WorldWideScience

Sample records for transfer rna species

  1. Genome-Wide Development of MicroRNA-Based SSR Markers in Medicago truncatula with Their Transferability Analysis and Utilization in Related Legume Species.

    Science.gov (United States)

    Min, Xueyang; Zhang, Zhengshe; Liu, Yisong; Wei, Xingyi; Liu, Zhipeng; Wang, Yanrong; Liu, Wenxian

    2017-11-18

    Microsatellite (simple sequence repeats, SSRs) marker is one of the most widely used markers in marker-assisted breeding. As one type of functional markers, MicroRNA-based SSR (miRNA-SSR) markers have been exploited mainly in animals, but the development and characterization of miRNA-SSR markers in plants are still limited. In the present study, miRNA-SSR markers for Medicago truncatula ( M. truncatula ) were developed and their cross-species transferability in six leguminous species was evaluated. A total of 169 primer pairs were successfully designed from 130 M. truncatula miRNA genes, the majority of which were mononucleotide repeats (70.41%), followed by dinucleotide repeats (14.20%), compound repeats (11.24%) and trinucleotide repeats (4.14%). Functional classification of SSR-containing miRNA genes showed that all targets could be grouped into three Gene Ontology (GO) categories: 17 in biological process, 11 in molecular function, and 14 in cellular component. The miRNA-SSR markers showed high transferability in other six leguminous species, ranged from 74.56% to 90.53%. Furthermore, 25 Mt - miRNA-SSR markers were used to evaluate polymorphisms in 20 alfalfa accessions, and the polymorphism information content (PIC) values ranged from 0.39 to 0.89 with an average of 0.71, the allele number per marker varied from 3 to 18 with an average of 7.88, indicating a high level of informativeness. The present study is the first time developed and characterized of M. truncatula miRNA-SSRs and demonstrated their utility in transferability, these novel markers will be valuable for genetic diversity analysis, marker-assisted selection and genotyping in leguminous species.

  2. Transfer RNA species in human lymphocytes stimulated by mitogens and in leukemic cells. [/sup 3/H, /sup 14/C, /sup 32/P tracer techniques

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Yang, W.K.; Novelli, G.D.

    1976-01-01

    Transfer ribonucleic acid (tRNA) profiles in human lymphocytes stimulated by various mitogens have been compared with profiles from nonstimulated cells and from leukemic cells using reversed-phase chromatography. Comparisons of (/sup 3/H)- or (/sup 11/C)uridine- or (/sup 32/P)phosphate-labeled tRNAs showed that the greatest changes in tRNA composition upon phytohemagglutinin (PHA) stimulation occurred in the first 8 h after mitogen addition. Stimulation of lymphocytes by pokeweed mitogen, anti-human immunoglobulin, or bacterial lipopolysaccharide resulted in tRNA species which showed distinct differences from each other and also from the tRNAs produced by phytohemagglutinin stimulation. Leukemic lymphocyte tRNAs showed the most extensive differences in profile when compared with chromatograms from non-neoplastic cells stimulated by a variety of mitogens. Specific isoaccepting species of tyrosyl-, aspartyl-, and phenylalanyl-tRNAs were also compared in PHA-stimulated and resting lymphocytes and no differences were found. When these same species were studied in leukemic cells, tyrosyl-tRNA profiles were shifted to elute at a lower salt concentration, while the aspartyl-tRNA profile showed a new peak not present in noncancerous cells.

  3. Regulatory RNAs derived from transfer RNA?

    Science.gov (United States)

    Pederson, Thoru

    2010-10-01

    Four recent studies suggest that cleavages of transfer RNAs generate products with microRNA-like features, with some evidence of function. If their regulatory functions were to be confirmed, these newly revealed RNAs would add to the expanding repertoire of small noncoding RNAs and would also provide new perspectives on the coevolution of transfer RNA and messenger RNA.

