Heat transfer simulation for industrial applications. Needs, limitations, expectations
International Nuclear Information System (INIS)
Peniguel, C.
1997-01-01
The goal of this paper is to present a few problems and difficulties to which heat transfer engineers are confronted. Then, possible ways used to tackle these problems are exposed. The paper shows that in many occasions the approaches used are not completely satisfactory and that some aspects should be improved. It is also the opportunity to underline that even if turbulent heat transfer modelling is very important, from the industrial point of view, it represents often only one part of the problems which need to be addressed to perform a complete numerical simulation. (K.A.)
Directory of Open Access Journals (Sweden)
Zeng-Rong Hao
2014-11-01
Full Text Available The performance of modern heavy-duty gas turbines is greatly determined by the accurate numerical predictions of thermal loading on the hot-end components. The purpose of this paper is: (1 to present an approach applying a novel numerical technique—the discontinuous Galerkin (DG method—to conjugate heat transfer (CHT simulations, develop the engineering-oriented numerical platform, and validate the feasibility of the methodology and tool preliminarily; and (2 to utilize the constructed platform to investigate the aerothermodynamic features of a typical transonic turbine vane with convection cooling. Fluid dynamic and solid heat conductive equations are discretized into explicit DG formulations. A centroid-expanded Taylor basis is adopted for various types of elements. The Bassi-Rebay method is used in the computation of gradients. A coupled strategy based on a data exchange process via numerical flux on interface quadrature points is simply devised. Additionally, various turbulence Reynolds-Averaged-Navier-Stokes (RANS models and the local-variable-based transition model γ-Reθ are assimilated into the integral framework, combining sophisticated modelling with the innovative algorithm. Numerical tests exhibit good consistency between computational and analytical or experimental results, demonstrating that the presented approach and tool can handle well general CHT simulations. Application and analysis in the turbine vane, focusing on features around where there in cluster exist shock, separation and transition, illustrate the effects of Bradshaw’s shear stress limitation and separation-induced-transition modelling. The general overestimation of heat transfer intensity behind shock is conjectured to be associated with compressibility effects on transition modeling. This work presents an unconventional formulation in CHT problems and achieves its engineering applications in gas turbines.
Dynamic Simulation of Human Thermoregulation and Heat Transfer for Spaceflight Applications
Miller, Thomas R.; Nelson, David A.; Bue, Grant; Kuznetz, Lawrence
2011-01-01
Models of human thermoregulation and heat transfer date from the early 1970s and have been developed for applications ranging from evaluating thermal comfort in spacecraft and aircraft cabin environments to predicting heat stress during EVAs. Most lumped or compartment models represent the body as an assemblage cylindrical and spherical elements which may be subdivided into layers to describe tissue heterogeneity. Many existing models are of limited usefulness in asymmetric thermal environments, such as may be encountered during an EVA. Conventional whole-body clothing models also limit the ability to describe local surface thermal and evaporation effects in sufficient detail. A further limitation is that models based on a standard man model are not readily scalable to represent large or small subjects. This work describes development of a new human thermal model derived from the 41-node man model. Each segment is divided into four concentric, constant thickness cylinders made up of a central core surrounded by muscle, fat, and skin, respectively. These cylinders are connected by the flow of blood from a central blood pool to each part. The central blood pool is updated at each time step, based on a whole-body energy balance. Results show the model simulates core and surface temperature histories, sweat evaporation and metabolic rates which generally are consistent with controlled exposures of human subjects. Scaling rules are developed to enable simulation of small and large subjects (5th percentile and 95th percentile). Future refinements will include a clothing model that addresses local surface insulation and permeation effects and developing control equations to describe thermoregulatory effects such as may occur with prolonged weightlessness or with aging.
Li, Chunqing; Tie, Xiaobo; Liang, Kai; Ji, Chanjuan
2016-01-01
After conducting the intensive research on the distribution of fluid's velocity and biochemical reactions in the membrane bioreactor (MBR), this paper introduces the use of the mass-transfer differential equation to simulate the distribution of the chemical oxygen demand (COD) concentration in MBR membrane pool. The solutions are as follows: first, use computational fluid dynamics to establish a flow control equation model of the fluid in MBR membrane pool; second, calculate this model by adopting direct numerical simulation to get the velocity field of the fluid in membrane pool; third, combine the data of velocity field to establish mass-transfer differential equation model for the concentration field in MBR membrane pool, and use Seidel iteration method to solve the equation model; last but not least, substitute the real factory data into the velocity and concentration field model to calculate simulation results, and use visualization software Tecplot to display the results. Finally by analyzing the nephogram of COD concentration distribution, it can be found that the simulation result conforms the distribution rule of the COD's concentration in real membrane pool, and the mass-transfer phenomenon can be affected by the velocity field of the fluid in membrane pool. The simulation results of this paper have certain reference value for the design optimization of the real MBR system.
Energy Technology Data Exchange (ETDEWEB)
Busigin, A. [NITEK USA Inc., Ocala, FL (United States)
2015-03-15
Liquid Phase Catalytic Exchange (LPCE) is a key technology used in water detritiation systems. Rigorous simulation of LPCE is complicated when a column may have both hydrogen and deuterium present in significant concentrations in different sections of the column. This paper presents a general mass transfer model for a homogenous packed bed LPCE column as a set of differential equations describing composition change, and equilibrium equations to define the mass transfer driving force within the column. The model is used to show the effect of deuterium buildup in the bottom of an LPCE column from non-negligible D atom fraction in the bottom feed gas to the column. These types of calculations are important in the design of CECE (Combined Electrolysis and Catalytic Exchange) water detritiation systems.
International Nuclear Information System (INIS)
Yang, M.; Liu, F.; Smallwood, G.J.
2004-01-01
Laser-Induced Incandescence (LII) technique has been widely used to measure soot volume fraction and primary particle size in flames and engine exhaust. Currently there is lack of quantitative understanding of the shielding effect of aggregated soot particles on its conduction heat loss rate to the surrounding gas. The conventional approach for this problem would be the application of the Monte Carlo (MC) method. This method is based on simulation of the trajectories of individual molecules and calculation of the heat transfer at each of the molecule/molecule collisions and the molecule/particle collisions. As the first step toward calculating the heat transfer between a soot aggregate and the surrounding gas, the Direct Simulation Monte Carlo (DSMC) method was used in this study to calculate the heat transfer rate between a single spherical aerosol particle and its cooler surrounding gas under different conditions of temperature, pressure, and the accommodation coefficient. A well-defined and simple hard sphere model was adopted to describe molecule/molecule elastic collisions. A combination of the specular reflection and completely diffuse reflection model was used to consider molecule/particle collisions. The results obtained by DSMC are in good agreement with the known analytical solution of heat transfer rate for an isolated, motionless sphere in the free-molecular regime. Further the DSMC method was applied to calculate the heat transfer in the transition regime. Our present DSMC results agree very well with published DSMC data. (author)
International Nuclear Information System (INIS)
Bricteux, L.; Duponcheel, M.; Winckelmans, G.; Tiselj, I.; Bartosiewicz, Y.
2012-01-01
Highlights: ► We perform direct and hybrid-large eddy simulations of high Reynolds and low Prandtl turbulent wall-bounded flows with heat transfer. ► We use a state-of-the-art numerical methods with low energy dissipation and low dispersion. ► We use recent multiscalesubgrid scale models. ► Important results concerning the establishment of near wall modeling strategy in RANS are provided. ► The turbulent Prandtl number that is predicted by our simulation is different than that proposed by some correlations of the literature. - Abstract: This paper deals with the issue of modeling convective turbulent heat transfer of a liquid metal with a Prandtl number down to 0.01, which is the order of magnitude of lead–bismuth eutectic in a liquid metal reactor. This work presents a DNS (direct numerical simulation) and a LES (large eddy simulation) of a channel flow at two different Reynolds numbers, and the results are analyzed in the frame of best practice guidelines for RANS (Reynolds averaged Navier–Stokes) computations used in industrial applications. They primarily show that the turbulent Prandtl number concept should be used with care and that even recent proposed correlations may not be sufficient.
International Nuclear Information System (INIS)
Wang Haobin; Thoss, Michael
2008-01-01
A quantum dynamical method is presented to accurately simulate time-resolved nonlinear spectra for complex molecular systems. The method combines the nonpertubative approach to describe nonlinear optical signals with the multilayer multiconfiguration time-dependent Hartree theory to calculate the laser-induced polarization for the overall field-matter system. A specific nonlinear optical signal is obtained by Fourier decomposition of the overall polarization. The performance of the method is demonstrated by applications to photoinduced ultrafast electron transfer reactions in mixed-valence compounds and at dye-semiconductor interfaces
International Nuclear Information System (INIS)
Krutzik, Norbert J.; Eibl, Josef
2005-01-01
Shocks on building structures due to impact loads (drop of wreckage and heavy masses from accidents, transport operations, explosions, etc.), especially in case of a postulated aircraft crash, may lead to feasibility problems due to high-induced vibrations and large expenditures at safety-related systems accommodated inside the building structures. A rational and cost-effective qualification of the functionality of such systems requires the prediction of reliable information about the nature of structural responses induced by impact loading in the corresponding regions of the structure. The analytic derivation of realistic and reliable structural responses requires the application of adequate mathematical models and methods as well as a critical evaluation of all factors that influence the entire shock transmission path, from the area of impact to the site of installation of the affected component or system in the structure. Despite extensive studies and computational analyses of impact-induced shocks performed using finite element simulation method, limited and insufficient experimental results to date have precluded a complete investigation and clarification of several 'peculiarities' in the field of shock transmission in finite element models. This refers mainly to the divergence of results observed using FE models when not considering a the required FE element discretization ratio as well as to the attenuation and scatter behavior of the dynamic response results obtained for large building structures and given large distances between the load impact application areas and the component anchoring locations. The cause for such divergences are related to several up to now not clarified 'phenomena' of FE models especially the low-pass filtering effects and dispersion characteristics of FE models
Bertone, Stefano; Vecchiato, Alberto; Bucciarelli, Beatrice; Crosta, Mariateresa; Lattanzi, Mario G.; Bianchi, Luca; Angonin, Marie-Christine; Le Poncin-Lafitte, Christophe
2017-12-01
Context. A key objective of the ESA Gaia satellite is the realization of a quasi-inertial reference frame at visual wavelengths by means of global astrometric techniques. This requires accurate mathematical and numerical modeling of relativistic light propagation, as well as double-blind-like procedures for the internal validation of the results, before they are released to the scientific community at large. Aims: We aim to specialize the time transfer functions (TTF) formalism to the case of the Gaia observer and prove its applicability to the task of global sphere reconstruction (GSR), in anticipation of its inclusion in the GSR system, already featuring the Relativistic Astrometric MODel (RAMOD) suite, as an additional semi-external validation of the forthcoming Gaia baseline astrometric solutions. Methods: We extended the current GSR framework and software infrastructure (GSR2) to include TTF relativistic observation equations compatible with Gaia's operations. We used simulated data generated by the Gaia Data Processing and Analysis Consortium (DPAC) to obtain different least-squares estimations of the full (five-parameter) stellar spheres and gauge results. These were compared to analogous solutions obtained with the current RAMOD model in GSR2 (RAMOD@GSR2) and to the catalog generated with the Gaia RElativistic Model (GREM), the model baselined for Gaia and used to generate the DPAC synthetic data. Results: Linearized least-squares TTF solutions are based on spheres of about 132 000 primary stars uniformly distributed on the sky and simulated observations spanning the entire 5 yr range of Gaia's nominal operational lifetime. The statistical properties of the results compare well with those of GREM. Finally, comparisons to RAMOD@GSR2 solutions confirmed the known lower accuracy of that model and allowed us to establish firm limits on the quality of the linearization point outside of which an iteration for non-linearity is required for its proper convergence
Regan, Caitlin; Hayakawa, Carole; Choi, Bernard
2017-12-01
Due to its simplicity and low cost, laser speckle imaging (LSI) has achieved widespread use in biomedical applications. However, interpretation of the blood-flow maps remains ambiguous, as LSI enables only limited visualization of vasculature below scattering layers such as the epidermis and skull. Here, we describe a computational model that enables flexible in-silico study of the impact of these factors on LSI measurements. The model uses Monte Carlo methods to simulate light and momentum transport in a heterogeneous tissue geometry. The virtual detectors of the model track several important characteristics of light. This model enables study of LSI aspects that may be difficult or unwieldy to address in an experimental setting, and enables detailed study of the fundamental origins of speckle contrast modulation in tissue-specific geometries. We applied the model to an in-depth exploration of the spectral dependence of speckle contrast signal in the skin, the effects of epidermal melanin content on LSI, and the depth-dependent origins of our signal. We found that LSI of transmitted light allows for a more homogeneous integration of the signal from the entire bulk of the tissue, whereas epi-illumination measurements of contrast are limited to a fraction of the light penetration depth. We quantified the spectral depth dependence of our contrast signal in the skin, and did not observe a statistically significant effect of epidermal melanin on speckle contrast. Finally, we corroborated these simulated results with experimental LSI measurements of flow beneath a thin absorbing layer. The results of this study suggest the use of LSI in the clinic to monitor perfusion in patients with different skin types, or inhomogeneous epidermal melanin distributions.
O'Clock, George D; Lee, Yong Wan; Lee, Jongwon; Warwick, Warren J
2010-07-01
High-frequency chest compression (HFCC) can be used as a therapeutic intervention to assist in the transport and clearance of mucus and enhance water secretion for cystic fibrosis patients. An HFCC pump-vest and half chest-lung simulation, with 23 lung generations, has been developed using inertance, compliance, viscous friction relationships, and Newton's second law. The simulation has proven to be useful in studying the effects of parameter variations and nonlinear effects on HFCC system performance and pulmonary system response. The simulation also reveals HFCC waveform structure and intensity changes in various segments of the pulmonary system. The HFCC system simulation results agree with measurements, indicating that the HFCC energy transport mechanism involves a mechanically induced pulsation or vibration waveform with average velocities in the lung that are dependent upon small air displacements over large areas associated with the vest-chest interface. In combination with information from lung physiology, autopsies and a variety of other lung modeling efforts, the results of the simulation can reveal a number of therapeutic implications.
Computer graphics in heat-transfer simulations
International Nuclear Information System (INIS)
Hamlin, G.A. Jr.
1980-01-01
Computer graphics can be very useful in the setup of heat transfer simulations and in the display of the results of such simulations. The potential use of recently available low-cost graphics devices in the setup of such simulations has not been fully exploited. Several types of graphics devices and their potential usefulness are discussed, and some configurations of graphics equipment are presented in the low-, medium-, and high-price ranges
Li, Jingrui; Kondov, Ivan; Wang, Haobin; Thoss, Michael
2015-04-10
A recently developed methodology to simulate photoinduced electron transfer processes at dye-semiconductor interfaces is outlined. The methodology employs a first-principles-based model Hamiltonian and accurate quantum dynamics simulations using the multilayer multiconfiguration time-dependent Hartree approach. This method is applied to study electron injection in the dye-semiconductor system coumarin 343-TiO2. Specifically, the influence of electronic-vibrational coupling is analyzed. Extending previous work, we consider the influence of Dushinsky rotation of the normal modes as well as anharmonicities of the potential energy surfaces on the electron transfer dynamics.
Interactive Heat Transfer Simulations for Everyone
Xie, Charles
2012-01-01
Heat transfer is widely taught in secondary Earth science and physics. Researchers have identified many misconceptions related to heat and temperature. These misconceptions primarily stem from hunches developed in everyday life (though the confusions in terminology often worsen them). Interactive computer simulations that visualize thermal energy,…
Electron beam simulation applicators
International Nuclear Information System (INIS)
Purdy, J.A.
1983-01-01
A system for simulating electron beam treatment portals using low-temperature melting point alloy is described. Special frames having the same physical dimensions as the electron beam applicators used on the Varian Clinac 20 linear accelerator were designed and constructed
Wireless Power Transfer for Space Applications
Ramos, Gabriel Vazquez; Yuan, Jiann-Shiun
2011-01-01
This paper introduces an implementation for magnetic resonance wireless power transfer for space applications. The analysis includes an equivalent impedance study, loop material characterization, source/load resonance coupling technique, and system response behavior due to loads variability. System characterization is accomplished by executing circuit design from analytical equations and simulations using Matlab and SPICE. The theory was validated by a combination of different experiments that includes loop material consideration, resonance coupling circuits considerations, electric loads considerations and a small scale proof-of-concept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The prototype provided about 4.5 W of power to the load at a separation of -5 cm from the source using a power amplifier rated for 7 W.
Kenjeres, S.
2015-01-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex
Kenjeres, S.
2016-01-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex
Clementel, N.; Madura, T. I.; Kruip, C. J. H.; Icke, V.; Gull, T. R.
2014-01-01
Eta Carinae is an ideal astrophysical laboratory for studying massive binary interactions and evolution, and stellar wind-wind collisions. Recent three-dimensional (3D) simulations set the stage for understanding the highly complex 3D flows in Eta Car. Observations of different broad high- and low-ionization forbidden emission lines provide an excellent tool to constrain the orientation of the system, the primary's mass-loss rate, and the ionizing flux of the hot secondary. In this work we present the first steps towards generating synthetic observations to compare with available and future HST/STIS data. We present initial results from full 3D radiative transfer simulations of the interacting winds in Eta Car. We use the SimpleX algorithm to post-process the output from 3D SPH simulations and obtain the ionization fractions of hydrogen and helium assuming three different mass-loss rates for the primary star. The resultant ionization maps of both species constrain the regions where the observed forbidden emission lines can form. Including collisional ionization is necessary to achieve a better description of the ionization states, especially in the areas shielded from the secondary's radiation. We find that reducing the primary's mass-loss rate increases the volume of ionized gas, creating larger areas where the forbidden emission lines can form. We conclude that post processing 3D SPH data with SimpleX is a viable tool to create ionization maps for Eta Car.
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsung
2017-01-01
This book offers an easy-to-understand introduction to the computational mass transfer (CMT) method. On the basis of the contents of the first edition, this new edition is characterized by the following additional materials. It describes the successful application of this method to the simulation of the mass transfer process in a fluidized bed, as well as recent investigations and computing methods for predictions for the multi-component mass transfer process. It also demonstrates the general issues concerning computational methods for simulating the mass transfer of the rising bubble process. This new edition has been reorganized by moving the preparatory materials for Computational Fluid Dynamics (CFD) and Computational Heat Transfer into appendices, additions of new chapters, and including three new appendices on, respectively, generalized representation of the two-equation model for the CMT, derivation of the equilibrium distribution function in the lattice-Boltzmann method, and derivation of the Navier-S...
Material Selection for Microchannel Heatsink: Conjugate Heat Transfer Simulation
Uday Kumar, A.; Javed, Arshad; Dubey, Satish K.
2018-04-01
Heat dissipation during the operation of electronic devices causes rise in temperature, which demands an effective thermal management for their performance, life and reliability. Single phase liquid cooling in microchannels is an effective and proven technology for electronics cooling. However, due to the ongoing trends of miniaturization and developments in the microelectronics technology, the future needs of heat flux dissipation rate are expected to rise to 1 kW/cm2. Air cooled systems are unable to meet this demand. Hence, liquid cooled heatsinks are preferred. This paper presents conjugate heat transfer simulation of single phase flow in microchannels with application to electronic cooling. The numerical model is simulated for different materials: copper, aluminium and silicon as solid and water as liquid coolant. The performances of microchannel heatsink are analysed for mass flow rate range of 20-40 ml/min. The investigation has been carried out on same size of electronic chip and heat flux in order to have comparative study of different materials. This paper is divided into two sections: fabrication techniques and numerical simulation for different materials. In the first part, a brief discussion of fabrication techniques of microchannel heatsink have been presented. The second section presents conjugate heat transfer simulation and parametric investigation for different material microchannel heatsink. The presented study and findings are useful for selection of materials for microchannel heatsink.
Simulation Applications in Educational Leadership.
Bozeman, William; Wright, Robert H.
1995-01-01
Explores the use of computer-based simulations using multimedia materials for a graduate course in school administration. Highlights include simulation applications in military and in business; educational simulations; the use of computers and other technology; production requirements and costs; and time required. (LRW)
Cognitive Transfer Outcomes for a Simulation-Based Introductory Statistics Curriculum
Backman, Matthew D.; Delmas, Robert C.; Garfield, Joan
2017-01-01
Cognitive transfer is the ability to apply learned skills and knowledge to new applications and contexts. This investigation evaluates cognitive transfer outcomes for a tertiary-level introductory statistics course using the CATALST curriculum, which exclusively used simulation-based methods to develop foundations of statistical inference. A…
Finite element simulation of heat transfer
Bergheau, Jean-Michel
2010-01-01
This book introduces the finite element method applied to the resolution of industrial heat transfer problems. Starting from steady conduction, the method is gradually extended to transient regimes, to traditional non-linearities, and to convective phenomena. Coupled problems involving heat transfer are then presented. Three types of couplings are discussed: coupling through boundary conditions (such as radiative heat transfer in cavities), addition of state variables (such as metallurgical phase change), and coupling through partial differential equations (such as electrical phenomena).? A re
Simulation - Concepts and Applications
Silva, Pedro Sá; Trigo, António; Varajão, João; Pinto, Tiago
Simulation in last decades has been widely used to analyze the impact of different scenarios in several areas like, for instance, health, military, business, and many others. When well used, it is an excellent tool to analyze alternative actions and to anticipate their impact, in order to rationalize the spending of resources. This paper introduces and resumes some of the main concepts of simulation, identifying and describing: systems; models; entities and attributes; resources; contexts of use; and, in particularly, the discrete-event simulation.
Self-perceived long-term transfer of learning after postpartum hemorrhage simulation training
DEFF Research Database (Denmark)
Melo, Brena C P; Falbo, Ana R; Sorensen, Jette Led
2018-01-01
OBJECTIVE: To explore long-term transfer (application of acquired knowledge and skills on the job) after postpartum hemorrhage simulation training based on either instructional design (ID) principles or conventional best practice. METHODS: In this qualitative study, semi-structured interviews...... simulation format, residents perceived long-term transfer effects. Training design factors influencing transfer were, in their opinion, related to trainees' characteristics, simulation design, and workplace environment. Trainees who participated in the ID-based simulation perceived better communication...... skills and better overall situational awareness: "I didn't do that before." CONCLUSION: All residents perceived long-term transfer after simulation training for postpartum hemorrhage. Those who attended the ID format additionally perceived improvements in communication skills and situational awareness...
Heat transfer applications for the practicing engineer
Theodore, Louis
2011-01-01
This book serves as a training tool for individuals in industry and academia involved with heat transfer applications. Although the literature is inundated with texts emphasizing theory and theoretical derivations, the goal of this book is to present the subject of heat transfer from a strictly pragmatic point of view. The book is divided into four Parts: Introduction, Principles, Equipment Design Procedures and Applications, and ABET-related Topics. The first Part provides a series of chapters concerned with introductory topics that are required when solving most engineering problems, inclu
Transferring Nuclear Knowledge by NPP Simulators Developers
International Nuclear Information System (INIS)
Levchenko, A.; Duginov, O.; Levchenko, V.
2016-01-01
Full text: In relation to nuclear power, safety is closely linked with the human factor. Knowledge and skills of staff should more closely match the needs of the industry and employers. This can be achieved through more efficient training using simulators. Such simulators must be available at all stages of study and cover the needs of trainees with different levels of knowledge. Simulator developers can solve this problem by implement knowledge management in the using of simulators for practical training. Due to the nature of their activities, they have everything needed for this. This paper describes the solutions of Simulation Systems Ltd Company for nuclear power plants, universities and other parties. (author
Efficient simulation of flow and heat transfer in arbitrarily shaped pipes
Rosen Esquivel, P.I.
2012-01-01
The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances, etc. Nonetheless, the introduction of pipes with corrugated walls increases the difficulty of simulating flow and heat transfer in these type of pipes. The present thesis addresses the development...
National Research Council Canada - National Science Library
Anderson, Rodney
1996-01-01
Collection, analysis, and dissemination of modeling and simulation technologies in meetings, seminars, conference, workshops, and reports are key processes in implementation of computer assisted education...
Self-perceived long-term transfer of learning after postpartum hemorrhage simulation training.
de Melo, Brena Carvalho Pinto; Rodrigues Falbo, Ana; Sorensen, Jette Led; van Merriënboer, Jeroen J G; van der Vleuten, Cees
2018-05-01
To explore long-term transfer (application of acquired knowledge and skills on the job) after postpartum hemorrhage simulation training based on either instructional design (ID) principles or conventional best practice. In this qualitative study, semi-structured interviews with obstetrics and gynecology healthcare practitioners were conducted between August 7 and September 26, 2015, in Recife, Brazil. The participants were randomly selected from each of two postpartum hemorrhage simulations attended 2 years earlier (one ID and one conventional best practice). Thematic analysis was used to explore (1) residents' perceptions of long-term transfer of learning, (2) ID elements influencing the perceived long-term transfer, and (3) differences in the participants' perceptions according to the type of simulation attended. There were 12 interview participants. After either simulation format, residents perceived long-term transfer effects. Training design factors influencing transfer were, in their opinion, related to trainees' characteristics, simulation design, and workplace environment. Trainees who participated in the ID-based simulation perceived better communication skills and better overall situational awareness: "I didn't do that before." All residents perceived long-term transfer after simulation training for postpartum hemorrhage. Those who attended the ID format additionally perceived improvements in communication skills and situational awareness, which are fundamental factors in the management of postpartum hemorrhage. © 2018 International Federation of Gynecology and Obstetrics.
Simulation of Radiation Heat Transfer in a VAR Furnace Using an Electrical Resistance Network
Ballantyne, A. Stewart
The use of electrical resistance networks to simulate heat transfer is a well known analytical technique that greatly simplifies the solution of radiation heat transfer problems. In a VAR furnace, radiative heat transfer occurs between the ingot, electrode, and crucible wall; and the arc when the latter is present during melting. To explore the relative heat exchange between these elements, a resistive network model was developed to simulate the heat exchange between the electrode, ingot, and crucible with and without the presence of an arc. This model was then combined with an ingot model to simulate the VAR process and permit a comparison between calculated and observed results during steady state melting. Results from simulations of a variety of alloys of different sizes have demonstrated the validity of the model. Subsequent simulations demonstrate the application of the model to the optimization of both steady state and hot top melt practices, and raises questions concerning heat flux assumptions at the ingot top surface.
The ATLAS detector simulation application
International Nuclear Information System (INIS)
Rimoldi, A.
2007-01-01
The simulation program for the ATLAS experiment at CERN is currently in a full operational mode and integrated into the ATLAS common analysis framework, Athena. The OO approach, based on GEANT4, has been interfaced within Athena and to GEANT4 using the LCG dictionaries and Python scripting. The robustness of the application was proved during the test productions since 2004. The Python interface has added the flexibility, modularity and interactivity that the simulation tool requires in order to be able to provide a common implementation of different full ATLAS simulation setups, test beams and cosmic ray applications. Generation, simulation and digitization steps were exercised for performance and robustness tests. The comparison with real data has been possible in the context of the ATLAS Combined Test Beam (2004-2005) and cosmic ray studies (2006)
Introduction to computational mass transfer with applications to chemical engineering
Yu, Kuo-Tsong
2014-01-01
This book presents a new computational methodology called Computational Mass Transfer (CMT). It offers an approach to rigorously simulating the mass, heat and momentum transfer under turbulent flow conditions with the help of two newly published models, namely the C’2—εC’ model and the Reynolds mass flux model, especially with regard to predictions of concentration, temperature and velocity distributions in chemical and related processes. The book will also allow readers to understand the interfacial phenomena accompanying the mass transfer process and methods for modeling the interfacial effect, such as the influences of Marangoni convection and Rayleigh convection. The CMT methodology is demonstrated by means of its applications to typical separation and chemical reaction processes and equipment, including distillation, absorption, adsorption and chemical reactors. Professor Kuo-Tsong Yu is a Member of the Chinese Academy of Sciences. Dr. Xigang Yuan is a Professor at the School of Chemical Engine...
Simulation of Heat Transfer and Electromagnetic Fields of Protected Microcomputers
Directory of Open Access Journals (Sweden)
Josef Lakatos
2006-01-01
Full Text Available The paper presents results of collaboration between Department of mechatronics and electronics at University of Žilina and VÚVT Engineering a.s. Žilina in area of heat transfer simulations and disturbing electromagnetic radiation simulations in computer construction. The simulations results were used in development of protected microcomputer prototypes in frame of applied research at both of workplaces.
A Solar Sailcraft Simulation Application
Celeda, Tomáš
2013-01-01
An application was created to encourage students' practical knowledge of gravitational fields, the law of conservation of energy and other phenomena, such as gravitational slingshots. The educational software simulates the flight of a solar sail spacecraft between two planets of the Solar System using the laws of gravity and radiation…
Heitmann, Ryan J; Hill, Micah J; Csokmay, John M; Pilgrim, Justin; DeCherney, Alan H; Deering, Shad
2017-05-01
To design and evaluate an ET simulator to train Reproductive Endocrinology and Infertility (REI) fellows' techniques of ET. Simulation model development and retrospective cohort analysis. Not applicable. Patients undergoing IVF. Simulation model evaluation and implementation of ET simulation training. Pregnancy rates. The REI fellow and faculty evaluation responses (n = 19/21 [90%]) of the model demonstrated realistic characteristics, with evaluators concluding the model was suitable for training in almost all evaluated areas. A total of 12 REI fellows who performed ET were analyzed: 6 before ET trainer and 6 after ET trainer. Pregnancy rates were 31% in the initial 10 ETs per fellow before simulator vs. 46% after simulator. One of six pre-ET trainer fellows (17%) had pregnancy rates ≥40% in their first 10 ETs; whereas four of six post-ET trainer fellows had pregnancy rates ≥40% in their first 10 ETs. The average number of ETs to obtain >40% pregnancy efficiency was 27 ETs before trainer vs. 15 ETs after trainer. Pregnancy rates were similar in the two groups after 20 ETs, and collective terminal pregnancy rates were >50% after 40 ETs. Embryo transfer simulation improved REI fellow pregnancy rates in their first 10 transfers and led to a more rapid ET proficiency. These data suggest potential value in adopting ET simulation, even in programs with a robust history of live ET in fellowship training. Published by Elsevier Inc.
International Nuclear Information System (INIS)
Chang, Hsuan; Hsu, Jian-An; Chang, Cheng-Liang; Ho, Chii-Dong; Cheng, Tung-Wen
2017-01-01
Highlights: • A 3D CFD model takes in transmembrane heat and mass transfer developed. • DCMD modules using spacer-filled and empty channels for desalination simulated. • Fluid flow, heat transfer and mass transfer profiles revealed. • Correlations of friction factor and Nusselt number developed. - Abstract: Membrane distillation (MD) is an emerging and promising membrane separation process, which can directly utilize renewable thermal energy or low-grade waste heat, for applications in water or wastewater treatment and food industry. However, a major drawback of MD process is its low energy efficiency. Spacer is the most suggested and studied eddy promoter to enhance the heat and mass transfer, which further improves both the separation and the energy utilization performance, of MD processes. This paper presents the results of a 3D computational fluid dynamics (CFD) simulation of DCMD (direct contact membrane distillation) modules using channels with and without spacers for desalination application. The model employs permeable wall boundary condition to take into account the transmembrane heat and mass transfer and simulates the entire module length. The simulation reveals similar fluctuating distributions of temperature polarization coefficient, transmembrane heat and mass fluxes as well as the shear stress on the membrane surface along the entire module length. Correlations have been developed for friction factor and average Nusselt number. These correlations are useful for the analysis and design of DCMD modules. The extent of heat transfer enhancement by spacers depends on the geometry of spacers and the Reynolds number of fluid.
Characteristics simulation of wireless power transfer system considering shielding distance
Energy Technology Data Exchange (ETDEWEB)
Lee, Yu Kyeong; Choi, Hyo Sang; Jung, Byung Ik; Jeong, In Sung [Chosun University, Gwangju (Korea, Republic of)
2015-03-15
Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness.
Characteristics simulation of wireless power transfer system considering shielding distance
International Nuclear Information System (INIS)
Lee, Yu Kyeong; Choi, Hyo Sang; Jung, Byung Ik; Jeong, In Sung
2015-01-01
Wireless power transfer technology is using the magnetic resonance recently drawing increased attention. It uses the resonance between transmitter and receiver coils to transfer power. Thus, it can improve the transfer distance and efficiency compared with the existing magnetic induction technique. The authors found from the previous study that the application of the superconductor coil to the magnetic resonance wireless power transfer system improved its efficiency. Its application to real life, however, requires the additional study on the effects of adjacent materials. In this study, the two resonance coils made by superconductor coils were used to aluminum and plastic shielding materials was placed between the coils. S-parameters were analyzed according to the position of the shielding material between the transmitter and receiver coils. As a result, the plastic of shielding material had no effect, but the aluminum of shielding material affected the wireless power transfer due to the shielding effectiveness
Directory of Open Access Journals (Sweden)
Bouland Olivier
2017-01-01
Full Text Available This paper deals with simultaneous neutron-induced average partial cross sections and surrogate-like probability simulations over several excitation and de-excitation channels of the compound nucleus. Present calculations, based on one-dimensional fission barrier extended -matrix theory using Monte Carlo samplings of both first and second well resonance parameters, avoid the surrogate-reaction method historically taken for surrogate data analyses that proved to be very poor in terms of extrapolated neutron-induced capture cross sections. Present theoretical approach is portrayed and subsequent results can be compared for the first time with experimental γ-decay probabilities; thanks to brand new simultaneous 238U(3He,4Heγ and 238U(3He,4He f surrogate measurements. Future integration of our strategy in standard neutron cross section data evaluation remains tied to the developments made in terms of direct reaction population probability calculations.
Simulation analysis on miniature wireless power transfer system
Liu, Tao; Wei, Zhiqiang; Yin, Bo; Chi, Haokun; Du, Panpan
2018-03-01
In recent years, the research on implantable medical devices has become a hot scientific topic, and the power supply of these devices are especially concerned. Generally, these devices are usually powered by disposable batteries. However, for some of the long-term human implant devices, such as pacemakers, once the battery has been exhausted after several years, the patient has to replace the battery by surgery, which increases the patient’s economic burden and pain. Wireless power transfer technology, using non-contact way for power transfer, can be a good solution to this problem. In this paper, a micro induction coil was designed, and the transfer efficiency in the air and human tissue model of two-layers were simulated by Ansoft HFSS. The results showed that the system could achieve the energy transfer in both cases, meanwhile, it indicated that the transfer efficiency was lower in a relative larger permittivity of transmission medium.
Effect of different heat transfer models on HCCI engine simulation
International Nuclear Information System (INIS)
Neshat, Elaheh; Saray, Rahim Khoshbakhti
2014-01-01
Highlights: • A new multi zone model is developed for HCCI combustion modeling. • New heat transfer model is used for prediction of heat transfer in HCCI engines. • Model can predict engine combustion, performance and emission characteristics well. • Appropriate mass and heat transfer models cause to accurate prediction of CO, UHC and NOx. - Abstract: Heat transfer from engine walls has an important role on engine combustion, performance and emission characteristics. The main focus of this study is offering a new relation for calculation of convective heat transfer from in-cylinder charge to combustion chamber walls of HCCI engines and providing the ability of new model in comparison with the previous models. Therefore, a multi zone model is developed for homogeneous charge compression ignition engine simulation. Model consists of four different types of zones including core zone, boundary layer zone, outer zones, which are between core and boundary layer, and crevice zone. Conductive heat transfer and mass transfer are considered between neighboring zones. For accurate calculation of initial conditions at inlet valve closing, multi zone model is coupled with a single zone model, which simulates gas exchange process. Various correlations are used as convective heat transfer correlations. Woschni, modified Woschni, Hohenberg and Annand correlations are used as convective heat transfer models. The new convection model, developed by authors, is used, too. Comparative analyses are done to recognize the accurate correlation for prediction of engine combustion, performance and emission characteristics in a wide range of operating conditions. The results indicate that utilization of various heat transfer models, except for new convective heat transfer model, leads to significant differences in prediction of in-cylinder pressure and exhaust emissions. Using Woschni, Chang and new model, convective heat transfer coefficient increases near top dead center, sharply
Littleton, Helen X; Daigger, Glen T; Strom, Peter F
2007-06-01
A full-scale, closed-loop bioreactor (Orbal oxidation ditch, Envirex brand technologies, Siemens, Waukesha, Wisconsin), previously examined for simultaneous biological nutrient removal (SBNR), was further evaluated using computational fluid dynamics (CFD). A CFD model was developed first by imparting the known momentum (calculated by tank fluid velocity and mass flowrate) to the fluid at the aeration disc region. Oxygen source (aeration) and sink (consumption) terms were introduced, and statistical analysis was applied to the CFD simulation results. The CFD model was validated with field data obtained from a test tank and a full-scale tank. The results indicated that CFD could predict the mixing pattern in closed-loop bioreactors. This enables visualization of the flow pattern, both with regard to flow velocity and dissolved-oxygen-distribution profiles. The velocity and oxygen-distribution gradients suggested that the flow patterns produced by directional aeration in closed-loop bioreactors created a heterogeneous environment that can result in dissolved oxygen variations throughout the bioreactor. Distinct anaerobic zones on a macroenvironment scale were not observed, but it is clear that, when flow passed around curves, a secondary spiral flow was generated. This second current, along with the main recirculation flow, could create alternating anaerobic and aerobic conditions vertically and horizontally, which would allow SBNR to occur. Reliable SBNR performance in Orbal oxidation ditches may be a result, at least in part, of such a spatially varying environment.
Transferability of laparoscopic skills using the virtual reality simulator.
Yang, Cui; Kalinitschenko, Uljana; Helmert, Jens R; Weitz, Juergen; Reissfelder, Christoph; Mees, Soeren Torge
2018-03-30
Skill transfer represents an important issue in surgical education, and is not well understood. The aim of this randomized study is to assess the transferability of surgical skills between two laparoscopic abdominal procedures using the virtual reality simulator in surgical novices. From September 2016 to July 2017, 44 surgical novices were randomized into two groups and underwent a proficiency-based basic training consisting of five selected simulated laparoscopic tasks. In group 1, participants performed an appendectomy training on the virtual reality simulator until they reached a defined proficiency. They moved on to the tutorial procedural tasks of laparoscopic cholecystectomy. Participants in group 2 started with the tutorial procedural tasks of laparoscopic cholecystectomy directly. Finishing the training, participants of both groups were required to perform a complete cholecystectomy on the simulator. Time, safety and economy parameters were analysed. Significant differences in the demographic characteristics and previous computer games experience between the two groups were not noted. Both groups took similar time to complete the proficiency-based basic training. Participants in group 1 needed significantly less movements (388.6 ± 98.6 vs. 446.4 ± 81.6; P virtual reality simulator; however, the transfer of cognitive skills is limited. Separate training curricula seem to be necessary for each procedure for trainees to practise task-specific cognitive skills effectively. Mentoring could help trainees to get a deeper understanding of the procedures, thereby increasing the chance for the transfer of acquired skills.
Conjugate heat transfer simulations of advanced research reactor fuel
Energy Technology Data Exchange (ETDEWEB)
Piro, M.H.A., E-mail: pirom@aecl.ca; Leitch, B.W.
2014-07-01
Highlights: • Temperature predictions are enhanced by coupling heat transfer in solid and fluid zones. • Seven different cases are considered to observe trends in predicted temperature and pressure. • The seven cases consider high/medium/low power, flow, burnup, fuel material and geometry. • Simulations provide temperature predictions for performance/safety. Boiling is unlikely. • Simulations demonstrate that a candidate geometry can enhance performance/safety. - Abstract: The current work presents numerical simulations of coupled fluid flow and heat transfer of advanced U–Mo/Al and U–Mo/Mg research reactor fuels in support of performance and safety analyses. The objective of this study is to enhance predictions of the flow regime and fuel temperatures through high fidelity simulations that better capture various heat transfer pathways and with a more realistic geometric representation of the fuel assembly in comparison to previous efforts. Specifically, thermal conduction, convection and radiation mechanisms are conjugated between the solid and fluid regions. Also, a complete fuel element assembly is represented in three dimensional space, permitting fluid flow and heat transfer to be simulated across the entire domain. Seven case studies are examined that vary the coolant inlet conditions, specific power, and burnup to investigate the predicted changes in the pressure drop in the coolant and the fuel, clad and coolant temperatures. In addition, an alternate fuel geometry is considered with helical fins (replacing straight fins in the existing design) to investigate the relative changes in predicted fluid and solid temperatures. Numerical simulations predict that the clad temperature is sensitive to changes in the thermal boundary layer in the coolant, particularly in simultaneously developing flow regions, while the temperature in the fuel is anticipated to be unaffected. Finally, heat transfer between fluid and solid regions is enhanced with
Direct numerical simulations of fluid flow, heat transfer and phase changes
Juric, D.; Tryggvason, G.; Han, J.
1997-01-01
Direct numerical simulations of fluid flow, heat transfer, and phase changes are presented. The simulations are made possible by a recently developed finite difference/front tracking method based on the one-field formulation of the governing equations where a single set of conservation equations is written for all the phases involved. The conservation equations are solved on a fixed rectangular grid, but the phase boundaries are kept sharp by tracking them explicitly by a moving grid of lower dimension. The method is discussed and applications to boiling heat transfer and the solidification of drops colliding with a wall are shown.
Simulations of heat transfer through the cabin walls of rail vehicle
Directory of Open Access Journals (Sweden)
Schuster M.
2007-10-01
Full Text Available This paper deals with industrial application of numerical methods to the prediction of thermal situation in the rail vehicle interior. Basic principles of heat transfer are summarised to explain both theoretical background of simulations and engineering approach to solving temperature conditions in the vehicle interior. The main part of the contribution describes the solution of the locomotive driver’s cabin heating and controlling the temperature levels. This contribution is a brief overview of both possibilities of engineering modelling of heat transfer modes and results in the simulation of the real locomotive cabin heating/ventilation system design.
Numerical simulation of heat transfer in metal foams
Gangapatnam, Priyatham; Kurian, Renju; Venkateshan, S. P.
2018-02-01
This paper reports a numerical study of forced convection heat transfer in high porosity aluminum foams. Numerical modeling is done considering both local thermal equilibrium and non local thermal equilibrium conditions in ANSYS-Fluent. The results of the numerical model were validated with experimental results, where air was forced through aluminum foams in a vertical duct at different heat fluxes and velocities. It is observed that while the LTE model highly under predicts the heat transfer in these foams, LTNE model predicts the Nusselt number accurately. The novelty of this study is that once hydrodynamic experiments are conducted the permeability and porosity values obtained experimentally can be used to numerically simulate heat transfer in metal foams. The simulation of heat transfer in foams is further extended to find the effect of foam thickness on heat transfer in metal foams. The numerical results indicate that though larger foam thicknesses resulted in higher heat transfer coefficient, this effect weakens with thickness and is negligible in thick foams.
Hayek, W.; Asplund, M.; Carlsson, M.; Trampedach, R.; Collet, R.; Gudiksen, B.V.; Hansteen, V.H.; Leenaarts, J.|info:eu-repo/dai/nl/304837946
2010-01-01
Aims. We present the implementation of a radiative transfer solver with coherent scattering in the new BIFROST code for radiative magneto-hydrodynamical (MHD) simulations of stellar surface convection. The code is fully parallelized using MPI domain decomposition, which allows for large grid sizes
The Melbourne Institute Tax and Transfer Simulator (MITTS)
John Creedy; Guyonne Kalb; Hsein Kew
2001-01-01
This publication is a manual for the use of the Melbourne Institute Tax and Transfer Simulator (MITTS). MITTS provides a tool for analysing policy changes. It allows us to examine the effect of a variety of policy changes on labour supply and income distribution for the Australian.
High fidelity simulation effectiveness in nursing students' transfer of learning.
Kirkman, Tera R
2013-07-13
Members of nursing faculty are utilizing interactive teaching tools to improve nursing student's clinical judgment; one method that has been found to be potentially effective is high fidelity simulation (HFS). The purpose of this time series design study was to determine whether undergraduate nursing students were able to transfer knowledge and skills learned from classroom lecture and a HFS clinical to the traditional clinical setting. Students (n=42) were observed and rated on their ability to perform a respiratory assessment. The observations and ratings took place at the bedside, prior to a respiratory lecture, following the respiratory lecture, and following simulation clinical. The findings indicated that there was a significant difference (p=0.000) in transfer of learning demonstrated over time. Transfer of learning was demonstrated and the use of HFS was found to be an effective learning and teaching method. Implications of results are discussed.
The Role of Transfer in Designing Games and Simulations for Health: Systematic Review.
Kuipers, Derek A; Terlouw, Gijs; Wartena, Bard O; van 't Veer, Job Tb; Prins, Jelle T; Pierie, Jean Pierre En
2017-11-24
The usefulness and importance of serious games and simulations in learning and behavior change for health and health-related issues are widely recognized. Studies have addressed games and simulations as interventions, mostly in comparison with their analog counterparts. Numerous complex design choices have to be made with serious games and simulations for health, including choices that directly contribute to the effects of the intervention. One of these decisions is the way an intervention is expected to lead to desirable transfer effects. Most designs adopt a first-class transfer rationale, whereas the second class of transfer types seems a rarity in serious games and simulations for health. This study sought to review the literature specifically on the second class of transfer types in the design of serious games and simulations. Focusing on game-like interventions for health and health care, this study aimed to (1) determine whether the second class of transfer is recognized as a road for transfer in game-like interventions, (2) review the application of the second class of transfer type in designing game-like interventions, and (3) assess studies that include second-class transfer types reporting transfer outcomes. A total of 6 Web-based databases were systematically searched by titles, abstracts, and keywords using the search strategy (video games OR game OR games OR gaming OR computer simulation*) AND (software design OR design) AND (fidelity OR fidelities OR transfer* OR behaviour OR behavior). The databases searched were identified as relevant to health, education, and social science. A total of 15 relevant studies were included, covering a range of game-like interventions, all more or less mentioning design parameters aimed at transfer. We found 9 studies where first-class transfer was part of the design of the intervention. In total, 8 studies dealt with transfer concepts and fidelity types in game-like intervention design in general; 3 studies dealt with
Understanding molecular simulation: from algorithms to applications
Frenkel, D.; Smit, B.
2002-01-01
Second and revised edition Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the "recipes" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique
Tavassoli Estahbanati, H.; Peters, E.A.J.F.; Kuipers, J.A.M.
2015-01-01
Direct numerical simulations are conducted to characterize the fluid-particle heat transfer coefficient in fixed random arrays of non-spherical particles. The objective of this study is to examine the applicability of well-known heat transfer correlations, that are proposed for spherical particles,
Molecular dynamics simulation of heat transfer through a water layer between two platinum slabs
International Nuclear Information System (INIS)
Iype, E; Arlemark, E J; Nedea, S V; Rindt, C C M; Zondag, H A
2012-01-01
Heat transfer through micro channels is being investigated due to its importance in micro channel cooling applications. Molecular dynamics simulation is regarded as a potential tool for studying such microscopic phenomena in detail. However, the applicability of molecular dynamics method is limited due to scarcely known inter atomic interactions involved in complex fluids. In this study we use an empirical force field (ReaxFF), which is parameterized using accurate quantum chemical simulation results for water, to simulate heat transfer phenomena through a layer of water confined between two platinum slabs. The model for water seems to reproduce the macroscopic properties such as density, radial distribution function and diffusivity quite well. The heat transfer phenomena through a channel filled with water, which is confined by two platinum (100) surfaces are studied using ReaxFF. The model accurately predicts the formation of surface mono-layer. The heat transfer analysis shows temperature jumps near the walls which are creating significant heat transfer resistances. A low bulk density in the channel creates a multi-phase region with vapor transport in the region.
Theory and simulation of charge transfer through DNA - nanotube contacts
International Nuclear Information System (INIS)
Rink, Gunda; Kong Yong; Koslowski, Thorsten
2006-01-01
We address the problem of charge transfer between a single-stranded adenine oligomer and semiconducting boron nitride nanotubes from a theoretical and numerical perspective. The model structures have been motivated by computer simulations; sample geometries are used as the input of an electronic structure theory that is based upon an extended Su-Schrieffer-Heeger Hamiltonian. By analyzing the emerging potential energy surfaces, we obtain hole transfer rates via Marcus' theory of charge transfer. In the presence of nanotubes, these rates exceed those of isolated DNA single strands by a factor of up to 10 4 . This enhancement can be rationalized and quantified as a combination of a template effect and the participation of the tube within a superexchange mechanism
Commercial application of rainfall simulation
Loch, Rob J.
2010-05-01
Landloch Pty Ltd is a commercial consulting firm, providing advice on a range of land management issues to the mining and construction industries in Australia. As part of the company's day-to-day operations, rainfall simulation is used to assess material erodibility and to investigate a range of site attributes. (Landloch does carry out research projects, though such are not its core business.) When treated as an everyday working tool, several aspects of rainfall simulation practice are distinctively modified. Firstly, the equipment used is regularly maintained, and regularly upgraded with a primary focus on ease, safety, and efficiency of use and on reliability of function. As well, trained and experienced technical support is considered essential. Landloch's chief technician has over 10 years experience in running rainfall simulators at locations across Australia and in Africa and the Pacific. Secondly, the specific experimental conditions established for each set of rainfall simulator runs are carefully considered to ensure that they accurately represent the field conditions to which the data will be subsequently applied. Considerations here include: • wetting and drying cycles to ensure material consolidation and/or cementation if appropriate; • careful attention to water quality if dealing with clay soils or with amendments such as gypsum; • strong focus on ensuring that the erosion processes considered are those of greatest importance to the field situation of concern; and • detailed description of both material and plot properties, to increase the potential for data to be applicable to a wider range of projects and investigations. Other important company procedures include: • For each project, the scientist or engineer responsible for analysing and reporting rainfall simulator data is present during the running of all field plots, as it is essential that they be aware of any specific conditions that may have developed when the plots were subjected
International Nuclear Information System (INIS)
Xu, Weiguo; Ren, Depeng; Ye, Qing; Liu, Guodong; Lu, Huilin; Wang, Shuai
2016-01-01
Graphical abstract: Predicted laminar Nusselt number using regression correlation of Therminol-55 heat transfer fluid is in agreement with experiments in the rifled tube. - Highlights: • Heat transfer coefficient and friction factor are measured and predicted in the rifled tube. • Correlations for Nusselt number and friction factor are proposed. • The roughness height of 0.425 mm in transition SST model is suggested as an input parameter. • k–kl–ω transition and transition SST models are recommended for laminar–turbulent transition. • Thermal enhancement factor and synergy angle are predicted in the rifled tube. - Abstract: Simulations and experiments of flow and heat transfer behavior of Therminol-55 heat transfer fluid have been conducted in a horizontal rifled tube with outer diameter and inner diameter 25.0 and 20.0 mm, pitch and rib height of 12.0 and 1.0 mm, respectively. Numerical simulations of three-dimensional flow behavior of Therminol-55 heat transfer fluid are carried out using FLUENT code in the rifled tube. Experimental results show that the heat transfer and thermal performance of Therminol-55 heat transfer fluid in the rifled tube are considerably improved compared to those of the smooth tube. The Nusselt number increases with the increase of Reynolds number, and is from 3.5 to 5.1 times over the smooth tube. Also, the pressure drop results reveal that the average friction factor of the ribbed tube is in a range of 2.2 and 4.2 times over the smooth tube. Predictive Nusselt number and friction factor correlations have been presented. The numerical results show that the laminar flow model is valid only at lower Reynolds number in the developed laminar flow of rifled tube. The k–kl–ω transition model and transition SST model with roughness of 0.425 mm are recommended for the predictions of transition process from laminar to turbulent flow in the rifled tube.
Numerical simulation on coolant flow and heat transfer in core
International Nuclear Information System (INIS)
Yao Zhaohui; Wang Xuefang; Shen Mengyu
1997-01-01
To simulate the coolant flow and the heat transfer characteristics of a core, a computer code, THAPMA (Thermal Hydraulic Analysis Porous Medium Analysis) has been developed. In THAPMA code, conservation equations are based on a porous-medium formulation, which uses four parameters, i.e, volume porosity, directional surface porosity, distributed resistance, and distributed heat source (sink), to model the effects of fuel rods and other internal solid structures on flow and heat transfer. Because the scheme and the solution are very important in accuracy and speed of calculation, a new difference scheme (WSUC) has been used in the energy equation, and a modified PISO solution method have been employed to simulate the steady/transient states. The code has been proved reliable and can effectively solve the transient state problem by several numerical tests. According to the design of Qinshan NPP-II, the flow and heat transfer phenomena in reactor core have been numerically simulated. The distributions of the velocity and the temperature can provide a theoretical basis for core design and safety analysis
Understanding molecular simulation from algorithms to applications
Frenkel, Daan
2001-01-01
Understanding Molecular Simulation: From Algorithms to Applications explains the physics behind the ""recipes"" of molecular simulation for materials science. Computer simulators are continuously confronted with questions concerning the choice of a particular technique for a given application. A wide variety of tools exist, so the choice of technique requires a good understanding of the basic principles. More importantly, such understanding may greatly improve the efficiency of a simulation program. The implementation of simulation methods is illustrated in pseudocodes and their practic
3D simulation of Heat transfer in MEMS-based microchannel
International Nuclear Information System (INIS)
Choi, Chi Woong; Huh, Cheol; Kim, Dong Eok; Kim, Moo Hwan
2007-01-01
The microchannel heat sink is promising heat dissipation method for high heat flux source. Contrary to conventional circular channel, MEMS based microchannel had rectangular or trapezoidal cross-sectional shape. In our study, we conducted three dimensional conjugate heat transfer calculation for rectangular shape microchannel. First, we simulated that channel was completely drained with known heating power. As a result we obtained calibration line, which indicates heat loss was function of temperature. Second, we simulated single phase heat transfer with various mass flux, 100-400 kg/m 2 s. In conclusion, the single phase test verified that the present heat loss evaluation method is applicable to micro scale heat transfer devices. Heat fluxes from each side wall shows difference due to non-uniform heating. However those ratios were correlated with supplied total heat. Finally, we proposed effective area correction factor to evaluate appropriate heat flux
Multi-agent systems simulation and applications
Uhrmacher, Adelinde M
2009-01-01
Methodological Guidelines for Modeling and Developing MAS-Based SimulationsThe intersection of agents, modeling, simulation, and application domains has been the subject of active research for over two decades. Although agents and simulation have been used effectively in a variety of application domains, much of the supporting research remains scattered in the literature, too often leaving scientists to develop multi-agent system (MAS) models and simulations from scratch. Multi-Agent Systems: Simulation and Applications provides an overdue review of the wide ranging facets of MAS simulation, i
Resonance Energy Transfer Molecular Imaging Application in Biomedicine
Directory of Open Access Journals (Sweden)
NIE Da-hong1,2;TANG Gang-hua1,3
2016-11-01
Full Text Available Resonance energy transfer molecular imaging (RETI can markedly improve signal intensity and tissue penetrating capacity of optical imaging, and have huge potential application in the deep-tissue optical imaging in vivo. Resonance energy transfer (RET is an energy transition from the donor to an acceptor that is in close proximity, including non-radiative resonance energy transfer and radiative resonance energy transfer. RETI is an optical imaging technology that is based on RET. RETI mainly contains fluorescence resonance energy transfer imaging (FRETI, bioluminescence resonance energy transfer imaging (BRETI, chemiluminescence resonance energy transfer imaging (CRETI, and radiative resonance energy transfer imaging (RRETI. RETI is the hot field of molecular imaging research and has been widely used in the fields of biology and medicine. This review mainly focuses on RETI principle and application in biomedicine.
