critical resource for information and access to technologies, especially for smaller companies without direct contact to R&D efforts. This technical progress report summarizes PTTC's accomplishments during FY01, which lays the groundwork for further growth in the future. At a time of many industry changes and wide market movements, the organization itself is adapting to change. PTTC has built a reputation and expectation among producers and other industry participants to quickly distribute information addressing technical needs. The organization

  10. Immune mechanisms in the transfer of experimental autoimmune encephalomyelitis without adjuvant

    International Nuclear Information System (INIS)

    Silberg, D.G.

    1985-01-01

    Experimental autoimmune encephalomyelitis (EAE) can be induced in Lewis rats without the use of adjuvant. Spleen cells of naive rats were sensitized to myelin basic protein (MBP) in vitro. Transfer of these cells did not result in the development of EAE. However, spleen cells from primary recipients, taken 10 days post transfer, and cultured with MBP (secondary culture, transferred EAE to secondary recipients. EAE can be induced in primary recipients by the transfer of secondary cultured cells or cultured cells or challenge with MBP in complete Freund's adjuvant (CFA) or incomplete Freund's adjuvant (IFA) 10 days after injection of naive cultured cells. The finding that MBP-CFA challenged 1' recipients developed EAE, suggests that the rats have been primed to MBP through the naive cultured cell transfer. The cells from naive culture that sensitize the primary recipient were radioresistant (1500 R), probably macrophages. This is in contrast to the cells transferring EAE to the secondary recipient, which were radiosensitive. Unlike the spleen cells which transfer EAE from MBP-CFA sensitized rats, the cells in the secondary transfer could not be activated to transfer EAE when cultured with concanavalin A. Clinical EAE in the secondary recipient was more severe when these rats were irradiated (200 R) prior to transfer. There is evidence that low dose irradiation eliminates naturally occurring suppressor cells. EAE also developed in lethally irradiated (850 R) recipients of secondary cultured cells, suggesting that the transferred cells can induce EAE alone or by recruiting radioresistant cells in the secondary host

  11. Proceedings of the natural gas research and development contractors review meeting

    Energy Technology Data Exchange (ETDEWEB)

    Malone, R.D.; Shoemaker, H.D.; Byrer, C.W. (eds.)

    1990-11-01

    The purpose of this meeting was to present results of the research in the DOE-sponsored Natural Gas Program, and simultaneously to provide a forum for real-time technology transfer, to the active research community, to the interested public, and to the natural gas industry, who are the primary users of this technology. The current research focus is to expand the base of near-term and mid-term economic gas resources through research activities in Eastern Tight Gas, Western Tight Gas, Secondary Gas Recovery (increased recovery of gas from mature fields); to enhance utilization, particularly of remote gas resources through research in Natural Gas to Liquids Conversion; and to develop additional, long term, potential gas resources through research in Gas Hydrates and Deep Gas. With the increased national emphasis on the use of natural gas, this forum has been expanded to include summaries of DOE-sponsored research in energy-related programs and perspectives on the importance of gas to future world energy. Thirty-two papers and fourteen poster presentations were given in seven formal, and one informal, sessions: Three general sessions (4 papers); Western Tight Gas (6 papers); Eastern Tight Gas (8 papers); Conventional/Speculative Resources (8 papers); and Gas to Liquids (6 papers). Individual reports are processed separately on the data bases.

  12. Secondary transfer effects of interracial contact: the moderating role of social status.

    Science.gov (United States)

    Bowman, Nicholas A; Griffin, Tiffany M

    2012-01-01

    The contact hypothesis asserts that intergroup attitudes can be improved when groups have opportunities to interact with each other. Recent research extending the contact hypothesis suggests that contact with a primary outgroup can decrease bias toward outgroups not directly involved in the interaction, which is known as the secondary transfer effect (STE). The present study contributes to growing research on STEs by investigating effects among Asian, Black, Hispanic, and White undergraduate students (N = 3,098) attending 28 selective colleges and universities. Using hierarchical linear modeling, our results reveal numerous positive STEs among Asian, Black, and Hispanic college students. No significant STEs were observed among White students. Mediated moderation analyses support an attitude generalization mechanism, because STEs were explained by changes in attitudes toward the primary outgroup. This research speaks to equivocal findings in the extant STE literature and highlights directions for future research on social cohesion and bias reduction.

  13. Validation of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer within the European project THINS

    Energy Technology Data Exchange (ETDEWEB)

    Papukchiev, A., E-mail: angel.papukchiev@grs.de; Buchholz, S.

    2017-02-15

    Highlights: • ANSYS CFX is validated for gas and liquid metal flows. • L-STAR and TALL-3D experiments are simulated. • Complex flow and heat transfer phenomena are modelled. • Conjugate heat transfer has to be considered in CFD analyses. - Abstract: Within the FP7 European project THINS (Thermal Hydraulics of Innovative Nuclear Systems), numerical tools for the simulation of the thermal-hydraulics of next generation rector systems were developed, applied and validated for innovative coolants. The Gesellschaft fuer Anlagen- und Reaktorsicherheit (GRS) gGmbH participated in THINS with activities related to the development and validation of computational fluid dynamics (CFD) and coupled System Thermal Hydraulics (STH) – CFD codes. High quality measurements from the L-STAR and TALL-3D experiments were used to assess the numerical results. Two-equation eddy viscosity and scale resolving turbulence models were used in the validation process of ANSYS CFX for gas and liquid metal flows with conjugate heat transfer. This paper provides a brief overview on the main results achieved at GRS within the project.

  14. 13 CFR 120.601 - SBA Secondary Market.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false SBA Secondary Market. 120.601 Section 120.601 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Fiscal and Transfer Agent (fta) § 120.601 SBA Secondary Market. The SBA secondary market...

  15. Partially ionized gas flow and heat transfer in the separation, reattachment, and redevelopment regions downstream of an abrupt circular channel expansion.

    Science.gov (United States)

    Back, L. H.; Massier, P. F.; Roschke, E. J.

    1972-01-01

    Heat transfer and pressure measurements obtained in the separation, reattachment, and redevelopment regions along a tube and nozzle located downstream of an abrupt channel expansion are presented for a very high enthalpy flow of argon. The ionization energy fraction extended up to 0.6 at the tube inlet just downstream of the arc heater. Reattachment resulted from the growth of an instability in the vortex sheet-like shear layer between the central jet that discharged into the tube and the reverse flow along the wall at the lower Reynolds numbers, as indicated by water flow visualization studies which were found to dynamically model the high-temperature gas flow. A reasonably good prediction of the heat transfer in the reattachment region where the highest heat transfer occurred and in the redevelopment region downstream can be made by using existing laminar boundary layer theory for a partially ionized gas. In the experiments as much as 90 per cent of the inlet energy was lost by heat transfer to the tube and the nozzle wall.

  16. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon

    2017-08-05

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  17. Transfer of preheat-treated SnO 2 via a sacrificial bridge-type ZnO layer for ethanol gas sensor

    KAUST Repository

    Lee, Da Hoon; Kang, Sun Kil; Pak, Yusin; Lim, Namsoo; Lee, Ryeri; Kumaresan, Yogeenth; Lee, Sungeun; Lee, Chaedeok; Ham, Moon-Ho; Jung, Gun Young

    2017-01-01

    The progress in developing the microelectromechanical system (MEMS) heater-based SnO2 gas sensors was hindered by the subsequent heat treatment of the tin oxide (SnO2), nevertheless it is required to obtain excellent sensor characteristics. During the sintering process, the MEMS heater and the contact electrodes can be degraded at such a high temperature, which could reduce the sensor response and reliability. In this research, we presented a process of preheating the printed SnO2 sensing layer on top of a sacrificial bridge-type ZnO layer at such a high temperature, followed by transferring it onto the contact electrodes of sensor device by selective etching of the sacrificial ZnO layer. Therefore, the sensor device was not exposed to the high sintering temperature. The SnO2 gas sensor fabricated by the transfer process exhibited a rectangular sensing curve behavior with a rapid response of 52 s at 20 ppm ethanol concentration. In addition, reliable and repeatable sensing characteristics were obtained even at an ethanol gas concentration of 5 ppm.

  18. Simulation Of The Secondary Cooling System Failed For One Line Mode Of RSG-GAS

    International Nuclear Information System (INIS)

    Dibyo, Sukmanto; Susyadi; Sembiring, Tagor M; Isnaeni, Darwis

    2003-01-01

    Recently, an assessment of 15 MW power reactor RSG-GAS operated using one line cooling mode is under carried out, in which is in the same manner as BA TAN policy. At the power above mentioned, requirement for the research as well as isotop production has been fulfilled. To obtain the transient condition of 1 line-cooling mode, the simulation using RELAP5.MOD3.2 code was carried out. The simulation parameters interesting known are the inlet of primary coolant temperature after failed the secondary cooling system. At the first, reactor is operated at 15 MW steady state condition using 1 line-cooling mode. Primary coolant flow rate of 430 kg/s and secondary of 550 kg/s respectively. After that the decreasing is occurred due to stop of secondary cooling pump. Therefore the primary cooling inlet temperature to the core increase cause scram reactor by inserted control rod. During the transient occur, the characteristic of primary cooling temperature pattern change were obtained. The simulation result shows that the temperature increase (ΔT) temperature to the reactor is 5,1 o C at the second of 85.5. Here is lower than ΔT for the two cooling mode of 10 o C. That temperature characteristic still tolerable against acceptable safety margin to the flow instability

  19. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  20. Transfer of heat to fluidized-solids beds

    Energy Technology Data Exchange (ETDEWEB)

    1952-10-16

    The improvement in the method described and claimed in patent application 14,363/47 (136,186) for supplying heat to a dense turbulent mass of solid fluidized by a gas flowing upwardly therethrough and subjected to a high temperature in a treating zone, by heat transfer through heat-transfer surfaces of heat-transfer elements in contact with the said turbulent mass of finely divided solid and heated by means of a fluid heating medium, including burning fuels comprising contacting the said heat-transfer surfaces with a fuel and a combustion supporting gas under such conditions that the combustion of the fuel is localized in the heat-transfer element near the point of entry of the fuel and combustion-supporting gas and a substantial temperature gradient is maintained along the path of said fuel combustion-supporting gas and combustion products through the said heat-transfer element.

  1. 33 CFR 127.315 - Preliminary transfer inspection.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Natural Gas Operations § 127.315 Preliminary transfer... parts; (b) For each of the vessel's cargo tanks from which cargo will be transferred, note the pressure...

  2. Modeling microscale heat transfer using Calore.

    Energy Technology Data Exchange (ETDEWEB)

    Gallis, Michail A.; Rader, Daniel John; Wong, Chung-Nin Channy; Bainbridge, Bruce L.; Torczynski, John Robert; Piekos, Edward Stanley

    2005-09-01

    Modeling microscale heat transfer with the computational-heat-transfer code Calore is discussed. Microscale heat transfer problems differ from their macroscopic counterparts in that conductive heat transfer in both solid and gaseous materials may have important noncontinuum effects. In a solid material, three noncontinuum effects are considered: ballistic transport of phonons across a thin film, scattering of phonons from surface roughness at a gas-solid interface, and scattering of phonons from grain boundaries within the solid material. These processes are modeled for polycrystalline silicon, and the thermal-conductivity values predicted by these models are compared to experimental data. In a gaseous material, two noncontinuum effects are considered: ballistic transport of gas molecules across a thin gap and accommodation of gas molecules to solid conditions when reflecting from a solid surface. These processes are modeled for arbitrary gases by allowing the gas and solid temperatures across a gas-solid interface to differ: a finite heat transfer coefficient (contact conductance) is imposed at the gas-solid interface so that the temperature difference is proportional to the normal heat flux. In this approach, the behavior of gas in the bulk is not changed from behavior observed under macroscopic conditions. These models are implemented in Calore as user subroutines. The user subroutines reside within Sandia's Source Forge server, where they undergo version control and regression testing and are available to analysts needing these capabilities. A Calore simulation is presented that exercises these models for a heated microbeam separated from an ambient-temperature substrate by a thin gas-filled gap. Failure to use the noncontinuum heat transfer models for the solid and the gas causes the maximum temperature of the microbeam to be significantly underpredicted.

  3. An asymptotic preserving unified gas kinetic scheme for gray radiative transfer equations

    International Nuclear Information System (INIS)

    Sun, Wenjun; Jiang, Song; Xu, Kun

    2015-01-01

    The solutions of radiative transport equations can cover both optical thin and optical thick regimes due to the large variation of photon's mean-free path and its interaction with the material. In the small mean free path limit, the nonlinear time-dependent radiative transfer equations can converge to an equilibrium diffusion equation due to the intensive interaction between radiation and material. In the optical thin limit, the photon free transport mechanism will emerge. In this paper, we are going to develop an accurate and robust asymptotic preserving unified gas kinetic scheme (AP-UGKS) for the gray radiative transfer equations, where the radiation transport equation is coupled with the material thermal energy equation. The current work is based on the UGKS framework for the rarefied gas dynamics [14], and is an extension of a recent work [12] from a one-dimensional linear radiation transport equation to a nonlinear two-dimensional gray radiative system. The newly developed scheme has the asymptotic preserving (AP) property in the optically thick regime in the capturing of diffusive solution without using a cell size being smaller than the photon's mean free path and time step being less than the photon collision time. Besides the diffusion limit, the scheme can capture the exact solution in the optical thin regime as well. The current scheme is a finite volume method. Due to the direct modeling for the time evolution solution of the interface radiative intensity, a smooth transition of the transport physics from optical thin to optical thick can be accurately recovered. Many numerical examples are included to validate the current approach

  4. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    OpenAIRE

    Shestakov, Igor; Dolgova, Anastasia; Maksimov, Vyacheslav Ivanovich

    2015-01-01

    The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characte...

  5. Pneumatosis intestinalis and portal venous gas secondary to Gefitinib therapy for lung adenocarcinoma

    International Nuclear Information System (INIS)

    Lee, Joo Young; Han, Hye-Suk; Lim, Sung-Nam; Shim, Young Kwang; Choi, Yong Hyeok; Lee, Ok-Jun; Lee, Ki Hyeong; Kim, Seung Taik

    2012-01-01

    Pneumatosis intestinalis (PI), defined as the presence of gas in the bowel wall, and portal venous gas (PVG) are relatively rare radiological findings. Although several chemotherapeutic agents and anti-vascular endothelial growth factor agents are reported to be associated with PI and PVG, an association with anti-epidermal growth factor receptor (EGFR) agents has not been described previously. The present report describes a case of PI and PVG secondary to treatment with an EGFR tyrosine kinase inhibitor. A 66-year-old woman who had been diagnosed with metastatic lung adenocarcinoma presented with nausea, vomiting and abdominal distension after commencing gefitinib. A computed tomography (CT) scan of the abdomen revealed PI extending from the ascending colon to the rectum, hepatic PVG, and infarction of the liver. Gefitinib therapy was discontinued immediately and the patient was managed conservatively. A follow-up CT scan 2 weeks later revealed that the PI and hepatic PVG had completely resolved. This is the first report of PI and PVG caused by EGFR tyrosine kinase inhibitor. Although these complications are extremely rare, clinicians should be aware of the risk of PI and PVG in patients undergoing targeted molecular therapy

  6. Experimental investigation of heat transfer and flow using V and broken V ribs within gas turbine blade cooling passage

    Science.gov (United States)

    Kumar, Sourabh; Amano, R. S.

    2015-05-01

    Gas turbines are extensively used for aircraft propulsion, land-based power generation, and various industrial applications. With an increase in turbine rotor inlet temperatures, developments in innovative gas turbine cooling technology enhance the efficiency and power output; these advancements of turbine cooling have allowed engine designs to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream of gas are based on an increase in the heat transfer areas and on the promotion of turbulence of the cooling flow. In this study, an improvement in performance is obtained by casting repeated continuous V- and broken V-shaped ribs on one side of the two pass square channels into the core of the blade. A detailed experimental investigation is done for two pass square channels with a 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for a steady state experiment. Four different combinations of 60° V- and broken 60° V-ribs in a channel are considered. A series of thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for Reynolds numbers 16,000, 56,000 and 85,000 within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the rib. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. A series of experimental measurements is performed to predict the overall performance of the channel. This paper presents an attempt to collect information about the Nusselt number, the pressure drop and the overall performance of the eight different ribbed ducts at the specified Reynolds number. The main contribution of this study is to evaluate the best combination of rib arrangements

  7. Visualization of gas dissolution following upward gas migration in porous media: Technique and implications for stray gas

    Science.gov (United States)

    Van De Ven, C. J. C.; Mumford, Kevin G.

    2018-05-01

    The study of gas-water mass transfer in porous media is important in many applications, including unconventional resource extraction, carbon storage, deep geological waste storage, and remediation of contaminated groundwater, all of which rely on an understanding of the fate and transport of free and dissolved gas. The novel visual technique developed in this study provided both quantitative and qualitative observations of gas-water mass transfer. Findings included interaction between free gas architecture and dissolved plume migration, plume geometry and longevity. The technique was applied to the injection of CO2 in source patterns expected for stray gas originating from oil and gas operations to measure dissolved phase concentrations of CO2 at high spatial and temporal resolutions. The data set is the first of its kind to provide high resolution quantification of gas-water dissolution, and will facilitate an improved understanding of the fundamental processes of gas movement and fate in these complex systems.

  8. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    Energy Technology Data Exchange (ETDEWEB)

    Lis, J [Central Electricity Research Laboratories, Leatherhead, Surrey (United Kingdom)

    1984-07-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10{sup 4} to 3x10{sup 5}. Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  9. Investigations of the gas-side heat transfer and flow characteristics of steam generators in AGR stations

    International Nuclear Information System (INIS)

    Lis, J.

    1984-01-01

    This paper describes the experimental and analytical investigations of the gas-side heat transfer and flow characteristics of steam generators in the AGR stations carried out by CERL. The majority of the experimental work on heat transfer and flow characteristics of close-packed tube arrangements in cross-flow of gases is carried out in a pressurised heat exchanger rig. The rig is operated on-line by a dedicated PDP 11/40 computer over the range of Reynolds number 10 4 to 3x10 5 . Atmospheric wind tunnels employing either small or large scale models of the specific sections of steam generators are used for a variety of supplementary and development studies. Various measurements techniques and, in particular, LDA and hot wire anemometry employed in these studies are described. The more important aspects of various investigations are illustrated by typical results. In order to ensure the efficient operation and integrity of steam generators under asymmetric boundary conditions a MIX suite of 2-dimensional codes has been developed. The codes calculate the gas and water/steam flow and temperature distributions in each channel of the steam generator taking into account thermal mixing in the gas as it passes through the generator. Application of the MIX codes to the solution of various operational problems is illustrated by typical examples and the continuing exercise of validating the codes against plant operational data is discussed. (author)

  10. Numerical simulation of the heat transfer at cooling a high-temperature metal cylinder by a flow of a gas-liquid medium

    Science.gov (United States)

    Makarov, S. S.; Lipanov, A. M.; Karpov, A. I.

    2017-10-01

    The numerical modeling results for the heat transfer during cooling a metal cylinder by a gas-liquid medium flow in an annular channel are presented. The results are obtained on the basis of the mathematical model of the conjugate heat transfer of the gas-liquid flow and the metal cylinder in a two-dimensional nonstationary formulation accounting for the axisymmetry of the cooling medium flow relative to the cylinder longitudinal axis. To solve the system of differential equations the control volume approach is used. The flow field parameters are calculated by the SIMPLE algorithm. To solve iteratively the systems of linear algebraic equations the Gauss-Seidel method with under-relaxation is used. The results of the numerical simulation are verified by comparing the results of the numerical simulation with the results of the field experiment. The calculation results for the heat transfer parameters at cooling the high-temperature metal cylinder by the gas-liquid flow are obtained with accounting for evaporation. The values of the rate of cooling the cylinder by the laminar flow of the cooling medium are determined. The temperature change intensity for the metal cylinder is analyzed depending on the initial velocity of the liquid flow and the time of the cooling process.

  11. The effect of diffusivity on gas-liquid mass transfer in stirred vessels. Experiments at atmospheric and elevated pressures

    NARCIS (Netherlands)

    Versteeg, G.F.; Blauwhoff, P.M.M.; Swaaij, W.P.M. van

    1987-01-01

    Mass transfer has been studied in gas-liquid stirred vessels with horizontal interfaces which appeared to the eye to be completely smooth. Special attention has been paid to the influence of the coefficient of molecular diffusion. The results are compared with those published before. The simplifying

  12. A novel technique based on 85Kr for quantification of gas-liquid mass transfer in bioreactors

    International Nuclear Information System (INIS)

    Pedersen, A.G.; Andersen, H.; Nielsen, J.; Villadsen, J.

    1994-01-01

    A promising technique for quantification of the mass transfer coefficient k l a for oxygen in bioreactors is described. The method is based on injection of the volatile, inert 85 Kr isotope into the medium followed by measurement of the radioactivity in the gas leaving the head space. The measured response is interpreted using a simple model for the gas flow through the bioreactor. The method is compared with two other methods: (1) a dynamic method based on N 2 and (2) the classical sulphite method. The isotope method compares well with the dynamic method and, from the comparison with the sulphite method, it is concluded that the sulphite method gives an overestimation of k l a which cannot be explained solely by reduced coalescence due to the electrolyte. The extra effect is probably due to chemical reaction in the liquid film. The isotope method has been used to study the influence of the medium composition on the oxygen mass transfer. A major advantage of the 85 Kr method is that it can by applied during real process conditions as illustrated in an experiment with growth of Aspergillus oryzae. (Author)

  13. Effects of magnetic fields on improving mass transfer in flue gas desulfurization using a fluidized bed

    Science.gov (United States)

    Zhang, Qi; Gui, Keting; Wang, Xiaobo

    2016-02-01

    The effects of magnetic fields on improving the mass transfer in flue gas desulfurization using a fluidized bed are investigated in the paper. In this research, the magnetically fluidized bed (MFB) is used as the reactor in which ferromagnetic particles are fluidized with simulated flue gas under the influence of an external magnetic field. Lime slurry is continuously sprayed into the reactor. As a consequence, the desulfurization reaction and the slurry drying process take place simultaneously in the MFB. In this paper, the effects of ferromagnetic particles and external magnetic fields on the desulphurization efficiency are studied and compared with that of quartz particles as the fluidized particles. Experimental results show that the ferromagnetic particles not only act as a platform for lime slurry to precipitate on like quartz particles, but also take part in the desulfurization reaction. The results also show that the specific surface area of ferromagnetic particles after reaction is enlarged as the magnetic intensity increases, and the external magnetic field promotes the oxidation of S(IV), improving the mass transfer between sulphur and its sorbent. Hence, the efficiency of desulphurization under the effects of external magnetic fields is higher than that in general fluidized beds.

  14. Production of secondary particles and nuclei in cosmic rays collisions with the interstellar gas using the FLUKA code

    CERN Document Server

    Mazziotta, M N; Ferrari, A; Gaggero, D; Loparco, F; Sala, P R

    2016-01-01

    The measured fluxes of secondary particles produced by the interactions of Cosmic Rays (CRs) with the astronomical environment play a crucial role in understanding the physics of CR transport. In this work we present a comprehensive calculation of the secondary hadron, lepton, gamma-ray and neutrino yields produced by the inelastic interactions between several species of stable or long-lived cosmic rays projectiles (p, D, T, 3He, 4He, 6Li, 7Li, 9Be, 10Be, 10B, 11B, 12C, 13C, 14C, 14N, 15N, 16O, 17O, 18O, 20Ne, 24Mg and 28Si) and different target gas nuclei (p, 4He, 12C, 14N, 16O, 20Ne, 24Mg, 28Si and 40Ar). The yields are calculated using FLUKA, a simulation package designed to compute the energy distributions of secondary products with large accuracy in a wide energy range. The present results provide, for the first time, a complete and self-consistent set of all the relevant inclusive cross sections regarding the whole spectrum of secondary products in nuclear collisions. We cover, for the projectiles, a ki...

  15. On which timescales do gas transfer velocities control North Atlantic CO2 flux variability?

    OpenAIRE

    Couldrey, Matthew; Oliver, Kevin; Yool, Andrew; Halloran, Paul; Achterberg, Eric

    2016-01-01

    The North Atlantic is an important basin for the global ocean's uptake of anthropogenic and natural carbon dioxide (CO2), but the mechanisms controlling this carbon flux are not fully understood. The air-sea flux of CO2, F, is the product of a gas transfer velocity, k, the air-sea CO2 concentration gradient, ΔpCO2, and the temperature and salinity-dependent solubility coefficient, α. k is difficult to constrain, representing the dominant uncertainty in F on short (instantaneous to interannual...

  16. Effect of wall thermal conductivity on the heat transfer process in annular turbulent gas flow for constant wall temperature

    International Nuclear Information System (INIS)

    Groshev, A.I.; Anisimov, V.V.; Kashcheev, V.M.; Khudasko, V.V.; Yur'ev, Yu.S.

    1987-01-01

    The effect of wall material on convective heat transfer of turbulent gas flow in an annular tube with account of longitudinal diffusion both in the wall and in the liquid is studied numerically. The conjugated problem is solved for P r =0.7 (Re=10 4 -10 6 ). Based on numerical calculations it is stated that thermal conductivity of the wall and gas essentially affects the degree of preliminary heating of liquid in the range of a non-heated section

  17. Gas hold-up and oxygen mass transfer in three pneumatic bioreactors operating with sugarcane bagasse suspensions.

    Science.gov (United States)

    Esperança, M N; Cunha, F M; Cerri, M O; Zangirolami, T C; Farinas, C S; Badino, A C

    2014-05-01

    Sugarcane bagasse is a low-cost and abundant by-product generated by the bioethanol industry, and is a potential substrate for cellulolytic enzyme production. The aim of this work was to evaluate the effects of air flow rate (QAIR), solids loading (%S), sugarcane bagasse type, and particle size on the gas hold-up (εG) and volumetric oxygen transfer coefficient (kLa) in three different pneumatic bioreactors, using response surface methodology. Concentric tube airlift (CTA), split-cylinder airlift (SCA), and bubble column (BC) bioreactor types were tested. QAIR and %S affected oxygen mass transfer positively and negatively, respectively, while sugarcane bagasse type and particle size (within the range studied) did not influence kLa. Using large particles of untreated sugarcane bagasse, the loop-type bioreactors (CTA and SCA) exhibited higher mass transfer, compared to the BC reactor. At higher %S, SCA presented a higher kLa value (0.0448 s−1) than CTA, and the best operational conditions in terms of oxygen mass transfer were achieved for %S 27.0 L min−1. These results demonstrated that pneumatic bioreactors can provide elevated oxygen transfer in the presence of vegetal biomass, making them an excellent option for use in three-phase systems for cellulolytic enzyme production by filamentous fungi.

  18. Monitoring gas retention and slurry transport during the transfer of waste from Tank 241-C-106 to Tank 241-AY-102

    International Nuclear Information System (INIS)

    Stewart, C.W.; Erian, F.F.; Meyer, P.A.

    1997-07-01

    The retained gas volume can be estimated by several methods. All of these methods have significant uncertainties, but together they form a preponderance of evidence that describes the gas retention behavior of the tank. The methods are (1) an increase in nonconvective layer thickness; (2) a waste surface level rise (surface level effect [SLE] model); (3) the barometric pressure effect (BPE model); (4) direct void measurement; and (5) the consequences of the transfer process. The nonconvective layer thickness can be determined with sufficient accuracy to describe the overall waste configuration by means of temperature profiles or densitometer indications. However, the presence of a nonconvective layer does not necessarily indicate significant gas retention, and small changes in layer thickness that could quantify gas retention cannot be detected reliably with the methods available. The primary value of this measurement is in establishing the actual open-quotes fluffing factorclose quotes for thermal calculations. Surface level rise is not a useful measure of gas retention in Tank 241-C-106 (C-106) since the waste level fluctuates with regular makeup water additions. In Tank 241-AY-102 (AY-102) with the existing ventilation system it should be possible to determine the gas retention rate within 30-60% uncertainty from the surface level rise, should a significant rise be observed. The planned ventilation system upgrades in AY- 102 will greatly reduce the exhaust flow and the headspace humidity, and the evaporation rate should be significantly lower when transfers begin. This could reduce the uncertainty in gas retention rate estimates to around ± 10%

  19. Mathematical Simulation of Convective Heat Transfer in the Low-Temperature Storage of Liquefied Natural Gas

    Directory of Open Access Journals (Sweden)

    Shestakov Igor A.

    2015-01-01

    Full Text Available The article shows the results of mathematical modeling of convective heat transfer in the low-temperature storage of liquefied natural gas. Regime of natural convection in an enclosure with different intensity of the heat flux at the external borders are investigated. Was examined two-dimensional nonstationary problem within the model of Navier-Stokes in dimensionless variables “vorticity - stream function - temperature”. Distributions of hydrodynamic parameters and temperatures that characterize the basic regularities of the processes are obtained. Circulating flows are determined and carried out the analysis of vortices formation mechanism and the temperature distribution in solution at conditions of natural convection when the Grashof number (Gr = 106. A significant influence of heat transfer rate on solutions boundary on flow structure and temperature field in LNG storage tanks.

  20. Characterization of Secondary Organic Aerosol Precursors Using Two-Dimensional Gas-Chromatography

    Science.gov (United States)

    Roskamp, M.; Lou, W.; Pankow, J. F.; Harley, P. C.; Turnipseed, A.; Barsanti, K. C.

    2012-12-01

    The oxidation of volatile organic compounds (VOCs) plays a role in both regional and global air quality. However, field and laboratory research indicate that the body of knowledge around the identities, quantities and oxidation processes of these compounds in the ambient atmosphere is still incomplete (e.g., Goldstein & Galbally, 2007; Robinson et al., 2009). VOCs emitted to the atmosphere largely are of biogenic origin (Guenther et al., 2006), and many studies of ambient secondary organic aerosol (SOA) suggest that SOA is largely of biogenic origin (albeit closely connected to anthropogenic activities, e.g., de Gouw and Jimenez, 2009). Accurate modeling of SOA levels and properties will require a more complete understanding of biogenic VOCs (BOCs) and their atmospheric oxidation products. For example, satellite measurements indicate that biogenic VOC emissions are two to three times greater than levels currently included in models (Heald et al., 2010). Two-dimensional gas chromatography (GC×GC) is a powerful analytical technique that shows much promise in advancing the state-of-knowledge regarding BVOCs and their role in SOA formation. In this work, samples were collected during BEACHON-RoMBAS (Bio-hydro-atmosphere Interactions of Energy, Aerosols, Carbon, H2O, Organics & Nitrogen - Rocky Mountain Biogenic Aerosol Study) in July and August of 2011. The field site was a Ponderosa Pine forest near Woodland, CO, inside the Manitou Experimental Forest, which is operated by the US Forest Service. The area is characteristic of the central Rocky Mountains and trace gas monitoring indicates that little anthropogenic pollution is transported from the nearby urban areas (Kim et al. 2010 and references therein). Ambient and enclosure samples were collected on ATD (adsorption/thermal desorption) cartridges and analyzed for BVOCs using two-dimensional gas chromatography (GC×GC) with time of flight mass spectrometry (TOFMS) and flame ionized detection (FID). Measurements of

  1. Humidity independent mass spectrometry for gas phase chemical analysis via ambient proton transfer reaction.

    Science.gov (United States)

    Zhu, Hongying; Huang, Guangming

    2015-03-31

    In this work, a humidity independent mass spectrometric method was developed for rapid analysis of gas phase chemicals. This method is based upon ambient proton transfer reaction between gas phase chemicals and charged water droplets, in a reaction chamber with nearly saturate humidity under atmospheric pressure. The humidity independent nature enables direct and rapid analysis of raw gas phase samples, avoiding time- and sample-consuming sample pretreatments in conventional mass spectrometry methods to control sample humidity. Acetone, benzene, toluene, ethylbenzene and meta-xylene were used to evaluate the analytical performance of present method. The limits of detection for benzene, toluene, ethylbenzene and meta-xylene are in the range of ∼0.1 to ∼0.3 ppbV; that of benzene is well below the present European Union permissible exposure limit for benzene vapor (5 μg m(-3), ∼1.44 ppbV), with linear ranges of approximately two orders of magnitude. The majority of the homemade device contains a stainless steel tube as reaction chamber and an ultrasonic humidifier as the source of charged water droplets, which makes this cheap device easy to assemble and facile to operate. In addition, potential application of this method was illustrated by the real time identification of raw gas phase chemicals released from plants at different physiological stages. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. Mixed convection heat transfer between a steam / non-condensable gas mixture and an inclined finned tube bundle

    Energy Technology Data Exchange (ETDEWEB)

    Cachard, F. de; Lomperski, S.; Monauni, G.R. [Paul Scherrer Inst. (PSI), Villigen (Switzerland). Lab. for Thermal-Hydraulics

    1999-07-01

    An experimental and analytical program was performed at PSI to study the performance of a finned-tube condenser in the presence of non-condensable gases at low gas mass fluxes. The model developed for this application includes mixed convection heat transfer between the vapour/non-condensable mixture and the finned-tubes, heat conduction through the fins and tubes, and evaporative heat transfer inside the tubes. The finned-tubes condenser model has been assessed against data obtained at the PSI LINX facility with two test condensers. For the 62 LINX experiments performed, the model predictions are very good, i.e., less than 10 % standard deviation between experimental and predicted results. (authors)

  3. Effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer

    International Nuclear Information System (INIS)

    Nigmatulin, B.I.; Kroshilin, A.E.; Kroshilin, V.E.