  4. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-12-01

    MicroRNA (miRNA) are a class of small endogenous non-coding RNA that are mainly negative transcriptional and post-transcriptional regulators in both plants and animals. Recent studies have shown that miRNA are involved in different types of cancer and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. miRNA genes are classified into different groups (miRNA families). This study reports about 19,000 unknown miRNA genes in nine species whereby approximately 15,300 predictions were computationally validated to contain at least one experimentally verified functional miRNA product. The predictions are based on a novel computational strategy which relies on miRNA family groupings and exploits the physics and geometry of miRNA genes to unveil the hidden palindromic signals and symmetries in miRNA gene sequences. Unlike conventional computational miRNA gene discovery methods, the algorithm developed here is species-independent: it allows prediction at higher accuracy and resolution from arbitrary RNA/DNA sequences in any species and thus enables examination of repeat-prone genomic regions which are thought to be non-informative or ’junk’ sequences. The information non-redundancy of uni-directional RNA sequences compared to information redundancy of bi-directional DNA is demonstrated, a fact that is overlooked by most pattern discovery algorithms. A novel method for computing upstream and downstream miRNA gene boundaries based on mathematical/statistical functions is suggested, as well as cutoffs for annotation of miRNA genes in different miRNA families. Another tool is proposed to allow hypotheses generation and visualization of data matrices, intra- and inter-species chromosomal distribution of miRNA genes or miRNA families. Our results indicate that: miRNA and miRNA

  5. Glia to axon RNA transfer.

    Science.gov (United States)

    Sotelo, José Roberto; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José Roberto; Calliari, Aldo; Cal, Karina; Bresque, Mariana; Dipaolo, Andrés; Farias, Joaquina; Mercer, John A

    2014-03-01

    The existence of RNA in axons has been a matter of dispute for decades. Evidence for RNA and ribosomes has now accumulated to a point at which it is difficult to question, much of the disputes turned to the origin of these axonal RNAs. In this review, we focus on studies addressing the origin of axonal RNAs and ribosomes. The neuronal soma as the source of most axonal RNAs has been demonstrated and is indisputable. However, the surrounding glial cells may be a supplemental source of axonal RNAs, a matter scarcely investigated in the literature. Here, we review the few papers that have demonstrated that glial-to-axon RNA transfer is not only feasible, but likely. We describe this process in both invertebrate axons and vertebrate axons. Schwann cell to axon ribosomes transfer was conclusively demonstrated (Court et al. [2008]: J. Neurosci 28:11024-11029; Court et al. [2011]: Glia 59:1529-1539). However, mRNA transfer still remains to be demonstrated in a conclusive way. The intercellular transport of mRNA has interesting implications, particularly with respect to the integration of glial and axonal function. This evolving field is likely to impact our understanding of the cell biology of the axon in both normal and pathological conditions. Most importantly, if the synthesis of proteins in the axon can be controlled by interacting glia, the possibilities for clinical interventions in injury and neurodegeneration are greatly increased. Copyright © 2013 Wiley Periodicals, Inc.

  6. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species

    Directory of Open Access Journals (Sweden)

    Grill Andrea

    2006-07-01

    Full Text Available Abstract Background We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA and two mitochondrial (cytb, COI genes. Results Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. Conclusion The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination

  7. Phylogeographic support for horizontal gene transfer involving sympatric bruchid species.

    Science.gov (United States)

    Alvarez, Nadir; Benrey, Betty; Hossaert-McKey, Martine; Grill, Andrea; McKey, Doyle; Galtier, Nicolas