Fire simulation of the canister transfer and installation vehicle
International Nuclear Information System (INIS)
Peltokorpi, L.
2012-12-01
A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m 2 was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited due
Integration of Heat Transfer, Stress, and Particle Trajectory Simulation
Energy Technology Data Exchange (ETDEWEB)
Thuc Bui; Michael Read; Lawrence ives
2012-05-17
Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.
APROS multifunctional simulator applications for VVER-440
International Nuclear Information System (INIS)
Porkholm, K.; Kantee, H.; Tiihonen, O.
2000-01-01
Fortum Engineering Ltd and the Technical Research Centre of Finland have developed APROS simulation software since 1986. APROS is a multifunctional simulator, which is used for process and automation design, safety analysis and training simulator applications. APROS has unique features and models developed especially for VVER-440 reactors. At first the paper gives a short overview of APROS multifunctional simulator. The rest of the paper deals with different kind of applications of APROS in VVER-440 reactors' improvement and operation development. (author)
Numerical simulation of transient moisture transfer into an electronic enclosure
International Nuclear Information System (INIS)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H.
2016-01-01
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Numerical simulation of transient moisture transfer into an electronic enclosure
Energy Technology Data Exchange (ETDEWEB)
Nasirabadi, P. Shojaee; Jabbari, M.; Hattel, J. H. [Process Modelling Group, Department of Mechanical Engineering, Technical University of Denmark, Nils Koppels Allé, 2800 Kgs. Lyngby (Denmark)
2016-06-08
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisture transfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermal stresses. It is therefore essential to study the local climate inside the enclosures to be able to protect the electronic systems. In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce the CPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which the real 3D geometry is approximated by a 2D axial symmetry one. The results for 2D and 3D models were compared in order to calibrate the 2D representation. Furthermore, simulation results were compared with experimental data and good agreement was found.
Utility application of simulation software
International Nuclear Information System (INIS)
Sudduth, A.L.
1986-01-01
The purpose of this paper is to discuss dynamic system simulation from the perspective of a successful utility user. In it, four aspects of the issue of utility use of simulation will be addressed: (1) What simulation software is available to utilities which can be of practical assistance with a modest investment in staff and training. (2) To what specific problems can utilities apply the technique of simulation and achieve reasonably cost effective results. (3) What the advantages are of in-house dynamic simulation capability, as opposed to depending on NSSS vendors or consultants. (4) What the prospects are for wider use of dynamic simulation in the utility industry
Lattice Boltzmann simulations of heat transfer in fully developed periodic incompressible flows
Wang, Zimeng; Shang, Helen; Zhang, Junfeng
2017-06-01
Flow and heat transfer in periodic structures are of great interest for many applications. In this paper, we carefully examine the periodic features of fully developed periodic incompressible thermal flows, and incorporate them in the lattice Boltzmann method (LBM) for flow and heat transfer simulations. Two numerical approaches, the distribution modification (DM) approach and the source term (ST) approach, are proposed; and they can both be used for periodic thermal flows with constant wall temperature (CWT) and surface heat flux boundary conditions. However, the DM approach might be more efficient, especially for CWT systems since the ST approach requires calculations of the streamwise temperature gradient at all lattice nodes. Several example simulations are conducted, including flows through flat and wavy channels and flows through a square array with circular cylinders. Results are compared to analytical solutions, previous studies, and our own LBM calculations using different simulation techniques (i.e., the one-module simulation vs. the two-module simulation, and the DM approach vs. the ST approach) with good agreement. These simple, however, representative simulations demonstrate the accuracy and usefulness of our proposed LBM methods for future thermal periodic flow simulations.
A conceptual model of transference and its psychotherapeutic application.
Corradi, Richard B
2006-01-01
The tendency to repeat formative human relationships in later life, a universal developmental characteristic, is referred to as transference when it occurs in the doctor-patient relationship. Its systematic therapeutic application in psychiatry has historically been associated with classical psychoanalysis. As psychoanalysis has lost its cachet, and as drug treatment has replaced psychotherapy as psychiatry's major treatment modality, the therapeutic potential of transference risks being neglected. This is to the great detriment of psychiatric patients. Knowledge of the power of transference and expertise in its clinical use in psychotherapy should be the most powerful tool in the psychiatric therapeutic armamentarium. This article discusses a concept of transference that the author has found effective, both in clinical practice and in teaching about transference to psychiatric residents. The article delineates a psychology of transference, discusses its universal applicability to the whole of the psychotherapeutic process, and utilizes case material to illustrate principles of its application.
Applicability of transfer tensor method for open quantum system dynamics.
Gelzinis, Andrius; Rybakovas, Edvardas; Valkunas, Leonas
2017-12-21
Accurate simulations of open quantum system dynamics is a long standing issue in the field of chemical physics. Exact methods exist, but are costly, while perturbative methods are limited in their applicability. Recently a new black-box type method, called transfer tensor method (TTM), was proposed [J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014)]. It allows one to accurately simulate long time dynamics with a numerical cost of solving a time-convolution master equation, provided many initial system evolution trajectories are obtained from some exact method beforehand. The possible time-savings thus strongly depend on the ratio of total versus initial evolution lengths. In this work, we investigate the parameter regimes where an application of TTM would be most beneficial in terms of computational time. We identify several promising parameter regimes. Although some of them correspond to cases when perturbative theories could be expected to perform well, we find that the accuracy of such approaches depends on system parameters in a more complex way than it is commonly thought. We propose that the TTM should be applied whenever system evolution is expected to be long and accuracy of perturbative methods cannot be ensured or in cases when the system under consideration does not correspond to any single perturbative regime.
Directory of Open Access Journals (Sweden)
Guanghou Zhang
2011-12-01
Full Text Available Improving safety and convenience of transfer is one of the most vital tasks in subway system planning, design and operation management. Because of complicated space layout and crowded pedestrian, crowd control is a big challenge for management of transfer stations. Thus, a quantitative evaluation should be done before improvement measures are carried out. Literature review showed that present evaluation indicators about crowd management in subway system were all based on fixed value or experience. Dynamic effect caused by pedestrian congestion and various facility combination cannot be represented based on these indicators. Thus, in this paper, based on the pedestrian simulation tool, dynamic evaluation indicators system of crowd management was established from the point of safety, cost-effectiveness and comfort. In order to aid decision makers to identify the most appropriate scenario to improve the effectiveness of crowd management, Matter-Element Analysis (MEA was used to rate different scenarios. A pedestrian simulation model of a designing intermodal transfer station was built and four different scenarios were tested to demonstrate how to use this indicators system. Simulation results were evaluated based on the dynamic indicators system and MEA. The application results show that the dynamic evaluation indicators system is operational and can reflect level of the crowd management in transfer station comprehensively and precisely.
Simulation of heat transfer in the unsaturated zone
International Nuclear Information System (INIS)
Zyvoloski, G.
1990-01-01
Heat transfer can play an important role in fluid flow near the emplacement site of high-level nuclear waste. The effects on far- field flow can be important in understanding net moisture fluxes above the repository zone. The convection in the unsaturated zone at the Yucca Mountain site was responsible for this movement. If this is so, then the convection could provide a mechanism for drying the rock above the repository zone and thus provide a buffer for heavy rainfall events. In addition, the convection would increase the movement of gaseous radionuclides such as 14 CO 2 , tritiated water vapor, and 129 I (Weeks, 1987). Because of the complexity of the problem, numerical models were required to calculate gas flow and vapor transport at the site. Kipp previously modeled this problem using the code HST3D. This code represents the flow of a single-phase fluid with both heat- and mass-transfer effects included. Water density and partial pressure effects are accounted for by the virtual temperature method. In this paper, the problem was simulated using the code FEHMN, a finite-element heat- and mass-transfer code being developed for the Yucca Mountain Project. The work described in this paper was done in preparation of the upcoming problem to be formulated for the Performance Assessment Calculation Exercise. 5 refs., 9 figs., 1 tab
Directory of Open Access Journals (Sweden)
Deimel Christian
2014-03-01
Full Text Available The most common method for simulating cavitating flows is using the governing flow equations in a form with a variable density and treats both phases as incompressible in combination with a transport equation for the vapour volume fraction. This approach is commonly referred to as volume of fluid method (VoF. To determine the transition of the liquid phase to vapour and vice versa, a relation for the mass transfer is needed. Several models exist, based on slightly differing physical assumptions, for example derivation from the dynamics of single bubbles or large bubble clusters. In our simulation, we use the model of Sauer and Schnerr which is based on the Rayleigh equation. One common problem of all mass transfer models is the use of model constants which often need to be tuned with regard to the examined problem. Furthermore, these models often overpredict the turbulent dynamic viscosity in the two-phase region which counteracts the development of transient shedding behaviour and is compensated by the modification proposed by Reboud. In the presented study, we vary the parameters of the Sauer-Schnerr model with Reboud modification that we implemented into an OpenFOAM solver to match numerical to experimental data.
Wireless Power Transfer Protocols in Sensor Networks: Experiments and Simulations
Directory of Open Access Journals (Sweden)
Sotiris Nikoletseas
2017-04-01
Full Text Available Rapid technological advances in the domain of Wireless Power Transfer pave the way for novel methods for power management in systems of wireless devices, and recent research works have already started considering algorithmic solutions for tackling emerging problems. In this paper, we investigate the problem of efficient and balanced Wireless Power Transfer in Wireless Sensor Networks. We employ wireless chargers that replenish the energy of network nodes. We propose two protocols that configure the activity of the chargers. One protocol performs wireless charging focused on the charging efficiency, while the other aims at proper balance of the chargers’ residual energy. We conduct detailed experiments using real devices and we validate the experimental results via larger scale simulations. We observe that, in both the experimental evaluation and the evaluation through detailed simulations, both protocols achieve their main goals. The Charging Oriented protocol achieves good charging efficiency throughout the experiment, while the Energy Balancing protocol achieves a uniform distribution of energy within the chargers.
A digital computer simulation and study of a direct-energy-transfer power-conditioning system
Burns, W. W., III; Owen, H. A., Jr.; Wilson, T. G.; Rodriguez, G. E.; Paulkovich, J.
1975-01-01
An investigation of the behavior of the power-conditioning system as a whole is a necessity to ensure the integrity of the aggregate system in the case of space applications. An approach for conducting such an investigation is considered. A description is given of the application of a general digital analog simulator program to the study of an aggregate power-conditioning system which is being developed for use on the International Ultraviolet Explorer spacecraft. The function of the direct energy transfer system studied involves a coupling of a solar array through a main distribution bus to the spacecraft electrical loads.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
International Nuclear Information System (INIS)
Rahman, M M; Zhen, T; Kadir, A K
2013-01-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Numerical simulation of fluid flow and heat transfer in enhanced copper tube
Rahman, M. M.; Zhen, T.; Kadir, A. K.
2013-06-01
Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.
Simulation Application for the LHCb Experiment
Pokorski, Witold
2003-01-01
We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an underlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a façade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation jo...
Simulation Application for the LHCb Experiment
Belyaev, I; Easo, S; Mato, P; Palacios, J; Pokorski, Witold; Ranjard, F; Van Tilburg, J; Charpentier, Ph.
2003-01-01
We describe the LHCb detector simulation application (Gauss) based on the Geant4 toolkit. The application is built using the Gaudi software framework, which is used for all event-processing applications in the LHCb experiment. The existence of an underlying framework allows several common basic services such as persistency, interactivity, as well as detector geometry description or particle data to be shared between simulation, reconstruction and analysis applications. The main benefits of such common services are coherence between different event-processing stages as well as reduced development effort. The interfacing to Geant4 toolkit is realized through a facade (GiGa) which minimizes the coupling to the simulation engine and provides a set of abstract interfaces for configuration and event-by-event communication. The Gauss application is composed of three main blocks, i.e. event generation, detector response simulation and digitization which reflect the different stages performed during the simulation job...
Multiphysics simulation electromechanical system applications and optimization
Dede, Ercan M; Nomura, Tsuyoshi
2014-01-01
This book highlights a unique combination of numerical tools and strategies for handling the challenges of multiphysics simulation, with a specific focus on electromechanical systems as the target application. Features: introduces the concept of design via simulation, along with the role of multiphysics simulation in today's engineering environment; discusses the importance of structural optimization techniques in the design and development of electromechanical systems; provides an overview of the physics commonly involved with electromechanical systems for applications such as electronics, ma
The magnetic fluid for heat transfer applications
International Nuclear Information System (INIS)
Nakatsuka, K.; Jeyadevan, B.; Neveu, S.; Koganezawa, H.
2002-01-01
Real-time visual observation of boiling water-based and ionic magnetic fluids (MFs) and heat transfer characteristics in heat pipe using ionic MF stabilized by citrate ions (JC-1) as working liquid are reported. Irrespective of the presence or absence of magnetic field water-based MF degraded during boiling. However, the degradation of JC-1 was avoided by heating the fluid in magnetic field. Furthermore, the heat transfer capacity of JC-1 heat pipe under applied magnetic field was enhanced over the no field case
Advances in Intelligent Modelling and Simulation Simulation Tools and Applications
Oplatková, Zuzana; Carvalho, Marco; Kisiel-Dorohinicki, Marek
2012-01-01
The human capacity to abstract complex systems and phenomena into simplified models has played a critical role in the rapid evolution of our modern industrial processes and scientific research. As a science and an art, Modelling and Simulation have been one of the core enablers of this remarkable human trace, and have become a topic of great importance for researchers and practitioners. This book was created to compile some of the most recent concepts, advances, challenges and ideas associated with Intelligent Modelling and Simulation frameworks, tools and applications. The first chapter discusses the important aspects of a human interaction and the correct interpretation of results during simulations. The second chapter gets to the heart of the analysis of entrepreneurship by means of agent-based modelling and simulations. The following three chapters bring together the central theme of simulation frameworks, first describing an agent-based simulation framework, then a simulator for electrical machines, and...
Practical applications of radiative wireless power transfer
Pflug, H.; Visser, H.J.; Keyrouz, S.
2015-01-01
For practical use of radiative wireless power transfer (WPT), it is necessary to design a system which is able to supply circuits with a dynamic loading characteristic. In this paper we present a practical way to obtain efficiency and dc output power characteristics of a WPT system. An Avago
Application of artificial neural networks to improve power transfer ...
African Journals Online (AJOL)
Application of artificial neural networks to improve power transfer capability through OLTC. ... International Journal of Engineering, Science and Technology ... Numerical results show that the setting of OLTC transformer in terms of the load model has a major effect on the maximum power transfer in power systems and the ...
Rainfall simulation for environmental application
Energy Technology Data Exchange (ETDEWEB)
Shriner, D.S.; Abner, C.H.; Mann, L.K.
1977-08-01
Rain simulation systems have been designed for field and greenhouse studies which have the capability of reproducing the physical and chemical characteristics of natural rainfall. The systems permit the simulation of variations in rainfall and droplet size similar to that of natural precipitation. The systems are completely automatic and programmable, allowing unattended operation for periods of up to one week, and have been used to expose not only vegetation but also soils and engineering materials, making them versatile tools for studies involving simulated precipitation.
Simulation and Modeling Methodologies, Technologies and Applications
Filipe, Joaquim; Kacprzyk, Janusz; Pina, Nuno
2014-01-01
This book includes extended and revised versions of a set of selected papers from the 2012 International Conference on Simulation and Modeling Methodologies, Technologies and Applications (SIMULTECH 2012) which was sponsored by the Institute for Systems and Technologies of Information, Control and Communication (INSTICC) and held in Rome, Italy. SIMULTECH 2012 was technically co-sponsored by the Society for Modeling & Simulation International (SCS), GDR I3, Lionphant Simulation, Simulation Team and IFIP and held in cooperation with AIS Special Interest Group of Modeling and Simulation (AIS SIGMAS) and the Movimento Italiano Modellazione e Simulazione (MIMOS).
Heat transfer analysis of liquid piston compressor for hydrogen applications
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...
Simulations, serious games and their applications
Goei, Sui
2014-01-01
This book presents the state of the art technology in Serious Games which is driven extensive by applications and research in simulation. The topics in this book include: (1) Fashion simulation; (2) Chinese calligraphy ink diffusion simulation; (3) Rehabilitation (4) Long vehicle turning simulation; (5) Marine traffic conflict control; (6) CNC simulation; (7) Special needs education. The book also addresses the fundamental issues in Simulation and Serious Games such as rapid collision detection, game engines or game development platforms. The target audience for this book includes scientists, engineers and practitioners involved in the field of Serious Games and Simulation. The major part of this book comprises of papers presented at the 2012 Asia-Europe Workshop on Serious Games and Simulation held in Nanyang Technological University, Singapore (May 9, 2012). All the contributions have been peer reviewed and by scientific committee members with report about quality, content and originality.
Direct Numerical Simulation of heat transfer in a turbulent flume
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2001-01-01
Direct Numerical Simulation (DNS) can be used for the description of turbulent heat transfer in the fluid at low Reynolds numbers. DNS means precise solving of Navier-Stoke's equations without any extra turbulent models. DNS should be able to describe all relevant length scales and time scales in observed turbulent flow. The largest length scale is actually dimension of system and the smallest length and time scale is equal to Kolmogorov scale. In the present work simulations of fully developed turbulent velocity and temperature fields were performed in a turbulent flume (open channel) with pseudo-spectral approach at Reynolds number 2670 (friction Reynolds number 171) and constant Prandtl number 5.4, considering the fluid temperature as a passive scalar. Two ideal thermal boundary conditions were taken into account on the heated wall. The first one was an ideal isothermal boundary condition and the second one an ideal isoflux boundary condition. We observed different parameters like mean temperature and velocity, fluctuations of temperature and velocity, and auto-correlation functions.(author)
Investigating mass transfer in symbiotic systems with hydrodynamic simulations
de Val-Borro, Miguel; Karovska, Margarita; Sasselov, Dimitar D.
2014-06-01
We investigate gravitationally focused wind accretion in binary systems consisting of an evolved star with a gaseous envelope and a compact accreting companion. We study the mass accretion and formation of an accretion disk around the secondary caused by the strong wind from the primary late-type component using global 2D and 3D hydrodynamic numerical simulations. In particular, the dependence on the mass accretion rate on the mass loss rate, wind temperature and orbital parameters of the system is considered. For a typical slow and massive wind from an evolved star the mass transfer through a focused wind results in rapid infall onto the secondary. A stream flow is created between the stars with accretion rates of a 2-10% percent of the mass loss from the primary. This mechanism could be an important method for explaining periodic modulations in the accretion rates for a broad range of interacting binary systems and fueling of a large population of X-ray binary systems. We test the plausibility of these accretion flows indicated by the simulations by comparing with observations of the symbiotic CH Cyg variable system.
Mass transfer inside oblate spheroidal solids: modelling and simulation
Directory of Open Access Journals (Sweden)
J. E. F. Carmo
2008-03-01
Full Text Available A numerical solution of the unsteady diffusion equation describing mass transfer inside oblate spheroids, considering a constant diffusion coefficient and the convective boundary condition, is presented. The diffusion equation written in the oblate spheroidal coordinate system was used for a two-dimensional case. The finite-volume method was employed to discretize the basic equation. The linear equation set was solved iteratively using the Gauss-Seidel method. As applications, the effects of the Fourier number, the Biot number and the aspect ratio of the body on the drying rate and moisture content during the process are presented. To validate the methodology, results obtained in this work are compared with analytical results of the moisture content encountered in the literature and good agreement was obtained. The results show that the model is consistent and it may be used to solve cases such as those that include disks and spheres and/or those with variable properties with small modifications.
Training transfer: scientific background and insights for practical application.
Issurin, Vladimir B
2013-08-01
Training transfer as an enduring, multilateral, and practically important problem encompasses a large body of research findings and experience, which characterize the process by which improving performance in certain exercises/tasks can affect the performance in alternative exercises or motor tasks. This problem is of paramount importance for the theory of training and for all aspects of its application in practice. Ultimately, training transfer determines how useful or useless each given exercise is for the targeted athletic performance. The methodological background of training transfer encompasses basic concepts related to transfer modality, i.e., positive, neutral, and negative; the generalization of training responses and their persistence over time; factors affecting training transfer such as personality, motivation, social environment, etc. Training transfer in sport is clearly differentiated with regard to the enhancement of motor skills and the development of motor abilities. The studies of bilateral skill transfer have shown cross-transfer effects following one-limb training associated with neural adaptations at cortical, subcortical, spinal, and segmental levels. Implementation of advanced sport technologies such as motor imagery, biofeedback, and exercising in artificial environments can facilitate and reinforce training transfer from appropriate motor tasks to targeted athletic performance. Training transfer of motor abilities has been studied with regard to contralateral effects following one limb training, cross-transfer induced by arm or leg training, the impact of strength/power training on the preparedness of endurance athletes, and the impact of endurance workloads on strength/power performance. The extensive research findings characterizing the interactions of these workloads have shown positive transfer, or its absence, depending on whether the combinations conform to sport-specific demands and physiological adaptations. Finally, cross
Numerical simulation of fluid flow and heat transfer in a concentric tube heat exchanger
International Nuclear Information System (INIS)
Mokamati, S.V.; Prasad, R.C.
2003-01-01
In this paper, numerical simulation of a concentric tube heat exchanger is presented to determine the convective heat transfer coefficient and friction factor in a smooth tube. Increasing the convective heat transfer coefficient can increase heat transfer rate in a concentric tube heat exchanger from a given tubular surface area. This can be achieved by using heat transfer augmentation devices. This work constitutes the initial phase of the numerical simulation of heat transfer from tubes employing augmentation devices, such as twisted tapes, wire-coil inserts, for heat transfer enhancement. A computational fluid dynamics (CFD) simulation tool was developed with CFX software and the results obtained from the simulations are validated with the empirical correlations for a smooth tube heat exchanger. The difficulties associated with the simulation of a heat exchanger augmented with wire-coil inserts are discussed. (author)
International Nuclear Information System (INIS)
Suarez, V.; Hernandez W, J.; Calderon, A.; Rojas T, J. B.; Juarez, A. G.; Marin, E.; Castaneda, A.
2012-10-01
We investigate the heat transfer through a homogeneous and isotropic solid exited by periodic light beam on its front surface. For this, we use the infrared photothermal radiometry in order to obtain the evolution of the temperature difference on the rear surface of the silicon sample as a function of the exposure time. Also, we solved the heat conduction equation for this problem with the boundary conditions congruent with the physical situation, by means of application the Com sol multi physics software and the heat transfer module. Our results show a good agree between the experimental and simulated results, which demonstrate the utility of this methodology in the study of the thermal response in solids. (Author)
Wall-resolved Large Eddy Simulations of turbulent heat transfer in a T-junction
Georgiou, Michail; Papalexandris, Miltiadis V.
2017-11-01
In this talk we report on wall-resolved Large Eddy Simulations of turbulent heat transfer between a cold crossflow and a hot incoming jet in a T-junction. Due to their high efficiency in mixing and heat transfer, T-junctions are encountered in numerous industrial applications. Our study is motivated by the need to assess phenomena related to thermal fatigue that are often encountered at their walls. We first describe the important features of the flow with emphasis on the shear layers that are formed at the entry of the jet and the recirculation regions. We also show results for first- and second-order statistics of the flow and compare our predictions with previous experimental data. Lastly, we present results from the spectral analysis of the temperature signal that we performed in order to assess the oscillating mechanisms that dominate the flow and the risk of thermal fatigue at the walls of the T-junction.
A continuum-atomistic simulation of heat transfer in micro- and nano-flows
International Nuclear Information System (INIS)
Liu Jin; Chen Shiyi; Nie Xiaobo; Robbins, Mark O.
2007-01-01
We develop a hybrid atomistic-continuum scheme for simulating micro- and nano-flows with heat transfer. The approach is based on spatial 'domain decomposition' in which molecular dynamics (MD) is used in regions where atomistic details are important, while classical continuum fluid dynamics is used in the remaining regions. The two descriptions are matched in a coupling region where we ensure continuity of mass, momentum, energy and their fluxes. The scheme for including the energy equation is implemented in 1-D and 2-D, and used to study steady and unsteady heat transfer in channel flows with and without nano roughness. Good agreement between hybrid results and analytical or pure MD results is found, demonstrating the accuracy of this multiscale method and its potential applications in thermal engineering
Ameri, Ali; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur
2014-01-01
Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.
Ameri, Ali A.; Shyam, Vikram; Rigby, David; Poinsatte, Phillip; Thurman, Douglas; Steinthorsson, Erlendur
2014-01-01
Computational fluid dynamics (CFD) analysis using Reynolds-averaged Navier-Stokes (RANS) formulation for turbomachinery-related flows has enabled improved engine component designs. RANS methodology has limitations that are related to its inability to accurately describe the spectrum of flow phenomena encountered in engines. Examples of flows that are difficult to compute accurately with RANS include phenomena such as laminar/turbulent transition, turbulent mixing due to mixing of streams, and separated flows. Large eddy simulation (LES) can improve accuracy but at a considerably higher cost. In recent years, hybrid schemes that take advantage of both unsteady RANS and LES have been proposed. This study investigated an alternative scheme, the time-filtered Navier-Stokes (TFNS) method applied to compressible flows. The method developed by Shih and Liu was implemented in the Glenn-Heat-Transfer (Glenn-HT) code and applied to film-cooling flows. In this report the method and its implementation is briefly described. The film effectiveness results obtained for film cooling from a row of 30deg holes with a pitch of 3.0 diameters emitting air at a nominal density ratio of unity and two blowing ratios of 0.5 and 1.0 are shown. Flow features under those conditions are also described.
Direct numerical simulations of flow and heat transfer over a circular cylinder at Re = 2000
Vidya, Mahening Citra; Beishuizen, N.A.; van der Meer, Theodorus H.
2016-01-01
Unsteady direct numerical simulations of the flow around a circular cylinder have been performed at Re = 2000. Both two-dimensional and three-dimensional simulations were validated with laminar cold flow simulations and experiments. Heat transfer simulations were carried out and the time-averaged
Heat transfer simulation of motorcycle fins under varying velocity using CFD method
Shahril, K.; Mohd Kasim, Nurhayati Binti; Sabri, M.
2013-12-01
Motorcycle engine releases heat to the atmosphere through the mode of force convection. To solve this, fins are provided on the outer of the cylinder. The heat transfer rate is defined depending on the velocity of vehicle, fin geometry and the ambient temperature. Increasing the temperature difference between the object and the environment, increasing the convection heat transfer coefficient, or increasing the surface area of the object increases the heat transfer. Many experimental methods are available in literature to analyze the effect of these factors on the heat transfer rate. However, CFD analysis will be use to simulate the heat transfer of the engine block. ANSYS software is selected to run the simulation.
Matrix Transfer Function Design for Flexible Structures: An Application
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Gonçalves, Ricardo; Carvalho, Nuno B.; Pinho, Pedro
2017-02-01
In the current contest of wireless systems, the last frontier remains the cut of the power cord. In that sense, the interest over wireless energy transfer technologies in the past years has grown exponentially. However, there are still many challenges to be overcome in order to enable wireless energy transfer full potential. One of the focus in the development of such systems is the design of very-high-gain, highly efficient, antennas that can compensate for the propagation loss of radio signals over the air. In this paper, we explore the design and manufacturing process of dielectric lenses, fabricated using a professional-grade desktop 3D printer. Lens antennas are used in order to increase beam efficiency and therefore maximize the efficiency of a wireless power-transfer system operating at microwave frequencies in the Ku band. Measurements of two fabricated prototypes showcase a large directivity, as predicted with simulations. xml:lang="fr"
Numerical simulation of heat transfer process in automotive brakes
Gonzalo Voltas, David
2013-01-01
This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...
RELAP5: Applications to high fidelity simulation
International Nuclear Information System (INIS)
Johnsen, G.W.; Chen, Y.S.
1988-01-01
RELAP5 is a pressurized water reactor system transient simulation code for use in nuclear power plant safety analysis. The latest version, MOD2, may be used to simulate and study a wide variety of abnormal events, including loss-of-coolant accidents, operational transients, and transients in which the entire secondary system must be modeled. In this paper, a basic overview of the code is given, its assessment and application illustrated, and progress toward its use as a high fidelity simulator described. 7 refs., 7 figs
DEFF Research Database (Denmark)
Zhou, Mingdong; Alexandersen, Joe; Sigmund, Ole
2016-01-01
This paper presents an industrial application of topology optimization for combined conductive and convective heat transfer problems. The solution is based on a synergy of computer aided design and engineering software tools from Dassault Systemes. The considered physical problem of steady......-state heat transfer under convection is simulated using SIMULIA-Abaqus. A corresponding topology optimization feature is provided by SIMULIA-Tosca. By following a standard workflow of design optimization, the proposed solution is able to accommodate practical design scenarios and results in efficient...
International Nuclear Information System (INIS)
Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Lin, Fei
2014-01-01
This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption
Energy Technology Data Exchange (ETDEWEB)
Zhang, Zhen; Chau, K. T., E-mail: ktchau@eee.hku.hk; Liu, Chunhua; Qiu, Chun; Lin, Fei [Department of Electrical and Electronic Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong (China)
2014-05-07
This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.
Zhang, Zhen; Chau, K. T.; Liu, Chunhua; Qiu, Chun; Lin, Fei
2014-05-01
This paper presents a secure inductive wireless power transfer (WPT) system for electric vehicle (EV) applications, such as charging the electric devices inside EVs and performing energy exchange between EVs. The key is to employ chaos theory to encrypt the wirelessly transferred energy which can then be decrypted by specific receptors in the multi-objective system. In this paper, the principle of encrypted WPT is first revealed. Then, computer simulation is conducted to validate the feasibility of the proposed system. Moreover, by comparing the WPT systems with and without encryption, the proposed energy encryption scheme does not involve noticeable power consumption.
AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications
Shen, Boyang; Geng, Jianzhao; Zhang, Xiuchang; Fu, Lin; Li, Chao; Zhang, Heng; Dong, Qihuan; Ma, Jun; Gawith, James; Coombs, T. A.
2017-12-01
This paper presents the concept of using horizontally parallel HTS tapes with AC loss study, and the investigation on possible wireless power transfer (WPT) applications. An example of three parallel HTS tapes was proposed, whose AC loss study was carried out both from experiment using electrical method; and simulation using 2D H-formulation on the FEM platform of COMSOL Multiphysics. The electromagnetic induction around the three parallel tapes was monitored using COMSOL simulation. The electromagnetic induction and AC losses generated by a conventional three turn coil was simulated as well, and then compared to the case of three parallel tapes with the same AC transport current. The analysis demonstrates that HTS parallel tapes could be potentially used into wireless power transfer systems, which could have lower total AC losses than conventional HTS coils.
Application of the Radiative Transfer Equation (RTE) to Scattering by ...
African Journals Online (AJOL)
Application of the Radiative Transfer Equation (RTE) to Scattering by a Dust Aerosol Layer. ... Incident radiation in its journey through the atmosphere before reaching the earth surface encounters particles of different sizes and composition such as dust aerosols resulting in interactions that lead to absorption and scattering.
Development of an application simulating radioactive sources
International Nuclear Information System (INIS)
Riffault, V.; Locoge, N.; Leblanc, E.; Vermeulen, M.
2011-01-01
This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)
Literature survey of heat transfer enhancement techniques in refrigeration applications
Energy Technology Data Exchange (ETDEWEB)
Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics
1994-05-01
A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.
An ecofriendly graphene-based nanofluid for heat transfer applications
DEFF Research Database (Denmark)
Mehrali, Mohammad; Sadeghinezhad, Emad; Akhiani, Amir Reza
2016-01-01
including chemical stability, viscosity, wettability, electrical conductivity and thermal conductivity were investigated in a comprehensive manner. A significant thermal conductivity enhancement amounting to 45.1% was obtained for a volume fraction of 4%. In addition, the convective heat transfer...... that the generated nanofluid will open a new avenue in the pursuit of ecofriendly thermal conductors for heat transfer applications....... coefficient of the nanofluid in a laminar flow regime with uniform wall heat flux was investigated to estimate its cooling capabilities. These results, firmly confirm that the generated graphene-based nanofluid is a formidable transporter of heat and yet ecofriendly. Therefore, it's anticipate...
NASA technology utilization applications. [transfer of medical sciences
1973-01-01
The work is reported from September 1972 through August 1973 by the Technology Applications Group of the Science Communication Division (SCD), formerly the Biological Sciences Communication Project (BSCP) in the Department of Medical and Public Affairs of the George Washington University. The work was supportive of many aspects of the NASA Technology Utilization program but in particular those dealing with Biomedical and Technology Application Teams, Applications Engineering projects, new technology reporting and documentation and transfer activities. Of particular interest are detailed reports on the progress of various hardware projects, and suggestions and criteria for the evaluation of candidate hardware projects. Finally some observations about the future expansion of the TU program are offered.
Port-O-Sim Object Simulation Application
Lanzi, Raymond J.
2009-01-01
Port-O-Sim is a software application that supports engineering modeling and simulation of launch-range systems and subsystems, as well as the vehicles that operate on them. It is flexible, distributed, object-oriented, and realtime. A scripting language is used to configure an array of simulation objects and link them together. The script is contained in a text file, but executed and controlled using a graphical user interface. A set of modules is defined, each with input variables, output variables, and settings. These engineering models can be either linked to each other or run as standalone. The settings can be modified during execution. Since 2001, this application has been used for pre-mission failure mode training for many Range Safety Scenarios. It contains range asset link analysis, develops look-angle data, supports sky-screen site selection, drives GPS (Global Positioning System) and IMU (Inertial Measurement Unit) simulators, and can support conceptual design efforts for multiple flight programs with its capacity for rapid six-degrees-of-freedom model development. Due to the assembly of various object types into one application, the application is applicable across a wide variety of launch range problem domains.
Simulation of solar radiative transfer in cumulus clouds
Energy Technology Data Exchange (ETDEWEB)
Zuev, V.E.; Titov, G.A. [Institute of Atmospheric Optics, Tomsk (Russian Federation)
1996-04-01
This work presents a 3-D model of radiative transfer which is used to study the relationship between the spatial distribution of cumulus clouds and fluxes (albedo and transmittance) of visible solar radiation.
Polymeric film application for phase change heat transfer
Bart, Hans-Jörg; Dreiser, Christian
2018-06-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
Polymeric film application for phase change heat transfer
Bart, Hans-Jörg; Dreiser, Christian
2018-01-01
The paper gives a concise review on polymer film heat exchangers (PFHX) with a focus on polyether ether ketone (PEEK) foil as heat transfer element, mechanically supported by a grid structure. In order to promote PFHX applications, heat transfer performance and wetting behavior are studied in detail. Surface modifications to improve wetting are discussed and correlations are presented for critical Reynolds numbers to sustain a stable liquid film. Scaling phenomena related to surface properties and easily adaptable cleaning-in-place (CIP) procedures are further content. The contribution of the foil thickness and material selection on thermal performance is quantified and a correlation for enhanced aqueous film heat transfer for the grid supported PFHX is given. The basic research results and the design criteria enable early stage material selection and conceptual apparatus design.
2010-10-01
... 47 Telecommunication 4 2010-10-01 2010-10-01 false Time limits applicable to franchise authority... Cable Systems § 76.502 Time limits applicable to franchise authority consideration of transfer applications. (a) A franchise authority shall have 120 days from the date of submission of a completed FCC Form...
Scalable transfer of vertical graphene nanosheets for flexible supercapacitor applications
Sahoo, Gopinath; Ghosh, Subrata; Polaki, S. R.; Mathews, Tom; Kamruddin, M.
2017-10-01
Vertical graphene nanosheets (VGN) are the material of choice for application in next-generation electronic devices. The growing demand for VGN-based flexible devices for the electronics industry brings in restriction on VGN growth temperature. The difficulty associated with the direct growth of VGN on flexible substrates can be overcome by adopting an effective strategy of transferring the well-grown VGN onto arbitrary flexible substrates through a soft chemistry route. In the present study, we report an inexpensive and scalable technique for the polymer-free transfer of VGN onto arbitrary substrates without disrupting its morphology, structure, and properties. After transfer, the morphology, chemical structure, and electrical properties are analyzed by scanning electron microscopy, Raman spectroscopy, x-ray photoelectron spectroscopy, and four-probe resistive methods, respectively. The wetting properties are studied from the water contact angle measurements. The observed results indicate the retention of morphology, surface chemistry, structure, and electronic properties. Furthermore, the storage capacity of the transferred VGN-based binder-free and current collector-free flexible symmetric supercapacitor device is studied. A very low sheet resistance of 670 Ω/□ and excellent supercapacitance of 158 μF cm-2 with 86% retention after 10 000 cycles show the prospect of the damage-free VGN transfer approach for the fabrication of flexible nanoelectronic devices.
Mass transfer Simulation of Two-dimensional Natural Convection of Mixture Layer in an IVR
Energy Technology Data Exchange (ETDEWEB)
Kim, Su-Hyeon; Chung, Bum-Jin [Kyung Hee University, Yongin (Korea, Republic of)
2015-10-15
This study is focusing on the angle dependent heat flux distribution at the reactor vessel plenum due to mixture layer natural convection experiment. We simulated heat transfer using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. An S-bend shaped copper is used as the volumetric heat source, which is simulated as a heater in previous heat transfer studies. The advantage of mass transfer experiment is the achievement of the high buoyancy condition similar to reactor vessel because of high Pr. This study performed mass transfer experiment using a sulfuric acid - copper sulfate (H{sub 2}SO{sub 4} - CuSO{sub 4}) electroplating system based on the heat and mass transfer analogy concept. The experimental result was compared with previous 2D study (SIGMA CP)
Charge transfer devices and their application in physics
Energy Technology Data Exchange (ETDEWEB)
Soroko, L M [Joint Inst. for Nuclear Research, Dubna (USSR)
1979-01-01
Physical properties and technical specifications of charge transfer devices (CTD) are reviewed. The CTD are semiconductor devices based on silicon single crystals. The limiting charge density of the CTD, their efficiency of charge transfer, the background noise and radiation effects are considered. Fast response and low energy consumption are characteristic features of the devices. The application of the CTD in storage devices, real time spectral data processing systems and in streamer chambers is described. The algorithms of topological transformations in the stage of scanning particle track images, which can be realized with the help of the CTD are shortly considered. It is pointed out that applications of the CTD in different fields of science and technology are numerous and expanding.
Application of Nuclear Application Programs to APR1400 Simulator
International Nuclear Information System (INIS)
Hwang, Do Hyun; Lee, Myeong Soo; Hong, Jin Hyuk
2012-01-01
Advanced Power Reactor 1400MWe (APR1400) simulator has been developed and installed at Kori Training Center for operators of ShinKori no.3, 4 nuclear power plant by Korea Hydro and Nuclear Power,s Central Research Institute (KHNP CRI). NAPS (Nuclear Application Programs) is a computerbased system which provides operators with past and real-time information for monitoring and controlling NSSS (Nuclear Steam Supply System), BOP (Balance Of Plant) and Electric system. NAPS consists of several programs such as COLSS (Core Operating Limit Supervisory System), SPADES+ (Safety Parameter Display and Evaluation System), CEA (Control Element Assembly) Application Program, and so on. Each program makes calculations based on its own algorithm and provides information available for operation. In order to use NAPS programs with a simulator even though they are being used in a real plant, they should be modified to add several simulation functions such as reset, snap, run/freeze and backtrack required by ANSI/ANS-3.5 to the original NAPS functionality. On top of that, interfacing programs should be developed for the data communication between respective NAPS programs and simulator sever. The purpose of this paper is to provide the overall architecture of the communication system between NAPS and simulator model, and to describe the method to apply NAPS to APR1400 simulator
National Research Council Canada - National Science Library
McGuire, William
1997-01-01
This research thesis is a study through a military commercial industry partnership to seek whether investments in military modeling and simulation can be easily transferred to benefit commercial industry...
U.S. Environmental Protection Agency — In vitro bioaccessibility of copper azole following simulated dermal transfer from pressure-treated wood. This dataset is associated with the following publication:...
Application of artificial intelligence to impulsive orbital transfers
Burns, Rowland E.
1987-01-01
A generalized technique for the numerical solution of any given class of problems is presented. The technique requires the analytic (or numerical) solution of every applicable equation for all variables that appear in the problem. Conditional blocks are employed to rapidly expand the set of known variables from a minimum of input. The method is illustrated via the use of the Hohmann transfer problem from orbital mechanics.
FLIGHT SIMULATION IN AIR FORCE TRAINING. A KNOWLEDGE TRANSFER EFICIENCY PERSPECTIVE
Directory of Open Access Journals (Sweden)
Alexandru GHEORGHIU
2013-10-01
Full Text Available For decades the issue of training through simulation has been discussed and studied to show its value and importance in fighter pilot training programs. Besides the fact that simulators are less expensive than a real airplane, and eliminate the operational risks that are present in a real flight they bring a significant contribution to the pilot training by their fidelity and realism that they show in such scenarios as in the reality. To measure the efficiency of training transfer from simulator to the aircraft, performance indicators were defined. The purpose of this article is to define these performance indicators and measurement of training transfer within the flight simulator involvement.
On transferability and contexts when using simulated grasp databases
DEFF Research Database (Denmark)
Jørgensen, Jimmy Alison; Ellekilde, Lars-Peter; Kraft, Dirk
2015-01-01
It has become a common practice to use simulation to generate large databases of good grasps for grasp planning in robotics research. However, the existence of a generic simulation context that enables the generation of high quality grasps that can be used in several different contexts such as bi...
Technology transfer of operator-in-the-loop simulation
Yae, K. H.; Lin, H. C.; Lin, T. C.; Frisch, H. P.
1994-01-01
The technology developed for operator-in-the-loop simulation in space teleoperation has been applied to Caterpillar's backhoe, wheel loader, and off-highway truck. On an SGI workstation, the simulation integrates computer modeling of kinematics and dynamics, real-time computational and visualization, and an interface with the operator through the operator's console. The console is interfaced with the workstation through an IBM-PC in which the operator's commands were digitized and sent through an RS-232 serial port. The simulation gave visual feedback adequate for the operator in the loop, with the camera's field of vision projected on a large screen in multiple view windows. The view control can emulate either stationary or moving cameras. This simulator created an innovative engineering design environment by integrating computer software and hardware with the human operator's interactions. The backhoe simulation has been adopted by Caterpillar in building a virtual reality tool for backhoe design.
Molecular dynamics simulation of the first electron transfer step in the oxygen reduction reaction
Hartnig, C.B.; Koper, M.T.M.
2002-01-01
We present a molecular dynamics simulation of solvent reorganization in the first electron transfer step in the oxygen reduction reaction, i.e. O2+e-¿O2-, modeled as taking place in the outer Helmholtz plane. The first electron transfer step is usually considered the rate-determining step from many
Application of linear logic to simulation
Clarke, Thomas L.
1998-08-01
Linear logic, since its introduction by Girard in 1987 has proven expressive and powerful. Linear logic has provided natural encodings of Turing machines, Petri nets and other computational models. Linear logic is also capable of naturally modeling resource dependent aspects of reasoning. The distinguishing characteristic of linear logic is that it accounts for resources; two instances of the same variable are considered differently from a single instance. Linear logic thus must obey a form of the linear superposition principle. A proportion can be reasoned with only once, unless a special operator is applied. Informally, linear logic distinguishes two kinds of conjunction, two kinds of disjunction, and also introduces a modal storage operator that explicitly indicates propositions that can be reused. This paper discuses the application of linear logic to simulation. A wide variety of logics have been developed; in addition to classical logic, there are fuzzy logics, affine logics, quantum logics, etc. All of these have found application in simulations of one sort or another. The special characteristics of linear logic and its benefits for simulation will be discussed. Of particular interest is a connection that can be made between linear logic and simulated dynamics by using the concept of Lie algebras and Lie groups. Lie groups provide the connection between the exponential modal storage operators of linear logic and the eigen functions of dynamic differential operators. Particularly suggestive are possible relations between complexity result for linear logic and non-computability results for dynamical systems.
Simulation Tests in Whole Building Heat and Moisture Transfer
DEFF Research Database (Denmark)
Rode, Carsten; Peuhkuri, Ruut Hannele; Woloszyn, Monika
2006-01-01
An important part of the International Energy Agency project, ECBCS, Annex 41 is about modelling the integral heat, air and moisture transfer processes that take place in “whole buildings”. Such modelling deals with all most relevant elements of buildings: The indoor air, the building envelope...
International Nuclear Information System (INIS)
Yamamoto, Yoshinobu; Kunugi, Tomoaki
2015-01-01
Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study
Energy Technology Data Exchange (ETDEWEB)
Yamamoto, Yoshinobu, E-mail: yamamotoy@yamanashi.ac.jp [Department of Mechanical Systems Engineering, University of Yamanashi, 4-3-11 Takeda, Kofu 400-8511 (Japan); Kunugi, Tomoaki [Department of Nuclear Engineering, Kyoto University Yoshida, Sakyo, Kyoto 606-8501 (Japan)
2015-01-15
Graphical abstract: - Highlights: • For the first time, the MHD heat transfer DNS database corresponding to the typical nondimensional parameters of the fusion blanket design using molten salt, were established. • MHD heat transfer correlation was proposed and about 20% of the heat transfer degradation was evaluated under the design conditions. • The contribution of the turbulent diffusion to heat transfer is increased drastically with increasing Hartmann number. - Abstract: The high-Prandtl number passive scalar transport of the turbulent channel flow imposed a wall-normal magnetic field is investigated through the large-scale direct numerical simulation (DNS). All essential turbulence scales of velocities and temperature are resolved by using 2048 × 870 × 1024 computational grid points in stream, vertical, and spanwise directions. The heat transfer phenomena for a Prandtl number of 25 were observed under the following flow conditions: the bulk Reynolds number of 14,000 and Hartman number of up to 28. These values were equivalent to the typical nondimensional parameters of the fusion blanket design proposed by Wong et al. As a result, a high-accuracy DNS database for the verification of magnetohydrodynamic turbulent heat transfer models was established for the first time, and it was confirmed that the heat transfer correlation for a Prandtl number of 5.25 proposed by Yamamoto and Kunugi was applicable to the Prandtl number of 25 used in this study.
Laboratory simulation of heat exchange for liquids with Pr > 1: Heat transfer
Belyaev, I. A.; Zakharova, O. D.; Krasnoshchekova, T. E.; Sviridov, V. G.; Sukomel, L. A.
2016-02-01
Liquid metals are promising heat transfer agents in new-generation nuclear power plants, such as fast-neutron reactors and hybrid tokamaks—fusion neutron sources (FNSs). We have been investigating hydrodynamics and heat exchange of liquid metals for many years, trying to reproduce the conditions close to those in fast reactors and fusion neutron sources. In the latter case, the liquid metal flow takes place in a strong magnetic field and strong thermal loads resulting in development of thermogravitational convection in the flow. In this case, quite dangerous regimes of magnetohydrodynamic (MHD) heat exchange not known earlier may occur that, in combination with other long-known regimes, for example, the growth of hydraulic drag in a strong magnetic field, make the possibility of creating a reliable FNS cooling system with a liquid metal heat carrier problematic. There exists a reasonable alternative to liquid metals in FNS, molten salts, namely, the melt of lithium and beryllium fluorides (Flibe) and the melt of fluorides of alkali metals (Flinak). Molten salts, however, are poorly studied media, and their application requires detailed scientific substantiation. We analyze the modern state of the art of studies in this field. Our contribution is to answer the following question: whether above-mentioned extremely dangerous regimes of MHD heat exchange detected in liquid metals can exist in molten salts. Experiments and numerical simulation were performed in order to answer this question. The experimental test facility represents a water circuit, since water (or water with additions for increasing its electrical conduction) is a convenient medium for laboratory simulation of salt heat exchange in FNS conditions. Local heat transfer coefficients along the heated tube, three-dimensional (along the length and in the cross section, including the viscous sublayer) fields of averaged temperature and temperature pulsations are studied. The probe method for measurements in
Direct numerical simulation of heat transfer to CO2 at supercritical pressure in a vertical tube
International Nuclear Information System (INIS)
Bae, Joong-Hun; Yoo, Jung-Yul; Choi, Hae-Cheon
2003-01-01
In the present study, the turbulent heat transfer to CO 2 at supercritical pressure in a vertical tube is investigated using Direct Numerical Simulation (DNS), where no turbulence model is adopted. Heat transfer to the supercritical pressure fluids is characterized by rapid variation of thermodynamic/ thermo-physical properties in the fluids. This change in properties occurs within a very narrow range of temperature across the so-called pseudo-critical temperature, causing a peculiar behavior of heat transfer characteristics. The buoyancy effects associated with very large changes in density proved to play a major role in turbulent heat transfer to supercritical pressure fluids. Depending on the degree of buoyancy effects, turbulent heat transfer may increase or significantly decrease, resulting in a local hot spot along the wall. Based on the results of the present DNS study combined with theoretical considerations for turbulent mixed convection heat transfer, the basic mechanism of this local heat transfer deterioration is explained
Engineering Vibrationally Assisted Energy Transfer in a Trapped-Ion Quantum Simulator
Gorman, Dylan J.; Hemmerling, Boerge; Megidish, Eli; Moeller, Soenke A.; Schindler, Philipp; Sarovar, Mohan; Haeffner, Hartmut
2018-01-01
Many important chemical and biochemical processes in the condensed phase are notoriously difficult to simulate numerically. Often, this difficulty arises from the complexity of simulating dynamics resulting from coupling to structured, mesoscopic baths, for which no separation of time scales exists and statistical treatments fail. A prime example of such a process is vibrationally assisted charge or energy transfer. A quantum simulator, capable of implementing a realistic model of the system of interest, could provide insight into these processes in regimes where numerical treatments fail. We take a first step towards modeling such transfer processes using an ion-trap quantum simulator. By implementing a minimal model, we observe vibrationally assisted energy transport between the electronic states of a donor and an acceptor ion augmented by coupling the donor ion to its vibration. We tune our simulator into several parameter regimes and, in particular, investigate the transfer dynamics in the nonperturbative regime often found in biochemical situations.
Post-dryout heat transfer analysis model with droplet Lagrangian simulation
International Nuclear Information System (INIS)
Keizo Matsuura; Isao Kataoka; Kaichiro Mishima
2005-01-01
Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)
Simulation of the heat transfer around the ATLAS muon chambers
2005-01-01
This 2D simulation recently carried out on the ATLAS muon chambers by a small team of CERN engineers specialises in the numerical computation of fluid dynamics, in other words the flow of fluids and heat.
Encyclopedia of two-phase heat transfer and flow II special topics and applications
Kim, Jungho
2015-01-01
The aim of the two–set series is to present a very detailed and up–to–date reference for researchers and practicing engineers in the fields of mechanical, refrigeration, chemical, nuclear and electronics engineering on the important topic of two-phase heat transfer and two-phase flow. The scope of the first set of 4 volumes presents the fundamentals of the two-phase flows and heat transfer mechanisms, and describes in detail the most important prediction methods, while the scope of the second set of 4 volumes presents numerous special topics and numerous applications, also including numerical simulation methods. Practicing engineers will find extensive coverage to applications involving: multi-microchannel evaporator cold plates for electronics cooling, boiling on enhanced tubes and tube bundles, flow pattern based methods for predicting boiling and condensation inside horizontal tubes, pressure drop methods for singularies (U-bends and contractions), boiling in multiport tubes, and boiling and condens...
Demonstration Of Mixing And Transferring Settling Cohesive Slurry Simulants In The AY-102 Tank
International Nuclear Information System (INIS)
Adamson, D.