    1979-01-01

    The effect of interaction between inclusions in a gas-liquid mixture on interphase heat and mass transfer is analyzed. It is taken into account that inclusions (bubbles or drops) are not in a pure carrier phase, but in a disperse medium, mean properties of which are determined by the presence of other inclusions in it and by a temperature field around them. The consideration is carried out in the framework of two model of monodisperse mixture, i.e. that with a chaotic distribution of inclusions, and that with a regular distribution, when the distance between centers of inclusions is fixed. The correlation functions method is shown to be effective for the both models. Mean temperature fields around inclusions are determined along with the intensity of interphase heat and mass transfer. The dependences obtained are in a satisfactory agreement with experimental data. The dependence of interphase heat and mass transfer on the structure of disperse mixture is analyzed

  4. Characterisation of the volatile profiles of infant formulas by proton transfer reaction-mass spectrometry and gas chromatography-mass spectrometry

    NARCIS (Netherlands)

    Ruth, van S.M.; Floris, V.; Fayoux, S.

    2006-01-01

    The volatile profiles of 13 infant formulas were evaluated by proton transfer reaction-mass spectrometry (PTR-MS) and gas chromatography¿mass spectrometry (GC¿MS). The infant formulas varied in brand (Aptamil, Cow & Gate, SMA), type (for different infant target groups) and physical form

  5. Pneumatosis intestinalis and portal venous gas secondary to Gefitinib therapy for lung adenocarcinoma

    Directory of Open Access Journals (Sweden)

    Lee Joo

    2012-03-01

    Full Text Available Abstract Background Pneumatosis intestinalis (PI, defined as the presence of gas in the bowel wall, and portal venous gas (PVG are relatively rare radiological findings. Although several chemotherapeutic agents and anti-vascular endothelial growth factor agents are reported to be associated with PI and PVG, an association with anti-epidermal growth factor receptor (EGFR agents has not been described previously. Case presentation The present report describes a case of PI and PVG secondary to treatment with an EGFR tyrosine kinase inhibitor. A 66-year-old woman who had been diagnosed with metastatic lung adenocarcinoma presented with nausea, vomiting and abdominal distension after commencing gefitinib. A computed tomography (CT scan of the abdomen revealed PI extending from the ascending colon to the rectum, hepatic PVG, and infarction of the liver. Gefitinib therapy was discontinued immediately and the patient was managed conservatively. A follow-up CT scan 2 weeks later revealed that the PI and hepatic PVG had completely resolved. Conclusion This is the first report of PI and PVG caused by EGFR tyrosine kinase inhibitor. Although these complications are extremely rare, clinicians should be aware of the risk of PI and PVG in patients undergoing targeted molecular therapy.

  6. Radiative transfer calculations of the diffuse ionized gas in disc galaxies with cosmic ray feedback

    Science.gov (United States)

    Vandenbroucke, Bert; Wood, Kenneth; Girichidis, Philipp; Hill, Alex S.; Peters, Thomas

    2018-05-01

    The large vertical scale heights of the diffuse ionized gas (DIG) in disc galaxies are challenging to model, as hydrodynamical models including only thermal feedback seem to be unable to support gas at these heights. In this paper, we use a three-dimensional Monte Carlo radiation transfer code to post-process disc simulations of the Simulating the Life-Cycle of Molecular Clouds project that include feedback by cosmic rays. We show that the more extended discs in simulations including cosmic ray feedback naturally lead to larger scale heights for the DIG which are more in line with observed scale heights. We also show that including a fiducial cosmic ray heating term in our model can help to increase the temperature as a function of disc scale height, but fails to reproduce observed DIG nitrogen and sulphur forbidden line intensities. We show that, to reproduce these line emissions, we require a heating mechanism that affects gas over a larger density range than is achieved by cosmic ray heating, which can be achieved by fine tuning the total luminosity of ionizing sources to get an appropriate ionizing spectrum as a function of scale height. This result sheds a new light on the relation between forbidden line emissions and temperature profiles for realistic DIG gas distributions.

  7. The influence of polymeric membrane gas spargers on hydrodynamics and mass transfer in bubble column bioreactors

    DEFF Research Database (Denmark)

    Tirunehe, Gossay; Norddahl, B.

    2016-01-01

    Gas sparging performances of a flat sheet and tubular polymeric membranes were investigated in 3.1 m bubble column bioreactor operated in a semi batch mode. Air–water and air–CMC (Carboxymethyl cellulose) solutions of 0.5, 0.75 and 1.0 % w/w were used as interacting gas–liquid mediums. CMC....../s. The study indicated that the tubular membrane sparger produced the highest gas holdup and densely populated fine bubbles with narrow size distribution. An increase in liquid viscosity promoted a shift in bubble size distribution to large stable bubbles and smaller specific interfacial area. The tubular...... membrane sparger achieved greater interfacial area and an enhanced overall mass transfer coefficient (KLa) by a factor of 1.2–1.9 compared to the flat sheet membrane....

  8. Description of a heat transfer model suitable to calculate transient processes of turbocharged diesel engines with one-dimensional gas-dynamic codes

    Energy Technology Data Exchange (ETDEWEB)

    Galindo, J.; Lujan, J.M.; Serrano, J.R.; Dolz, V. [CMT-Motores Termicos, Universidad Politecnica de Valencia, Valencia (Spain); Guilain, S. [Renault s.a.s., Lardy (France)

    2006-01-15

    This paper describes a heat transfer model to be implemented in a global engine 1-D gas-dynamic code to calculate reciprocating internal combustion engine performance in steady and transient operations. A trade off between simplicity and accuracy has been looked for, in order to fit with the stated objective. To validate the model, the temperature of the exhaust manifold wall in a high-speed direct injection (HSDI) turbocharged diesel engine has been measured during a full load transient. In addition, an indirect assessment of the exhaust gas temperature during this transient process has been carried out. The results show good agreement between the measured and modelled data with good accuracy to predict the engine performance. A dual-walled air gap exhaust manifold has been tested in order to quantify the potential of exhaust gas thermal energy saving on engine transient performance. The experimental results together with the heat transfer model have been used to analyse the influence of thermal energy saving on dynamic performance during the load transient of an HSDI turbocharged diesel engine. (author)

  9. Wintertime Air-Sea Gas Transfer Rates and Air Injection Fluxes at Station Papa in the NE Pacific

    Science.gov (United States)

    McNeil, C.; Steiner, N.; Vagle, S.

    2008-12-01

    In recent studies of air-sea fluxes of N2 and O2 in hurricanes, McNeil and D'Asaro (2007) used a simplified model formulation of air-sea gas flux to estimate simultaneous values of gas transfer rate, KT, and air injection flux, VT. The model assumes air-sea gas fluxes at high to extreme wind speeds can be explained by a combination of two processes: 1) air injection, by complete dissolution of small bubbles drawn down into the ocean boundary layer by turbulent currents, and 2) near-surface equilibration processes, such as occurs within whitecaps. This analysis technique relies on air-sea gas flux estimates for two gases, N2 and O2, to solve for the two model parameters, KT and VT. We present preliminary results of similar analysis of time series data collected during winter storms at Station Papa in the NE Pacific during 2003/2004. The data show a clear increase in KT and VT with increasing NCEP derived wind speeds and acoustically measured bubble penetration depth.

  10. Creep collapse of thick-walled heat transfer tube subjected to external pressure at high temperature

    International Nuclear Information System (INIS)

    Ioka, Ikuo; Kaji, Yoshiyuki; Terunuma, Isao; Nekoya, Shin-ichi; Miyamoto, Yoshiaki

    1994-09-01

    A series of creep collapse tests of thick-walled heat transfer tube were examined experimentally and analytically to confirm an analytical method for creep deformation behavior of a heat transfer tube of an intermediate heat exchanger (IHX) at a depressurization accident of secondary cooling system of HTTR (High Temperature Engineering Test Reactor). The tests were carried out using thick-walled heat transfer tubes made of Hastelloy XR at 950degC in helium gas environment. The predictions of creep collapse time obtained by a general purpose FEM-code ABAQUS were in good agreement with the experimental results. A lot of cracks were observed on the outer surface of the test tubes after the creep collapse. However, the cracks did not pass through the tube wall and, therefore, the leak tightness was maintained regardless of a collapse deformation for all tubes tested. (author)

  11. Radioactive heavy ion secondary beams

    International Nuclear Information System (INIS)

    Bimbot, R.

    1987-01-01

    The production of secondary radioactive beams at GANIL using the LISE spectrometer is reviewed. The experimental devices, and secondary beam characteristics are summarized. Production of neutron rich secondary beams was studied for the systems Ar40 + Be at 44 MeV/u, and 018 + Be at 45 and 65 MeV/u. Partial results were also obtained for the system Ne22 + Ta at 45 MeV/u. Experiments using secondary beams are classified into two categories: those which correspond to fast transfer of nuclei from the production target to a well shielded observation point; and those in which the radioactive beam interacts with a secondary target

  12. Single-jet gas cooling of in-beam foils or specimens: Prediction of the convective heat-transfer coefficient

    Science.gov (United States)

    Steyn, Gideon; Vermeulen, Christiaan

    2018-05-01

    An experiment was designed to study the effect of the jet direction on convective heat-transfer coefficients in single-jet gas cooling of a small heated surface, such as typically induced by an accelerated ion beam on a thin foil or specimen. The hot spot was provided using a small electrically heated plate. Heat-transfer calculations were performed using simple empirical methods based on dimensional analysis as well as by means of an advanced computational fluid dynamics (CFD) code. The results provide an explanation for the observed turbulent cooling of a double-foil, Havar beam window with fast-flowing helium, located on a target station for radionuclide production with a 66 MeV proton beam at a cyclotron facility.

  13. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Unknown

    2002-05-31

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of helping U.S. independent oil and natural gas producers make timely, informed technology decisions. Networking opportunities that occur with a Houston Headquarters (HQ) location are increasing name awareness. Focused efforts by Executive Director Don Duttlinger to interact with large independents, national service companies and some majors are continuing to supplement the support base of the medium to smaller industry participants around the country. PTTC is now involved in many of the technology-related activities that occur in high oil and natural gas activity areas. Access to technology remains the driving force for those who do not have in-house research and development capabilities and look to the PTTC to provide services and options for increased efficiency. Looking forward to the future, the Board, Regional Lead Organization (RLO) Directors and HQ staff developed a 10-year vision outlining what PTTC needs to accomplish in supporting a national energy plan. This vision has been communicated to Department of Energy (DOE) staff and PTTC looks forward to continuing this successful federal-state-industry partnership. As part of this effort, several more examples of industry using information gained through PTTC activities to impact their bottom line were identified. Securing the industry pull on technology acceptance was the cornerstone of this directional plan.

  14. A gas dynamics scheme for a two moments model of radiative transfer

    International Nuclear Information System (INIS)

    Buet, Ch.; Despres, B.

    2007-01-01

    We address the discretization of the Levermore's two moments and entropy model of the radiative transfer equation. We present a new approach for the discretization of this model: first we rewrite the moment equations as a Compressible Gas Dynamics equation by introducing an additional quantity that plays the role of a density. After that we discretize using a Lagrange-projection scheme. The Lagrange-projection scheme permits us to incorporate the source terms in the fluxes of an acoustic solver in the Lagrange step, using the well-known piecewise steady approximation and thus to capture correctly the diffusion regime. Moreover we show that the discretization is entropic and preserve the flux-limited property of the moment model. Numerical examples illustrate the feasibility of our approach. (authors)

  15. Gas phase emissions from cooking processes and their secondary aerosol production potential

    Science.gov (United States)

    Klein, Felix; Platt, Stephen; Bruns, Emily; Termime-roussel, Brice; Detournay, Anais; Mohr, Claudia; Crippa, Monica; Slowik, Jay; Marchand, Nicolas; Baltensperger, Urs; Prevot, Andre; El Haddad, Imad

    2014-05-01

    Long before the industrial evolution and the era of fossil fuels, high concentrations of aerosol particles were alluded to in heavily populated areas, including ancient Rome and medieval London. Recent radiocarbon measurements (14C) conducted in modern megacities came as a surprise: carbonaceous aerosol (mainly organic aerosol, OA), a predominant fraction of particulate matter (PM), remains overwhelmingly non-fossil despite extensive fossil fuel combustion. Such particles are directly emitted (primary OA, POA) or formed in-situ in the atmosphere (secondary OA, SOA) via photochemical reactions of volatile organic compounds (VOCs). Urban levels of non-fossil OA greatly exceed the levels measured in pristine environments strongly impacted by biogenic emissions, suggesting a contribution from unidentified anthropogenic non-fossil sources to urban OA. Positive matrix factorization (PMF) techniques applied to ambient aerosol mass spectrometer (AMS, Aerodyne) data identify primary cooking emissions (COA) as one of the main sources of primary non-fossil OA in major cities like London (Allan et al., 2010), New York (Sun et al., 2011) and Beijing (Huang et al., 2010). Cooking processes can also emit VOCs that can act as SOA precursors, potentially explaining in part the high levels of oxygenated OA (OOA) identified by the AMS in urban areas. However, at present, the chemical nature of these VOCs and their secondary aerosol production potential (SAPP) remain virtually unknown. The approach adopted here involves laboratory quantification of PM and VOC emission factors from the main primary COA emitting processes and their SAPP. Primary emissions from deep-fat frying, vegetable boiling, vegetable frying and meat cooking for different oils, meats and vegetables were analysed under controlled conditions after ~100 times dilution. A high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS) and a high resolution proton transfer time-of-flight mass spectrometer (PTR

  16. Growth of a Massive Young Stellar Object Fed by a Gas Flow from a Companion Gas Clump

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xi; Shen, Zhiqiang [Shanghai Astronomical Observatories, Chinese Academy of Science, Nandan Rd. 80, Shanghai (China); Ren, Zhiyuan [National Astronomical Observatories, Chinese Academy of Science, Chaoyang District Datun Rd. A20, Beijing (China); Zhang, Qizhou [Harvard-Smithsonian Center for Astrophysics, 60 Garden St, Cambridge, MA 02138 (United States); Qiu, Keping [School of Astronomy and Space Science, Nanjing University, 22 Hankou Rd., Nanjing, Jiangsu 210093 (China)

    2017-02-01

    We present a Submillimeter Array (SMA) observation toward the young massive double-core system G350.69-0.49. This system consists of a northeast (NE) diffuse gas bubble and a southwest (SW) massive young stellar object (MYSO), both clearly seen in the Spitzer images. The SMA observations reveal a gas flow between the NE bubble and the SW MYSO in a broad velocity range from 5 to 30 km s{sup −1} with respect to the system velocity. The gas flow is well confined within the interval between the two objects and traces a significant mass transfer from the NE gas bubble to the SW massive core. The transfer flow can supply the material accreted onto the SW MYSO at a rate of 4.2×10{sup −4} M{sub ⊙} yr{sup −1}. The whole system therefore suggests a mode for the mass growth in the MYSO from a gas transfer flow launched from its companion gas clump, despite the driving mechanism of the transfer flow not being fully determined from the current data.

  17. Secondary ions produced from condensed rare gas targets under highly charged MeV/amu heavy ion bombardment

    International Nuclear Information System (INIS)

    Tawara, H.; Tonuma, T.; Kumagai, H.; Matsuo, T.

    1994-01-01

    Secondary ions produced from condensed rare gas targets are observed under MeV/amu, highly charged, heavy ion impact. The intensities of the observed cluster ions decrease smoothly as the cluster sizes become large but show some discontinuities at particular sizes of cluster ions. This seems to be closely related to the stabilities of cluster ion structures. It is also noted that very few doubly charged or practically no triply/higher charged ions have been observed, in sharp contrast to that of some condensed molecular targets. (orig.)

  18. Electron transfer reactions

    CERN Document Server

    Cannon, R D

    2013-01-01

    Electron Transfer Reactions deals with the mechanisms of electron transfer reactions between metal ions in solution, as well as the electron exchange between atoms or molecules in either the gaseous or solid state. The book is divided into three parts. Part 1 covers the electron transfer between atoms and molecules in the gas state. Part 2 tackles the reaction paths of oxidation states and binuclear intermediates, as well as the mechanisms of electron transfer. Part 3 discusses the theories and models of the electron transfer process; theories and experiments involving bridged electron transfe

  19. Is the gas-particle partitioning in alpha-pinene secondary organic aerosol reversible?

    Science.gov (United States)

    Grieshop, Andrew P.; Donahue, Neil M.; Robinson, Allen L.

    2007-07-01

    This paper discusses the reversibility of gas-particle partitioning in secondary organic aerosol (SOA) formed from α-pinene ozonolysis in a smog chamber. Previously, phase partitioning has been studied quantitatively via SOA production experiments and qualitatively by perturbing temperature and observing particle evaporation. In this work, two methods were used to isothermally dilute the SOA: an external dilution sampler and an in-chamber technique. Dilution caused some evaporation of SOA, but repartitioning took place on a time scale of tens of minutes to hours-consistent with an uptake coefficient on the order of 0.001-0.01. However, given sufficient time, α-pinene SOA repartitions reversibly based on comparisons with data from conventional SOA yield experiments. Further, aerosol mass spectrometer (AMS) data indicate that the composition of SOA varies with partitioning. These results suggest that oligomerization observed in high-concentration laboratory experiments may be a reversible process and underscore the complexity of the kinetics of formation and evaporation of SOA.

  20. Extension of weighted sum of gray gas data to mathematical simulation of radiative heat transfer in a boiler with gas-soot media.

    Science.gov (United States)

    Gharehkhani, Samira; Nouri-Borujerdi, Ali; Kazi, Salim Newaz; Yarmand, Hooman

    2014-01-01

    In this study an expression for soot absorption coefficient is introduced to extend the weighted-sum-of-gray gases data to the furnace medium containing gas-soot mixture in a utility boiler 150 MWe. Heat transfer and temperature distribution of walls and within the furnace space are predicted by zone method technique. Analyses have been done considering both cases of presence and absence of soot particles at 100% load. To validate the proposed soot absorption coefficient, the expression is coupled with the Taylor and Foster's data as well as Truelove's data for CO2-H2O mixture and the total emissivities are calculated and compared with the Truelove's parameters for 3-term and 4-term gray gases plus two soot absorption coefficients. In addition, some experiments were conducted at 100% and 75% loads to measure furnace exit gas temperature as well as the rate of steam production. The predicted results show good agreement with the measured data at the power plant site.

  1. Aerodynamics and Heat Transfer Studies of Parameters Specific to the IGCC-Requirements: Endwall Contouring, Leading Edge and Blade Tip Ejection under Rotating Turbine Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Schobeiri, Meinhard; Han, Je-Chin

    2014-09-30

    This report deals with the specific aerodynamics and heat transfer problematic inherent to high pressure (HP) turbine sections of IGCC-gas turbines. Issues of primary relevance to a turbine stage operating in an IGCC-environment are: (1) decreasing the strength of the secondary flow vortices at the hub and tip regions to reduce (a), the secondary flow losses and (b), the potential for end wall deposition, erosion and corrosion due to secondary flow driven migration of gas flow particles to the hub and tip regions, (2) providing a robust film cooling technology at the hub and that sustains high cooling effectiveness less sensitive to deposition, (3) investigating the impact of blade tip geometry on film cooling effectiveness. The document includes numerical and experimental investigations of above issues. The experimental investigations were performed in the three-stage multi-purpose turbine research facility at the Turbomachinery Performance and Flow Research Laboratory (TPFL), Texas A&M University. For the numerical investigations a commercial Navier-Stokes solver was utilized.

  2. Method translation and full metadata transfer from thermal to differential flow modulated comprehensive two dimensional gas chromatography: Profiling of suspected fragrance allergens.

    Science.gov (United States)

    Cordero, Chiara; Rubiolo, Patrizia; Reichenbach, Stephen E; Carretta, Andrea; Cobelli, Luigi; Giardina, Matthew; Bicchi, Carlo

    2017-01-13

    The possibility to transfer methods from thermal to differential-flow modulated comprehensive two-dimensional gas chromatographic (GC×GC) platforms is of high interest to improve GC×GC flexibility and increase the compatibility of results from different platforms. The principles of method translation are here applied to an original method, developed for a loop-type thermal modulated GC×GC-MS/FID system, suitable for quali-quantitative screening of suspected fragrance allergens. The analysis conditions were translated to a reverse-injection differential flow modulated platform (GC×2GC-MS/FID) with a dual-parallel secondary column and dual detection. The experimental results, for a model mixture of suspected volatile allergens and for raw fragrance mixtures of different composition, confirmed the feasibility of translating methods by preserving 1 D elution order, as well as the relative alignment of resulting 2D peak patterns. A correct translation produced several benefits including an effective transfer of metadata (compound names, MS fragmentation pattern, response factors) by automatic template transformation and matching from the original/reference method to its translated counterpart. The correct translation provided: (a) 2D pattern repeatability, (b) MS fragmentation pattern reliability for identity confirmation, and (c) comparable response factors and quantitation accuracy within a concentration range of three orders of magnitude. The adoption of a narrow bore (i.e. 0.1mm d c ) first-dimension column to operate under close-to-optimal conditions with the differential-flow modulation GC×GC platform was also advantageous in halving the total analysis under the translated conditions. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Estimation of internal heat transfer coefficients and detection of rib positions in gas turbine blades from transient surface temperature measurements

    International Nuclear Information System (INIS)

    Heidrich, P; Wolfersdorf, J v; Schmidt, S; Schnieder, M

    2008-01-01

    This paper describes a non-invasive, non-destructive, transient inverse measurement technique that allows one to determine internal heat transfer coefficients and rib positions of real gas turbine blades from outer surface temperature measurements after a sudden flow heating. The determination of internal heat transfer coefficients is important during the design process to adjust local heat transfer to spatial thermal load. The detection of rib positions is important during production to fulfill design and quality requirements. For the analysis the one-dimensional transient heat transfer problem inside of the turbine blade's wall was solved. This solution was combined with the Levenberg-Marquardt method to estimate the unknown boundary condition by an inverse technique. The method was tested with artificial data to determine uncertainties with positive results. Then experimental testing with a reference model was carried out. Based on the results, it is concluded that the presented inverse technique could be used to determine internal heat transfer coefficients and to detect rib positions of real turbine blades.

  4. Technology transfer around the corner?

    International Nuclear Information System (INIS)

    Willis, R.B.; Rowell, D.; Patchen, D.

    1994-01-01

    This paper will describe how the Oil and Gas industry can become involved in shaping a new national program to aid in the transfer of technology from a variety of sources to the hands of the local independents. Technology Transfer has been a ''buzzword'' in the Oil and Gas Industry for some time now. Most of them might admit that it has been more of a ''buzzword'' and less of an activity. While most of the operators in the Appalachian Basin want to apply the latest in technology to their exploration and production activities is has quite often been difficult to find the appropriate technology. The Department of Energy, realizing that much of the technology which exists involving Oil and Gas is seldom applied by those who work so hard to produce it efficiently, has instigated the Petroleum Technology Transfer Council (PTTC). The PTTC will be a national ''umbrella'' organization formed by the Independent Petroleum Association of America (IPAA), in cooperation with the state and regional oil and gas producer associations, the Gas Research Institute (GRI), the Interstate Oil and Gas Compact Commission (IOGGCC), and other groups. The mission of the PTTC is to foster the effective transfer of exploration and production technology to domestic producers in all regions of the country. One of the most important functions of the program will be to provide a feedback loop so that the needs and concerns of producers can be communicated effectively to the entire research community and to the Department of Energy

  5. Transfers in multiphase environment; Transferts en milieu multiphasique

    Energy Technology Data Exchange (ETDEWEB)

    Marinhas, S.; Delahaye, A.; Fournaison, L. [Cemagref - GPAN, 92 - Antony (France); Dalmazzone, D.; Furst, W. [Ecole Nationale Superieure de Techniques Avancees (ENSTA), 75 - Paris (France); Petitet, J.P. [Laboratoire d' Ingenierie des Materiaux et des Hautes Pressions (LIMHP), CNRS, 93 - Villetaneuse (France); Trinquet, F.; Royon, L.; Kayossi, H.; Guiffant, G. [Laboratoire Matiere Systeme Complexe, CNRS UMR 7057, 75 - Paris (France); El Omari, L.; Baonga, J.B.; Louahlia-Gualous, H.; Panday, P.K. [Institut FEMTO, Dept. C.R.E.S.T.-UTBM-UFC, UMR CNRS 6174, 90 - Belfort (France); Asbik, M.; Ansari, O. [UFR de Modelisation, Optimisation et Ingenierie des Systemes Energetiques, Faculte des Sciences et Techniques, Errachidia (Morocco); Zeghmati, B. [Perpignan Univ., Laboratoire de Mathematiques et Physique des Systemes, Groupe de Mecanique Energetique (M.E.P.S.-G.M.E.), EA 3086, 66 (France); Jamil, A.; Zeraouli, Y.; Dumas, J.P. [Pau Univ. et des Pays de l' Adour, Lab. de Thermique, Energetique et Procedes (LaTEP), 64 (France); Roux, P.; Fichot, F. [CEA Cadarache, Institut de Radioprotection et de Surete Nucleaire (IRSN), 13 - Saint-Paul-lez-Durance (France); Gobin, D.; Goyeau, B. [Laboratoire FAST, 91 - Orsay (France); Quintard, M. [Institut de Mecanique des Fluides, 31 - Toulouse (France); Barthes, M.; Reynard, Ch.; Santini, R.; Tadrist, L. [Laboratoire IUSTI CNRS UMR 6595, 13 - Marseille (France)

    2005-07-01

    This session about heat and mass transfers in multiphase flows gathers 17 papers dealing with: dynamic study of gas hydrate slurry applied to secondary refrigeration; ice melting inside an agitated reactor: experiment and phenomenological approach; experimental and numerical investigation of the local thickness change of a liquid film dripping around an horizontal tube; evaporation of a liquid film dripping around the external wall of an horizontal tube: laminar-turbulent transition phenomenon; coldness distribution by stabilized ice slurries, study of the behaviour under thermal cycling; study of phases disequilibria of two-phase refrigerating fluids; solidification of binary mixtures, influence of the local chemical non-equilibrium and of the effective transport properties; analysis of heat transfers during the growth of a vapor bubble; forecasting of micro-porosity inside Al-Si alloy smelting parts; estimation of a source term in a 2D transient problem: application to electron beam welding; mesoscopic approach of thermal flows; experimental and numerical study of the impact of a circular jet on a heated disc; inverse conduction method for a jet impacting a rotating cylinder: feasibility study; experimental follow up of a fusion-solidification front with and without transfer promoter; parametric study of a latent heat storage tank during horizontal drainage; stability between two layers of a same supercritical fluid; numerical modeling of the heat transfer inside a stainless steel slab. (J.S.)

  6. Mathematical simulation of the process of condensing natural gas

    OpenAIRE

    Tastandieva G.M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the...

  7. Radiant and convective heat transfer for flow of a transparent gas in a short tube with prescribed sinusoidal wall heat flux

    International Nuclear Information System (INIS)

    de Lemos, M.J.S.

    1982-01-01

    The present analysis accounts for radiant and convective heat transfer for a transparent fluid flowing in a short tube with prescribed wall heat flux. The heat flux distribution used was of sine shape with maximum at the middle of the tube. Such a solution is the approximate one for axial power in a nuclear reactor. The solutions for the tube wall and gas bulk temperatures were obtained by successive substitutions for the wall and gas balance energy equations. The results show a decrease of 30% for the maximum wall temperature using black surface (e = 1). In this same case, the increasing in the gas temperature shows a decrease of 58%

  8. Mixing of secondary organic aerosols versus relative humidity

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin

    2016-01-01

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions. PMID:27791066

  9. Mixing of secondary organic aerosols versus relative humidity.

    Science.gov (United States)

    Ye, Qing; Robinson, Ellis Shipley; Ding, Xiang; Ye, Penglin; Sullivan, Ryan C; Donahue, Neil M

    2016-10-24

    Atmospheric aerosols exert a substantial influence on climate, ecosystems, visibility, and human health. Although secondary organic aerosols (SOA) dominate fine-particle mass, they comprise myriad compounds with uncertain sources, chemistry, and interactions. SOA formation involves absorption of vapors into particles, either because gas-phase chemistry produces low-volatility or semivolatile products that partition into particles or because more-volatile organics enter particles and react to form lower-volatility products. Thus, SOA formation involves both production of low-volatility compounds and their diffusion into particles. Most chemical transport models assume a single well-mixed phase of condensing organics and an instantaneous equilibrium between bulk gas and particle phases; however, direct observations constraining diffusion of semivolatile organics into particles containing SOA are scarce. Here we perform unique mixing experiments between SOA populations including semivolatile constituents using quantitative, single-particle mass spectrometry to probe any mass-transfer limitations in particles containing SOA. We show that, for several hours, particles containing SOA from toluene oxidation resist exchange of semivolatile constituents at low relative humidity (RH) but start to lose that resistance above 20% RH. Above 40% RH, the exchange of material remains constant up to 90% RH. We also show that dry particles containing SOA from α-pinene ozonolysis do not appear to resist exchange of semivolatile compounds. Our interpretation is that in-particle diffusion is not rate-limiting to mass transfer in these systems above 40% RH. To the extent that these systems are representative of ambient SOA, we conclude that diffusion limitations are likely not common under typical ambient boundary layer conditions.

  10. The Effect of Gas Ion Bombardment on the Secondary Electron Yield of TiN, TiCN and TiZrV Coatings For Suppressing Collective Electron Effects in Storage Rings

    International Nuclear Information System (INIS)

    Le Pimpec, F.; Kirby, R.E.; King, F.K.; Pivi, M.

    2006-01-01

    In many accelerator storage rings running positively charged beams, ionization of residual gas and secondary electron emission (SEE) in the beam pipe will give rise to an electron cloud which can cause beam blow-up or loss of the circulating beam. A preventative measure that suppresses electron cloud formation is to ensure that the vacuum wall has a low secondary emission yield (SEY). The SEY of thin films of TiN, sputter deposited Non-Evaporable Getters and a novel TiCN alloy were measured under a variety of conditions, including the effect of re-contamination from residual gas

  11. Experimental analysis of heat transfer between a heated wire and a rarefied gas in an annular gap with high diameter ratio

    International Nuclear Information System (INIS)

    Chalabi, H; Lorenzini, M; Morini, G L; Buchina, O; Valougeorgis, D; Saraceno, L

    2012-01-01

    In this paper a first experimental attempt is performed to measure heat conduction through rarefied air at rest contained between two concentric cylinders. The heat transfer between a heated platinum wire having a diameter (d) of 0.15 mm, disposed along the axis of a cylindrical shell in stainless steel having an inner diameter (D) of 100 mm, and a surrounded rarefied gas has been studied experimentally and numerically. The ratio between the outer and inner diameter of the annular region filled by the gas is large (D/d=667). In the annular region filled with air the pressure was varied by using a vacuum pump from atmospheric value down to 10 −3 mbar. Temperature differences between the wire and the external stainless steel wall in the range 50-125 K were imposed and the heat power transferred from the wire to the surround was measured as a function of the gas pressure starting from air at atmospheric conditions down to 10 −3 mbar. The experimental results obtained in these tests were compared with the numerical results obtained by using the linear and nonlinear Shakhov kinetic models.

  12. Experimental and numerical investigations of heat transfer and thermal efficiency of an infrared gas stove

    Science.gov (United States)

    Charoenlerdchanya, A.; Rattanadecho, P.; Keangin, P.