    2006-07-27

    We report on the probable horizontal transfer of a mitochondrial gene, cytb, between species of Neotropical bruchid beetles, in a zone where these species are sympatric. The bruchid beetles Acanthoscelides obtectus, A. obvelatus, A. argillaceus and Zabrotes subfasciatus develop on various bean species in Mexico. Whereas A. obtectus and A. obvelatus develop on Phaseolus vulgaris in the Mexican Altiplano, A. argillaceus feeds on P. lunatus in the Pacific coast. The generalist Z. subfasciatus feeds on both bean species, and is sympatric with A. obtectus and A. obvelatus in the Mexican Altiplano, and with A. argillaceus in the Pacific coast. In order to assess the phylogenetic position of these four species, we amplified and sequenced one nuclear (28S rRNA) and two mitochondrial (cytb, COI) genes. Whereas species were well segregated in topologies obtained for COI and 28S rRNA, an unexpected pattern was obtained in the cytb phylogenetic tree. In this tree, individuals from A. obtectus and A. obvelatus, as well as Z. subfasciatus individuals from the Mexican Altiplano, clustered together in a unique little variable monophyletic unit. In contrast, A. argillaceus and Z. subfasciatus individuals from the Pacific coast clustered in two separated clades, identically to the pattern obtained for COI and 28S rRNA. An additional analysis showed that Z. subfasciatus individuals from the Mexican Altiplano also possessed the cytb gene present in individuals of this species from the Pacific coast. Zabrotes subfasciatus individuals from the Mexican Altiplano thus demonstrated two cytb genes, an "original" one and an "infectious" one, showing 25% of nucleotide divergence. The "infectious" cytb gene seems to be under purifying selection and to be expressed in mitochondria. The high degree of incongruence of the cytb tree with patterns for other genes is discussed in the light of three hypotheses: experimental contamination, hybridization, and pseudogenisation. However, none of these

  8. A Specific Hepatic Transfer RNA for Phosphoserine*

    Science.gov (United States)

    Mäenpää, Pekka H.; Bernfield, Merton R.

    1970-01-01

    Radioactive O-phosphoryl-L-serine was detected after alkaline deacylation of rat and rooster liver [3H]seryl-tRNA acylated in vitro with homologous synthetases. Ribonuclease treatment of this tRNA yielded a compound with the properties of phosphoseryl-adenosine. Benzoylated DEAE-cellulose chromatography of seryl-tRNA yielded four distinct peaks, only one of which contained phosphoserine. A unique fraction for phosphoserine was also found on chromatography of nonacylated tRNA. In ribosome binding studies, this fraction responded very slightly with poly(U,C), but not with any of the known serine trinucleotide codons. Substantial incorporation of [3H]-serine into protein from this tRNA species was observed in an aminoacyl-tRNA dependent polysomal system derived from chick oviducts. No phosphoserine was found in Escherichia coli or yeast seryl-tRNA acylated with homologous enzymes, nor in E. coli seryl-tRNA acylated with liver synthetase. In the absence of tRNA, free phosphoserine was not formed in reaction mixtures, which suggests that phosphoseryl-tRNA arises by phosphorylation of the unique seryl-tRNA species. These results demonstrate a discrete tRNASer species in rat and rooster liver containing phosphoserine and suggest that this tRNA is involved in ribosomal polypeptide synthesis. PMID:4943179

  9. Exosome-mediated microRNA transfer plays a role in radiation-induced bystander effect.

    Science.gov (United States)

    Xu, Shuai; Wang, Jufang; Ding, Nan; Hu, Wentao; Zhang, Xurui; Wang, Bing; Hua, Junrui; Wei, Wenjun; Zhu, Qiyun

    2015-01-01

    Bystander effects can be induced through cellular communication between irradiated cells and non-irradiated cells. The signals that mediate this cellular communication, such as cytokines, reactive oxygen species, nitric oxide and even microRNAs, can be transferred between cells via gap junctions or extracellular medium. We have previously reported that miR-21, a well described DDR (DNA damage response) microRNA, is involved in radiation-induced bystander effects through a medium-mediated way. However, the mechanisms of the microRNA transfer have not been elucidated in details. In the present study, it was found that exosomes isolated from irradiated conditioned medium could induce bystander effects. Furthermore, we demonstrated plenty of evidences that miR-21, which is up-regulated as a result of mimic transfection or irradiation, can be transferred from donor or irradiated cells into extracellular medium and subsequently get access to the recipient or bystander cells through exosomes to induce bystander effects. Inhibiting the miR-21 expression in advance can offset the bystander effects to some extent. From all of these results, it can be concluded that the exosome-mediated microRNA transfer plays an important role in the radiation-induced bystander effects. These findings provide new insights into the functions of microRNAs and the cellular communication between the directly irradiated cells and the non-irradiated cells.