2011-01-01
In support of Hanford's waste certification and delivery of tank waste to the Waste Treatment and Immobilization Plant (WTP), Savannah River National Laboratory (SRNL) was tasked by the Washington River Protection Solutions (WRPS) to evaluate the effectiveness of mixing and transferring tank waste in a Double Shell Tank (DST) to the WTP Receipt Tank. The work discussed in this report (Phase III) address the impacts cohesive simulants have on mixing and batch transfer performance. The objective of the demonstrations performed in Phase III was to determine the impact that cohesive particle interactions in the simulants have on tank mixing using 1/22 nd scale mixing system and batch transfer of seed particles. This testing is intended to provide supporting evidence to the assumption that Hanford Small Scale Mixing Demonstration (SSMD) testing in water is conservative. The batch transfers were made by pumping the simulants from the Mixing Demonstration Tank (MDT) to six Receipt Tanks (RTs), and the consistency in the amount of seed particles in each batch was compared. Tests were conducted with non-Newtonian cohesive simulants with Bingham yield stress ranging from 0.3 Pa to 7 Pa. Kaolin clay and 100 μm stainless steel seed particles were used for all the non-Newtonian simulants. To specifically determine the role of the yield stress on mixing and batch transfer, tests were conducted with a Newtonian mixture of glycerol and water with at viscosity of 6.2 cP that was selected to match the Bingham consistency (high shear rate viscosity) of the higher yield stress kaolin slurries. The water/glycerol mixtures used the same 100 μm stainless steel seed particles. For the transfer demonstrations in Phase III, the mixer jet pumps were operated either at 10.0 gpm (28 ft/s nozzle velocity, U o D=0.63 ft 2 /s) or 8.0 gpm (22.4 ft/s nozzle velocity, U o D=0.504 ft 2 /s). All batch transfers from the MDT to the RTs were made at 0.58 gpm (MDT suction velocity 3.95 ft/s). The
Large eddy simulations of turbulent flows with heat transfer
International Nuclear Information System (INIS)
Chatelain, Alexandre
2004-01-01
LES of turbulent flows with heat transfer was used within the framework of conjugate heat transfer problems. The objective of this work lies not only in identifying the various elements likely to impair temperature fluctuations estimations at the fluid/solid interface but also to introduce adequate wall modeling. The choice of a proper convection scheme for the transport of passive scalars led to the adoption of a high order upwind scheme with slope limiter. The use of classical wall models having shown some weaknesses as for the estimation of parietal temperature fluctuations, two new approaches are proposed and tested. The first one relies on a complete resolution of the Navier-Stokes equations on a refined grid close to the wall making it possible to rebuild the temperature fluctuations near the wall. The second one relies on the simultaneous and one dimensional resolution of a turbulent boundary layer equation and a variance transport equation near the wall. (author) [fr
Directory of Open Access Journals (Sweden)
Oon Cheen Sean
2015-01-01
Full Text Available Flow separation and reattachment of 0.2% TiO2 nanofluid in an asymmetric abrupt expansion is studied in this paper. Such flows occur in various engineering and heat transfer applications. Computational fluid dynamics package (FLUENT is used to investigate turbulent nanofluid flow in the horizontal double-tube heat exchanger. The meshing of this model consists of 43383 nodes and 74891 elements. Only a quarter of the annular pipe is developed and simulated as it has symmetrical geometry. Standard k-epsilon second order implicit, pressure based-solver equation is applied. Reynolds numbers between 17050 and 44545, step height ratio of 1 and 1.82 and constant heat flux of 49050 W/m2 was utilized in the simulation. Water was used as a working fluid to benchmark the study of the heat transfer enhancement in this case. Numerical simulation results show that the increase in the Reynolds number increases the heat transfer coefficient and Nusselt number of the flowing fluid. Moreover, the surface temperature will drop to its lowest value after the expansion and then gradually increase along the pipe. Finally, the chaotic movement and higher thermal conductivity of the TiO2 nanoparticles have contributed to the overall heat transfer enhancement of the nanofluid compare to the water.
Simulation and analysis of main steam control system based on heat transfer calculation
Huang, Zhenqun; Li, Ruyan; Feng, Zhongbao; Wang, Songhan; Li, Wenbo; Cheng, Jiwei; Jin, Yingai
2018-05-01
In this paper, after thermal power plant 300MW boiler was studied, mat lab was used to write calculation program about heat transfer process between the main steam and boiler flue gas and amount of water was calculated to ensure the main steam temperature keeping in target temperature. Then heat transfer calculation program was introduced into Simulink simulation platform based on control system multiple models switching and heat transfer calculation. The results show that multiple models switching control system based on heat transfer calculation not only overcome the large inertia of main stream temperature, a large hysteresis characteristic of main stream temperature, but also adapted to the boiler load changing.
Symbolic phase transfer entropy method and its application
Zhang, Ningning; Lin, Aijing; Shang, Pengjian
2017-10-01
In this paper, we introduce symbolic phase transfer entropy (SPTE) to infer the direction and strength of information flow among systems. The advantages of the proposed method are investigated by simulations on synthetic signals and real-world data. We demonstrate that symbolic phase transfer entropy is a robust and efficient tool to infer the information flow between complex systems. Based on the study of the synthetic data, we find a significant advantage of SPTE is its reduced sensitivity to noise. In addition, SPTE requires less amount of data than symbolic transfer entropy(STE). We analyze the direction and strength of information flow between six stock markets during the period from 2006 to 2016. The results indicate that the information flow among stocks varies over different periods. We also find that the interaction network pattern among stocks undergoes hierarchial reorganization with transition from one period to another. It is shown that the clusters are mainly classified according to period, and then by region. The stocks during the same time period are shown to drop into the same cluster.
Numerical Simulation of Transient Moisture Transfer into an Electronic Enclosure
DEFF Research Database (Denmark)
Shojaee Nasirabadi, Parizad; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri
2016-01-01
Electronic systems are sometimes exposed to harsh environmental conditions of temperature and humidity. Moisturetransfer into electronic enclosures and condensation can cause several problems such as corrosion and alteration in thermalstresses. It is therefore essential to study the local climate...... inside the enclosures to be able to protect the electronic systems.In this work, moisture transfer into a typical electronic enclosure is numerically studied using CFD. In order to reduce theCPU-time and make a way for subsequent factorial design analysis, a simplifying modification is applied in which...
Overview of simulation applications in safeguards systems
International Nuclear Information System (INIS)
Dugan, V.L.
1976-01-01
The objective of society relative to the utilization of the nuclear fuel cycle is to maximize the benefits of the high quality energy which is available and to minimize the total ''costs'' associated with acquiring these benefits. The comparison of the resulting ''benefits'' to the ''costs'' must be sufficiently attractive for society to accept nuclear energy. In this paper a representation of the structure determined by the ''costs'' (economic, socio-political, institutional, environmental, and legal) associated with adversary action against the nuclear industry and with the measures implemented to deter, prevent, or recover from adversary actions (safeguards) is used to illustrate a broad view of a dynamic safeguards system. This system representation is then used to describe the subsystem areas to which simulation techniques are currently being applied and to suggest other areas in which various simulation applications may benefit the safeguards decision process
Direct numerical simulation of particulate flow with heat transfer
Tavassoli Estahbanati, H; Kriebitzsch, S.H.L.; Hoef, van der M.A.; Peters, E.A.J.F.; Kuipers, J.A.M.
2013-01-01
The Immersed Boundary (IB) method proposed by Uhlmann for Direct Numerical Simulation (DNS) of fluid flow through dense fluid-particle systems is extended to systems with interphase heat transport. A fixed Eulerian grid is employed to solve the momentum and energy equations by traditional
The effect of dyad versus individual simulation-based ultrasound training on skills transfer
DEFF Research Database (Denmark)
Tolsgaard, Martin G; Madsen, Mette E; Oxlund, Birgitte S
2015-01-01
: This study was conducted to compare the effectiveness of simulation-based ultrasound training in pairs (dyad practice) with that of training alone (single-student practice) on skills transfer. METHODS: In a non-inferiority trial, 30 ultrasound novices were randomised to dyad (n = 16) or single-student (n...... through pre-, post- and transfer tests. The transfer test involved the assessment of a transvaginal ultrasound scan by one of two clinicians using the Objective Structured Assessment of Ultrasound Skills (OSAUS). RESULTS: Thirty participants completed the simulation-based training and 24...... interactions between training type and performance (p = 0.59). The dyad group demonstrated higher training efficiency in terms of simulator score per number of attempts compared with the single-student group (p = 0.03). CONCLUSION: Dyad practice improves the efficiency of simulation-based training and is non...
Quantum dot-dye hybrid systems for energy transfer applications
International Nuclear Information System (INIS)
Ren, Ting
2010-01-01
In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD
Quantum dot-dye hybrid systems for energy transfer applications
Energy Technology Data Exchange (ETDEWEB)
Ren, Ting
2010-07-01
In this thesis, we focus on the preparation of energy transfer-based quantum dot (QD)-dye hybrid systems. Two kinds of QD-dye hybrid systems have been successfully synthesized: QD-silica-dye and QD-dye hybrid systems. In the QD-silica-dye hybrid system, multishell CdSe/CdS/ZnS QDs were adsorbed onto monodisperse Stoeber silica particles with an outer silica shell of thickness 2-24 nm containing organic dye molecules (Texas Red). The thickness of this dye layer has a strong effect on the total sensitized acceptor emission, which is explained by the increase in the number of dye molecules homogeneously distributed within the silica shell, in combination with an enhanced surface adsorption of QDs with increasing dye amount. Our conclusions were underlined by comparison of the experimental results with Monte-Carlo simulations, and by control experiments confirming attractive interactions between QDs and Texas Red freely dissolved in solution. New QD-dye hybrid system consisting of multishell QDs and organic perylene dyes have been synthesized. We developed a versatile approach to assemble extraordinarily stable QD-dye hybrids, which uses dicarboxylate anchors to bind rylene dyes to QD. This system yields a good basis to study the energy transfer between QD and dye because of its simple and compact design: there is no third kind of molecule linking QD and dye; no spacer; and the affinity of the functional group to the QD surface is strong. The FRET signal was measured for these complexes as a function of both dye to QD ratio and center-to-center distance between QD and dye by controlling number of covered ZnS layers. Data showed that fluorescence resonance energy transfer (FRET) was the dominant mechanism of the energy transfer in our QD-dye hybrid system. FRET efficiency can be controlled by not only adjusting the number of dyes on the QD surface or the QD to dye distance, but also properly choosing different dye and QD components. Due to the strong stability, our QD
A moving subgrid model for simulation of reflood heat transfer
International Nuclear Information System (INIS)
Frepoli, Cesare; Mahaffy, John H.; Hochreiter, Lawrence E.
2003-01-01
In the quench front and froth region the thermal-hydraulic parameters experience a sharp axial variation. The heat transfer regime changes from single-phase liquid, to nucleate boiling, to transition boiling and finally to film boiling in a small axial distance. One of the major limitations of all the current best-estimate codes is that a relatively coarse mesh is used to solve the complex fluid flow and heat transfer problem in proximity of the quench front during reflood. The use of a fine axial mesh for the entire core becomes prohibitive because of the large computational costs involved. Moreover, as the mesh size decreases, the standard numerical methods based on a semi-implicit scheme, tend to become unstable. A subgrid model was developed to resolve the complex thermal-hydraulic problem at the quench front and froth region. This model is a Fine Hydraulic Moving Grid (FHMG) that overlies a coarse Eulerian mesh in the proximity of the quench front and froth region. The fine mesh moves in the core and follows the quench front as it advances in the core while the rods cool and quench. The FHMG software package was developed and implemented into the COBRA-TF computer code. This paper presents the model and discusses preliminary results obtained with the COBRA-TF/FHMG computer code
Simulation of radionuclide transfer in agricultural food chains
International Nuclear Information System (INIS)
Matthies, M.; Eisfeld, K.; Mueller, H.; Paretzke, H.G.; Proehl, G.; Wirth, E.
1982-12-01
Radioactive releases from nuclear facilities could pose longterm potential hazards to man if radionuclides enter food chains leading to man. The aim of the study was to develop radioecological and dosimetric models for the assessments of the activity intake by man via ingestion and the resulting radiation exposure for members of the population, in particular after accidental releases from fuel reprocessing plants and related installations. A dynamic compartment model for the transfer of radionuclides through agricultural food chains has been developed. Special emphasis is given to the time dependence and the biological and site specific variability of the various transfer and accumulation processes. Agricultural practices representative for Western Europe have been taken into consideration for food production (grain, potatoes, vegetables, beef and pork, milk). For the most relevant long-lived radionuclides a short-term initial deposition of 1 Ci/km 2 on agricultural areas at different months has been assumed and the time dependent transport through various food chains has been assessed. As a main result great differences have been calculated for the various months of releases because of plant foliar uptake and translocation into edible parts of the plants during the vegetation cycle. The potential activity intake over 50 years for the various nuclides and the resulting radiation exposure is dominated by the first two years after the release if no food restrictions are assumed. (orig./MG) [de
Computational simulation of heat transfer in laser melted material flow
International Nuclear Information System (INIS)
Shankar, V.; Gnanamuthu, D.
1986-01-01
A computational procedure has been developed to study the heat transfer process in laser-melted material flow associated with surface heat treatment of metallic alloys to improve wear-and-tear and corrosion resistance. The time-dependent incompressible Navier-Stokes equations are solved, accounting for both convective and conductive heat transfer processes. The convection, induced by surface tension and high surface temperature gradients, sets up a counterrotating vortex flow within the molten pool. This recirculating material flow is responsible for determining the molten pool shape and the associated cooling rates which affect the solidifying material composition. The numerical method involves an implicit triple-approximate factorization scheme for the energy equation, and an explicit treatment for the momentum and the continuity equations. An experimental setup, using a continuous wave CO 2 laser beam as a heat source, has been carried out to generate data for validation of the computational model. Results in terms of the depth, width, and shape of the molten pool and the heat-affected zone for various power settings and shapes of the laser, and for various travel speeds of the workpiece, compare very well with experimental data. The presence of the surface tension-induced vortex flow is demonstrated
Transfer of learning: Radiographers' perceptions of simulation-based educational intervention
International Nuclear Information System (INIS)
Aura, S.; Jordan, S.; Saano, S.; Tossavainen, K.; Turunen, H.
2016-01-01
Aim: The aims of this qualitative descriptive study were to 1) explore and define radiographers' competence in intravenous pharmacotherapy before and after a simulation-based education, 2) examine radiographer's perceptions of transfer of learning into clinical practice. Method: Sixteen diagnostic radiographers in one hospitals' Clinical Radiology Unit were individually interviewed before a multidisciplinary simulation-based pharmacotherapy education intervention in 2012 and fourteen were re-interviewed after the intervention 6–7 months later. Data were analyzed using qualitative content analysis. Results: Before education the participants reported uncertain competence in pain management during imaging procedures and acute situations. These weak competence areas identified were strengthened and self-confidence grew. The intervention improved the domains of pharmacotherapy-related patient safety; teamwork development and communication skills. In addition, the radiographers indicated that the iv. pharmacotherapy knowledge from simulation learning was transferred to routine work. Conclusion: The results of this study suggest simulation-based education is suitable for radiographers' pharmacotherapy learning. Adequate pain measurement and management are essential during invasive procedures and these skills can be realistically learned in simulations and transferred to clinical practice. - Highlights: • Simulation education is suitable for professionals' pharmacotherapy education. • Radiographers felt education empowered them to manage acute situations. • Skills in pain measurement, analgesia and patient monitoring enhanced. • Communication and teamwork skills were enhanced. • Simulation-based learning was transferred to clinical practice.
Mass Transfer From Fundamentals to Modern Industrial Applications
Asano, Koichi
2006-01-01
This didactic approach to the principles and modeling of mass transfer as it is needed in modern industrial processes is unique in combining a step-by-step introduction to all important fundamentals with the most recent applications. Based upon the renowned author's successful new modeling method as used for the O-18 process, the exemplary exercises included in the text are fact-proven, taken directly from existing chemical plants. Fascinating reading for chemists, graduate students, chemical and process engineers, as well as thermodynamics physicists.
Simulating the heat transfer process of horizontal anode baking furnace
Energy Technology Data Exchange (ETDEWEB)
L.Q. Zhang; C.G. Zheng; M.H. Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion
2005-07-01
A transient two-dimensional mathematical model of a horizontal baking furnace is presented. The model combines complex thermal phenomena in a baking process such as air infiltration, evolution and combustion of volatile matters, combustion of packing coke, and heat losses. The predicted results are in good agreement with measured data. Furthermore, the process is simulated under different operating conditions such as firing cycle time, airflow and air infiltration. The simulated results indicate that the fuel consumption decreases as the firing cycle time decreases. It is also found that reducing the airflow and air infiltration will help to save fuel. The model is proved to be a useful tool for the process optimisation of the baking furnace in the aluminum industry.
Simulation of charge transfer and orbital rehybridization in molecular and condensed matter systems
Nistor, Razvan A.
The mixing and shifting of electronic orbitals in molecules, or between atoms in bulk systems, is crucially important to the overall structure and physical properties of materials. Understanding and accurately modeling these orbital interactions is of both scientific and industrial relevance. Electronic orbitals can be perturbed in several ways. Doping, adding or removing electrons from systems, can change the bond-order and the physical properties of certain materials. Orbital rehybridization, driven by either thermal or pressure excitation, alters the short-range structure of materials and changes their long-range transport properties. Macroscopically, during bond formation, the shifting of electronic orbitals can be interpreted as a charge transfer phenomenon, as electron density may pile up around, and hence, alter the effective charge of, a given atom in the changing chemical environment. Several levels of theory exist to elucidate the mechanisms behind these orbital interactions. Electronic structure calculations solve the time-independent Schrodinger equation to high chemical accuracy, but are computationally expensive and limited to small system sizes and simulation times. Less fundamental atomistic calculations use simpler parameterized functional expressions called force-fields to model atomic interactions. Atomistic simulations can describe systems and time-scales larger and longer than electronic-structure methods, but at the cost of chemical accuracy. In this thesis, both first-principles and phenomenological methods are addressed in the study of several encompassing problems dealing with charge transfer and orbital rehybridization. Firstly, a new charge-equilibration method is developed that improves upon existing models to allow next-generation force-fields to describe the electrostatics of changing chemical environments. Secondly, electronic structure calculations are used to investigate the doping dependent energy landscapes of several high
Blocken, B.J.E.; Stathopoulos, T.; Carmeliet, J.; Hensen, J.L.M.
2011-01-01
This paper provides an overview of the application of CFD in building performance simulation for the outdoor environment, focused on four topics: (1) pedestrian wind environment around buildings, (2) wind-driven rain on building facades, (3) convective heat transfer coefficients at exterior building
SIMULATE-3 K coupled code applications
Energy Technology Data Exchange (ETDEWEB)
Joensson, Christian [Studsvik Scandpower AB, Vaesteraas (Sweden); Grandi, Gerardo; Judd, Jerry [Studsvik Scandpower Inc., Idaho Falls, ID (United States)
2017-07-15
This paper describes the coupled code system TRACE/SIMULATE-3 K/VIPRE and the application of this code system to the OECD PWR Main Steam Line Break. A short description is given for the application of the coupled system to analyze DNBR and the flexibility the system creates for the user. This includes the possibility to compare and evaluate the result with the TRACE/SIMULATE-3K (S3K) coupled code, the S3K standalone code (core calculation) as well as performing single-channel calculations with S3K and VIPRE. This is the typical separate-effect-analyses required for advanced calculations in order to develop methodologies to be used for safety analyses in general. The models and methods of the code systems are presented. The outline represents the analysis approach starting with the coupled code system, reactor and core model calculation (TRACE/S3K). This is followed by a more detailed core evaluation (S3K standalone) and finally a very detailed thermal-hydraulic investigation of the hot pin condition (VIPRE).
Directory of Open Access Journals (Sweden)
SOTNER, R.
2015-02-01
Full Text Available Modified current differencing unit (MCDU and its simple filtering application are introduced in this paper. Modification of the well-known current differencing unit consists in weighted difference of both input currents controlled by adjustable current gain, controllable intrinsic resistance of both current input terminals, and availability of additional voltage terminal(s. Definition of MCDU therefore requires four adjustable parameters (B1, B2, Rp, Rn. A presented active element offers and combines benefits of electronically controllable current conveyor of second generation and current differencing unit and allows synthesis of interesting adjustable applications, which are not available by classical approaches based on simple elements. MCDU brings variability of the transfer function into the structure. It provides several transfer types without necessity of input or output node change by simple electronic tuning. A presented structure represents so-called reconnection-less reconfigurable current-mode filter for realization of all-pass, inverting high-pass, low-pass and direct transfer response. Behavioral model of the MCDU was prepared and carefully tested in filtering application. Spice simulations and measurements confirmed theoretical assumptions.
International Nuclear Information System (INIS)
Xiang Haijun; Wang Yiping; Zhu Li; Han Xinyue; Sun Yong; Zhao Zhengjian
2012-01-01
Highlights: ► Establishment of a three-dimensional numerical simulation model of a cylindrical liquid immersion solar receiver. ► Determination of model parameters and validation of the model by using the real-collected data. ► Optimization of liquid flow rate and fin’s structure for better heat transfer performance. - Abstract: Liquid immersion cooling for a cylindrical solar receiver in a dish concentrator photovoltaic system has been experimentally verified to be a promising method of removing surplus heat from densely packed solar cells. In the present study, a three-dimensional (3D) numerical simulation model of the prototype was established for better understanding the mechanism of the direct-contact heat transfer process. With the selection of standard k–ε turbulent model, the detailed simulation results of velocity field and temperature characteristics were obtained. The heat transfer performance of two structural modules (bare module and finned module) under actual weather conditions was simulated. It was found that the predicted temperature distribution of the two structural modules at the axial and lateral direction was in good agreement with the experimental data. Based on the validated simulation model, the influence of liquid flow rate and module geometric parameters on the cell temperature was then investigated. The simulated results indicated that the cell module with fin height of 4 mm and fin number of 11 has the best heat transfer performance and will be used in further works.
New applications with time-dependent thermochemical simulation
Energy Technology Data Exchange (ETDEWEB)
Koukkari, P. [VTT Chemical Technology, Espoo (Finland); Laukkanen, L. [VTT Automation, Espoo (Finland); Penttilae, K. [Kemira Engineering Oy, Helsinki (Finland)
1996-12-31
A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)
New applications with time-dependent thermochemical simulation
Energy Technology Data Exchange (ETDEWEB)
Koukkari, P [VTT Chemical Technology, Espoo (Finland); Laukkanen, L [VTT Automation, Espoo (Finland); Penttilae, K [Kemira Engineering Oy, Helsinki (Finland)
1997-12-31
A new method (RATEMIX) to calculate multicomponent chemical reaction mixtures as a series of sequential thermochemical states was recently introduced. The procedure combines multicomponent thermodynamics with chemical kinetics and may be used to simulate the multicomponent reactors as a thermochemical natural process. The method combines the desired reaction rates sequentially with constrained Gibbs energy minimization. The reactant concentrations are determined by the experimental (Arrhenius) rate laws. During the course of the given reaction the subsequent side reactions are supposed to occur reversibly. At every sequential stage of the given reaction the temperature and composition of the reaction mixture are calculated by a thermodynamic subroutine, which minimizes the Gibbs energy of the system and takes into account the heat transfer between the system and its surroundings. The extents of reaction are included as algorithmic constraints in the Gibbs energy minimization procedure. Initially, the reactants are introduced to the system as inert copies to match both the mass and energy balance of the reactive system. During the calculation the copies are sequentially interchanged to the actual reactants which allows one to simulate the time-dependent reaction route by using the thermochemical procedure. For each intermediate stage, the temperature and composition are calculated and as well numerical estimates of the thermodynamic functions are obtained. The method is applicable in processes where the core thermodynamic and kinetic data of the system are known and the time-dependent heat transfer data can either be measured or estimated by calculation. The method has been used to simulate e.g. high temperature flame reactions, zinc vapour oxidation and a counter-current rotary drum with chemical reactions. The procedure has today been tested with SOLGASMIX, CHEMSAGE and HSC programs. (author)
Glenn Heat Transfer Simulation and Solver Graphical User Interface: Development and Testing
Kardamis, Joseph R.
2004-01-01
In the Tui ine Branch of the Turbomachinery and Propulsion Systems Division, researching and developing efficient turbine aerothermodynamics technologies is the main objective. Creating effective turbines for jet engines is a process which, if based purely on physical experimental testing, would be extremely expensive. It is for this reason, and also for the reasons of speed and ease, that the Turbine Branch spends a large amount of effort working with simulations of turbines. Specifically, they focus their work on two main fields: Computational Field Dynamics (CFD), and Experimental data analysis. The experimental field involves comparing experimental results to simulated results, whereas the CFD field involves running these simulations. The simulations are applied to aerodynamics and heat transfer cases, for both steady and unsteady flow conditions. By and large this work is applied to the domain of flow and heat transfer in axial turbines. The main application used to run these heat flow simulations is GlennHT. This program, recently rewritten in FORTRAN 90, allows the user to input a job file which specifies all the necessary parameters needed to simulate flow through a user-defined grid. There are several other executables used as well, ranging in application from converting grid files to and from particular formats, to merging blocks in a connectivity file, to converting connectivity files to a GlennHT compatible format. All of these executables are run from the command line in a terminal; some of them have interactive prompts where the user must specify the files to be manipulated after the program starts, while others take all of their parameters from the command line. With this amount of variation comes a good deal of commands and formats to memorize, which can cause slower and less efficient work, as users may forget how to execute a certain program, or not remember the pathnames of the files they wish to use. Two years ago, steps were made to expedite
Zhao, Jing; Wang, Mei; Fu, Aiyun; Yang, Hongfang; Bu, Yuxiang
2015-08-03
We present an ab initio molecular dynamics (AIMD) simulation study into the transfer dynamics of an excess electron from its cavity-shaped hydrated electron state to a hydrated nucleobase (NB)-bound state. In contrast to the traditional view that electron localization at NBs (G/A/C/T), which is the first step for electron-induced DNA damage, is related only to dry or prehydrated electrons, and a fully hydrated electron no longer transfers to NBs, our AIMD simulations indicate that a fully hydrated electron can still transfer to NBs. We monitored the transfer dynamics of fully hydrated electrons towards hydrated NBs in aqueous solutions by using AIMD simulations and found that due to solution-structure fluctuation and attraction of NBs, a fully hydrated electron can transfer to a NB gradually over time. Concurrently, the hydrated electron cavity gradually reorganizes, distorts, and even breaks. The transfer could be completed in about 120-200 fs in four aqueous NB solutions, depending on the electron-binding ability of hydrated NBs and the structural fluctuation of the solution. The transferring electron resides in the π*-type lowest unoccupied molecular orbital of the NB, which leads to a hydrated NB anion. Clearly, the observed transfer of hydrated electrons can be attributed to the strong electron-binding ability of hydrated NBs over the hydrated electron cavity, which is the driving force, and the transfer dynamics is structure-fluctuation controlled. This work provides new insights into the evolution dynamics of hydrated electrons and provides some helpful information for understanding the DNA-damage mechanism in solution. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Optothermal transfer simulation in laser-irradiated human dentin.
Moriyama, Eduardo H; Zangaro, Renato A; Lobo, Paulo D C; Villaverde, Antonio Balbin; Pacheco, Marcos T; Watanabe, Ii-Sei; Vitkin, Alex
2003-04-01
Laser technology has been studied as a potential replacement to the conventional dental drill. However, to prevent pulpal cell damage, information related to the safety parameters using high-power lasers in oral mineralized tissues is needed. In this study, the heat distribution profiles at the surface and subsurface regions of human dentine samples irradiated with a Nd:YAG laser were simulated using Crank-Nicolson's finite difference method for different laser energies and pulse durations. Heat distribution throughout the dentin layer, from the external dentin surface to the pulp chamber wall, were calculated in each case, to investigate the details of pulsed laser-hard dental tissue interactions. The results showed that the final temperature at the pulp chamber wall and at the dentin surface are strongly dependent on the pulse duration, exposure time, and the energy contained in each pulse.
Numerical simulations of energy transfer in two collisionless interpenetrating plasmas
Directory of Open Access Journals (Sweden)
Davis S.
2013-11-01
Full Text Available Ion stream instabilities are essential for collisionless shock formation as seen in astrophysics. Weakly relativistic shocks are considered as candidates for sources of high energy cosmic rays. Laboratory experiments may provide a better understanding of this phenomenon. High intensity short pulse laser systems are opening possibilities for efficient ion acceleration to high energies. Their collision with a secondary target could be used for collisionless shock formation. In this paper, using particle-in-cell simulations we are studying interaction of a sub-relativistic, laser created proton beam with a secondary gas target. We show that the ion bunch initiates strong electron heating accompanied by the Weibel-like filamentation and ion energy losses. The energy repartition between ions, electrons and magnetic fields are investigated. This yields insight on the processes occurring in the interstellar medium (ISM and gamma-ray burst afterglows.
A simulation of heat transfer during billet transport
Energy Technology Data Exchange (ETDEWEB)
Jaklic, A.; Glogovac, B. [Institute of Metals and Technology, Ljubljana (Slovenia); Kolenko, T. [University of Ljubljana (Slovenia). Faculty of Natural Science and Technology; Zupancic, B. [University of Ljubljana (Slovenia). Faculty of Electrical Engineering; Zak, B. T. [Terming d.o.o., Ljubljana (Slovenia)
2002-07-01
This paper presents a simulation model for billet cooling during the billet's transport from the reheating furnace to the rolling mill. During the transport, the billet is exposed to radiation, convection and conduction. Due to the rectangular shape of the billet, the three-dimensional finite-difference model could be applied to calculate the heat conduction inside the billet. The billets are reheated in a gas-fired walking-beam furnace and are exposed to scaling. The model takes into account the effect of the thin oxide scale. We proved that the scale significantly affects the temperature distribution in the billet and should not be neglected. The model was verified by using a thermal camera. (author)
Somatic cell nuclear transfer cloning: practical applications and current legislation.
Niemann, H; Lucas-Hahn, A
2012-08-01
Somatic cloning is emerging as a new biotechnology by which the opportunities arising from the advances in molecular genetics and genome analysis can be implemented in animal breeding. Significant improvements have been made in SCNT protocols in the past years which now allow to embarking on practical applications. The main areas of application of SCNT are: Reproductive cloning, therapeutic cloning and basic research. A great application potential of SCNT based cloning is the production of genetically modified (transgenic) animals. Somatic cell nuclear transfer based transgenic animal production has significant advances over the previously employed microinjection of foreign DNA into pronuclei of zygotes. This cell based transgenesis is compatible with gene targeting and allows both, the addition of a specific gene and the deletion of an endogenous gene. Efficient transgenic animal production provides numerous opportunities for agriculture and biomedicine. Regulatory agencies around the world have agreed that food derived from cloned animals and their offspring is safe and there is no scientific basis for questioning this. Commercial application of somatic cloning within the EU is via the Novel Food regulation EC No. 258/97. Somatic cloning raises novel questions regarding the ethical and moral status of animals and their welfare which has prompted a controversial discussion in Europe which has not yet been resolved. © 2012 Blackwell Verlag GmbH.
Directory of Open Access Journals (Sweden)
Dubouil R.
2013-02-01
Full Text Available A hybrid thermal-electric vehicle allows some significant fuel economy due to its peculiar use of the Internal Combustion Engine (ICE that runs with better efficiency. However, this propulsion system impacts its thermal behaviour, especially during its warm-up after a cold start. The ICE can indeed be shut down when the vehicle is stopped (Stop&Start system and during full-electric propulsion mode (allowed at light speed and load if the battery state of charge is high enough resulting in a lack of heat source and a slow down of the warm-up. Moreover, the use of the ICE at higher loads while charging the batteries provides an increase of the heating power generated by the combustion. Control strategies in a hybrid vehicle (energy repartition between the two propulsions: thermal and electric have a significant effect on its final consumption. Therefore, the simulation of hybrid vehicles is then useful to evaluate the efficiency of these strategies. However, the consideration of the warm-up of the ICE in such a propulsion system was done in only few published studies. A simulation tool using the Amesim software has been developed in order to simulate the warm-up of an ICE used in a hybrid parallel propulsion system. The corresponding model is developed in order to take into account the thermal phenomena occurring between the different ICE components. Thus, a thermodynamic model is coupled with a thermal model of the metallic parts and the different fluid loops (water and oil. Their mean temperature dependence with different parameters like speed, the load, the cylinder geometry and the spark advance, is studied with the aim at reducing fuel consumption. The thermal model of the engine is finally integrated in a simulation of the whole vehicle. The thermal behaviour of a parallel electric full-hybrid vehicle using a spark ignition engine is then presented using this simulation tool. The simulation results show the impact of the peculiar use of the
Energy Technology Data Exchange (ETDEWEB)
Kudo, K; Taniguchi, H; Guo, K [Hokkaido Univ., Sapporo (Japan). Faculty of Engineering; Katayama, T; Nagata, T [Tokyo Gas Co. Ltd., Tokyo (Japan)
1991-01-10
This paper discusses the heat transfer analysis in a furnace for LPG reforming to produce gas enriched hydrogen. The three-dimensional combined radiative and convective heat transfer processes in a furnace for LPG reforming is simulated by introducing the radiosity concept into the radiative heat ray method for an accurate radiative heat transfer analysis. Together with an analysis of the chemical reaction in the reactor tubes of the furnace, the heat transfer simulation gives the three-dimensional profile of the combustion gas temperature in the furnace, the tube-surface heat-flux distribution and the composition of the reformed gas. From the results of the analysis, it was clarified that increasing the jet angle of the heating burner raises the gas temperature and the tube surface heat flux near the burner entrance, and that the flame shape is the most important factor for deciding the heat flux distribution of the tube surface because the heat transfer effect by flame radiation is much more than that by convection of the combustion gas. 18 refs., 9 figs., 2 tabs.
Simulation of the VISTA SG heat transfer experiment using MIDAS/SMR
International Nuclear Information System (INIS)
Park, Jong Hwa; Kim, Dong Ha; Chung, Young Jong; Park, Sun Hee; Cho, Seong Won
2011-01-01
As the SMART plant was designed with the helical type tubes in the steam generators, the heat transfer model in that geometry has been implemented in the TASS/SMR-S code and used for the safety analysis. The same correlation was implemented in the MIDAS/SMR, which is being used for the severe accident analyses, to model heat transfer at the steam generators. In this study, the VISTA SG experiment with the helical steam generator tube was simulated with MIDAS/SMR to compare the heat transfer rates through the helical tube
Strutwolf, Jörg; Scanlon, Micheál D; Arrigan, Damien W M
2009-01-01
Miniaturised liquid/liquid interfaces provide benefits for bioanalytical detection with electrochemical methods. In this work, microporous silicon membranes which can be used for interface miniaturisation were characterized by simulations and experiments. The microporous membranes possessed hexagonal arrays of pores with radii between 10 and 25 microm, a pore depth of 100 microm and pore centre-to-centre separations between 99 and 986 microm. Cyclic voltammetry was used to monitor ion transfer across arrays of micro-interfaces between two immiscible electrolyte solutions (microITIES) formed at these membranes, with the organic phase present as an organogel. The results were compared to computational simulations taking into account mass transport by diffusion and encompassing diffusion to recessed interfaces and overlapped diffusion zones. The simulation and experimental data were both consistent with the situation where the location of the liquid/liquid (l/l) interface was on the aqueous side of the silicon membrane and the pores were filled with the organic phase. While the current for the forward potential scan (transfer of the ion from the aqueous phase to the organic phase) was strongly dependent on the location of the l/l interface, the current peak during the reverse scan (transfer of the ion from the organic phase to the aqueous phase) was influenced by the ratio of the transferring ion's diffusion coefficients in both phases. The diffusion coefficient of the transferring ion in the gelified organic phase was ca. nine times smaller than in the aqueous phase. Asymmetric cyclic voltammogram shapes were caused by the combined effect of non-symmetrical diffusion (spherical and linear) and by the inequality of the diffusion coefficient in both phases. Overlapping diffusion zones were responsible for the observation of current peaks instead of steady-state currents during the forward scan. The characterisation of the diffusion behaviour is an important requirement
Probabilistic simulation applications to reliability assessments
International Nuclear Information System (INIS)
Miller, Ian; Nutt, Mark W.; Hill, Ralph S. III
2003-01-01
Probabilistic risk/reliability (PRA) analyses for engineered systems are conventionally based on fault-tree methods. These methods are mature and efficient, and are well suited to systems consisting of interacting components with known, low probabilities of failure. Even complex systems, such as nuclear power plants or aircraft, are modeled by the careful application of these approaches. However, for systems that may evolve in complex and nonlinear ways, and where the performance of components may be a sensitive function of the history of their working environments, fault-tree methods can be very demanding. This paper proposes an alternative method of evaluating such systems, based on probabilistic simulation using intelligent software objects to represent the components of such systems. Using a Monte Carlo approach, simulation models can be constructed from relatively simple interacting objects that capture the essential behavior of the components that they represent. Such models are capable of reflecting the complex behaviors of the systems that they represent in a natural and realistic way. (author)
Simulation of heat and mass transfer in boiling water with the Melodif code
International Nuclear Information System (INIS)
Freydier, P.; Chen, O.; Olive, J.; Simonin, O.
1991-04-01
The Melodif code is developed at Electricite de France, Research and Development Division. It is an eulerian two dimensional code for the simulation of turbulent two phase flows (a three dimensional code derived from Melodif, ASTRID, is currently being prepared). Melodif is based on the two fluid model, solving the equations of conservation for mass, momentum and energy, for both phases. In such a two fluid model, the description of interfacial transfers between phases is a crucial issue. The model used applies to a dominant continuous phase, and a dispersed phase. A good description of interfacial momentum transfer exists in the standard MELODIF code: the drag force, the apparent mass force... are taken into account. An important factor for interfacial transfers is the interfacial area per volume unit. With the assumption of spherical gas bubbles, an equation has been written for this variable. In the present wok, a model has been tested for interfacial heat and mass transfer in the case of boiling water: it is assumed that mass transfer is controlled by heat transfer through the latent massic energy taken in the phase that vaporizes (or condenses). This heat and mass transfer model has been tested in various configurations: - a cylinder with water flowing inside, is being heated. Boiling takes place near the wall, while bubbles migrating to the core of the flow recondense. This roughly simulates a sub-cooled boiling phenomenon. - a box containing liquid water is depressurized. Boiling takes place in the whole volume of the fluid. The Melodif code can simulate this configuration due to the implicitation of the relation between interphase mass transfer and the pressure variable
International Nuclear Information System (INIS)
Tateda, Yutaka; Tsumune, Daisuke; Tsubono, Takaki
2013-01-01
The Fukushima Dai-ichi Nuclear Power Plant (1F NPP) accident occurred on 11 March 2011. The accident introduced 137 Cs into the coastal waters which was subsequently transferred to the local coastal biota thereby elevating the concentration of this radionuclide in coastal organisms. In this study, the radioactive cesium levels in coastal biota from the southern Fukushima area were simulated using a dynamic biological compartment model. The simulation derived the possible maximum radioactive cesium levels in organisms, indicating that the maximum 137 Cs concentrations in invertebrates, benthic fish and predator fish occurred during late April, late May and late July, respectively in the studied area where the source was mainly the direct leakage of 137 Cs effluent from the 1F NPP. The delay of a 137 Cs increase in fish was explained by the gradual food chain transfer of 137 Cs introduced to the ecosystem from the initial contamination of the seawater. The model also provided the degree of radionuclide depuration in organisms, and it demonstrated the latest start of the decontamination phase in benthic fish. The ecological half-lives, derived both from model simulation and observation, were 1–4 months in invertebrates, and 2–9 months in plankton feeding fish and coastal predator fish from the studied area. In contrast, it was not possible to similarly calculate these parameters in benthic fish because of an unidentified additional radionuclide source which was deduced from the biological compartment model. To adequately reconstruct the in-situ depuration of radiocesium in benthic fish in the natural ecosystem, a contamination source associated with the bottom sediments is necessary. -- Highlights: • Cs-137 in the southern Fukushima coastal biota were simulated using a dynamic biological compartment model. • Simulation derived contamination phase of marine biota was completed until late April to July 2011. • The delay of Cs-137 concentration increase in fish
Efficient simulation of flow and heat transfer in arbitrarily shaped pipes
Rosen Esquivel, P.I.
2012-01-01
The transport of fluids through pipes is a very common application. Corrugated pipes have characteristics such as local stiffness and flexibility that makes them convenient in several application areas such as offshore LNG (Liquefied Natural Gas) transfer, cryogenic engineering, domestic appliances,
Lee, Ronald
2008-01-01
Why do humans survive so long past reproductive age, and why does juvenile mortality decline after birth, both contrary to the classic theory of aging? Previous work has shown formally that intergenerational transfers can explain both these patterns. Here, simulations confirm those results under weaker assumptions and explore how different social arrangements shape life-history evolution. Simulated single-sex hunter–gatherers survive, forage, reproduce, and share food with kin and nonkin in w...
Radiative heat transfer in turbulent combustion systems theory and applications
Modest, Michael F
2016-01-01
This introduction reviews why combustion and radiation are important, as well as the technical challenges posed by radiation. Emphasis is on interactions among turbulence, chemistry and radiation (turbulence-chemistry-radiation interactions – TCRI) in Reynolds-averaged and large-eddy simulations. Subsequent chapters cover: chemically reacting turbulent flows; radiation properties, Reynolds transport equation (RTE) solution methods, and TCRI; radiation effects in laminar flames; TCRI in turbulent flames; and high-pressure combustion systems. This Brief presents integrated approach that includes radiation at the outset, rather than as an afterthought. It stands as the most recent developments in physical modeling, numerical algorithms, and applications collected in one monograph.
Monte Carlo simulation for radiographic applications
International Nuclear Information System (INIS)
Tillack, G.R.; Bellon, C.
2003-01-01
Standard radiography simulators are based on the attenuation law complemented by built-up-factors (BUF) to describe the interaction of radiation with material. The assumption of BUF implies that scattered radiation reduces only the contrast in radiographic images. This simplification holds for a wide range of applications like weld inspection as known from practical experience. But only a detailed description of the different underlying interaction mechanisms is capable to explain effects like mottling or others that every radiographer has experienced in practice. The application of Monte Carlo models is capable to handle primary and secondary interaction mechanisms contributing to the image formation process like photon interactions (absorption, incoherent and coherent scattering including electron-binding effects, pair production) and electron interactions (electron tracing including X-Ray fluorescence and Bremsstrahlung production). It opens up possibilities like the separation of influencing factors and the understanding of the functioning of intensifying screen used in film radiography. The paper discusses the opportunities in applying the Monte Carlo method to investigate special features in radiography in terms of selected examples. (orig.) [de
A simulation framework for mapping risks in clinical processes: the case of in-patient transfers.
Dunn, Adam G; Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne
2011-05-01
To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols.
A Computer-Based Simulation for Teaching Heat Transfer across a Woody Stem
Maixner, Michael R.; Noyd, Robert K.; Krueger, Jerome A.
2010-01-01
To assist student understanding of heat transfer through woody stems, we developed an instructional package that included an Excel-based, one-dimensional simulation model and a companion instructional worksheet. Guiding undergraduate botany students to applying principles of thermodynamics to plants in nature is fraught with two main obstacles:…
Kılıç, M.
2014-01-01
The aim of this thesis is to address specific questions about the role of solvent reorganization on electron transfer in different environments and about the calculation of acidity constant, as well. Particularly, we focus on molecular simulation of flavin in water and different protein (BLUF and
Finite element simulation of internal flows with heat transfer using a ...
Indian Academy of Sciences (India)
Unknown
Velocity correction method; finite element simulation; turbulent .... CFD, developments in turbulence modeling have been only evolutionary and ...... variables are made dimensionless using appropriate combinations of Uav, H, ...... Srinivas M 1994 Finite element analysis of internal flows with heat transfer Ph D thesis, Indian.
Fukazawa, T.; Hartog, E.A. den; Daanen, H.A.M.; Tochihara, Y.; Havenith, G.
2005-01-01
A series of experiments has been performed to study the moisture transfer in the protective clothing exposed to a high short wave (solar) radiant heat flux at a normal condition of 20 °C with 40 % RH in terms of heat stress caused by accumulated sweat in underwear. To simulate a practical situation,
EM simulation assisted parameter extraction for the modeling of transferred-substrate InP HBTs
DEFF Research Database (Denmark)
Johansen, Tom Keinicke; Weimann, Nils; Doerner, Ralf
2017-01-01
In this paper an electromagnetic (EM) simulation assisted parameters extraction procedure is demonstrated for accurate modeling of down-scaled transferred-substrate InP HBTs. The external parasitic network associated with via transitions and device electrodes is carefully extracted from calibrate...
International Nuclear Information System (INIS)
Eshghinejadfard, A.; Thévenin, D.
2016-01-01
In the current work the lattice Boltzmann method (LBM) is applied to investigate heat transfer phenomena in particulate flows. Different cases involving both two- and three-dimensional configurations are studied. For the fluid–particle interactions the direct-forcing and direct-heating immersed boundary (IB) method are applied to calculate the hydrodynamic force and energy exchange between the particle and the fluid, respectively. This Eulerian–Lagrangian approach captures the fluid flow around the particles with high accuracy. The Boussinesq approximation is applied to the coupling between flow and temperature fields. The energy equation is solved using a double-population model in the LBM framework. Numerical simulations reveal that this thermal IB-LBM can accurately predict the particle motion. A particularly interesting case involves particles with a variable temperature, where the competition between gravity and buoyancy induced by the temperature gradient can make particles sink or rise. It is observed that cold particles settle down faster than hot particles. Also, the thermal IB-LBM has been implemented for a collection of spherical particles. In this manner, the behavior of catalyst particles can be accurately predicted, as demonstrated in the last application, involving 60 particles interacting in an enclosure.
Energy Technology Data Exchange (ETDEWEB)
Adamson, Duane J. [Savannah River National Laboratory, Aiken, South Carolina 29808 (United States); Gauglitz, Phillip A. [Pacific Northwest National Laboratory, Richland, Washington 99352 (United States)
2012-07-01
In support of Hanford's feed delivery of high level waste (HLW) to the Waste Treatment and Immobilization Plant (WTP), pilot-scale testing and demonstrations with simulants containing cohesive particles were performed as a joint collaboration between Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL) staff. The objective of the demonstrations was to determine the impact that cohesive particle interactions in the simulants, and the resulting non- Newtonian rheology, have on tank mixing and batch transfer of large and dense seed particles. The work addressed the impacts cohesive simulants have on mixing and batch transfer performance in a pilot-scale system. Kaolin slurries with a range of wt% concentrations to vary the Bingham yield stress were used in all the non-Newtonian simulants. To study the effects of just increasing the liquid viscosity (no yield stress) on mixing and batch transfers, a glycerol/water mixture was used. Stainless steel 100 micron particles were used as seed particles due to their density and their contrasting color to the kaolin and glycerol. Testing results show that water always transfers less seed particles, and is conservative when compared to fluids with a higher yield stress and/or higher viscosity at the same mixing/transfer parameters. The impact of non-Newtonian fluid properties depends on the magnitude of the yield stress. A higher yield stress in the carrier fluid resulted in more seed particles being transferred to the RTs. A dimensional analysis highlighting the role of a yield stress (due to cohesive particle interactions) defined four regions of behavior and indicates how the results obtained in this study can be applied to the full-scale mixing behavior of a high level waste tank. The analysis indicates that the regions of behavior for full-scale mixing have been adequately represented by the current small-scale tests. (authors)
Optimizing load transfer in multiwall nanotubes through interwall coupling: Theory and simulation
International Nuclear Information System (INIS)
Byrne, E.M.; Letertre, A.; McCarthy, M.A.; Curtin, W.A.; Xia, Z.
2010-01-01
An analytical model is developed to determine the length scales over which load is transferred from outer to inner walls of multiwall carbon nanotubes (MWCNTs) as a function of the amount of bonding between walls. The model predicts that the characteristic length for load transfer scales as l∼t√(E/μ-bar), where t is the CNT wall spacing, E is the effective wall Young's modulus, and μ-bar is the average interwall shear modulus due to interwall coupling. Molecular dynamics simulations for MWCNTs with up to six walls, and with interwall coupling achieved by interwall sp 3 bonding at various densities, provide data against which the model is tested. For interwall bonding having a uniform axial distribution, the analytic and simulation models agree well, showing that continuum mechanics concepts apply down to the atomic scale in this problem. The simulation models show, however, that load transfer is sensitive to natural statistical fluctuations in the spatial distribution of the interwall bonding between pairs of walls, and such fluctuations generally increase the net load transfer length needed to fully load an MWCNT. Optimal load transfer is achieved when bonding is uniformly distributed axially, and all interwall regions have the same shear stiffness, implying a linear decrease in the number of interwall bonds with distance from the outer wall. Optimal load transfer into an n-wall MWCNT is shown to occur over a length of ∼1.5nl. The model can be used to design MWCNTs for structural materials, and to interpret load transfer characteristics deduced from experiments on individual MWCNTs.
International Nuclear Information System (INIS)
Liu, Minghua; Shi, Yong; Yan, Jiashu; Yan, Yuying
2017-01-01
Highlights: • A numerical capability combining the lattice Boltzmann method with simulated annealing algorithm is developed. • Digitized representations of random porous media are constructed using limited but meaningful statistical descriptors. • Pore-scale flow and heat transfer information in random porous media is obtained by the lattice Boltzmann simulation. • The effective properties at the representative elementary volume scale are well specified using appropriate upscale averaging. - Abstract: In this article, the lattice Boltzmann (LB) method for transport phenomena is combined with the simulated annealing (SA) algorithm for digitized porous-medium construction to study flow and heat transfer in random porous media. Importantly, in contrast to previous studies which simplify porous media as arrays of regularly shaped objects or effective pore networks, the LB + SA method in this article can model statistically meaningful random porous structures in irregular morphology, and simulate pore-scale transport processes inside them. Pore-scale isothermal flow and heat conduction in a set of constructed random porous media characterized by statistical descriptors were then simulated through use of the LB + SA method. The corresponding averages over the computational volumes and the related effective transport properties were also computed based on these pore scale numerical results. Good agreement between the numerical results and theoretical predictions or experimental data on the representative elementary volume scale was found. The numerical simulations in this article demonstrate combination of the LB method with the SA algorithm is a viable and powerful numerical strategy for simulating transport phenomena in random porous media in complex geometries.
User's manual for the FEHM application - A finite-element heat- and mass-transfer code
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions
ARTS, the Atmospheric Radiative Transfer Simulator - version 2.2, the planetary toolbox edition
Buehler, Stefan A.; Mendrok, Jana; Eriksson, Patrick; Perrin, Agnès; Larsson, Richard; Lemke, Oliver
2018-04-01
This article describes the latest stable release (version 2.2) of the Atmospheric Radiative Transfer Simulator (ARTS), a public domain software for radiative transfer simulations in the thermal spectral range (microwave to infrared). The main feature of this release is a planetary toolbox that allows simulations for the planets Venus, Mars, and Jupiter, in addition to Earth. This required considerable model adaptations, most notably in the area of gaseous absorption calculations. Other new features are also described, notably radio link budgets (including the effect of Faraday rotation that changes the polarization state) and the treatment of Zeeman splitting for oxygen spectral lines. The latter is relevant, for example, for the various operational microwave satellite temperature sensors of the Advanced Microwave Sounding Unit (AMSU) family.
Application of the TEMPEST computer code to canister-filling heat transfer problems
International Nuclear Information System (INIS)
Farnsworth, R.K.; Faletti, D.W.; Budden, M.J.
1988-03-01
Pacific Northwest Laboratory (PNL) researchers used the TEMPEST computer code to simulate thermal cooldown behavior of nuclear waste glass after it was poured into steel canisters for long-term storage. The objective of this work was to determine the accuracy and applicability of the TEMPEST code when used to compute canister thermal histories. First, experimental data were obtained to provide the basis for comparing TEMPEST-generated predictions. Five canisters were instrumented with appropriately located radial and axial thermocouples. The canister were filled using the pilot-scale ceramic melter (PSCM) at PNL. Each canister was filled in either a continous or a batch filling mode. One of the canisters was also filled within a turntable simulant (a group of cylindrical shells with heat transfer resistances similar to those in an actual melter turntable). This was necessary to provide a basis for assessing the ability of the TEMPEST code to also model the transient cooling of canisters in a melter turntable. The continous-fill model, Version M, was found to predict temperatures with more accuracy. The turntable simulant experiment demonstrated that TEMPEST can adequately model the asymmetric temperature field caused by the turntable geometry. Further, TEMPEST can acceptably predict the canister cooling history within a turntable, despite code limitations in computing simultaneous radiation and convection heat transfer between shells, along with uncertainty in stainless-steel surface emissivities. Based on the successful performance of TEMPEST Version M, development was initiated to incorporate 1) full viscous glass convection, 2) a dynamically adaptive grid that automatically follows the glass/air interface throughout the transient, and 3) a full enclosure radiation model to allow radiation heat transfer to non-nearest neighbor cells. 5 refs., 47 figs., 17 tabs
CVD transfer-free graphene for sensing applications
Directory of Open Access Journals (Sweden)
Chiara Schiattarella
2017-05-01
Full Text Available The sp2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO2, NH3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH at 50%. An increase of the conductance response has been recorded upon exposure towards NO2, whereas a decrease of the signal has been detected towards NH3. The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO2 and NH3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.
CVD transfer-free graphene for sensing applications.
Schiattarella, Chiara; Vollebregt, Sten; Polichetti, Tiziana; Alfano, Brigida; Massera, Ettore; Miglietta, Maria Lucia; Di Francia, Girolamo; Sarro, Pasqualina Maria
2017-01-01
The sp 2 carbon-based allotropes have been extensively exploited for the realization of gas sensors in the recent years because of their high conductivity and large specific surface area. A study on graphene that was synthetized by means of a novel transfer-free fabrication approach and is employed as sensing material is herein presented. Multilayer graphene was deposited by chemical vapour deposition (CVD) mediated by CMOS-compatible Mo. The utilized technique takes advantage of the absence of damage or contamination of the synthesized graphene, because there is no need for the transfer onto a substrate. Moreover, a proper pre-patterning of the Mo catalyst allows one to obtain graphene films with different shapes and dimensions. The sensing properties of the material have been investigated by exposing the devices to NO 2 , NH 3 and CO, which have been selected because they are well-known hazardous substances. The concentration ranges have been chosen according to the conventional monitoring of these gases. The measurements have been carried out in humid N 2 environment, setting the flow rate at 500 sccm, the temperature at 25 °C and the relative humidity (RH) at 50%. An increase of the conductance response has been recorded upon exposure towards NO 2 , whereas a decrease of the signal has been detected towards NH 3 . The material appears totally insensitive towards CO. Finally, the sensing selectivity has been proven by evaluating and comparing the degree of adsorption and the interaction energies for NO 2 and NH 3 on graphene. The direct-growth approach for the synthesis of graphene opens a promising path towards diverse applicative scenarios, including the straightforward integration in electronic devices.