    2018-01-01

    An infrared gas stove is a low-pressure gas stove type and it has higher thermal efficiency than the other domestic cooking stoves. This study considers the computationally determine water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The goal of this work is to investigate the effect of various pot diameters i.e. 220 mm, 240 mm and 260 mm on the water and air temperature distributions, water and air velocity distributions and thermal efficiency of the infrared gas stove. The time-dependent heat transfer equation involving diffusion and convection coupled with the time-dependent fluid dynamic equation is implemented and is solved by using the finite element method (FEM). The computer simulation study is validated with an experimental study, which is use standard experiment by LPG test for low-pressure gas stove in households (TIS No. 2312-2549). The findings revealed that the water and air temperature distributions increase with greater heating time, which varies with the three different pot diameters (220 mm, 240 mm and 260 mm). Similarly, the greater heating time, the water and air velocity distributions increase that vary by pot diameters (220, 240 and 260 mm). The maximum water temperature in the case of pot diameter of 220 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 260 mm, respectively. However, the maximum air temperature in the case of pot diameter of 260 mm is higher than the maximum water velocity in the case of pot diameters of 240 mm and 220 mm, respectively. The obtained results may provide a basis for improving the energy efficiency of infrared gas stoves and other equipment, including helping to reduce energy consumption.

  13. Mathematical simulation of the process of condensing natural gas

    Science.gov (United States)

    Tastandieva, G. M.

    2015-01-01

    Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG) storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of "cooling down" liquefied natural gas in terms of its partial evaporation with low cost energy.

  14. Numerical Investigation on the Flow and Heat Transfer Characteristics of Supercritical Liquefied Natural Gas in an Airfoil Fin Printed Circuit Heat Exchanger

    OpenAIRE

    Zhongchao Zhao; Kai Zhao; Dandan Jia; Pengpeng Jiang; Rendong Shen

    2017-01-01

    As a new kind of highly compact and efficient micro-channel heat exchanger, the printed circuit heat exchanger (PCHE) is a promising candidate satisfying the heat exchange requirements of liquefied natural gas (LNG) vaporization at low and high pressure. The effects of airfoil fin arrangement on heat transfer and flow resistance were numerically investigated using supercritical liquefied natural gas (LNG) as working fluid. The thermal properties of supercritical LNG were tested by utilizing t...

  15. Experimental and numerical investigations of high temperature gas heat transfer and flow in a VHTR reactor core

    Science.gov (United States)

    Valentin Rodriguez, Francisco Ivan

    High pressure/high temperature forced and natural convection experiments have been conducted in support of the development of a Very High Temperature Reactor (VHTR) with a prismatic core. VHTRs are designed with the capability to withstand accidents by preventing nuclear fuel meltdown, using passive safety mechanisms; a product of advanced reactor designs including the implementation of inert gases like helium as coolants. The present experiments utilize a high temperature/high pressure gas flow test facility constructed for forced and natural circulation experiments. This work examines fundamental aspects of high temperature gas heat transfer applied to VHTR operational and accident scenarios. Two different types of experiments, forced convection and natural circulation, were conducted under high pressure and high temperature conditions using three different gases: air, nitrogen and helium. The experimental data were analyzed to obtain heat transfer coefficient data in the form of Nusselt numbers as a function of Reynolds, Grashof and Prandtl numbers. This work also examines the flow laminarization phenomenon (turbulent flows displaying much lower heat transfer parameters than expected due to intense heating conditions) in detail for a full range of Reynolds numbers including: laminar, transition and turbulent flows under forced convection and its impact on heat transfer. This phenomenon could give rise to deterioration in convection heat transfer and occurrence of hot spots in the reactor core. Forced and mixed convection data analyzed indicated the occurrence of flow laminarization phenomenon due to the buoyancy and acceleration effects induced by strong heating. Turbulence parameters were also measured using a hot wire anemometer in forced convection experiments to confirm the existence of the flow laminarization phenomenon. In particular, these results demonstrated the influence of pressure on delayed transition between laminar and turbulent flow. The heat

  16. Effect of carrier gas composition on transferred arc metal nanoparticle synthesis

    International Nuclear Information System (INIS)

    Stein, Matthias; Kiesler, Dennis; Kruis, Frank Einar

    2013-01-01

    Metal nanoparticles are used in a great number of applications; an effective and economical production scaling-up is hence desirable. A simple and cost-effective transferred arc process is developed, which produces pure metal (Zn, Cu, and Ag) nanoparticles with high production rates, while allowing fast optimization based on energy efficiency. Different carrier gas compositions, as well as the electrode arrangements and the power input are investigated to improve the production and its efficiency and to understand the arc production behavior. The production rates are determined by a novel process monitoring method, which combines an online microbalance method with a scanning mobility particle sizer for fast production rate and size distribution measurement. Particle characterization is performed via scanning electron microscopy, energy-dispersive X-ray spectroscopy, and X-ray diffraction measurements. It is found that the carrier gas composition has the largest impact on the particle production rate and can increase it with orders of magnitude. This appears to be not only a result of the increased heat flux and melt temperature but also of the formation of tiny nitrogen (hydrogen) bubbles in the molten feedstock, which impacts feedstock evaporation significantly in bi-atomic gases. A production rate of sub 200 nm particles from 20 up to 2,500 mg/h has been realized for the different metals. In this production range, specific power consumptions as low as 0.08 kWh/g have been reached.

  17. The Application of Discontinuous Galerkin Methods in Conjugate Heat Transfer Simulations of Gas Turbines

    Directory of Open Access Journals (Sweden)

    Zeng-Rong Hao

    2014-11-01

    Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.

  18. 75 FR 39680 - Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid...

    Science.gov (United States)

    2010-07-12

    ... DEPARTMENT OF ENERGY Federal Energy Regulatory Commission [Docket No. PR10-44-000; Docket No. PR10-46-000; Docket No. PR10-48- 000; Docket No. PR10-49-000; Docket No. PR10-50-000] Houston Pipe Line Company LP, Worsham-Steed Gas Storage, L.P., Energy Transfer Fuel, LP, Mid Continent Market Center, L.L.C...

  19. Kinetics and dynamics of near-resonant vibrational energy transfer in gas ensembles of atmospheric interest

    Science.gov (United States)

    McCaffery, Anthony J.

    2018-03-01

    This study of near-resonant, vibration-vibration (V-V) gas-phase energy transfer in diatomic molecules uses the theoretical/computational method, of Marsh & McCaffery (Marsh & McCaffery 2002 J. Chem. Phys. 117, 503 (doi:10.1063/1.1489998)) The method uses the angular momentum (AM) theoretical formalism to compute quantum-state populations within the component molecules of large, non-equilibrium, gas mixtures as the component species proceed to equilibration. Computed quantum-state populations are displayed in a number of formats that reveal the detailed mechanism of the near-resonant V-V process. Further, the evolution of quantum-state populations, for each species present, may be followed as the number of collision cycles increases, displaying the kinetics of evolution for each quantum state of the ensemble's molecules. These features are illustrated for ensembles containing vibrationally excited N2 in H2, O2 and N2 initially in their ground states. This article is part of the theme issue `Modern theoretical chemistry'.

  20. Liquid-gas mass transfer at drop structures

    DEFF Research Database (Denmark)

    Matias, Natércia; Nielsen, Asbjørn Haaning; Vollertsen, Jes

    2017-01-01

    -water mass transfer, little is known about hydrogen sulfide emission under highly turbulent conditions (e.g., drop structures, hydraulic jumps). In this study, experimental work was carried out to analyze the influence of characteristics of drops on reaeration. Physical models were built, mimicking typical...... sewer drop structures and allowing different types of drops, drop heights, tailwater depths and flow rates. In total, 125 tests were performed. Based on their results, empirical expressions translating the relationship between the mass transfer of oxygen and physical parameters of drop structures were...... established. Then, by applying the two-film theory with two-reference substances, the relation to hydrogen sulfide release was defined. The experiments confirmed that the choice of the type of drop structure is critical to determine the uptake/emission rates. By quantifying the air-water mass transfer rates...

  1. Measurement of gas-liquid two-phase flow around horizontal tube bundle using SF6-water. Simulating high-pressure high-temperature gas-liquid two-phase flow of PWR/SG secondary coolant side at normal pressure

    International Nuclear Information System (INIS)

    Ishikawa, Atsushi; Imai, Ryoj; Tanaka, Takahiro

    2014-01-01

    In order to improve prediction accuracy of analysis code used for design and development of industrial products, technology had been developed to create and evaluate constitutive equation incorporated in analysis code. The experimental facility for PWR/SG U tubes part was manufactured to measure local void fraction and gas-liquid interfacial velocity with forming gas-liquid upward two-phase flow simulating high-pressure high-temperature secondary coolant (water-steam) rising vertically around horizontal tube bundle. The experimental facility could reproduce flow field having gas-liquid density ratio equivalent to real system with no heating using SF6 (Sulfur Hexafluoride) gas at normal temperature and pressure less than 1 MPa, because gas-liquid density ratio, surface tension and gas-liquid viscosity ratio were important parameters to determine state of gas-liquid two-phase flow and gas-liquid density ratio was most influential. Void fraction was measured by two different methods of bi-optical probe and conductivity type probe. Test results of gas-liquid interfacial velocity vs. apparent velocity were in good agreement with existing empirical equation within 10% error, which could confirm integrity of experimental facility and appropriateness of measuring method so as to set up original constitutive equation in the future. (T. Tanaka)

  2. Mathematical simulation of the process of condensing natural gas

    Directory of Open Access Journals (Sweden)

    Tastandieva G.M.

    2015-01-01

    Full Text Available Presents a two-dimensional unsteady model of heat transfer in terms of condensation of natural gas at low temperatures. Performed calculations of the process heat and mass transfer of liquefied natural gas (LNG storage tanks of cylindrical shape. The influence of model parameters on the nature of heat transfer. Defined temperature regimes eliminate evaporation by cooling liquefied natural gas. The obtained dependence of the mass flow rate of vapor condensation gas temperature. Identified the possibility of regulating the process of “cooling down” liquefied natural gas in terms of its partial evaporation with low cost energy.

  3. Field synergy characteristics in condensation heat transfer with non-condensable gas over a horizontal tube

    Directory of Open Access Journals (Sweden)

    Junxia Zhang

    2017-05-01

    Full Text Available Field synergy characteristics in condensation heat transfer with non-condensable gas (NCG over a horizontal tube were numerically simulated. Consequently, synergy angles between velocity and pressure or temperature gradient fields, gas film layer thickness, and induced velocity and shear stress on gas–liquid interface were obtained. Results show that synergy angles between velocity and temperature gradient fields are within 73.2°–88.7° and ascend slightly with the increment in mainstream velocity and that the synergy is poor. However, the synergy angle between velocity and pressure gradient fields decreases intensively with the increase in mainstream velocity at θ ≤ 30°, thereby improving the pressure loss. As NCG mass fraction increases, the gas film layer thickness enlarges and the induced velocity and shear stress on gas–liquid interface decreases. The synergy angles between velocity and temperature gradient fields increase, and the synergy angles between velocity and pressure gradient fields change at θ = 70°, decrease at θ 70°. When the horizontal tube circumference angle increases, the synergy angles between velocity and temperature or pressure gradient fields decrease, the synergy between velocity and pressure fields enhances, and the synergy between velocity and temperature fields degrades.

  4. The missing dimension of knowledge transfer from subsidiaries to headquarters: The case of Oil and Gas companies in CEE region

    Directory of Open Access Journals (Sweden)

    Emil Velinov

    2016-12-01

    Full Text Available The paper identifies knowledge management determinants of knowledge transfer from subsidiaries to headquarters in the top Oil & Gas companies in Central and Eastern Europe as their level of innovations, internationalization and economic importance are emerging. The paper sheds a light not only on the process of knowledge transfer parent-subsidiary but via versa as it is critical in the 21st century for better adapting to specific business needs in certain geographical regions. Thus, this reversed knowledge from subsidiaries to headquarters is critical for the given business sector where the level of innovation and amount of R&D investments are enormous. The study argues that the reversed process of knowledge transfers from subsidiary to parent company is positively related to company performance and business diversification. Nowadays the knowledge formed in the subsidiaries of Multinational Corporations (MNCs is transferred to headquarters by investing in R&D centres, building new exploration and testing sites abroad. In the reversed knowledge transfer process we can identify main challenges, which are very critical to analyse and determine the exact process.

  5. Interaction of chemical reactions and radiant heat transfer with temperature turbulent pulsations and its effect on heat traner in high-temperature gas flows

    International Nuclear Information System (INIS)

    Petukhov, B.S.; Zal'tsman, I.G.; Shikov, V.K.

    1980-01-01

    Methods of taking account of mutual effect of chemical transformations, radiation and turbulence in the calculations of heat transfer in gas flows are considered. Exponential functions of medium parameters are used to describe chemical sources and optical properties of media. It is shown using as an example the dissociation reaction C 2 reversible 2C that the effect of temperature and composition pulsations on recombination rates is negligibly small. It is also shown on the example of turbulent flow of hot molecular gas in a flat channel with cold walls that at moderate temperatures the effect of temperature pulsations on heat radiation flow can be significant (30-40%). The calculational results also show that there is a region in a turbulent boundary layer where the radiation greatly affects the coefficient of turbulent heat transfer

  6. Evaluation of radiation heat transfer in porous medial: Application for a pebble bed modular reactor cooled by CO2 gas

    Directory of Open Access Journals (Sweden)

    Sidi-Ali Kamel

    2013-01-01

    Full Text Available This work analyses the contribution of radiation heat transfer in the cooling of a pebble bed modular reactor. The mathematical model, developed for a porous medium, is based on a set of equations applied to an annular geometry. Previous major works dealing with the subject have considered the forced convection mode and often did not take into account the radiation heat transfer. In this work, only free convection and radiation heat transfer are considered. This can occur during the removal of residual heat after shutdown or during an emergency situation. In order to derive the governing equations of radiation heat transfer, a steady-state in an isotropic and emissive porous medium (CO2 is considered. The obtained system of equations is written in a dimensionless form and then solved. In order to evaluate the effect of radiation heat transfer on the total heat removed, an analytical method for solving the system of equations is used. The results allow quantifying both radiation and free convection heat transfer. For the studied situation, they show that, in a pebble bed modular reactor, more than 70% of heat is removed by radiation heat transfer when CO2 is used as the coolant gas.

  7. Space benefits: The secondary application of aerospace technology in other sectors of the economy. [(information dissemination and technology transfer from NASA programs)

    Science.gov (United States)

    1974-01-01

    Space Benefits is a publication that has been prepared for the NASA Technology Utilization Office by the Denver Research Institute's Program for Transfer Research and Impact Studies, to provide the Agency with accurate, convenient, and integrated resource information on the transfer of aerospace technology to other sectors of the U.S. economy. The technological innovations derived from NASA space programs and their current applications in the following areas are considered: (1) manufacturing consumer products, (2) manufacturing capital goods, (3) new consumer products and retailing, (4) electric utilities, (5) environmental quality, (6) food production and processing, (7) government, (8) petroleum and gas, (9) construction, (10) law enforcement, and (11) highway transportation.

  8. Numerical modelling of methane oxidation efficiency and coupled water-gas-heat reactive transfer in a sloping landfill cover.

    Science.gov (United States)

    Feng, S; Ng, C W W; Leung, A K; Liu, H W

    2017-10-01

    Microbial aerobic methane oxidation in unsaturated landfill cover involves coupled water, gas and heat reactive transfer. The coupled process is complex and its influence on methane oxidation efficiency is not clear, especially in steep covers where spatial variations of water, gas and heat are significant. In this study, two-dimensional finite element numerical simulations were carried out to evaluate the performance of unsaturated sloping cover. The numerical model was calibrated using a set of flume model test data, and was then subsequently used for parametric study. A new method that considers transient changes of methane concentration during the estimation of the methane oxidation efficiency was proposed and compared against existing methods. It was found that a steeper cover had a lower oxidation efficiency due to enhanced downslope water flow, during which desaturation of soil promoted gas transport and hence landfill gas emission. This effect was magnified as the cover angle and landfill gas generation rate at the bottom of the cover increased. Assuming the steady-state methane concentration in a cover would result in a non-conservative overestimation of oxidation efficiency, especially when a steep cover was subjected to rainfall infiltration. By considering the transient methane concentration, the newly-modified method can give a more accurate oxidation efficiency. Copyright © 2017. Published by Elsevier Ltd.

  9. Lunar ash flow with heat transfer.

    Science.gov (United States)

    Pai, S. I.; Hsieh, T.; O'Keefe, J. A.

    1972-01-01

    The most important heat-transfer process in the ash flow under consideration is heat convection. Besides the four important nondimensional parameters of isothermal ash flow (Pai et al., 1972), we have three additional important nondimensional parameters: the ratio of the specific heat of the gas, the ratio of the specific heat of the solid particles to that of gas, and the Prandtl number. We reexamine the one dimensional steady ash flow discussed by Pai et al. (1972) by including the effects of heat transfer. Numerical results for the pressure, temperature, density of the gas, velocities of gas and solid particles, and volume fraction of solid particles as function of altitude for various values of the Jeffreys number, initial velocity ratio, and two different gas species (steam and hydrogen) are presented.

  10. Equations for nickel-chromium wire heaters of column transfer lines in gas chromatographic-electroantennographic detection (GC-EAD).

    Science.gov (United States)

    Byers, John A

    2004-05-30

    Heating of chromatographic columns, transfer lines, and other devices is often required in neuroscience research. For example, volatile compounds passing through a capillary column of a gas chromatograph (GC) can be split, with half exiting the instrument through a heated transfer line to an insect antenna or olfactory sensillum for electroantennographic detector (GC-EAD) recordings. The heated transfer line is used to prevent condensation of various chemicals in the capillary that would otherwise occur at room temperature. Construction of such a transfer line heater is described using (80/20%) nickel-chromium heating wire wrapped in a helical coil and powered by a 120/220 V ac rheostat. Algorithms were developed in a computer program to estimate the voltage at which a rheostat should be set to obtain the desired heater temperature for a specific coil. The coil attributes (radius, width, number of loops, or length of each loop) are input by the user, as well as AWG size of heating wire and desired heater temperature. The program calculates total length of wire in the helix, resistance of the wire, amperage used, and the voltage to set the rheostat. A discussion of semiochemical isolation methods using the GC-EAD and bioassays is presented.

  11. Investigation of physico-chemical processes in hypervelocity MHD-gas acceleration wind tunnels

    International Nuclear Information System (INIS)

    Alfyorov, V.I.; Dmitriev, L.M.; Yegorov, B.V.; Markachev, Yu.E.

    1995-01-01

    The calculation results for nonequilibrium physicochemical processes in the circuit of the hypersonic MHD-gas acceleration wind tunnel are presented. The flow in the primary nozzle is shown to be in thermodynamic equilibrium at To=3400 K, Po=(2∼3)x10 5 Pa, M=2 used in the plenum chamber. Variations in the static pressure due to oxidation reaction of Na, K are pointed out. The channels of energy transfer from the electric field to different degrees of freedom of an accelerated gas with Na, K seeds are considered. The calculation procedure for gas dynamic and kinetic processes in the MHD-channel using measured parameters is suggested. The calculated results are compared with the data obtained in a thermodynamic gas equilibrium assumption. The flow in the secondary nozzle is calculated under the same assumptions and the gas parameters at its exit are evaluated. Particular attention is given to the influence of seeds on flows over bodies. It is shown that the seeds exert a very small influence on the flow behind a normal shock wave. The seeds behind an oblique shock wave accelerate deactivation of vibrations of N 2 , but this effect is insignificant

  12. Heat and mass transfer for turbulent flow of chemically reacting gas in eccentric annular channels

    International Nuclear Information System (INIS)

    Besedina, T.V.; Tverkovkin, B.E.; Udot, A.V.; Yakushev, A.P.

    1988-01-01

    Because of the possibility of using dissociating gases as coolants and working bodies of nuclear power plants, it is necessary to develop computational algorithms for calculating heat and mass transfer processes under conditions of nonequilibrium flow of chemically reacting gases not only in axisymmetric channels, but also in channels with a complex transverse cross section (including also in eccentric annular channels). An algorithm is proposed for calculating the velocity, temperature, and concentration fields under conditions of cooling of a cylindrical heat-releasing rod, placed off-center in a circular casing pipe, by a longitudinal flow of chemically reacting gas [N 2 O 4

  13. Device for purifying exhaust gas

    International Nuclear Information System (INIS)

    Makita, Kiyoshi.

    1973-01-01

    Purpose: To ensure the reliability in collection of krypton even on accident in liquidizing distillation tower. Constitution: Exhaust gas flows through active carbon adsorption tower where short half-life rare gas in exhaust gas is separated by adsorption, then through heat exchanger, then continuous distillation tower where krypton 85 is separated, then through batch distillation tower where krypton 85 is condensed, and then flows into storing cylinder. On accident in liquidizing distillation tower, at the first period exhaust gas flows through series connected active carbon adsorption tower, krypton 85 adsorbed in adsorption tower being transferred to cooling type adsorption tower, at the next period exhaust gas flows through tower, krypton 85 adsorbed in adsorption tower being transferred to tower. (M. K.)

  14. The matrix effect in secondary ion mass spectrometry

    Science.gov (United States)

    Seah, M. P.; Shard, A. G.

    2018-05-01

    Matrix effects in the secondary ion mass spectrometry (SIMS) of selected elemental systems have been analyzed to investigate the applicability of a mathematical description of the matrix effect, called here the charge transfer (CT) model. This model was originally derived for proton exchange and organic positive secondary ions, to characterise the enhancement or suppression of intensities in organic binary systems. In the systems considered in this paper protons are specifically excluded, which enables an assessment of whether the model applies for electrons as well. The present importance is in organic systems but, here we analyse simpler inorganic systems. Matrix effects in elemental systems cannot involve proton transfer if there are no protons present but may be caused by electron transfer and so electron transfer may also be involved in the matrix effects for organic systems. There are general similarities in both the magnitudes of the ion intensities as well as the matrix effects for both positive and negative secondary ions in both systems and so the CT model may be more widely applicable. Published SIMS analyses of binary elemental mixtures are analyzed. The data of Kim et al., for the Pt/Co system, provide, with good precision, data for such a system. This gives evidence for the applicability of the CT model, where electron, rather than proton, transfer is the matrix enhancing and suppressing mechanism. The published data of Prudon et al., for the important Si/Ge system, provides further evidence for the effects for both positive and negative secondary ions and allows rudimentary rules to be developed for the enhancing and suppressing species.

  15. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1986-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during steady-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K hot-leg fluid temperatures, 6.2 MPa secondary pressure). The MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  16. Steady-state heat transfer in an inverted U-tube steam generator

    International Nuclear Information System (INIS)

    Boucher, T.J.

    1987-01-01

    Experimental results are presented involving U-tube steam generator tube bundle local heat transfer and fluid conditions during stead-state, full-power operations performed at high temperatures and pressures with conditions typical of a pressurized water reactor (15.0 MPa primary pressure, 600 K steam generator inlet plenum fluid temperatures, 6.2 MPa secondary pressure). The Semiscale (MOD-2C facility represents the state-of-the-art in measurement of tube local heat transfer data and average tube bundle secondary fluid density at several elevations, which allows an estimate of the axial heat transfer and void distributions during steady-state and transient operations. The method of heat transfer data reduction is presented and the heat flux, secondary convective heat transfer coefficient, and void fraction distributions are quantified for steady-state, full-power operations

  17. Simulation for temperature changing investigation at RSG-GAS cooling system

    International Nuclear Information System (INIS)

    Utaja

    2002-01-01

    The RSG-GAS cooling system considers of primary and secondary system, is used for heat rejection from reactor core to the atmosphere. For temperature changing investigation cause by atmospherics condition changing or coolant flow rate changing, is more safe done by simulation. This paper describes the simulation for determine the RSG-GAS coolant temperature changing base on heat exchange and cooling tower characteristic. The simulation is done by computer programme running under WINDOWS 95 or higher. The temperature changing is based on heat transfer process on heat exchanger and cooling tower. The simulation will show the water tank temperature changing caused by the temperature and humidity of the atmosphere or by coolant flow rate changing. For example the humidity changing from 60% to 80% atmospherics temperature 30 oC and 32400 k Watt power will change the tank temperature from 37,97 oC to 40,03 oC

  18. Secondary natural gas recovery: Targeted applications for infield reserve growth in midcontinent reservoirs, Boonsville Field, Fort Worth Basin, Texas. Topical report, May 1993--June 1995

    Energy Technology Data Exchange (ETDEWEB)

    Hardage, B.A.; Carr, D.L.; Finley, R.J.; Tyler, N.; Lancaster, D.E.; Elphick, R.Y.; Ballard, J.R.

    1995-07-01

    The objectives of this project are to define undrained or incompletely drained reservoir compartments controlled primarily by depositional heterogeneity in a low-accommodation, cratonic Midcontinent depositional setting, and, afterwards, to develop and transfer to producers strategies for infield reserve growth of natural gas. Integrated geologic, geophysical, reservoir engineering, and petrophysical evaluations are described in complex difficult-to-characterize fluvial and deltaic reservoirs in Boonsville (Bend Conglomerate Gas) field, a large, mature gas field located in the Fort Worth Basin of North Texas. The purpose of this project is to demonstrate approaches to overcoming the reservoir complexity, targeting the gas resource, and doing so using state-of-the-art technologies being applied by a large cross section of Midcontinent operators.

  19. MOLECULAR GAS IN YOUNG DEBRIS DISKS

    International Nuclear Information System (INIS)

    Moor, A.; Abraham, P.; Kiss, Cs.; Juhasz, A.; Kospal, A.; Pascucci, I.; Apai, D.; Henning, Th.; Csengeri, T.; Grady, C.

    2011-01-01

    Gas-rich primordial disks and tenuous gas-poor debris disks are usually considered as two distinct evolutionary phases of the circumstellar matter. Interestingly, the debris disk around the young main-sequence star 49 Ceti possesses a substantial amount of molecular gas and possibly represents the missing link between the two phases. Motivated to understand the evolution of the gas component in circumstellar disks via finding more 49 Ceti-like systems, we carried out a CO J = 3-2 survey with the Atacama Pathfinder EXperiment, targeting 20 infrared-luminous debris disks. These systems fill the gap between primordial and old tenuous debris disks in terms of fractional luminosity. Here we report on the discovery of a second 49 Ceti-like disk around the 30 Myr old A3-type star HD21997, a member of the Columba Association. This system was also detected in the CO(2-1) transition, and the reliable age determination makes it an even clearer example of an old gas-bearing disk than 49 Ceti. While the fractional luminosities of HD21997 and 49 Ceti are not particularly high, these objects seem to harbor the most extended disks within our sample. The double-peaked profiles of HD21997 were reproduced by a Keplerian disk model combined with the LIME radiative transfer code. Based on their similarities, 49 Ceti and HD21997 may be the first representatives of a so far undefined new class of relatively old (∼>8 Myr), gaseous dust disks. From our results, neither primordial origin nor steady secondary production from icy planetesimals can unequivocally explain the presence of CO gas in the disk of HD21997.

  20. Immediate Nerve Transfer for Treatment of Peroneal Nerve Palsy Secondary to an Intraneural Ganglion: Case Report and Review.

    Science.gov (United States)

    Ratanshi, Imran; Clark, Tod A; Giuffre, Jennifer L

    2018-05-01

    Intraneural ganglion cysts, which occur within the common peroneal nerve, are a rare cause of foot drop. The current standard of treatment for intraneural ganglion cysts involving the common peroneal nerve involves (1) cyst decompression and (2) ligation of the articular nerve branch to prevent recurrence. Nerve transfers are a time-dependent strategy for recovering ankle dorsiflexion in cases of high peroneal nerve palsy; however, this modality has not been performed for intraneural ganglion cysts involving the common peroneal nerve. We present a case of common peroneal nerve palsy secondary to an intraneural ganglion cyst occurring in a 74-year-old female. The patient presented with a 5-month history of pain in the right common peroneal nerve distribution and foot drop. The patient underwent simultaneous cyst decompression, articular nerve branch ligation, and nerve transfer of the motor branch to flexor hallucis longus to a motor branch of anterior tibialis muscle. At final follow-up, the patient demonstrated complete (M4+) return of ankle dorsiflexion, no pain, no evidence of recurrence and was able to bear weight without the need for orthotic support. Given the minimal donor site morbidity and recovery of ankle dorsiflexion, this report underscores the importance of considering early nerve transfers in cases of high peroneal neuropathy due to an intraneural ganglion cyst.

  1. Gas-phase products and secondary organic aerosol formation from the ozonolysis and photooxidation of myrcene

    Science.gov (United States)

    Böge, Olaf; Mutzel, Anke; Iinuma, Yoshiteru; Yli-Pirilä, Pasi; Kahnt, Ariane; Joutsensaari, Jorma; Herrmann, Hartmut

    2013-11-01

    In this study, the ozone and OH-radical reactions of myrcene were investigated in an aerosol chamber (at 292-295 K and 50% relative humidity) to examine the gas-phase oxidation products and secondary organic aerosol (SOA) formation. The ozone reaction studies were performed in the presence and absence of CO, which serves as an OH radical scavenger. In the photooxidation experiments OH radicals were generated by photolysis of methyl nitrite. The ozonolysis of myrcene in the presence of CO resulted in a substantial yield of 4-vinyl-4-pentenal (55.3%), measured as m/z 111 plus m/z 93 using proton transfer reaction-mass spectrometry (PTR-MS) and confirmed unambiguously as C7H10O by denuder measurements and HPLC/ESI-TOFMS analysis of its 2,4-dinitrophenylhydrazine (DNPH) derivative. Additionally, the formation of two different organic dicarbonyls with m/z 113 and a molecular formula of C6H8O2 were observed (2.1%). The yields of these dicarbonyls were higher in the ozonolysis experiments without an OH scavenger (5.4%) and even higher (13.8%) in the myrcene OH radical reaction. The formation of hydroxyacetone as a direct product of the myrcene reaction with ozone with a molar yield of 17.6% was also observed. The particle size distribution and volume concentrations were monitored and facilitated the calculation of SOA yields, which ranged from 0 to 0.01 (ozonolysis in the presence of CO) to 0.39 (myrcene OH radical reaction). Terpenylic acid was found in the SOA samples collected from the ozonolysis of myrcene in the absence of an OH scavenger and the OH radical-initiated reaction of myrcene but not in samples collected from the ozonolysis in the presence of CO as an OH radical scavenger, suggesting that terpenylic acid formation involves the reaction of myrcene with an OH radical. A reaction mechanism describing the formation of terpenylic acid is proposed.

  2. Collisions of highly stripped ions at MeV energies in gas targets: charge transfer and ionization

    International Nuclear Information System (INIS)

    Schlachter, A.S.

    1980-01-01

    Cross sections have been measured for charge transfer and ionization in H 2 and rare-gas targets by fast, highly ionized carbon, iron, niobium, and lead ions in charge states +3 to +59, with energies in the range 0.1 to 4.8 MeV/amu. Experimental results are compared with classical-trajectory calculations; agreement is generally good. For a given target, the cross sections for net ionization reduce to a common curve when plotted as cross section divided by charge state versus energy per nucleon divided by charge state

  3. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    Energy Technology Data Exchange (ETDEWEB)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung [Korea Institute of Nuclear Safety, Daejeon (Korea, Republic of)

    2009-07-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed.