  10. Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract

    Directory of Open Access Journals (Sweden)

    Maguin Emmanuelle

    2007-08-01

    Full Text Available Abstract Background While genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii and yogurt (Lactobacillus delbrueckii ssp. bulgaricus, is ambiguous due to contradictory phenotypical and 16S rRNA based classifications. Results Among the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract. Conclusion This case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive

  11. Dosage compensation of serine-4 transfer RNA in Drosophila melanogaster

    International Nuclear Information System (INIS)

    Birchler, J.A.; Owenby, R.K.; Jacobson, K.B.

    1982-01-01

    A dosage series of the X chromosome site for serine-4 transfer RNA consisting of one of three copies in females and one to two in males was constructed to test whether transfer RNA expression is governed by dosage compensation. A dosage effect on the level of the serine-4 isoacceptor was observed in both females and males when the structural locus was varied. However, in males, each dose had a relatively greater expression so the normal one dose was slightly greater than the total female value and the duplicated male had the highest relative expression of all the types examined. Serine-4 levels in males and females from an isogenic Oregon-R stock were similar. Thus the transfer RNA levels conform to the expectations of dosage compensation

  12. Structural organization of the transfer RNA operon I of Vibrio cholerae

    Indian Academy of Sciences (India)

    Nine major transfer RNA (tRNA) gene clusters were analysed in various Vibrio cholerae strains. Of these, only the tRNA operon I was found to differ significantly in V. cholerae classical (sixth pandemic) and El Tor (seventh pandemic) strains. Amongst the sixteen tRNA genes contained in this operon, genes for tRNA Gln3 ...

  13. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Directory of Open Access Journals (Sweden)

    José R Sotelo

    Full Text Available To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells at the site of injury to promote regeneration.

  14. Myosin-Va-dependent cell-to-cell transfer of RNA from Schwann cells to axons.

    Science.gov (United States)

    Sotelo, José R; Canclini, Lucía; Kun, Alejandra; Sotelo-Silveira, José R; Xu, Lei; Wallrabe, Horst; Calliari, Aldo; Rosso, Gonzalo; Cal, Karina; Mercer, John A

    2013-01-01

    To better understand the role of protein synthesis in axons, we have identified the source of a portion of axonal RNA. We show that proximal segments of transected sciatic nerves accumulate newly-synthesized RNA in axons. This RNA is synthesized in Schwann cells because the RNA was labeled in the complete absence of neuronal cell bodies both in vitro and in vivo. We also demonstrate that the transfer is prevented by disruption of actin and that it fails to occur in the absence of myosin-Va. Our results demonstrate cell-to-cell transfer of RNA and identify part of the mechanism required for transfer. The induction of cell-to-cell RNA transfer by injury suggests that interventions following injury or degeneration, particularly gene therapy, may be accomplished by applying them to nearby glial cells (or implanted stem cells) at the site of injury to promote regeneration.

  15. Characterization and identification of microRNA core promoters in four model species.

    Directory of Open Access Journals (Sweden)

    Xuefeng Zhou

    2007-03-01

    Full Text Available MicroRNAs are short, noncoding RNAs that play important roles in post-transcriptional gene regulation. Although many functions of microRNAs in plants and animals have been revealed in recent years, the transcriptional mechanism of microRNA genes is not well-understood. To elucidate the transcriptional regulation of microRNA genes, we study and characterize, in a genome scale, the promoters of intergenic microRNA genes in Caenorhabditis elegans, Homo sapiens, Arabidopsis thaliana, and Oryza sativa. We show that most known microRNA genes in these four species have the same type of promoters as protein-coding genes have. To further characterize the promoters of microRNA genes, we developed a novel promoter prediction method, called common query voting (CoVote, which is more effective than available promoter prediction methods. Using this new method, we identify putative core promoters of most known microRNA genes in the four model species. Moreover, we characterize the promoters of microRNA genes in these four species. We discover many significant, characteristic sequence motifs in these core promoters, several of which match or resemble the known cis-acting elements for transcription initiation. Among these motifs, some are conserved across different species while some are specific to microRNA genes of individual species.