Nanofluid application: liquid sublayer structure and heat transfer mechanism
International Nuclear Information System (INIS)
Bang, In Cheol; Chang, Soon Heung
2005-01-01
Boiling has important modern applications for macroscopic heat transfer exchangers, such as those in nuclear and fossil power plants, and for microscopic heat transfer devices, such as heat pipes and microchannels for cooling electronic chips. The use of boiling is limited by critical heat flux which is characterized by both its highest efficient heat transport capability and the initiation of surface damage caused by suddenly deteriorating heat transfer. For instance, damage can be directly related to the physical burnout of the materials of a heat exchanger. However, the physical mechanism of this limitation has not been understood clearly. In relation to the mechanisms, there is a general consensus that fully developed nucleate boiling on a heated solid surface is characterized by the existence of a liquid film on the heated solid surface. The occurrence of the boiling limitation, the so-called critical heat flux (CHF) has been linked closely to the behavior of the liquid film. This liquid film is generally referred to as the 'thin liquid layer' or the 'macrolayer' to distinguish it from the microlayer that exists under the base of discrete nucleating bubbles. The question to be answered is whether a stable thin liquid layer under a vapor boiling environment could actually exist. If so, what precisely is the role of such a liquid film in relation to the boiling limitation? Reliable answers will depend on direct experimental observations. Currently, there has been no direct observation of the liquid layer. Numerous subsequent studies have failed to provide a direct confirmation of a stable thin liquid layer under a vapor boiling environment. In 1977, Yu and Mesler offered a hypothesis of the existence of the layer, as illustrated in Figure 1. Katto and Yokoya demonstrated the importance of Yu and Mesler's hypothesis; they used it to show that it is possible to approach the very complicated boiling limitation phenomenon with a relatively simple liquid layer
Energy Technology Data Exchange (ETDEWEB)
Wu Hong [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China); Wang Jiao, E-mail: wangjiao@sjp.buaa.edu.cn [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China); Tao Zhi [National Key Laboratory of Science and Technology on Aero-Engine Aero-Thermodynamics, Beihang University, Beijing 100191 (China)
2011-12-15
Highlights: Black-Right-Pointing-Pointer A double MRT-LBM is used to study heat transfer in turbulent channel flow. Black-Right-Pointing-Pointer Turbulent Pr is modeled by dynamic subgrid scale model. Black-Right-Pointing-Pointer Temperature gradients are calculated by the non-equilibrium temperature distribution moments. - Abstract: In this paper, a large eddy simulation based on the lattice Boltzmann framework is carried out to simulate the heat transfer in a turbulent channel flow, in which the temperature can be regarded as a passive scalar. A double multiple relaxation time (DMRT) thermal lattice Boltzmann model is employed. While applying DMRT, a multiple relaxation time D3Q19 model is used to simulate the flow field, and a multiple relaxation time D3Q7 model is used to simulate the temperature field. The dynamic subgrid stress model, in which the turbulent eddy viscosity and the turbulent Prandtl number are dynamically computed, is integrated to describe the subgrid effect. Not only the strain rate but also the temperature gradient is calculated locally by the non-equilibrium moments. The Reynolds number based on the shear velocity and channel half height is 180. The molecular Prandtl numbers are set to be 0.025 and 0.71. Statistical quantities, such as the average velocity, average temperature, Reynolds stress, root mean square (RMS) velocity fluctuations, RMS temperature and turbulent heat flux are obtained and compared with the available data. The results demonstrate great reliability of DMRT-LES in studying turbulence.
Directory of Open Access Journals (Sweden)
Andreas Velte
2017-08-01
Full Text Available Thermally-driven heat pumps can help to mitigate CO2 emissions by enhancing the efficiency of heating systems or by driving cooling systems with waste or solar heat. In order to make the thermally-driven systems more attractive for the end consumer, these systems need a higher power density. A higher power density can be achieved by intensifying the heat and mass transfer processes within the adsorption heat exchanger. For the optimization of this key component, a numerical model of the non-isothermal adsorption dynamics can be applied. The calibration of such a model can be difficult, since heat and mass transfer processes are strongly coupled. We present a measurement and simulation procedure that makes it possible to calibrate the heat transfer part of the numerical model separately from the mass transfer part. Furthermore, it is possible to identify the parts of the model that need to be improved. For this purpose, a modification of the well-known large temperature jump method is developed. The newly-introduced measurements are conducted under an inert N2 atmosphere, and the surface temperature of the sample is measured with an infrared sensor. We show that the procedure is applicable for two completely different types of samples: a loose grains configuration and a fibrous structure that is directly crystallized.
Simulation and experimental research of heat leakage of cryogenic transfer lines
Deng, B. C.; Xie, X. J.; Pan, W.; Jiang, R. X.; Li, J.; Yang, S. Q.; Li, Q.
2017-12-01
The heat leakage of cryogenic transfer lines directly influences the performance of large-scale helium refrigerator. In this paper, a thermal model of cryogenic transfer line considering numerical simulation of support coupled with MLI was established. To validate the model, test platform of cryogenic transfer lines with the merits of disassembly outer pipe and changeable easily multi-layer insulation has been built. The experimental results of heat leakage through overall length of cryogenic transfer lines, support and multi-layer insulation were obtained. The heat leakages of multi-layer insulation, a support and the overall leakage are 1.02 W/m, 0.44 W and 1.46 W/m from experimental data, respectively. The difference of heat leakage of MLI between experiment and simulation were less than 5%. The temperature distribution of support and MLI obtained in presented model in good agreement with experimental data. It is expected to reduce the overall heat leakage of cryogenic transfer lines further by optimizing structure of support based on the above thermal model and test platform in this paper.
Babulal, Ganesh M; Foster, Erin R; Wolf, Timothy J
2016-01-01
In Occupational Therapy (OT) practice, practitioners assume that the skills and strategies taught to clients during rehabilitation will transfer to performance and participation in everyday life. Despite transfer serving as a practice foundation, outcome studies conclude that this assumption of transfer is not occurring and it often results in decreased efficacy of rehabilitation. This paper investigated key aspects of transfer and found concepts in the psychology literature that can support transfer of skills and strategies in OT. Six key principles proposed from educational psychology can serve as a guide for practitioners to better train for transfer. In this paper, we discuss the six principles and apply concepts from psychology. Each principle is supported with examples of how they may be incorporated OT practice. If occupational therapists understand these principles and implement them in treatment, the efficacy of treatment may improve for many populations.
Yang, Qiguang; Liu, Xu; Wu, Wan; Kizer, Susan; Baize, Rosemary R.
2016-01-01
A hybrid stream PCRTM-SOLAR model has been proposed for fast and accurate radiative transfer simulation. It calculates the reflected solar (RS) radiances with a fast coarse way and then, with the help of a pre-saved matrix, transforms the results to obtain the desired high accurate RS spectrum. The methodology has been demonstrated with the hybrid stream discrete ordinate (HSDO) radiative transfer (RT) model. The HSDO method calculates the monochromatic radiances using a 4-stream discrete ordinate method, where only a small number of monochromatic radiances are simulated with both 4-stream and a larger N-stream (N = 16) discrete ordinate RT algorithm. The accuracy of the obtained channel radiance is comparable to the result from N-stream moderate resolution atmospheric transmission version 5 (MODTRAN5). The root-mean-square errors are usually less than 5x10(exp -4) mW/sq cm/sr/cm. The computational speed is three to four-orders of magnitude faster than the medium speed correlated-k option MODTRAN5. This method is very efficient to simulate thousands of RS spectra under multi-layer clouds/aerosols and solar radiation conditions for climate change study and numerical weather prediction applications.
Application of Lattice Boltzmann Methods in Complex Mass Transfer Systems
Sun, Ning
Lattice Boltzmann Method (LBM) is a novel computational fluid dynamics method that can easily handle complex and dynamic boundaries, couple local or interfacial interactions/reactions, and be easily parallelized allowing for simulation of large systems. While most of the current studies in LBM mainly focus on fluid dynamics, however, the inherent power of this method makes it an ideal candidate for the study of mass transfer systems involving complex/dynamic microstructures and local reactions. In this thesis, LBM is introduced to be an alternative computational method for the study of electrochemical energy storage systems (Li-ion batteries (LIBs) and electric double layer capacitors (EDLCs)) and transdermal drug design on mesoscopic scale. Based on traditional LBM, the following in-depth studies have been carried out: (1) For EDLCs, the simulation of diffuse charge dynamics is carried out for both the charge and the discharge processes on 2D systems of complex random electrode geometries (pure random, random spheres and random fibers). Steric effect of concentrated solutions is considered by using modified Poisson-Nernst-Plank (MPNP) equations and compared with regular Poisson-Nernst-Plank (PNP) systems. The effects of electrode microstructures (electrode density, electrode filler morphology, filler size, etc.) on the net charge distribution and charge/discharge time are studied in detail. The influence of applied potential during discharging process is also discussed. (2) For the study of dendrite formation on the anode of LIBs, it is shown that the Lattice Boltzmann model can capture all the experimentally observed features of microstructure evolution at the anode, from smooth to mossy to dendritic. The mechanism of dendrite formation process in mesoscopic scale is discussed in detail and compared with the traditional Sand's time theories. It shows that dendrite formation is closely related to the inhomogeneous reactively at the electrode-electrolyte interface
Lack of transfer of skills after virtual reality simulator training with haptic feedback.
Våpenstad, Cecilie; Hofstad, Erlend Fagertun; Bø, Lars Eirik; Kuhry, Esther; Johnsen, Gjermund; Mårvik, Ronald; Langø, Thomas; Hernes, Toril Nagelhus
2017-12-01
Virtual reality (VR) simulators enrich surgical training and offer training possibilities outside of the operating room (OR). In this study, we created a criterion-based training program on a VR simulator with haptic feedback and tested it by comparing the performances of a simulator group against a control group. Medical students with no experience in laparoscopy were randomly assigned to a simulator group or a control group. In the simulator group, the candidates trained until they reached predefined criteria on the LapSim ® VR simulator (Surgical Science AB, Göteborg, Sweden) with haptic feedback (Xitact TM IHP, Mentice AB, Göteborg, Sweden). All candidates performed a cholecystectomy on a porcine organ model in a box trainer (the clinical setting). The performances were video rated by two surgeons blinded to subject training status. In total, 30 students performed the cholecystectomy and had their videos rated (N = 16 simulator group, N = 14 control group). The control group achieved better video rating scores than the simulator group (p training program did not transfer skills to the clinical setting. Poor mechanical performance of the simulated haptic feedback is believed to have resulted in a negative training effect.
Simulations of the near-wall heat transfer at medium prandtl numbers
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2003-01-01
A heat transfer from a wall to a fluid at low Reynolds and Prandtl numbers can be described by means of Direct Numerical Simulation (DNS). At higher Prandtl numbers (Pr > 20) so-called under-resolved DNS can be performed to carry out turbulent heat transfer. Three different under-resolved DNSs of the fully developed turbulent flow in the channel at Reynolds number Re = 4580 and at Prandtl numbers Pr = 100, Pr = 200 and Pr 500 are presented in this paper. These simulations describe all velocity scales, but they are not capable to describe smallest temperature scales. However, very good agreement of heat transfer coefficients was achieved with the correlation of Hasegawa [1] or with the correlation of Papavassiliou [2], who performed DNS by means of Lagrangian method instead of Eulerian method, which was applied in our simulations. We estimate that under resolved DNS simulations based on Eulerian method are useful up to approximately Pr = 200, whereas at Pr = 500 instabilities appear due to the unresolved smallest thermal scales. (author)
Simulations of corrosion product transfer with the OSCAR V1.2 code
International Nuclear Information System (INIS)
Dacquait, F.; Francescatto, J.; Broutin, F.; Genin, J.B.; Benier, G.; Girard, M.; You, D.; Ranchoux, G.; Bonnefon, J.; Bachet, M.; Riot, G.
2012-09-01
Activated Corrosion Products (ACPs) generate a radiation field in PWRs, which is the major contributor to the dose absorbed by nuclear power plant staff working during shutdown operations and maintenance. Therefore, a thorough understanding of the mechanisms that control the corrosion product transfer is of the highest importance. Since the 1970's, the R and D strategy in France has been based on experiments in test loops representative of PWR conditions, on in-situ gamma spectrometry measurements of the PWR primary system contamination and on simulation code development. The simulation of corrosion product transfers in PWR primary circuits is a major challenge since it involves many physical and chemical phenomena including: corrosion, dissolution, precipitation, erosion, deposition, convection, activation... In addition to the intrinsic difficulty of multi-physics modelling, the primary systems present severe operating conditions (300 deg. C, 150 bar, neutron flux, fluid velocity up to 15 m.s -1 and very low corrosion product concentrations). The purpose of the OSCAR code, developed by the CEA in cooperation with EDF and AREVA NP, is to predict the PWR primary system contamination by corrosion and fission products. The OSCAR code is considered to be not only a tool for numerical simulations and predictions (operational practices improvements and new-built PWRs design) but also one that might combine and organise all new knowledge useful to progress on contamination. The OSCAR code for Products of Corrosion, OSCAR PC, allows researchers to analyse the corrosion product behaviour and to calculate the ACP volume and surface activities of the primary and auxiliary systems. In the new version, OSCAR PC V1.2, the corrosion product transfer in the particulate form is enhanced and a new feature is the possibility to simulate cold shutdowns. In order to validate this version, the contamination transfer has been simulated in 5 French PWRs with different operating and
International Nuclear Information System (INIS)
Marks, N.A.; Goringe, C.M.; McKenzie, D.R.; McCulloch, D.G.; Royal Melbourne Institute of Technology University, Melbourne, VIC
2000-01-01
interpolation and extrapolation to situations where the coordination was either fractional or beyond the fitting data set. The application of EDIP to carbon has thus far been quite encouraging, in particular the two-body pair potential which exhibits a remarkably good degree of transferability to coordinations two and six, despite being fitted to only the graphene and diamond structures. Current development work is concentrating on the c-axis π-repulsion and dihedral rotation penalties which are absent from the original EDIP. Preliminary molecular dynamics simulations using this modified EDIP provide a visual and intuitive demonstration of why these effects are so important when modelling amorphous carbons
Numerical simulation of shell-side heat transfer and flow of natural circulation heat exchanger
International Nuclear Information System (INIS)
Xue Ruojun; Deng Chengcheng; Li Chaojun; Wang Mingyuan
2012-01-01
In order to analyze the influence on the heat transfer and flow characteristics of the heat exchanger model of different solving models and structures, a variety of transformation to the model equivalent for the heat exchanger was studied. In this paper, Fluent software was used to simulate the temperature-field and flow-field of the equivalent model, and investigate its heat-transferring and flow characteristics. Through comparative analysis of the distribution of temperature-field and flow-field for different models, the heat-transferring process and natural convection situation of heat exchanger were deeply understood. The results show that the temperature difference between the inside and outside of the natural circulation heat exchanger tubes is larger and the flow is more complex, so the turbulence model is the more reasonable choice. Asymmetry of tubes position makes the flow and heat transfer of the fluid on both sides to be dissymmetrical and makes the fluid interaction, and increases the role of natural convection. The complex structure of heat exchanger makes the flow and heat transfer of the fluid on both sides to be irregular to some extent when straight tubes into C-bent are transformed, and all these make the turbulence intensity increase and improve the effect of heat transfer. (authors)
Versatile charge transfer through anthraquinone films for electrochemical sensing applications
International Nuclear Information System (INIS)
Venarusso, Luna B.; Tammeveski, Kaido; Maia, Gilberto
2011-01-01
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of β-nicotinamide adenine dinucleotide (NAD + ), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN) 6 3- redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN) 6 3- , pH 7 at -0.58 V for NAD + , and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD + and DA at biological pH values (from 7 to 9).
Versatile charge transfer through anthraquinone films for electrochemical sensing applications
Energy Technology Data Exchange (ETDEWEB)
Venarusso, Luna B. [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil); Tammeveski, Kaido [Institute of Chemistry, University of Tartu, Ravila 14a, 50411 Tartu (Estonia); Maia, Gilberto, E-mail: gilberto.maia@ufms.br [Department of Chemistry, Universidade Federal de Mato Grosso do Sul, Caixa Postal 549, Campo Grande, MS 79070-900 (Brazil)
2011-10-01
Cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) were employed to study the effect of anthraquinone (AQ) films on the charge transfer rate of {beta}-nicotinamide adenine dinucleotide (NAD{sup +}), dopamine (DA), and ferricyanide on glassy carbon (GC) electrodes in solutions of different pH. Maximum blocking action on the Fe(CN){sub 6}{sup 3-} redox probe was observed at pH 7 and open-circuit potential (OCP). However, maximum electron hopping effect was observed at pH 9 at both -0.58 V and -0.85 V for Fe(CN){sub 6}{sup 3-}, pH 7 at -0.58 V for NAD{sup +}, and pH 9 at -0.58 V for DA, suggesting that electron hopping in AQ films on a GC surface is dependent on both pH and electrode potential. These findings lend support for the application of these films in the detection of soluble redox probes such as NAD{sup +} and DA at biological pH values (from 7 to 9).
Application of automation for low cost aircraft cabin simulator
Tan, C.F.; Chen, W.; Boomen, van den G.J.A.; Rauterberg, G.W.M.
2010-01-01
This paper presents an application of automation for low cost aircraft cabin simulator. The aircraft cabin simulator is a testbed that was designed for research on aircraft passenger comfort mprovement product. The simulator consists of an economy class section, a business class section, a lavatory
Qualification of RETRAN for simulator applications
International Nuclear Information System (INIS)
Harrison, J.F.
1988-01-01
The use of full-scope control room replica simulators increased substantially following the accident at Three Mile Island Unit 2. The technical capability required to represent severe events has been included, in varying degrees, in most simulators purchased since the TMI-2 accident. The ability of the instructor to create a large variety of combinations of malfunctions has also greatly expanded. The nuclear industry has developed a standard which establishes the minimum functional requirements for full-scope nuclear control room simulators used for operator training. This standard, ANSI/ANS-3.5, was first issued in 1981 and was reissued in 1985. A method for performing simulator qualification with best estimate analytical data has been proposed in EPRI NP-4243, Analytic Simulator Qualification Methodology. The idea presented there is to choose a set of transients which drive the simulator into all the system conditions (dynamic states) likely to be encountered during operator training. The key observable parameters for each state are compared to analyses performed with the best estimate analytical model The closeness of the comparison determines the fidelity of the simulator. The approach described in EPRI NP-4243 has been adapted for evaluating RETRAN's capability for use in simulator qualification. RETRAN analyses which compare the RETRAN results to plant or test facility data are evaluated with respect to the simulator test matrix documented in EPRI NP-4243
DEFF Research Database (Denmark)
Wahlgren, Bjarne; Aarkrog, Vibe
Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...
A simulation framework for mapping risks in clinical processes: the case of in-patient transfers
Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne
2011-01-01
Objective To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. Design An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. Results The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. Conclusions The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols. PMID:21486883
Development of a Novel Wireless Electric Power Transfer System for Space Applications
VazquezRamos, Gabriel; Yuan, Jiann-Shiun
2011-01-01
This paper will introduce a new implementation for wireless electric power transfer systems: space applications. Due to the risks that constitute the use of electrical connector for some space missions/applications, a simple wireless power system design approach will be evaluated as an alternative for the use of electrical connectors. This approach takes into consideration the overall system performance by designing the magnetic resonance elements and by verifying the overall system electrical behavior. System characterization is accomplished by executing circuit and analytical simulations using Matlab(TradeMark) and LTSpiceIV(TradeMark) software packages. The design methodology was validated by two different experiments: frequency consideration (design of three magnetic elements) and a small scale proof-ofconcept prototype. Experiment results shows successful wireless power transfer for all the cases studied. The proof-of-concept prototype provided approx.4 W of wireless power to the load (light bulb) at a separation of 3 cm from the source. In addition. a resonant circuit was designed and installed to the battery terminals of a handheld radio without batteries, making it tum on at a separation of approx.5 cm or less from the source. It was also demonstrated by prototype experimentation that multiple loads can be powered wirelessly at the same time with a single electric power source.
2011-08-10
... Hydroelectric Company, KTZ Hydro, LLC; Notice of Application for Transfer of License, and Soliciting Comments and Motions To Intervene On July 25, 2011, Newfound Hydroelectric Company (transferor) and KTZ Hydro, LLC (transferee) filed an application for transfer of license for the Newfound Hydroelectric Project...
A Polarizable and Transferable PHAST CO 2 Potential for Materials Simulation
Mullen, Ashley L.
2013-12-10
Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization. The intermolecular potentials have been expressed in a transferable form and parametrized from nearly exact electronic structure calculations. Models with and without explicit many-body polarization effects, known to be important in simulation of interfacial processes, are constructed. The models have been validated on pressure-density isotherms of bulk CO 2 and adsorption in three metal-organic framework (MOF) materials. The present models appear to offer advantages over high quality fluid/liquid state potentials in describing CO2 interactions in interfacial environments where sorbates adopt orientations not commonly explored in bulk fluids. Thus, the nonpolar CO2-PHAST and polarizable CO 2-PHAST* potentials are recommended for materials/interfacial simulations. © 2013 American Chemical Society.
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Thompson, Kelly G.; Urbatsch, Todd J.
2012-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Implicit Monte Carlo radiative-transfer simulations in optically thick media. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many smaller Monte Carlo steps, thus improving the efficiency of the simulation. In this paper, we present an extension of DDMC for frequency-dependent radiative transfer. We base our new DDMC method on a frequency-integrated diffusion equation for frequencies below a specified threshold, as optical thickness is typically a decreasing function of frequency. Above this threshold we employ standard Monte Carlo, which results in a hybrid transport-diffusion scheme. With a set of frequency-dependent test problems, we confirm the accuracy and increased efficiency of our new DDMC method.
International Nuclear Information System (INIS)
Cui, Wenzheng; Shen, Zhaojie; Yang, Jianguo; Wu, Shaohua
2015-01-01
Through Molecular Dynamics simulation, the chaotic movements of nanoparticles in base fluid are investigated. Based on the simulated results of translational and rotational velocities of nanoparticles, the effect of nanoparticle movements for heat transfer in nanofluids is discussed. Furthermore, the influence of nanoparticle movements for the base fluid is studied. The fluid near a nanoparticle is divided into three levels: (1) absorption layer, (2) rotating fluid, and (3) spherical existential space, or called rotating fluid element. And the microscopic structure of nanofluid which is composed of countless rotating fluid elements is proposed. - Highlights: • The orders of magnitude of translational and rotational motions for nanoparticles are given. • The microscopic structure around a nanoparticle is proposed. • Mechanisms of heat transfer enhancement in nanofluids are discussed
International Nuclear Information System (INIS)
Oliveira, Isaura N. Sombra; Schiable, Homero; Porcel, Naider T.; Frere, Annie F.; Marques, Paulo M.A.
1996-01-01
An investigation of the 'optimum region' of the radiation field considering mammographic systems is studied. Such a region was defined in previous works as the field range where the system has its best performance and sharpest images. This study is based on a correlation of two methods for evaluating radiologic imaging systems, both using computer simulation in order to determine modulation transfer functions (MTFs) due to the X-ray tube focal spot in several field orientation and locations
Large eddy simulation of rotating turbulent flows and heat transfer by the lattice Boltzmann method
Liou, Tong-Miin; Wang, Chun-Sheng
2018-01-01
Due to its advantage in parallel efficiency and wall treatment over conventional Navier-Stokes equation-based methods, the lattice Boltzmann method (LBM) has emerged as an efficient tool in simulating turbulent heat and fluid flows. To properly simulate the rotating turbulent flow and heat transfer, which plays a pivotal role in tremendous engineering devices such as gas turbines, wind turbines, centrifugal compressors, and rotary machines, the lattice Boltzmann equations must be reformulated in a rotating coordinate. In this study, a single-rotating reference frame (SRF) formulation of the Boltzmann equations is newly proposed combined with a subgrid scale model for the large eddy simulation of rotating turbulent flows and heat transfer. The subgrid scale closure is modeled by a shear-improved Smagorinsky model. Since the strain rates are also locally determined by the non-equilibrium part of the distribution function, the calculation process is entirely local. The pressure-driven turbulent channel flow with spanwise rotation and heat transfer is used for validating the approach. The Reynolds number characterized by the friction velocity and channel half height is fixed at 194, whereas the rotation number in terms of the friction velocity and channel height ranges from 0 to 3.0. A working fluid of air is chosen, which corresponds to a Prandtl number of 0.71. Calculated results are demonstrated in terms of mean velocity, Reynolds stress, root mean square (RMS) velocity fluctuations, mean temperature, RMS temperature fluctuations, and turbulent heat flux. Good agreement is found between the present LBM predictions and previous direct numerical simulation data obtained by solving the conventional Navier-Stokes equations, which confirms the capability of the proposed SRF LBM and subgrid scale relaxation time formulation for the computation of rotating turbulent flows and heat transfer.
Image quality transfer and applications in diffusion MRI
DEFF Research Database (Denmark)
Alexander, Daniel C.; Zikic, Darko; Ghosh, Aurobrata
2017-01-01
This paper introduces a new computational imaging technique called image quality transfer (IQT). IQT uses machine learning to transfer the rich information available from one-off experimental medical imaging devices to the abundant but lower-quality data from routine acquisitions. The procedure u...
Harborsim, a generally applicable harbour simulation model
Groenveld, R.
1983-01-01
Every planning of a port development or design of a new harbour is confronted with the unique physical properties and related problems to be solved. On the other hand every port can be defined as a link in the transport chain involved in the transfer of cargo from one medium of transport to another.
A fast radiative transfer method for the simulation of visible satellite imagery
Scheck, Leonhard; Frèrebeau, Pascal; Buras-Schnell, Robert; Mayer, Bernhard
2016-05-01
A computationally efficient radiative transfer method for the simulation of visible satellite images is presented. The top of atmosphere reflectance is approximated by a function depending on vertically integrated optical depths and effective particle sizes for water and ice clouds, the surface albedo, the sun and satellite zenith angles and the scattering angle. A look-up table (LUT) for this reflectance function is generated by means of the discrete ordinate method (DISORT). For a constant scattering angle the reflectance is a relatively smooth and symmetric function of the two zenith angles, which can be well approximated by the lowest-order terms of a 2D Fourier series. By storing only the lowest Fourier coefficients and adopting a non-equidistant grid for the scattering angle, the LUT is reduced to a size of 21 MB per satellite channel. The computation of the top of atmosphere reflectance requires only the calculation of the cloud parameters from the model state and the evaluation and interpolation of the reflectance function using the compressed LUT and is thus orders of magnitude faster than DISORT. The accuracy of the method is tested by generating synthetic satellite images for the 0.6 μm and 0.8 μm channels of the SEVIRI instrument for operational COSMO-DE model forecasts from the German Weather Service (DWD) and comparing them to DISORT results. For a test period in June the root mean squared absolute reflectance error is about 10-2 and the mean relative reflectance error is less than 2% for both channels. For scattering angles larger than 170 ° the rapid variation of reflectance with the particle size related to the backscatter glory reduces the accuracy and the errors increase by a factor of 3-4. Speed and accuracy of the new method are sufficient for operational data assimilation and high-resolution model verification applications.
Directional interstitial brachytherapy from simulation to application
Lin, Liyong
Organs at risk (OAR) are sometimes adjacent to or embedded in or overlap with the clinical target volume (CTV) to be treated. The purpose of this PhD study is to develop directionally low energy gamma-emitting interstitial brachytherapy sources. These sources can be applied between OAR to selectively reduce hot spots in the OARs and normal tissues. The reduction of dose over undesired regions can expand patient eligibility or reduce toxicities for the treatment by conventional interstitial brachytherapy. This study covers the development of a directional source from design optimization to construction of the first prototype source. The Monte Carlo code MCNP was used to simulate the radiation transport for the designs of directional sources. We have made a special construction kit to assemble radioactive and gold-shield components precisely into D-shaped titanium containers of the first directional source. Directional sources have a similar dose distribution as conventional sources on the treated side but greatly reduced dose on the shielded side, with a sharp dose gradient between them. A three-dimensional dose deposition kernel for the 125I directional source has been calculated. Treatment plans can use both directional and conventional 125I sources at the same source strength for low-dose-rate (LDR) implants to optimize the dose distributions. For prostate tumors, directional 125I LDR brachytherapy can potentially reduce genitourinary and gastrointestinal toxicities and improve potency preservation for low risk patients. The combination of better dose distribution of directional implants and better therapeutic ratio between tumor response and late reactions enables a novel temporary LDR treatment, as opposed to permanent or high-dose-rate (HDR) brachytherapy for the intermediate risk T2b and high risk T2c tumors. Supplemental external-beam treatments can be shortened with a better brachytherapy boost for T3 tumors. In conclusion, we have successfully finished the
Core heat transfer analysis during a BWR LOCA simulation experiment at ROSA-III
International Nuclear Information System (INIS)
Yonomoto, T.; Koizumi, Y.; Tasaka, K.
1987-01-01
The ROSA-III test facility is a 1/424-th volumetrically scaled BWR/6 simulator with an electrically heated core to study the thermal-hydraulic response during a postulated loss-of-coolant accident (LOCA). Heat transfer analyses for 5, 15, 50 and 200% break tests were conducted to understand the basic heat transfer behavior in the core under BWR LOCA conditions and to obtain a data base of post-critical heat flux (CHF) heat transfer coefficients and quench temperature. The results show that the convective heat transfer coefficient of dried-out rods at the core midplane during a steam cooling period is less than approximately 120 W/m 2 K. It is larger than existing data measured at lower pressures during a spray cooling period. Bottom-up quench temperatures are given by a simple equations: The sum of the saturation temperature and a constant of 262 K. Then the heat transfer model in the RELAP4/MOD6/U4/J3 code was revised using the present results. The rod surface temperature behavior in the 200% break test was calculated better by using the revised model although the model is very simple. (orig.)
Directory of Open Access Journals (Sweden)
Hong Sun
2015-01-01
Full Text Available A molecular dynamic model based on Lennard-Jones Potential, the interaction force between two particles, molecular diffusion, and radial distribution function (RDF is presented. The diffusion of the hydrated ion, triggered by both Grotthuss and vehicle mechanisms, is used to study the proton transfer in Nafion 117. The hydrated ion transfer mechanisms and the effects of the temperature, the water content in the membrane, and the electric field on the diffusion of the hydrated ion are analyzed. The molecular dynamic simulation results are in good agreement with those reported in the literature. The modeling results show that when the water content in Nafion 117 is low, H3O+ is the main transfer ion among the different hydrated ions. However, at higher water content, the hydrated ion in the form of H+(H2O2 is the main transfer ion. It is also found that the negatively charged sulfonic acid group as the fortified point facilitates the proton transfer in Nafion 117 better than the free water molecule. The diffusion of the hydrated ion can be improved by increasing the cell temperature, the water content in Nafion, and the electric field intensity.
Multitasking simulation: Present application and future directions.
Adams, Traci Nicole; Rho, Jason C
2017-02-01
The Accreditation Council for Graduate Medical Education lists multi-tasking as a core competency in several medical specialties due to increasing demands on providers to manage the care of multiple patients simultaneously. Trainees often learn multitasking on the job without any formal curriculum, leading to high error rates. Multitasking simulation training has demonstrated success in reducing error rates among trainees. Studies of multitasking simulation demonstrate that this type of simulation is feasible, does not hinder the acquisition of procedural skill, and leads to better performance during subsequent periods of multitasking. Although some healthcare agencies have discouraged multitasking due to higher error rates among multitasking providers, it cannot be eliminated entirely in settings such as the emergency department in which providers care for more than one patient simultaneously. Simulation can help trainees to identify situations in which multitasking is inappropriate, while preparing them for situations in which multitasking is inevitable.
Small Scale Mixing Demonstration Batch Transfer and Sampling Performance of Simulated HLW - 12307
Energy Technology Data Exchange (ETDEWEB)
Jensen, Jesse; Townson, Paul; Vanatta, Matt [EnergySolutions, Engineering and Technology Group, Richland, WA, 99354 (United States)
2012-07-01
The ability to effectively mix, sample, certify, and deliver consistent batches of High Level Waste (HLW) feed from the Hanford Double Shell Tanks (DST) to the Waste treatment Plant (WTP) has been recognized as a significant mission risk with potential to impact mission length and the quantity of HLW glass produced. At the end of 2009 DOE's Tank Operations Contractor, Washington River Protection Solutions (WRPS), awarded a contract to EnergySolutions to design, fabricate and operate a demonstration platform called the Small Scale Mixing Demonstration (SSMD) to establish pre-transfer sampling capacity, and batch transfer performance data at two different scales. This data will be used to examine the baseline capacity for a tank mixed via rotational jet mixers to transfer consistent or bounding batches, and provide scale up information to predict full scale operational performance. This information will then in turn be used to define the baseline capacity of such a system to transfer and sample batches sent to WTP. The Small Scale Mixing Demonstration (SSMD) platform consists of 43'' and 120'' diameter clear acrylic test vessels, each equipped with two scaled jet mixer pump assemblies, and all supporting vessels, controls, services, and simulant make up facilities. All tank internals have been modeled including the air lift circulators (ALCs), the steam heating coil, and the radius between the wall and floor. The test vessels are set up to simulate the transfer of HLW out of a mixed tank, and collect a pre-transfer sample in a manner similar to the proposed baseline configuration. The collected material is submitted to an NQA-1 laboratory for chemical analysis. Previous work has been done to assess tank mixing performance at both scales. This work involved a combination of unique instruments to understand the three dimensional distribution of solids using a combination of Coriolis meter measurements, in situ chord length distribution
Pebble bed pebble motion: Simulation and Application
Cogliati, Joshua J.
Pebble bed reactors (PBR) have moving graphite fuel pebbles. This unique feature provides advantages, but also means that simulation of the reactor requires understanding the typical motion and location of the granular flow of pebbles. This dissertation presents a method for simulation of motion of the pebbles in a PBR. A new mechanical motion simulator, PEBBLES, efficiently simulates the key elements of motion of the pebbles in a PBR. This model simulates gravitational force and contact forces including kinetic and true static friction. It's used for a variety of tasks including simulation of the effect of earthquakes on a PBR, calculation of packing fractions, Dancoff factors, pebble wear and the pebble force on the walls. The simulator includes a new differential static friction model for the varied geometries of PBRs. A new static friction benchmark was devised via analytically solving the mechanics equations to determine the minimum pebble-to-pebble friction and pebble-to-surface friction for a five pebble pyramid. This pyramid check as well as a comparison to the Janssen formula was used to test the new static friction equations. Because larger pebble bed simulations involve hundreds of thousands of pebbles and long periods of time, the PEBBLES code has been parallelized. PEBBLES runs on shared memory architectures and distributed memory architectures. For the shared memory architecture, the code uses a new O(n) lock-less parallel collision detection algorithm to determine which pebbles are likely to be in contact. The new collision detection algorithm improves on the traditional non-parallel O(n log(n)) collision detection algorithm. These features combine to form a fast parallel pebble motion simulation. The PEBBLES code provides new capabilities for understanding and optimizing PBRs. The PEBBLES code has provided the pebble motion data required to calculate the motion of pebbles during a simulated earthquake. The PEBBLES code provides the ability to
Simulation of solution phase electron transfer in a compact donor-acceptor dyad.
Kowalczyk, Tim; Wang, Lee-Ping; Van Voorhis, Troy
2011-10-27
Charge separation (CS) and charge recombination (CR) rates in photosynthetic architectures are difficult to control, yet their ratio can make or break photon-to-current conversion efficiencies. A rational design approach to the enhancement of CS over CR requires a mechanistic understanding of the underlying electron-transfer (ET) process, including the role of the environment. Toward this goal, we introduce a QM/MM protocol for ET simulations and use it to characterize CR in the formanilide-anthraquinone dyad (FAAQ). Our simulations predict fast recombination of the charge-transfer excited state, in agreement with recent experiments. The computed electronic couplings show an electronic state dependence and are weaker in solution than in the gas phase. We explore the role of cis-trans isomerization on the CR kinetics, and we find strong correlation between the vertical energy gaps of the full simulations and a collective solvent polarization coordinate. Our approach relies on constrained density functional theory to obtain accurate diabatic electronic states on the fly for molecular dynamics simulations, while orientational and electronic polarization of the solvent is captured by a polarizable force field based on a Drude oscillator model. The method offers a unified approach to the characterization of driving forces, reorganization energies, electronic couplings, and nonlinear solvent effects in light-harvesting systems.
AccuRT: A versatile tool for radiative transfer simulations in the coupled atmosphere-ocean system
Hamre, Børge; Stamnes, Snorre; Stamnes, Knut; Stamnes, Jakob
2017-02-01
Reliable, accurate, and efficient modeling of the transport of electromagnetic radiation in turbid media has important applications in the study of the Earth's climate by remote sensing. For example, such modeling is needed to develop forward-inverse methods used to quantify types and concentrations of aerosol and cloud particles in the atmosphere, the dissolved organic and particulate biogeochemical matter in lakes, rivers, coastal, and open-ocean waters. It is also needed to simulate the performance of remote sensing detectors deployed on aircraft, balloons, and satellites as well as radiometric detectors deployed on buoys, gliders and other aquatic observing systems. Accurate radiative transfer modeling is also required to compute irradiances and scalar irradiances that are used to compute warming/cooling and photolysis rates in the atmosphere and primary production and warming/cooling rates in the water column. AccuRT is a radiative transfer model for the coupled atmosphere-water system that is designed to be a versatile tool for researchers in the ocean optics and remote sensing communities. It addresses the needs of researchers interested in analyzing irradiance and radiance measurements in the field and laboratory as well as those interested in making simulations of the top-of-the-atmosphere radiance in support of remote sensing algorithm development.
Sky-Radiance Models for Monte Carlo Radiative Transfer Applications
Santos, I.; Dalimonte, D.; Santos, J. P.
2012-04-01
differences was afterwards investigated by analyzing how these models vary the sun and sky photon fraction in MC simulations that use the diffuse-to-total irradiance ratio. In this case, differences up to 14% have been found for λ=665 nm and θ*=60°. The study recommendation is then using Lsky models that, like the ZV expression, account for the wavelength dependence of light interaction with atmospheric particles and molecule when initializing MC simulations for ocean color applications, mostly in the case of analyses including the blue region of the visible spectra. Dr. Giuseppe Zibordi, Prof. Pedro Vieira and Tamito Kajiyama are duly acknowledged for valuable discussions. This study has been partiallysupported by ESA under contract n. 12595/09/I-OL with FCT/UNL, Portugal.
International Nuclear Information System (INIS)
Seo, Kyoung-Woo; Park, Cheon-Tae; Seo, Jae-Kwang; Kim, Moo-Hwan; Corradini, Michael L.
2007-01-01
For understanding the characteristic of a supercritical fluid heat transfer, we proposed a new parameter, a global Froude number (Fr), dependent on the heat and mass flux, to determine under what conditions the buoyancy effect is dominant and the reduction of the heat transfer rate. In the region of the global Fr>0.01, variable property effects, which may occur at a high heat flux, and buoyancy effects, which could occur at a low mass flux, make the existing standard turbulent model such as the standard wall function not suitably accurate to calculate the heat transfer in supercritical fluid, needed for a reactor thermal-hydraulics simulation and design. Therefore, the turbulence model, especially near the wall, the wall function for a momentum, applicable for a range of supercritical fluid conditions was modified. The modified models deal with a buoyancy, acceleration, and the variable property effect for supercritical conditions
SKIRT: The design of a suite of input models for Monte Carlo radiative transfer simulations
Baes, M.; Camps, P.
2015-09-01
The Monte Carlo method is the most popular technique to perform radiative transfer simulations in a general 3D geometry. The algorithms behind and acceleration techniques for Monte Carlo radiative transfer are discussed extensively in the literature, and many different Monte Carlo codes are publicly available. On the contrary, the design of a suite of components that can be used for the distribution of sources and sinks in radiative transfer codes has received very little attention. The availability of such models, with different degrees of complexity, has many benefits. For example, they can serve as toy models to test new physical ingredients, or as parameterised models for inverse radiative transfer fitting. For 3D Monte Carlo codes, this requires algorithms to efficiently generate random positions from 3D density distributions. We describe the design of a flexible suite of components for the Monte Carlo radiative transfer code SKIRT. The design is based on a combination of basic building blocks (which can be either analytical toy models or numerical models defined on grids or a set of particles) and the extensive use of decorators that combine and alter these building blocks to more complex structures. For a number of decorators, e.g. those that add spiral structure or clumpiness, we provide a detailed description of the algorithms that can be used to generate random positions. Advantages of this decorator-based design include code transparency, the avoidance of code duplication, and an increase in code maintainability. Moreover, since decorators can be chained without problems, very complex models can easily be constructed out of simple building blocks. Finally, based on a number of test simulations, we demonstrate that our design using customised random position generators is superior to a simpler design based on a generic black-box random position generator.
Simulation of the heat and mass transfer processes during the vacuum frying of potato chips
Directory of Open Access Journals (Sweden)
Ram Yamsaengsung
2008-01-01
Full Text Available A fundamental two-dimensional model to predict the heat and mass transfer that occur during the vacuum frying of potato chips was solved using the Finite Element toolbox in MATLAB 6.1. The simulation of the heat transfer process included the convection of heat from the surface to the product, the conduction of heat into the product, and a loss of heat using the heat source term representing evaporation. The mass transfer process was divided into two periods: (1 water loss and (2 oil absorption. The first scenario included a diffusion term and a source term. The source term represented the convection and evaporation of water from the product. For the second period, the diffusion term represented the gradual absorption of oil through capillary diffusion.From the simulation, a good agreement between the experimental data and the predicted values was obtained. From the heat transfer model, the rapid increase in temperature of the product toward the boiling point of water (at the associated pressure followed by its steady increase toward the temperature of the oil was validated. Furthermore, by separating the rate of moisture loss into two parts to represent the constant rate and falling rate period of drying, the model was able to predict an initial period of rapid moisture loss followed by a decreasing rate of moisture loss. The simulation also demonstrated the formation of the crust and the gradual movement of the crust inward. Finally, using two sets of diffusion coefficients that correlated to the two schemes of moisture loss, the model predicted the rapid flux of oil into the product during the constant drying stage, followed by a small amount of oil absorption into its interior once the crust had been established.
Simulation and Optimization of Contactless Power Transfer System for Rotary Ultrasonic Machining
Directory of Open Access Journals (Sweden)
Wang Xinwei
2016-01-01
Full Text Available In today’s rotary ultrasonic machining (RUM, the power transfer system is based on a contactless power system (rotary transformer rather than the slip ring that cannot cope with high-speed rotary of the tool. The efficiency of the rotary transformer is vital to the whole rotary ultrasonic machine. This paper focused on simulation of the rotary transformer and enhancing the efficiency of the rotary transformer by optimizing three main factors that influence its efficiency, including the gap between the two ferrite cores, the ratio of length and width of the ferrite core and the thickness of ferrite. The finite element model of rotary transformer was built on Maxwell platform. Simulation and optimization work was based on the finite element model. The optimization results compared with the initial simulation result showed an approximate 18% enhancement in terms of efficiency, from 77.69% to 95.2%.
Python Radiative Transfer Emission code (PyRaTE): non-LTE spectral lines simulations
Tritsis, A.; Yorke, H.; Tassis, K.
2018-05-01
We describe PyRaTE, a new, non-local thermodynamic equilibrium (non-LTE) line radiative transfer code developed specifically for post-processing astrochemical simulations. Population densities are estimated using the escape probability method. When computing the escape probability, the optical depth is calculated towards all directions with density, molecular abundance, temperature and velocity variations all taken into account. A very easy-to-use interface, capable of importing data from simulations outputs performed with all major astrophysical codes, is also developed. The code is written in PYTHON using an "embarrassingly parallel" strategy and can handle all geometries and projection angles. We benchmark the code by comparing our results with those from RADEX (van der Tak et al. 2007) and against analytical solutions and present case studies using hydrochemical simulations. The code will be released for public use.
International Nuclear Information System (INIS)
Dash, Z.V.; Robinson, B.A.; Zyvoloski, G.A.
1997-07-01
The requirements, design, and verification and validation of the software used in the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media, are described. The test of the DOE Code Comparison Project, Problem Five, Case A, which verifies that FEHM has correctly implemented heat and mass transfer and phase partitioning, is also covered
Laser induced forward transfer of SnO2 for sensing applications using different precursors systems
Mattle, Thomas; Hintennach, Andreas; Lippert, Thomas; Wokaun, Alexander
2013-02-01
This paper presents the transfer of SnO2 by laser induced forward transfer (LIFT) for gas sensor applications. Different donor substrates of SnO2 with and without triazene polymer (TP) as a dynamic release layer were prepared. Transferring these films under different conditions were evaluated by optical microscopy and functionality. Transfers of sputtered SnO2 films do not lead to satisfactory results and transfers of SnO2 nanoparticles are difficult. Transfers of SnO2 nanoparticles can only be achieved when applying a second laser pulse to the already transferred material, which improves the adhesion resulting in a complete pixel. A new approach of decomposing the transfer material during LIFT transfer was developed. Donor films based on UV absorbing metal complex precursors namely, SnCl2(acac)2 were prepared and transferred using the LIFT technique. Transfer conditions were optimized for the different systems, which were deposited onto sensor-like microstructures. The conductivity of the transferred material at temperatures of about 400 ∘C are in a range usable for SnO2 gas sensors. First sensing tests were carried out and the transferred material proved to change conductivity when exposed to ethanol, acetone, and methane.
Energy Technology Data Exchange (ETDEWEB)
Peltokorpi, L. [Fortum Power and Heat Oy, Espoo (Finland)
2012-12-15
A pyrolysis model of the canister transfer and installation vehicle was developed and vehicle fires in the final disposal tunnel and in the central tunnel were simulated using the fire simulation program FDS (Fire Dynamics Simulator). For comparison, same vehicle fire was also simulated at conditions in which the fire remained as a fuel controlled during the whole simulation. The purpose of the fire simulations was to simulate the fire behaviour realistically taking into account for example the limitations coming from the lack of oxygen. The material parameters for the rubber were defined and the simulation models for the tyres developed by simulating the fire test of a front wheel loader rubber tyre done by SP Technical Research Institute of Sweden. In these simulations the most important phenomena were successfully brought out but the timing of the phenomena was difficult. The final values for the rubber material parameters were chosen so that the simulated fire behaviour was at least as intense as the measured one. In the vehicle fire simulations a hydraulic oil or diesel leak causing a pool fire size of 2 MW and 2 m{sup 2} was assumed. The pool fire was assumed to be located under the tyres of the SPMT (Self Propelled Modular Transporters) transporter. In each of the vehicle fire simulations only the tyres of the SPMT transporter were observed to be burning whereas the tyres of the trailer remained untouched. In the fuel controlled fire the maximum power was slightly under 10 MW which was reached in about 18 minutes. In the final disposal tunnel the growth of the fire was limited due to the lack of oxygen and the relatively fast air flows existing in the tunnel. Fast air flows caused the flame spreading to be limited to the certain directions. In the final disposal tunnel fire the maximum power was slightly over 7 MW which was reached about 8 minutes after the ignition. In the central tunnel there was no shortage of oxygen but the spread of the fire was limited
CFD simulation of flow and heat transfer in Canadian SCWR bundles
International Nuclear Information System (INIS)
Podila, K.; Rao, Y.F.
2014-01-01
Within the Generation-IV (Gen-IV) International Forum, Atomic Energy of Canada Limited (AECL) is leading the effort in developing a conceptual design for the Canadian supercritical water-cooled reactor (SCWR). AECL proposed a new fuel bundle design with two rings of fuel elements placed between central flow tube and the pressure tube. In line with the scope of the conceptual design, the objective of the present CFD work is to aid in developing a bundle heat transfer correlation for the Canadian SCWR fuel bundle design. This paper presents results from an ongoing effort in determining the conditions favorable for possible occurrence of heat transfer deterioration (HTD) in the supercritical bundle flows. In the current investigation, a bare-rod bundle geometry was tested for the proposed fuel bundle design at 23.5, 25 and 28 MPa using STAR-CCM+ CFD code. Taking advantage of the design symmetry of the fuel bundle, only 1/32 of the computational domain was simulated. The SST k-ω turbulence model along with y + <1 was used in the simulations. For lower mass flow simulations, the increase of inlet temperature and operational pressure was found effective in reducing the occurrence of HTD. For higher mass flow simulations, normal heat transfer behaviour was observed except for the lower pressure range (23.5MPa). Ultimately, the goal of this study is to aid the development of a criterion for the onset of HTD in the proposed SCWR bundles, which is planned in the next phase of the project. (author)
Application of virtual reality to simulation in nuclear power plant
International Nuclear Information System (INIS)
Liu Pengfei; Yang Yanhua; Yang Yongmu; Duan Dongdong; Luo Jie
2008-01-01
Based on detailed analysis of the structure and key techniques of a virtual reality system, the applications of virtual reality to simulation in nuclear power plant (NPP) were developed. In order to meet the requirement of simulation in NPP, motion simulation of control rod drive system, walking system inside the containment and virtual main control room were presented. A simulator of NPP was connected to interchange dynamic data between virtual main control room and the simulator. The simulating results show that the technique of virtual reality can be applied well to the simulation inside containment, which is filled with activity material, and the simulation of virtual main control room, where human factors must be considered. It also can be used well to design virtual education and training system of NPP. (authors)
NUMERICAL MODEL APPLICATION IN ROWING SIMULATOR DESIGN
Directory of Open Access Journals (Sweden)
Petr Chmátal
2016-04-01
Full Text Available The aim of the research was to carry out a hydraulic design of rowing/sculling and paddling simulator. Nowadays there are two main approaches in the simulator design. The first one includes a static water with no artificial movement and counts on specially cut oars to provide the same resistance in the water. The second approach, on the other hand uses pumps or similar devices to force the water to circulate but both of the designs share many problems. Such problems are affecting already built facilities and can be summarized as unrealistic feeling, unwanted turbulent flow and bad velocity profile. Therefore, the goal was to design a new rowing simulator that would provide nature-like conditions for the racers and provide an unmatched experience. In order to accomplish this challenge, it was decided to use in-depth numerical modeling to solve the hydraulic problems. The general measures for the design were taken in accordance with space availability of the simulator ́s housing. The entire research was coordinated with other stages of the construction using BIM. The detailed geometry was designed using a numerical model in Ansys Fluent and parametric auto-optimization tools which led to minimum negative hydraulic phenomena and decreased investment and operational costs due to the decreased hydraulic losses in the system.
Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.
2017-10-01
Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.
Integration of Heat Transfer, Stress, and Particle Trajectory Simulation. Final report
International Nuclear Information System (INIS)
Bui, Thuc; Read, Michael; Ives, Lawrence
2012-01-01
Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.
CFD simulation of simultaneous monotonic cooling and surface heat transfer coefficient
International Nuclear Information System (INIS)
Mihálka, Peter; Matiašovský, Peter
2016-01-01
The monotonic heating regime method for determination of thermal diffusivity is based on the analysis of an unsteady-state (stabilised) thermal process characterised by an independence of the space-time temperature distribution on initial conditions. At the first kind of the monotonic regime a sample of simple geometry is heated / cooled at constant ambient temperature. The determination of thermal diffusivity requires the determination rate of a temperature change and simultaneous determination of the first eigenvalue. According to a characteristic equation the first eigenvalue is a function of the Biot number defined by a surface heat transfer coefficient and thermal conductivity of an analysed material. Knowing the surface heat transfer coefficient and the first eigenvalue the thermal conductivity can be determined. The surface heat transport coefficient during the monotonic regime can be determined by the continuous measurement of long-wave radiation heat flow and the photoelectric measurement of the air refractive index gradient in a boundary layer. CFD simulation of the cooling process was carried out to analyse local convective and radiative heat transfer coefficients more in detail. Influence of ambient air flow was analysed. The obtained eigenvalues and corresponding surface heat transfer coefficient values enable to determine thermal conductivity of the analysed specimen together with its thermal diffusivity during a monotonic heating regime.
Han, Le; Chang, Haiping; Zhang, Jingyang; Xu, Tiejun
2015-04-01
In order to realize safe and stable operation of a water-cooled W/Cu divertor under high heating condition, the exact knowledge of its subcooled boiling heat transfer characteristics under different design parameters is crucial. In this paper, subcooled boiling heat transfer in a water-cooled W/Cu divertor was numerically investigated based on computational fluid dynamic (CFD). The boiling heat transfer was simulated based on the Euler homogeneous phase model, and local differences of liquid physical properties were considered under one-sided high heating conditions. The calculated wall temperature was in good agreement with experimental results, with the maximum error of 5% only. On this basis, the void fraction distribution, flow field and heat transfer coefficient (HTC) distribution were obtained. The effects of heat flux, inlet velocity and inlet temperature on temperature distribution and pressure drop of a water-cooled W/Cu divertor were also investigated. These results provide a valuable reference for the thermal-hydraulic design of a water-cooled W/Cu divertor. supported by the National Magnetic Confinement Fusion Science Program of China (No. 2010GB104005), Funding of Jiangsu Innovation Program for Graduate Education (CXLX12_0170), the Fundamental Research Funds for the Central Universities of China
Modal functions. Properties and application for simulation of subject regions
International Nuclear Information System (INIS)
Rudkevich, A.V.
1988-01-01
New type of information structures for simulation of undefined information in information retrieval systems is suggested. Main properties of modal functions have been proved. Algorithm of their applications for data retrieval is presented. 9 refs
CSIR Research Space (South Africa)
Du Plessis, L
2006-07-01
Full Text Available The paper addresses two different heavy Vehicle Simulator (HVS) studies conducted on concrete: Load transfer through aggregate interlock and the use of dowels and the evaluation of the performance of an in-service continuously reinforced concrete...
2013-06-06
... Springs Ranch, LLC (transferee) filed an application for the transfer of license for the L & M Angus Ranch..., Idaho. Applicants seek Commission approval to transfer the license for the L & M Angus Ranch Project...