  4. TRACE assessment on local condensation heat transfer in presence of non-condensable gas inside a vertical tube

    International Nuclear Information System (INIS)

    Cho, Yong Jin; Ahn, Seung Hoon; Kim, Kap; Kim, Hho Jung

    2009-01-01

    TRACE assessment was performed to investigate local condensation heat transfer coefficients in the presence of a noncondensable gas inside a vertical tube. The data obtained from pure steam and steam/nitrogen mixture condensation experiments were compared to study the effects of noncondensable nitrogen gas on the annular film condensation phenomena. The condenser tube had a small inner diameter of 13mm (about 1/2-in.) and this experiment had been performed to prove the effectiveness of the a Passive Residual Heat Removal System (PRHRS) of SMART (System-integrated Modular Advanced ReacTor), which is a small modular integral-type pressurized water reactor that is developed for the dual purposes of seawater desalination and small-scaled power generation. In the case of nitrogen presence, TRACE results show the converged results but the prediction is different from experimental data. The candidate reasons can be focused on several models, such as the film thickness calculation, surface area, and condensation heat transfer correlations, etc. In the case of pure steam condensation case, TRACE results shows large oscillations and do not converge. This should be investigated in detail to identify the reason. Until now, the oscillation in thermal hydraulic parameters results from the film thickness calculation and surface area calculation. For future works, the whole sets of the experiment will be assessed and the improvement of TRACE will be performed

  5. Flow and heat transfer in gas turbine disk cavities subject to nonuniform external pressure field

    Energy Technology Data Exchange (ETDEWEB)

    Roy, R.P.; Kim, Y.W.; Tong, T.W. [Arizona State Univ., Tempe, AZ (United States)

    1995-10-01

    Injestion of hot gas from the main-stream gas path into turbine disk cavities, particularly the first-stage disk cavity, has become a serious concern for the next-generation industrial gas turbines featuring high rotor inlet temperature. Fluid temperature in the cavities increases further due to windage generated by fluid drag at the rotating and stationary surfaces. The resulting problem of rotor disk heat-up is exacerbated by the high disk rim temperature due to adverse (relatively flat) temperature profile of the mainstream gas in the annular flow passage of the turbine. A designer is concerned about the level of stresses in the turbine rotor disk and its durability, both of which are affected significantly by the disk temperature distribution. This distribution also plays a major role in the radial position of the blade tip and thus, in establishing the clearance between the tip and the shroud. To counteract mainstream gas ingestion as well as to cool the rotor and the stator disks, it is necessary to inject cooling air (bled from the compressor discharge) into the wheel space. Since this bleeding of compressor air imposes a penalty on the engine cycle performance, the designers of disk cavity cooling and sealing systems need to accomplish these tasks with the minimum possible amount of bleed air without risking disk failure. This requires detailed knowledge of the flow characteristics and convective heat transfer in the cavity. The flow in the wheel space between the rotor and stator disks is quite complex. It is usually turbulent and contains recirculation regions. Instabilities such as vortices oscillating in space have been observed in the flow. It becomes necessary to obtain both a qualitative understanding of the general pattern of the fluid motion as well as a quantitative map of the velocity and pressure fields.

  6. Investigation on the performance and emission parameters of dual fuel diesel engine with mixture combination of hydrogen and producer gas as secondary fuel

    Directory of Open Access Journals (Sweden)

    A. E. Dhole

    2016-06-01

    Full Text Available This study presents experimental investigation in to the effects of using mixture of producer gas and hydrogen in five different proportions as a secondary fuel with diesel as pilot fuel at wide range of load conditions in dual fuel operation of a 4 cylinder turbocharged and intercooled 62.5 kW gen-set diesel engine at constant speed of 1500 RPM. Secondary fuel Substitution is in different percentage of diesel at each load. To generate producer gas, the rice husk was used as source in the downdraft gasifier. The performance and emission characteristics of the dual fuel engine are compared with that of diesel engine at different load conditions. It was found that of all the combinations tested, mixture combination of PG:H2=(60:40% is the most suited one at which the brake thermal efficiency is in good comparison to that of diesel operation. Decreased NOx emissions and increased CO emissions were observed for dual fuel mode for all the fuel combinations compared to diesel fuel operation.

  7. Co-evolution of secondary metabolite gene clusters and their host

    DEFF Research Database (Denmark)

    Kjærbølling, Inge; Vesth, Tammi Camilla; Frisvad, Jens Christian

    Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of speci....... We investigate the dynamic evolutionary relationship between the cluster and the host by examining the genes within the cluster and the number of homologous genes found within the host and in closely related species.......Secondary metabolite gene cluster evolution is mainly driven by two events: gene duplication and annexation and horizontal gene transfer. Here we use comparative genomics of Aspergillus species to investigate the evolution of secondary metabolite (SM) gene clusters across a wide spectrum of species...

  8. Cross-Calibration of Secondary Electron Multiplier in Noble Gas Analysis

    Science.gov (United States)

    Santato, Alessandro; Hamilton, Doug; Deerberg, Michael; Wijbrans, Jan; Kuiper, Klaudia; Bouman, Claudia

    2015-04-01

    The latest generation of multi-collector noble gas mass spectrometers has decisively improved the precision in isotopic ratio analysis [1, 2] and helped the scientific community to address new questions [3]. Measuring numerous isotopes simultaneously has two significant advantages: firstly, any fluctuations in signal intensity have no effect on the isotope ratio and secondly, the analysis time is reduced. This particular point becomes very important in static vacuum mass spectrometry where during the analysis, the signal intensity decays and at the same time the background increases. However, when multi-collector analysis is utilized, it is necessary to pay special attention to the cross calibration of the detectors. This is a key point in order to have accurate and reproducible isotopic ratios. In isotope ratio mass spectrometry, with regard to the type of detector (i.e. Faraday or Secondary Electron Multiplier, SEM), analytical technique (TIMS, MC-ICP-MS or IRMS) and isotope system of interest, several techniques are currently applied to cross-calibrate the detectors. Specifically, the gain of the Faraday cups is generally stable and only the associated amplifier must be calibrated. For example, on the Thermo Scientific instrument control systems, the 1011 and 1012 ohm amplifiers can easily be calibrated through a fully software controlled procedure by inputting a constant electric signal to each amplifier sequentially [4]. On the other hand, the yield of the SEMs can drift up to 0.2% / hour and other techniques such as peak hopping, standard-sample bracketing and multi-dynamic measurement must be used. Peak hopping allows the detectors to be calibrated by measuring an ion beam of constant intensity across the detectors whereas standard-sample bracketing corrects the drift of the detectors through the analysis of a reference standard of a known isotopic ratio. If at least one isotopic pair of the sample is known, multi-dynamic measurement can be used; in this

  9. Analytical linear energy transfer model including secondary particles: calculations along the central axis of the proton pencil beam

    International Nuclear Information System (INIS)

    Marsolat, F; De Marzi, L; Mazal, A; Pouzoulet, F

    2016-01-01

    In proton therapy, the relative biological effectiveness (RBE) depends on various types of parameters such as linear energy transfer (LET). An analytical model for LET calculation exists (Wilkens’ model), but secondary particles are not included in this model. In the present study, we propose a correction factor, L sec , for Wilkens’ model in order to take into account the LET contributions of certain secondary particles. This study includes secondary protons and deuterons, since the effects of these two types of particles can be described by the same RBE-LET relationship. L sec was evaluated by Monte Carlo (MC) simulations using the GATE/GEANT4 platform and was defined by the ratio of the LET d distributions of all protons and deuterons and only primary protons. This method was applied to the innovative Pencil Beam Scanning (PBS) delivery systems and L sec was evaluated along the beam axis. This correction factor indicates the high contribution of secondary particles in the entrance region, with L sec values higher than 1.6 for a 220 MeV clinical pencil beam. MC simulations showed the impact of pencil beam parameters, such as mean initial energy, spot size, and depth in water, on L sec . The variation of L sec with these different parameters was integrated in a polynomial function of the L sec factor in order to obtain a model universally applicable to all PBS delivery systems. The validity of this correction factor applied to Wilkens’ model was verified along the beam axis of various pencil beams in comparison with MC simulations. A good agreement was obtained between the corrected analytical model and the MC calculations, with mean-LET deviations along the beam axis less than 0.05 keV μm −1 . These results demonstrate the efficacy of our new correction of the existing LET model in order to take into account secondary protons and deuterons along the pencil beam axis. (paper)

  10. Improvements to secondary coolant circuits of a liquid metal cooled nuclear reactor

    International Nuclear Information System (INIS)

    Brachet, Alain.

    1981-01-01

    This invention concerns improvements to secondary coolant-systems for sodium cooled nuclear reactors. It further concerns a protective device for a free level mechanical pump which prevents any gas bubbles due to leaks of the working gas of the pump from entering the secondary system of the nuclear reactor [fr

  11. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa

    2018-03-06

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer polyhydroxybutyrate (PHB). Using the same medium in both stages, first, acetic acid is produced (3.2 g L−1) by Acetobacterium woodii from 5.2 L gas-mixture of CO2:H2 (15:85 v/v) under elevated pressure (≥2.0 bar) to increase H2-solubility in water. Second, acetic acid is converted to PHB (3 g L−1 acetate into 0.5 g L−1 PHB) by Ralstonia eutropha H16. The efficiencies and space-time yields were evaluated, and our data show the conversion of CO2 into PHB with a 33.3% microbial cell content (percentage of the ratio of PHB concentration to cell concentration) after 217 h. Collectively, our results provide a resourceful platform for future optimization and commercialization of a Bio-GTL for PHB production.

  12. Formation rate of natural gas hydrate

    Energy Technology Data Exchange (ETDEWEB)

    Mork, Marit

    2002-07-01

    The rate of methane hydrate and natural gas hydrate formation was measured in a 9.5 litre stirred tank reactor of standard design. The experiments were performed to better understand the performance and scale-up of a reactor for continuous production of natural gas hydrates. The hydrate formation rate was measured at steady-state conditions at pressures between 70 and 90 bar and temperatures between 7 and 15 deg C. Between 44 and 56 % of the gas continuously supplied to the reactor was converted to hydrate. The experimental results show that the rate of hydrate formation is strongly influenced by gas injection rate and pressure. The effect of stirring rate is less significant and subcooling has no observable effect on the formation rate. Hydrate crystal concentration and gas composition do not influence the hydrate formation rate. Observations of produced hydrate crystals indicate that the crystals are elongated, about 5 micron in diameter and 10 micron long. Analysis of the results shows that the rate of hydrate formation is dominated by gas-liquid mass transfer. A mass transfer model, the bubble-to-crystal model, was developed for the hydrate formation rate in a continuous stirred tank reactor, given in terms of concentration driving force and an overall mass transfer coefficient. The driving force is the difference between the gas concentration at the gas-liquid interface and at the hydrate crystal surface. These concentrations correspond to the solubility of gas in water at experimental temperature and pressure and the solubility of gas at hydrate equilibrium temperature and experimental pressure, respectively. The overall mass transfer coefficient is expressed in terms of superficial gas velocity and impeller power consumption, parameters commonly used in study of stirred tank reactors. Experiments and modeling show that the stirred tank reactor has a considerable potential for increased production capacity. However, at higher hydrate production rates the

  13. Thermally driven gas flow beneath Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Amter, S.; Lu, Ning; Ross, B.

    1991-01-01

    A coupled thermopneumatic model is developed for simulating heat transfer, rock-gas flow and carbon-14 travel time beneath Yucca Mountain, NV. The aim of this work is to understand the coupling of heat transfer and gas flow. Heat transfer in and near the potential repository region depends on several factors, including the geothermal gradient, climate, and local sources of heat such as radioactive wastes. Our numerical study shows that small temperature changes at the surface can change both the temperature field and the gas flow pattern beneath Yucca Mountain. A lateral temperature difference of 1 K is sufficient to create convection cells hundreds of meters in size. Differences in relative humidities between gas inside the mountain and air outside the mountain also significantly affect the gas flow field. 6 refs., 7 figs

  14. Mass transfer apparatus and method for separation of gases

    Energy Technology Data Exchange (ETDEWEB)

    Blount, Gerald C.; Gorensek, Maximilian Boris; Hamm, Luther L.

    2018-01-16

    A process and apparatus for separating components of a source gas is provided in which more soluble components of the source gas are dissolved in an aqueous solvent at high pressure. The system can utilize hydrostatic pressure to increase solubility of the components of the source gas. The apparatus includes gas recycle throughout multiple mass transfer stages to improve mass transfer of the targeted components from the liquid to gas phase. Separated components can be recovered for use in a value added application or can be processed for long-term storage, for instance in an underwater reservoir.

  15. Proton transfer and complex formation of angiotensin I ions with gaseous molecules at various temperature

    International Nuclear Information System (INIS)

    Nonose, Shinji; Yamashita, Kazuki; Sudo, Ayako; Kawashima, Minami

    2013-01-01

    Highlights: • Proton transfer from angiotensin I ions (z = 2, 3) to gaseous molecules was studied. • Temperature dependence of absolute reaction rate constants was measured. • Remarkable changes were obtained for distribution of product ions and reaction rate constants. • Proton transfer reaction was enhanced and reduced by complex formation. • Conformation changes are induced by complex formation and or by thermal collision with He. - Abstract: Proton transfer reactions of angiotensin I ions for +2 charge state, [M + 2H] 2+ , to primary, secondary and aromatic amines were examined in the gas phase. Absolute reaction rate constants for proton transfer were determined from intensities of parent and product ions in the mass spectra. Temperature dependence of the reaction rate constants was measured. Remarkable change was observed for distribution of product ions and reaction rate constants. Proton transfer reaction was enhanced or reduced by complex formation of [M + 2H] 2+ with gaseous molecules. The results relate to conformation changes of [M + 2H] 2+ with change of temperature, which are induced by complex formation and or by thermal collision with He. Proton transfer reactions of angiotensin I ions for +3 charge state, [M + 3H] 3+ , were also studied. The reaction rates did not depend on temperature so definitely

  16. Condensation heat transfer on natural convection at the high pressure

    International Nuclear Information System (INIS)

    Jong-Won, Kim; Hyoung-Kyoun, Ahn; Goon-Cherl, Park

    2007-01-01

    The Regional Energy Research Institute for the Next Generation is to develop a small scale electric power system driven by an environment-friendly and stable small nuclear reactor. REX-10 has been developed to assure high system safety in order to be placed in densely populated region and island. REX-10 adopts the steam-gas pressurizer to assure the inherent safety. The thermal-hydraulic phenomena in the steam-gas pressurizer are very complex. Especially, the condensation heat transfer with noncondensable gas on the natural convection is important to evaluate the pressurizer behavior. However, there have been few investigations on the condensation in the presence of noncondensable gas at the high pressure. In this study, the theoretical model is developed to estimate the condensation heat transfer at the high pressure using heat and mass transfer analogy. The analysis results show good agreement with correlations and experimental data. It is found that the condensation heat transfer coefficient increases as the total pressure increases or the mass fraction of the non-condensable gas decreases. In addition, the heat transfer coefficient no more increases over the specific pressure

  17. Third party access pricing to the network, secondary capacity market and economic optimum: the case of natural gas

    International Nuclear Information System (INIS)

    David, L.; Percebois, J.

    2002-09-01

    The gas deregulation process implies crucial choices concerning access to transportation networks. These choices deal with the nature, the structure and the level of access fees. This paper proposes an evaluation of different systems implemented both in Europe and North America, in relation to normative pricing references. The rules according to which shippers can buy or sell capacity represent another kind of choice that Regulators have to make. This paper proposes a simple model which demonstrates that secondary market prices should not be subject to a cap and emphasizes the need of a 'use-it-or-lose-it' rule on this market. (authors)

  18. Hydrodynamics and mass transfer deaeration of water on thermal power plants when used natural gas as a desorbing agent

    Science.gov (United States)

    Sharapov, V. I.; Kudryavtseva, E. V.

    2017-11-01

    The technology of low-temperature deaeration of water in thermal power plants was developed. It is proposed to use natural gas supplied to the furnace as desorbing agent in the deaerator instead steam or superheated water. Natural gas has low, often - negative temperature after reducing installs. At the same time, it contains virtually no corrosive gases, oxygen and carbon dioxide, thereby successfully may be used as a stripping agent in water deaeration. The calculation of the energy efficiency of the technology for a typical unit of CHP has shown that achieved a significant annual saving of fuel equivalent in the transition from the traditional method of deaeration of water in the low temperature deaeration. Hydrodynamic and mass transfer indicators were determined for the deaerator thermal power plants using as stripping medium natural gas supplied to the boiler burners. Theoretically required amount and the real specific consumption of natural gas were estimated for deaeration of water standard quality. The calculation of the hydrodynamic characteristics was presented for jet-bubbling atmospheric deaerator with undescended perforated plate when operating on natural gas. The calculation shows the possibility of using commercially available atmospheric deaerators for the application of the new low-temperature water deaeration technology.

  19. Methods of natural gas liquefaction and natural gas liquefaction plants utilizing multiple and varying gas streams

    Science.gov (United States)

    Wilding, Bruce M; Turner, Terry D

    2014-12-02

    A method of natural gas liquefaction may include cooling a gaseous NG process stream to form a liquid NG process stream. The method may further include directing the first tail gas stream out of a plant at a first pressure and directing a second tail gas stream out of the plant at a second pressure. An additional method of natural gas liquefaction may include separating CO.sub.2 from a liquid NG process stream and processing the CO.sub.2 to provide a CO.sub.2 product stream. Another method of natural gas liquefaction may include combining a marginal gaseous NG process stream with a secondary substantially pure NG stream to provide an improved gaseous NG process stream. Additionally, a NG liquefaction plant may include a first tail gas outlet, and at least a second tail gas outlet, the at least a second tail gas outlet separate from the first tail gas outlet.

  20. Storage and transmission of secondary energy

    International Nuclear Information System (INIS)

    Taube, M.

    1979-09-01

    In the area of the total energy flow, possibilities and limits of shifts in time (storage) and in space (transfer) of secondary energy, i.e. electrical, chemical and thermal energy are examined and formulated. These shifts are linked to the qualitative conversions of secondary energy. The multiple technological possibilities, the spectrum of governing factors and the numerous technical and economical parameters show that only a complex optimization is possible. (Auth.)

  1. Numerical investigation of supercritical LNG convective heat transfer in a horizontal serpentine tube

    Science.gov (United States)

    Han, Chang-Liang; Ren, Jing-Jie; Dong, Wen-Ping; Bi, Ming-Shu

    2016-09-01

    The submerged combustion vaporizer (SCV) is indispensable general equipment for liquefied natural gas (LNG) receiving terminals. In this paper, numerical simulation was conducted to get insight into the flow and heat transfer characteristics of supercritical LNG on the tube-side of SCV. The SST model with enhanced wall treatment method was utilized to handle the coupled wall-to-LNG heat transfer. The thermal-physical properties of LNG under supercritical pressure were used for this study. After the validation of model and method, the effects of mass flux, outer wall temperature and inlet pressure on the heat transfer behaviors were discussed in detail. Then the non-uniformity heat transfer mechanism of supercritical LNG and effect of natural convection due to buoyancy change in the tube was discussed based on the numerical results. Moreover, different flow and heat transfer characteristics inside the bend tube sections were also analyzed. The obtained numerical results showed that the local surface heat transfer coefficient attained its peak value when the bulk LNG temperature approached the so-called pseudo-critical temperature. Higher mass flux could eliminate the heat transfer deteriorations due to the increase of turbulent diffusion. An increase of outer wall temperature had a significant influence on diminishing heat transfer ability of LNG. The maximum surface heat transfer coefficient strongly depended on inlet pressure. Bend tube sections could enhance the heat transfer due to secondary flow phenomenon. Furthermore, based on the current simulation results, a new dimensionless, semi-theoretical empirical correlation was developed for supercritical LNG convective heat transfer in a horizontal serpentine tube. The paper provided the mechanism of heat transfer for the design of high-efficiency SCV.

  2. Dissociation of protonated N-(3-phenyl-2H-chromen-2-ylidene)-benzenesulfonamide in the gas phase: cyclization via sulfonyl cation transfer.

    Science.gov (United States)

    Wang, Shanshan; Dong, Cheng; Yu, Lian; Guo, Cheng; Jiang, Kezhi

    2016-01-15

    In the tandem mass spectrometry of protonated N-(3-phenyl-2H-chromen-2-ylidene)benzenesulfonamides, the precursor ions have been observed to undergo gas-phase dissociation via two competing channels: (a) the predominant channel involves migration of the sulfonyl cation to the phenyl C atom and the subsequent loss of benzenesulfinic acid along with cyclization reaction, and (b) the minor one involves dissociation of the precursor ion to give an ion/neutral complex of [sulfonyl cation/imine], followed by decomposition to afford sulfonyl cation or the INC-mediated electron transfer to give an imine radical cation. The proposed reaction channels have been supported by theoretical calculations and D-labeling experiments. The gas-phase cyclization reaction originating from the N- to C-sulfonyl cation transfer has been first reported to the best of our knowledge. For the substituted sulfonamides, the presence of electron-donating groups (R(2) -) at the C-ring effectively facilitates the reaction channel of cyclization reaction, whereas that of electron-withdrawing groups inhibits this pathway. Copyright © 2015 John Wiley & Sons, Ltd.

  3. Process and system for removing impurities from a gas

    Science.gov (United States)

    Henningsen, Gunnar; Knowlton, Teddy Merrill; Findlay, John George; Schlather, Jerry Neal; Turk, Brian S

    2014-04-15

    A fluidized reactor system for removing impurities from a gas and an associated process are provided. The system includes a fluidized absorber for contacting a feed gas with a sorbent stream to reduce the impurity content of the feed gas; a fluidized solids regenerator for contacting an impurity loaded sorbent stream with a regeneration gas to reduce the impurity content of the sorbent stream; a first non-mechanical gas seal forming solids transfer device adapted to receive an impurity loaded sorbent stream from the absorber and transport the impurity loaded sorbent stream to the regenerator at a controllable flow rate in response to an aeration gas; and a second non-mechanical gas seal forming solids transfer device adapted to receive a sorbent stream of reduced impurity content from the regenerator and transfer the sorbent stream of reduced impurity content to the absorber without changing the flow rate of the sorbent stream.

  4. Analysis of Heat Transfer and Pressure Drop for a Gas Flowing Through a set of Multiple Parallel Flat Plates at High Temperatures

    Science.gov (United States)

    Einstein, Thomas H.

    1961-01-01

    Equations were derived representing heat transfer and pressure drop for a gas flowing in the passages of a heater composed of a series of parallel flat plates. The plates generated heat which was transferred to the flowing gas by convection. The relatively high temperature level of this system necessitated the consideration of heat transfer between the plates by radiation. The equations were solved on an IBM 704 computer, and results were obtained for hydrogen as the working fluid for a series of cases with a gas inlet temperature of 200 R, an exit temperature of 5000 0 R, and exit Mach numbers ranging from 0.2 to O.8. The length of the heater composed of the plates ranged from 2 to 4 feet, and the spacing between the plates was varied from 0.003 to 0.01 foot. Most of the results were for a five- plate heater, but results are also given for nine plates to show the effect of increasing the number of plates. The heat generation was assumed to be identical for each plate but was varied along the length of the plates. The axial variation of power used to obtain the results presented is the so-called "2/3-cosine variation." The boundaries surrounding the set of plates, and parallel to it, were assumed adiabatic, so that all the power generated in the plates went into heating the gas. The results are presented in plots of maximum plate and maximum adiabatic wall temperatures as functions of parameters proportional to f(L/D), for the case of both laminar and turbulent flow. Here f is the Fanning friction factor and (L/D) is the length to equivalent diameter ratio of the passages in the heater. The pressure drop through the heater is presented as a function of these same parameters, the exit Mach number, and the pressure at the exit of the heater.

  5. Heat transfer in turbocharger turbines under steady, pulsating and transient conditions

    International Nuclear Information System (INIS)

    Burke, R.D.; Vagg, C.R.M.; Chalet, D.; Chesse, P.

    2015-01-01

    Highlights: • Compare turbine heat transfer correlations from different studies. • Compare heat transfer for a same turbine on-engine and on gas-stand. • Analyse heat transfer under steady and transient operating conditions. • Gas stand heat transfer correlations are transferrable to engine conditions. • Heat flows can be reversed compared to steady conditions during transients. - Abstract: Heat transfer is significant in turbochargers and a number of mathematical models have been proposed to account for the heat transfer, however these have predominantly been validated under steady flow conditions. A variable geometry turbocharger from a 2.2 L Diesel engine was studied, both on gas stand and on-engine, under steady and transient conditions. The results showed that heat transfer accounts for at least 20% of total enthalpy change in the turbine and significantly more at lower mechanical powers. A convective heat transfer correlation was derived from experimental measurements to account for heat transfer between the gases and the turbine housing and proved consistent with those published from other researchers. This relationship was subsequently shown to be consistent between engine and gas stand operation: using this correlation in a 1D gas dynamics simulation reduced the turbine outlet temperature error from 33 °C to 3 °C. Using the model under transient conditions highlighted the effect of housing thermal inertia. The peak transient heat flow was strongly linked to the dynamics of the turbine inlet temperature: for all increases, the peak heat flow was higher than under thermally stable conditions due to colder housing. For all decreases in gas temperature, the peak heat flow was lower and for temperature drops of more than 100 °C the heat flow was reversed during the transient

  6. 46 CFR 153.976 - Transfer of packaged cargo or ship's stores.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Transfer of packaged cargo or ship's stores. 153.976 Section 153.976 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SHIPS CARRYING BULK LIQUID, LIQUEFIED GAS, OR COMPRESSED GAS HAZARDOUS MATERIALS Operations Cargo Transfer Procedures § 153.976 Transfer of...

  7. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration

    International Nuclear Information System (INIS)

    Patel, Tejal Manish; Nath, Kaushik

    2014-01-01

    A semi-empirical model has been applied to predict the permeate flux and mass transfer resistances during the cross flow nanofiltration of molasses wastewater in flat-sheet module. The model includes laminar flow regime as well as flow in presence of gas sparging at two different gas velocities. Membrane hydraulic resistance (R m ), osmotic pressure resistance (R osm ) and the concentration polarization resistance (R cp ) were considered in series. The concentration polarization resistance was correlated to the operating conditions, namely, the feed concentration, the trans-membrane pressure difference and the cross flow velocity for a selected range of experiments. There was an appreciable reduction of concentration polarization resistance R cp spar in presence of gas sparging. Both the concentration polarization resistance R cp lam and osmotic pressure resistance R osm decreased with cross-flow velocity, but increased with feed concentration and the operating pressure. Experimental and theoretical permeate flux values as a function of cross flow velocity for both the cases, in the presence and absence of gas sparging, were also compared

  8. Modeling of permeate flux and mass transfer resistances in the reclamation of molasses wastewater by a novel gas-sparged nanofiltration

    Energy Technology Data Exchange (ETDEWEB)

    Patel, Tejal Manish; Nath, Kaushik [G H Patel College of Engineering and Technology, Gujarat (India)

    2014-10-15

    A semi-empirical model has been applied to predict the permeate flux and mass transfer resistances during the cross flow nanofiltration of molasses wastewater in flat-sheet module. The model includes laminar flow regime as well as flow in presence of gas sparging at two different gas velocities. Membrane hydraulic resistance (R{sub m}), osmotic pressure resistance (R{sub osm}) and the concentration polarization resistance (R{sub cp}) were considered in series. The concentration polarization resistance was correlated to the operating conditions, namely, the feed concentration, the trans-membrane pressure difference and the cross flow velocity for a selected range of experiments. There was an appreciable reduction of concentration polarization resistance R{sub cp}{sup spar} in presence of gas sparging. Both the concentration polarization resistance R{sub cp}{sup lam} and osmotic pressure resistance R{sub osm} decreased with cross-flow velocity, but increased with feed concentration and the operating pressure. Experimental and theoretical permeate flux values as a function of cross flow velocity for both the cases, in the presence and absence of gas sparging, were also compared.

  9. Flow pattern-based mass and heat transfer and frictional drag of gas-non-Newtonian liquid flow in helical coil: two- and three-phase systems

    Science.gov (United States)

    Thandlam, Anil Kumar; Das, Chiranjib; Majumder, Subrata Kumar

    2017-04-01

    Investigation of wall-liquid mass transfer and heat transfer phenomena with gas-Newtonian and non-Newtonian fluids in vertically helical coil reactor have been reported in this article. Experiments were conducted to investigate the effect of various dynamic and geometric parameters on mass and heat transfer coefficients in the helical coil reactor. The flow pattern-based heat and mass transfer phenomena in the helical coil reactor are highlighted at different operating conditions. The study covered a wide range of geometric parameters such as diameter of the tube ( d t ), diameter of the coil ( D c ), diameter of the particle ( d p ), pitch difference ( p/D c ) and concentrations of non-Newtonian liquid. The correlation models for the heat and mass transfer coefficient based on the flow pattern are developed which may be useful in process scale-up of the helical coil reactor for industrial application. The frictional drag coefficient was also estimated and analyzed by mass transfer phenomena based on the electrochemical method.

  10. Evaluation of Pentachlorophenol Residues in Some Hygienic Papers Prepared from Virgin and Secondary Pulp by Electron Capture Gas Chromatographic Method

    Directory of Open Access Journals (Sweden)

    Behrouz Akbari-adergani

    2016-01-01

    Full Text Available In this study, residual amount of pentachlorophenol (PCP as the most important paper preservative, which is extremely hazardous pollutant, was determined in some tissue papers and napkins. Twenty-five samples of two producing hygienic paper factories prepared from virgin and secondary pulp were analyzed for the presence of trace amount of PCP. The analytical procedure involved direct extraction of PCP from hygienic paper and its determination by gas chromatography with electron capture detection. The statistical results for the analysis of all samples revealed that there were significant differences between mean of PCP in hygienic papers prepared from virgin and secondary pulp (P<0.05. This method gave recoveries of 86-98% for hygienic paper made from virgin pulp and 79-92% for hygienic paper made from secondary pulp. The limit of detection (LOD and limit of quantification (LOQ for PCP were 6.3 and 21.0 mg/kg, respectively. The analytical method has the requisite sensitivity, accuracy, precision and specificity to assay PCP in hygienic papers. This study demonstrates a concern with exposition to PCP considering that hygienic paper is largely consumed in the society.

  11. 33 CFR 127.1315 - Preliminary transfer inspection.

    Science.gov (United States)

    2010-07-01

    ... (CONTINUED) WATERFRONT FACILITIES WATERFRONT FACILITIES HANDLING LIQUEFIED NATURAL GAS AND LIQUEFIED HAZARDOUS GAS Waterfront Facilities Handling Liquefied Hazardous Gas Operations § 127.1315 Preliminary... capacity of each storage tank to or from which LHG will be transferred, to ensure that it is safe for...

  12. Crystalline lens dislocation secondary to bacterial endogenous endophthalmitis.

    Science.gov (United States)

    Sangave, Amit; Komati, Rahul; Weinmann, Allison; Samuel, Linoj; Desai, Uday

    2017-09-01

    To present an unusual case of endogenous endophthalmitis secondary to Group A streptococcus (GAS) that resulted in dislocation of the crystalline lens. An immunocompetent 51-year-old man presented to the emergency room (ER) with upper respiratory infection (URI) symptoms and painful right eye. He was diagnosed with URI and viral conjunctivitis and discharged on oral azithromycin and polytrim eyedrops. He returned to the ER 30 h later with sepsis and findings consistent with endophthalmitis, including light perception only vision. Ophthalmology was consulted at this time and an emergent vitreous tap and injection was performed. Both blood and vitreous cultures grew an atypical non-hemolytic variant of GAS ( Streptococcus pyogenes ). The primary source of infection was presumed to be secondary to pharyngitis or cutaneous dissemination. Final vision in the affected eye was no light perception, likely from a combination of anterior segment scarring, posterior segment damage, and hypotony. Interestingly, head computed tomography (CT) at the initial ER presentation showed normal lens position, but repeat CT at re-presentation revealed posterior dislocation of the lens. Endophthalmitis secondary to GAS has been sparsely reported in the literature, and this case highlights a unique clinical presentation. We suspect that this atypical non-hemolytic strain may have evaded detection on initial pharyngeal cultures. Additionally, we hypothesize that GAS-mediated protease release resulted in breakdown of the zonular fibers and subsequent lens dislocation. Ophthalmologists should be aware of GAS and its devastating intraocular manifestations.

  13. Valve for gas centrifuges

    Science.gov (United States)

    Hahs, Charles A.; Burbage, Charles H.

    1984-01-01

    The invention is a pneumatically operated valve assembly for simultaneously (1) closing gas-transfer lines connected to a gas centrifuge or the like and (2) establishing a recycle path between two of the lines so closed. The valve assembly is especially designed to be compact, fast-acting, reliable, and comparatively inexpensive. It provides large reductions in capital costs for gas-centrifuge cascades.

  14. Effective technology transfer through regional information teams

    International Nuclear Information System (INIS)

    Wicks, D.E.; Gahan, B.; Hoyle, G.

    1997-01-01

    Communication and the transfer of technical information is critical to the international gas industry. The technical research results developed through Gas Research Institute's natural gas supply program have been disseminated through a number of vehicles. Two primary vehicles are GRI's Information Centers and Regional Technology Transfer Agents (RTTA). The Information Centers serve as repositories for GRI information as well as provide no-cost literature searching expertise. The RTTAs actively communicate and interface with area producers, introducing potential technology adopters with GRI technology managers and/or the appropriate licensed product or service distributors. The combination of Information Centers and RTTAs continues to help independent producers break through the barriers of technology and accelerate the benefits of lower cost natural gas recovery. (au)

  15. Charge amplification and transfer processes in the gas electron multiplier

    International Nuclear Information System (INIS)

    Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.

    1999-01-01

    We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers

  16. A heat transfer analysis of the CCI experiments 1-3

    International Nuclear Information System (INIS)

    Sevon, Tuomo

    2008-01-01

    This paper presents an attempt to evaluate the heat transfer rates and gas release rates in the CCI core-concrete interaction experiments 1-3, performed within the OECD MCCI project. A new method for calculating the heat transfer rates has been developed. It is based on calculating integrals of the concrete enthalpies with the help of piecewise exponential interpolation curves. The new method takes into account heat conduction in the concrete. Compared to traditional methods, the new method gives better results during slow concrete ablation, and its time resolution is significantly better. The gas release rates from the concrete were also calculated. A regression analysis was conducted for the heat transfer coefficients and gas release rates. Three correlations for the bubbling-enhanced heat transfer were developed. For the basemat, a single correlation can be used for both siliceous and limestone/common sand (LCS) concrete types. For the sidewall, two different correlations are needed for the two concrete types. With the same superficial gas velocity, the heat transfer rate to siliceous sidewalls is higher than to LCS sidewalls. This suggests that the reason for the different radial ablation rates of the concrete types observed in the tests is not the lower gas content of siliceous concrete

  17. HTCC - a heat transfer model for gas-steam mixtures

    International Nuclear Information System (INIS)

    Papadimitriou, P.

    1983-01-01

    The mathematical model HTCC (Heat Transfer Coefficient in Containment) has been developed for RALOC after a loss-of-coolant accident in order to determine the local heat transfer coefficients for transfer between the containment atmosphere and the walls of the reactor building. The model considers the current values of room and wall temperature, the concentration of steam and non-condensible gases, geometry data and those of fluid dynamics together with thermodynamic parameters and from these determines the heat transfer mechanisms due to convection, radiation and condensation. The HTCC is implemented in the RALOC program. Comparative analyses of computed temperature profiles, for HEDL Standard problems A and B on hydrogen distribution, and of computed temperature profiles determined during the heat-up phase in the CSE-A5 experiment show a good agreement with experimental data. (orig.) [de

  18. Third party access pricing to the network, secondary capacity market and economic optimum: the case of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    David, L.; Percebois, J

    2002-09-01

    The gas deregulation process implies crucial choices concerning access to transportation networks. These choices deal with the nature, the structure and the level of access fees. This paper proposes an evaluation of different systems implemented both in Europe and North America, in relation to normative pricing references. The rules according to which shippers can buy or sell capacity represent another kind of choice that Regulators have to make. This paper proposes a simple model which demonstrates that secondary market prices should not be subject to a cap and emphasizes the need of a 'use-it-or-lose-it' rule on this market. (authors)

  19. 13 CFR 120.644 - Transfers of Certificates.

    Science.gov (United States)

    2010-01-01

    ... 13 Business Credit and Assistance 1 2010-01-01 2010-01-01 false Transfers of Certificates. 120.644 Section 120.644 Business Credit and Assistance SMALL BUSINESS ADMINISTRATION BUSINESS LOANS Secondary Market Miscellaneous Provisions § 120.644 Transfers of Certificates. (a) General rule. Certificates are...

  20. CO2 storage in depleted gas reservoirs: A study on the effect of residual gas saturation

    Directory of Open Access Journals (Sweden)

    Arshad Raza

    2018-03-01

    Full Text Available Depleted gas reservoirs are recognized as the most promising candidate for carbon dioxide storage. Primary gas production followed by injection of carbon dioxide after depletion is the strategy adopted for secondary gas recovery and storage practices. This strategy, however, depends on the injection strategy, reservoir characteristics and operational parameters. There have been many studies to-date discussing critical factors influencing the storage performance in depleted gas reservoirs while little attention was given to the effect of residual gas. In this paper, an attempt was made to highlight the importance of residual gas on the capacity, injectivity, reservoir pressurization, and trapping mechanisms of storage sites through the use of numerical simulation. The results obtained indicated that the storage performance is proportionally linked to the amount of residual gas in the medium and reservoirs with low residual fluids are a better choice for storage purposes. Therefore, it would be wise to perform the secondary recovery before storage in order to have the least amount of residual gas in the medium. Although the results of this study are useful to screen depleted gas reservoirs for the storage purpose, more studies are required to confirm the finding presented in this paper.

  1. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Tilley, Mitch; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Nagandran, Uneshddarann; Quick, Ralph

    2015-01-26

    There is a significant amount of financial risk associated with geothermal drilling; however, there are opportunities to improve upon current practices and technologies used. The scope of this drilling operational study included 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'perfect well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.), poor data collection, and difficult to ascertain handwriting. An online software database was used to format drilling data to IADC coded daily drilling reports and generate analysis figures. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averages 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million would be lost due to non-productive time in the 21 geothermal wells and only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry. It is the use of Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. However, a work-flow must also be established in order for there to be an efficient drilling program. Potential improvements for current geothermal operations are: the use of electronic records, real

  2. Optimizing Geothermal Drilling: Oil and Gas Technology Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Denninger, Kate; Eustes, Alfred; Visser, Charles; Baker, Walt; Bolton, Dan; Bell, Jason; Bell, Sean; Jacobs, Amelia; Nagandran, Uneshddarann; Tilley, Mitch; Quick, Ralph

    2015-09-02

    There is a significant amount of financial risk associated with geothermal drilling. This study of drilling operations seeks opportunities to improve upon current practices and technologies. The scope of this study included analyzing 21 geothermal wells and 21 oil and gas wells. The goal was to determine a 'Perfect Well' using historical data to compare the best oil and gas well to the best geothermal well. Unfortunately, limitations encountered in the study included missing data (bit records, mud information, etc.) and poor data collection practices An online software database was used to format drilling data to IADC coded daily drilling reports and generate figures for analysis. Six major issues have been found in geothermal drilling operations. These problems include lost circulation, rig/ equipment selection, cementing, penetration rate, drilling program, and time management. As a result of these issues, geothermal drilling averaged 56.4 days longer than drilling comparable oil and gas wells in the wells in this study. Roughly $13.9 million was spent on non-productive time in the 21 geothermal wells, compared with only $1.3 million in the oil and gas wells, assuming a cost of $50,000 per day. Comparable events such as drilling the same sized hole, tripping in/out, cementing, and running the same size casing took substantially less time in the oil and gas wells. Geothermal wells were drilled using older and/or less advanced technology to depths less than 10,000 feet, while oil and gas wells reached 12,500 feet faster with purpose built rigs. A new approach is now underway that will optimize drilling programs throughout the drilling industry using Mechanical Specific Energy (MSE) as a tool to realize efficient drilling processes. Potential improvements for current geothermal operations are: the use of electronic records, real time services, and official glossary terms to describe rig operations, and advanced drilling rigs/technology.

  3. On factors influencing air-water gas exchange in emergent wetlands

    Science.gov (United States)

    Ho, David T.; Engel, Victor C.; Ferron, Sara; Hickman, Benjamin; Choi, Jay; Harvey, Judson W.

    2018-01-01

    Knowledge of gas exchange in wetlands is important in order to determine fluxes of climatically and biogeochemically important trace gases and to conduct mass balances for metabolism studies. Very few studies have been conducted to quantify gas transfer velocities in wetlands, and many wind speed/gas exchange parameterizations used in oceanographic or limnological settings are inappropriate under conditions found in wetlands. Here six measurements of gas transfer velocities are made with SF6 tracer release experiments in three different years in the Everglades, a subtropical peatland with surface water flowing through emergent vegetation. The experiments were conducted under different flow conditions and with different amounts of emergent vegetation to determine the influence of wind, rain, water flow, waterside thermal convection, and vegetation on air-water gas exchange in wetlands. Measured gas transfer velocities under the different conditions ranged from 1.1 cm h−1 during baseline conditions to 3.2 cm h−1 when rain and water flow rates were high. Commonly used wind speed/gas exchange relationships would overestimate the gas transfer velocity by a factor of 1.2 to 6.8. Gas exchange due to thermal convection was relatively constant and accounted for 14 to 51% of the total measured gas exchange. Differences in rain and water flow among the different years were responsible for the variability in gas exchange, with flow accounting for 37 to 77% of the gas exchange, and rain responsible for up to 40%.

  4. Odorant transfer characteristics of white bread during baking.

    Science.gov (United States)

    Onishi, Masanobu; Inoue, Michiko; Araki, Tetsuya; Iwabuchi, Hisakatsu; Sagara, Yasuyuki

    2011-01-01

    The potent odorants in the crust and crumb of white bread were identified and quantified by gas chromatography-mass spectrometry and gas chromatography/olfactometry. The weight loss ratio of the samples baked at 220 °C was controlled in the range of 0-28%. The odorants were classified into 5 types by the transfer characteristics: i) All amounts of odorant transferred from the crust to external space (type-I). ii) All transferred from the crust to the crumb and external space (type-II). iii) Certain amount remaining in the crust and the rest transferred to the crumb and external space (type-III). iv) All transferred from the crumb to external space (type-IV). v) Certain amount remaining in the crumb and the rest transferred to the crust and external space (type-V). The odorants of type-IV were not apparent after the crust had formed. The results indicate that the crust could be a barrier to prevent the odorants from being transferred to external space.

  5. Gas-liquid contacting in mixing vessels

    International Nuclear Information System (INIS)

    Mann, R.

    1983-01-01

    This report by Dr. R. Mann of UMIST presents a critical survey of literature on the contacting of gases with liquids in stirred vessels. Research undertaken in the last fifteen years in analysed, and promising areas for future research are identified. The report deals with physical contacting, mass transfer between the gas and liquid phases and the utilisation of the stirred vessel as a gas-liquid reactor. Three sections are given on gas-liquid contacting: physical aspects; interphase mass transfer; and chemical reactions. It also discusses recent new approaches and includes a summary of conclusions, nomenclature and references

  6. Electrostatic sensors applied to the measurement of electric charge transfer in gas-solids pipelines

    International Nuclear Information System (INIS)

    Woodhead, S R; Denham, J C; Armour-Chelu, D I

    2005-01-01

    This paper describes the development of a number of electric charge sensors. The sensors have been developed specifically to investigate triboelectric charge transfer which takes place between particles and the pipeline wall, when powdered materials are conveyed through a pipeline using air. A number of industrial applications exist for such gas-solids pipelines, including pneumatic conveyors, vacuum cleaners and dust extraction systems. The build-up of electric charge on pipelines and powdered materials can lead to electrostatic discharge and so is of interest from a safety viewpoint. The charging of powders can also adversely affect their mechanical handling characteristics and so is of interest to handling equipment engineers. The paper presents the design of the sensors, the design of the electric charge test rig and electric charge measurement test results

  7. Numerical simulation of gas-liquid two-phase flow and convective heat transfer in a micro tube

    International Nuclear Information System (INIS)

    Fukagata, Koji; Kasagi, Nobuhide; Ua-arayaporn, Poychat; Himeno, Takehiro

    2007-01-01

    Numerical simulation of an air and water two-phase flow in a 20 μm ID tube is carried out. A focus is laid upon the flow and heat transfer characteristics in bubble-train flows. An axisymmetric two-dimensional flow is assumed. The finite difference method is used to solve the governing equations, while the level set method is adopted for capturing the interface of gas and liquid. In each simulation, the mean pressure gradient and the wall heat flux are kept constant. The simulation is repeated under different conditions of pressure gradient and void fraction. The superficial Reynolds numbers of gas and liquid phases studied are 0.34-13 and 16-490, respectively, and the capillary number is 0.0087-0.27. Regardless of the flow conditions, the gas-phase velocity is found approximately 1.2 times higher than the liquid-phase velocity. This is in accordance with the Armand correlation valid for two-phase flows in macro-sized tubes. The two-phase friction coefficient is found to be scaled with the Reynolds number based on the effective viscosity of the Einstein type. The computed wall temperature distribution is qualitatively similar to that observed experimentally in a mini channel. The local Nusselt number beneath the bubble is found notably higher than that of single-phase flow

  8. Gas Storage Technology Consortium

    Energy Technology Data Exchange (ETDEWEB)

    Joel Morrison; Elizabeth Wood; Barbara Robuck

    2010-09-30

    The EMS Energy Institute at The Pennsylvania State University (Penn State) has managed the Gas Storage Technology Consortium (GSTC) since its inception in 2003. The GSTC infrastructure provided a means to accomplish industry-driven research and development designed to enhance the operational flexibility and deliverability of the nation's gas storage system, and provide a cost-effective, safe, and reliable supply of natural gas to meet domestic demand. The GSTC received base funding from the U.S. Department of Energy's (DOE) National Energy Technology Laboratory (NETL) Oil & Natural Gas Supply Program. The GSTC base funds were highly leveraged with industry funding for individual projects. Since its inception, the GSTC has engaged 67 members. The GSTC membership base was diverse, coming from 19 states, the District of Columbia, and Canada. The membership was comprised of natural gas storage field operators, service companies, industry consultants, industry trade organizations, and academia. The GSTC organized and hosted a total of 18 meetings since 2003. Of these, 8 meetings were held to review, discuss, and select proposals submitted for funding consideration. The GSTC reviewed a total of 75 proposals and committed co-funding to support 31 industry-driven projects. The GSTC committed co-funding to 41.3% of the proposals that it received and reviewed. The 31 projects had a total project value of $6,203,071 of which the GSTC committed $3,205,978 in co-funding. The committed GSTC project funding represented an average program cost share of 51.7%. Project applicants provided an average program cost share of 48.3%. In addition to the GSTC co-funding, the consortium provided the domestic natural gas storage industry with a technology transfer and outreach infrastructure. The technology transfer and outreach were conducted by having project mentoring teams and a GSTC website, and by working closely with the Pipeline Research Council International (PRCI) to

  9. Dipole-modified graphene with ultrahigh gas sensibility

    Science.gov (United States)

    Jia, Ruokun; Xie, Peng; Feng, Yancong; Chen, Zhuo; Umar, Ahmad; Wang, Yao

    2018-05-01

    This study reports the supramolecular assembly of functional graphene-based materials with ultrahigh gas sensing performances which are induced by charge transfer enhancement. Two typical Donor-π-Accepter (D-π-A) structure molecules 4-aminoquinoline (4AQ, μ = 3.17 Debye) and 4-hydroxyquinoline (4HQ, μ = 1.98 Debye), with different charge transfer enhancing effects, were selected to modify reduce oxide graphene (rGO) via supramolecular assembly. Notably, compared to the 4HQ-rGO, the 4AQ-rGO exhibits more significant increase of gas response (Ra/Rg = 3.79) toward 10 ppm NO2, which is ascribed to the larger dipole moment (μ) of 4AQ and hence the more intensive enhancing effect of charge transfer on the interface of rGO. Meanwhile, 4AQ-rGO sensors also reveal superior comprehensive gas sensing performances, including excellent gas sensing selectivity, linearity, repeatability and stability. It is believed that the present work demonstrates an effective supramolecular approach of modifying rGO with strong dipoles to significantly improve gas sensing properties of graphene-based materials.

  10. A how-to approach for a 3D simulation of charge transfer characteristics in a gas electron multiplier (GEM)

    CERN Document Server

    Sharma, A

    1999-01-01

    In this paper a detailed description of how to simulate charge transfer processes in a gaseous device is presented, taking the gas electron multiplier (GEM) as an example. A 3-dimensional simulation of the electric field and avalanche is performed. Results on charge transport are compared to experiment and agree within experimental errors; the avalanche mechanism and positive ion feedback are studied. The procedures used in the simulation are described in detail, and program scripts are appended. (15 refs).

  11. A reconstruction problem for a class of phylogenetic networks with lateral gene transfers.

    Science.gov (United States)

    Cardona, Gabriel; Pons, Joan Carles; Rosselló, Francesc

    2015-01-01

    Lateral, or Horizontal, Gene Transfers are a type of asymmetric evolutionary events where genetic material is transferred from one species to another. In this paper we consider LGT networks, a general model of phylogenetic networks with lateral gene transfers which consist, roughly, of a principal rooted tree with its leaves labelled on a set of taxa, and a set of extra secondary arcs between nodes in this tree representing lateral gene transfers. An LGT network gives rise in a natural way to a principal phylogenetic subtree and a set of secondary phylogenetic subtrees, which, roughly, represent, respectively, the main line of evolution of most genes and the secondary lines of evolution through lateral gene transfers. We introduce a set of simple conditions on an LGT network that guarantee that its principal and secondary phylogenetic subtrees are pairwise different and that these subtrees determine, up to isomorphism, the LGT network. We then give an algorithm that, given a set of pairwise different phylogenetic trees [Formula: see text] on the same set of taxa, outputs, when it exists, the LGT network that satisfies these conditions and such that its principal phylogenetic tree is [Formula: see text] and its secondary phylogenetic trees are [Formula: see text].

  12. Performance Study of Dual Fuel Engine Using Producer Gas as Secondary Fuel

    Directory of Open Access Journals (Sweden)

    Deepika Shaw

    2016-06-01

    Full Text Available In the present paper, development of producer gas fuelled 4 stroke diesel engine has been investigated. Producer gas from biomass has been examined and successfully operated with 4 stroke diesel engine. The effects of higher and lower loads were investigated on the dual fuel mode. The experimental investigations revealed that at lower loads dual fuel operation with producer gas shows lower efficiency due to lower combustion rate cause by low calorific value of the producer gas. Beyond 40% load the brake thermal efficiency of dual fuel operation improved due to faster combustion rate of producer gas and higher level of premixing. It can be observed that at lower load and 20% opening of producer gas the gaseous fuel substitution found to be 56% whereas at 100% opening of producer gas it reaches 78% substitution. The CO2 emission increased at high producer gas opening and high load because at 100% producer gas maximum atoms of carbons were there and at high load condition the diesel use increased. At 80% load and producer gas varying from 20% to 100. Power output was almost comparable to diesel power with marginal higher efficiency. Producer gas is one such technology which is environmentally benign and holds large promise for future.

  13. Determining the economic consequences of natural gas substitution

    International Nuclear Information System (INIS)

    Rimos, Shaun; Hoadley, Andrew F.A.; Brennan, David J.

    2014-01-01

    Highlights: • The economics of the extraction and usage of Australian gas and coal are examined. • Effect of feedstock substitution on power, hydrogen and ammonia costs is studied. • Influence of capital cost, transfer price, discount rate and carbon tax is studied. • Black coal has lower transfer price than gas but results in higher overall costs. • Conventional gas and coal seam gas can be substituted with little economic penalty. - Abstract: Resource depletion is a key aspect of sustainability, because the consumption of finite resources impacts on their availability for future generations. There are many proposed methods for accounting for the depletion of a particular resource, amongst which include the proportion of the resource depleted, the rate of resource depletion, and the energy, exergy, or monetary cost of extraction as the resource becomes harder to find or extract. This paper is part of a wider study to measure resource depletion using its environmental and economic impacts for the case of natural gas, where depletion of natural gas requires substitution by black coal or coal seam gas. The capital and operating costs are estimated both for upstream fuel extraction and purification and downstream use of the fuel to produce electricity, hydrogen and ammonia. These costs are based on a commercial scale of operation, using the same basis for economic modelling in each case. Black coal was found to have the lowest transfer price from upstream to downstream processing among the three feedstocks, but the highest capital and operating costs in the downstream processes. Conventional gas produced slightly higher transfer prices and downstream processing costs compared to coal seam gas. The favourable economic and environmental indicators for natural gas and coal seam gas are expected to lead to increased demand for these resources over coal, running the risk of a gas shortage. The economic consequence of a scarcity of either gas resource will be a

  14. Gas phase ion chemistry

    CERN Document Server

    Bowers, Michael T

    1979-01-01

    Gas Phase Ion Chemistry, Volume 2 covers the advances in gas phase ion chemistry. The book discusses the stabilities of positive ions from equilibrium gas-phase basicity measurements; the experimental methods used to determine molecular electron affinities, specifically photoelectron spectroscopy, photodetachment spectroscopy, charge transfer, and collisional ionization; and the gas-phase acidity scale. The text also describes the basis of the technique of chemical ionization mass spectrometry; the energetics and mechanisms of unimolecular reactions of positive ions; and the photodissociation

  15. Probing the regional distribution of pulmonary gas exchange through single-breath gas- and dissolved-phase 129Xe MR imaging.

    Science.gov (United States)

    Kaushik, S Sivaram; Freeman, Matthew S; Cleveland, Zackary I; Davies, John; Stiles, Jane; Virgincar, Rohan S; Robertson, Scott H; He, Mu; Kelly, Kevin T; Foster, W Michael; McAdams, H Page; Driehuys, Bastiaan

    2013-09-01

    Although some central aspects of pulmonary function (ventilation and perfusion) are known to be heterogeneous, the distribution of diffusive gas exchange remains poorly characterized. A solution is offered by hyperpolarized 129Xe magnetic resonance (MR) imaging, because this gas can be separately detected in the lung's air spaces and dissolved in its tissues. Early dissolved-phase 129Xe images exhibited intensity gradients that favored the dependent lung. To quantitatively corroborate this finding, we developed an interleaved, three-dimensional radial sequence to image the gaseous and dissolved 129Xe distributions in the same breath. These images were normalized and divided to calculate "129Xe gas-transfer" maps. We hypothesized that, for healthy volunteers, 129Xe gas-transfer maps would retain the previously observed posture-dependent gradients. This was tested in nine subjects: when the subjects were supine, 129Xe gas transfer exhibited a posterior-anterior gradient of -2.00 ± 0.74%/cm; when the subjects were prone, the gradient reversed to 1.94 ± 1.14%/cm (P exchange caused by differences in lung inflation and posture.

  16. Water Quality Research Program: Abstracts of the International Symposium on Gas Transfer at Water Surfaces (2nd) Held in Minneapolis, Minnesota on 11-14 September 1990

    Science.gov (United States)

    1990-08-01

    layer on the surface) it is 2 - 3 times less. Many in- situ observations show that different patterns of temperature distribution in the surface water...Coeficiente de Reaeracao dos Escoamentos Naturais da Agua com o Emprego de Tracador Gasoso. M.Sc Dissertation, Universidade de Sao Paulo, EESC, Depto. de...structure. If methane is present in measurable quantities it may prove to be an excellent in- situ tracer of gas transfer. Transfer efficiency has been used

  17. Visualisation of gas-liquid mass transfer around a rising bubble in a quiescent liquid using an oxygen sensitive dye

    Science.gov (United States)

    Dietrich, Nicolas; Hebrard, Gilles

    2018-02-01

    An approach for visualizing and measuring the mass transfer around a single bubble rising in a quiescent liquid is reported. A colorimetric technique, developed by (Dietrich et al. Chem Eng Sci 100:172-182, 2013) using an oxygen sensitive redox dye was implemented. It was based on the reduction of the colorimetric indicator in presence of oxygen, this reduction being catalysed by sodium hydroxide and glucose. In this study, resazurin was selected because it offered various reduced forms with colours ranging from transparent (without oxygen) to pink (in presence of oxygen). These advantages made it possible to visualize the spatio-temporal oxygen mass transfer around rising bubbles. Images were recorded by a CCD camera and, after post-processing, the shape, size, and velocity of the bubbles were measured and the colours around the bubbles mapped. A calibration, linking the level of colour with the dissolved oxygen concentration, enabled colour maps to be converted into oxygen concentration fields. A rheoscopic fluid was used to visualize the wake of the bubbles. A calculation method was also developed to determine the transferred oxygen fluxes around bubbles of two sizes (d = 0.82 mm and d = 2.12 mm) and the associated liquid-side mass transfer coefficients. The results compared satisfactorily with classical global measurements made by oxygen micro-sensors or from the classical models. This study thus constitutes a striking example of how this new colorimetric method could become a remarkable tool for exploring gas-liquid mass transfer in fluids.

  18. To the generalization of experimental data on heat and mass transfer in evaporation and condensation

    International Nuclear Information System (INIS)

    Berman, L.D.

    1980-01-01

    Similarity equations for heat-and-mass transfer in binary gas or steam-gas layers in the processes of liquid evaporation, condensation and desublimation of vapours, desorption and absorption and porous body cooling are considered. It is accepted that steam-gas components obey to the equation of ideal gas state and that evaporation and condensation condititons permit to neglect the influence of compressability of gas (steam-gas) mixture, non-isothermality of boundary layer and interphase kinetic resistance to mass transfer onto the interfaces. It is concluded that the results of considered experimental and theoretical investigations of the above processes are in a satisfactory agreement and show insignificance of the effect of hydrodynamic conditions determining the regime of main steam-gas mixture flow on relative heat-and-mass transfer coefficients. According to the theoretical calculation results with increase of the factor of M steam-gas mixture non-uniformity mass transfer intensity in evaporation decreases, while in condensation it grows, but M effect on the mass transfer coefficient is rather small and sowhat increases in the case of a turbulent boundary layer evaporation. In condensation it is less than in evaporation

  19. A survey of gas-side fouling in industrial heat-transfer equipment

    Science.gov (United States)

    Marner, W. J.; Suitor, J. W.

    1983-11-01

    Gas-side fouling and corrosion problems occur in all of the energy intensive industries including the chemical, petroleum, primary metals, pulp and paper, glass, cement, foodstuffs, and textile industries. Topics of major interest include: (1) heat exchanger design procedures for gas-side fouling service; (2) gas-side fouling factors which are presently available; (3) startup and shutdown procedures used to minimize the effects of gas-side fouling; (4) gas-side fouling prevention, mitigation, and accommodation techniques; (5) economic impact of gas-side fouling on capital costs, maintenance costs, loss of production, and energy losses; and (6) miscellaneous considerations related to gas-side fouling. The present state-of-the-art for industrial gas-side fouling is summarized by a list of recommendations for further work in this area.

  20. Bed-To-Wall Heat Transfer in a Supercritical Circulating Fluidised Bed Boiler

    Directory of Open Access Journals (Sweden)

    Błaszczuk Artur

    2014-06-01

    Full Text Available The purpose of this work is to find a correlation for heat transfer to walls in a 1296 t/h supercritical circulating fluidised bed (CFB boiler. The effect of bed-to-wall heat transfer coefficient in a long active heat transfer surface was discussed, excluding the radiation component. Experiments for four different unit loads (i.e. 100% MCR, 80% MCR, 60% MCR and 40% MCR were conducted at a constant excess air ratio and high level of bed pressure (ca. 6 kPa in each test run. The empirical correlation of the heat transfer coefficient in a large-scale CFB boiler was mainly determined by two key operating parameters, suspension density and bed temperature. Furthermore, data processing was used in order to develop empirical correlation ranges between 3.05 to 5.35 m·s-1 for gas superficial velocity, 0.25 to 0.51 for the ratio of the secondary to the primary air, 1028 to 1137K for bed temperature inside the furnace chamber of a commercial CFB boiler, and 1.20 to 553 kg·m-3 for suspension density. The suspension density was specified on the base of pressure measurements inside the boiler’s combustion chamber using pressure sensors. Pressure measurements were collected at the measuring ports situated on the front wall of the combustion chamber. The obtained correlation of the heat transfer coefficient is in agreement with the data obtained from typical industrial CFB boilers.

  1. An analysis model of the secondary tunnel lining considering ground-primary support-secondary lining interaction

    Energy Technology Data Exchange (ETDEWEB)

    Seo, Seong-Ho; Chang, Seok-Bue [Yooshin Engineering Corporation, Seoul(Korea); Lee, Sang-Duk [Ajou University, Suwon(Korea)

    2002-06-30

    It is the common practice to over design the reinforcement for the secondary tunnel lining due to the lack of rational insight into the ground loosening loads, and due to the conservative application of the empirical design methods. The main loads of the secondary lining are the ground loosening loads and the ground water pressure, and the ground load is critical in the reinforcement design of the secondary lining in the case of drained tunnel. If the external load is absent around a tunnel. the reasons of the load for secondary tunnel lining are the deterioration of the primary supports such as shotcrete, steel rib, and rock bolts. Accordingly, the analysis method considering the ground-primary supports-secondary lining interaction should be required for the rational design of the secondary tunnel lining. In this paper, the interaction was conceptually described by the simple mass-spring model and the load transfer from the ground and primary supports to the secondary lining is showed by the ground-primary supports-secondary lining reaction curves for the theoretical solution of a circular tunnel, And also, the application of this proposed model to numerical analysis is verified in order to check the potential for the tunnel with the complex analysis conditions. (author). 8 refs., 2 tabs., 7 figs.

  2. Numerical investigation of heat transfer characteristic of fixed planar elastic tube bundles

    International Nuclear Information System (INIS)

    Duan, Derong; Ge, Peiqi; Bi, Wenbo

    2015-01-01

    Highlights: • Both tube-side and shell-side of planar elastic tube bundles were investigated. • Heat transfer and fluid flow were studied from the local analysis perspective. • Secondary flow varies depending on the fluid flow state and the geometry of tube. • Curvature plays a role on the external flow field. • The heat transfer of the two intermediate tube bundles is augmented. - Abstract: Planar elastic tube bundles are a novel approach to enhance heat transfer by using flow-induced vibration. This paper studied the heat transfer characteristic and fluid flow in both tube-side and shell-side using numerical simulation. Two temperature difference formulas were used to calculate convective heat transfer coefficient and the results were verified by theoretical analysis and experimental correlations. The effect of Reynolds number on overall convective heat transfer coefficient and pressure drop in tube-side and shell-side were studied. The comparison of the secondary flow in planar elastic tube bundles and conical spiral tube bundles were conducted. The external flow field and local convective heat transfer around the periphery of fixed planar elastic tube bundles subjected to the cross fluid flow were also analyzed. The results show that the energy consumption efficiency should be taken into account in the forced heat transfer process conducted by adjusting the fluid flow. The secondary flow varies depending on the fluid flow state and the geometry of tube. Hence, it is deduced that the heat transfer enhancement is obtained because the thermal boundary layer in the deformed planar elastic tube bundles caused by flow-induced vibration is damaged by the disordered secondary flow. In addition, the convective heat transfer capability of outside the two intermediate tube bundles is enhanced because of the effect of irregular and complex fluid flow affected by the role of curved tubes on both sides

  3. Controls on gas transfer velocities in a large river

    Science.gov (United States)

    The emission of biogenic gases from large rivers can be an important component of regional greenhouse gas budgets. However, emission rate estimates are often poorly constrained due to uncertainties in the air-water gas exchange rate. We used the floating chamber method to estim...

  4. Heater for Combustible-Gas Tanks

    Science.gov (United States)

    Ingle, Walter B.

    1987-01-01

    Proposed heater for pressurizing hydrogen, oxygen, or another combustible liquid or gas sealed in immersion cup in pressurized tank. Firmly supported in finned cup, coiled rod transfers heat through liquid metal to gas tank. Heater assembly welded or bolted to tank flange.

  5. Net sea–air CO2 flux uncertainties in the Bay of Biscay based on the choice of wind speed products and gas transfer parameterizations

    Directory of Open Access Journals (Sweden)

    P. Otero

    2013-05-01

    Full Text Available The estimation of sea–air CO2 fluxes is largely dependent on wind speed through the gas transfer velocity parameterization. In this paper, we quantify uncertainties in the estimation of the CO2 uptake in the Bay of Biscay resulting from the use of different sources of wind speed such as three different global reanalysis meteorological models (NCEP/NCAR 1, NCEP/DOE 2 and ERA-Interim, one high-resolution regional forecast model (HIRLAM-AEMet, winds derived under the Cross-Calibrated Multi-Platform (CCMP project, and QuikSCAT winds in combination with some of the most widely used gas transfer velocity parameterizations. Results show that net CO2 flux estimations during an entire seasonal cycle (September 2002–September 2003 may vary by a factor of ~ 3 depending on the selected wind speed product and the gas exchange parameterization, with the highest impact due to the last one. The comparison of satellite- and model-derived winds with observations at buoys advises against the systematic overestimation of NCEP-2 and the underestimation of NCEP-1. In the coastal region, the presence of land and the time resolution are the main constraints of QuikSCAT, which turns CCMP and ERA-Interim in the preferred options.