Kinetic simulations in plasmas: a general view and some applications
Energy Technology Data Exchange (ETDEWEB)
Alves, Maria Virginia [Instituto Nacional de Pesquisas Espaciais (INPE), Sao Jose dos Campos, SP (Brazil). Lab. Associado de Plasma]. E-mail: alves@plasma.inpe.br
1999-07-01
In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)
Kinetic simulations in plasmas: a general view and some applications
International Nuclear Information System (INIS)
Alves, Maria Virginia
1999-01-01
In these lecture notes we talk about kinetic simulations plasma physics. We present a general view of the different approach that can be given to kinetic plasmas depending on the physical problem to be investigated. Some applications of kinetic simulations to space plasma phenomena and Pierce electrodes are introduced. (author)
Application for position and load reference generation of a simulated ...
African Journals Online (AJOL)
Application for position and load reference generation of a simulated ... generation for a motor stand simulating a mechatronic chain, in this case a three degree of ... in position as the robot joint actuators coupled with three controlled in torque, ...
Application of PSpice in simulation of a photovoltaic (PV) system ...
African Journals Online (AJOL)
There are two approaches in computer simulation of any system- developing custom software from the scratch or application of one of the commercially available software packages. In the later approach, either dedicated simulating software can be used or general-purpose software can be adapted to suit particular needs.
Energy Technology Data Exchange (ETDEWEB)
Lazzati, Davide [Department of Physics, Oregon State University, 301 Weniger Hall, Corvallis, OR 97331 (United States)
2016-10-01
We present MCRaT, a Monte Carlo Radiation Transfer code for self-consistently computing the light curves and spectra of the photospheric emission from relativistic, unmagnetized jets. We apply MCRaT to a relativistic hydrodynamic simulation of a long-duration gamma-ray burst jet, and present the resulting light curves and time-dependent spectra for observers at various angles from the jet axis. We compare our results to observational results and find that photospheric emission is a viable model to explain the prompt phase of long-duration gamma-ray bursts at the peak frequency and above, but faces challenges when reproducing the flat spectrum below the peak frequency. We finally discuss possible limitations of these results both in terms of the hydrodynamics and the radiation transfer and how these limitations could affect the conclusions that we present.
Research and simulation of intense pulsed beam transfer in electrostatic accelerate tube
International Nuclear Information System (INIS)
Li Chaolong; Shi Haiquan; Lu Jianqin
2012-01-01
To study intense pulsed beam transfer in electrostatic accelerate tube, the matrix method was applied to analyze the transport matrixes in electrostatic accelerate tube of non-intense pulsed beam and intense pulsed beam, and a computer code was written for the intense pulsed beam transporting in electrostatic accelerate tube. Optimization techniques were used to attain the given optical conditions and iteration procedures were adopted to compute intense pulsed beam for obtaining self-consistent solutions in this computer code. The calculations were carried out by using ACCT, TRACE-3D and TRANSPORT for different beam currents, respectively. The simulation results show that improvement of the accelerating voltage ratio can enhance focusing power of electrostatic accelerate tube, reduce beam loss and increase the transferring efficiency. (authors)
DEFF Research Database (Denmark)
Aijanen, T.; Koivuniemi, A.; Javanainen, M.
2014-01-01
Cholesteryl ester transfer protein (CETP) mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides) and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity...... and thereby raise high density lipoprotein (HDL)-cholesterol and decrease low density lipoprotein (LDL)-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics...... simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site...
Khan, Md Imran; Billah, Md. Mamun; Rahman, Mohammed Mizanur; Hasan, Mohammad Nasim
2017-12-01
Numerical simulation of steady two-dimensional heat transfer in a rectangular channel with a centered variable speed cylinder has been performed in this paper. In this setup, an isoflux heater is placed at the bottom wall of the channel while the upper wall is kept isothermal with a low temperature. The cylinder's peripheral speed to maximum inlet fluid velocity ratio (ξ) is varied from 0.5 to 1.5 for both clockwise and anticlockwise rotational cases. Air has been considered as working fluid while other system parameters such as Grashof and Reynolds numbers are varied. The effects of rotational speed, Grashof and Reynolds numbers on the streamline pattern, isothermal lines, local and average Nusselt number are analyzed and presented. It is observed the cylinder's rotational direction and speed has a significant effect on the flow pattern, temperature distribution as well as heat transfer characteristics.
African Journals Online (AJOL)
This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...
Phase change heat transfer device for process heat applications
International Nuclear Information System (INIS)
Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred
2010-01-01
The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.
A Comparison of Grid-based and SPH Binary Mass-transfer and Merger Simulations
Energy Technology Data Exchange (ETDEWEB)
Motl, Patrick M. [Indiana University Kokomo, School of Sciences, P.O. Box 9003, Kokomo, IN 46903-9004 (United States); Frank, Juhan; Clayton, Geoffrey C.; Tohline, Joel E. [Louisiana State University, Department of Physics and Astronomy, 202 Nicholson Hall, Baton Rouge, LA 70803-4001 (United States); Staff, Jan [College of Science and Math, University of Virgin Islands, St. Thomas, United States Virgin Islands 00802 (United States); Fryer, Christopher L.; Even, Wesley [Center for Theoretical Astrophysics/CCS-2, Los Alamos National Laboratory, P.O. Box 1663, Los Alamos, NM 87545 (United States); Diehl, Steven, E-mail: pmotl@iuk.edu [TLT-Turbo GmbH, Gleiwitzstrasse 7, 66482 Zweibrücken (Germany)
2017-04-01
There is currently a great amount of interest in the outcomes and astrophysical implications of mergers of double degenerate binaries. In a commonly adopted approximation, the components of such binaries are represented by polytropes with an index of n = 3/2. We present detailed comparisons of stellar mass-transfer and merger simulations of polytropic binaries that have been carried out using two very different numerical algorithms—a finite-volume “grid” code and a smoothed-particle hydrodynamics (SPH) code. We find that there is agreement in both the ultimate outcomes of the evolutions and the intermediate stages if the initial conditions for each code are chosen to match as closely as possible. We find that even with closely matching initial setups, the time it takes to reach a concordant evolution differs between the two codes because the initial depth of contact cannot be matched exactly. There is a general tendency for SPH to yield higher mass transfer rates and faster evolution to the final outcome. We also present comparisons of simulations calculated from two different energy equations: in one series, we assume a polytropic equation of state and in the other series an ideal gas equation of state. In the latter series of simulations, an atmosphere forms around the accretor, which can exchange angular momentum and cause a more rapid loss of orbital angular momentum. In the simulations presented here, the effect of the ideal equation of state is to de-stabilize the binary in both SPH and grid simulations, but the effect is more pronounced in the grid code.
Tecklenburg, Jan; Neuweiler, Insa; Dentz, Marco; Carrera, Jesus; Geiger, Sebastian
2013-04-01
Flow processes in geotechnical applications do often take place in highly heterogeneous porous media, such as fractured rock. Since, in this type of media, classical modelling approaches are problematic, flow and transport is often modelled using multi-continua approaches. From such approaches, multirate mass transfer models (mrmt) can be derived to describe the flow and transport in the "fast" or mobile zone of the medium. The porous media is then modeled with one mobile zone and multiple immobile zones, where the immobile zones are connected to the mobile zone by single rate mass transfer. We proceed from a mrmt model for immiscible displacement of two fluids, where the Buckley-Leverett equation is expanded by a sink-source-term which is nonlocal in time. This sink-source-term models exchange with an immobile zone with mass transfer driven by capillary diffusion. This nonlinear diffusive mass transfer can be approximated for particular imbibition or drainage cases by a linear process. We present a numerical scheme for this model together with simulation results for a single fracture test case. We solve the mrmt model with the finite volume method and explicit time integration. The sink-source-term is transformed to multiple single rate mass transfer processes, as shown by Carrera et. al. (1998), to make it local in time. With numerical simulations we studied immiscible displacement in a single fracture test case. To do this we calculated the flow parameters using information about the geometry and the integral solution for two phase flow by McWorther and Sunnada (1990). Comparision to the results of the full two dimensional two phase flow model by Flemisch et. al. (2011) show good similarities of the saturation breakthrough curves. Carrera, J., Sanchez-Vila, X., Benet, I., Medina, A., Galarza, G., and Guimera, J.: On matrix diffusion: formulations, solution methods and qualitative effects, Hydrogeology Journal, 6, 178-190, 1998. Flemisch, B., Darcis, M
Interlevel transfer mechanisms and their application to GRASERS
International Nuclear Information System (INIS)
Solem, J.C.
1985-01-01
Within the gamma-ray laser (GRASER) research community, much attention is being given to two-step schemes that store energy in a long-lived isomeric state and achieve lasing by transferring population to a short-lived state. Because the electron system exhibits large multipole moments and is in the near field of the nucleus, it can be used as an intermediate mechanism for transferring energy, angular momentum, and parity change. Two distinct electron-nucleus interaction mechanisms are discussed: (1) resonant electronic transitions and (2) collective outer-shell excitations. 9 refs
DEFF Research Database (Denmark)
Bøje, Rikke Buus; Bland, Andrew; Sutton, Andrew
2017-01-01
of the study were to develop a model to educate the educators who deliver simulation-based learning and to test to which extent this model could be transferred to education providers in different national settings. METHODS: This model, its transferability and feasibility, was tested across three European...
Large eddy simulation for predicting turbulent heat transfer in gas turbines.
Tafti, Danesh K; He, Long; Nagendra, K
2014-08-13
Blade cooling technology will play a critical role in the next generation of propulsion and power generation gas turbines. Accurate prediction of blade metal temperature can avoid the use of excessive compressed bypass air and allow higher turbine inlet temperature, increasing fuel efficiency and decreasing emissions. Large eddy simulation (LES) has been established to predict heat transfer coefficients with good accuracy under various non-canonical flows, but is still limited to relatively simple geometries and low Reynolds numbers. It is envisioned that the projected increase in computational power combined with a drop in price-to-performance ratio will make system-level simulations using LES in complex blade geometries at engine conditions accessible to the design process in the coming one to two decades. In making this possible, two key challenges are addressed in this paper: working with complex intricate blade geometries and simulating high-Reynolds-number (Re) flows. It is proposed to use the immersed boundary method (IBM) combined with LES wall functions. A ribbed duct at Re=20 000 is simulated using the IBM, and a two-pass ribbed duct is simulated at Re=100 000 with and without rotation (rotation number Ro=0.2) using LES with wall functions. The results validate that the IBM is a viable alternative to body-conforming grids and that LES with wall functions reproduces experimental results at a much lower computational cost. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Directory of Open Access Journals (Sweden)
Tarja Äijänen
2014-11-01
Full Text Available Cholesteryl ester transfer protein (CETP mediates the reciprocal transfer of neutral lipids (cholesteryl esters, triglycerides and phospholipids between different lipoprotein fractions in human blood plasma. A novel molecular agent known as anacetrapib has been shown to inhibit CETP activity and thereby raise high density lipoprotein (HDL-cholesterol and decrease low density lipoprotein (LDL-cholesterol, thus rendering CETP inhibition an attractive target to prevent and treat the development of various cardiovascular diseases. Our objective in this work is to use atomistic molecular dynamics simulations to shed light on the inhibitory mechanism of anacetrapib and unlock the interactions between the drug and CETP. The results show an evident affinity of anacetrapib towards the concave surface of CETP, and especially towards the region of the N-terminal tunnel opening. The primary binding site of anacetrapib turns out to reside in the tunnel inside CETP, near the residues surrounding the N-terminal opening. Free energy calculations show that when anacetrapib resides in this area, it hinders the ability of cholesteryl ester to diffuse out from CETP. The simulations further bring out the ability of anacetrapib to regulate the structure-function relationships of phospholipids and helix X, the latter representing the structural region of CETP important to the process of neutral lipid exchange with lipoproteins. Altogether, the simulations propose CETP inhibition to be realized when anacetrapib is transferred into the lipid binding pocket. The novel insight gained in this study has potential use in the development of new molecular agents capable of preventing the progression of cardiovascular diseases.
Shyam, Vikram; Ameri, Ali
2009-01-01
Unsteady 3-D RANS simulations have been performed on a highly loaded transonic turbine stage and results are compared to steady calculations as well as to experiment. A low Reynolds number k-epsilon turbulence model is employed to provide closure for the RANS system. A phase-lag boundary condition is used in the tangential direction. This allows the unsteady simulation to be performed by using only one blade from each of the two rows. The objective of this work is to study the effect of unsteadiness on rotor heat transfer and to glean any insight into unsteady flow physics. The role of the stator wake passing on the pressure distribution at the leading edge is also studied. The simulated heat transfer and pressure results agreed favorably with experiment. The time-averaged heat transfer predicted by the unsteady simulation is higher than the heat transfer predicted by the steady simulation everywhere except at the leading edge. The shock structure formed due to stator-rotor interaction was analyzed. Heat transfer and pressure at the hub and casing were also studied. Thermal segregation was observed that leads to the heat transfer patterns predicted by steady and unsteady simulations to be different.
Directory of Open Access Journals (Sweden)
Hassan Badreddine
2017-01-01
Full Text Available The current work focuses on the development and application of a new finite volume immersed boundary method (IBM to simulate three-dimensional fluid flows and heat transfer around complex geometries. First, the discretization of the governing equations based on the second-order finite volume method on Cartesian, structured, staggered grid is outlined, followed by the description of modifications which have to be applied to the discretized system once a body is immersed into the grid. To validate the new approach, the heat conduction equation with a source term is solved inside a cavity with an immersed body. The approach is then tested for a natural convection flow in a square cavity with and without circular cylinder for different Rayleigh numbers. The results computed with the present approach compare very well with the benchmark solutions. As a next step in the validation procedure, the method is tested for Direct Numerical Simulation (DNS of a turbulent flow around a surface-mounted matrix of cubes. The results computed with the present method compare very well with Laser Doppler Anemometry (LDA measurements of the same case, showing that the method can be used for scale-resolving simulations of turbulence as well.
TOWARDS PHASE TRANSFERABLE POTENTIAL FUNCTIONS - METHODOLOGY AND APPLICATION TO NITROGEN
JORDAN, PC; VAN MAAREN, PJ; MAVRI, J; VAN DER SPOEL, D; BERENDSEN, HJC
1995-01-01
We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N-2 The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters.
Versatile Polymer-Free Graphene Transfer Method and Applications.
Zhang, Guohui; Güell, Aleix G; Kirkman, Paul M; Lazenby, Robert A; Miller, Thomas S; Unwin, Patrick R
2016-03-01
A new method for transferring chemical vapor deposition (CVD)-grown monolayer graphene to a variety of substrates is described. The method makes use of an organic/aqueous biphasic configuration, avoiding the use of any polymeric materials that can cause severe contamination problems. The graphene-coated copper foil sample (on which graphene was grown) sits at the interface between hexane and an aqueous etching solution of ammonium persulfate to remove the copper. With the aid of an Si/SiO2 substrate, the graphene layer is then transferred to a second hexane/water interface to remove etching products. From this new location, CVD graphene is readily transferred to arbitrary substrates, including three-dimensional architectures as represented by atomic force microscopy (AFM) tips and transmission electron microscopy (TEM) grids. Graphene produces a conformal layer on AFM tips, to the very end, allowing easy production of tips for conductive AFM imaging. Graphene transferred to copper TEM grids provides large-area, highly electron-transparent substrates for TEM imaging. These substrates can also be used as working electrodes for electrochemistry and high-resolution wetting studies. By using scanning electrochemical cell microscopy, it is possible to make electrochemical and wetting measurements at either a freestanding graphene film or a copper-supported graphene area and readily determine any differences in behavior.
Data transfer on manycore processors for high throughput applications
CERN. Geneva
2016-01-01
In this talk I will present my efforts to implement a data transfer mechanism for the Intel Xeon Phi Coprocessor and its integration in the ZeroMQ message queue library. The latter is used extensively at CERN to support online and offline processing. Finally I will share my experience in the CERN openlab ICE-DIP project.
Application in appraising inter-basin water transfer projects
African Journals Online (AJOL)
2013-07-08
Jul 8, 2013 ... transfer projects (IBTs) with significant pumping costs overestimates ... Those findings are taken further and it is established that the URV, as currently applied, fails as a suit- .... of measures such as water demand management and catchment .... It is standard practice to also do a sensitivity analysis round.
Interdiscipline: Search and Discovery--Systematization, Application, and Transfer.
Bonomo de Zago, Maria
1978-01-01
Discusses efforts to develop an interdisciplinary cybernetic method, its transfer to different fields of group activities, and results achieved internationally. The 1978 program of activities designed for the promotion of the interdisciplinary cybernetic method by the International Association for Synthesis is also presented. (HM)
Far Transfer of Leadership Training: Concepts, Experiences, and Applications
2013-04-01
Thorndike , 1932). For Army leadership training, transfer is the key goal captured in the motto Be-Know-Do (Department of the Army, 2006; FM 6-22...Grand Rapids, MI: Eerdmans. 52 Thorndike , E.L. (1932). The fundamentals of learning. New York: Teachers College, Columbia University
Simulation of heat transfer around a canister placed horizontally in a drift
International Nuclear Information System (INIS)
Moujaes, S.; Bhargava, A.
1994-01-01
The Yucca Mountain Site Characterization Project is investigating the feasibility of locating a high level radioactive nuclear waste repository at Yucca Mountain, Nevada. The bore hole and the in-drift waste emplacement schemes are under evaluation as potential repository drift geometries. This paper presents a two-dimensional finite element thermal analysis of the nuclear waste canister placed horizontally in a drift. Simulation has been carried out for 1000 years and the peak temperatures at the walls of the drift and at the center of the canister have been determined. The effect of the three modes of heat transfer, conduction, natural convection and radiation, is also discussed
International Nuclear Information System (INIS)
Bao Sheng; Chen Sheng; Liu Zhaohui; Zheng Chuguang
2012-01-01
Highlights: ► Heat transfer is enhanced by small and slow stream-wise oscillation. ► The average Nu decreases with increasing oscillation frequency. ► The RMS Nu increases with increasing frequency. ► The mean and RMS Nu reach a local maximum value in locked regime. ► Similar frequency effect is found for different Reynolds numbers. - Abstract: In this paper, we studied the convective heat transfer from a stream-wise oscillating circular cylinder. Two dimensional numerical simulations are conducted at Re = 100–200, A = 0.1–0.4 and F = f o /f s = 0.2–3.0 with the aid of the lattice Boltzmann method. In particular, detailed attentions are paid on the extensive numerical results elucidating the influence of oscillation frequency, oscillation amplitude and Reynolds number on the time-average and RMS value of the Nusselt number. Over the ranges of conditions considered herein, the heat transfer characteristics are observed to be influenced in an intricate manner by the value of the oscillation frequency (F), oscillation amplitude (A) and Reynolds number (Re). Firstly, the heat transfer is enhanced when the cylinder oscillates stream-wise with small amplitude and low frequency, while it will be reduced by large amplitude and high frequency. Secondly, the average Nusselt number (Nu (ave)) decreases against the increasing value of oscillation frequency, while the RMS value of the Nusselt number, Nu (RMS), displays an opposite trend. Third, we obtained a similar frequency effect on the heat transfer over the range of Reynolds numbers investigated in this paper. In addition, detailed analyses on phase portraits, energy spectrum are also made.
Schuster, J.
2018-02-01
Military requirements demand both single and dual-color infrared (IR) imaging systems with both high resolution and sharp contrast. To quantify the performance of these imaging systems, a key measure of performance, the modulation transfer function (MTF), describes how well an optical system reproduces an objects contrast in the image plane at different spatial frequencies. At the center of an IR imaging system is the focal plane array (FPA). IR FPAs are hybrid structures consisting of a semiconductor detector pixel array, typically fabricated from HgCdTe, InGaAs or III-V superlattice materials, hybridized with heat/pressure to a silicon read-out integrated circuit (ROIC) with indium bumps on each pixel providing the mechanical and electrical connection. Due to the growing sophistication of the pixel arrays in these FPAs, sophisticated modeling techniques are required to predict, understand, and benchmark the pixel array MTF that contributes to the total imaging system MTF. To model the pixel array MTF, computationally exhaustive 2D and 3D numerical simulation approaches are required to correctly account for complex architectures and effects such as lateral diffusion from the pixel corners. It is paramount to accurately model the lateral di_usion (pixel crosstalk) as it can become the dominant mechanism limiting the detector MTF if not properly mitigated. Once the detector MTF has been simulated, it is directly decomposed into its constituent contributions to reveal exactly what is limiting the total detector MTF, providing a path for optimization. An overview of the MTF will be given and the simulation approach will be discussed in detail, along with how different simulation parameters effect the MTF calculation. Finally, MTF optimization strategies (crosstalk mitigation) will be discussed.
Simulation models generator. Applications in scheduling
Directory of Open Access Journals (Sweden)
Omar Danilo Castrillón
2013-08-01
Rev.Mate.Teor.Aplic. (ISSN 1409-2433 Vol. 20(2: 231–241, July 2013 generador de modelos de simulacion 233 will, in order to have an approach to reality to evaluate decisions in order to take more assertive. To test prototype was used as the modeling example of a production system with 9 machines and 5 works as a job shop configuration, testing stops processing times and stochastic machine to measure rates of use of machines and time average jobs in the system, as measures of system performance. This test shows the goodness of the prototype, to save the user the simulation model building
The application of PLC automatic control system for resin transfer in pulsed elution
International Nuclear Information System (INIS)
Long Maoxiong
2001-01-01
An application of Programmable Logic Controller (PLC) in automatic control system for resin transfer in pulsed elution column is described. The design principle as well as hardware and software are also described in detail
Energy Technology Data Exchange (ETDEWEB)
Villafan-Vidales, H.I.; Arancibia-Bulnes, C.A.; Dehesa-Carrasco, U. [Centro de Investigacion en Energia, Universidad Nacional Autonoma de Mexico, Privada Xochicalco s/n, Col. Centro, A.P. 34, Temixco, Morelos 62580 (Mexico); Romero-Paredes, H. [Departamento de Ingenieria de Procesos e Hidraulica, Universidad Autonoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco No.186, Col. Vicentina, A.P. 55-534, Mexico D.F 09340 (Mexico)
2009-01-15
Radiative heat transfer in a solar thermochemical reactor for the thermal reduction of cerium oxide is simulated with the Monte Carlo method. The directional characteristics and the power distribution of the concentrated solar radiation that enters the cavity is obtained by carrying out a Monte Carlo ray tracing of a paraboloidal concentrator. It is considered that the reactor contains a gas/particle suspension directly exposed to concentrated solar radiation. The suspension is treated as a non-isothermal, non-gray, absorbing, emitting, and anisotropically scattering medium. The transport coefficients of the particles are obtained from Mie-scattering theory by using the optical properties of cerium oxide. From the simulations, the aperture radius and the particle concentration were optimized to match the characteristics of the considered concentrator. (author)
Directory of Open Access Journals (Sweden)
Wenzheng Cui
2015-09-01
Full Text Available Nanofluids are a new generation of high-efficiency refrigerant with abnormal increased thermal conductivity and convective heat transfer properties. In view of the paucity of research work on the contribution of nanoparticle Brownian motion for the thermal conductivity augmentation, the present paper carries out a series of MD simulations to explorer the order of magnitude of nanoparticle Brownian motion and discusses the effect of nanoparticle Brownian motion for thermal conductivity enhancement of nanofluids. Various influence factors including nanoparticle shapes, sizes, and materials are considered. The Brownian motion of nanoparticles is decomposed into rotation and migration and calculated by MD simulation. By means of Peclet number, the effect of nanoparticle Brownian motion for thermal conductivity enhancement of nanofluids is discussed.
Numerical simulations of turbulent heat transfer in a channel at Prandtl numbers higher than 100
International Nuclear Information System (INIS)
Bergant, R.; Tiselj, I.
2005-01-01
During the last years, many attempts have been made to extend turbulent heat transfer at low Prandtl numbers to high Prandtl numbers in the channel based on a very accurate pseudo-spectral code of direct numerical simulation (DNS). DNS describes all the length and time scales for velocity and temperature fields, which are different when Prandtl number is not equal to 1. DNS can be used at low Reynolds (Re τ =150. Very similar approach as for Pr=5.4 was done for numerical simulations at Pr=100 and Pr=200. Comparison was made with results of temperature fields performed on 9-times finer numerical grid, however without damping of the highest Fourier coefficients. The results of mean temperature profiles show no differences larger than statistical uncertainties (∼1%), while slightly larger differences are seen for temperature fluctuations. (author)
Study of natural convection heat transfer characteristics. (2) Verification for numerical simulation
International Nuclear Information System (INIS)
Ikeda, Hiroshi; Nakada, Kotaro; Ikeda, Tatsumi; Wakamatsu, Mitsuo; Iwaki, Chikako; Morooka, Shinichi; Masaki, Yoshikazu
2008-01-01
In the natural cooling system for waste storage, it is important to evaluate the flow by natural draft enough to remove the decay heat from the waste. In this study, we carried out the fundamental study of natural convection on vertical cylindrical heater by experiment and numerical simulation. The dimension of test facility is about 4m heights with single heater. Heating power is varied in the range of 33-110W, where Rayleigh number is over 10 10 . We surveyed the velocity distribution around heater by some turbulent models, mesh sizes around heated wall and turbulent Prandtl numbers. Results of numerical simulation of the velocity distribution and averaged heat transfer coefficient agreed well with experimental data and references. (author)
Nuclear Application Programs Development and Integration for a Simulator
Energy Technology Data Exchange (ETDEWEB)
Park, Hyun-Joon; Lee, Tae-Woo [KEPCO Engineering and Construction Co., Deajeon (Korea, Republic of)
2016-10-15
KEPCO E and C participated in the NAPS (Nuclear Application Programs) development project for BNPP (Barakah Nuclear Power Plant) simulator. The 3KEY MASTER™ was adopted for this project, which is comprehensive simulation platform software developed by WSC (Western Services Corporation) for the development, and control of simulation software. The NAPS based on actual BNPP project was modified in order to meet specific requirements for nuclear power plant simulators. Considerations regarding software design for BNPP simulator and interfaces between the 3KM platform and application programs are discussed. The repeatability is one of functional requirements for nuclear power plant simulators. In order to migrate software from actual plants to simulators, software functions for storing and retrieving plant conditions and program variables should be implemented. In addition, software structures need to be redesigned to meet the repeatability, and source codes developed for actual plants would have to be optimized to reflect simulator’s characteristics as well. The synchronization is an important consideration to integrate external application programs into the 3KM simulator.
Application of discrete event simulation to MRS design
International Nuclear Information System (INIS)
Bali, M.; Standley, W.
1993-01-01
The application of discrete event simulation to the Monitored, Retrievable Storage (MRS) material handling operations supported the MRS conceptual design effort and established a set of tools for use during MRS detail design and license application. The effort to develop a design analysis tool to support the MRS project started in 1991. The MRS simulation has so far identified potential savings and suggested methods of improving operations to enhance throughput. Immediately, simulation aided the MRS conceptual design effort through the investigation of alternative cask handling operations and the sizing and sharing of expensive equipment. The simulation also helped analyze the operability of the current design of MRS under various waste acceptance scenarios. Throughout the simulation effort, the model development and experimentation resulted in early identification and resolution of several design and operational issues
The Application of Voltage Transformer Simulator in Electrical Test Training
Li, Nan; Zhang, Jun; Chai, Ziqi; Wang, Jingpeng; Yang, Baowei
2018-02-01
The voltage transformer test is an important means to monitor its operating state. The accuracy and reliability of the test data is directly related to the test skill level of the operator. However, the risk of test instruments damage, equipment being tested damage and electric shock in operator is caused by improper operation when training the transformer test. In this paper, a simulation device of voltage transformer is set up, and a simulation model is built for the most common 500kV capacitor voltage transformer (CVT), the simulation model can realize several test items of CVT by combing with teaching guidance platform, simulation instrument, complete set of system software and auxiliary equipment in Changchun. Many successful applications show that the simulation device has good practical value and wide application prospect.
Radiative transfer code: Application to the calculation of PAR
Indian Academy of Sciences (India)
The production of carbon in the ocean, the so-called primary production, depends on various physico- biological ... We developed a model (Chami et al. 1997) to simulate .... and the gaseous transmittance for ozone, oxygen and water vapor ...
Application of nonlinear Krylov acceleration to radiative transfer problems
International Nuclear Information System (INIS)
Till, A. T.; Adams, M. L.; Morel, J. E.
2013-01-01
The iterative solution technique used for radiative transfer is normally nested, with outer thermal iterations and inner transport iterations. We implement a nonlinear Krylov acceleration (NKA) method in the PDT code for radiative transfer problems that breaks nesting, resulting in more thermal iterations but significantly fewer total inner transport iterations. Using the metric of total inner transport iterations, we investigate a crooked-pipe-like problem and a pseudo-shock-tube problem. Using only sweep preconditioning, we compare NKA against a typical inner / outer method employing GMRES / Newton and find NKA to be comparable or superior. Finally, we demonstrate the efficacy of applying diffusion-based preconditioning to grey problems in conjunction with NKA. (authors)
Transfer mechanisms between emitter molecules for OLED applications
Energy Technology Data Exchange (ETDEWEB)
Steinbacher, Frank [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Chiu, Chien-Shu [Department of Electrical Engineering and Information Technology, Technical University of Braunschweig (Germany); Siemens AG, CT MM 1, Erlangen (Germany); Krause, Ralf; Hunze, Arvid [Siemens AG, CT MM 1, Erlangen (Germany); Winnacker, Albrecht [Department of Materials Science VI, University of Erlangen-Nuernberg (Germany)
2009-07-01
Within the last few years white organic light emitting diodes based on small molecules have shown the potential to have a promising future in the field of lighting technology. Nevertheless there is still room for improvement of the overall efficiency and lifetime of white OLEDs. A deeper understanding of the energy transfer mechanisms between different matrix and emitter molecules used in the OLED stack concept can help to optimize the layout and reduce driving voltage thus increasing the power efficiency and color stability of the device. To simplify the complex interactions within a complete white OLED we start out with a basic model system only containing the molecules of interest. This enables us to predict the fundamental concepts causing the behavior of more intricate systems. Using photoluminescence, excitation spectra and time-resolved photoluminescence we investigated the exciton transfer between different dyes for a variety of emitter systems. Our results indicate a dependence of exciton transfer probability on the total concentrations and therefore the distance between the molecules involved.
Simultaneous heat and moisture transfer in soils combined with building simulation
Energy Technology Data Exchange (ETDEWEB)
Santos, G. H. dos; Mendes, N. [Pontifical Catholic University of Parana, PUCPR/CCET, Thermal Systems Laboratory (LST), Curitiba (Brazil)
2006-07-01
In order to precisely predict ground heat transfer, room air temperature and humidity, a combined model has been developed and conceived to calculate both the coupled heat and moisture transfer in soil and floor and the psychrometrics condition of indoor air. The present methodology for the soil is based on the theory of Philip and De Vries, using variable thermophysical properties for different materials. The governing equations were discretized using the finite-volume method and a three-dimensional model for describing the physical phenomena of heat and mass transfer in unsaturated moist porous soils and floor. Additionally, a lumped transient approach for a building room and a finite-volume multi-layer model for the building envelope have been developed to integrate with the soil model. Results are presented in terms of temperature, humidity and heat flux at the interface between room air and the floor, showing the importance of the approach presented and the model robustness for long-term simulations with a high time step. (author)
International Nuclear Information System (INIS)
Cheng, Y.P.; Lee, T.S.; Low, H.T.
2008-01-01
In this paper, the conjugate heat transfer in electronic cooling is numerically simulated with the newly proposed algorithm CLEARER on collocated grid. Because the solid heat source and substrate are isolated from the boundary, special attention is given to deal with the velocity and temperature in the solid region in the full field computation. The influence of openings on the substrate, heat source height and their distribution along the substrate on the maximum temperature and overall Nusselt number is investigated. The numerical results show that the openings on the substrate can enhance the heat transfer as well as increasing the heat source height, meanwhile, by arranging the heat sources coarsely in the front part and densely in the rear part of the substrate, the thermal performance can also be increased. Then the results are analyzed from the viewpoint of field synergy principle, and it is shown that the heat transfer improvement can all be attributed to the better synergy between the velocity field and temperature field, which may offer some guidance in the design of electronic devices
Ellis, Jonathan S; Strutwolf, Jörg; Arrigan, Damien W M
2012-02-21
Adsorption onto the walls of micropores was explored by computational simulations involving cyclic voltammetry of ion transfer across an interface between aqueous and organic phases located at the micropore. Micro-interfaces between two immiscible electrolyte solutions (micro-ITIES) have been of particular research interest in recent years and show promise for biosensor and biomedical applications. The simulation model combines diffusion to and within the micropore, Butler-Volmer kinetics for ion transfer at the liquid-liquid interface, and Langmuir-style adsorption on the pore wall. Effects due to pore radius, adsorption and desorption rates, surface adsorption site density, and scan rates were examined. It was found that the magnitude of the reverse peak current decreased due to adsorption of the transferring ion on the pore wall; this decrease was more marked as the scan rate was increased. There was also a shift in the half-wave potential to lower values following adsorption, consistent with a wall adsorption process which provides a further driving force to transfer ions across the ITIES. Of particular interest was the disappearance of the reverse peak from the cyclic voltammogram at higher scan rates, compared to the increase in the reverse peak size in the absence of wall adsorption. This occurred for scan rates of 50 mV s(-1) and above and may be useful in biosensor applications using micropore-based ITIES.
Experimental data processing technique for nonstationary heat transfer on fuel rod simulators
International Nuclear Information System (INIS)
Nikonov, S.P.; Nikonov, A.P.; Belyukin, V.A.
1982-01-01
Non-stationary heat-transfer data processing is considered in connection with experimental studies of the emergency cooling whereat fuel rod imitators both with direct and indirect shell heating were used. The objective of data processing was obtaining the temperature distribution within the imitator, the heat flux removed by the coolant and the shell-coolant heat-transfer coefficient. The special attention was paid to the temperature distribution calculation at the data processing during the reflooding experiments. In this case two factors are assumed to be known: the time dependency of temperature variation at a certain point within the imitator cross-section and the heat flux at some point of the same cross-section. The initial data preparation for calculations, employing the procedure of smoothing by cubic spline functions, is considered as well, with application of an algorithm reported in the literature, which is efficient for the given functional dependency wherein the deviation in each point is known [ru
Analytical Simulation of Flow and Heat Transfer of Two-Phase Nanofluid (Stratified Flow Regime
Directory of Open Access Journals (Sweden)
Mohammad Abbasi
2014-01-01
Full Text Available Nanofluids have evoked immense interest from researchers all around the globe due to their numerous potential benefits and applications in important fields such as cooling electronic parts, cooling car engines and nuclear reactors. An analytical study of fluid flow of in-tube stratified regime of two-phase nanofluid has been carried out for CuO, Al2O2, TiO3, and Au as applied nanoparticles in water as the base liquid. Liquid film thickness, convective heat transfer coefficient, and dryout length have been calculated. Among the considered nano particles, Al2O3 and TiO2 because of providing more amounts of heat transfer along with longer lengths of dryout found as the most appropriate nanoparticles to achieve cooling objectives.
Numerical Simulation of Vapor Bubble Growth and Heat Transfer in a Thin Liquid Film
International Nuclear Information System (INIS)
Yu-Jia, Tao; Xiu-Lan, Huai; Zhi-Gang, Li
2009-01-01
A mathematical model is developed to investigate the dynamics of vapor bubble growth in a thin liquid film, movement of the interface between two fluids and the surface heat transfer characteristics. The model takes into account the effects of phase change between the vapor and liquid, gravity, surface tension and viscosity. The details of the multiphase now and heat transfer are discussed for two cases: (1) when a water micro-droplet impacts a thin liquid film with a vapor bubble growing and (2) when the vapor bubble grows and merges with the vapor layer above the liquid film without the droplet impacting. The development trend of the interface between the vapor and liquid is coincident qualitatively with the available literature, mostly at the first stage. We also provide an important method to better understand the mechanism of nucleate spray cooling. (fundamental areas of phenomenology (including applications))
Ngada, Narcisse
2015-06-15
The complexity and cost of building and running high-power electrical systems make the use of simulations unavoidable. The simulations available today provide great understanding about how systems really operate. This paper helps the reader to gain an insight into simulation in the field of power converters for particle accelerators. Starting with the definition and basic principles of simulation, two simulation types, as well as their leading tools, are presented: analog and numerical simulations. Some practical applications of each simulation type are also considered. The final conclusion then summarizes the main important items to keep in mind before opting for a simulation tool or before performing a simulation.
Energy Technology Data Exchange (ETDEWEB)
Koepferl, Christine M.; Robitaille, Thomas P., E-mail: koepferl@usm.lmu.de [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany)
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory . Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
CFD heat transfer simulation of the human upper respiratory tract for oronasal breathing condition
Directory of Open Access Journals (Sweden)
Kambiz Farahmand
2012-01-01
Full Text Available Injuries due to inhalation of hot gas are commonly encountered when dealing with fire and combustible material, which is harmful and threatens human life. In the literature, various studies have been conducted to investigate heat and mass transfer characteristics in the human respiratory tract (HRT. This study focuses on assessing the injury taking place in the upper human respiratory tract and identifying acute tissue damage, based on level of exposure. A three-dimensional heat transfer simulation is performed using Computational Fluid Dynamics (CFD software to study the temperature profile through the upper HRT consisting of the nasal cavity, oral cavity, trachea, and the first two generations of bronchi. The model developed is for the simultaneous oronasal breathing during the inspiration phase with a high volumetric flow rate of 90 liters/minute and the inspired air temperature of 100 degrees Celsius. The geometric model depicting the upper HRT is generated based on the data available and literature cited. The results of the simulation give the temperature distribution along the center and the surface tissue of the respiratory tract. This temperature distribution will help to assess the level of damage induced in the upper respiratory tract and appropriate treatment for the damage. A comparison of nasal breathing, oral breathing, and oronasal breathing is performed. Temperature distribution can be utilized in the design of the respirator systems where inlet temperature is regulated favoring the human body conditions.
Koepferl, Christine M.; Robitaille, Thomas P.
2017-11-01
When modeling astronomical objects throughout the universe, it is important to correctly treat the limitations of the data, for instance finite resolution and sensitivity. In order to simulate these effects, and to make radiative transfer models directly comparable to real observations, we have developed an open-source Python package called the FluxCompensator that enables the post-processing of the output of 3D Monte Carlo radiative transfer codes, such as Hyperion. With the FluxCompensator, realistic synthetic observations can be generated by modeling the effects of convolution with arbitrary point-spread functions, transmission curves, finite pixel resolution, noise, and reddening. Pipelines can be applied to compute synthetic observations that simulate observatories, such as the Spitzer Space Telescope or the Herschel Space Observatory. Additionally, this tool can read in existing observations (e.g., FITS format) and use the same settings for the synthetic observations. In this paper, we describe the package as well as present examples of such synthetic observations.
Shang, Barry Z; Voulgarakis, Nikolaos K; Chu, Jhih-Wei
2012-07-28
This work illustrates that fluctuating hydrodynamics (FHD) simulations can be used to capture the thermodynamic and hydrodynamic responses of molecular fluids at the nanoscale, including those associated with energy and heat transfer. Using all-atom molecular dynamics (MD) trajectories as the reference data, the atomistic coordinates of each snapshot are mapped onto mass, momentum, and energy density fields on Eulerian grids to generate a corresponding field trajectory. The molecular length-scale associated with finite molecule size is explicitly imposed during this coarse-graining by requiring that the variances of density fields scale inversely with the grid volume. From the fluctuations of field variables, the response functions and transport coefficients encoded in the all-atom MD trajectory are computed. By using the extracted fluid properties in FHD simulations, we show that the fluctuations and relaxation of hydrodynamic fields quantitatively match with those observed in the reference all-atom MD trajectory, hence establishing compatibility between the atomistic and field representations. We also show that inclusion of energy transfer in the FHD equations can more accurately capture the thermodynamic and hydrodynamic responses of molecular fluids. The results indicate that the proposed MD-to-FHD mapping with explicit consideration of finite molecule size provides a robust framework for coarse-graining the solution phase of complex molecular systems.
Reconstruction of solar spectral surface UV irradiances using radiative transfer simulations.
Lindfors, Anders; Heikkilä, Anu; Kaurola, Jussi; Koskela, Tapani; Lakkala, Kaisa
2009-01-01
UV radiation exerts several effects concerning life on Earth, and spectral information on the prevailing UV radiation conditions is needed in order to study each of these effects. In this paper, we present a method for reconstruction of solar spectral UV irradiances at the Earth's surface. The method, which is a further development of an earlier published method for reconstruction of erythemally weighted UV, relies on radiative transfer simulations, and takes as input (1) the effective cloud optical depth as inferred from pyranometer measurements of global radiation (300-3000 nm); (2) the total ozone column; (3) the surface albedo as estimated from measurements of snow depth; (4) the total water vapor column; and (5) the altitude of the location. Reconstructed daily cumulative spectral irradiances at Jokioinen and Sodankylä in Finland are, in general, in good agreement with measurements. The mean percentage difference, for instance, is mostly within +/-8%, and the root mean square of the percentage difference is around 10% or below for wavelengths over 310 nm and daily minimum solar zenith angles (SZA) less than 70 degrees . In this study, we used pseudospherical radiative transfer simulations, which were shown to improve the performance of our method under large SZA (low Sun).
A computer simulation model to compute the radiation transfer of mountainous regions
Li, Yuguang; Zhao, Feng; Song, Rui
2011-11-01
In mountainous regions, the radiometric signal recorded at the sensor depends on a number of factors such as sun angle, atmospheric conditions, surface cover type, and topography. In this paper, a computer simulation model of radiation transfer is designed and evaluated. This model implements the Monte Carlo ray-tracing techniques and is specifically dedicated to the study of light propagation in mountainous regions. The radiative processes between sun light and the objects within the mountainous region are realized by using forward Monte Carlo ray-tracing methods. The performance of the model is evaluated through detailed comparisons with the well-established 3D computer simulation model: RGM (Radiosity-Graphics combined Model) based on the same scenes and identical spectral parameters, which shows good agreements between these two models' results. By using the newly developed computer model, series of typical mountainous scenes are generated to analyze the physical mechanism of mountainous radiation transfer. The results show that the effects of the adjacent slopes are important for deep valleys and they particularly affect shadowed pixels, and the topographic effect needs to be considered in mountainous terrain before accurate inferences from remotely sensed data can be made.
Efficiency limits of laser power converters for optical power transfer applications
International Nuclear Information System (INIS)
Mukherjee, J; Jarvis, S; Sweeney, S J; Perren, M
2013-01-01
We have developed III–V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m −2 ) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m −2 . (paper)
Efficiency limits of laser power converters for optical power transfer applications
Mukherjee, J.; Jarvis, S.; Perren, M.; Sweeney, S. J.
2013-07-01
We have developed III-V-based high-efficiency laser power converters (LPCs), optimized specifically for converting monochromatic laser radiation at the eye-safe wavelength of 1.55 µm into electrical power. The applications of these photovoltaic cells include high-efficiency space-based and terrestrial laser power transfer and subsequent conversion to electrical power. In addition, these cells also find use in fibre-optic power delivery, remote powering of subcutaneous equipment and several other optical power delivery applications. The LPC design is based on lattice-matched InGaAsP/InP and incorporates elements for photon-recycling and contact design for efficient carrier extraction. Here we compare results from electro-optical design simulations with experimental results from prototype devices studied both in the lab and in field tests. We analyse wavelength and temperature dependence of the LPC characteristics. An experimental conversion efficiency of 44.6% [±1%] is obtained from the prototype devices under monochromatic illumination at 1.55 µm (illumination power density of 1 kW m-2) at room temperature. Further design optimization of our LPC is expected to scale the efficiency beyond 50% at 1 kW m-2.
The accuracy of seminumerical reionization models in comparison with radiative transfer simulations
Hutter, Anne
2018-06-01
We have developed a modular seminumerical code that computes the time and spatially dependent ionization of neutral hydrogen (H I), neutral (He I), and single-ionized helium (He II) in the intergalactic medium (IGM). The model accounts for recombinations and provides different descriptions for the photoionization rate that are used to calculate the residual H I} fraction in ionized regions. We compare different seminumerical reionization schemes to a radiative transfer (RT) simulation. We use the RT simulation as a benchmark, and find that the seminumerical approaches produce similar H II and He II morphologies and power spectra of the H I 21 cm signal throughout reionization. As we do not track partial ionization of He II, the extent of the double-ionized helium (He III) regions is consistently smaller. In contrast to previous comparison projects, the ionizing emissivity in our seminumerical scheme is not adjusted to reproduce the redshift evolution of the RT simulation, but directly derived from the RT simulation spectra. Among schemes that identify the ionized regions by the ratio of the number of ionization and absorption events on different spatial smoothing scales, we find those that mark the entire sphere as ionized when the ionization criterion is fulfilled to result in significantly accelerated reionization compared to the RT simulation. Conversely, those that flag only the central cell as ionized yield very similar but slightly delayed redshift evolution of reionization, with up to 20 per cent ionizing photons lost. Despite the overall agreement with the RT simulation, our results suggest that constraining ionizing emissivity-sensitive parameters from seminumerical galaxy formation-reionization models are subject to photon nonconservation.
Heat transfer and fluid flow in biological processes advances and applications
Becker, Sid
2015-01-01
Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...
Research progress on microgravity boiling heat transfer
International Nuclear Information System (INIS)
Xiao Zejun; Chen Bingde
2003-01-01
Microgravity boiling heat transfer is one of the most basic research topics in aerospace technology, which is important for both scientific research and engineering application. Research progress on microgravity boiling heat transfer is presented, including terrestrial simulation technique, terrestrial simulation experiment, microgravity experiment, and flow boiling heat transfer
Modeling the liquid-liquid interface and the transfer of a solute by molecular dynamics simulation
International Nuclear Information System (INIS)
Hayoun, Marc
1990-11-01
Molecular Dynamics method and Lennard-Jones potential functions have been employed to model Liquid-Liquid Interfaces. The variation of the miscibilities between the two liquids is obtained by changing the interaction between the two atomic species. The resulting interfaces have a thickness of about three atomic diameters and are stable on the time scale of the simulation. They have been characterized by the density and pressure profiles. The interfacial tension has also been computed and is of the order of magnitude of experimental values. The diffusion process is anisotropic in the interfacial region: the transverse diffusion coefficient (parallelly to the interface) is higher than the normal one. A qualitative explanation of this behaviour is suggested by considering the pressure tensor. The second part of this work, performed by Molecular Dynamics in the canonical ensemble, is devoted to the kinetic study of the transfer of a solute through the interface. A model of a symmetric interface with an atomic solute has been used. The interaction potential between the solute and the solvents has been built in order to obtain an activation barrier to the transfer. We have computed the mean force exerted by the solvent on the solute as a function of its distance to the interface. The resulting mean force potential corresponds to a free energy difference. The height of the energy barrier involved is about 4 kT. The potential energy and entropy profiles have also been calculated and discussed. The diffusion coefficient of the solute has been computed by equilibrium and non-equilibrium methods. We deduced the friction coefficient of the solvent, which is essential to determine the Kramers transmission coefficient. This coefficient is compared to the one obtained by simulation. Finally, the solute transfer rate constant has been calculated. (author) [fr
International Nuclear Information System (INIS)
Bourgois, J.; Vaillant, Herve; Moszkowicz, P.; Alimi Ichola, Ibrahim; Foret, Suzanne
1997-02-01
Industrial companies use and produce numerous substances which can induce a pollution of our environment and especially of soil and groundwater. Thus, it's necessary to estimate the risk of an environmental impact from an accidental or chronic, real or potential pollution. Modelling, which allow the simulation of pollutant migration, can be used as a decision support system, either for the pollution control and prevention of the resource, or for the monitoring of the remediation of polluted sites. In the first part of this study, we established a state of the art on modelling of pollutant migration in soils. In the second part, we focused on the main simulation tools currently available on the market, and on the main agencies or laboratories working on this subject, especially in France. At the end of this study, we drew some conclusions concerning modelling of pollutant migration in soils and the main points which will form the subject of further studies: - sensitivity analysis of model to input parameters and ranking of the main parameters, - achievement of a database on the state of the art of the results on modelling realized on case studies, - development of a mobility indicator of pollutant in soil, - application field and relevance of the models. (authors)
Millimeter-Wave Wireless Power Transfer Technology for Space Applications
Chattopadhyay, Goutam; Manohara, Harish; Mojarradi, Mohammad M.; Vo, Tuan A.; Mojarradi, Hadi; Bae, Sam Y.; Marzwell, Neville
2008-01-01
In this paper we present a new compact, scalable, and low cost technology for efficient receiving of power using RF waves at 94 GHz. This technology employs a highly innovative array of slot antennas that is integrated on substrate composed of gold (Au), silicon (Si), and silicon dioxide (SiO2) layers. The length of the slots and spacing between them are optimized for a highly efficient beam through a 3-D electromagnetic simulation process. Antenna simulation results shows a good beam profile with very low side lobe levels and better than 93% antenna efficiency.
Simulation and Modeling Application in Agricultural Mechanization
Directory of Open Access Journals (Sweden)
R. M. Hudzari
2012-01-01
Full Text Available This experiment was conducted to determine the equations relating the Hue digital values of the fruits surface of the oil palm with maturity stage of the fruit in plantation. The FFB images were zoomed and captured using Nikon digital camera, and the calculation of Hue was determined using the highest frequency of the value for R, G, and B color components from histogram analysis software. New procedure in monitoring the image pixel value for oil palm fruit color surface in real-time growth maturity was developed. The estimation of day harvesting prediction was calculated based on developed model of relationships for Hue values with mesocarp oil content. The simulation model is regressed and predicts the day of harvesting or a number of days before harvest of FFB. The result from experimenting on mesocarp oil content can be used for real-time oil content determination of MPOB color meter. The graph to determine the day of harvesting the FFB was presented in this research. The oil was found to start developing in mesocarp fruit at 65 days before fruit at ripe maturity stage of 75% oil to dry mesocarp.
Application of flexibility model in modeling of flow boiling heat transfer
International Nuclear Information System (INIS)
Peng Jinfeng; Zhao Fuyu
2009-01-01
The mathematical modeling and computer simulation have been widely used in the analysis of system's dynamic characteristics, and often useful for system control. One of the popular methods for this purpose is the lumped parameter method. For flow boiling heat transfer system, the traditional lumped parameter modeling method has a problem that the heat transfer coefficients change suddenly at the boundary of coolant phase change. It can cause error. In this paper, an idea of flexibility model is developed to deal with the boundary problem and to improve the model of flow boiling heat transfer. The segments of coolant phase change's boundary are identified, and the membership functions which are derived from Fuzzy Mathematics are used to derive approximate expressions of heat transfer coefficient in those regions. The continuity of heat transfer coefficient can be described by those expressions. The membership functions are derived from mathematical analysis and transformation. The result shows that this idea is feasible and the conclusion is practicable.
An application of object-oriented programming to process simulation
International Nuclear Information System (INIS)
Robinson, J.T.; Otaduy, P.J.
1988-01-01
This paper discusses the application of object-oriented programming to dynamic simulation of continuous processes. Processes may be modeled using this technique as a collection of objects which communicate with each other via message passing. Arriving messages invoke methods that describe the state and/or dynamic behavior of the receiving object. The objects fall into four broad categories actual plant components such as pumps, pipes, and tanks, abstract objects such as heat sources and conductors, plant systems such as flow loops, and simulation control and interface objects. This technique differs from traditional approaches to process simulation, in which the process is represented by either a system of differential equations or a block diagram of mathematical operators. The use of objects minimizes the representational gap between the model and actual process. From the users point of view, construction of a simulation model becomes equivalent to drawing a plant schematic. As an example application, a package developed for the simulation of nuclear power plants is described. The package allows users to build simulation models by selecting iconic representations of plant components from a menu and connecting them with a mouse. Objects for generating a mathematical model of the system and for controlling the simulation are automatically generated, freeing the user to concentrate on describing his process. This example illustrates the use of object-oriented programming to create a highly interactive and automated simulation environment. 2 figs
Process heat transfer principles, applications and rules of thumb
Serth, Robert W
2014-01-01
Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos
Energy-dependent applications of the transfer matrix method
International Nuclear Information System (INIS)
Oeztunali, O.I.; Aronson, R.
1975-01-01
The transfer matrix method is applied to energy-dependent neutron transport problems for multiplying and nonmultiplying media in one-dimensional plane geometry. Experimental cross sections are used for total, elastic, and inelastic scattering and fission. Numerical solutions are presented for the problem of a unit point isotropic source in an infinite medium of water and for the problem of the critical 235 U slab with finite water reflectors. No iterations were necessary in this method. Numerical results obtained are consistent with physical considerations and compare favorably with the moments method results for the problem of the unit point isotropic source in an infinite water medium. (U.S.)
International Nuclear Information System (INIS)
Lemieux, M.A.; Breton, P.; Tremblay, A.M.S.
1985-01-01
It is shown that the Negative Eigenvalue Theorem and transfer matrix methods may be considered within a unified framework and generalized to compute projected densities of states or, more generally, any linear combination of matrix elements of the inverse of large symmetric random matrices. As examples of applications, extensive simulations for one- and two-mode behaviour in the Raman spectrum of one-dimensional mixed crystals and a finite-size analysis of critical exponents for the central force percolation universality class are presented
Use of a general-purpose heat-transfer code for casting simulation
International Nuclear Information System (INIS)
Erickson, W.C.
1975-07-01
The practical use of numerical techniques in simulating casting solidification dictate that a general purpose heat transfer code be used and that results be obtained in an easy-to-analyze format. Color film plotting routines were developed for use with NASA's CINDA-3G heat transfer code; the combination of which meet the above criteria. The subroutine LQSLTR written for SINDA, the successor to CINDA-3G, was verified by comparing calculated results obtained using LQSLTR with those obtained using the specific heat method for handling the heat of fusion. Excellent agreement existed when similar data was used. When the more restrictive requirement of a 1 0 F melting range was used, comparable results were obtained. Uranium and lead rod castings were cast in instrumented graphite molds and the solidification sequence simulated using CINDA-3G. Discrepancies attributed to initial assumptions of instantaneous mold filling, uniform melt temperature, and intimate metal/mold contact were encountered. Further calculations using a model incorporating a gap between the mold and casting showed that the intimate contact assumption could not be used; a three-dimensional model also showed that the thermocouple assemblies used with the platinum--platinum-10 percent rhodium were a significant perturbation to the system. An L-shaped steel casting was simulated and the results compared to those reported in the literature. The experimental data for this casting were reproduced within the accuracy permitted by the thermal conductivity of the sand, thus demonstrating that agreement can be obtained when the mold material does not act as a chill. (U.S.)