  6. Investigation of secondary formation of formic acid: urban environment vs. oil and gas producing region

    Science.gov (United States)

    Yuan, B.; Veres, P. R.; Warneke, C.; Roberts, J. M.; Gilman, J. B.; Koss, A.; Edwards, P. M.; Graus, M.; Kuster, W. C.; Li, S.-M.; Wild, R. J.; Brown, S. S.; Dubé, W. P.; Lerner, B. M.; Williams, E. J.; Johnson, J. E.; Quinn, P. K.; Bates, T. S.; Lefer, B.; Hayes, P. L.; Jimenez, J. L.; Weber, R. J.; Zamora, R.; Ervens, B.; Millet, D. B.; Rappenglück, B.; de Gouw, J. A.

    2015-02-01

    Formic acid (HCOOH) is one of the most abundant carboxylic acids in the atmosphere. However, current photochemical models cannot fully explain observed concentrations and in particular secondary formation of formic acid across various environments. In this work, formic acid measurements made at an urban receptor site (Pasadena) in June-July 2010 during CalNex (California Research at the Nexus of Air Quality and Climate Change) and a site in an oil and gas producing region (Uintah Basin) in January-February 2013 during UBWOS 2013 (Uintah Basin Winter Ozone Studies) will be discussed. Although the VOC (volatile organic compounds) compositions differed dramatically at the two sites, measured formic acid concentrations were comparable: 2.3 ± 1.3 in UBWOS 2013 and 2.0 ± 1.0 ppb in CalNex. We determine that concentrations of formic acid at both sites were dominated by secondary formation (> 99%). A constrained box model using the Master Chemical Mechanism (MCM v3.2) underestimates the measured formic acid concentrations drastically at both sites (by a factor of > 10). Compared to the original MCM model that includes only ozonolysis of unsaturated organic compounds and OH oxidation of acetylene, when we updated yields of ozonolysis of alkenes and included OH oxidation of isoprene, vinyl alcohol chemistry, reaction of formaldehyde with HO2, oxidation of aromatics, and reaction of CH3O2 with OH, the model predictions for formic acid were improved by a factor of 6.4 in UBWOS 2013 and 4.5 in CalNex, respectively. A comparison of measured and modeled HCOOH/acetone ratios is used to evaluate the model performance for formic acid. We conclude that the modified chemical mechanism can explain 19 and 45% of secondary formation of formic acid in UBWOS 2013 and CalNex, respectively. The contributions from aqueous reactions in aerosol and heterogeneous reactions on aerosol surface to formic acid are estimated to be 0-6 and 0-5% in UBWOS 2013 and CalNex, respectively. We observe that

  7. Duration and urgency of transfer in births planned at home and in freestanding midwifery units in England: secondary analysis of the birthplace national prospective cohort study.

    Science.gov (United States)

    Rowe, Rachel E; Townend, John; Brocklehurst, Peter; Knight, Marian; Macfarlane, Alison; McCourt, Christine; Newburn, Mary; Redshaw, Maggie; Sandall, Jane; Silverton, Louise; Hollowell, Jennifer

    2013-12-05

    In England, there is a policy of offering healthy women with straightforward pregnancies a choice of birth setting. Options may include home or a freestanding midwifery unit (FMU). Transfer rates from these settings are around 20%, and higher for nulliparous women. The duration of transfer is of interest because of the potential for delay in access to specialist care and is also of concern to women. We aimed to estimate the duration of transfer in births planned at home and in FMUs and explore the effects of distance and urgency on duration. This was a secondary analysis of data collected in a national prospective cohort study including 27,842 'low risk' women with singleton, term, 'booked' pregnancies, planning birth in FMUs or at home in England from April 2008 to April 2010. We described transfer duration using the median and interquartile range, for all transfers and those for reasons defined as potentially urgent or non-urgent, and used cumulative distribution curves to compare transfer duration by urgency. We explored the effect of distance for transfers from FMUs and described outcomes in women giving birth within 60 minutes of transfer. The median overall transfer time, from decision to transfer to first OU assessment, was shorter in transfers from home compared with transfers from FMUs (49 vs 60 minutes; p birth for potentially urgent reasons (home 42 minutes, FMU 50 minutes) was 8-10 minutes shorter compared with transfers for non-urgent reasons. In transfers for potentially urgent reasons, the median overall transfer time from FMUs within 20 km of an OU was 47 minutes, increasing to 55 minutes from FMUs 20-40 km away and 61 minutes in more remote FMUs. In women who gave birth within 60 minutes after transfer, adverse neonatal outcomes occurred in 1-2% of transfers. Transfers from home or FMU commonly take up to 60 minutes from decision to transfer, to first assessment in an OU, even for transfers for potentially urgent reasons. Most

  8. Influence of liquid viscosity and surface tension on the gas-liquid mass transfer coefficient for solid foam packings in co-current two-phase flow

    NARCIS (Netherlands)

    Stemmet, C.P.; Bartelds, F.; Schaaf, van der J.; Kuster, B.F.M.; Schouten, J.C.

    2008-01-01

    The gas–liquid mass transfer coefficient and other hydrodynamic parameters such as liquid holdup and frictional pressure drop are presented for gas and liquid moving in co-current upflow and downflow through solid foam packings of 10 and of 40 pores per linear inch (ppi). The effect of increasing

  9. Inert gas transport in blood and tissues.

    Science.gov (United States)

    Baker, A Barry; Farmery, Andrew D

    2011-04-01

    This article establishes the basic mathematical models and the principles and assumptions used for inert gas transfer within body tissues-first, for a single compartment model and then for a multicompartment model. From these, and other more complex mathematical models, the transport of inert gases between lungs, blood, and other tissues is derived and compared to known experimental studies in both animals and humans. Some aspects of airway and lung transfer are particularly important to the uptake and elimination of inert gases, and these aspects of gas transport in tissues are briefly described. The most frequently used inert gases are those that are administered in anesthesia, and the specific issues relating to the uptake, transport, and elimination of these gases and vapors are dealt with in some detail showing how their transfer depends on various physical and chemical attributes, particularly their solubilities in blood and different tissues. Absorption characteristics of inert gases from within gas cavities or tissue bubbles are described, and the effects other inhaled gas mixtures have on the composition of these gas cavities are discussed. Very brief consideration is given to the effects of hyper- and hypobaric conditions on inert gas transport. © 2011 American Physiological Society. Compr Physiol 1:569-592, 2011.

  10. Mixing and mass transfer in a pilot scale U-loop bioreactor

    DEFF Research Database (Denmark)

    Petersen, Leander Adrian Haaning; Villadsen, John; Jørgensen, Sten Bay

    2017-01-01

    A system capable of handling a large volumetric gas fraction while providing a high gas to liquid mass transfer is a necessity if the metanotrophic bacterium Methylococcus capsulatus is to be used in single cell protein (SCP) production. In this study mixing time and mass transfer coefficients we...

  11. An asymptotic preserving unified gas kinetic scheme for frequency-dependent radiative transfer equations

    Energy Technology Data Exchange (ETDEWEB)

    Sun, Wenjun, E-mail: sun_wenjun@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Jiang, Song, E-mail: jiang@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China); Xu, Kun, E-mail: makxu@ust.hk [Department of Mathematics and Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Hong Kong (China); Li, Shu, E-mail: li_shu@iapcm.ac.cn [Institute of Applied Physics and Computational Mathematics, P.O. Box 8009, Beijing 100088 (China)

    2015-12-01

    This paper presents an extension of previous work (Sun et al., 2015 [22]) of the unified gas kinetic scheme (UGKS) for the gray radiative transfer equations to the frequency-dependent (multi-group) radiative transfer system. Different from the gray radiative transfer equations, where the optical opacity is only a function of local material temperature, the simulation of frequency-dependent radiative transfer is associated with additional difficulties from the frequency-dependent opacity. For the multiple frequency radiation, the opacity depends on both the spatial location and the frequency. For example, the opacity is typically a decreasing function of frequency. At the same spatial region the transport physics can be optically thick for the low frequency photons, and optically thin for high frequency ones. Therefore, the optical thickness is not a simple function of space location. In this paper, the UGKS for frequency-dependent radiative system is developed. The UGKS is a finite volume method and the transport physics is modeled according to the ratio of the cell size to the photon's frequency-dependent mean free path. When the cell size is much larger than the photon's mean free path, a diffusion solution for such a frequency radiation will be obtained. On the other hand, when the cell size is much smaller than the photon's mean free path, a free transport mechanism will be recovered. In the regime between the above two limits, with the variation of the ratio between the local cell size and photon's mean free path, the UGKS provides a smooth transition in the physical and frequency space to capture the corresponding transport physics accurately. The seemingly straightforward extension of the UGKS from the gray to multiple frequency radiation system is due to its intrinsic consistent multiple scale transport modeling, but it still involves lots of work to properly discretize the multiple groups in order to design an asymptotic preserving (AP

  12. Environmental site assessments should include radon gas testing

    International Nuclear Information System (INIS)

    Nardi, M.A.

    1991-01-01

    There are two emerging influences that will require radon gas testing as part of many property transfers and most site assessments. These requirements come from lending regulators and state legislatures. Fannie Mae and others have developed environmental investigation guidelines for the purchase of environmentally contaminated real estate. These guidelines include radon gas testing for many properties. Several states have enacted laws that require environmental disclosure forms be prepared to ensure that the parties involved in certain real estate transactions are aware of the environmental liabilities that may come with the transfer of property. Indiana has recently enacted legislation that would require the disclosure of the presence of radon gas on many commercial real estate transactions. With more lenders and state governments likely to follow this trend, radon gas testing should be performed during all property transfers and site assessment to protect the parties involved from any legal liabilities

  13. Thermophysical Properties of Aqueous Solutions Used as Secondary Working Fluids

    OpenAIRE

    Melinder, Åke

    2007-01-01

    Secondary working fluids (secondary refrigerants, heat transfer fluids, antifreezes, brines) have long been used in various indirect re-frigeration and heat pump systems. Aqueous solutions (water solu-tions) have long been used as single phase (liquid only) secondary working fluids for cooling in supermarkets, ice rinks, heat recovery systems, heat pumps and other applications. However, aqueous solutions are increasingly used also for freezers in supermarkets and other applications in low tem...

  14. Radiation and combined heat transfer in channels

    International Nuclear Information System (INIS)

    Tamonis, M.

    1986-01-01

    This book presents numerical methods of calculation of radiative and combined heat transfer in channel flows of radiating as well as nonradiating media. Results obtained in calculations for flow conditions of combustion products from organic fuel products are given and methods used in determining the spectral optical properties of molecular gases are analyzed. The book presents applications of heat transfer in solving problems. Topic covered are as follows: optical properties of molecular gases; transfer equations for combined heat transfer; experimental technique; convective heat transfer in heated gas flows; radiative heat transfer in gaseous media; combined heat transfer; and radiative and combined heat transfer in applied problems

  15. Flue gas condensation in oxyfuel power plants. Heat- and mass transfer measurements and experimental validation of an efficient condensation concept; Rauchgaskondensation in Oxyfuel-Kraftwerken. Waerme- und Stoffuebergangsmessungen sowie experimentelle Validierung eines effizienten Kondensationskonzepts

    Energy Technology Data Exchange (ETDEWEB)

    Raindl, Markus

    2010-12-06

    Condensation of a steam-inert gas mixture in an Oxyfuel condenser differs significantly from condensation of pure steam: condenser pressure and rest gas content increase dramatically, heat- and mass transfer coefficients are lower and oversaturation of the steam-inert gas mixture yields to fog formation. In the context of this thesis, therefore, at first the optimal ranges of working parameters for Oxyfuel processes calculated. In the following some heat flux measurements were carried out on a horizontal, crossflow pipe to validate various heat- and mass transfer theories. Building on these results a new, efficient condensation concept was developed to reduce fog formation. The final results of the measurements with a laboratory model show great performance regarding fog reduction and condensation efficiency. (orig.)

  16. Belongingness in Early Secondary School: Key Factors that Primary and Secondary Schools Need to Consider.

    Directory of Open Access Journals (Sweden)

    Sharmila Vaz

    Full Text Available It is unknown if, and how, students redefine their sense of school belongingness after negotiating the transition to secondary school. The current study used longitudinal data from 266 students with, and without, disabilities who negotiated the transition from 52 primary schools to 152 secondary schools. The study presents the 13 most significant personal student and contextual factors associated with belongingness in the first year of secondary school. Student perception of school belongingness was found to be stable across the transition. No variability in school belongingness due to gender, disability or household-socio-economic status (SES was noted. Primary school belongingness accounted for 22% of the variability in secondary school belongingness. Several personal student factors (competence, coping skills and school factors (low-level classroom task-goal orientation, which influenced belongingness in primary school, continued to influence belongingness in secondary school. In secondary school, effort-goal orientation of the student and perception of their school's tolerance to disability were each associated with perception of school belongingness. Family factors did not influence belongingness in secondary school. Findings of the current study highlight the need for primary schools to foster belongingness among their students at an early age, and transfer students' belongingness profiles as part of the hand-over documentation. Most of the factors that influenced school belongingness before and after the transition to secondary are amenable to change.

  17. Radiation heat transfer within an open-cycle MHD generator channel

    Science.gov (United States)

    Delil, A. A. M.

    1983-05-01

    Radiation heat transfer in an MHD generator was modeled using the Sparrow and Cess model for radiation in an emitting, absorbing and scattering medium. The resulting general equations can be considerably reduced by introducing simplifying approximations for the channel and MHD gas properties. The simplifications lead to an engineering model, which is very useful for one-dimensional channel flow approximation. The model can estimate thermo-optical MHD gas properties, which can be substituted in the energy equation. The model considers the contribution of solid particles in the MHD gas to radiation heat transfer, considerable in coal-fired closed cycle MHD generators. The modeling is applicable also for other types of flow at elevated temperatures, where radiation heat transfer is an important quantity.

  18. Proton-transfer reactions in ionized gases

    International Nuclear Information System (INIS)

    Stiller, W.; Schmidt, R.; Schuster, R.

    1985-01-01

    Ion-molecule reactions play an important role in various radiolytic processes, e.g. gas-pulse radiolysis, environmental research. For a discussion of mechanisms rate coefficients have to be assessed. Here gas-phase rate coefficients of ion-(polar) molecule reactions are calculated using the ideas of interaction potentials, reactive cross-sections and distribution functions of the translational energies of both the reactants (ions I, molecules M). The starting point of our approach, directed especially to gas-phase proton-transfer reactions, is the idea that the rate coefficient k can be calculated as an ion-molecule capture-rate coefficient multiplied by a 'steric factor' representing the probability for proton transfer. Mutual capture of the reaction partners within a possible reaction zone is caused by the physical interaction between an ion and a polar molecule. A model is discussed. Results are presented. (author)

  19. Homogenization and two scales convergence of some stationary and non-stationary heat transfer problems, application to gas cooled nuclear rectors

    International Nuclear Information System (INIS)

    Habibi, Z.

    2011-01-01

    We are interested in the homogenization of heat transfer in periodic porous media modelling the geometry of a gas cooled nuclear reactor. This geometry is made of a solid media perforated by several long thin parallel cylinders, the diameter of which is of the same order than the period. The heat is transported by conduction in the solid part of the domain and by conduction, convection and radiative transfer in the fluid part (the cylinders). A non-local boundary condition models the radiative heat transfer on the cylinder walls. It is a stationary analysis corresponding to a nominal performance of the reactor core, and also non-stationary corresponding to a normal shut-down of the core. To obtain the homogenized problem we first use a formal two-scale asymptotic expansion method. The mathematical justification of our results is based on the notion of two-scale convergence. One feature of this work in dimension 3 is that it combines homogenization with a 3D to 2D asymptotic analysis since the radiative transfer in the limit cell problem is purely two-dimensional. A second feature of this work is the study of this heat transfer when it contains an oscillating thermal source at the microscopic level and a thermal exchange with the perforations. In this context, our numerical analysis shows a non-negligible contribution of the second order corrector which helps us to model the gradients appearing between the source area and the perforations. (author) [fr

  20. Handbook of heat and mass transfer. Volume 2

    International Nuclear Information System (INIS)

    Cheremisinoff, N.P.

    1986-01-01

    This two-volume series, the work of more than 100 contributors, presents advanced topics in industrial heat and mass transfer operations and reactor design technology. Volume 2 emphasizes mass transfer and reactor design. Some of the contents discussed are: MASS TRANSFER PRINCIPLES - Effect of turbulence promoters on mass transfer. Mass transfer principles with homogeneous and heterogeneous reactions. Convective diffusion with reactions in a tube. Transient mass transfer onto small particles and drops. Modeling heat and mass transport in falling liquid films. Heat and mass transfer in film absorption. Multicomponent mass transfer: theory and applications. Diffusion limitation for reaction in porous catalysts. Kinetics and mechanisms of catalytic deactivation. DISTILLATION AND EXTRACTION - Generalized equations of state for process design. Mixture boiling. Estimating vapor pressure from normal boiling points of hydrocarbons. Estimating liquid and vapor molar fractions in distillation columns. Principles of multicomponent distillation. Generalized design methods for multicomponent distillation. Interfacial films in inorganic substances extraction. Liquid-liquid extraction in suspended slugs. MULTIPHASE REACTOR SYSTEMS - Reaction and mass transport in two-phase reactors. Mass transfer and kinetics in three-phase reactors. Estimating liquid film mass transfer coefficients in randomly packed columns. Designing packed tower wet scrubbers - emphasis on nitrogen oxides. Gas absorption in aerated mixers. Axial dispersion and heat transfer in gas-liquid bubble columns. Operation and design of trickle-bed reactors

  1. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang

    2011-09-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  2. Synthesis of highly c-oriented ZIF-69 membranes by secondary growth and their gas permeation properties

    KAUST Repository

    Liu, Yunyang; Zeng, Gaofeng; Pan, Yichang; Lai, Zhiping

    2011-01-01

    A seeded growth procedure was successfully developed to synthesize highly c-oriented and well-intergrown zeolitic imidazolate framework-69 (ZIF-69) membranes on porous α-alumina substrates. The synthesis conditions were optimized both for seed preparation and for secondary growth. For seeding, a facile method was developed to prepare smaller and flat ZIF-69 microcrystals in order to make thin and c-oriented seed layers. While for secondary growth, a synthesis condition that favored the growth along the c-direction was chosen in order to form highly c-oriented ZIF-69 membranes after growth. As a result, the majority of ZIF-69 grains inside the membrane have their straight channels along the crystallographic c-axis aligned perpendicularly to the substrate surface. Such alignment was confirmed by both XRD and pole figure analysis. The mixture-gas separation studies that were carried out at room temperature and 1atm gave separation factors of 6.3, 5.0, 4.6 for CO2/N2, CO2/CO and CO2/CH4 respectively, and a permeance of ∼1.0×10-7molm-2s-1Pa-1 for CO2 in almost all mixtures. Both the separation factor and permeance were better than the performance of the ZIF-69 membranes prepared by the in situ solvothermal method due to improvement in the membrane microstructure by the seeded growth method. © 2011 Elsevier B.V.

  3. Study on condensation of biomass pyrolysis gas by spray bio-oil droplets

    Energy Technology Data Exchange (ETDEWEB)

    Xie, Kun; Cheng, Wen-Long [University of Science and Technology of China (China)], email: wlcheng@ustc.edu.cn; Chen, Jing [Anhui Electric Power Design Institute (China); Shi, Wen-Jing [Anhui Heli Co., Ltd (China)

    2011-07-01

    This is a study of bio-oil generated by fast pyrolysis; a biomass feedstock is heated to pyrolyze at a rapid rate, the gas pyrolyzed is then condensed rapidly. The interesting result is a potential alternative fuel oil. An analysis was made of the effects of the initial pyrolysis gas temperatures, the initial bio-oil droplets temperatures and diameters, and the flow ratio of the gas and the liquid droplets on the heat and mass transfer between the gas and the liquid droplets. A few criterion equations were achieved with respect to the spray condenser. This paper established the gas-liquid phase equilibrium of an aqueous multi-composition system and the spray condensation model coupling heat and mass transfer. Model calculation and analysis showed that: spray condensation can effectively cool the high-temperature pyrolysis gas quickly; with gas liquid flowing, mass transfer rate reduces; and the relationship of gas and liquid flow ratio can achieve good accuracy.

  4. Heat transfer by liquids in suspension in a turbulent gas stream (1960); Transfert de chaleur par liquides entraines dans un ecoulement gazeux turbulent (1960)

    Energy Technology Data Exchange (ETDEWEB)

    Grison, E [Commissariat a l' Energie Atomique, Lab. de Physique-Chimie et basses temperatures, Grenoble (France).Centre d' Etudes Nucleaires; Commissariat a l' Energie Atomique, Saclay (France).Centre d' Etudes Nucleaires

    1960-07-01

    The introduction of a small volume of liquid into a turbulent gas stream used as cooling agent improves considerably the heat transfer coefficient of the gas. When the turbulent regime is established, one observes in a cylindrical tube two types of flow whether the liquid wets or does not wet the wall. In the first case, one gets on the wall an annular liquid film and droplets in suspension are in the gas stream. In the second case, a fog of droplets is formed without any liquid film on the wall. Experiments were performed with the following mixtures: water-hydrogen, water-nitrogen, ethanol-nitrogen (wetting liquids) introduced into a stainless steel tube of 4 mm ID, electrically heated on 320 mm of length. We varied the gas flow rate (Reynolds until 50000), the rate of the liquid flow rate to gas flow rate (until 15), the pressure (until 10 kg/cm{sup 2}), the temperature (until the boiling point) and the heat flux (until 250 W/cm{sup 2}). Two types of burnout were observed. A formula of correlation of the burnout heat flux is given. Making use of the analogy between mass transfer and heat transfer, a dimensionless formula of correlation of the local heat transfer coefficients is established. (author) [French] L'introduction d'un faible volume de liquide dans un ecoulement gazeux turbulent utilise comme fluide refrigerant permet une amelioration considerable des coefficients d'echanges thermiques que l'on aurait si le gaz etait employe seul (nous avons obtenu un facteur d'amelioration superieur a 10). En regime turbulent etabli, on observe dans un tube deux modes d'ecoulements selon que le liquide mouille ou ne mouille pas la paroi. Dans le premier cas, on obtient sur la paroi un film annulaire liquide et des gouttelettes en suspension dans le coeur gazeux. Dans le deuxieme cas, il se forme un veritable brouillard sans film liquide sur la paroi. Les etudes experimentales ont ete effectuees avec les melanges eau-hydrogene, eau-azote, ethanol-azote (liquides

  5. Radiation and gas conduction heat transport across a helium dewer multilayer insulation system

    Energy Technology Data Exchange (ETDEWEB)

    Green, M.A. [Lawrence Berkeley Lab., CA (United States)

    1995-02-01

    This report describes a method for calculating mixed heat transfer through the multilayer insulation used to insulated a 4K liquid helium cryostat. The method described permits one to estimate the insulation potential for a multilayer insulation system from first principles. The heat transfer regimes included are: radiation, conduction by free molecule gas conduction, and conduction through continuum gas conduction. Heat transfer in the transition region between the two gas conduction regimes is also included.

  6. JOYO coolant sodium and cover gas purity control database (MK-II core)

    International Nuclear Information System (INIS)

    Ito, Kazuhiro; Nemoto, Masaaki

    2000-03-01

    The experimental fast reactor 'JOYO' served as the MK-II irradiation bed core for testing fuel and material for FBR development for 15 years from 1982 to 1997. During the MK-II operation, impurities concentrations in the sodium and the argon gas were determined by 67 samples of primary sodium, 81 samples of secondary sodium, 75 samples of primary argon gas, 89 samples of secondary argon gas (the overflow tank) and 89 samples of secondary argon gas (the dump tank). The sodium and the argon gas purity control data were accumulated from in thirty-one duty operations, thirteen special test operations and eight annual inspections. These purity control results and related plant data were compiled into database, which were recorded on CD-ROM for user convenience. Purity control data include concentration of oxygen, carbon, hydrogen, nitrogen, chlorine, iron, nickel and chromium in sodium, concentration of oxygen, hydrogen, nitrogen, carbon dioxide, methane and helium in argon gas with the reactor condition. (author)

  7. Experimental evaluation of enthalpy efficiency and gas-phase contaminant transfer in an enthalpy recovery unit with polymer membrane foils

    DEFF Research Database (Denmark)

    Nie, Jinzhe; Yang, Jianrong; Fang, Lei

    2015-01-01

    Experimental studies were conducted in a laboratory setting to investigate the enthalpy efficiency and gas-phase contaminant transfer in a polymer membrane enthalpy recovery unit. One commercially available polymer membrane enthalpy recovery unit was used as a reference unit. Simulated indoor air...... and outdoor air by twin chambers was connected to the unit. Three chemical gases were dosed to the indoor exhaust air to mimic indoor air contaminants. Based on the measurements of temperature, humidity ratio, and contaminant concentrations of the indoor exhaust air and outdoor air supply upstream...

  8. Technology transfer in the Clean Development Mechanism

    International Nuclear Information System (INIS)

    De Coninck, H.C.; Haake, F.; Van der Linden, N.H.

    2007-01-01

    Technology transfer is often mentioned as an ancillary benefit of the Kyoto Protocol's Clean Development Mechanism (CDM), but this claim has never been researched or substantiated. The question of technology transfer is important from two perspectives: for host countries, whether the CDM provides a corridor for foreign, climate-friendly technologies and investment, and for industrialised countries as it provides export potential for climate-friendly technologies developed as a consequence of stringent greenhouse gas targets. In order to better understand whether technology transfer from the EU and elsewhere is occurring through the CDM, and what is the value of the associated foreign investment, this paper examines technology transfer in the 63 CDM projects that were registered on January 1st, 2006. Technology originates from outside the host country in almost 50% of the evaluated projects. In the projects in which the technology originates from outside the host country, 80% use technology from the European Union. Technologies used in non-CO2 greenhouse gas and wind energy projects, and a substantial share of the hydropower projects, use technology from outside the host country, but biogas, agricultural and biomass projects mainly use local technology. The associated investment value with the CDM projects that transferred technology is estimated to be around 470 million Euros, with about 390 coming from the EU. As the non-CO2 greenhouse gas projects had very low capital costs, the investment value was mostly in the more capital-intensive wind energy and hydropower projects

  9. Influence on Heat Transfer Coefficient of Heat Exchanger by Velocity and Heat Transfer Temperature Difference

    Directory of Open Access Journals (Sweden)

    WANG Fang

    2017-04-01

    Full Text Available Aimed to insufficient heat transfer of heat exchanger, research the influence on the heat transfer coefficient impacted by velocity and heat transfer temperature difference of tube heat exchanger. According to the different heat transfer temperature difference and gas velocity,the experimental data were divided into group. Using the control variable method,the above two factors were analyzed separately. K一△T and k一:fitting curve were clone to obtain empirical function. The entire heat exchanger is as the study object,using numerical simulation methods,porous media,k一£model,second order upwind mode,and pressure一velocity coupling with SIMPLE algorithm,the entire heat exchanger temperature field and the heat transfer coefficient distribution were given. Finally the trend of the heat transfer coefficient effected by the above two factors was gotten.

  10. Gas treating absorption theory and practice

    CERN Document Server

    Eimer, Dag

    2014-01-01

    Gas Treating: Absorption Theory and Practice provides an introduction to the treatment of natural gas, synthesis gas and flue gas, addressing why it is necessary and the challenges involved.  The book concentrates in particular on the absorption-desorption process and mass transfer coupled with chemical reaction. Following a general introduction to gas treatment, the chemistry of CO2, H2S and amine systems is described, and selected topics from physical chemistry with relevance to gas treating are presented. Thereafter the absorption process is discussed in detail, column hardware is explain

  11. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1984-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantities of gases required to feel the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. The lay-out and design of the different components is described and operational experience is presented. (author)

  12. Numerical Study of Compact Plate-Fin Heat Exchanger for Rotary-Vane Gas Refrigeration Machine

    Directory of Open Access Journals (Sweden)

    V. V. Trandafilov

    2017-10-01

    Full Text Available Plate-fin heat exchangers are widely used in refrigeration technique. They are popular because of their compactness and excellent heat transfer performance. Here we present a numerical model for the development, research and optimization of a plate-fin heat exchanger for a rotary-vane gas refrigeration machine. The method of analysis by graphic method of plate - fin heat exchanger is proposed. The model describes the effects of secondary parameters such as axial thermal conductivity through a metal matrix of the heat exchanger. The influence of geometric parameters and heat transfer coefficient is studied. Graphs of dependences of length, efficiency of a fin and pressure drop in a heat exchanger on the thickness of the fin and the number of fins per meter are obtained. To analyze the results of numerical simulation, the heat exchanger was designed in the Aspen HYSYS program. The simulation results show that the total deviation from the proposed numerical model is not more than 15%. 

  13. MHD free convection flow of a visco-elastic (Kuvshiniski type dusty gas through a semi infinite plate moving with velocity decreasing exponentially with time and radiative heat transfer

    Directory of Open Access Journals (Sweden)

    Om Prakash

    2011-06-01

    Full Text Available The present paper is concerned with the study of MHD free convective flow of a visco-elastic (Kuvshinski type dusty gas through a porous medium induced by the motion of a semi-infinite flat plate under the influence of radiative heat transfer moving with velocity decreasing exponentially with time. The expressions for velocity distribution of a dusty gas and dust particles, concentration profile and temperature field are obtained. The effect of Schmidt number (Sc, Magnetic field parameter (M and Radiation parameter (N on velocity distribution of dusty gas and dust particles, concentration and temperature distribution are discussed graphically.

  14. Study of molecular iodine-epoxy paint mass transfer

    Energy Technology Data Exchange (ETDEWEB)

    Belval-Haltier, E [Inst. de Protection et Surete Nucleaire, IPSN, CEN Cadarache, St. Paul-lez-Durance (France)

    1996-12-01

    The mass transfer phenomena may have a significant influence on the quantity of I{sub 2} which could be released following a severe accident of a nuclear power plant and specially the mass transfer of iodine onto containment surfaces. So, the objective of the present work was to evaluate which phase limited the adsorption process of iodine onto gaseous epoxy paint under a range of conditions which may be relevant to a severe reactor accident. In this aim, a series of experiments was conducted in which the sorption kinetics of molecular iodine, labelled with {sup 131}I, was measured by monitoring continuously the accumulation of this species on the epoxy surface. For each test condition, the initial deposition velocity was determined and the corresponding gas phase mass transfer, kg, was estimated by using the heat transfer analogy for a laminar flow passing over a flat plate. Then, the surface reaction rate, Kr, was deduced from these two values. Experiments performed indicated that iodine adsorption onto epoxy paint is highly dependent on temperature, relative humidity of the carrier gas and moisture content of the painted coupon. In dry air flow conditions, the adsorption of iodine onto paint was found to increase with temperature and to be limited by the surface reaction rate, Kr. The I{sub 2} adsorption rate was found to increase with the humidity of carrier gas and in some studied conditions, the initial deposition velocity appeared to be controlled by gas phase mass transfer rather than surface interaction. The same phenomenon has been observed with an increase of the initial water content of the painted coupon. (author) 6 figs., 1 tab., 8 refs.

  15. Determination of the main parameters of the cyclone separator of the flue gas produced during the smelting of secondary aluminum

    Science.gov (United States)

    Matusov, Jozef; Gavlas, Stanislav

    2016-06-01

    One way how is possible to separate the solid particulate pollutants from the flue gas is use the cyclone separators. The cyclone separators are very frequently used separators due to the simplicity of their design and their low operating costs. Separation of pollutants in the form of solids is carried out using three types of forces: inertia force, centrifugal force, gravity force. The main advantage is that cyclone consist of the parts which are resistant to wear and have long life time, e.g. various rotating and sliding parts. Mostly are used as pre-separators, because they have low efficiency in the separation of small particles. Their function is to separate larger particles from the flue gases which are subsequently cleaned in the other device which is capable of removing particles smaller than 1 µm, which is limiting size of particle separation. The article will deal with the issue of calculating the basic dimensions and main parameters of the cyclone separator from flue gas produced during the smelting of secondary aluminum.

  16. Preventing Buoyant Displacement Gas Release Events in Hanford Double-Shell Waste Tanks

    Energy Technology Data Exchange (ETDEWEB)

    Meyer, Perry A.; Stewart, Charles W.

    2001-01-01

    This report summarizes the predictive methods used to ensure that waste transfer operations in Hanford waste tanks do not create waste configurations that lead to unsafe gas release events. The gas release behavior of the waste in existing double-shell tanks has been well characterized, and the flammable gas safety issues associated with safe storage of waste in the current configuration are being formally resolved. However, waste is also being transferred between double-shell tanks and from single-shell tanks into double-shell tanks by saltwell pumping and sluicing that create new wastes and waste configurations that have not been studied as well. Additionally, planning is underway for various waste transfer scenarios to support waste feed delivery to the proposed vitrification plant. It is critical that such waste transfers do not create waste conditions with the potential for dangerous gas release events.