Sharma, A
1999-01-01
In this paper a detailed description of how to simulate charge transfer processes in a gaseous device is presented, taking the gas electron multiplier (GEM) as an example. A 3-dimensional simulation of the electric field and avalanche is performed. Results on charge transport are compared to experiment and agree within experimental errors; the avalanche mechanism and positive ion feedback are studied. The procedures used in the simulation are described in detail, and program scripts are appended. (15 refs).
Systems modeling and simulation applications for critical care medicine
2012-01-01
Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area. PMID:22703718
Systems modeling and simulation applications for critical care medicine.
Dong, Yue; Chbat, Nicolas W; Gupta, Ashish; Hadzikadic, Mirsad; Gajic, Ognjen
2012-06-15
Critical care delivery is a complex, expensive, error prone, medical specialty and remains the focal point of major improvement efforts in healthcare delivery. Various modeling and simulation techniques offer unique opportunities to better understand the interactions between clinical physiology and care delivery. The novel insights gained from the systems perspective can then be used to develop and test new treatment strategies and make critical care delivery more efficient and effective. However, modeling and simulation applications in critical care remain underutilized. This article provides an overview of major computer-based simulation techniques as applied to critical care medicine. We provide three application examples of different simulation techniques, including a) pathophysiological model of acute lung injury, b) process modeling of critical care delivery, and c) an agent-based model to study interaction between pathophysiology and healthcare delivery. Finally, we identify certain challenges to, and opportunities for, future research in the area.
Advanced Helmet Mounted Display (AHMD) for simulator applications
Sisodia, Ashok; Riser, Andrew; Bayer, Michael; McGuire, James P.
2006-05-01
The Advanced Helmet Mounted Display (AHMD), augmented reality visual system first presented at last year's Cockpit and Future Displays for Defense and Security conference, has now been evaluated in a number of military simulator applications and by L-3 Link Simulation and Training. This paper presents the preliminary results of these evaluations and describes current and future simulator and training applications for HMD technology. The AHMD blends computer-generated data (symbology, synthetic imagery, enhanced imagery) with the actual and simulated visible environment. The AHMD is designed specifically for highly mobile deployable, minimum resource demanding reconfigurable virtual training systems to satisfy the military's in-theater warrior readiness objective. A description of the innovative AHMD system and future enhancements will be discussed.
Distributed dynamic simulations of networked control and building performance applications.
Yahiaoui, Azzedine
2018-02-01
The use of computer-based automation and control systems for smart sustainable buildings, often so-called Automated Buildings (ABs), has become an effective way to automatically control, optimize, and supervise a wide range of building performance applications over a network while achieving the minimum energy consumption possible, and in doing so generally refers to Building Automation and Control Systems (BACS) architecture. Instead of costly and time-consuming experiments, this paper focuses on using distributed dynamic simulations to analyze the real-time performance of network-based building control systems in ABs and improve the functions of the BACS technology. The paper also presents the development and design of a distributed dynamic simulation environment with the capability of representing the BACS architecture in simulation by run-time coupling two or more different software tools over a network. The application and capability of this new dynamic simulation environment are demonstrated by an experimental design in this paper.
Exploring Various Monte Carlo Simulations for Geoscience Applications
Blais, R.
2010-12-01
Computer simulations are increasingly important in geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on (0, 1), can be very different depending on the selection of pseudo-random number (PRN), or chaotic random number (CRN) generators. Equidistributed quasi-random numbers (QRNs) can also be used in Monte Carlo simulations. In the evaluation of some definite integrals, the resulting error variances can even be of different orders of magnitude. Furthermore, practical techniques for variance reduction such as Importance Sampling and Stratified Sampling can be implemented to significantly improve the results. A comparative analysis of these strategies has been carried out for computational applications in planar and spatial contexts. Based on these experiments, and on examples of geodetic applications of gravimetric terrain corrections and gravity inversion, conclusions and recommendations concerning their performance and general applicability are included.
Mobile Applications and Multi-User Virtual Reality Simulations
Gordillo, Orlando Enrique
2016-01-01
This is my third internship with NASA and my second one at the Johnson Space Center. I work within the engineering directorate in ER7 (Software Robotics and Simulations Division) at a graphics lab called IGOAL. We are a very well-rounded lab because we have dedicated software developers and dedicated 3D artist, and when you combine the two, what you get is the ability to create many different things such as interactive simulations, 3D models, animations, and mobile applications.
International Nuclear Information System (INIS)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The mathematical models and numerical methods employed by the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multi-component flow in porous media, are described. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The component models of FEHM are discussed. The first major component, Flow- and Energy-Transport Equations, deals with heat conduction; heat and mass transfer with pressure- and temperature-dependent properties, relative permeabilities and capillary pressures; isothermal air-water transport; and heat and mass transfer with noncondensible gas. The second component, Dual-Porosity and Double-Porosity/Double-Permeability Formulation, is designed for problems dominated by fracture flow. Another component, The Solute-Transport Models, includes both a reactive-transport model that simulates transport of multiple solutes with chemical reaction and a particle-tracking model. Finally, the component, Constitutive Relationships, deals with pressure- and temperature-dependent fluid/air/gas properties, relative permeabilities and capillary pressures, stress dependencies, and reactive and sorbing solutes. Each of these components is discussed in detail, including purpose, assumptions and limitations, derivation, applications, numerical method type, derivation of numerical model, location in the FEHM code flow, numerical stability and accuracy, and alternative approaches to modeling the component
Nataraja, R M; Webb, N; Lopez, P J
2018-02-02
Surgical training has changed radically in the last few decades. The traditional Halstedian model of time-bound apprenticeship has been replaced with competency-based training. In our previous article, we presented an overview of learning theory relevant to clinical teaching; a summary for the busy paediatric surgeon and urologist. We introduced the concepts underpinning current changes in surgical education and training. In this next article, we give an overview of the various modalities of surgical simulation, the educational principles that underlie them, and potential applications in clinical practice. These modalities include; open surgical models and trainers, laparoscopic bench trainers, virtual reality trainers, simulated patients and role-play, hybrid simulation, scenario-based simulation, distributed simulation, virtual reality, and online simulation. Specific examples of technology that may be used for these modalities are included but this is not a comprehensive review of all available products. Copyright © 2018 Journal of Pediatric Urology Company. Published by Elsevier Ltd. All rights reserved.
High Performance Wideband CMOS CCI and its Application in Inductance Simulator Design
Directory of Open Access Journals (Sweden)
ARSLAN, E.
2012-08-01
Full Text Available In this paper, a new, differential pair based, low-voltage, high performance and wideband CMOS first generation current conveyor (CCI is proposed. The proposed CCI has high voltage swings on ports X and Y and very low equivalent impedance on port X due to super source follower configuration. It also has high voltage swings (close to supply voltages on input and output ports and wideband current and voltage transfer ratios. Furthermore, two novel grounded inductance simulator circuits are proposed as application examples. Using HSpice, it is shown that the simulation results of the proposed CCI and also of the presented inductance simulators are in very good agreement with the expected ones.
Simulations of X-ray synchrotron beams using the EGS4 code system in medical applications
International Nuclear Information System (INIS)
Orion, I.; Henn, A.; Sagi, I.; Dilmanian, F.A.; Pena, L.; Rosenfeld, A.B.
2001-01-01
X-ray synchrotron beams are commonly used in biological and medical research. The availability of intense, polarized low-energy photons from the synchrotron beams provides a high dose transfer to biological materials. The EGS4 code system, which includes the photoelectron angular distribution, electron motion inside a magnetic field, and the LSCAT package, found to be the appropriate Monte Carlo code for synchrotron-produced X-ray simulations. The LSCAT package was developed in 1995 for the EGS4 code to contain the routines to simulate the linear polarization, the bound Compton, and the incoherent scattering functions. Three medical applications were demonstrated using the EGS4 Monte Carlo code as a proficient simulation code system for the synchrotron low-energy X-ray source. (orig.)
International Nuclear Information System (INIS)
Koshizuka, Seiichi
2011-01-01
The Moving Particle Semi-implicit (MPS) method is one of the particle methods in which continuum mechanics is analyzed using the concept of particles. Since meshes are not used, large deformation of free surfaces and material interfaces can be simulated without the problems of mesh distortion. Thus, the MPS method has been applied to multiphase flow analysis in nuclear engineering. The advantages of the particle methods are also useful for applications in other engineering fields: ship engineering, civil engineering, microflow, biomechanics, visualization, etc. In this review, calculation examples are described and classified. Commercial codes have been released and applied in industries. The particle methods are also used in TV programs, movies, and computer games. Combinations of numerical techniques for multiphysics problems, fast calculations, and high-quality visualizations are expected to lead to real-time particle simulations for various new applications in the near future. (author)
Radiative Transfer Simulations of Cosmic Reionization With Pop II and III Stars
Trac, Hy; Cen, Renyue
2008-03-01
We have simulated 3 large volume, high resolution realizations of cosmic reionization using a hybrid code that combines a N-body algorithm for dark matter, prescriptions for baryons and star formation, and a radiative transfer algorithm for ionizing photons. Our largest simulation, with 24 billion particles in a 100 Mpc/h box, simultaneously provides (1) the mass resolution needed to resolve dark matter halos down to a virial temperatures of 104 K and (2) the volume needed to fairly sample highly biased sources and large HII regions. We model the stellar initial mass function (IMF) by following the spatially dependent gas metallicity evolution, and distinguish between the first generation (Population III) stars and the second generation (Population II) stars. The Population III stars, with a top-heavy IMF, produce an order of magnitude more ionizing photons at high redshifts z>~10, resulting in a more extended reionization. In our simulations, complete overlap of HII regions occurs at z~6.5 and the computed mass and volume weighted residual HI fractions at 5measurements from SDSS. The values for the Thomson optical depth are consistent within 1-σ of the current best-fit value from the WMAP Year 3 data release.
Simulation of ball motion and energy transfer in a planetary ball mill
International Nuclear Information System (INIS)
Lu Sheng-Yong; Mao Qiong-Jing; Li Xiao-Dong; Yan Jian-Hua; Peng Zheng
2012-01-01
A kinetic model is proposed for simulating the trajectory of a single milling ball in a planetary ball mill, and a model is also proposed for simulating the local energy transfer during the ball milling process under no-slip conditions. Based on the kinematics of ball motion, the collision frequency and power are described, and the normal impact forces and effective power are derived from analyses of collision geometry. The Hertzian impact theory is applied to formulate these models after having established some relationships among the geometric, dynamic, and thermophysical parameters. Simulation is carried out based on two models, and the effects of the rotation velocity of the planetary disk Ω and the vial-to-disk speed ratio ω/Ω on other kinetic parameters is investigated. As a result, the optimal ratio ω/Ω to obtain high impact energy in the standard operating condition at Ω = 800 rpm is estimated, and is equal to 1.15. (interdisciplinary physics and related areas of science and technology)
Verification of Heat and Mass Transfer Closures in Industrial Scale Packed Bed Reactor Simulations
Directory of Open Access Journals (Sweden)
Arpit Singhal
2018-03-01
Full Text Available Particle-resolved direct numerical simulation (PR-DNS is known to provide an accurate detailed insight into the local flow phenomena in static particle arrays. Most PR-DNS studies in literature do not account for reactions taking place inside the porous particles. In this study, PR-DNS is performed for catalytic reactions inside the particles using the multifluid approach where all heat and mass transfer phenomena are directly resolved both inside and outside the particles. These simulation results are then used to verify existing 1D model closures from literature over a number of different reaction parameters including different reaction orders, multiple reactions and reactants, interacting reactions, and reactions involving gas volume generation/consumption inside the particle. Results clearly showed that several modifications to existing 1D model closures are required to reproduce PR-DNS results. The resulting enhanced 1D model was then used to accurately simulate steam methane reforming, which includes all of the aforementioned reaction complexities. The effect of multiple reactants was found to be the most influential in this case.
Numerical simulation in material science: principles and applications
International Nuclear Information System (INIS)
Ruste, Jacky
2006-06-01
The objective is here to describe the main simulation techniques currently used in material science. After a presentation of the concepts of modelling and simulation, of their objectives and uses, of the issue of simulation scale, and of means of numeric simulation, the author addresses simulations performed at a nano-scopic scale: 'ab-initio' methods, molecular dynamics, examples of applications of ab-initio methods to energy issues or to the study of surface properties of nano-materials. The next chapter addresses various Monte Carlo methods (Metropolis, atomic kinetics, objects kinetics, transport with the simulation of particle trajectories, generation of random numbers). The next parts address simulations performed at a mesoscopic scale (simulation and microstructure, phase field methods, dynamics of discrete dislocations, homogeneous chemical kinetics) and at a macroscopic scale (medium discretization with the notion of mesh, simulation of structure mechanics and of fluid behaviour). The issues of code coupling and scale coupling are then discussed. The last part proposes an overview of virtual metallurgy and modelling of industrial processes (welding, vacuum arc re-fusion, rolling, forming)
Applications of Cerius2, software of molecular simulation
International Nuclear Information System (INIS)
Fernandez G, M.E.; Perez A, M.; Gutierrez W, C.E.
2007-01-01
Most of the investigations have a theoretical sustenance based on molecular simulation. The area of application of molecular simulation is very wide, in the Materials Technology Department assigned to the Applied Sciences Management have been treated problems about metallic nano structures, glasses, interfaces, and molecules, to sustain and to explain some of the experimental results. Energy calculations are carried out to determine minimum energy structures, for later on to carry out calculations of some of their properties; as well as the images simulation of Electron microscopy and X-ray diffraction. (Author)
Simulation Optimization for Transportation System: A Real Case Application
Directory of Open Access Journals (Sweden)
Muhammet Enes Akpınar
2017-02-01
Full Text Available Simulation applications help decision makers to give right decisions to eliminate some problems such as: create a new firm, need some changes inside a factory; improve the process of a hospital etc. In this engineering simulation study, there are two points which are used by students to arrive at the University. Initial point is the train station and the final point is the arrival point. Students’ transportation is provided with buses. The main problem is to decide the number of buses by taking number of student into consideration. To be able to solve this real-life application PROMODEL pack software is used.
A Standalone Vision Impairments Simulator for Java Swing Applications
Oikonomou, Theofanis; Votis, Konstantinos; Korn, Peter; Tzovaras, Dimitrios; Likothanasis, Spriridon
A lot of work has been done lately in an attempt to assess accessibility. For the case of web rich-client applications several tools exist that simulate how a vision impaired or colour-blind person would perceive this content. In this work we propose a simulation tool for non-web JavaTM Swing applications. Developers and designers face a real challenge when creating software that has to cope with a lot of interaction situations, as well as specific directives for ensuring an accessible interaction. The proposed standalone tool will assist them to explore user-centered design and important accessibility issues for their JavaTM Swing implementations.
Application Exercises Improve Transfer of Statistical Knowledge in Real-World Situations
Daniel, Frances; Braasch, Jason L. G.
2013-01-01
The present research investigated whether real-world application exercises promoted students' abilities to spontaneously transfer statistical knowledge and to recognize the use of statistics in real-world contexts. Over the course of a semester of psychological statistics, two classes completed multiple application exercises designed to mimic…
Aaltonen, Petri
2017-01-01
Distributed architectures have emerged as a significant area of computing affecting the consumer domain more and more. Distributed data transfer has proven to be a suitable and convenient technology for efficiently transferring files across multiple peers interested in obtaining an identical copy of the same data – for example entertainment or a block of application data. Current technology when discussing decentralized distributed systems are based on the Distributed Hash Table structures. F...
Speeding up predictive electromagnetic simulations for ITER application
Energy Technology Data Exchange (ETDEWEB)
Alekseev, A.B. [ITER Organization, Route de Vinon sur Verdon, 13067 St. Paul Lez Durance Cedex (France); Amoskov, V.M. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); Bazarov, A.M., E-mail: alexander.bazarov@gmail.com [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); Belov, A.V. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); Belyakov, V.A. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); St. Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg, 199034 (Russian Federation); Gapionok, E.I. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); Gornikel, I.V. [Alphysica GmbH, Unterreut, 6, D-76135, Karlsruhe (Germany); Gribov, Yu. V. [ITER Organization, Route de Vinon sur Verdon, 13067 St. Paul Lez Durance Cedex (France); Kukhtin, V.P.; Lamzin, E.A. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); Sytchevsky, S.E. [JSC “NIIEFA”, Doroga na Metallostroy 3, St. Petersburg, 196641 (Russian Federation); St. Petersburg State University, 7/9 Universitetskaya Embankment, St. Petersburg, 199034 (Russian Federation)
2017-05-15
Highlights: • A general concept of engineering EM simulator for tokamak application is proposed. • An algorithm is based on influence functions and superposition principle. • The software works with extensive databases and offers parallel processing. • The simulator allows us to obtain the solution hundreds times faster. - Abstract: The paper presents an attempt to proceed to a general concept of software environment for fast and consistent multi-task simulation of EM transients (engineering simulator for tokamak applications). As an example, the ITER tokamak is taken to introduce a computational technique. The strategy exploits parallel processing with optimized simulation algorithms based on using of influence functions and superposition principle to take full advantage of parallelism. The software has been tested on a multi-core supercomputer. The results were compared with data obtained in TYPHOON computations. A discrepancy was found to be below 0.4%. The computation cost for the simulator is proportional to the number of observation points. An average computation time with the simulator is found to be by hundreds times less than the time required to solve numerically a relevant system of differential equations for known software tools.
Speeding up predictive electromagnetic simulations for ITER application
International Nuclear Information System (INIS)
Alekseev, A.B.; Amoskov, V.M.; Bazarov, A.M.; Belov, A.V.; Belyakov, V.A.; Gapionok, E.I.; Gornikel, I.V.; Gribov, Yu. V.; Kukhtin, V.P.; Lamzin, E.A.; Sytchevsky, S.E.
2017-01-01
Highlights: • A general concept of engineering EM simulator for tokamak application is proposed. • An algorithm is based on influence functions and superposition principle. • The software works with extensive databases and offers parallel processing. • The simulator allows us to obtain the solution hundreds times faster. - Abstract: The paper presents an attempt to proceed to a general concept of software environment for fast and consistent multi-task simulation of EM transients (engineering simulator for tokamak applications). As an example, the ITER tokamak is taken to introduce a computational technique. The strategy exploits parallel processing with optimized simulation algorithms based on using of influence functions and superposition principle to take full advantage of parallelism. The software has been tested on a multi-core supercomputer. The results were compared with data obtained in TYPHOON computations. A discrepancy was found to be below 0.4%. The computation cost for the simulator is proportional to the number of observation points. An average computation time with the simulator is found to be by hundreds times less than the time required to solve numerically a relevant system of differential equations for known software tools.
Energy Technology Data Exchange (ETDEWEB)
Lima, Mario Jorge; Barbosa, Guilherme de Aquino [PETROBRAS, Rio de Janeiro, RJ (Brazil)]. E-mail: mariojl@petrobras.com.br; Beal, Claudio Rodrigo [PETROBRAS, Araucaria, PR (Brazil). Refinaria Presidente Getulio Vargas
2003-12-01
The mathematical modeling of Transfer and Storage Systems (TE) has been an important tool in support the decision making, for, due to the large number of its interfaces and the complexity of its interactions, many times it's difficult to predict all possible consequences of factors affecting the area (Revamps, new units, maintenance, market, etc.) and without the support of a consistent mathematical model, intuition some times leads to erroneous conclusions. The application of simulation techniques to models enables a wider use, for through the utilization of probabilistic models representing interfaces (market, supply, production, laboratory, etc.) it is possible to simulate logistic costs and service level in different scenarios, subsidizing technical and managerial decisions leading to optimization of inventories. Major advantages are: once it is created, a model can be used several times to assess the proposed projects and policies; the analysis methodology used by simulation enables the assessment of a proposed system, even if the entry data are still under form of schemes or drafts; simulation is generally easier to be applied than analytical methods. A partnership was created among several of PETROBRAS' managers for the development of the so-called 'Integral and Integrated Model of Transfer and Storage' or 'M2TE'. Examples of application of such model to some refineries and the relevant results obtained are reported below. (author)
Charge Transfer Properties Through Graphene for Applications in Gaseous Detectors
Franchino, S.; Hall-Wilton, R.; Jackman, R.B.; Muller, H.; Nguyen, T.T.; de Oliveira, R.; Oliveri, E.; Pfeiffer, D.; Resnati, F.; Ropelewski, L.; Smith, J.; van Stenis, M.; Streli, C.; Thuiner, P.; Veenhof, R.
2016-07-11
Graphene is a single layer of carbon atoms arranged in a honeycomb lattice with remarkable mechanical and electrical properties. Regarded as the thinnest and narrowest conductive mesh, it has drastically different transmission behaviours when bombarded with electrons and ions in vacuum. This property, if confirmed in gas, may be a definitive solution for the ion back-flow problem in gaseous detectors. In order to ascertain this aspect, graphene layers of dimensions of about 2x2cm$^2$, grown on a copper substrate, are transferred onto a flat metal surface with holes, so that the graphene layer is freely suspended. The graphene and the support are installed into a gaseous detector equipped with a triple Gaseous Electron Multiplier (GEM), and the transparency properties to electrons and ions are studied in gas as a function of the electric fields. The techniques to produce the graphene samples are described, and we report on preliminary tests of graphene-coated GEMs.
Gelation induced supramolecular chirality: chirality transfer, amplification and application.
Duan, Pengfei; Cao, Hai; Zhang, Li; Liu, Minghua
2014-08-14
Supramolecular chirality defines chirality at the supramolecular level, and is generated from the spatial arrangement of component molecules assembling through non-covalent interactions such as hydrogen bonding, van der Waals interactions, π-π stacking, hydrophobic interactions and so on. During the formation of low molecular weight gels (LMWGs), one kind of fascinating soft material, one frequently encounters the phenomenon of chirality as well as chiral nanostructures, either from chiral gelators or even achiral gelators. A view of gelation-induced supramolecular chirality will be very helpful to understand the self-assembly process of the gelator molecules as well as the chiral structures, the regulation of the chirality in the gels and the development of the "smart" chiral materials such as chiroptical devices, catalysts and chiral sensors. It necessitates fundamental understanding of chirality transfer and amplification in these supramolecular systems. In this review, recent progress in gelation-induced supramolecular chirality is discussed.
Wireless Power Transfer System Architectures for Portable or Implantable Applications
Directory of Open Access Journals (Sweden)
Yan Lu
2016-12-01
Full Text Available This paper discusses the near-field inductive coupling wireless power transfer (WPT at the system level, with detailed analyses on each state-of-the-art WPT output voltage regulation topologies. For device miniaturization and power loss reduction, several novel architectures for efficient WPT were proposed in recent years to reduce the number of passive components as well as to improve the system efficiency or flexibility. These schemes are systematically studied and discussed in this paper. The main contribution of this paper is to provide design guidelines for WPT system design. In addition, possible combinations of the WPT building block configurations are summarized, compared, and investigated for potential new architectures.
The simulation calculation of acoustics energy transfer through the material structure
Directory of Open Access Journals (Sweden)
Zvolenský Peter
2016-01-01
Full Text Available The paper deals with the modification of the rail passenger coach floor design aimed at improvement of sound reduction index. Refurbishing was performed by using a new acoustic material with a filamentary microstructure. The materials proposed in research were compared by simulation calculation of acoustic energy transfer trough porous microstructure of filamentary material, and the effect of material porosity on sound reduction index and sound absorption coefficient were observed. This proposed filamentary material can be used in the railway bed structure, too. High degree of noise absorbing, resistance to climate conditions, low specific mass, enable to choose a system of low anti-noise barriers having similar properties as standard high anti-noise walls..
International Nuclear Information System (INIS)
Allen, Lucy R; Paci, Emanuele
2010-01-01
Fluorescence resonance energy transfer is a powerful technique which is often used to probe the properties of proteins and complex macromolecules. The technique relies on relatively large fluorescent dyes which are engineered into the molecule of interest. In the case of small proteins, these dyes may affect the stability of the protein, and modify the folding kinetics and the folding mechanisms which are being probed. Here we use atomistic simulation to investigate the effect that commonly used fluorescent dyes have on the folding of a four-helix bundle protein. We show that, depending on where the dyes are attached, their effect on the kinetic and thermodynamic properties of the protein may be significant. We find that, while the overall folding mechanism is not affected by the dyes, they can destabilize, or even stabilize, intermediate states.
CLIC transfer structure (CTS) simulations using open-quotes MAFIAclose quotes
International Nuclear Information System (INIS)
Millich, A.
1993-01-01
In the two-beam accelerator scheme of CLIC the Transfer Structure serves the purpose of extracting 30 GHz power from the drive beam. The purpose of the 3D simulations of the 30 GHz CTS using the MAFIA set of codes has been to assist the designers in the choice of the final dimensions by appreciating the sensitivity of the RF characteristics to the mechanical parameters. The results of the frequency domain analysis have allowed plotting of the dispersion curves of the waveguides and appreciation the relative importance of higher modes. The time domain investigations have produced results on the shape and magnitude of the beam-induced longitudinal and transverse wake fields and of the loss factors
Kinematics Analysis and Simulation on Transfer Robot with Six Degrees of Freedom
Directory of Open Access Journals (Sweden)
Yi Lu
2014-08-01
Full Text Available Study focuses on transfer robot with Six Degrees of Freedom, establishing kinematic equation by D-H method, analyzing forward kinematics and obtaining inverse kinematics by using method of inverse transform. Based on vector product, it develops velocity Jacobian matrix of robot. The geometric model of robot virtual prototype is established by SolidWorks software and generates parameters such as mass and moment. Kinematic simulation for robot is performed by Mathematica software and develops curve graph of displacement, velocity and accelerated speed in x, y and z direction in end executor center of robot with measurement, analysis and assessment, which provides foundation for further kinematics analysis and structure optimization as well as motion control of robot.
Cai, Yaomin; Guo, Zhixiong
2018-04-20
The Monte Carlo model was developed to simulate the collimated solar irradiation transfer and energy harvest in a hollow louver made of silica glass and filled with water. The full solar spectrum from the air mass 1.5 database was adopted and divided into various discrete bands for spectral calculations. The band-averaged spectral properties for the silica glass and water were obtained. Ray tracing was employed to find the solar energy harvested by the louver. Computational efficiency and accuracy were examined through intensive comparisons of different band partition approaches, various photon numbers, and element divisions. The influence of irradiation direction on the solar energy harvest efficiency was scrutinized. It was found that within a 15° polar angle of incidence, the harvested solar energy in the louver was high, and the total absorption efficiency reached 61.2% under normal incidence for the current louver geometry.
DEVELOPMENT MANAGEMENT TRANSFER PRICING BY APPLICATION OF THE INTERVAL ESTIMATES
Directory of Open Access Journals (Sweden)
Elena B. Shuvalova
2013-01-01
Full Text Available The article discusses the application of the method of interval estimation of conformity of the transaction price the market price. A comparative analysis of interval and point estimate. Identified the positive and negative effects of using interval estimation.
A Forward GPS Multipath Simulator Based on the Vegetation Radiative Transfer Equation Model.
Wu, Xuerui; Jin, Shuanggen; Xia, Junming
2017-06-05
Global Navigation Satellite Systems (GNSS) have been widely used in navigation, positioning and timing. Nowadays, the multipath errors may be re-utilized for the remote sensing of geophysical parameters (soil moisture, vegetation and snow depth), i.e., GPS-Multipath Reflectometry (GPS-MR). However, bistatic scattering properties and the relation between GPS observables and geophysical parameters are not clear, e.g., vegetation. In this paper, a new element on bistatic scattering properties of vegetation is incorporated into the traditional GPS-MR model. This new element is the first-order radiative transfer equation model. The new forward GPS multipath simulator is able to explicitly link the vegetation parameters with GPS multipath observables (signal-to-noise-ratio (SNR), code pseudorange and carrier phase observables). The trunk layer and its corresponding scattering mechanisms are ignored since GPS-MR is not suitable for high forest monitoring due to the coherence of direct and reflected signals. Based on this new model, the developed simulator can present how the GPS signals (L1 and L2 carrier frequencies, C/A, P(Y) and L2C modulations) are transmitted (scattered and absorbed) through vegetation medium and received by GPS receivers. Simulation results show that the wheat will decrease the amplitudes of GPS multipath observables (SNR, phase and code), if we increase the vegetation moisture contents or the scatters sizes (stem or leaf). Although the Specular-Ground component dominates the total specular scattering, vegetation covered ground soil moisture has almost no effects on the final multipath signatures. Our simulated results are consistent with previous results for environmental parameter detections by GPS-MR.
Integrated simulation of continuous-scale and discrete-scale radiative transfer in metal foams
Xia, Xin-Lin; Li, Yang; Sun, Chuang; Ai, Qing; Tan, He-Ping
2018-06-01
A novel integrated simulation of radiative transfer in metal foams is presented. It integrates the continuous-scale simulation with the direct discrete-scale simulation in a single computational domain. It relies on the coupling of the real discrete-scale foam geometry with the equivalent continuous-scale medium through a specially defined scale-coupled zone. This zone holds continuous but nonhomogeneous volumetric radiative properties. The scale-coupled approach is compared to the traditional continuous-scale approach using volumetric radiative properties in the equivalent participating medium and to the direct discrete-scale approach employing the real 3D foam geometry obtained by computed tomography. All the analyses are based on geometrical optics. The Monte Carlo ray-tracing procedure is used for computations of the absorbed radiative fluxes and the apparent radiative behaviors of metal foams. The results obtained by the three approaches are in tenable agreement. The scale-coupled approach is fully validated in calculating the apparent radiative behaviors of metal foams composed of very absorbing to very reflective struts and that composed of very rough to very smooth struts. This new approach leads to a reduction in computational time by approximately one order of magnitude compared to the direct discrete-scale approach. Meanwhile, it can offer information on the local geometry-dependent feature and at the same time the equivalent feature in an integrated simulation. This new approach is promising to combine the advantages of the continuous-scale approach (rapid calculations) and direct discrete-scale approach (accurate prediction of local radiative quantities).
Three-dimensional Hydrodynamical Simulations of Mass Transfer in Binary Systems by a Free Wind
Energy Technology Data Exchange (ETDEWEB)
Liu, Zheng-Wei; Stancliffe, Richard J.; Abate, Carlo; Matrozis, Elvijs, E-mail: zwliu@ynao.ac.cn [Argelander-Institut für Astronomie, Auf dem Hügel 71, D-53121, Bonn (Germany)
2017-09-10
A large fraction of stars in binary systems are expected to undergo mass and angular momentum exchange at some point in their evolution, which can drastically alter the chemical and dynamical properties and fates of the systems. Interaction by stellar wind is an important process in wide binaries. However, the details of wind mass transfer are still not well understood. We perform three-dimensional hydrodynamical simulations of wind mass transfer in binary systems to explore mass-accretion efficiencies and geometries of mass outflows, for a range of mass ratios from 0.05 to 1.0. In particular, we focus on the case of a free wind, in which some physical mechanism accelerates the expelled wind material balancing the gravity of the mass-losing star with the wind velocity comparable to the orbital velocity of the system. We find that the mass-accretion efficiency and accreted specific angular momentum increase with the mass ratio of the system. For an adiabatic wind, we obtain that the accretion efficiency onto the secondary star varies from about 0.1% to 8% for mass ratios between 0.05 and 1.0.
On heat transfer characteristics of real and simulant melt pool experiments
Energy Technology Data Exchange (ETDEWEB)
Dinh, T.N.; Nourgaliev R.R.; Sehgal, B.R. [Royal Institute of Technology, Stockholm (Sweden)
1995-09-01
The paper presents results of analytical studies of natural convection heat transfer in scaled and/or simulant melt pool experiments related to the PWR in-vessel melt retention issue. Specific reactor-scale effects of a large decay-heated core melt pool in the reactor pressure vessel lower plenum are first reviewed, and then the current analytical capability of describing physical processes under prototypical situations is examined. Experiments and experimental approaches are analysed by focusing on their ability to represent prototypical situations. Calculations are carried out in order to assess the significance of some selected effects, including variations in melt properties, pool geometry and heating conditions. Rayleigh numbers in the present analysis are limited to 10{sup 12}, where uncertainties in turbulence modeling are not overriding other uncertainties. The effects of fluid Prandtl number on heat transfer to the lowermost part of cooled pool walls are examined for square and semicircular cavities. Calculations are performed also to explore limitations of using side-wall heating and direct electrical heating in reproducing the physical picture of interest. Needs for further experimental and analytical efforts are discussed as well.
Simulation of particle nucleation and growth in transferred arc thermal plasma system
International Nuclear Information System (INIS)
Tak, A.K.; Das, A.K.
2014-01-01
A two dimensional model has been applied to analyze the arc-anode interaction and fluid flow in a transferred arc based system used for producing metal and ceramic nano-powder. Computational domain consists of an aluminium anode and a transferred arc plasma torch located in water cooled cylindrical chamber. Various user defined subroutines have been developed and interfaced to commercial CFD code to model the plasma flow in the torch and its interaction with anode. Computations were done for various arc currents and flow rates of plasma forming gas. Exchange of heat and current between plasma and anode is computed. Effect of electromagnetic forces on the fluid flow is analyzed. Spatial distribution of variables such as temperature, velocity, current density, Lorentz forces has also been computed. Simulations show a strong flow recirculation and resulting arc contraction near the anode surface. We have discussed how the change in fluid flow under electromagnetic forces will affect the rate of metal evaporation and flow of vapors in the plasma gas
Confirmation of MRS/MPC transfer facility sizing using simulation modeling
International Nuclear Information System (INIS)
Houston, E.S.; Hadley, J.D.
1994-01-01
The Nuclear Waste Policy Act (NWPA) of 1982, as amended, requires the Department of Energy to begin receiving spent nuclear fuel (SNF) from utilities in January 1998. A repository will not be completed in time for the scheduled receipt of SNF. A Monitored Retrievable Storage (MRS) Facility is therefore a feasible solution to bridge the gap between the 1998 date for fuel acceptance and the startup of the repository. SNF will be stored temporarily at the MRS and later retrieved from storage and shipped to the repository. To simplify fuel handling and to standardize components, the multi-purpose canister (MPC) concept was investigated. The MPC would be a sealed, metallic canister containing multiple SNF assemblies in a dry inert environment. MPCs would be placed into different overpacks for transportation, storage, and disposal at the repository. The MRS transfer facility MPC and SNF throughput requirements, assumptions, and operating concepts were used to initially determine the size of the facility and the major equipment contained within the facility. This initial estimate was based on simplified calculation techniques. The adequacy of the design configurations were then confirmed using SLAM simulation modeling software. Modeling incorporates uncertainties in task durations, the effects of equipment reliability, availability of personnel and equipment, and system breakdowns. This paper describes how the model was developed and how it is used to verify the transfer facility size. It also illustrates how problems with the facility design, operational concepts, and staffing are identified with the results of the model
Simulation and Optimization of Air-Cooled PEMFC Stack for Lightweight Hybrid Vehicle Application
Directory of Open Access Journals (Sweden)
Jingming Liang
2015-01-01
Full Text Available A model of 2 kW air-cooled proton exchange membrane fuel cell (PEMFC stack has been built based upon the application of lightweight hybrid vehicle after analyzing the characteristics of heat transfer of the air-cooled stack. Different dissipating models of the air-cooled stack have been simulated and an optimal simulation model for air-cooled stack called convection heat transfer (CHT model has been figured out by applying the computational fluid dynamics (CFD software, based on which, the structure of the air-cooled stack has been optimized by adding irregular cooling fins at the end of the stack. According to the simulation result, the temperature of the stack has been equally distributed, reducing the cooling density and saving energy. Finally, the 2 kW hydrogen-air air-cooled PEMFC stack is manufactured and tested by comparing the simulation data which is to find out its operating regulations in order to further optimize its structure.
Calibration Transfer in LIBS and Raman Spectroscopy for Planetary Applications
Dyar, M. D.; Thomas, B. F.; Parente, M.; Gemp, I.; Mullen, T. H.
2017-12-01
Planetary scientists rely on spectral libraries and instrument reproducibility to interpret results from missions. Major investments have been made into assembling libraries, but they often naively assume that spectra of single crystals versus powders and from varying instruments will be the same. Calibration transfer (CT) seeks to algorithmically resolve discrepancies among datasets from different instruments or conditions. It offers the ability to align suites of spectra with a small number of common samples, allowing better models to be built with combined data sets. LIBS and Raman data present different challenges for CT. Quantitative geochemical analyses by LIBS spectroscopy are limited by lack of consistency among repeated laser shots and across instruments. Many different factors affect the presence/absence of emission lines and their intensities, such as laser power/plasma temperature, angle of incidence, detector sensitivity/resolution. To overcome these, models in which disparate datasets are projected into a joint low-dimensional subspace where all data can be aligned before quantitative analysis, such as Correlation Analysis for Domain Adaptation (CADA), have proven very effective. They require some overlap between the populations of spectra to be aligned. For example, prediction of SiO2 on 80 samples from two different LIBS labs show errors of ±16-29 wt.% when the training and test sets have no overlap, and ±4.94 wt% SiO2 when CADA is used. Uncorrected Earth-Mars spectral differences are likely to cause errors with the same order of magnitude. As with other types of reflectance spectroscopy, Raman data are plagued by differences among single crystal/powder samples and laser wavelength that affect peak intensities, and by spectral offsets from instruments with varying resolution and wavenumber alignment schemes. These problems persist even within the archetypal RRUFF database. Pre-processing transformation functions such as optimized baseline removal
Numerical and experimental study of heat transfers in an arc plasma. Application to TIG arc welding
International Nuclear Information System (INIS)
Borel, Damien
2013-01-01
The arc welding is used for many industrial applications, especially GTA welding. Given the excellent quality of the produced welds, GTA welding is used for the majority of the interventions (repairs, joined sealing) on the French nuclear park. This work is part of a project carried out by EDF R and D which aims to simulate the whole process and builds a tool able to predict the welds quality. In this study, we focus on the development of a predictive model of the exchanged heat flux at the arc - work piece interface, responsible of the work piece fusion. The modeling of the arc plasma using the electric module of the hydrodynamics software Code Saturne R developed by EDF R and D is required. Two types of experimental tests are jointly carried out to validate this numerical model: i) on density and temperature measurements of plasma by atomic emission spectroscopy and ii) on the evaluation of the heat transfers on the work piece surface. This work also aims at demonstrate that the usual method of using an equivalent thermal source to model the welding process, can be replaced by our plasma model, without the numerous trials inherent to the usual method. (author)
International Nuclear Information System (INIS)
Chernikova, E A; Glukhov, L M; Krasovskiy, V G; Kustov, L M; Vorobyeva, M G; Koroteev, A A
2015-01-01
The practical aspects and prospects of application of ionic liquids as heat transfer fluids are discussed. The physicochemical properties of ionic liquids (heat capacity, thermal conductivity, thermal and radiation stability, viscosity, density, saturated vapour pressure and corrosion activity) are compared with the properties of some commercial heat transfer fluids. The issues of toxicity of ionic liquids are considered. Much attention is paid to known organosilicon heat transfer fluids, which are considered to have much in common with ionic liquids in the set of properties and are used in the review as reference materials. The bibliography includes 132 references
Application to transfer radioactive waste to the Nevada Test Site
International Nuclear Information System (INIS)
1992-01-01
All waste described in this application has been, and will be, generated by LANL in support of the nuclear weapons test program at the NTS. All waste originates on the NTS. DOE Order 5820.2A states that low-level radioactive waste shall be disposed of at the site where it is generated, when practical. Since the waste is produced at the NTS, it is cost effective for LANL to dispose of the waste at the NTS
Application of Discrete Event Simulation in Mine Production Forecast
African Journals Online (AJOL)
Application of Discrete Event Simulation in Mine Production Forecast. Felix Adaania Kaba, Victor Amoako Temeng, Peter Arroja Eshun. Abstract. Mine production forecast is pertinent to mining as it serves production goals for a production period. Perseus Mining Ghana Limited (PMGL), Ayanfuri, deterministically forecasts ...
Eleiwi, Fadi
2015-12-01
Sustainable desalination technologies are the smart solution for producing fresh water and preserve the environment and energy by using sustainable renewable energy sources. Membrane distillation (MD) is an emerging technology which can be driven by renewable energy. It is an innovative method for desalinating seawater and brackish water with high quality production, and the gratitude is to its interesting potentials. MD includes a transfer of water vapor from a feed solution to a permeate solution through a micro-porous hydrophobic membrane, rejecting other non-volatile constituents present in the influent water. The process is driven by the temperature difference along the membrane boundaries. Different control applications and supervision techniques would improve the performance and the efficiency of the MD process, however controlling the MD process requires comprehensive mathematical model for the distributed heat transfer mechanisms inside the process. Our objective is to propose a dynamic mathematical model that accounts for the time evolution of the involved heat transfer mechanisms in the process, and to be capable of hosting intermittent energy supplies, besides managing the production rate of the process, and optimizing its energy consumption. Therefore, we propose the 2D Advection-Diffusion Equation model to account for the heat diffusion and the heat convection mechanisms inside the process. Furthermore, experimental validations have proved high agreement between model simulations and experiments with less than 5% relative error. Enhancing the MD production is an anticipated goal, therefore, two main control strategies are proposed. Consequently, we propose a nonlinear controller for a semi-discretized version of the dynamic model to achieve an asymptotic tracking for a desired temperature difference. Similarly, an observer-based feedback control is used to track sufficient temperature difference for better productivity. The second control strategy
Energy Technology Data Exchange (ETDEWEB)
Riffault, V.; Locoge, N. [Ecole des Mines de Douai, Dept. Chimie et Environnement, 59 - Douai (France); Leblanc, E.; Vermeulen, M. [Ecole des Mines de Douai, 59 (France)
2011-05-15
This paper presents an application simulating radioactive gamma sources developed in the 'Ecole des Mines' of Douai (France). It generates raw counting data as an XML file which can then be statistically exploited to illustrate the various concepts of radioactivity (exponential decay law, isotropy of the radiation, attenuation of radiation in matter). The application, with a spread sheet for data analysis and lab procedures, has been released under free license. (authors)
Simulation of lean NOx trap performance with microkinetic chemistry and without mass transfer.
Energy Technology Data Exchange (ETDEWEB)
Larson, Rich; Daw, C. Stuart (Oak Ridge National Laboratory, Knoxville, TN); Pihl, Josh A. (Oak Ridge National Laboratory, Knoxville, TN); Chakravarthy, V. Kalyana (Oak Ridge National Laboratory, Knoxville, TN)
2011-08-01
A microkinetic chemical reaction mechanism capable of describing both the storage and regeneration processes in a fully formulated lean NO{sub x} trap (LNT) is presented. The mechanism includes steps occurring on the precious metal, barium oxide (NO{sub x} storage), and cerium oxide (oxygen storage) sites of the catalyst. The complete reaction set is used in conjunction with a transient plug flow reactor code to simulate not only conventional storage/regeneration cycles with a CO/H{sub 2} reductant, but also steady flow temperature sweep experiments that were previously analyzed with just a precious metal mechanism and a steady state code. The results show that NO{sub x} storage is not negligible during some of the temperature ramps, necessitating a re-evaluation of the precious metal kinetic parameters. The parameters for the entire mechanism are inferred by finding the best overall fit to the complete set of experiments. Rigorous thermodynamic consistency is enforced for parallel reaction pathways and with respect to known data for all of the gas phase species involved. It is found that, with a few minor exceptions, all of the basic experimental observations can be reproduced with these purely kinetic simulations, i.e., without including mass-transfer limitations. In addition to accounting for normal cycling behavior, the final mechanism should provide a starting point for the description of further LNT phenomena such as desulfation and the role of alternative reductants.
Simulation of seagrass bed mapping by satellite images based on the radiative transfer model
Sagawa, Tatsuyuki; Komatsu, Teruhisa
2015-06-01
Seagrass and seaweed beds play important roles in coastal marine ecosystems. They are food sources and habitats for many marine organisms, and influence the physical, chemical, and biological environment. They are sensitive to human impacts such as reclamation and pollution. Therefore, their management and preservation are necessary for a healthy coastal environment. Satellite remote sensing is a useful tool for mapping and monitoring seagrass beds. The efficiency of seagrass mapping, seagrass bed classification in particular, has been evaluated by mapping accuracy using an error matrix. However, mapping accuracies are influenced by coastal environments such as seawater transparency, bathymetry, and substrate type. Coastal management requires sufficient accuracy and an understanding of mapping limitations for monitoring coastal habitats including seagrass beds. Previous studies are mainly based on case studies in specific regions and seasons. Extensive data are required to generalise assessments of classification accuracy from case studies, which has proven difficult. This study aims to build a simulator based on a radiative transfer model to produce modelled satellite images and assess the visual detectability of seagrass beds under different transparencies and seagrass coverages, as well as to examine mapping limitations and classification accuracy. Our simulations led to the development of a model of water transparency and the mapping of depth limits and indicated the possibility for seagrass density mapping under certain ideal conditions. The results show that modelling satellite images is useful in evaluating the accuracy of classification and that establishing seagrass bed monitoring by remote sensing is a reliable tool.
Pore to core scale simulation of the mass transfer with mineral reaction in porous media
International Nuclear Information System (INIS)
Bekri, S.; Renard, S.; Delprat-Jannaud, F.
2015-01-01
Pore Network Model (PNM) is used to simulate mass transfer with mineral reaction in a single phase flow through porous medium which is here a sandstone sample from the reservoir formation of the Pakoslaw gas field. The void space of the porous medium is represented by an idealized geometry of pore-bodies joined by pore-throats. Parameters defining the pore-bodies and the pore-throats distribution are determined by an optimization process aiming to match the experimental Mercury Intrusion Capillary Pressure (MICP) curve and petrophysical properties of the rock such as intrinsic permeability and formation factor. The generated network is used first to simulate the multiphase flow by solving Kirchhoff's laws. The capillary pressure and relative permeability curves are derived. Then, reactive transport is addressed under asymptotic regime where the solute concentration undergoes an exponential evolution with time. The porosity/ permeability relationship and the three phenomenological coefficients of transport, namely the solute velocity, the dispersion and the mean reaction rate are determined as functions of Peclet and Peclet-Damkohler dimensionless numbers. Finally, the role of the dimensionless numbers on the reactive flow properties is highlighted. (authors)
Discrete event simulation for petroleum transfers involving harbors, refineries and pipelines
Energy Technology Data Exchange (ETDEWEB)
Martins, Marcella S.R.; Lueders, Ricardo; Delgado, Myriam R.B.S. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil)
2009-07-01
Nowadays a great effort has been spent by companies to improve their logistics in terms of programming of events that affect production and distribution of products. In this case, simulation can be a valuable tool for evaluating different behaviors. The objective of this work is to build a discrete event simulation model for scheduling of operational activities in complexes containing one harbor and two refineries interconnected by a pipeline infrastructure. The model was developed in Arena package, based on three sub-models that control pier allocation, loading of tanks, and transfers to refineries through pipelines. Preliminary results obtained for a given control policy, show that profit can be calculated by taking into account many parameters such as oil costs on ships, pier using, over-stay of ships and interface costs. Such problem has already been considered in the literature but using different strategies. All these factors should be considered in a real-world operation where decision making tools are necessary to obtain high returns. (author)
Molecular dynamics simulations and applications in computational toxicology and nanotoxicology.
Selvaraj, Chandrabose; Sakkiah, Sugunadevi; Tong, Weida; Hong, Huixiao
2018-02-01
Nanotoxicology studies toxicity of nanomaterials and has been widely applied in biomedical researches to explore toxicity of various biological systems. Investigating biological systems through in vivo and in vitro methods is expensive and time taking. Therefore, computational toxicology, a multi-discipline field that utilizes computational power and algorithms to examine toxicology of biological systems, has gained attractions to scientists. Molecular dynamics (MD) simulations of biomolecules such as proteins and DNA are popular for understanding of interactions between biological systems and chemicals in computational toxicology. In this paper, we review MD simulation methods, protocol for running MD simulations and their applications in studies of toxicity and nanotechnology. We also briefly summarize some popular software tools for execution of MD simulations. Published by Elsevier Ltd.
Application perspectives of simulation techniques CFD in nuclear power plants
International Nuclear Information System (INIS)
Galindo G, I. F.
2013-10-01
The scenarios simulation in nuclear power plants is usually carried out with system codes that are based on concentrated parameters networks. However situations exist in some components where the flow is predominantly 3-D, as they are the natural circulation, mixed and stratification phenomena. The simulation techniques of computational fluid dynamics (CFD) have the potential to simulate these flows numerically. The use of CFD simulations embraces many branches of the engineering and continues growing, however, in relation to its application with respect to the problems related with the safety in nuclear power plants, has a smaller development, although is accelerating quickly and is expected that in the future they play a more emphasized paper in the analyses. A main obstacle to be able to achieve a general acceptance of the CFD is that the simulations should have very complete validation studies, sometimes not available. In this article a general panorama of the state of the methods application CFD in nuclear power plants is presented and the problem associated to its routine application and acceptance, including the view point of the regulatory authorities. Application examples are revised in those that the CFD offers real benefits and are also presented two illustrative study cases of the application of CFD techniques. The case of a water recipient with a heat source in its interior, similar to spent fuel pool of a nuclear power plant is presented firstly; and later the case of the Boron dilution of a water volume that enters to a nuclear reactor is presented. We can conclude that the CFD technology represents a very important opportunity to improve the phenomena understanding with a strong component 3-D and to contribute in the uncertainty reduction. (Author)
User's Manual for the FEHM Application-A Finite-Element Heat- and Mass-Transfer Code
Energy Technology Data Exchange (ETDEWEB)
George A. Zyvoloski; Bruce A. Robinson; Zora V. Dash; Lynn L. Trease
1997-07-07
This document is a manual for the use of the FEHM application, a finite-element heat- and mass-transfer computer code that can simulate nonisothermal multiphase multicomponent flow in porous media. The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. The code is also capable of incorporating the various adsorption mechanisms, ranging from simple linear relations to nonlinear isotherms, needed to describe the very complex transport processes at Yucca Mountain. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data
Koku, Harun
Limitations of mass transfer in chromatographic bioseparations employing traditional packed particles have fuelled the inception and development of alternative stationary phases with improved performance characteristics. This work investigates case studies in two categories of these alternative media, namely polymer-modified packed particles and continuous monolithic phases, for insight into their enhanced properties. Specifically, high-resolution microscopy techniques and image-based analysis algorithms were implemented to extract morphology information for these materials, in an attempt to elucidate the relation between microstructure and performance. For the monolith, mesoscopic simulation methods were also employed for a more rigorous analysis of the flow and dispersion behavior. Scanning and transmission electron microscopy images of the commercial polymer-modified, agarose-based particle Sepharose XL were compared to those for its unmodified counterpart, Sepharose FF. Local regions in the composite dextran-agarose Sepharose XL particles were noted to exhibit a denser network of fibers and smaller pore sizes overall, compared to those in the traditional Sepharose FF particles. Images of particles equilibrated with high concentrations of protein revealed a significant difference in protein localization patterns, with the stained protein in XL occupying a markedly higher area fraction of the images. This suggests a higher volume available for adsorption and provides visual clues into how the consistently higher static capacity of these polymer-modified particles is manifested. Treatment of the XL particles with dextranase, an enzyme that breaks down dextran, resulted in a reduction of protein coverage, providing evidence that it is indeed the dextran that is responsible for the improved static capacity in this polymer-modified stationary phase. Imaging and image analysis techniques were also used to analyze the commercial CIM(TM) disk monolith. Two- and three
ANALYSIS, OPTIMAL CONTROL, AND SIMULATION OF CONDUCTIVE-RADIATIVE HEAT TRANSFER
Directory of Open Access Journals (Sweden)
Peter Philip
2011-01-01
Full Text Available This article surveys recent results regarding the existence of weaksolutions to quasilinear partial differential equations(PDEcouplednonlocally by the integral operator of the radiosity equation, modeling conductive-radiative heat transfer. Both the stationary and the transient case are considered. For the stationary case, an optimal control problem with control constraints is presented withfirst-order necessary optimality conditions, where recent results on the solution theory of the linearized state equation allow to close a previous gap.Afinite volume scheme for the discretization of the stationary system is described and, based on this scheme, a numerical computation of the temperaturefield(solution of the state equationis shown as well as the numerical solution to a realistic control problem in the context of industrial applications in crystal growth.
Heaters to simulate fuel pins for heat transfer tests in single-phase liquid-metal-flow
International Nuclear Information System (INIS)
Casal, V.; Graf, E.; Hartmann, W.
1976-09-01
The development of heaters for thermal simulation of the fuel elements of liquid metal cooled fast breeder reactors (SNR) is reported. Beginning with the experimental demands various heating methods are discussed for thermodynamic investigations of the heat transfer in liquid metals. Then a preferred heater rod is derived to simulate the fuel pins of a SNR. Finally it is reported on the fabrication and the operation practice. (orig.) [de
Energy Technology Data Exchange (ETDEWEB)
Wanninger, Andreas; Ceuca, Sabin Cristian; Macian-Juan, Rafael [Technische Univ. Muenchen, Garching (Germany). Dept. of Nuclear Engineering
2013-07-01
Different approaches for the calculation of Direct Contact Condensation (DCC) using Heat Transfer Coefficients (HTC) based on the Surface Renewal Theory (SRT) are tested using the CFD simulation tool ANSYS CFX. The present work constitutes a preliminary study of the flow patterns and conditions observed using different HTC models. A complex 3D flow pattern will be observed in the CFD simulations as well as a strong coupling between the condensation rate and the two-phase flow dynamics. (orig.)