  17. The Effect of Rain on Air-Water Gas Exchange

    Science.gov (United States)

    Ho, David T.; Bliven, Larry F.; Wanninkhof, Rik; Schlosser, Peter

    1997-01-01

    The relationship between gas transfer velocity and rain rate was investigated at NASA's Rain-Sea Interaction Facility (RSIF) using several SF, evasion experiments. During each experiment, a water tank below the rain simulator was supersaturated with SF6, a synthetic gas, and the gas transfer velocities were calculated from the measured decrease in SF6 concentration with time. The results from experiments with IS different rain rates (7 to 10 mm/h) and 1 of 2 drop sizes (2.8 or 4.2 mm diameter) confirm a significant and systematic enhancement of air-water gas exchange by rainfall. The gas transfer velocities derived from our experiment were related to the kinetic energy flux calculated from the rain rate and drop size. The relationship obtained for mono-dropsize rain at the RSIF was extrapolated to natural rain using the kinetic energy flux of natural rain calculated from the Marshall-Palmer raindrop size distribution. Results of laboratory experiments at RSIF were compared to field observations made during a tropical rainstorm in Miami, Florida and show good agreement between laboratory and field data.

  18. Noble gas, binary mixtures for commercial gas-cooled reactor systems

    International Nuclear Information System (INIS)

    El-Genk, M. S.; Tournier, J. M.

    2007-01-01

    Commercial gas cooled reactors employ helium as a coolant and working fluid for the Closed Brayton Cycle (CBC) turbo-machines. Helium has the highest thermal conductivity and lowest dynamic viscosity of all noble gases. This paper compares the relative performance of pure helium to binary mixtures of helium and other noble gases of higher molecular weights. The comparison is for the same molecular flow rate, and same operating temperatures and geometry. Results show that although helium is a good working fluid because of its high heat transfer coefficient and significantly lower pumping requirement, a binary gas mixture of He-Xe with M = 15 gm/mole has a heat transfer coefficient that is ∼7% higher than that of helium and requires only 25% of the number stages of the turbo-machines. The binary mixture, however, requires 3.5 times the pumping requirement with helium. The second best working fluid is He-Kr binary mixture with M = 10 gm/mole. It has 4% higher heat transfer coefficient than He and requires 30% of the number of stages in the turbo-machines, but requires twice the pumping power

  19. Hot-gas-side heat transfer characteristics of subscale, plug-nozzle rocket calorimeter chamber

    Science.gov (United States)

    Quentmeyer, Richard J.; Roncace, Elizabeth A.

    1993-01-01

    An experimental investigation was conducted to determine the hot-gas-side heat transfer characteristics for a liquid-hydrogen-cooled, subscale, plug-nozzle rocket test apparatus. This apparatus has been used since 1975 to evaluate rocket engine advanced cooling concepts and fabrication techniques, to screen candidate combustion chamber liner materials, and to provide data for model development. In order to obtain the data, a water-cooled calorimeter chamber having the same geometric configuration as the plug-nozzle test apparatus was tested. It also used the same two showerhead injector types that were used on the test apparatus: one having a Rigimesh faceplate and the other having a platelet faceplate. The tests were conducted using liquid oxygen and gaseous hydrogen as the propellants over a mixture ratio range of 5.8 to 6.3 at a nominal chamber pressure of 4.14 MPa abs (600 psia). The two injectors showed similar performance characteristics with the Rigimesh faceplate having a slightly higher average characteristic-exhaust-velocity efficiency of 96 percent versus 94.4 percent for the platelet faceplate. The throat heat flux was 54 MW/m(sup 2) (33 Btu/in.(sup 2)-sec) at the nominal operating condition, which was a chamber pressure of 4.14 MPa abs (600 psia), a hot-gas-side wall temperature of 730 K (1314 R), and a mixture ratio of 6.0. The chamber throat region correlation coefficient C(sub g) for a Nusselt number correlation of the form Nu =C(sub g)Re(sup 0.8)Pr(sup 0.3) averaged 0.023 for the Rigimesh faceplate and 0.026 for the platelet faceplate.

  20. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    Science.gov (United States)

    Pipa, A. V.; Koskulics, J.; Brandenburg, R.; Hoder, T.

    2012-11-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge qmax, and (iii) the development of a graphical method for the determination of qmax from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of qmax is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current jR(t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance Cd. Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the Cd is important.

  1. Benign hepatic portal venous gas following caustic ingestion

    International Nuclear Information System (INIS)

    Lewin, Maite; Tubiana, Jean-Michel; Pocard, Marc; Caplin, Scott; Parc, Rolland; Blain, Antoine

    2002-01-01

    Hepatic portal vein gas has been documented in numerous conditions and is traditionally regarded as a poor prognostic sign. There are, however, several reports of portal vein gas with a benign course. We report the first case of transient hepatic portal vein gas secondary to the ingestion of a caustic substance. The literature of hepatic portal vein gas in benign disease is reviewed. (orig.)

  2. Controlled Environment Specimen Transfer

    DEFF Research Database (Denmark)

    Damsgaard, Christian Danvad; Zandbergen, Henny W.; Hansen, Thomas Willum

    2014-01-01

    an environmental transmission electron microscope to an in situ X-ray diffractometer through a dedicated transmission electron microscope specimen transfer holder, capable of sealing the specimen in a gaseous environment at elevated temperatures. Two catalyst material systems have been investigated; Cu/ZnO/Al2O3...... transferred in a reactive environment to the environmental transmission electron microscope where further analysis on the local scale were conducted. The Co/Al2O3 catalyst was reduced in the environmental microscope and successfully kept reduced outside the microscope in a reactive environment. The in situ......Specimen transfer under controlled environment conditions, such as temperature, pressure, and gas composition, is necessary to conduct successive complementary in situ characterization of materials sensitive to ambient conditions. The in situ transfer concept is introduced by linking...

  3. Fundamentals of gas particle flow

    CERN Document Server

    Rudinger, G

    1980-01-01

    Fundamentals of Gas-Particle Flow is an edited, updated, and expanded version of a number of lectures presented on the "Gas-Solid Suspensions” course organized by the von Karman Institute for Fluid Dynamics. Materials presented in this book are mostly analytical in nature, but some experimental techniques are included. The book focuses on relaxation processes, including the viscous drag of single particles, drag in gas-particles flow, gas-particle heat transfer, equilibrium, and frozen flow. It also discusses the dynamics of single particles, such as particles in an arbitrary flow, in a r

  4. 45th IGE (Institute of Gas Engineers) Autumn Meeting

    Energy Technology Data Exchange (ETDEWEB)

    Riley, T; De Winton, C

    1980-01-01

    Topics discussed at the 45th Institute of Gas Engineers Autumn Meeting (London, 1979) are outlined, including safety standards and recommendations for gas transmission and distribution systems, gas characteristics and utilization, heat transfer research, gas receiver stresses, the potential of hydrogen as an energy fuel, gas appliances and controls, pipe failure, refactories in gasifiers, synthetic natural gas, coal conversion techniques, and technological innovations.

  5. Study on gas-liquid loop reactors with annular bubbling

    International Nuclear Information System (INIS)

    Fei, L.M.; Wang, S.X.; Wu, X.Q.; Lu, D.W.

    1987-01-01

    Bubbling column with draft tube is one of nearly developed reactor. On the background of hydrocarbon oxidations and biochemical engineerings, it has been widely used in chemical industry due to the well characteristics of mass and heat transfer. In this paper, the characteristics of fluid flow, such as gas hold-up, backmixing and mass transfer referred to the liquid volume were measured in a gas-liquid loop reactor with annular bubbling. Different materials - water, alcohol and oi l- were used in the study in measuring the gas hold-up in the annular of the reactor

  6. The gas introduction system of JET

    International Nuclear Information System (INIS)

    Boschi, A.; Dietz, K.J.; Rebut, P.H.

    1985-01-01

    The Gas Introduction System of JET is designed to handle, measure, transfer and inject into the machine, at given rates and times, the quantitites of gases required to feed the plasma discharges. The System is composed by a Gas Handling Unit for the gas preparation, and four identical Gas Introduction Modules which are positioned symmetrically at the machine. In this paper the lay-out and design of the different components is described and operational experience is presented

  7. Oscillatory conductive heat transfer for a fiber in an ideal gas

    Science.gov (United States)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  8. Gas-Generator Augmented Expander Cycle Rocket Engine

    Science.gov (United States)

    Greene, William D. (Inventor)

    2011-01-01

    An augmented expander cycle rocket engine includes first and second turbopumps for respectively pumping fuel and oxidizer. A gas-generator receives a first portion of fuel output from the first turbopump and a first portion of oxidizer output from the second turbopump to ignite and discharge heated gas. A heat exchanger close-coupled to the gas-generator receives in a first conduit the discharged heated gas, and transfers heat to an adjacent second conduit carrying fuel exiting the cooling passages of a primary combustion chamber. Heat is transferred to the fuel passing through the cooling passages. The heated fuel enters the second conduit of the heat exchanger to absorb more heat from the first conduit, and then flows to drive a turbine of one or both of the turbopumps. The arrangement prevents the turbopumps exposure to combusted gas that could freeze in the turbomachinery and cause catastrophic failure upon attempted engine restart.

  9. Simulating progressive social transfers. Gas subsidies and solidarity bonds in Ecuador

    International Nuclear Information System (INIS)

    Cuesta, J.; Ponce, J.; Leon, M.

    2004-02-01

    After two decades of neglect, social expending has become a cornerstone in the current fight against poverty in Ecuador. Ecuador is presently considering the elimination of regressive gas subsidies and the shift of these resources into pro-poor targeted Solidarity Bonds. Great distributive gains are expected from this reform. There are, however, a number of considerations that may prevent this policy shift from obtaining substantial poverty and equality gains. Despite their regressivity, implicit gas subsidies still represent a considerable proportion of total household consumption among poor households. Also, solidarity bonds siphon off a substantial share of their total benefits to middle income groups. This paper estimates the redistributive consequences of policy reforms on gas subsidies and solidarity bonds in Ecuador. A simulation methodology estimates both direct and indirect (labour-driven) distributive effects of four alternative scenarios: (1) total elimination of gas subsidies; (2) selective elimination of gas subsidies among non-poor households; (3) total elimination of gas subsidies and shift of resources to solidarity bonds targeted to the poor; (4) selective elimination of gas subsidies and shift of resources to solidarity bonds targeted to the poor. Estimates confirm that the redistributive gains from these reforms are rather small both for poverty and inequality. Incentives to work following the elimination of subsidies compensate, or even outdo, immediate poverty rises. Also, the elimination of gas subsidies without further expansion of subsidy bonds will unambiguously increase poverty in Ecuador between one and one and a half percent points

  10. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    International Nuclear Information System (INIS)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-01-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion

  11. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Science.gov (United States)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J.

    2015-12-01

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  12. Laser absorption, power transfer, and radiation symmetry during the first shock of inertial confinement fusion gas-filled hohlraum experiments

    Energy Technology Data Exchange (ETDEWEB)

    Pak, A.; Dewald, E. L.; Landen, O. L.; Milovich, J.; Strozzi, D. J.; Berzak Hopkins, L. F.; Bradley, D. K.; Divol, L.; Ho, D. D.; MacKinnon, A. J.; Meezan, N. B.; Michel, P.; Moody, J. D.; Moore, A. S.; Schneider, M. B.; Town, R. P. J.; Hsing, W. W.; Edwards, M. J. [Lawrence Livermore National Laboratory, Livermore, California, 94550 (United States)

    2015-12-15

    Temporally resolved measurements of the hohlraum radiation flux asymmetry incident onto a bismuth coated surrogate capsule have been made over the first two nanoseconds of ignition relevant laser pulses. Specifically, we study the P2 asymmetry of the incoming flux as a function of cone fraction, defined as the inner-to-total laser beam power ratio, for a variety of hohlraums with different scales and gas fills. This work was performed to understand the relevance of recent experiments, conducted in new reduced-scale neopentane gas filled hohlraums, to full scale helium filled ignition targets. Experimental measurements, matched by 3D view factor calculations, are used to infer differences in symmetry, relative beam absorption, and cross beam energy transfer (CBET), employing an analytic model. Despite differences in hohlraum dimensions and gas fill, as well as in laser beam pointing and power, we find that laser absorption, CBET, and the cone fraction, at which a symmetric flux is achieved, are similar to within 25% between experiments conducted in the reduced and full scale hohlraums. This work demonstrates a close surrogacy in the dynamics during the first shock between reduced-scale and full scale implosion experiments and is an important step in enabling the increased rate of study for physics associated with inertial confinement fusion.

  13. Ozone mass transfer behaviors on physical and chemical absorption for hollow fiber membrane contactors.

    Science.gov (United States)

    Zhang, Yong; Li, Kuiling; Wang, Jun; Hou, Deyin; Liu, Huijuan

    2017-09-01

    To understand the mass transfer behaviors in hollow fiber membrane contactors, ozone fluxes affected by various conditions and membranes were investigated. For physical absorption, mass transfer rate increased with liquid velocity and the ozone concentration in the gas. Gas flow rate was little affected when the velocity was larger than the critical value, which was 6.1 × 10 -3 m/s in this study. For chemical absorption, the flux was determined by the reaction rate between ozone and the absorbent. Therefore, concentration, species, and pH affected the mass transfer process markedly. For different absorbents, the order of mass transfer rate was the same as the reaction rate constant, which was phenol, sodium nitrite, hydrogen peroxide, and oxalate. Five hydrophobic membranes with various properties were employed and the mass transfer behavior can be described by the Graetz-Lévèque equation for the physical absorption process. The results showed the process was controlled by liquid film and the gas phase conditions, and membrane properties did not affect the ozone flux. For the chemical absorption, gas film, membrane and liquid film affected the mass transfer together, and none of them were negligible.

  14. Experiments on nucleate boiling heat transfer with a highly-wetting dielectric fluid

    International Nuclear Information System (INIS)

    You, S.M.; Simon, T.W.; Bar-Cohen, A.

    1990-01-01

    This paper reports on experiments on pool boiling heat transfer in an electronic cooling fluid (Fluorinert, FC-72) that were conducted using a 0.51 mm diameter cylindrical heater. The effects of pressure, subcooling and dissolved gas content on nucleate boiling heat transfer are investigated. When boiling with dissolved gas in the bulk fluid, the fluid in the vicinity of the heating element appears to be liberated of dissolved gas by boiling. Thus, boiling under these conditions appears to be similar to subcooled boiling without dissolved gas. Nucleate boiling hysteresis is observed for subcooled and gassy-subcooled situations

  15. Analysis of a gas absorption system with soluble carrier gas and volatile solvent

    International Nuclear Information System (INIS)

    Kanak, B.E.

    1980-01-01

    The effects of column diameter, carrier gas coabsorption, and solvent vaporization on the performance of a packed gas absorption column are examined. The system investigated employs dichlorodifluoromethane as a solvent to remove krypton from a nitrogen stream and is characterized by substantial nitrogen coabsorption. Three columns with diameters of 2, 3, and 4 inches were constructed and packed with 34.5 inches of Goodloe packing. In addition to the more conventional data, the experimental evaluation of these columns included the use of a radioisotope and a gamma scanning technique which provided direct measurement of the columns' molar krypton profiles. A multicomponent gas absorption model was developed, based on the two-film mass transfer theory, that allows the fluxes of all species to interact. Verification of this model was achieved through comparison of the calculated results with experimental data. With the feed gas flow rate between 6 and 36 lb moles/hr-ft 2 and the solvent feed rate between 40 and 400 lb moles/hr-ft 2 , column diameter was found to have no significant impact on the mass transfer efficiency of this system when carried out in columns with diameters of 2 inches or greater. The absorption of krypton was found to be enhanced and inhibited, respectively, by carrier gas coabsorption and solvent vaporization. An injector system to add gaseous solvent to the feed gas stream prior to its introduction into the packed bed was proposed to eliminate the detrimental effects of solvent vaporization.Using this injector to supersaturate the feed gas stream with solvent enhanced absorber performance in the same manner as carrier gas coabsorption

  16. Targeted Technology Transfer to US Independents

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2006-09-29

    The Petroleum Technology Transfer Council (PTTC) was established by domestic crude oil and natural gas producers in 1994 as a national not-for-profit organization to address the increasingly urgent need to improve the technology-transfer process in the U.S. upstream petroleum industry. Coordinated from a Headquarters (HQ) office in Houston, PTTC maintains an active grassroots program executed by 10 Regional Lead Organizations (RLOs) and two satellite offices (Figure 1). Regional Directors interact with domestic oil and gas producers through technology workshops, resource centers, websites, newsletters, technical publications and cooperative outreach efforts. HQ facilitates inter-regional technology transfer and implements a comprehensive communications program. Active volunteers on the National Board and in Producer Advisory Groups (PAGs) in each of the 10 regions focus effort in areas that will create the most impact for domestic producers. Focused effort by dedicated individuals across the country has enabled PTTC to achieve the milestones outlined in Appendix A.

  17. Preliminary Overview of a Helium Cooling System for the Secondary Helium Loop in VHTR-based SI Hydrogen Production Facilities

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Youngjoon; Cho, Mintaek; Kim, Dahee; Lee, Taehoon; Lee, Kiyoung; Kim, Yongwan [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    Nuclear hydrogen production facilities consist of a very high temperature gas-cooled nuclear reactor (VHTR) system, intermediate heat exchanger (IHX) system, and a sulfur-iodine (SI) thermochemical process. This study focuses on the coupling system between the IHX system and SI thermochemical process. To prevent the propagation of the thermal disturbance owing to the abnormal operation of the SI process components from the IHX system to the VHTR system, a helium cooling system for the secondary helium of the IHX is required. In this paper, the helium cooling system has been studied. The temperature fluctuation of the secondary helium owing to the abnormal operation of the SI process was then calculated based on the proposed coupling system model. Finally, the preliminary conceptual design of the helium cooling system with a steam generator and forced-draft air-cooled heat exchanger to mitigate the thermal disturbance has been carried out. A conceptual flow diagram of a helium cooling system between the IHX and SI thermochemical processes in VHTR-based SI hydrogen production facilities has been proposed. A helium cooling system for the secondary helium of the IHX in this flow diagram prevents the propagation of the thermal disturbance from the IHX system to the VHTR system, owing to the abnormal operation of the SI process components. As a result of a dynamic simulation to anticipate the fluctuations of the secondary helium temperature owing to the abnormal operation of the SI process components with a hydrogen production rate of 60 mol·H{sub 2}/s, it is recommended that the maximum helium cooling capacity to recover the normal operation temperature of 450 .deg. C is 31,933.4 kJ/s. To satisfy this helium cooling capacity, a U-type steam generator, which has a heat transfer area of 12 m{sup 2}, and a forced-draft air-cooled condenser, which has a heat transfer area of 12,388.67 m{sup 2}, are required for the secondary helium cooling system.

  18. Heat Transfer Augmentation in Gas Turbine Blade Rectangular Passages Using Circular Ribs with Fins

    Directory of Open Access Journals (Sweden)

    Mohammed W. Al-Jibory

    2017-11-01

    Full Text Available In this paper, an experimental system  was designed and built to simulate conditions in the gas turbine blade cooling and run the experimental part. Boundary conditions are: inlet coolant air temperature is 300K with Reynolds numbers (Re=7901 .The surrounding constant hot air temperatures was (673 K.The numerical simulations were done by using software FLUENT version (14.5, in this part, it was presented the effect of using circular ribs having middle fin fitted in rectangular passage channel on fluid flow and heat transfer characteristics.  Ribs used with pitch-rib height of 10, rectangular channel of (30x60 mm cross section, 1.5 mm duct thickness and 0.5 m long. The temperature, velocity distribution contours, cooling air temperature distribution at the duct centerline, the inner wall surface temperature of the duct, and thermal performance factor are presented in this paper. it can be seen that the duct with all ribs with middle fins was the better case which leads to increase the coolant air temperature by (10.22 % and decrease the inner wall temperature by (6.15 % . The coolant air flow velocity seems to be accelerated and decelerated through the channel in the presence of ribs, so it was shown that the thermal performance factor along the duct is larger than 1, this is due to the fact that the ribs create turbulent conditions and increasing thermal surface area, and thus increasing heat transfer coefficient than the smooth channel.

  19. Peculiarities of radionuclide transfer to plants

    International Nuclear Information System (INIS)

    Butkus, D.; Andriulaityte, I.; Luksiene, B.; Druteikiene, R.

    2003-01-01

    The biosphere and its interacting components (air, soil, bottom sediments, flora, fauna, human beings) are constantly affected by ionizing radiation. One of the ionizing radiation sources is noble radioactive gas that is continually released into the environment because of the normal operation of nuclear power plants (short-lived and long-lived noble gas) and nuclear fuel-reprocessing plants (long-lived noble gas). Another source is related to nuclear tests and the Chernobyl NPP accident, when long-lived gaseous and aerosol radionuclides ( 85 Kr, transuranics, 137 Cs, 90 Sr, etc) were spread in all environmental systems. In order to evaluate the mechanism of radionuclide transfer to plants, model experimental investigation using gaseous 85 Kr and ionic state 137 Cs was undertaken. For this purpose specific chambers with defined physical parameters were applied. The gained tentative results show the importance of these experiments for the estimation of radionuclide transfer to plants and for the prognosis of human internal irradiation. (author)

  20. Heat Transfer Modeling for Rigid High-Temperature Fibrous Insulation

    Science.gov (United States)

    Daryabeigi, Kamran; Cunnington, George R.; Knutson, Jeffrey R.

    2012-01-01

    Combined radiation and conduction heat transfer through a high-temperature, high-porosity, rigid multiple-fiber fibrous insulation was modeled using a thermal model previously used to model heat transfer in flexible single-fiber fibrous insulation. The rigid insulation studied was alumina enhanced thermal barrier (AETB) at densities between 130 and 260 kilograms per cubic meter. The model consists of using the diffusion approximation for radiation heat transfer, a semi-empirical solid conduction model, and a standard gas conduction model. The relevant parameters needed for the heat transfer model were estimated from steady-state thermal measurements in nitrogen gas at various temperatures and environmental pressures. The heat transfer modeling methodology was evaluated by comparison with standard thermal conductivity measurements, and steady-state thermal measurements in helium and carbon dioxide gases. The heat transfer model is applicable over the temperature range of 300 to 1360 K, pressure range of 0.133 to 101.3 x 10(exp 3) Pa, and over the insulation density range of 130 to 260 kilograms per cubic meter in various gaseous environments.

  1. Isotope effects for base-promoted, gas-phase proton transfer reactions

    International Nuclear Information System (INIS)

    Grabowski, J.J.; Cheng, Xueheng

    1991-01-01

    Proton transfer reactions are among the most basic, the most common and the most important of chemical transformations; despite their apparent simplicity, much is unknown about this most fundamental of all chemical processes. Active interest in understanding the underlying principles of organic proton transfer reactions continues because of efforts being made to develop the theory of elementary chemical processes, because of the resurgence of interest in mechanistic organic chemistry and because of the resurgence of interest in mechanistic organic chemistry processes, because of the resurgence of interest in mechanistic organic chemistry and because of the dynamic role played by proton transfers in biochemical transformations. As organic chemists, the authors have used the flowing afterglow technique to gain an appreciation of the fundamental issues involved in reaction mechanisms by examining such processes in a solvent-free environment under thermally-equilibrated (300 K) conditions. Recent characterization of the facile production of both acetate and the monoenolate anion from the interaction of hydroxide or fluoride with acetic acid reinforces the idea that much yet must be learned about proton transfers/proton abstractions in general. Earlier work by Riveros and co-workers on competitive H vs D abstraction from α-d 1 -toluenes and by Noest and Nibbering on competitive H vs D abstraction from α,α,α-d 3 -acetone, in combination with the acetic acid results, challenged the author's to assemble a comprehensive picture of the competitive nature of proton transfer reactions for anionic base-promoted processes

  2. Efeito do gás de proteção e do modo de transferência na aplicação da liga 625 em aço carbono Effect of shielding gas and transfer mode on the application of 625 alloy in carbon steel

    Directory of Open Access Journals (Sweden)

    Carlos Eduardo Iconomos Baixo

    2009-12-01

    Full Text Available Neste trabalho foram analisados os efeitos do gás de proteção (Ar, Ar/CO2, Ar/O2 e Ar/He/O2 e do modo de transferência (curto-circuito e corrente pulsada utilizando o processo MIG/ MAG com arame ER-NiCrMo-3 para produzir depósitos sobre chapa assim como o passe de raiz em juntas em V produzidas em aço ABNT 1020. Os resultados mais favoráveis na soldagem do passe de raiz foram obtidos na soldagem com corrente pulsada, empregando uma junta em V com abertura de 90º e atmosfera de Ar + 25% CO2. A utilização de atmosferas de proteção com 20% Hélio e baixo percentual de gás ativo não produziu os resultados esperados, sendo eficaz somente na soldagem com deposição sobre chapa, porém tímida em produzir resultados satisfatórios na solda do passe de raiz. Resultados ruins foram obtidos na soldagem com transferência por curto-circuito, independente do gás de proteção, e quando utilizada atmosfera composta por Argônio puro, independente do modo de transferência ajustado.In this study the effect of shielding gas (Ar, Ar/CO2, Ar/O2 and Ar/He/O2 and transfer mode (short-circuit and pulsed current in MIG/MAG welding with ER-NiCrMo-3 wire to produce bead-on-plate deposits and root passes in "V" joints of ABNT 1020 steel were analyzed. The most favorable results in root pass welding were obtained with pulsed current, employing a "V" joint with a 90º aperture and Ar+25%CO2 atmosphere. The use of shielding atmospheres with 20% helium and a low percentage of active gas did not produce the expected results, being effective only in bead-on-plate weld deposition. However, it was not very effective to produce satisfactory results in root pass welding. Poor results were obtained in the welding with short-circuit transfer regardless of the used shielding gas, and when an atmosphere of pure argon was used, regardless of the mode of transfer.

  3. The relationship between vapour pressure, vaporization enthalpy, and enthalpy of transfer from solution to gas: An extension of the Martin equation

    International Nuclear Information System (INIS)

    Srisaipet, A.; Aryusuk, K.; Lilitchan, S.; Krisnangkura, K.

    2007-01-01

    Martin's equation, Δ sln g G=Δ sln g G o +zδ sln g G, is extended to cover vaporization free energy (Δ l g G). The extended equation is further expanded in terms of enthalpy and entropy and then used to correlate vaporization enthalpy (Δ l g H) and enthalpy of transfer from solution to gas (Δ sln g H). Data available in the literatures are used to validate and support the speculations derived from the proposed equation

  4. PTAC 2002 annual report : creating value through innovation : facilitating innovation, technology transfer, and collaborative research and development in the upstream oil and gas industry

    International Nuclear Information System (INIS)

    2003-01-01

    Petroleum Technology Alliance Canada (PTAC) is Canada's leading organization that helps in the development and transfer of petroleum technology. This annual report listed the key accomplishments of PTAC in 2002. These include a record participation in PTAC workshops and conferences, the co-hosting of the world's largest unconventional gas and coalbed methane conference with the Canadian Society for Unconventional Gas, and the co-hosting of a conference on climate change and greenhouse gas technology with Climate Change Central. In 2002 PTAC launched an Industrial Energy Audit Incentive with Natural Resources Canada. It also proposed an extension to its mandate to help energy efficiency and greenhouse gas technologies for the hydrocarbon energy industry. In addition, PTAC helped launch 32 research and development projects in 2002. PTAC expects that 2003 will see a shift in focus to sustainable, eco-efficiency and greenhouse gas-reducing technologies for the hydrocarbon energy industry. This annual report includes an auditor's report of PTAC's financial statements. The report includes summarized balance sheet of assets, liabilities/surplus and net assets. It also includes summarized statements of revenues, expenses and surplus for the year ended December 31, 2002 with comparative figures for 2001. 1 tab., 2 figs

  5. Some Metapsychological Considerations about Transference

    Directory of Open Access Journals (Sweden)

    Sergio Guillermo Castellanos-Urrego**

    2009-12-01

    Full Text Available This paper shows a metapsychological re-creation of transference from a conceptualization of representations as the units of psychism. Transferences have their origins in the effort of an unsatisfied libidinal investiture that continues to be active in the Unconscious, and which allows the primary process to inadvertently filter into the secondary process through a “false link”. Therefore, a current perception becomes identified with the expectative representation, which makes the individual believe that this new person will satisfy the aforementioned investiture. Transference neurosis is a psychoanalytic pillar, since only through it may one consciously and currently have access the repressed unconscious drives, a feature of childhood sexuality, and restart the psychosexual development.

  6. Air–Sea CO2 Gas Transfer Velocity in a Shallow Estuary

    DEFF Research Database (Denmark)

    Mørk, Eva Thorborg; Sørensen, Lise Lotte; Jensen, Bjarne

    2014-01-01

    The air–sea transfer velocity of CO2(kCO2) was investigated in a shallow estuary in March to July 2012, using eddy-covariance measurements of CO2 fluxes and measured air–sea CO2 partial-pressure differences. A data evaluation method that eliminates data by nine rejection criteria in order......, the transfer velocity in the shallow water estuary was lower than in other coastal waters, possibly a symptom of low tidal amplitude leading to low intensity water turbulence. High transfer velocities were recorded above wind speeds of 5 m s−1 , believed to be caused by early-breaking waves and the large fetch...... (6.5 km) of the estuary. These findings indicate that turbulence in both air and water influences the transfer velocity....

  7. Numerical investigation of energy transfer for fast gas heating in an atmospheric nanosecond-pulsed DBD under different negative slopes

    International Nuclear Information System (INIS)

    Zhu, Yifei; Wu, Yun; Cui, Wei; Li, Yinghong; Jia, Min

    2013-01-01

    A validated one-dimensional air plasma kinetics model (13 species and 37 processes) for a nanosecond discharge under atmospheric pressure was developed to reveal the energy transfer mechanism for fast gas heating of a plane-to-plane dielectric barrier discharge (DBD). Calculations for voltage profiles with three different negative slopes were performed. Results have shown that 72% of the total heating energy goes to quench heating, which results in a temperature rise across the gap, the remaining 28% goes to ion collisions, thus heating the cathode sheath in a higher power density. The relationships between ion collision heating, quench heating and reduced electric field are given as two functions, which indicates that 10 13  W m −3 is the peak magnitude of power density produced by ion collisions in the nanosecond-pulsed DBD under atmospheric pressure, and a further increase in E/N does not increase the higher quench heating power. The steepness of the negative slope mainly affects the energy transfer efficiency, and the percentage of two heating sources in the total heating power. A short pulse will couple positive and negative slopes and provide a higher transient total heating power but lower energy transfer efficiency. By uncoupling the positive slope, steady stage and negative slope, the energy transfer efficiency under a certain voltage amplitude (20 kV in this paper) is found to have a maximum value of 68.5%. Two wave crests of temperature rise near the cathode sheath are observed, one is caused by a positive slope and the other by a negative slope. (paper)

  8. Natural Gas Market Hubs

    Data.gov (United States)

    Department of Homeland Security — A hub is a physical transfer point for natural gas where several pipelines are connected. A market center is a hub where the operator offers services that facilitate...

  9. Secondary hydriding of defected zircaloy-clad fuel rods

    International Nuclear Information System (INIS)

    Olander, D.R.; Vaknin, S.

    1993-01-01

    The phenomenon of secondary hydriding in LWR fuel rods is critically reviewed. The current understanding of the process is summarized with emphasis on the sources of hydrogen in the rod provided by chemical reaction of water (steam) introduced via a primary defect in the cladding. As often noted in the literature, the role of hydrogen peroxide produced by steam radiolysis is to provide sources of hydrogen by cladding and fuel oxidation that are absent without fission-fragment irradiation of the gas. Quantitative description of the evolution of the chemical state inside the fuel rod is achieved by combining the chemical kinetics of the reactions between the gas and the fuel and cladding with the transport by diffusion of components of the gas in the gap. The chemistry-gas transport model provides the framework into which therate constants of the reactions between the gases in the gap and the fuel and cladding are incorporated. The output of the model calculation is the H 2 0/H 2 ratio in the gas and the degree of claddingand fuel oxidation as functions of distance from the primary defect. This output, when combined with a criterion for the onset of massive hydriding of the cladding, can provide a prediction of the time and location of a potential secondary hydriding failure. The chemistry-gas transport model is the starting point for mechanical and H-in-Zr migration analyses intended to determine the nature of the cladding failure caused by the development of the massive hydride on the inner wall

  10. Gas-solid heat exchange in a fibrous metallic material measured by a heat regenerator technique

    NARCIS (Netherlands)

    Golombok, M.; Jariwala, H.; Shirvill, C.

    1990-01-01

    The convective heat transfer properties of a porous metallic fibre material used in gas surface combustion burners are studied. The important parameter governing the heat transfer between hot gas and metal fibre—the heat transfer coefficient—is measured using a non-steady-state method based on

  11. Modeling the gas-particle partitioning of secondary organic aerosol: the importance of liquid-liquid phase separation

    Directory of Open Access Journals (Sweden)

    A. Zuend

    2012-05-01

    Full Text Available The partitioning of semivolatile organic compounds between the gas phase and aerosol particles is an important source of secondary organic aerosol (SOA. Gas-particle partitioning of organic and inorganic species is influenced by the physical state and water content of aerosols, and therefore ambient relative humidity (RH, as well as temperature and organic loading levels. We introduce a novel combination of the thermodynamic models AIOMFAC (for liquid mixture non-ideality and EVAPORATION (for pure compound vapor pressures with oxidation product information from the Master Chemical Mechanism (MCM for the computation of gas-particle partitioning of organic compounds and water. The presence and impact of a liquid-liquid phase separation in the condensed phase is calculated as a function of variations in relative humidity, organic loading levels, and associated changes in aerosol composition. We show that a complex system of water, ammonium sulfate, and SOA from the ozonolysis of α-pinene exhibits liquid-liquid phase separation over a wide range of relative humidities (simulated from 30% to 99% RH. Since fully coupled phase separation and gas-particle partitioning calculations are computationally expensive, several simplified model approaches are tested with regard to computational costs and accuracy of predictions compared to the benchmark calculation. It is shown that forcing a liquid one-phase aerosol with or without consideration of non-ideal mixing bears the potential for vastly incorrect partitioning predictions. Assuming an ideal mixture leads to substantial overestimation of the particulate organic mass, by more than 100% at RH values of 80% and by more than 200% at RH values of 95%. Moreover, the simplified one-phase cases stress two key points for accurate gas-particle partitioning calculations: (1 non-ideality in the condensed phase needs to be considered and (2 liquid-liquid phase separation is a consequence of considerable deviations

  12. Predicting freeboard heat transfer by using empirical correlations in high temperature fluidized beds

    Energy Technology Data Exchange (ETDEWEB)

    Biyikli, Suleyman [Okan University Tuzla Kampusu, Faculty of Engineering and Architecture (Turkey)], email: suleyman.biyikli@okan.edu.tr

    2011-07-01

    This article investigates the heat transfer characteristics for horizontal tubes in a freeboard region of high temperature fluidized beds. The freeboard entrainment heights are calculated by using empirical correlations described in detail and used in estimating the heat transfer coefficients from a horizontal tube occurring by radiation, gas convection, and particle contact mechanisms in high temperature a fluidized bed combustor. The total average of these coefficients around a horizontal tube carrying water in high temperature fluidized beds can be written as the sum of convective, radiative, and fluidized-particle contact heat transfer coefficients and these correlations are tested against certain published experimental measurements. In full agreement with this data, it was observed that the calculated heat transfer coefficients increased with increasing gas velocity at a given tube elevation and they decreased and approached the values of single-phase gas convection and radiation with increasing tube elevation in the freeboard region while the relative contribution of radiation increases and approaches a constant fraction of total heat transfer.

  13. Investigation of heat transfer and flow using ribs within gas turbine blade cooling passage: Experimental and hybrid LES/RANS modeling

    Science.gov (United States)

    Kumar, Sourabh

    Gas turbines are extensively used for aircraft propulsion, land based power generation and various industrial applications. Developments in innovative gas turbine cooling technology enhance the efficiency and power output, with an increase in turbine rotor inlet temperatures. These advancements of turbine cooling have allowed engine design to exceed normal material temperature limits. For internal cooling design, techniques for heat extraction from the surfaces exposed to hot stream are based on the increase of heat transfer areas and on promotion of turbulence of the cooling flow. In this study, it is obtained by casting repeated continuous V and broken V shaped ribs on one side of the two pass square channel into the core of blade. Despite extensive research on ribs, only few papers have validated the numerical data with experimental results in two pass channel. In the present study, detailed experimental investigation is carried out for two pass square channels with 180° turn. Detailed heat transfer distribution occurring in the ribbed passage is reported for steady state experiment. Four different combinations of 60° and Broken 60° V ribs in channel are considered. Thermocouples are used to obtain the temperature on the channel surface and local heat transfer coefficients are obtained for various Reynolds numbers, within the turbulent flow regime. Area averaged data are calculated in order to compare the overall performance of the tested ribbed surface and to evaluate the degree of heat transfer enhancement induced by the ribs with. Flow within the channels is characterized by heat transfer enhancing ribs, bends, rotation and buoyancy effects. Computational Fluid Dynamics (CFD) simulations were carried out for the same geometries using different turbulence models such as k-o Shear stress transport (SST) and Reynolds stress model (RSM). These CFD simulations were based on advanced computing in order to improve the accuracy of three dimensional metal

  14. Exocometary gas in the HD 181327 debris ring

    Science.gov (United States)

    Marino, S.; Matrà, L.; Stark, C.; Wyatt, M. C.; Casassus, S.; Kennedy, G.; Rodriguez, D.; Zuckerman, B.; Perez, S.; Dent, W. R. F.; Kuchner, M.; Hughes, A. M.; Schneider, G.; Steele, A.; Roberge, A.; Donaldson, J.; Nesvold, E.

    2016-08-01

    An increasing number of observations have shown that gaseous debris discs are not an exception. However, until now, we only knew of cases around A stars. Here we present the first detection of 12CO (2-1) disc emission around an F star, HD 181327, obtained with the Atacama Large Millimeter/submillimeter Array (ALMA) observations at 1.3 mm. The continuum and CO emission are resolved into an axisymmetric disc with ring-like morphology. Using a Markov chain Monte Carlo method coupled with radiative transfer calculations, we study the dust and CO mass distribution. We find the dust is distributed in a ring with a radius of 86.0 ± 0.4 au and a radial width of 23.2 ± 1.0 au. At this frequency, the ring radius is smaller than in the optical, revealing grain size segregation expected due to radiation pressure. We also report on the detection of low-level continuum emission beyond the main ring out to ˜200 au. We model the CO emission in the non-local thermodynamic equilibrium regime and we find that the CO is co-located with the dust, with a total CO gas mass ranging between 1.2 × 10-6 M⊕ and 2.9 × 10-6 M⊕, depending on the gas kinetic temperature and collisional partners densities. The CO densities and location suggest a secondary origin, I.e. released from icy planetesimals in the ring. We derive a CO+CO2 cometary composition that is consistent with Solar system comets. Due to the low gas densities, it is unlikely that the gas is shaping the dust distribution.

  15. Targeted technology applications for infield reserve growth: A synopsis of the Secondary Natural Gas Recovery project, Gulf Coast Basin. Topical report, September 1988--April 1993

    Energy Technology Data Exchange (ETDEWEB)

    Levey, R.A.; Finley, R.J.; Hardage, B.A.

    1994-06-01

    The Secondary Natural Gas Recovery (SGR): Targeted Technology Applications for Infield Reserve Growth is a joint venture research project sponsored by the Gas Research Institute (GRI), the US Department of Energy (DOE), the State of Texas through the Bureau of Economic Geology at The University of Texas at Austin, with the cofunding and cooperation of the natural gas industry. The SGR project is a field-based program using an integrated multidisciplinary approach that integrates geology, geophysics, engineering, and petrophysics. A major objective of this research project is to develop, test, and verify those technologies and methodologies that have near- to mid-term potential for maximizing recovery of gas from conventional reservoirs in known fields. Natural gas reservoirs in the Gulf Coast Basin are targeted as data-rich, field-based models for evaluating infield development. The SGR research program focuses on sandstone-dominated reservoirs in fluvial-deltaic plays within the onshore Gulf Coast Basin of Texas. The primary project research objectives are: To establish how depositional and diagenetic heterogeneities cause, even in reservoirs of conventional permeability, reservoir compartmentalization and hence incomplete recovery of natural gas. To document examples of reserve growth occurrence and potential from fluvial and deltaic sandstones of the Texas Gulf Coast Basin as a natural laboratory for developing concepts and testing applications. To demonstrate how the integration of geology, reservoir engineering, geophysics, and well log analysis/petrophysics leads to strategic recompletion and well placement opportunities for reserve growth in mature fields.

  16. Flow and heat transfer in a curved channel

    Science.gov (United States)

    Brinich, P. F.; Graham, R. W.

    1977-01-01

    Flow and heat transfer in a curved channel of aspect ratio 6 and inner- to outer-wall radius ratio 0.96 were studied. Secondary currents and large longitudinal vortices were found. The heat-transfer rates of the outer and inner walls were independently controlled to maintain a constant wall temperature. Heating the inner wall increased the pressure drop along the channel length, whereas heating the outer wall had little effect. Outer-wall heat transfer was as much as 40 percent greater than the straight-channel correlation, and inner-wall heat transfer was 22 percent greater than the straight-channel correlation.

  17. Modeling beam-front dynamics at low gas pressures

    International Nuclear Information System (INIS)

    Briggs, R.J.; Yu, S.

    1982-01-01

    The dynamics of space charge neutralization at the front of an intense self-focused electron beam pulse exhibits important differences in different gas pressure regimes. At very low pressures, the beam front is in the so-called ion-focused regime (IFR) where all secondary electrons are expelled from the beam region by the radial electric field without causing significant additional ionization. We estimate the upper pressure boundary of this regime by considering the distance scale length for cascade (avalanche) ionization. Data from the FX-25 diode experiments indicate a critical transition pressure (P/sub c/) that agrees with this estimate and with its scaling among various gas types. Normal mobility-limited treatments (local conductivity models) of the secondary electrons at the beam front are not justified until the gas pressure is 10 to 50 times higher than P/sub c/, due to runaway of these secondary electrons in the strong space-charge electric field at the lower pressures. The main conclusion of this study is that a non-local phase space (Boltzmann) treatment of the secondary electrons is required to accurately describe these different beam front regimes and the transitions between them; such a code model is currently under development

  18. TECHNOLOGY TRANSFER TO U.S. INDEPENDENT OIL AND NATURAL GAS PRODUCERS

    Energy Technology Data Exchange (ETDEWEB)

    Donald F. Duttlinger; E. Lance Cole

    2003-12-15

    The Petroleum Technology Transfer Council (PTTC) continued pursuing its mission of assisting U.S. independent oil and gas producers to make timely, informed technology decisions. Functioning as a cohesive national organization, PTTC has active grassroots programs through its 10 Regional Lead Organizations (RLOs) and 3 Satellite Offices that encompass all of the oil- and natural gas-producing regions in the U.S. Active volunteer leadership from the Board and regional Producer Advisory Groups keeps activities focused on producer's needs. Technical expertise and personal networks of national and regional staff enable PTTC to deliver focused, technology-related information in a manner that is cost and time effective for independents. The organization effectively combines federal funding through the Department of Energy's (DOE) Office of Fossil Energy with matching state and industry funding, forming a unique partnership. This final report summarizes PTTC's accomplishments. In this final fiscal year of the contract, activities exceeded prior annual activity levels by significant percentages. Strategic planning implemented during the year is focusing PTTC's attention on changes that will bear fruit in the future. Networking and connections are increasing PTTC's sphere of influence with both producers and the service sector. PTTC's reputation for unbiased bottom-line information stimulates cooperative ventures. In FY03 PTTC's regions held 169 workshops, drawing 8,616 attendees. There were nearly 25,000 reported contacts. This represents a 38% increase in attendance and 34% increase in contacts as compared to FY02 activity. Repeat attendance at regional workshops, a measure of customer satisfaction and value received, remained strong at 50%. 39% of participants in regional workshops respond ''Yes'' on feedback forms when asked if they are applying technologies based on knowledge gained through PTTC. This feedback

  19. Results of the secondary side chemical cleaning of the steam generators

    International Nuclear Information System (INIS)

    Doma, A.; Patek, G.

    2001-01-01

    A significant amount of deposit has developed on the secondary side of the heat transfer tubes of the steam generators (SG) of the Paks Nuclear Power Plant units in course of the years. More than 99.5% of the deposit is made up of magnetite (Fe 3 O 4 ) generated in the secondary circuit of the power plant. Those deposits lead to the decrease of the heat transfer. Even more important is its role from the point of view of operational reliability of the steam generators, leak tightness between the primary and secondary sides. The first series of cleaning took place following 8-9 years of operation of the units. Following the first cleaning cycle the transport of the corrosion products into the steam generators did not change, and thus obviously new cleaning was required. Periodical cleaning of the steam generators shall be assured. (R.P.)

  20. Influence of shielding gas pressure on welding characteristics in CO2 laser-MIG hybrid welding process

    Science.gov (United States)

    Chen, Yanbin; Lei, Zhenglong; Li, Liqun; Wu, Lin

    2006-01-01

    The droplet transfer behavior and weld characteristics have been investigated under different pressures of shielding gas in CO2 laser and metal inert/active gas (laser-MIG) hybrid welding process. The experimental results indicate that the inherent droplet transfer frequency and stable welding range of conventional MIG arc are changed due to the interaction between CO2 laser beam and MIG arc in laser-MIG hybrid welding process, and the shielding gas pressure has a crucial effect on welding characteristics. When the pressure of shielding gas is low in comparison with MIG welding, the frequency of droplet transfer decreases, and the droplet transfer becomes unstable in laser-MIG hybrid welding. So the penetration depth decreases, which shows the characteristic of unstable hybrid welding. However, when the pressure of shielding gas increases to a critical value, the hybrid welding characteristic is changed from unstable hybrid welding to stable hybrid welding, and the frequency of droplet transfer and the penetration depth increase significantly.

  1. The simplest equivalent circuit of a pulsed dielectric barrier discharge and the determination of the gas gap charge transfer

    International Nuclear Information System (INIS)

    Pipa, A. V.; Brandenburg, R.; Hoder, T.; Koskulics, J.

    2012-01-01

    The concept of the simplest equivalent circuit for a dielectric barrier discharge (DBD) is critically reviewed. It is shown that the approach is consistent with experimental data measured either in large-scale sinusoidal-voltage driven or miniature pulse-voltage driven DBDs. An expression for the charge transferred through the gas gap q(t) is obtained with an accurate account for the displacement current and the values of DBD reactor capacitance. This enables (i) the significant reduction of experimental error in the determination of q(t) in pulsed DBDs, (ii) the verification of the classical electrical theory of ozonizers about maximal transferred charge q max , and (iii) the development of a graphical method for the determination of q max from charge-voltage characteristics (Q-V plots, often referred as Lissajous figures) measured under pulsed excitation. The method of graphical presentation of q max is demonstrated with an example of a Q-V plot measured under pulsed excitation. The relations between the discharge current j R (t), the transferred charge q(t), and the measurable parameters are presented in new forms, which enable the qualitative interpretation of the measured current and voltage waveforms without the knowledge about the value of the dielectric barrier capacitance C d . Whereas for quantitative evaluation of electrical measurements, the accurate estimation of the C d is important.

  2. Experimental study on method for heat transfer enhancement using a porous material

    International Nuclear Information System (INIS)

    Shimura, Takuya; Takeda, Tetsuaki

    2011-01-01

    There are several methods for enhancement of heat transfer; for example, there are attaching various fins on the heat transfer surface, processing the surface roughly, and so on. When cooling high temperature circular or rectangular channels by forced convection of gas, there are several methods for enhancement of heat transfer such as attaching radial or spiral fins on the channel surface or inserting twisted tape in the channel. In the case of the gas heating type steam reformer, disk type fins are attached on the outside surface of the reformer tube, and the tube is inserted into the guide tube to increase an amount of heat transferred from the high temperature gas. However, it has to take into consideration the deterioration of the structure strength by attaching the fins on the tube surface with the design of the steam reformer. The objective of this study is to clarify performances of a method for heat transfer enhancement using porous material with high porosity. The experiment has been performed using an apparatus which simulated the passage structure of the steam reformer to obtain characteristics of heat transfer and pressure drop. From the results obtained in this experiment, the heat transfer rate by this method showed a good performance in the laminar flow region. It was also found that the method for heat transfer enhancement using porous material with high porosity is further improved under the high temperature condition as compared with the other methods for heat transfer enhancement. (author)

  3. Magnetite deposition in PWR secondary systems

    International Nuclear Information System (INIS)

    Schneider, V.; Riess, R.; Ruehle, W.

    2000-01-01

    Recently, local magnetite (Fe 3 04) deposition has been observed at various locations within the secondary systems of Siemens-designed PWRs. These deposits sometimes limited operational flexibility and affected routine operation checks. In addition, these deposits may affect the heat transfer characteristics of heat exchangers. Prior to replacement of components or piping or other extensive maintenance activities it should be investigated whether any modification in secondary-side water chemistry might counteract this corrosion phenomenon, which has proven very effective in maintaining steam generator performance. A VGB study will make an assessment of available field information, and countermeasures will be elaborated. This paper describes the current status of the project. (orig.) [de

  4. Russian Bilingual Science Learning: Perspectives from Secondary Students.

    Science.gov (United States)

    Lemberger, Nancy; Vinogradova, Olga

    2002-01-01

    Describes one secondary Russian/English bilingual science teacher's practice and her literate students' experiences as they learn science and adapt to a new school. Discusses the notion of whether literacy skills in the native language are transferable to a second language. (Author/VWL)

  5. Technology Transfer Report

    Science.gov (United States)

    2000-01-01

    Since its inception, Goddard has pursued a commitment to technology transfer and commercialization. For every space technology developed, Goddard strives to identify secondary applications. Goddard then provides the technologies, as well as NASA expertise and facilities, to U.S. companies, universities, and government agencies. These efforts are based in Goddard's Technology Commercialization Office. This report presents new technologies, commercialization success stories, and other Technology Commercialization Office activities in 1999.

  6. Large eddy simulation for predicting turbulent heat transfer in gas turbines.

    Science.gov (United States)

    Tafti, Danesh K; He, Long; Nagendra, K

    2014-08-13

    Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.

  7. Effects of alcohols on gas holdup and volumetric liquid-phase mass transfer coefficient in gel-particle-suspended bubble column

    Energy Technology Data Exchange (ETDEWEB)

    Salvacion, J.; Murayama, M.; Otaguchi, K.; Koide, K. [Tokyo Institute of Technology, Tokyo (Japan)

    1995-08-20

    The effects of alcohols, column dimensions, gas velocity, physical properties of liquids, and gel particles on the gas holdup e{sub G} and the volumetric liquid-phase mass transfer coefficient k{sub L}a in a gel-particle-suspended bubble column under liquid-solid batch operation were studied experimentally. It was shown that addition of at alcohols to water generally increases e{sub G}. However, k{sub L}a values in aqueous solutions of alcohols became larger or smaller than those in water, according to the kind and concentration of the alcohol added to water. It was also shown that the presence of suspended gel-particles in the bubble column reduces values of e{sub G} and k{sub L}a. Based on these observations, empirical equations for e{sub G} in the transition regime in an ethanol solution, for e{sub G} in the heterogeneous now regime applicable to various alcohol solutions and for k{sub L}a in both now regimes were proposed. 18 refs., 12 figs., 3 tabs.

  8. Determination of Secondary Encasement Pipe Design Pressure

    Energy Technology Data Exchange (ETDEWEB)

    TEDESCHI, A.R.

    2000-10-26

    This document published results of iterative calculations for maximum tank farm transfer secondary pipe (encasement) pressure upon failure of the primary pipe. The maximum pressure was calculated from a primary pipe guillotine break. Results show encasement pipeline design or testing pressures can be significantly lower than primary pipe pressure criteria.

  9. Combustion-driven oscillation in a furnace with multispud-type gas burners. 4th Report. Effects of position of secondary air guide sleeve and openness of secondary air guide vane on combustion oscillation condition; Multispud gata gas turner ni okeru nensho shindo. 4. Nijigen kuki sleeve ichi oyobi nijigen kuki vane kaido no shindo reiki ni oyobosu eikyo

    Energy Technology Data Exchange (ETDEWEB)

    Akiyama, I.; Okiura, K.; Baba, A.; Orimoto, M. [Babcock-Hitachi K.K., Tokyo (Japan)

    1994-07-25

    Effects of the position of a secondary air guide sleeve and the openness of a secondary air guide vane on combustion oscillation conditions were studied experimentally for multispud-type gas burners. Pressure fluctuation in furnaces was analyzed with the previously reported resonance factor which was proposed as an index to represent the degree of combustion oscillation. As a result, the combustion oscillation region was largely affected by both position of a guide sleeve and openness of a guide vane. As the openness having large effect on the ratio of primary and secondary air/tertiary air and the position hardly having effect on the ratio were adjusted skillfully, the burner with no combustion oscillation region was achieved in its normal operation range. In addition, as the effect of preheating combustion air was arranged with a standard flow rate or mass flow flux of air, it was suggested the combustion oscillation region due to preheating can be described with the same manner as that due to no preheating. 5 refs., 8 figs.

  10. Standard Test Method for Calculation of Stagnation Enthalpy from Heat Transfer Theory and Experimental Measurements of Stagnation-Point Heat Transfer and Pressure

    CERN Document Server

    American Society for Testing and Materials. Philadelphia

    2005-01-01

    1.1 This test method covers the calculation from heat transfer theory of the stagnation enthalpy from experimental measurements of the stagnation-point heat transfer and stagnation pressure. 1.2 Advantages 1.2.1 A value of stagnation enthalpy can be obtained at the location in the stream where the model is tested. This value gives a consistent set of data, along with heat transfer and stagnation pressure, for ablation computations. 1.2.2 This computation of stagnation enthalpy does not require the measurement of any arc heater parameters. 1.3 Limitations and ConsiderationsThere are many factors that may contribute to an error using this type of approach to calculate stagnation enthalpy, including: 1.3.1 TurbulenceThe turbulence generated by adding energy to the stream may cause deviation from the laminar equilibrium heat transfer theory. 1.3.2 Equilibrium, Nonequilibrium, or Frozen State of GasThe reaction rates and expansions may be such that the gas is far from thermodynamic equilibrium. 1.3.3 Noncat...

  11. The flows structure in unsteady gas flow in pipes with different cross-sections

    OpenAIRE

    Plotnikov Leonid; Nevolin Alexandr; Nikolaev Dmitrij

    2017-01-01

    The results of numerical simulation and experimental study of the structure of unsteady flows in pipes with different cross sections are presented in the article. It is shown that the unsteady gas flow in a circular pipe is axisymmetric without secondary currents. Steady vortex structures (secondary flows) are observed in pipes with cross sections in the form of a square and an equilateral triangle. It was found that these secondary flows have a significant impact on gas flows in pipes of com...

  12. Novel Desorber for Online Drilling Mud Gas Logging.

    Science.gov (United States)

    Lackowski, Marcin; Tobiszewski, Marek; Namieśnik, Jacek

    2016-01-01

    This work presents the construction solution and experimental results of a novel desorber for online drilling mud gas logging. The traditional desorbers use mechanical mixing of the liquid to stimulate transfer of hydrocarbons to the gaseous phase that is further analyzed. The presented approach is based on transfer of hydrocarbons from the liquid to the gas bubbles flowing through it and further gas analysis. The desorber was checked for gas logging from four different drilling muds collected from Polish boreholes. The results of optimization studies are also presented in this study. The comparison of the novel desorber with a commercial one reveals strong advantages of the novel one. It is characterized by much better hydrocarbons recovery efficiency and allows reaching lower limits of detection of the whole analytical system. The presented desorber seems to be very attractive alternative over widely used mechanical desorbers.

  13. Confirmation of selected milk and meat radionuclide transfer coefficients. Progress report

    International Nuclear Information System (INIS)

    Ward, G.M.; Johnson, J.E.

    1984-01-01

    The objectives are to determine transfer coefficients to milk, beef and chicken of four radionuclides for which transfer coefficients were either indetermined or based upon secondary data. The radionuclides are 99 Mo, 99 Tc, 140 Ba, and 131 Te. The transfer coefficient for 133 I to eggs was also determined, because again only limited data was available in the literature

  14. A secondary fuel removal process: plasma processing

    Energy Technology Data Exchange (ETDEWEB)

    Min, J Y; Kim, Y S [Hanyang Univ., Seoul (Korea, Republic of); Bae, K K; Yang, M S [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1997-07-01

    Plasma etching process of UO{sub 2} by using fluorine containing gas plasma is studied as a secondary fuel removal process for DUPIC (Direct Use of PWR spent fuel Into Candu) process which is taken into consideration for potential future fuel cycle in Korea. CF{sub 4}/O{sub 2} gas mixture is chosen for reactant gas and the etching rates of UO{sub 2} by the gas plasma are investigated as functions of CF{sub 4}/O{sub 2} ratio, plasma power, substrate temperature, and plasma gas pressure. It is found that the optimum CF{sub 4}/O{sub 2} ratio is around 4:1 at all temperatures up to 400 deg C and the etching rate increases with increasing r.f. power and substrate temperature. Under 150W r.f. power the etching rate reaches 1100 monolayers/min at 400 deg C, which is equivalent to about 0.5mm/min. (author).

  15. Enhancement of oxygen mass transfer and gas holdup using palm oil in stirred tank bioreactors with xanthan solutions as simulated viscous fermentation broths.

    Science.gov (United States)

    Mohd Sauid, Suhaila; Krishnan, Jagannathan; Huey Ling, Tan; Veluri, Murthy V P S

    2013-01-01

    Volumetric mass transfer coefficient (kLa) is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v) of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h(-1). It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  16. Enhancement of Oxygen Mass Transfer and Gas Holdup Using Palm Oil in Stirred Tank Bioreactors with Xanthan Solutions as Simulated Viscous Fermentation Broths

    Directory of Open Access Journals (Sweden)

    Suhaila Mohd Sauid

    2013-01-01

    Full Text Available Volumetric mass transfer coefficient (kLa is an important parameter in bioreactors handling viscous fermentations such as xanthan gum production, as it affects the reactor performance and productivity. Published literatures showed that adding an organic phase such as hydrocarbons or vegetable oil could increase the kLa. The present study opted for palm oil as the organic phase as it is plentiful in Malaysia. Experiments were carried out to study the effect of viscosity, gas holdup, and kLa on the xanthan solution with different palm oil fractions by varying the agitation rate and aeration rate in a 5 L bench-top bioreactor fitted with twin Rushton turbines. Results showed that 10% (v/v of palm oil raised the kLa of xanthan solution by 1.5 to 3 folds with the highest kLa value of 84.44 h−1. It was also found that palm oil increased the gas holdup and viscosity of the xanthan solution. The kLa values obtained as a function of power input, superficial gas velocity, and palm oil fraction were validated by two different empirical equations. Similarly, the gas holdup obtained as a function of power input and superficial gas velocity was validated by another empirical equation. All correlations were found to fit well with higher determination coefficients.

  17. Essays on the economics of natural gas pipelines

    Science.gov (United States)

    Oliver, Matthew E.

    The natural gas pipeline transportation industry is comprised of a primary market and a secondary market. In the primary market, pipelines sell 'firm' transport capacity contracts to gas traders, local distribution companies, and other parties. The (per unit) secondary market value of transport is rarely comparable to the regulated primary market two-part tariff. When and where available capacity in the secondary market is scarce, its value can far exceed the primary market tariffs paid by firm contract holders, generating scarcity rents. The following essays demonstrate that this phenomenon has predictable effects on natural gas spot prices, firm capacity reservations, the pipeline's capacity construction and expansion decisions, and the economic welfare of producers and consumers at the market hubs connected by the pipeline. Chapter 1 provides a theoretical framework for understanding how pipeline congestion affects natural gas spot prices within the context of the current regulatory environment, and empirically quantifies this effect over a specific regional pipeline network. As available pipeline capacity over a given route connecting two hubs becomes scarce, the spot prices for gas at the hubs are driven apart---a phenomenon indicative of some market friction that inhibits the ability of spot price arbitrage to fully integrate the two prices, undermining economic efficiency. The theoretical component of Chapter 1 illuminates a potential source of this friction: the deregulated structure of the secondary market for gas transportation services. To support and quantify the predictions of the theoretical model, the empirical component demonstrates that the effect of congestion on the secondary market value of transport---the key factor in driving apart spot prices---can be quite strong. Coefficient estimates indicate that dramatic increases in transport costs are likely to result from marginal increases in congestion. This result has important implications because

  18. Flooding and mass transfer in Goodloe-packed columns, Part 2

    International Nuclear Information System (INIS)

    Ayala, J.S.; Brian, B.W.; Sharon, A.C.

    1977-01-01

    Krypton gas is recovered from HTGR off-gas streams by countercurrent absorption in liquid carbon dioxide. Goodloe stainless steel wire mesh packing was chosen for the absorption columns since the process operates at -20 0 C and about 20 atm pressure. Flooding points and an overall mass transfer coefficient for Goodloe-packed columns were determined with a carbon dioxide-air-water system for 6.4 and 15.2-cm-ID columns. Flood points were obtained for liquid-to-gas mass velocity ratios of 20 to 800. A mixing model, assuming plug flow for the gas and dispersed flow for the liquid, was used to calculate an overall mass transfer coefficient, K/sub L/a. K/sub L/a, based on mass concentrations, ranged from 0.01 to 0.08 sec/sup -T/ and was found to increase with increasing liquid flow rate

  19. Learning transfer of geospatial technologies in secondary science and mathematics core areas

    Science.gov (United States)

    Nielsen, Curtis P.

    The purpose of this study was to investigate the transfer of geospatial technology knowledge and skill presented in a social sciences course context to other core areas of the curriculum. Specifically, this study explored the transfer of geospatial technology knowledge and skill to the STEM-related core areas of science and mathematics among ninth-grade students. Haskell's (2001) research on "levels of transfer" provided the theoretical framework for this study, which sought to demonstrate the experimental group's higher ability to transfer geospatial skills, higher mean assignment scores, higher post-test scores, higher geospatial skill application and deeper levels of transfer application than the control group. The participants of the study consisted of thirty ninth-graders enrolled in U.S. History, Earth Science and Integrated Mathematics 1 courses. The primary investigator of this study had no previous classroom experiences with this group of students. The participants who were enrolled in the school's existing two-section class configuration were assigned to experimental and control groups. The experimental group had ready access to Macintosh MacBook laptop computers, and the control group had ready access to Macintosh iPads. All participants in U.S. History received instruction with and were required to use ArcGIS Explorer Online during a Westward Expansion project. All participants were given the ArcGIS Explorer Online content assessment following the completion of the U.S. History project. Once the project in U.S. History was completed, Earth Science and Integrated Mathematics 1 began units of instruction beginning with a multiple-choice content pre-test created by the classroom teachers. Experimental participants received the same unit of instruction without the use or influence of ArcGIS Explorer Online. At the end of the Earth Science and Integrated Math 1 units, the same multiple-choice test was administered as the content post-test. Following the

  20. Determination of gas residues in uranium dioxide pellets

    International Nuclear Information System (INIS)

    Riella, H.G.

    1978-01-01

    The measurement of low amounts of residual gases, excluding water, in ceramic grade uranium dioxide pellets, using high temperature vacuum extraction technique, is dealt with. The high temperature extraction gas analysis apparatus was designed and assembled for sequential analysis of up to eight uranium dioxide pellets by run. The system consists of three major units, namely outgassing unit, transfer unit and analytical unit. The whole system is evacuated to a final pressure of less then 10 -5 torr. A weighed pellet is transfered into the outgassing unit for subsequent dropping into a Platinum-Rhodium crucible which is heated inductively up to 1600 0 C during 30 minutes. The released gases are imediately transfered from the outgassing to analytical unit passing through a cold trap at -95 0 C to remove water vapor. The gases are transfered to previously calibrated volumetric bulb where the total pressure and temperature are determined. An estimate of the gas content in the pellets at STP condition is obtained from the measured volume, pressure and temperature of the gas mixture by applying ideal gases equation. Analysis to two lots (fourteen samples) of uranium dioxide pellets by the method described here indicated a mean gas content of 0,060cm 3 /g UO 2 . The lower limit of this technique is 0,03cm 3 /g UO 2 (STP). The time required for the analysis of eight pellets is about 9 hours [pt