Numerical simulation of a novel non-transferred arc plasma torch operating with nitrogen
International Nuclear Information System (INIS)
Hiremath, Gavisiddayya; Kandasamy, Ramachandran; Ganesh, Ravi
2015-01-01
High power plasma torches with higher electro-thermal efficiency are required for industrial applications. To increase the plasma power and electrothermal efficiency, conventional torches are being modified to operate with molecular gases such as air and nitrogen. Since increasing arc current enhances the heat loss to the anode, torches are being developed to operate under high voltage and low current. The plasma flow dynamics and electromagnetic coupling with plasma flow inside the torch etc. are highly complex and knowledge on the same is required to develop high torches with higher efficiency. Unfortunately detailed experimentation on the same is very difficult. Numerical modeling and simulation is one of the best tools to understand the physics involved in such complex processes. A 2D numerical model is developed to simulate the characteristics of the plasma inside the torch. Though plasma is not in local thermodynamic equilibrium (LTE) close to the electrodes, LTE is assumed everywhere in the plasma to avoid complex and time consuming calculations. Other valid assumptions used in the model are plasma flow is optically thin, laminar and incompressible. Flow, energy and electromagnetic equations are solved with appropriate boundary conditions and volume sources using SIMPLE algorithm with finite volume method. Temperature dependent thermophysical properties of nitrogen are used for the simulations. Simulations are carried out for different experimental conditions. The effects of arc current, gas flow rate of plasma generating gas and sheath gas injected above the bottom anode on the arc voltage, electrothermal efficiency of the torch, plasma temperature and plasma velocity are simulated. Predicted results are compared with experimental results. (author)
An MCNP simulation for API applications to waste management issues
International Nuclear Information System (INIS)
Tunnell, L.N.
1994-01-01
Issues associated with waste management have increasingly become a focal point of attention for both the government and private sector since the end of the cold war. The problem are difficult to solve; the solutions are expensive to implement. Consequently, the development of a data simulation system capable of predicting the performance of a real system can save many thousands of dollars in travel expenses, optimization of experimental parameters, etc.. In this effort, computer codes were developed to simulate the production of associated particle imaging data so that its performance in a typical waste management application can be assessed
Beam simulation tools for GEANT4 (and neutrino source applications)
International Nuclear Information System (INIS)
V.Daniel Elvira, Paul Lebrun and Panagiotis Spentzouris email daniel@fnal.gov
2002-01-01
Geant4 is a tool kit developed by a collaboration of physicists and computer professionals in the High Energy Physics field for simulation of the passage of particles through matter. The motivation for the development of the Beam Tools is to extend the Geant4 applications to accelerator physics. Although there are many computer programs for beam physics simulations, Geant4 is ideal to model a beam going through material or a system with a beam line integrated to a complex detector. There are many examples in the current international High Energy Physics programs, such as studies related to a future Neutrino Factory, a Linear Collider, and a very Large Hadron Collider
Applications of simulation experiments in LMFBR core materials technology
International Nuclear Information System (INIS)
Appleby, W.K.
1976-01-01
The development of charged particle bombardment experiments to simulate neutron irradiation induced swelling in austenitic alloys is briefly described. The applications of these techniques in LMFBR core materials technology are discussed. It is shown that use of the techniques to study the behavior of cold-worked Type-316 was instrumental in demonstrating at an early date the need for advanced materials. The simulation techniques then were used to identify alloying elements which can markedly decrease swelling and thus a focused reactor irradiation program is now in place to allow the future use of a lower swelling alloy for LMFBR core components
User`s manual for the FEHM application -- A finite-element heat- and mass-transfer code
Energy Technology Data Exchange (ETDEWEB)
Zyvoloski, G.A.; Robinson, B.A.; Dash, Z.V.; Trease, L.L.
1997-07-01
The use of this code is applicable to natural-state studies of geothermal systems and groundwater flow. A primary use of the FEHM application will be to assist in the understanding of flow fields and mass transport in the saturated and unsaturated zones below the proposed Yucca Mountain nuclear waste repository in Nevada. The equations of heat and mass transfer for multiphase flow in porous and permeable media are solved in the FEHM application by using the finite-element method. The permeability and porosity of the medium are allowed to depend on pressure and temperature. The code also has provisions for movable air and water phases and noncoupled tracers; that is, tracer solutions that do not affect the heat- and mass-transfer solutions. The tracers can be passive or reactive. The code can simulate two-dimensional, two-dimensional radial, or three-dimensional geometries. In fact, FEHM is capable of describing flow that is dominated in many areas by fracture and fault flow, including the inherently three-dimensional flow that results from permeation to and from faults and fractures. The code can handle coupled heat and mass-transfer effects, such as boiling, dryout, and condensation that can occur in the near-field region surrounding the potential repository and the natural convection that occurs through Yucca Mountain due to seasonal temperature changes. This report outlines the uses and capabilities of the FEHM application, initialization of code variables, restart procedures, and error processing. The report describes all the data files, the input data, including individual input records or parameters, and the various output files. The system interface is described, including the software environment and installation instructions.
GEANT4 simulations for Proton computed tomography applications
International Nuclear Information System (INIS)
Yevseyeva, Olga; Assis, Joaquim T. de; Evseev, Ivan; Schelin, Hugo R.; Shtejer Diaz, Katherin; Lopes, Ricardo T.
2011-01-01
Proton radiation therapy is a highly precise form of cancer treatment. In existing proton treatment centers, dose calculations are performed based on X-ray computed tomography (CT). Alternatively, one could image the tumor directly with proton CT (pCT). Proton beams in medical applications deal with relatively thick targets like the human head or trunk. Thus, the fidelity of proton computed tomography (pCT) simulations as a tool for proton therapy planning depends in the general case on the accuracy of results obtained for the proton interaction with thick absorbers. GEANT4 simulations of proton energy spectra after passing thick absorbers do not agree well with existing experimental data, as showed previously. The spectra simulated for the Bethe-Bloch domain showed an unexpected sensitivity to the choice of low-energy electromagnetic models during the code execution. These observations were done with the GEANT4 version 8.2 during our simulations for pCT. This work describes in more details the simulations of the proton passage through gold absorbers with varied thickness. The simulations were done by modifying only the geometry in the Hadron therapy Example, and for all available choices of the Electromagnetic Physics Models. As the most probable reasons for these effects is some specific feature in the code or some specific implicit parameters in the GEANT4 manual, we continued our study with version 9.2 of the code. Some improvements in comparison with our previous results were obtained. The simulations were performed considering further applications for pCT development. The authors want to thank CNPq, CAPES and 'Fundacao Araucaria' for financial support of this work. (Author)
Kruis, Nathanael J. F.
Heat transfer from building foundations varies significantly in all three spatial dimensions and has important dynamic effects at all timescales, from one hour to several years. With the additional consideration of moisture transport, ground freezing, evapotranspiration, and other physical phenomena, the estimation of foundation heat transfer becomes increasingly sophisticated and computationally intensive to the point where accuracy must be compromised for reasonable computation time. The tools currently available to calculate foundation heat transfer are often either too limited in their capabilities to draw meaningful conclusions or too sophisticated to use in common practices. This work presents Kiva, a new foundation heat transfer computational framework. Kiva provides a flexible environment for testing different numerical schemes, initialization methods, spatial and temporal discretizations, and geometric approximations. Comparisons within this framework provide insight into the balance of computation speed and accuracy relative to highly detailed reference solutions. The accuracy and computational performance of six finite difference numerical schemes are verified against established IEA BESTEST test cases for slab-on-grade heat conduction. Of the schemes tested, the Alternating Direction Implicit (ADI) scheme demonstrates the best balance between accuracy, performance, and numerical stability. Kiva features four approaches of initializing soil temperatures for an annual simulation. A new accelerated initialization approach is shown to significantly reduce the required years of presimulation. Methods of approximating three-dimensional heat transfer within a representative two-dimensional context further improve computational performance. A new approximation called the boundary layer adjustment method is shown to improve accuracy over other established methods with a negligible increase in computation time. This method accounts for the reduced heat transfer
Energy Technology Data Exchange (ETDEWEB)
Berour, Nacer; Lacroix, David E-mail: david.lacroix@lemta.uhp-nancy.fr; Boulet, Pascal; Jeandel, Gerard
2004-06-01
This paper deals with heat transfer in nongrey media which scatter, absorb and emit radiation. Considering a two dimensional geometry, radiative and conductive phenomena through the medium have been taken into account. The radiative part of the problem was solved using the discrete ordinate method with classical S{sub n} quadratures. The absorption and scattering coefficients involved in the radiative transfer equation (RTE) were obtained from the Mie theory. Conduction inside the medium was linked to the RTE through the energy conservation. Validation of the model has been achieved with several simulation of water spray curtains used as fire protection walls.
Grundy, John G; Nazar, Stefan; O'Malley, Shannon; Mohrenshildt, Martin V; Shedden, Judith M
2016-06-01
To examine the importance of platform motion to the transfer of performance in motion simulators. The importance of platform motion in simulators for pilot training is strongly debated. We hypothesized that the type of motion (e.g., disturbance) contributes significantly to performance differences. Participants used a joystick to perform a target tracking task in a pod on top of a MOOG Stewart motion platform. Five conditions compared training without motion, with correlated motion, with disturbance motion, with disturbance motion isolated to the visual display, and with both correlated and disturbance motion. The test condition involved the full motion model with both correlated and disturbance motion. We analyzed speed and accuracy across training and test as well as strategic differences in joystick control. Training with disturbance cues produced critical behavioral differences compared to training without disturbance; motion itself was less important. Incorporation of disturbance cues is a potentially important source of variance between studies that do or do not show a benefit of motion platforms in the transfer of performance in simulators. Potential applications of this research include the assessment of the importance of motion platforms in flight simulators, with a focus on the efficacy of incorporating disturbance cues during training. © 2016, Human Factors and Ergonomics Society.
Numerical simulation of nucleate boiling and heat transfer using MPL-MAFL
Energy Technology Data Exchange (ETDEWEB)
Han Young Yoon, Hee Cheol Kim [Korea Atomic Energy Research Inst., Taejon (Korea, Republic of); Koshizuka, Seiichi; Oka, Yoshiaki [Tokyo Univ., Tokai, Ibaraki (Japan). Nuclear Engineering Research Lab
2000-10-01
A mesh-free numerical method is presented for direct calculation of bubble growth. It is a combination of particle and gridless methods where the terms, 'particle' and 'gridless', refer to Lagrangian and Eulerian schemes respectively. Thus, an arbitrary-Lagrangian-Eulerian calculation is possible, in this method, with a cloud of computing points that are equivalent to the computing cells in mesh-based methods. The moving interface is traced through the Lagrangian motion of the computing points using a particle method and, at the fixed computing points, convection is calculated using a gridless method. The particle interaction model of the moving-particle semi-implicit (MPS) method is applied to the differential operators and the meshless-advection using a flow-directional local-grid (MAFL) scheme is utilized for the gridless method. A complex moving interface problems can be effectively analyzed by MPS-MAFL since the mesh is no longer used. The present method is applied to the calculation of gas-liquid two-phase flow with and without the phase change in two dimensions. The pressure and temperature gradients are ignored for the vapor region and the phase interface is treated as a free boundary. As an isothermal flow, a gas bubble rising in viscous liquids is simulated numerically and the results are compared with the empirical correlation. The energy equation is coupled with the equation of motion for the calculation of nucleate pool boiling. The numerical results are provided for the bubble growth rate, departure radius, and the heat transfer rate, which show good agreement with the experimental observations. The heat transfer mechanism associated with nucleate pool boiling is quantitatively evaluated and discussed with previous empirical studies. (author)
Simulating the Transfer of Strontium-90 from Soil to Leafy Vegetables by Using Strontium-88.
Kuke, Ding; Shujuan, Liu; Yingxue, He; Dong, Yan; Fengshou, Zhang; Shuifeng, Wang; Jinghua, Guo; Wei, Zhang; Xin, Wang; Xiaoyan, Jiang
The transfer, from soil to Chinese cabbage and spinach, of radioactive strontium-90 released as a result of accidents in nuclear power stations was studied using a stable isotope of strontium, namely nuclide strontium-88 ( 88 Sr). The study led to an experimental model for assessing the hazard of radionuclide strontium-90 ( 90 Sr) entering the food chain and for predicting the risk to food safety. Chinese cabbage and spinach were grown in pots in a greenhouse and irrigated with deionized water containing known quantities of strontium. Based on the strontium content of that water, the plants were divided into five groups (treatments) and strontium content of the soil, and 30-day-old plants were determined by inductively coupled plasma atomic emission spectroscopy instrument (ICP-AES). Data on the strontium content of soil and plants enabled the development of a model using MATLAB, a mathematical software package, which included curve fitting and problem solving using regression equations and differential equations. Although strontium curves for leaves, stems, and roots of Chinese cabbage were not exactly the same, all showed a non-linear increase when compared with the increase in the content of strontium in soil. Strontium curves for leaves, stems, and roots of spinach were very similar and showed an initial increase followed by a decrease. Strontium concentrations in both Chinese cabbage and spinach were initially related to the concentrations of sodium and sulfur, the next two relevant nuclides being calcium and magnesium. The relationship between calcium and strontium in Chinese cabbage was different from that in spinach. By using 88 Sr to simulate the transfer of radionuclide 90 Sr from soil to a crop, the relevant data required to deal with accidental release of strontium can be obtained using a fitting curve and regression equations, thereby providing some experimental basis for evaluating the potential hazards posed by such accidents to the food chain.
Launch Site Computer Simulation and its Application to Processes
Sham, Michael D.
1995-01-01
This paper provides an overview of computer simulation, the Lockheed developed STS Processing Model, and the application of computer simulation to a wide range of processes. The STS Processing Model is an icon driven model that uses commercial off the shelf software and a Macintosh personal computer. While it usually takes one year to process and launch 8 space shuttles, with the STS Processing Model this process is computer simulated in about 5 minutes. Facilities, orbiters, or ground support equipment can be added or deleted and the impact on launch rate, facility utilization, or other factors measured as desired. This same computer simulation technology can be used to simulate manufacturing, engineering, commercial, or business processes. The technology does not require an 'army' of software engineers to develop and operate, but instead can be used by the layman with only a minimal amount of training. Instead of making changes to a process and realizing the results after the fact, with computer simulation, changes can be made and processes perfected before they are implemented.
A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations
International Nuclear Information System (INIS)
Densmore, Jeffery D.; Urbatsch, Todd J.; Evans, Thomas M.; Buksas, Michael W.
2007-01-01
Discrete Diffusion Monte Carlo (DDMC) is a technique for increasing the efficiency of Monte Carlo particle-transport simulations in diffusive media. If standard Monte Carlo is used in such media, particle histories will consist of many small steps, resulting in a computationally expensive calculation. In DDMC, particles take discrete steps between spatial cells according to a discretized diffusion equation. Each discrete step replaces many small Monte Carlo steps, thus increasing the efficiency of the simulation. In addition, given that DDMC is based on a diffusion equation, it should produce accurate solutions if used judiciously. In practice, DDMC is combined with standard Monte Carlo to form a hybrid transport-diffusion method that can accurately simulate problems with both diffusive and non-diffusive regions. In this paper, we extend previously developed DDMC techniques in several ways that improve the accuracy and utility of DDMC for nonlinear, time-dependent, radiative-transfer calculations. The use of DDMC in these types of problems is advantageous since, due to the underlying linearizations, optically thick regions appear to be diffusive. First, we employ a diffusion equation that is discretized in space but is continuous in time. Not only is this methodology theoretically more accurate than temporally discretized DDMC techniques, but it also has the benefit that a particle's time is always known. Thus, there is no ambiguity regarding what time to assign a particle that leaves an optically thick region (where DDMC is used) and begins transporting by standard Monte Carlo in an optically thin region. Also, we treat the interface between optically thick and optically thin regions with an improved method, based on the asymptotic diffusion-limit boundary condition, that can produce accurate results regardless of the angular distribution of the incident Monte Carlo particles. Finally, we develop a technique for estimating radiation momentum deposition during the
Some ethical issues in technology transfer and applications
Shine, Kenneth I.
1995-10-01
Health care systems all around the world are struggling to provide care in an era of limited resources. In an article entitled, 'Straight Talk About Rationing,' Arthur Kaplan reviews the work of the Swedish Commission designed to prioritize health care for that country. The commission identified three core principles that they felt should underlie decisions about priorities for health care. Those principles were (1) all human beings are equally valuable; (2) society must pay special attention to the needs of the weakest and most vulnerable; and (3) all other things being equal, cost efficiency in gaining the greatest return for the amount of money spent must prevail. These are three extremely useful principles which can be helpful to us as we consider many of the issues confronted in this country about the allocation of resources for health. I would like to consider three major issues. The first issue is the current evolving nature of health care and the ethical dilemmas that exist in the present system. In balancing increased access to care with decreasing cost, particularly in managed care, all of us are concerned about ethical issues. I would like to emphasize that the current system -- the system that we have lived with and is changing -- has inherent in it a series of ethical dilemmas. Secondly, I would like to consider issues related to productivity and its measurement in relation to technology. This relates to the third item in the Swedish Commission, which is the principle that we ought to spend money in the most cost-efficient way. Finally, I would like to discuss the dilemma of decision making about health and how that impacts upon the ethics of health care in the application of technology.
A population balance approach considering heat and mass transfer-Experiments and CFD simulations
International Nuclear Information System (INIS)
Krepper, Eckhard; Beyer, Matthias; Lucas, Dirk; Schmidtke, Martin
2011-01-01
Highlights: → The MUSIG approach was extended by mass transfer between the size groups to describe condensation or re-evaporation. → Experiments on steam bubble condensation in vertical co-current steam/water flows have been carried out. The cross sectional gas fraction distribution, the bubble size distribution ad the gas velocity profiles were measured. → The following phenomena could be reproduced with good agreement to the experiments: (a) Dependence of the condensation rate on the initial bubble size distribution and (b) re-evaporation over the height in tests with low inlet temperature subcooling. - Abstract: Bubble condensation in sub-cooled water is a complex process, to which various phenomena contribute. Since the condensation rate depends on the interfacial area density, bubble size distribution changes caused by breakup and coalescence play a crucial role. Experiments on steam bubble condensation in vertical co-current steam/water flows have been carried out in an 8 m long vertical DN200 pipe. Steam is injected into the pipe and the development of the bubbly flow is measured at different distances to the injection using a pair of wire mesh sensors. By varying the steam nozzle diameter the initial bubble size can be influenced. Larger bubbles come along with a lower interfacial area density and therefore condensate slower. Steam pressures between 1 and 6.5 MPa and sub-cooling temperatures from 2 to 12 K were applied. Due to the pressure drop along the pipe, the saturation temperature falls towards the upper pipe end. This affects the sub-cooling temperature and can even cause re-evaporation in the upper part of the test section. The experimental configurations are simulated with the CFD code CFX using an extended MUSIG approach, which includes the bubble shrinking or growth due to condensation or re-evaporation. The development of the vapour phase along the pipe with respect to vapour void fractions and bubble sizes is qualitatively well reproduced
Dietrich, Stephan; Malerba, Daniele; Barrientos, Armando; Gassmann, Franziska; Mohnen, Pierre; Tirivayi, Nyasha; Kavuma, Susan; Matovu, Fred
2017-01-01
In this paper we assess the short- and mid-term effects of two cash transfer programmes in Uganda in terms of child underweight, school attainment, and the monetary returns to these indirect effects. Using a micro-simulation approach we test how the scale-up of these pilot interventions could affect
DEFF Research Database (Denmark)
Todsen, Tobias; Henriksen, Mikael V.; Kromann, Charles B.
2013-01-01
Inexperienced interns are responsible for most iatrogenic complications after urethral catheterization (UC). Although training on simulators is common, little is known about the transfer of learned skills to real clinical practice. This study aimed to evaluate the short- and long-term effects of UC...
International Nuclear Information System (INIS)
Su, Jian; Cotta, Renato M.
2000-01-01
In this work, thermohydraulic behaviour of PWR, during reactivity insertion and partial loss-of-flow, is simulated by using a simplified mathematical model of reactor core and primary coolant. An improved lumped parameter formulation for transient heat conduction in fuel rod is used for core heat transfer modelling. Transient temperature response of fuel, cladding and coolant is analysed. (author)
Verdaasdonk, E.G.G.; Dankelman, J.; Lange, J.F.; Stassen, L.P.S.
2007-01-01
Background- Laparoscopic suturing is one of the most difficult tasks in endoscopic surgery, requiring extensive training. The aim of this study was to determine the transfer validity of knot-tying training on a virtual-reality (VR) simulator to a realistic laparoscopic environment. Methods- Twenty
Energy Technology Data Exchange (ETDEWEB)
Fetkovich, J.G.
1976-12-01
A complete system designed to measure, with high precision, changes in heat transfer rates due to fouling and corrosion of simulated heat exchanger tubes, at sea and under OTEC conditions is described. All aspects of the system are described in detail, including theory, mechanical design, electronics design, assembly procedures, test and calibration, operating procedures, laboratory results, field results, and data analysis programs.
Verhoef, W.; Bach, H.
2012-01-01
Simulation of future satellite images can be applied in order to validate the general mission concept and to test the performance of advanced multi-sensor algorithms for the retrieval of surface parameters. This paper describes the radiative transfer modeling part of a so-called Land Scene Generator
Lehmann, K S; Gröne, J; Lauscher, J C; Ritz, J-P; Holmer, C; Pohlen, U; Buhr, H-J
2012-04-01
Training and simulation are gaining importance in surgical education. Today, virtual reality surgery simulators provide sophisticated laparoscopic training scenarios and offer detailed assessment methods. This also makes simulators interesting for the application in surgical skills courses. The aim of the current study was to assess the suitability of a virtual surgery simulator for training and assessment in an established surgical training course. The study was conducted during the annual "Practical Course for Visceral Surgery" (Warnemuende, Germany). 36 of 108 course participants were assigned at random for the study. Training was conducted in 15 sessions over 5 days with 4 identical virtual surgery simulators (LapSim) and 2 standardised training tasks. The simulator measured 16 individual parameters and calculated 2 scores. Questionnaires were used to assess the test persons' laparoscopic experience, their training situation and the acceptance of the simulator training. Data were analysed with non-parametric tests. A subgroup analysis for laparoscopic experience was conducted in order to assess the simulator's construct validity and assessment capabilities. Median age was 32 (27 - 41) years; median professional experience was 3 (1 - 11) years. Typical laparoscopic learning curves with initial significant improvements and a subsequent plateau phase were measured over 5 days. The individual training sessions exhibited a rhythmic variability in the training results. A shorter night's sleep led to a marked drop in performance. The participants' different experience levels could clearly be discriminated ( ≤ 20 vs. > 20 laparoscopic operations; p ≤ 0.001). The questionnaire showed that the majority of the participants had limited training opportunities in their hospitals. The simulator training was very well accepted. However, the participants severely misjudged the real costs of the simulators that were used. The learning curve on the
Jang, Nulee; Yasin, Muhammad; Park, Shinyoung; Lovitt, Robert W; Chang, In Seop
2017-09-01
A mathematical model of microbial kinetics was introduced to predict the overall volumetric gas-liquid mass transfer coefficient (k L a) of carbon monoxide (CO) in a batch cultivation system. The cell concentration (X), acetate concentration (C ace ), headspace gas (N co and [Formula: see text] ), dissolved CO concentration in the fermentation medium (C co ), and mass transfer rate (R) were simulated using a variety of k L a values. The simulated results showed excellent agreement with the experimental data for a k L a of 13/hr. The C co values decreased with increase in cultivation times, whereas the maximum mass transfer rate was achieved at the mid-log phase due to vigorous microbial CO consumption rate higher than R. The model suggested in this study may be applied to a variety of microbial systems involving gaseous substrates. Copyright © 2017 Elsevier Ltd. All rights reserved.
Monte Carlo simulation of neutron counters for safeguards applications
International Nuclear Information System (INIS)
Looman, Marc; Peerani, Paolo; Tagziria, Hamid
2009-01-01
MCNP-PTA is a new Monte Carlo code for the simulation of neutron counters for nuclear safeguards applications developed at the Joint Research Centre (JRC) in Ispra (Italy). After some preliminary considerations outlining the general aspects involved in the computational modelling of neutron counters, this paper describes the specific details and approximations which make up the basis of the model implemented in the code. One of the major improvements allowed by the use of Monte Carlo simulation is a considerable reduction in both the experimental work and in the reference materials required for the calibration of the instruments. This new approach to the calibration of counters using Monte Carlo simulation techniques is also discussed.
Simulation of absorption refrigeration system for automobile application
Directory of Open Access Journals (Sweden)
Ramanathan Anand
2008-01-01
Full Text Available An automotive air-conditioning system based on absorption refrigeration cycle has been simulated. This waste heat driven vapor absorption refrigeration system is one alternate to the currently used vapour compression refrigeration system for automotive air-conditioning. Performance analysis of vapor absorption refrigeration system has been done by developing a steady-state simulation model to find the limitation of the proposed system. The water-lithium bromide pair is used as a working mixture for its favorable thermodynamic and transport properties compared to the conventional refrigerants utilized in vapor compression refrigeration applications. The pump power required for the proposed vapor absorption refrigeration system was found lesser than the power required to operate the compressor used in the conventional vapor compression refrigeration system. A possible arrangement of the absorption system for automobile application is proposed.
Wide-band slow-wave systems simulation and applications
Staras, Stanislovas
2012-01-01
The field of electromagnetics has seen considerable advances in recent years, based on the wide applications of numerical methods for investigating electromagnetic fields, microwaves, and other devices. Wide-Band Slow-Wave Systems: Simulation and Applications presents new technical solutions and research results for the analysis, synthesis, and design of slow-wave structures for modern electronic devices with super-wide pass-bands. It makes available, for the first time in English, significant research from the past 20 years that was previously published only in Russian and Lithuanian. The aut
Human eye modelling for ophthalmic simulators project for clinic applications
International Nuclear Information System (INIS)
Sanchez, Andrea; Santos, Adimir dos; Yoriyaz, Helio
2002-01-01
Most of eye tumors are treated by surgical means, which involves the enucleation of affected eyes. In terms of treatment and control of diseases, there is brachytherapy, which often utilizes small applicator of Co-60, I-125, Ru-106, Ir-192, etc. These methods are shown to be very efficient but highly cost. The objective of this work is propose a detailed simulator modelling for eye characterization. Additionally, this study can contribute to design and build a new applicator in order to reduce the cost and to allow more patients to be treated
Light & Skin Interactions Simulations for Computer Graphics Applications
Baranoski, Gladimir V G
2010-01-01
Light and Skin Interactions immerses you in one of the most fascinating application areas of computer graphics: appearance simulation. The book first illuminates the fundamental biophysical processes that affect skin appearance, and reviews seminal related works aimed at applications in life and health sciences. It then examines four exemplary modeling approaches as well as definitive algorithms that can be used to generate realistic images depicting skin appearance. An accompanying companion site also includes complete code and data sources for the BioSpec model, which is considered to be the
18 CFR 131.20 - Application for approval of transfer of license.
2010-04-01
... 18 Conservation of Power and Water Resources 1 2010-04-01 2010-04-01 false Application for approval of transfer of license. 131.20 Section 131.20 Conservation of Power and Water Resources FEDERAL... a citizen of the United States of America. Subscribed and sworn to before me, a notary public of the...
Simulation of the coating film appearance for spray application
Seeler, Fabian; Hager, Christian; Schneider, Matthias; Tiedje, Oliver
2015-01-01
The coating film topography depends on the substrate structure, the application parameters and the coating material’s levelling properties. Substrates consisting of several materials with different surface structures and differently inclined areas make a homogenous coating film structure difficult. By means of simulations, the paint film structure is intended to be controlled so that the theoretical optimum is reached and the experimental effort can be reduced. The focus is on spray applicati...
Applications of Monte Carlo simulations of gamma-ray spectra
International Nuclear Information System (INIS)
Clark, D.D.
1995-01-01
A short, convenient computer program based on the Monte Carlo method that was developed to generate simulated gamma-ray spectra has been found to have useful applications in research and teaching. In research, we use it to predict spectra in neutron activation analysis (NAA), particularly in prompt gamma-ray NAA (PGNAA). In teaching, it is used to illustrate the dependence of detector response functions on the nature of gamma-ray interactions, the incident gamma-ray energy, and detector geometry
Homogenization of some radiative heat transfer models: application to gas-cooled reactor cores
International Nuclear Information System (INIS)
El Ganaoui, K.
2006-09-01
In the context of homogenization theory we treat some heat transfer problems involving unusual (according to the homogenization) boundary conditions. These problems are defined in a solid periodic perforated domain where two scales (macroscopic and microscopic) are to be taken into account and describe heat transfer by conduction in the solid and by radiation on the wall of each hole. Two kinds of radiation are considered: radiation in an infinite medium (non-linear problem) and radiation in cavity with grey-diffuse walls (non-linear and non-local problem). The derived homogenized models are conduction problems with an effective conductivity which depend on the considered radiation. Thus we introduce a framework (homogenization and validation) based on mathematical justification using the two-scale convergence method and numerical validation by simulations using the computer code CAST3M. This study, performed for gas cooled reactors cores, can be extended to other perforated domains involving the considered heat transfer phenomena. (author)
Directory of Open Access Journals (Sweden)
BAZZAN, A. L. C.
2010-12-01
Full Text Available The area of multiagent systems is new and challenging. From the moment a system includes more than one agent, artificial intelligence techniques become inadequate for they do not consider interactions with other agent, need for coordination and other factors. In this text those aspects are discussed, and an introduction to the area of autonomous agents and multiagent systems is offered. Afterwards, two application of this kind of systems are described, both in the area of transportation and emergency sistuations. In the former we discuss traffic control and simulation and in the latter, we focus on the simulation tool RoboCup Rescue
Directory of Open Access Journals (Sweden)
Lulu Wang
2016-01-01
Full Text Available A two-dimensional, single-phase, isothermal, multicomponent, transient model is built to investigate the transport phenomena in unitized regenerative fuel cells (URFCs under the condition of switching from the fuel cell (FC mode to the water electrolysis (WE mode. The model is coupled with an electrochemical reaction. The proton exchange membrane (PEM is selected as the solid electrolyte of the URFC. The work is motivated by the need to elucidate the complex mass transfer and electrochemical process under operation mode switching in order to improve the performance of PEM URFC. A set of governing equations, including conservation of mass, momentum, species, and charge, are considered. These equations are solved by the finite element method. The simulation results indicate the distributions of hydrogen, oxygen, water mass fraction, and electrolyte potential response to the transient phenomena via saltation under operation mode switching. The hydrogen mass fraction gradients are smaller than the oxygen mass fraction gradients. The average mass fractions of the reactants (oxygen and hydrogen and product (water exhibit evident differences between each layer in the steady state of the FC mode. By contrast, the average mass fractions of the reactant (water and products (oxygen and hydrogen exhibit only slight differences between each layer in the steady state of the WE mode. Under either the FC mode or the WE mode, the duration of the transient state is only approximately 0.2 s.
Directory of Open Access Journals (Sweden)
Saraswathi Ananthavel
2016-06-01
Full Text Available Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM and superconducting magnetic energy storage (SMES which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC. STATCOM is power electronic voltage source converter (VSC which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow independently between the transmission lines and STATCOM-(SMES units. Complete proposed power system is implemented in numerical simulation software (Matlab/Simulink and its performance is validated based on obtained investigation results.
A Radiative Transfer Modeling Methodology in Gas-Liquid Multiphase Flow Simulations
Directory of Open Access Journals (Sweden)
Gautham Krishnamoorthy
2014-01-01
Full Text Available A methodology for performing radiative transfer calculations in computational fluid dynamic simulations of gas-liquid multiphase flows is presented. By considering an externally irradiated bubble column photoreactor as our model system, the bubble scattering coefficients were determined through add-on functions by employing as inputs the bubble volume fractions, number densities, and the fractional contribution of each bubble size to the bubble volume from four different multiphase modeling options. The scattering coefficient profiles resulting from the models were significantly different from one another and aligned closely with their predicted gas-phase volume fraction distributions. The impacts of the multiphase modeling option, initial bubble diameter, and gas flow rates on the radiation distribution patterns within the reactor were also examined. An increase in air inlet velocities resulted in an increase in the fraction of larger sized bubbles and their contribution to the scattering coefficient. However, the initial bubble sizes were found to have the strongest impact on the radiation field.
SIMULATION OF TURBULENT FLOW AND HEAT TRANSFER OVER A BACKWARD -FACING STEP WITH RIBS TURBULATORS
Directory of Open Access Journals (Sweden)
Khudheyer S Mushatet
2011-01-01
Full Text Available Simulation is presented for a backward facing step flow and heat transfer inside a channel with ribs turbulators. The problem was investigated for Reynolds numbers up to 32000. The effect of a step height, the number of ribs and the rib thickness on the flow and thermal field were investigated. The computed results are presented as streamlines counters, velocity vectors and graphs of Nusselt number and turbulent kinetic energy variation. A control volume method employing a staggered grid techniques was imposed to discretize the governing continuity, full Navier Stockes and energy equations. A computer program using a SIMPLE algorithm was developed to handle the considered problem. The effect of turbulence was modeled by using a k-є model with its wall function formulas. The obtained results show that the strength and size of the re-circulation zones behind the step are increased with the increase of contraction ratio(i.e. with the increase of a step height. The size of recirculation regions and the reattachment length after the ribs are decreased with increasing of the contraction ratio. Also the results show that the Reynolds number and contraction ratio have a significant effect on the variation of turbulent kinetic energy and Nusselt number
Direct numerical simulation of turbulent concentric annular pipe flow Part 2: Heat transfer
International Nuclear Information System (INIS)
Chung, Seo Yoon; Sung, Hyung Jin
2003-01-01
A direct numerical simulation is performed for turbulent heat transfer in a concentric annulus at Re D h =8900 and Pr=0.71 for two radius ratios (R 1 /R 2 =0.1 and 0.5) and wall heat flux ratio q * =1.0. Main emphasis is placed on the transverse curvature effect on near-wall turbulent thermal structures. Near-wall turbulent thermal structures close to the inner and outer walls are scrutinized by computing the lower-order statistics. The fluctuating temperature variance and turbulent heat flux budgets are illustrated to confirm the results of the lower-order statistics. Probability density functions of the splat/anti-splat process are investigated to analyze the transverse curvature effect on the strong relationship between sweep and splat events. The present numerical results show that the turbulent thermal structures near the outer wall are more activated than those near the inner wall, which may be attributed to the different vortex regeneration processes between the inner and outer walls
CFD Simulation of Heat Transfer and Turbulent Fluid Flow over a Double Forward-Facing Step
Directory of Open Access Journals (Sweden)
Hussein Togun
2013-01-01
Full Text Available Heat transfer and turbulent water flow over a double forward-facing step were investigated numerically. The finite volume method was used to solve the corresponding continuity, momentum, and energy equations using the K-ε model. Three cases, corresponding to three different step heights, were investigated for Reynolds numbers ranging from 30,000 to 100,000 and temperatures ranging from 313 to 343 K. The bottom of the wall was heated, whereas the top was insulated. The results show that the Nusselt number increased with the Reynolds number and step height. The maximum Nusselt number was observed for case 3, with a Reynolds number of 100,000 and temperature of 343 K, occurring at the second step. The behavior of the Nusselt number was similar for all cases at a given Reynolds number and temperature. A recirculation zone was observed before and after the first and second steps in the contour maps of the velocity field. In addition, the results indicate that the coefficient pressure increased with increasing Reynolds number and step height. ANSYS FLUENT 14 (CFD software was employed to run the simulations.
Batzias, Dimitris F.; Ifanti, Konstantina
2012-12-01
Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.
Simulation of thermal-hydraulic process in reactor of HTR-PM based on flow and heat transfer network
International Nuclear Information System (INIS)
Zhou Kefeng; Zhou Yangping; Sui Zhe; Ma Yuanle
2012-01-01
The development of HTR-PM full scale simulator (FSS) is an important part in the project. The simulation of thermal-hydraulic process in reactor is one of the key technologies in the development of FSS. The simulation of thermal-hydraulic process in reactor was studied. According to the geometry structures and the characteristics of thermal-hydraulic process in reactor, the model was setup in components construction way. Based on the established simulation method of flow and heat transfer network, a Fortran code was developed and the simulation of thermal-hydraulic process was achieved. The simulation results of 50% FP steady state, 100% FP steady state and control rod mistakenly ascension accidents were given. The verification of simulation results was carried out by comparing with the design and analysis code THERMIX. The results show that the method and model based on flow and heat transfer network can meet the requirements of FSS and reflect the features of thermal-hydraulic process in HTR-PM. (authors)
Application of simulation techniques in the probabilistic fracture mechanics
International Nuclear Information System (INIS)
De Ruyter van Steveninck, J.L.
1995-03-01
The Monte Carlo simulation is applied on a model of the fracture mechanics in order to assess the applicability of this simulation technique in the probabilistic fracture mechanics. By means of the fracture mechanics model the brittle fracture of a steel container or pipe with defects can be predicted. By means of the Monte Carlo simulation also the uncertainty regarding failures can be determined. Based on the variations in the toughness of the fracture and the defect dimensions the distribution of the chance of failure is determined. Also attention is paid to the impact of dependency between uncertain variables. Furthermore, the influence of the applied distributions of the uncertain variables and non-destructive survey on the chance of failure is analyzed. The Monte Carlo simulation results agree quite well with the results of other methods from the probabilistic fracture mechanics. If an analytic expression can be found for the chance of failure, it is possible to determine the variation of the chance of failure, next to an estimation of the chance of failure. It also appears that the dependency between the uncertain variables has a large impact on the chance of failure. It is also concluded from the simulation that the chance of failure strongly depends on the crack depth, and therefore of the distribution of the crack depth. 15 figs., 7 tabs., 12 refs
Application of parallel computing techniques to a large-scale reservoir simulation
International Nuclear Information System (INIS)
Zhang, Keni; Wu, Yu-Shu; Ding, Chris; Pruess, Karsten
2001-01-01
Even with the continual advances made in both computational algorithms and computer hardware used in reservoir modeling studies, large-scale simulation of fluid and heat flow in heterogeneous reservoirs remains a challenge. The problem commonly arises from intensive computational requirement for detailed modeling investigations of real-world reservoirs. This paper presents the application of a massive parallel-computing version of the TOUGH2 code developed for performing large-scale field simulations. As an application example, the parallelized TOUGH2 code is applied to develop a three-dimensional unsaturated-zone numerical model simulating flow of moisture, gas, and heat in the unsaturated zone of Yucca Mountain, Nevada, a potential repository for high-level radioactive waste. The modeling approach employs refined spatial discretization to represent the heterogeneous fractured tuffs of the system, using more than a million 3-D gridblocks. The problem of two-phase flow and heat transfer within the model domain leads to a total of 3,226,566 linear equations to be solved per Newton iteration. The simulation is conducted on a Cray T3E-900, a distributed-memory massively parallel computer. Simulation results indicate that the parallel computing technique, as implemented in the TOUGH2 code, is very efficient. The reliability and accuracy of the model results have been demonstrated by comparing them to those of small-scale (coarse-grid) models. These comparisons show that simulation results obtained with the refined grid provide more detailed predictions of the future flow conditions at the site, aiding in the assessment of proposed repository performance
Mayer, Thomas; Borsdorf, Helko
2016-02-15
We optimized an atmospheric pressure ion funnel (APIF) including different interface options (pinhole, capillary, and nozzle) regarding a maximal ion transmission. Previous computer simulations consider the ion funnel itself and do not include the geometry of the following components which can considerably influence the ion transmission into the vacuum stage. Initially, a three-dimensional computer-aided design (CAD) model of our setup was created using Autodesk Inventor. This model was imported to the Autodesk Simulation CFD program where the computational fluid dynamics (CFD) were calculated. The flow field was transferred to SIMION 8.1. Investigations of ion trajectories were carried out using the SDS (statistical diffusion simulation) tool of SIMION, which allowed us to evaluate the flow regime, pressure, and temperature values that we obtained. The simulation-based optimization of different interfaces between an atmospheric pressure ion funnel and the first vacuum stage of a mass spectrometer require the consideration of fluid dynamics. The use of a Venturi nozzle ensures the highest level of transmission efficiency in comparison to capillaries or pinholes. However, the application of radiofrequency (RF) voltage and an appropriate direct current (DC) field leads to process optimization and maximum ion transfer. The nozzle does not hinder the transfer of small ions. Our high-resolution SIMION model (0.01 mm grid unit(-1) ) under consideration of fluid dynamics is generally suitable for predicting the ion transmission through an atmospheric-vacuum system for mass spectrometry and enables the optimization of operational parameters. A Venturi nozzle inserted between the ion funnel and the mass spectrometer permits maximal ion transmission. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.
The Simulation Study of Horizontal Axis Water Turbine Using Flow Simulation Solidworks Application
Prasetyo, H.; Budiana, EP; Tjahjana, DDDP; Hadi, S.
2018-02-01
The design of Horizontal Axis Water Turbine in pico hydro power plants involves many parameters. To simplify that, usually using computer simulation is applied. This research performs simulation process variation on turbine blade number, turbine blade curvature angle, turbine bucket angle and blocking system tilt angle. Those four variations were combined in order to obtain the best design of turbine. The study used Flow Simulation Solidworks application, and obtain data on turbine speed, pressure, force, and torque. However, this research focused on turbine torque value. The best design of turbine was obtained in the turbine with 6 blades, blade curvature angle of 65° and bucket angle of 10°, and blocking system tilt angle of 40°. In the best turbine, the produced torque value was 8.464 Nm.
International Nuclear Information System (INIS)
Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.
2016-01-01
Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.
Application of New Electrolyte Model to Phase Transfer Catalyst (PTC) Systems
DEFF Research Database (Denmark)
Hyung Kim, Sun; Anantpinijwatna, Amata; Kang, Jeong Won
2015-01-01
Abstract Phase transfer catalyst (PTC) is used to transfer the desirable active form of an anion from the aqueous phase to organic phase where the reaction occurs. One of major challenges for process design of the PTC system is to establish a reliable thermodynamic model capable of describing pha...... in PTC systems, thereby, extending the application range of the PTC-system model. The solubility of PTC in organic solvents, which is a key factor for strategy of PTC and solvent selection, has been calculated using the e-NRTL-SAC model....
Vapordynamic thermosyphon - heat transfer two-phase device for wide applications
Vasiliev, Leonard; Vasiliev, Leonid; Zhuravlyov, Alexander; Shapovalov, Aleksander; Rodin, Aleksei
2015-12-01
Vapordynamic thermosyphon (VDT) is an efficient heat transfer device. The two-phase flow generation and dynamic interaction between the liquid slugs and vapor bubbles in the annular minichannel of the VDT condenser are the main features of such thermosyphon, which allowed to increase its thermodynamic efficiency. VDT can transfer heat in horizontal position over a long distance. The condenser is nearly isothermal with the length of tens of meters. The VDT evaporators may have different forms. Some practical applications of VDT are considered.
International Nuclear Information System (INIS)
Hoshyargar, Vahid; Fadaei, Farzad; Ashrafizadeh, Seyed Nezameddin
2015-01-01
A comprehensive mathematical model is developed for simulation of ion transport through nanofiltration membranes. The model is based on the Maxwell-Stefan approach and takes into account steric, Donnan, and dielectric effects in the transport of mono and divalent ions. Theoretical ion rejection for multi-electrolyte mixtures was obtained by numerically solving the 'hindered transport' based on the generalized Maxwell-Stefan equation for the flux of ions. A computer simulation has been developed to predict the transport in the range of nanofiltration, a numerical procedure developed linearization and discretization form of the governing equations, and the finite volume method was employed for the numerical solution of equations. The developed numerical method is capable of solving equations for multicomponent systems of n species no matter to what extent the system shows stiffness. The model findings were compared and verified with the experimental data from literature for two systems of Na 2 SO 4 +NaCl and MgCl 2 +NaCl. Comparison showed great agreement for different concentrations. As such, the model is capable of predicting the rejection of different ions at various concentrations. The advantage of such a model is saving costs as a result of minimizing the number of required experiments, while it is closer to a realistic situation since the adsorption of ions has been taken into account. Using this model, the flux of permeates and rejections of multi-component liquid feeds can be calculated as a function of membrane properties. This simulation tool attempts to fill in the gap in methods used for predicting nanofiltration and optimization of the performance of charged nanofilters through generalized Maxwell-Stefan (GMS) approach. The application of the current model may weaken the latter gap, which has arisen due to the complexity of the fundamentals of ion transport processes via this approach, and may further facilitate the industrial development of
QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.
Chu, Yuzhuo; Guo, Hong
2015-09-01
Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.
International Nuclear Information System (INIS)
Souza Dutra, A. de.
1985-01-01
An experimental study on forced convection in a four-cusp duct simulating a typical nuclear reactor channel degraded by accident is presented. Transfer coefficients were obtained by using the analogy between heat and mass tranfer, with the naphtalene sublimation technique. The experiment consisted in forcing air past a four-cusp naphthalene moulded duct. Mass transfer coefficients were determined in nondimensional form as Sherwood number. Experimental curves correlating the Sherwood number with a nondimensional length, x + , were obtained for Reynolds number varying from 891 to 30.374. This range covers typical flow rates that are expected to exist in a degraded nuclear reactor core. (Author) [pt
Measurement and Simulation Techniques For Piezoresistive Microcantilever Biosensor Applications
Directory of Open Access Journals (Sweden)
Aan Febriansyah
2012-12-01
Full Text Available Applications of microcantilevers as biosensors have been explored by many researchers for the applications in medicine, biological, chemistry, and environmental monitoring. This research discusses a design of measurement method and simuations for piezoresistive microcantilever as a biosensor, which consist of designing Wheatstone bridge circuit as object detector, simulation of resonance frequency shift based on Euler Bernoulli Beam equation, and microcantilever vibration simulation using COMSOL Multiphysics 3.5. The piezoresistive microcantilever used here is Seiko Instrument Technology (Japan product with length of 110 ?m, width of 50 ?m, and thickness of 1 ?m. Microcantilever mass is 12.815 ng, including the mass receptor. The sample object in this research is bacteria EColi. One bacteria mass is assumed to 0.3 pg. Simulation results show that the mass of one bacterium will cause the deflection of 0,03053 nm and resonance frequency value of 118,90 kHz. Moreover, four bacterium will cause the deflection of 0,03054 nm and resonance frequency value of 118,68 kHz. These datas indicate that the increasing of the bacteria mass increases the deflection value and reduces the value of resonance frequency.
Application of subset simulation in reliability estimation of underground pipelines
International Nuclear Information System (INIS)
Tee, Kong Fah; Khan, Lutfor Rahman; Li, Hongshuang
2014-01-01
This paper presents a computational framework for implementing an advanced Monte Carlo simulation method, called Subset Simulation (SS) for time-dependent reliability prediction of underground flexible pipelines. The SS can provide better resolution for low failure probability level of rare failure events which are commonly encountered in pipeline engineering applications. Random samples of statistical variables are generated efficiently and used for computing probabilistic reliability model. It gains its efficiency by expressing a small probability event as a product of a sequence of intermediate events with larger conditional probabilities. The efficiency of SS has been demonstrated by numerical studies and attention in this work is devoted to scrutinise the robustness of the SS application in pipe reliability assessment and compared with direct Monte Carlo simulation (MCS) method. Reliability of a buried flexible steel pipe with time-dependent failure modes, namely, corrosion induced deflection, buckling, wall thrust and bending stress has been assessed in this study. The analysis indicates that corrosion induced excessive deflection is the most critical failure event whereas buckling is the least susceptible during the whole service life of the pipe. The study also shows that SS is robust method to estimate the reliability of buried pipelines and it is more efficient than MCS, especially in small failure probability prediction
Modelling, simulation and applications of longitudinal train dynamics
Cole, Colin; Spiryagin, Maksym; Wu, Qing; Sun, Yan Quan
2017-10-01
Significant developments in longitudinal train simulation and an overview of the approaches to train models and modelling vehicle force inputs are firstly presented. The most important modelling task, that of the wagon connection, consisting of energy absorption devices such as draft gears and buffers, draw gear stiffness, coupler slack and structural stiffness is then presented. Detailed attention is given to the modelling approaches for friction wedge damped and polymer draft gears. A significant issue in longitudinal train dynamics is the modelling and calculation of the input forces - the co-dimensional problem. The need to push traction performances higher has led to research and improvement in the accuracy of traction modelling which is discussed. A co-simulation method that combines longitudinal train simulation, locomotive traction control and locomotive vehicle dynamics is presented. The modelling of other forces, braking propulsion resistance, curve drag and grade forces are also discussed. As extensions to conventional longitudinal train dynamics, lateral forces and coupler impacts are examined in regards to interaction with wagon lateral and vertical dynamics. Various applications of longitudinal train dynamics are then presented. As an alternative to the tradition single wagon mass approach to longitudinal train dynamics, an example incorporating fully detailed wagon dynamics is presented for a crash analysis problem. Further applications of starting traction, air braking, distributed power, energy analysis and tippler operation are also presented.
Simulation of incompressible flows with heat and mass transfer using parallel finite element method
Directory of Open Access Journals (Sweden)
Jalal Abedi
2003-02-01
Full Text Available The stabilized finite element formulations based on the SUPG (Stream-line-Upwind/Petrov-Galerkin and PSPG (Pressure-Stabilization/Petrov-Galerkin methods are developed and applied to solve buoyancy-driven incompressible flows with heat and mass transfer. The SUPG stabilization term allows us to solve flow problems at high speeds (advection dominant flows and the PSPG term eliminates instabilities associated with the use of equal order interpolation functions for both pressure and velocity. The finite element formulations are implemented in parallel using MPI. In parallel computations, the finite element mesh is partitioned into contiguous subdomains using METIS, which are then assigned to individual processors. To ensure a balanced load, the number of elements assigned to each processor is approximately equal. To solve nonlinear systems in large-scale applications, we developed a matrix-free GMRES iterative solver. Here we totally eliminate a need to form any matrices, even at the element levels. To measure the accuracy of the method, we solve 2D and 3D example of natural convection flows at moderate to high Rayleigh numbers.
International Nuclear Information System (INIS)
Shi, Jianxin; Sun, Baozhi; Han, Wenjing; Zhang, Guolei; Li, Yanjun; Yang, Longbin
2016-01-01
Highlights: • Two-fluid three-flow-field model is developed to predict dryout in steam generator. • The empirical correlation is used to correct dryout criterion. • The interactions between three-flow-fields and the wall are considered. • Dryout and post-dryout heat transfer mechanisms are discussed through the results. - Abstract: Accurately predicting dryout and post-dryout heat transfer characteristics is critical for proper design of once-through steam generators. This paper provides a reasonable and simple method for this prediction by introducing a two-fluid, three-flow-field mathematical model and improving the dryout criterion-critical quality, and conducts a numerical simulation of dryout and post-dryout heat transfer in a once-through steam generator to prove the model’s performance. The results show that the critical quality in a once-through steam generator is about 0.82, with the heat transfer capacity significantly reducing and the wall temperature sharply increasing in a non-linear form by approximately 30 K when dryout occurs. Part of the steam is superheated in the post-dryout region, resulting in a deviation from thermodynamic equilibrium between the vapor and liquid phases. Dryout and post-dryout heat transfer in the once-through steam generator operate between complete deviation from thermodynamic equilibrium and complete thermodynamic equilibrium. Therefore, the presence of droplets has a significant influence on the mass, momentum and energy transfer between the film and vapor phases.
Risk-based transfer responses to climate change, simulated through autocorrelated stochastic methods
Kirsch, B.; Characklis, G. W.
2009-12-01
Maintaining municipal water supply reliability despite growing demands can be achieved through a variety of mechanisms, including supply strategies such as temporary transfers. However, much of the attention on transfers has been focused on market-based transfers in the western United States largely ignoring the potential for transfers in the eastern U.S. The different legal framework of the eastern and western U.S. leads to characteristic differences between their respective transfers. Western transfers tend to be agricultural-to-urban and involve raw, untreated water, with the transfer often involving a simple change in the location and/or timing of withdrawals. Eastern transfers tend to be contractually established urban-to-urban transfers of treated water, thereby requiring the infrastructure to transfer water between utilities. Utilities require the tools to be able to evaluate transfer decision rules and the resulting expected future transfer behavior. Given the long-term planning horizons of utilities, potential changes in hydrologic patterns due to climate change must be considered. In response, this research develops a method for generating a stochastic time series that reproduces the historic autocorrelation and can be adapted to accommodate future climate scenarios. While analogous in operation to an autoregressive model, this method reproduces the seasonal autocorrelation structure, as opposed to assuming the strict stationarity produced by an autoregressive model. Such urban-to-urban transfers are designed to be rare, transient events used primarily during times of severe drought, and incorporating Monte Carlo techniques allows for the development of probability distributions of likely outcomes. This research evaluates a system risk-based, urban-to-urban transfer agreement between three utilities in the Triangle region of North Carolina. Two utilities maintain their own surface water supplies in adjoining watersheds and look to obtain transfers via
Framework Application for Core Edge Transport Simulation (FACETS)
Energy Technology Data Exchange (ETDEWEB)
Krasheninnikov, Sergei; Pigarov, Alexander
2011-10-15
The FACETS (Framework Application for Core-Edge Transport Simulations) project of Scientific Discovery through Advanced Computing (SciDAC) Program was aimed at providing a high-fidelity whole-tokamak modeling for the U.S. magnetic fusion energy program and ITER through coupling separate components for each of the core region, edge region, and wall, with realistic plasma particles and power sources and turbulent transport simulation. The project also aimed at developing advanced numerical algorithms, efficient implicit coupling methods, and software tools utilizing the leadership class computing facilities under Advanced Scientific Computing Research (ASCR). The FACETS project was conducted by a multi-discipline, multi-institutional teams, the Lead PI was J.R. Cary (Tech-X Corp.). In the FACETS project, the Applied Plasma Theory Group at the MAE Department of UCSD developed the Wall and Plasma-Surface Interaction (WALLPSI) module, performed its validation against experimental data, and integrated it into the developed framework. WALLPSI is a one-dimensional, coarse grained, reaction/advection/diffusion code applied to each material boundary cell in the common modeling domain for a tokamak. It incorporates an advanced model for plasma particle transport and retention in the solid matter of plasma facing components, simulation of plasma heat power load handling, calculation of erosion/deposition, and simulation of synergistic effects in strong plasma-wall coupling.
Application of a Perturbation Method for Realistic Dynamic Simulation of Industrial Robots
International Nuclear Information System (INIS)
Waiboer, R. R.; Aarts, R. G. K. M.; Jonker, J. B.
2005-01-01
This paper presents the application of a perturbation method for the closed-loop dynamic simulation of a rigid-link manipulator with joint friction. In this method the perturbed motion of the manipulator is modelled as a first-order perturbation of the nominal manipulator motion. A non-linear finite element method is used to formulate the dynamic equations of the manipulator mechanism. In a closed-loop simulation the driving torques are generated by the control system. Friction torques at the actuator joints are introduced at the stage of perturbed dynamics. For a mathematical model of the friction torques we implemented the LuGre friction model that accounts both for the sliding and pre-sliding regime. To illustrate the method, the motion of a six-axes industrial Staeubli robot is simulated. The manipulation task implies transferring a laser spot along a straight line with a trapezoidal velocity profile. The computed trajectory tracking errors are compared with measured values, where in both cases the tip position is computed from the joint angles using a nominal kinematic robot model. It is found that a closed-loop simulation using a non-linear finite element model of this robot is very time-consuming due to the small time step of the discrete controller. Using the perturbation method with the linearised model a substantial reduction of the computer time is achieved without loss of accuracy
Verification of a three-dimensional resin transfer molding process simulation model
Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson
1995-01-01
Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.
Computational simulation of flow and heat transfer in single-phase natural circulation loops
International Nuclear Information System (INIS)
Pinheiro, Larissa Cunha
2017-01-01
Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr_m), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)
International Nuclear Information System (INIS)
Seiler, J.M.; Bonnet, J.M.; Bernaz, L.
2001-01-01
Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)
Energy Technology Data Exchange (ETDEWEB)
Seiler, J.M.; Bonnet, J.M.; Bernaz, L. [CEA Grenoble (France)
2001-07-01
Extensive studies have been performed to investigate the heat transfer within a molten corium pool (homogeneous, stratified and with miscibility gap): Synthesis of heat transfer correlations in molten pool (homogeneous and stratified), Focusing effect in stratified metal layer, DNS analysis of Rayleigh Benard instabilities at the top boundary; interpretation of the different convection regimes and exponents affecting the Rayleigh number in the heat transfer correlations, Molten pool model for corium presenting a miscibility gap. Condition for de-stratification. (authors)
Numerical simulation of NQR/NMR: Applications in quantum computing.
Possa, Denimar; Gaudio, Anderson C; Freitas, Jair C C
2011-04-01
A numerical simulation program able to simulate nuclear quadrupole resonance (NQR) as well as nuclear magnetic resonance (NMR) experiments is presented, written using the Mathematica package, aiming especially applications in quantum computing. The program makes use of the interaction picture to compute the effect of the relevant nuclear spin interactions, without any assumption about the relative size of each interaction. This makes the program flexible and versatile, being useful in a wide range of experimental situations, going from NQR (at zero or under small applied magnetic field) to high-field NMR experiments. Some conditions specifically required for quantum computing applications are implemented in the program, such as the possibility of use of elliptically polarized radiofrequency and the inclusion of first- and second-order terms in the average Hamiltonian expansion. A number of examples dealing with simple NQR and quadrupole-perturbed NMR experiments are presented, along with the proposal of experiments to create quantum pseudopure states and logic gates using NQR. The program and the various application examples are freely available through the link http://www.profanderson.net/files/nmr_nqr.php. Copyright © 2011 Elsevier Inc. All rights reserved.
Exploring Monte Carlo Simulation Strategies for Geoscience Applications
Blais, J.; Grebenitcharsky, R.; Zhang, Z.
2008-12-01
Computer simulations are an increasingly important area of geoscience research and development. At the core of stochastic or Monte Carlo simulations are the random number sequences that are assumed to be distributed with specific characteristics. Computer generated random numbers, uniformly distributed on [0, 1], can be very different depending on the selection of pseudo-random number (PRN), quasi-random number (QRN) or chaotic random number (CRN) generators. In the evaluation of some definite integrals, the expected error variances are generally of different orders for the same number of random numbers. A comparative analysis of these three strategies has been carried out for geodetic and related applications in planar and spherical contexts. Based on these computational experiments, conclusions and recommendations concerning their performance and error variances are included.
Activities of passive cooling applications and simulation of innovative nuclear power plant design
International Nuclear Information System (INIS)
Aglar, F.; Tanrykut, A.
2002-01-01
This paper gives a general insight on activities of the Turkish Atomic Energy Authority (TAEA) concerning passive cooling applications and simulation of innovative nuclear power plant design. The condensation mode of heat transfer plays an important role for the passive heat removal application in advanced water-cooled reactor systems. But it is well understood that the presence of noncondesable (NC) gases can greatly inhibit the condensation process due to the build up of NC gas concentration at the liquid/gas interface. The isolation condenser of passive containment cooling system of the simplified boiling water reactors is a typical application area of in-tube condensation in the presence of NC. The test matrix of the experimental investigation undertaken at the METU-CTF test facility (Middle East Technical University, Ankara) covers the range of parameters; Pn (system pressure) : 2-6 bar, Rev (vapor Reynolds number): 45,000-94,000, and Xi (air mass fraction): 0-52%. This experimental study is supplemented by a theoretical investigation concerning the effect of mixture flow rate on film turbulence and air mass diffusion concepts. Recently, TAEA participated to an international standard problem (OECD ISP-42) which covers a set of simulation of PANDA test facility (Paul Scherrer Institut-Switzerland) for six different phases including different natural circulation modes. The concept of condensation in the presence of air plays an important role for performance of heat exchangers, designed for passive containment cooling, which in turn affect the natural circulation behaviour in PANDA systems. (author)
DEFF Research Database (Denmark)
Loumann Krogh, Charlotte; Konge, Lars; Bjurström, Johanna Margareta
2013-01-01
Virtual-reality (VR) simulation provides a safe and effective learning environment prior to practicing on patients. However, existing bronchoscopy simulators are expensive and not easily portable.......Virtual-reality (VR) simulation provides a safe and effective learning environment prior to practicing on patients. However, existing bronchoscopy simulators are expensive and not easily portable....
Bridging the Radiative Transfer Models for Meteorology and Solar Energy Applications
Xie, Y.; Sengupta, M.
2017-12-01
Radiative transfer models are used to compute solar radiation reaching the earth surface and play an important role in both meteorology and solar energy studies. Therefore, they are designed to meet the needs of specialized applications. For instance, radiative transfer models for meteorology seek to provide more accurate cloudy-sky radiation compared to models used in solar energy that are geared towards accuracy in clear-sky conditions associated with the maximum solar resource. However, models for solar energy applications are often computationally faster, as the complex solution of the radiative transfer equation is parameterized by atmospheric properties that can be acquired from surface- or satellite-based observations. This study introduces the National Renewable Energy Laboratory's (NREL's) recent efforts to combine the advantages of radiative transfer models designed for meteorology and solar energy applictions. A fast all-sky radiation model, FARMS-NIT, was developed to efficiently compute narrowband all-sky irradiances over inclined photovoltaic (PV) panels. This new model utilizes the optical preperties from a solar energy model, SMARTS, to computes surface radiation by considering all possible paths of photon transmission and the relevent scattering and absorption attenuation. For cloudy-sky conditions, cloud bidirectional transmittance functions (BTDFs) are provided by a precomputed lookup table (LUT) by LibRadtran. Our initial results indicate that FARMS-NIT has an accuracy that is similar to LibRadtran, a highly accurate multi-stream model, but is significantly more efficient. The development and validation of this model will be presented.
Bandyopadhyay, Alak; Majumdar, Alok
2007-01-01
The present paper describes the verification and validation of a quasi one-dimensional pressure based finite volume algorithm, implemented in Generalized Fluid System Simulation Program (GFSSP), for predicting compressible flow with friction, heat transfer and area change. The numerical predictions were compared with two classical solutions of compressible flow, i.e. Fanno and Rayleigh flow. Fanno flow provides an analytical solution of compressible flow in a long slender pipe where incoming subsonic flow can be choked due to friction. On the other hand, Raleigh flow provides analytical solution of frictionless compressible flow with heat transfer where incoming subsonic flow can be choked at the outlet boundary with heat addition to the control volume. Nonuniform grid distribution improves the accuracy of numerical prediction. A benchmark numerical solution of compressible flow in a converging-diverging nozzle with friction and heat transfer has been developed to verify GFSSP's numerical predictions. The numerical predictions compare favorably in all cases.
International Nuclear Information System (INIS)
Callis, Patrik R.; Liu Tiqing
2006-01-01
Hybrid quantum mechanical-molecular mechanics (dynamics) were performed on flavin reductase (Fre) and flavodoxin reductase (Fdr), both from Escherichia coli. Each was complexed with riboflavin (Rbf) or flavin mononucleotide (FMN). During 50 ps trajectories, the relative energies of the fluorescing state (S 1 ) of the isoalloxazine ring and the lowest charge transfer state (CT) were assessed to aid prediction of fluorescence lifetimes that are shortened due to quenching by electron transfer from tyrosine. The simulations for the four cases display a wide range in CT-S 1 energy gap caused by the presence of phosphate, other charged and polar residues, water, and by intermolecular separation between donor and acceptor. This suggests that the Gibbs energy change (ΔG 0 ) and reorganization energy (λ) for the electron transfer may differ in different flavoproteins
International Nuclear Information System (INIS)
Pavlidis, D.; Lathouwers, D.
2011-01-01
A computational fluid dynamics model with anisotropic mesh adaptivity is used to investigate coolant flow and heat transfer in pebble bed reactors. A novel method for implicitly incorporating solid boundaries based on multi-fluid flow modelling is adopted. The resulting model is able to resolve and simulate flow and heat transfer in randomly packed beds, regardless of the actual geometry, starting off with arbitrarily coarse meshes. The model is initially evaluated using an orderly stacked square channel of channel-height-to-particle diameter ratio of unity for a range of Reynolds numbers. The model is then applied to the face-centred cubical geometry. Coolant flow and heat transfer patterns are investigated. (author)
International Nuclear Information System (INIS)
Deng, Jing; Li, Yaojian; Xu, Yongxiang; Sheng, Hongzhi
2010-01-01
In this work, Magnetic Fluid dynamics (MHD) model is used to stimulate the electromagnetic field, heat transfer and fluid flow in a DC non-transferred arc plasma torch. Through the coupled iterative computation about the electromagnetic equations described by magnetic vector potential format and the modified fluid dynamics equations, the electric potential, temperature and velocity distributions in the torch are obtained. The fluid-solid coupled computation method is applied to treat the electric current and heat transfer at the interface between the electrodes and fluid. The location of arc root attachment at the inside surface of anode and the arc voltage of the torch that we have predicted are very consistent with the corresponding experimental results. The calculated results of the torch are applied to the numerical simulation of the plasma jets under the laminar and turbulent condition. (author)
Application of the PRBS/FFT technique to digital simulations
International Nuclear Information System (INIS)
Hinds, H.W.
1977-01-01
This paper describes a method for obtaining a small-signal frequency response from a digital dynamic simulation. It employs a modified form of the PRBS/FFT technique, whereby a system is perturbed by a pseudo-random binary sequence and its response is analyzed using a fast Fourier transform-based program. Two applications of the technique are described; one involves a set of two coupled, second-order, ordinary differential equations; the other is a set of non-linear partial differential equations describing the thermohydraulic behaviour of water boiling in a fuel channel. (author)
Application of Unscented Kalman Filter in Satellite Orbit Simulation
Institute of Scientific and Technical Information of China (English)
ZHAO Dongming; CAI Zhiwu
2006-01-01
A new estimate method is proposed, which takes advantage of the unscented transform method, thus the true mean and covariance are approximated more accurately. The new method can be applied to non-linear systems without the linearization process necessary for the EKF, and it does not demand a Gaussian distribution of noise and what's more, its ease of implementation and more accurate estimation features enables it to demonstrate its good performance in the experiment of satellite orbit simulation. Numerical experiments show that the application of the unscented Kalman filter is more effective than the EKF.
Modelling and simulation of diffusive processes methods and applications
Basu, SK
2014-01-01
This book addresses the key issues in the modeling and simulation of diffusive processes from a wide spectrum of different applications across a broad range of disciplines. Features: discusses diffusion and molecular transport in living cells and suspended sediment in open channels; examines the modeling of peristaltic transport of nanofluids, and isotachophoretic separation of ionic samples in microfluidics; reviews thermal characterization of non-homogeneous media and scale-dependent porous dispersion resulting from velocity fluctuations; describes the modeling of nitrogen fate and transport
International Nuclear Information System (INIS)
Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli
2017-01-01
Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of
Nayagam, Vedha; Berger, Gordon M.; Sacksteder, Kurt R.; Paz, Aaron
2012-01-01
Extraction of mission consumable resources such as water and oxygen from the planetary environment provides valuable reduction in launch-mass and potentially extends the mission duration. Processing of lunar regolith for resource extraction necessarily involves heating and chemical reaction of solid material with processing gases. Vibrofluidization is known to produce effective mixing and control of flow within granular media. In this study we present experimental results for vibrofluidized heat transfer in lunar regolith simulants (JSC-1 and JSC-1A) heated up to 900 C. The results show that the simulant bed height has a significant influence on the vibration induced flow field and heat transfer rates. A taller bed height leads to a two-cell circulation pattern whereas a single-cell circulation was observed for a shorter height. Lessons learned from these test results should provide insight into efficient design of future robotic missions involving In-Situ Resource Utilization.
International Nuclear Information System (INIS)
Banas, A.O.; Carver, M.B.; Leung, J.C.H.; Bromley, B.P.
1992-10-01
The general purpose computational fluid dynamics code, Harwell-FLOW3D, has been used to simulate the effects of fuel rod obstructions on pressure drop and heat transfer in single phase turbulent flows in a concentric annular channel. The results of two and three dimensional simulations are reported for obstructions approximating the geometry of bearing pads used in 37 element CANDU fuel bundles. Pressure drop penalty and augmentation of heat transfer have been quantified and correlated with the obstruction geometrical parameters and the dimensionless numbers representing operating conditions. The predicted effects on pressure drop have been compared with several experimental correlations, yielding good agreement. The methodology presented offers results that can be used directly as input into thermalhydraulic analyses in subchannel and system codes. (Author) (23 figs., 15 refs.)
Directory of Open Access Journals (Sweden)
Brohi Ali Anwar
2017-01-01
Full Text Available The entropy production in 2-D heat transfer system has been analyzed systematically by using the finite volume method, to develop new criteria for the numerical simulation in case of multidimensional systems, with the aid of the CFD codes. The steady-state heat conduction problem has been investigated for entropy production, and the entropy production profile has been calculated based upon the current approach. From results for 2-D heat conduction, it can be found that the stability of entropy production profile exhibits a better agreement with the exact solution accordingly, and the current approach is effective for measuring the accuracy and stability of numerical simulations for heat transfer problems.
Assanis, D. N.; Ekchian, J. E.; Frank, R. M.; Heywood, J. B.
1985-01-01
A computer simulation of the turbocharged turbocompounded direct-injection diesel engine system was developed in order to study the performance characteristics of the total system as major design parameters and materials are varied. Quasi-steady flow models of the compressor, turbines, manifolds, intercooler, and ducting are coupled with a multicylinder reciprocator diesel model, where each cylinder undergoes the same thermodynamic cycle. The master cylinder model describes the reciprocator intake, compression, combustion and exhaust processes in sufficient detail to define the mass and energy transfers in each subsystem of the total engine system. Appropriate thermal loading models relate the heat flow through critical system components to material properties and design details. From this information, the simulation predicts the performance gains, and assesses the system design trade-offs which would result from the introduction of selected heat transfer reduction materials in key system components, over a range of operating conditions.
Directory of Open Access Journals (Sweden)
Jin-Hee Song
2017-01-01
Full Text Available To increase the heat capacity in lightweight construction materials, a phase change material (PCM can be introduced to building elements. A thermally activated building system (TABS with graphite/PCM concrete hollow core slab is suggested as an energy-efficient technology to shift and reduce the peak thermal load in buildings. An evaluation of heat storage and dissipation characteristics of TABS in graphite/PCM concrete has been conducted using dynamic simulations, but empirical validation is necessary to acceptably predict the thermal behavior of graphite/PCM concrete. This study aimed to validate the thermal behavior of graphite/PCM concrete through a three-dimensional transient heat transfer simulation. The simulation results were compared to experimental results from previous studies of concrete and graphite/PCM concrete. The overall thermal behavior for both materials was found to be similar to experiment results. Limitations in the simulation modeling, which included determination of the indoor heat transfer coefficient, assumption of constant thermal conductivity with temperature, and assumption of specimen homogeneity, led to slight differences between the measured and simulated results.
Carmeliet, J.; Descamps, F.; Houvenaghel, G.
1999-01-01
A multiscale network model is presented to model unsaturated moisture transfer in hygroscopic capillary-porous materials showing a broad pore-size distribution. Both capillary effects and water sorption phenomena, water vapour and liquid water transfer are considered. The multiscale approach is
Experiment on heat transfer in simulated molten core/concrete interaction
International Nuclear Information System (INIS)
Katsumura, Yukihiro; Hashizume, Hidetoshi; Toda, Saburo; Kawaguchi, Takahiro.
1993-01-01
In order to investigate heat transfer between molten core and concrete in LWR severe accidents, experiments were performed using water as the molten core, paraffin as the concrete, and air as gases from the decomposition of concrete. It was found that the heat transfer on the interface between paraffin and water were promoted strongly by the air gas. (author)
Application of cellular automata approach for cloud simulation and rendering
Energy Technology Data Exchange (ETDEWEB)
Christopher Immanuel, W. [Department of Physics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Tamil Nadu, Chennai 600 062 (India); Paul Mary Deborrah, S. [Research Department of Physics, The American College, Tamil Nadu, Madurai 625 002 (India); Samuel Selvaraj, R. [Research Department of Physics, Presidency College, Tamil Nadu, Chennai 600 005 (India)
2014-03-15
Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation of an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds.
Application of cellular automata approach for cloud simulation and rendering
International Nuclear Information System (INIS)
Christopher Immanuel, W.; Paul Mary Deborrah, S.; Samuel Selvaraj, R.
2014-01-01
Current techniques for creating clouds in games and other real time applications produce static, homogenous clouds. These clouds, while viable for real time applications, do not exhibit an organic feel that clouds in nature exhibit. These clouds, when viewed over a time period, were able to deform their initial shape and move in a more organic and dynamic way. With cloud shape technology we should be able in the future to extend to create even more cloud shapes in real time with more forces. Clouds are an essential part of any computer model of a landscape or an animation of an outdoor scene. A realistic animation of clouds is also important for creating scenes for flight simulators, movies, games, and other. Our goal was to create a realistic animation of clouds
Development of a Computer Application to Simulate Porous Structures
Directory of Open Access Journals (Sweden)
S.C. Reis
2002-09-01
Full Text Available Geometric modeling is an important tool to evaluate structural parameters as well as to follow the application of stereological relationships. The obtention, visualization and analysis of volumetric images of the structure of materials, using computational geometric modeling, facilitates the determination of structural parameters of difficult experimental access, such as topological and morphological parameters. In this work, we developed a geometrical model implemented by computer software that simulates random pore structures. The number of nodes, number of branches (connections between nodes and the number of isolated parts, are obtained. Also, the connectivity (C is obtained from this application. Using a list of elements, nodes and branches, generated by the software, in AutoCAD® command line format, the obtained structure can be viewed and analyzed.
Vacuum system transient simulator and its application to TFTR
International Nuclear Information System (INIS)
Sredniawski, J.
1978-01-01
The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: (1) torus vacuum pumping system performance between 400 Ci tritium pulses and (2) tritium backstreaming to neutral beams during pulses
Vacuum system transient simulator and its application to TFTR
International Nuclear Information System (INIS)
Sredniawski, J.
1977-01-01
The vacuum system transient simulator (VSTS) models transient gas transport throughout complex networks of ducts, valves, traps, vacuum pumps, and other related vacuum system components. VSTS is capable of treating gas models of up to 10 species, for all flow regimes from pure molecular to continuum. Viscous interactions between species are considered as well as non-uniform temperature of a system. Although this program was specifically developed for use on the Tokamak Fusion Test Reactor (TFTR) project at Princeton, it is a generalized tool capable of handling a broad range of vacuum system problems. During the TFTR engineering design phase, VSTS has been used in many applications. Two applications selected for presentation are: torus vacuum pumping system performance between 400 Ci tritium pulses and tritium backstreaming to neutral beams during pulses
Smear correction of highly variable, frame-transfer CCD images with application to polarimetry.
Iglesias, Francisco A; Feller, Alex; Nagaraju, Krishnappa
2015-07-01
Image smear, produced by the shutterless operation of frame-transfer CCD detectors, can be detrimental for many imaging applications. Existing algorithms used to numerically remove smear do not contemplate cases where intensity levels change considerably between consecutive frame exposures. In this report, we reformulate the smearing model to include specific variations of the sensor illumination. The corresponding desmearing expression and its noise properties are also presented and demonstrated in the context of fast imaging polarimetry.
Transfer of spatio-temporal multifractal properties of rainfall to simulated surface runoff
Gires, Auguste; Giangola-Murzyn, Agathe; Richard, Julien; Abbes, Jean-Baptiste; Tchiguirinskaia, Ioulia; Schertzer, Daniel; Willinger, Bernard; Cardinal, Hervé; Thouvenot, Thomas
2014-05-01
In this paper we suggest to use scaling laws and more specifically Universal Multifractals (UM) to analyse in a spatio-temporal framework both the radar rainfall and the simulated surface runoff. Such tools have been extensively used to analyse and simulate geophysical fields extremely variable over wide range of spatio-temporal scales such as rainfall, but have not often if ever been applied to surface runoff. Such novel combined analysis helps to improve the understanding of the rainfall-runoff relationship. Two catchments of the chair "Hydrology for resilient cities" sponsored by Véolia, and of the European Interreg IV RainGain project are used. They are both located in the Paris area: a 144 ha flat urban area in the Seine-Saint-Denis County, and a 250 ha urban area with a significant portion of forest located on a steep hillside of the Bièvre River. A fully distributed urban hydrological model currently under development called Multi-Hydro is implemented to represent the catchments response. It consists in an interacting core between open source software packages, each of them representing a portion of the water cycle in urban environment. The fully distributed model is tested with pixels of size 5, 10 and 20 m. In a first step the model is validated for three rainfall events that occurred in 2010 and 2011, for which the Météo-France radar mosaic with a resolution of 1 km in space and 5 min in time is available. These events generated significant surface runoff and some local flooding. The sensitivity of the model to the rainfall resolution is briefly checked by stochastically generating an ensemble of realistic downscaled rainfall fields (obtained by continuing the underlying cascade process which is observed on the available range of scales) and inputting them into the model. The impact is significant on both the simulated sewer flow and surface runoff. Then rainfall fields are generated with the help of discrete multifractal cascades and inputted in the
Tian, C.; Weng, J.; Liu, Y.
2017-11-01
The convection heat transfer coefficient is one of the evaluation indexes of the brake disc performance. The method used in this paper to calculate the convection heat transfer coefficient is a fluid-solid coupling simulation method, because the calculation results through the empirical formula method have great differences. The model, including a brake disc, a car body, a bogie and flow field, was built, meshed and simulated in the software FLUENT. The calculation models were K-epsilon Standard model and Energy model. The working condition of the brake disc was considered. The coefficient of various parts can be obtained through the method in this paper. The simulation result shows that, under 160 km/h speed, the radiating ribs have the maximum convection heat transfer coefficient and the value is 129.6W/(m2·K), the average coefficient of the whole disc is 100.4W/(m2·K), the windward of ribs is positive-pressure area and the leeward of ribs is negative-pressure area, the maximum pressure is 2663.53Pa.
Yao, Ye
2016-07-01
The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.
On the application of Chimera/unstructured hybrid grids for conjugate heat transfer
Kao, Kai-Hsiung; Liou, Meng-Sing
1995-01-01
A hybrid grid system that combines the Chimera overset grid scheme and an unstructured grid method is developed to study fluid flow and heat transfer problems. With the proposed method, the solid structural region, in which only the heat conduction is considered, can be easily represented using an unstructured grid method. As for the fluid flow region external to the solid material, the Chimera overset grid scheme has been shown to be very flexible and efficient in resolving complex configurations. The numerical analyses require the flow field solution and material thermal response to be obtained simultaneously. A continuous transfer of temperature and heat flux is specified at the interface, which connects the solid structure and the fluid flow as an integral system. Numerical results are compared with analytical and experimental data for a flat plate and a C3X cooled turbine cascade. A simplified drum-disk system is also simulated to show the effectiveness of this hybrid grid system.
Modeling Types of Pedal Applications Using a Driving Simulator.
Wu, Yuqing; Boyle, Linda Ng; McGehee, Daniel; Roe, Cheryl A; Ebe, Kazutoshi; Foley, James
2015-11-01
The aim of this study was to examine variations in drivers' foot behavior and identify factors associated with pedal misapplications. Few studies have focused on the foot behavior while in the vehicle and the mishaps that a driver can encounter during a potentially hazardous situation. A driving simulation study was used to understand how drivers move their right foot toward the pedals. The study included data from 43 drivers as they responded to a series of rapid traffic signal phase changes. Pedal application types were classified as (a) direct hit, (b) hesitated, (c) corrected trajectory, and (d) pedal errors (incorrect trajectories, misses, slips, or pressed both pedals). A mixed-effects multinomial logit model was used to predict the likelihood of one of these pedal applications, and linear mixed models with repeated measures were used to examine the response time and pedal duration given the various experimental conditions (stimuli color and location). Younger drivers had higher probabilities of direct hits when compared to other age groups. Participants tended to have more pedal errors when responding to a red signal or when the signal appeared to be closer. Traffic signal phases and locations were associated with pedal response time and duration. The response time and pedal duration affected the likelihood of being in one of the four pedal application types. Findings from this study suggest that age-related and situational factors may play a role in pedal errors, and the stimuli locations could affect the type of pedal application. © 2015, Human Factors and Ergonomics Society.
Heat transfer analysis of ZnO-water nanofluid for nuclear application
International Nuclear Information System (INIS)
Pattanayak, Bikash; Mund, Abhishek; Jayakumar, J.S.; Chaudhuri, P.; Parashar, Kajal; Parashar, S.K.S.
2017-01-01
The thermal conductivity of traditional heat transfer fluids is inherently low. Metals or metal oxide in ultra-fine form have orders of magnitudes higher thermal conductivity of those of fluids. So it is a need to understand the fundamental behavior of the metals or metal oxides nanoparticles in base fluids. ZnO is a semiconductor but has a wide range of application. In this study the thermal conductivity and viscosity will be discussed in details with experimental and theoretical models. The application of ZnO based nanofluids will be very much useful in nuclear fusion
Simulation of Laser Additive Manufacturing and its Applications
Lee, Yousub
Laser and metal powder based additive manufacturing (AM), a key category of advanced Direct Digital Manufacturing (DDM), produces metallic components directly from a digital representation of the part such as a CAD file. It is well suited for the production of high-value, customizable components with complex geometry and the repair of damaged components. Currently, the main challenges for laser and metal powder based AM include the formation of defects (e.g., porosity), low surface finish quality, and spatially non-uniform properties of material. Such challenges stem largely from the limited knowledge of complex physical processes in AM especially the molten pool physics such as melting, molten metal flow, heat conduction, vaporization of alloying elements, and solidification. Direct experimental measurement of melt pool phenomena is highly difficult since the process is localized (on the order of 0.1 mm to 1 mm melt pool size) and transient (on the order of 1 m/s scanning speed). Furthermore, current optical and infrared cameras are limited to observe the melt pool surface. As a result, fluid flows in the melt pool, melt pool shape and formation of sub-surface defects are difficult to be visualized by experiment. On the other hand, numerical simulation, based on rigorous solution of mass, momentum and energy transport equations, can provide important quantitative knowledge of complex transport phenomena taking place in AM. The overarching goal of this dissertation research is to develop an analytical foundation for fundamental understanding of heat transfer, molten metal flow and free surface evolution. Two key types of laser AM processes are studied: a) powder injection, commonly used for repairing of turbine blades, and b) powder bed, commonly used for manufacturing of new parts with complex geometry. In the powder injection simulation, fluid convection, temperature gradient (G), solidification rate (R) and melt pool shape are calculated using a heat transfer
IJgosse, Wouter M; van Goor, Harry; Luursema, Jan-Maarten
2018-01-18
Residents find it hard to commit to structural laparoscopic skills training. Serious gaming has been proposed as a solution on the premise that it is effective and more motivating than traditional simulation. We establish construct validity for the laparoscopic serious game Underground by comparing laparoscopic simulator performance for a control group and an Underground training group. A four-session laparoscopic basic skills course is part of the medical master students surgical internship at the Radboud University Medical Centre. Four cohorts, representing 107 participants, were assigned to either the Underground group or the control group. The control group trained on the FLS video trainer and the LapSim virtual reality simulator for four sessions. The Underground group played Underground for three sessions followed by a transfer session on the FLS video trainer and the LapSim. To assess the effect of engaging in serious gameplay on performance on two validated laparoscopic simulators, initial performance on the FLS video trainer and the LapSim was compared between the control group (first session) and the Underground group (fourth session). We chose task duration as a proxy for laparoscopic performance. The Underground group outperformed the control group on all three LapSim tasks: Camera navigation F(1) = 12.71, p game and validated laparoscopic simulator technology. Serious gaming may become a valuable, cost-effective addition to the skillslab, if transfer to the operating room can be established. Additionally, we discuss sources of transferable skills to help explain our and previous findings.
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
International Nuclear Information System (INIS)
Kenjereš, Saša
2014-01-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called 'bad' cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is
Modeling and simulation of multi-physics multi-scale transport phenomenain bio-medical applications
Kenjereš, Saša
2014-08-01
We present a short overview of some of our most recent work that combines the mathematical modeling, advanced computer simulations and state-of-the-art experimental techniques of physical transport phenomena in various bio-medical applications. In the first example, we tackle predictions of complex blood flow patterns in the patient-specific vascular system (carotid artery bifurcation) and transfer of the so-called "bad" cholesterol (low-density lipoprotein, LDL) within the multi-layered artery wall. This two-way coupling between the blood flow and corresponding mass transfer of LDL within the artery wall is essential for predictions of regions where atherosclerosis can develop. It is demonstrated that a recently developed mathematical model, which takes into account the complex multi-layer arterial-wall structure, produced LDL profiles within the artery wall in good agreement with in-vivo experiments in rabbits, and it can be used for predictions of locations where the initial stage of development of atherosclerosis may take place. The second example includes a combination of pulsating blood flow and medical drug delivery and deposition controlled by external magnetic field gradients in the patient specific carotid artery bifurcation. The results of numerical simulations are compared with own PIV (Particle Image Velocimetry) and MRI (Magnetic Resonance Imaging) in the PDMS (silicon-based organic polymer) phantom. A very good agreement between simulations and experiments is obtained for different stages of the pulsating cycle. Application of the magnetic drug targeting resulted in an increase of up to ten fold in the efficiency of local deposition of the medical drug at desired locations. Finally, the LES (Large Eddy Simulation) of the aerosol distribution within the human respiratory system that includes up to eight bronchial generations is performed. A very good agreement between simulations and MRV (Magnetic Resonance Velocimetry) measurements is obtained
International symposium on fuel rod simulators: development and application
Energy Technology Data Exchange (ETDEWEB)
McCulloch, R.W. (comp.)
1981-05-01
Separate abstracts are included for each of the papers presented concerning fuel rod simulator operation and performance; simulator design and evaluation; clad heated fuel rod simulators and fuel rod simulators for cladding investigations; fuel rod simulator components and inspection; and simulator analytical modeling. Ten papers have previously been input to the Energy Data Base.
ENERGY RELEASE AND TRANSFER IN SOLAR FLARES: SIMULATIONS OF THREE-DIMENSIONAL RECONNECTION
International Nuclear Information System (INIS)
Birn, J.; Fletcher, L.; Hesse, M.; Neukirch, T.
2009-01-01
Using three-dimensional magnetohydrodynamic simulations we investigate energy release and transfer in a three-dimensional extension of the standard two-ribbon flare picture. In this scenario, reconnection is initiated in a thin current sheet (suggested to form below a departing coronal mass ejection) above a bipolar magnetic field. Two cases are contrasted: an initially force-free current sheet (low beta) and a finite-pressure current sheet (high beta), where beta represents the ratio between gas (plasma) and magnetic pressure. The energy conversion process from reconnection consists of incoming Poynting flux turned into up- and downgoing Poynting flux, enthalpy flux, and bulk kinetic energy flux. In the low-beta case, the outgoing Poynting flux is the dominant contribution, whereas the outgoing enthalpy flux dominates in the high-beta case. The bulk kinetic energy flux is only a minor contribution in the downward direction. The dominance of the downgoing Poynting flux in the low-beta case is consistent with an alternative to the thick target electron beam model for solar flare energy transport, suggested recently by Fletcher and Hudson, whereas the enthalpy flux may act as an alternative transport mechanism. For plausible characteristic parameters of the reconnecting field configuration, we obtain energy release timescales and energy output rates that compare favorably with those inferred from observations for the impulsive phase of flares. Significant enthalpy flux and heating are found even in the initially force-free case with very small background beta, resulting mostly from adiabatic compression rather than Ohmic dissipation. The energy conversion mechanism is most easily understood as a two-step process (although the two steps may occur essentially simultaneously): the first step is the acceleration of the plasma by Lorentz forces in layers akin to the slow shocks in the Petschek reconnection model, involving the conversion of magnetic energy to bulk kinetic
International Nuclear Information System (INIS)
Berry, Max; Lystig, Ted; Beard, Jonathan; Klingestierna, Hans; Reznick, Richard; Loenn, Lars
2007-01-01
Purpose. To compare the learning of endovascular interventional skills by training on pig models versus virtual reality simulators. Methods. Twelve endovascular novices participated in a study consisting of a pig laboratory (P-Lab) and a virtual reality laboratory (VR-Lab). Subjects were stratified by experience and randomized into four training groups. Following 1 hr of didactic instruction, all attempted an iliac artery stenosis (IAS) revascularization in both laboratories. Onsite proctors evaluated performances using task-specific checklists and global rating scales, yielding a Total Score. Participants completed two training sessions of 3 hr each, using their group's assigned method (P-Lab x 2, P-Lab + VR-Lab, VR-Lab + P-Lab, or VR-Lab x 2) and were re-evaluated in both laboratories. A panel of two highly experienced interventional radiologists performed assessments from video recordings. ANCOVA analysis of Total Score against years of surgical, interventional radiology (IR) experience and cumulative number of P-Lab or VR-Lab sessions was conducted. Inter-rater reliability (IRR) was determined by comparing proctored scores with the video assessors in only the VR-Lab. Results. VR-Lab sessions improved the VR-Lab Total Score (β 3.029, p = 0.0015) and P-Lab Total Score (β = 1.814, p = 0.0452). P-Lab sessions increased the P-Lab Total Score (β = 4.074, p < 0.0001) but had no effect on the VR-Lab Total Score. In the general statistical model, both P-Lab sessions (β = 2.552, p = 0.0010) and VR-Lab sessions (β 2.435, p = 0.0032) significantly improved Total Score. Neither previous surgical experience nor IR experience predicted Total Score. VR-Lab scores were consistently higher than the P-Lab scores (Δ = 6.659, p < 0.0001). VR-Lab IRR was substantial (r = 0.649, p < 0.0008). Conclusions. Endovascular skills learned in the virtual environment may be transferable to the real catheterization laboratory as modeled in the P-Lab
Large Eddy Simulation of Fluid flow and Heat Transfer in the Upper Plenum of Fast Reactor
Energy Technology Data Exchange (ETDEWEB)
Choi, Seokki; Lee, Taeho; Kim, Dongeun [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of); Ko, Sungho [Chungnam National Univ., Daejeon (Korea, Republic of)
2014-05-15
The important parameters in the thermal striping are the frequency and the amplitude of the temperature fluctuation. Since the sodium used as coolant in the PGSFR has a high thermal conductivity, the temperature fluctuation can be easily transferred to the solid walls of the components in the upper plenum. To remedy these problems, numerical studies are performed in the present study to analyze the thermal striping for possible improvement of the design and safety of the reactor. For the numerical works, Chacko et al. performed LES for the experiment by Nam and Kim, and found that the LES can produce the oscillation of temperature fluctuation properly, while the realizable k - ε model predicts the amplitude and frequency of the temperature fluctuation very poorly indicating that the LES method is an appropriate calculation method for the thermal striping. In this paper, the simulation of thermal striping in the upper plenum of PGSFR is performed using the LES method. The WALE eddy viscosity model by Nicoud and Ducros built in CFX-13 commercial code is employed for the LES eddy viscosity model. The numerical investigation of the thermal striping is performed with the LES method using the CFX-13 commercial code, where the solution domain is the upper plenum of the PGSFR. As the first step, dozens of monitoring points are set to locations that are anticipated to cause thermal striping. Then, the temperature fluctuations were calculated along with the time-averaged variables such as the velocity and temperature. From these results we have obtained the following conclusions. At the side wall of IHX, a slight fluctuation is observed, but it seems that there is no risk of thermal striping. The flows from the reactor core are not mixed when reaching the UIS. So both the first and second plates need to be considered. Among the first grid plate regions, the shape region is the weakest region for thermal striping. The second weakest region for thermal striping is the shape
Heat and mass transfer of a low-pressure Mars greenhouse: Simulation and experimental analysis
Hublitz, Inka
Biological life support systems based on plant growth offer the advantage of producing fresh food for the crew during a long surface stay on Mars. Greenhouses on Mars are also used for air and water regeneration and waste treatment. A major challenge in developing a Mars greenhouse is its interaction with the thin and cold Mars environment. Operating a Mars greenhouse at low interior pressure reduces the pressure differential across the structure and therefore saves structural mass as well as reduces leakage. Experiments were conducted to analyze the heating requirements as well as the temperature and humidity distribution within a small-scale greenhouse that was placed in a chamber simulating the temperatures, pressure and light conditions on Mars. Lettuce plants were successfully grown inside of the Mars greenhouse for up to seven days. The greenhouse atmosphere parameters, including temperature, total pressure, oxygen and carbon dioxide concentration were controlled tightly; radiation level, relative humidity and plant evapo-transpiration rates were measured. A vertical stratification of temperature and humidity across the greenhouse atmosphere was observed. Condensation formed on the inside of the greenhouse when the shell temperature dropped below the dew-point. During the night cycles frost built up on the greenhouse base plate and the lower part of the shell. Heat loss increased significantly during the night cycle. Due to the placement of the heating system and the fan blowing warm air directly on the upper greenhouse shell, condensation above the plants was avoided and therefore the photosynthetically active radiation at plant level was kept constant. Plant growth was not affected by the temperature stratification due to the tight temperature control of the warmer upper section of the greenhouse, where the lettuce plants were placed. A steady state and a transient heat transfer model of the low pressure greenhouse were developed for the day and the night
Randomized trial to examine procedure-to-procedure transfer in laparoscopic simulator training
DEFF Research Database (Denmark)
Bjerrum, F; Sorensen, J L; Konge, L
2016-01-01
-centre educational superiority trial. Surgical novices practised basic skills on a laparoscopic virtual reality simulator. On reaching proficiency, participants were randomized to proficiency-based training. The intervention group practised two procedures on the simulator (appendicectomy followed by salpingectomy...
Application of intensified heat transfer for the retrofit of heat exchanger network
International Nuclear Information System (INIS)
Wang, Yufei; Pan, Ming; Bulatov, Igor; Smith, Robin; Kim, Jin-Kuk
2012-01-01
Highlights: → Novel design approach for the retrofit of HEN based on intensified heat transfer. → Development of a mathematical model to evaluate shell-and-tube heat exchanger performances. → Identification of the most appropriate heat exchangers requiring heat transfer enhancements in the heat exchanger network. -- Abstract: A number of design methods have been proposed for the retrofit of heat exchanger networks (HEN) during the last three decades. Although considerable potential for energy savings can be identified from conventional retrofit approaches, the proposed solutions have rarely been adopted in practice, due to significant topology modifications required and resulting engineering complexities during implementation. The intensification of heat transfer for conventional shell-and-tube heat exchangers can eliminate the difficulties of implementing retrofit in HEN which are commonly restricted by topology, safety and maintenance constraints, and includes high capital costs for replacing equipment and pipelines. This paper presents a novel design approach to solve HEN retrofit problems based on heat transfer enhancement. A mathematical model has been developed to evaluate shell-and-tube heat exchanger performances, with which heat-transfer coefficients and pressure drops for both fluids in tube and shell sides are obtained. The developed models have been compared with the Bell-Delaware, simplified Tinker and Wills-Johnston methods and tested with the HTRI (registered) and HEXTRAN (registered) software packages. This demonstrates that the new model is much simpler but can give reliable results in most cases. For the debottlenecking of HEN, four heuristic rules are proposed to identify the most appropriate heat exchangers requiring heat transfer enhancements in the HEN. The application of this new design approach allows a significant improvement in energy recovery without fundamental structural modifications to the network.
Direct numerical simulation of turbulence and heat transfer in a hexagonal shaped duct
Marin, Oana; Obabko, Aleks; Schlatter, Philipp
2014-11-01
Flows in hexagonal shapes frequently occur in nuclear reactor applications, and are also present in honeycomb-shaped settling chambers for e.g. wind tunnels. Whereas wall-bounded turbulence has been studied comprehensively in two-dimensional channels, and to a lesser degree also in square and rectangular ducts and triangles, only very limited data for hexagonal ducts is available, including resistance correlations and mean profiles. Here, we use resolved spectral-element simulations to compute velocity and temperature in fully-developed (periodic) hexagonal duct flow. The Reynolds number, based on the fixed flow rate and the hydraulic diameter, ranges between 2000 and 20000. The temperature assumes constant wall flux or constant wall temperature. First DNS results are focused on the mean characteristics such a head loss, Nusselt number, and critical Reynolds number for sustained turbulence. Profiles, both for mean and fluctuating quantities, are extracted and discussed in the context of square ducts and pipes. Comparisons to existing experiments, RANS and empirical correlations are supplied as well. The results show a complicated and fine-scale pattern of the in-plane secondary flow, which clearly affects the momentum and temperature distribution throughout the cross section.
Robinson, Marc J.
A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge
Improving SAR Automatic Target Recognition Models with Transfer Learning from Simulated Data
DEFF Research Database (Denmark)
Malmgren-Hansen, David; Kusk, Anders; Dall, Jørgen
2017-01-01
SAR images. The simulated data set is obtained by adding a simulated object radar reflectivity to a terrain model of individual point scatters, prior to focusing. Our results show that a Convolutional Neural Network (Convnet) pretrained on simulated data has a great advantage over a Convnet trained...
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
Keyrouz, Shady; Visser, Huib
2013-12-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of -10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%.
Efficient Direct-Matching Rectenna Design for RF Power Transfer Applications
International Nuclear Information System (INIS)
Keyrouz, Shady; Visser, Huib
2013-01-01
This paper presents the design, simulation, fabrication and measurements of a 50 ohm rectenna system. The paper investigates each part (in terms of input impedance) of the rectenna system starting from the antenna, followed by the matching network, to the rectifier. The system consists of an antenna, which captures the transmitted RF signal, connected to a rectifier which converts the AC captured signal into a DC power signal. For maximum power transfer, a matching network is designed between the rectifier and the antenna. At an input power level of −10 dBm, the system is able to achieve an RF/DC power conversion efficiency of 49.7%
International Nuclear Information System (INIS)
Zavisca, M.J.; Khatib-Rahbar, M.; Esmaili, H.; Schulz, R.
2002-01-01
The Accident Diagnostic, Analysis and Management (ADAM) computer code has been developed as a tool for on-line applications to accident diagnostics, simulation, management and training. ADAM's severe accident simulation capabilities incorporate a balance of mechanistic, phenomenologically based models with simple parametric approaches for elements including (but not limited to) thermal hydraulics; heat transfer; fuel heatup, meltdown, and relocation; fission product release and transport; combustible gas generation and combustion; and core-concrete interaction. The overall model is defined by a relatively coarse spatial nodalization of the reactor coolant and containment systems and is advanced explicitly in time. The result is to enable much faster than real time (i.e., 100 to 1000 times faster than real time on a personal computer) applications to on-line investigations and/or accident management training. Other features of the simulation module include provision for activation of water injection, including the Engineered Safety Features, as well as other mechanisms for the assessment of accident management and recovery strategies and the evaluation of PSA success criteria. The accident diagnostics module of ADAM uses on-line access to selected plant parameters (as measured by plant sensors) to compute the thermodynamic state of the plant, and to predict various margins to safety (e.g., times to pressure vessel saturation and steam generator dryout). Rule-based logic is employed to classify the measured data as belonging to one of a number of likely scenarios based on symptoms, and a number of 'alarms' are generated to signal the state of the reactor and containment. This paper will address the features and limitations of ADAM with particular focus on accident simulation and management. (authors)
Simulation of Underground Muon Flux with Application to Muon Tomography
Yamaoka, J. A. K.; Bonneville, A.; Flygare, J.; Lintereur, A.; Kouzes, R.
2015-12-01
Muon tomography uses highly energetic muons, produced by cosmic rays interacting within the upper atmosphere, to image dense materials. Like x-rays, an image can be constructed from the negative of the absorbed (or scattered) muons. Unlike x-rays, these muons can penetrate thousands of meters of earth. Muon tomography has been shown to be useful across a wide range of applications (such as imaging of the interior of volcanoes and cargo containers). This work estimates the sensitivity of muon tomography for various underground applications. We use simulations to estimate the change in flux as well as the spatial resolution when imaging static objects, such as mine shafts, and dynamic objects, such as a CO2 reservoir filling over time. We present a framework where we import ground density data from other sources, such as wells, gravity and seismic data, to generate an expected muon flux distribution at specified underground locations. This information can further be fed into a detector simulation to estimate a final experimental sensitivity. There are many applications of this method. We explore its use to image underground nuclear test sites, both the deformation from the explosion as well as the supporting infrastructure (access tunnels and shafts). We also made estimates for imaging a CO2 sequestration site similar to Futuregen 2.0 in Illinois and for imaging magma chambers beneath the Cascade Range volcanoes. This work may also be useful to basic science, such as underground dark matter experiments, where increasing experimental sensitivity requires, amongst other factors, a precise knowledge of the muon background.
A Polarizable and Transferable PHAST CO 2 Potential for Materials Simulation
Mullen, Ashley L.; Pham, Tony; Forrest, Katherine A.; Cioce, Christian R.; McLaughlin, Keith; Space, Brian
2013-01-01
Reliable PHAST (Potentials with High Accuracy Speed and Transferability) intermolecular potential energy functions for CO2 have been developed from first principles for use in heterogeneous systems, including one with explicit polarization
Simplified 3d CFD flow simulation of a turbojet disc cavity with conjugate heat transfer
CSIR Research Space (South Africa)
Snedden, Glen C
2003-09-01
Full Text Available A comprehensive computational fluid dynamics (CFD) model of an actual disc cavity, complete with rotation and conjugate heat transfer, is presented. The model uses a commercially available code with geometrical accuracy including a labyrinth seal...
Simulation of whole building coupled hygrothermal-airflow transfer in different climates
International Nuclear Information System (INIS)
Qin Menghao; Walton, George; Belarbi, Rafik; Allard, Francis
2011-01-01
The coupled heat, air and moisture transfer between building envelopes and indoor air is complicated, and has a significant influence on the indoor environment and the energy performance of buildings. In the paper, a model for predicting coupled multi-zone hygrothermal-airflow transfer is presented. Both heat and moisture transfer in the building envelope and multi-zone indoor airflow are simultaneously considered; their interactions are modeled. The coupled system model is implemented into Matlab-Simulink, and is validated by using a series of testing tools and experiments. The new program is applied to investigate the moisture transfer effect on indoor air humidity and building energy consumption in different climates (hot-humid, temperate and hot-dry climates). The results show that not accounting for hygrothermal effects in modeling will result in overestimation of energy costs for hot and humid climate situations and possible over sizing of plant leading to inefficient operation.
Framework Application for Core Edge Transport Simulation (FACETS)
Energy Technology Data Exchange (ETDEWEB)
Malony, Allen D; Shende, Sameer S; Huck, Kevin A; Mr. Alan Morris, and Mr. Wyatt Spear
2012-03-14
The goal of the FACETS project (Framework Application for Core-Edge Transport Simulations) was to provide a multiphysics, parallel framework application (FACETS) that will enable whole-device modeling for the U.S. fusion program, to provide the modeling infrastructure needed for ITER, the next step fusion confinement device. Through use of modern computational methods, including component technology and object oriented design, FACETS is able to switch from one model to another for a given aspect of the physics in a flexible manner. This enables use of simplified models for rapid turnaround or high-fidelity models that can take advantage of the largest supercomputer hardware. FACETS does so in a heterogeneous parallel context, where different parts of the application execute in parallel by utilizing task farming, domain decomposition, and/or pipelining as needed and applicable. ParaTools, Inc. was tasked with supporting the performance analysis and tuning of the FACETS components and framework in order to achieve the parallel scaling goals of the project. The TAU Performance System® was used for instrumentation, measurement, archiving, and profile / tracing analysis. ParaTools, Inc. also assisted in FACETS performance engineering efforts. Through the use of the TAU Performance System, ParaTools provided instrumentation, measurement, analysis and archival support for the FACETS project. Performance optimization of key components has yielded significant performance speedups. TAU was integrated into the FACETS build for both the full coupled application and the UEDGE component. The performance database provided archival storage of the performance regression testing data generated by the project, and helped to track improvements in the software development.
Ishida, H.; Ota, Y.; Sekiguchi, M.; Sato, Y.
2016-12-01
A three-dimensional (3D) radiative transfer calculation scheme is developed to estimate horizontal transport of radiation energy in a very high resolution (with the order of 10 m in spatial grid) simulation of cloud evolution, especially for horizontally inhomogeneous clouds such as shallow cumulus and stratocumulus. Horizontal radiative transfer due to inhomogeneous clouds seems to cause local heating/cooling in an atmosphere with a fine spatial scale. It is, however, usually difficult to estimate the 3D effects, because the 3D radiative transfer often needs a large resource for computation compared to a plane-parallel approximation. This study attempts to incorporate a solution scheme that explicitly solves the 3D radiative transfer equation into a numerical simulation, because this scheme has an advantage in calculation for a sequence of time evolution (i.e., the scene at a time is little different from that at the previous time step). This scheme is also appropriate to calculation of radiation with strong absorption, such as the infrared regions. For efficient computation, this scheme utilizes several techniques, e.g., the multigrid method for iteration solution, and a correlated-k distribution method refined for efficient approximation of the wavelength integration. For a case study, the scheme is applied to an infrared broadband radiation calculation in a broken cloud field generated with a large eddy simulation model. The horizontal transport of infrared radiation, which cannot be estimated by the plane-parallel approximation, and its variation in time can be retrieved. The calculation result elucidates that the horizontal divergences and convergences of infrared radiation flux are not negligible, especially at the boundaries of clouds and within optically thin clouds, and the radiative cooling at lateral boundaries of clouds may reduce infrared radiative heating in clouds. In a future work, the 3D effects on radiative heating/cooling will be able to be
Li, Pengfei; Soudackov, Alexander V; Hammes-Schiffer, Sharon
2018-02-28
The proton-coupled electron transfer (PCET) reaction catalyzed by soybean lipoxygenase has served as a prototype for understanding hydrogen tunneling in enzymes. Herein this PCET reaction is studied with mixed quantum mechanical/molecular mechanical (QM/MM) free energy simulations. The free energy surfaces are computed as functions of the proton donor-acceptor (C-O) distance and the proton coordinate, and the potential of mean force is computed as a function of the C-O distance, inherently including anharmonicity. The simulation results are used to calculate the kinetic isotope effects for the wild-type enzyme (WT) and the L546A/L754A double mutant (DM), which have been measured experimentally to be ∼80 and ∼700, respectively. The PCET reaction is found to be exoergic for WT and slightly endoergic for the DM, and the equilibrium C-O distance for the reactant is found to be ∼0.2 Å greater for the DM than for WT. The larger equilibrium distance for the DM, which is due mainly to less optimal substrate binding in the expanded binding cavity, is primarily responsible for its higher kinetic isotope effect. The calculated potentials of mean force are anharmonic and relatively soft at shorter C-O distances, allowing efficient thermal sampling of the shorter distances required for effective hydrogen tunneling. The primarily local electrostatic field at the transferring hydrogen is ∼100 MV/cm in the direction to facilitate proton transfer and increases dramatically as the C-O distance decreases. These simulations suggest that the overall protein environment is important for conformational sampling of active substrate configurations aligned for proton transfer, but the PCET reaction is influenced primarily by local electrostatic effects that facilitate conformational sampling of shorter proton donor-acceptor distances required for effective hydrogen tunneling.
Numerical simulation of gas-liquid two-phase flow behavior with condensation heat transfer
International Nuclear Information System (INIS)
Takamori, Kazuhide; Murase, Michio; Baba, Yoshikazu; Aihara, Tsuyoshi.
1995-01-01
In this study, condensation heat transfer experiments were performed in order to verify a condensation heat transfer model coupled with a three-dimensional two-phase flow analysis. In the heat transfer model, the liquid film flow rate on the heat transfer tubes was calculated by a mass balance equation and the liquid film thickness was calculated from the liquid film flow rate using Nusselt's laminar flow model and Fujii's equation for steam velocity effect. In the experiments, 112 horizontal staggered tubes with an outer diameter of 16 mm and length of 0.55 m were used. Steam and spray water were supplied to the test section, and inlet quality was controlled by the spray water flow rate. The temperature was 100degC and the pressure was 0.1 MPa. The overall heat transfer coefficients were measured for inlet quality of 13-100%. From parameter calculations for the falling liquid film ratio from the upper tubes to the lower tubes, the calculated overall heat transfer coefficients agreed with the data to within ±5% at the falling liquid film ratio of 0.7. (author)