  16. Gene expression profiling of non-polyadenylated RNA-seq across species

    Directory of Open Access Journals (Sweden)

    Xiao-Ou Zhang

    2014-12-01

    Full Text Available Transcriptomes are dynamic and unique, with each cell type/tissue, developmental stage and species expressing a different repertoire of RNA transcripts. Most mRNAs and well-characterized long noncoding RNAs are shaped with a 5′ cap and 3′ poly(A tail, thus conventional transcriptome analyses typically start with the enrichment of poly(A+ RNAs by oligo(dT selection, followed by deep sequencing approaches. However, accumulated lines of evidence suggest that many RNA transcripts are processed by alternative mechanisms without 3′ poly(A tails and, therefore, fail to be enriched by oligo(dT purification and are absent following deep sequencing analyses. We have described an enrichment strategy to purify non-polyadenylated (poly(A−/ribo− RNAs from human total RNAs by removal of both poly(A+ RNA transcripts and ribosomal RNAs, which led to the identification of many novel RNA transcripts with non-canonical 3′ ends in human. Here, we describe the application of non-polyadenylated RNA-sequencing in rhesus monkey and mouse cell lines/tissue, and further profile the transcription of non-polyadenylated RNAs across species, providing new resources for non-polyadenylated RNA identification and comparison across species.

  17. Mitochondrial 16S ribosomal RNA gene for forensic identification of crocodile species.

    Science.gov (United States)

    Naga Jogayya, K; Meganathan, P R; Dubey, Bhawna; Haque, I

    2013-05-01

    All crocodilians are under various threats due to over exploitation and these species have been listed in Appendix I or II of CITES. Lack of molecular techniques for the forensic identification of confiscated samples makes it difficult to enforce the law. Therefore, we herein present a molecular method developed on the basis on 16S rRNA gene of mitochondrial DNA for identification of crocodile species. We have developed a set of 16S rRNA primers for PCR based identification of crocodilian species. These novel primers amplify partial 16S rRNA sequences of six crocodile species which can be later combined to obtain a larger region (1290 bp) of 16S rRNA gene. This 16S rRNA gene could be used as an effective tool for forensic authentication of crocodiles. The described primers hold great promise in forensic identification of crocodile species, which can aid in the effective enforcement of law and conservation of these species. Copyright © 2012 Elsevier Ltd and Faculty of Forensic and Legal Medicine. All rights reserved.

  18. Northern blots: capillary transfer of RNA from agarose gels and filter hybridization using standard stringency conditions.

    Science.gov (United States)

    Rio, Donald C

    2015-03-02

    In this protocol, an RNA sample, fractionated by gel electrophoresis, is transferred from the gel onto a membrane by capillary transfer. Short-wave UV light is used to fix the transferred RNA to the membrane. The membrane is then pretreated to block nonspecific probe-binding sites, and hybridization of the immobilized RNA to a (32)P-labeled DNA or RNA probe specific for the mRNA of interest is performed. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. Because exposure to UV cross-links the RNA to the membrane, the membrane can be stripped and hybridized with other probes. The procedure is suitable for detecting poly(A)(+)-selected mRNA or mRNA in total cellular RNA if the target transcript is relatively abundant. Using DNA or RNA probes labeled to 1 × 10(8)-10 × 10(8) cpm/µg, it should be possible to detect ∼5 pg of a specific RNA. © 2015 Cold Spring Harbor Laboratory Press.

  19. Optimization of northern analysis by vacuum-blotting, RNA-transfer visualization, and ultraviolet fixation

    International Nuclear Information System (INIS)

    Kroczek, R.A.; Siebert, E.

    1990-01-01

    We have optimized Northern analysis at several steps. Overnight electrophoresis was replaced by short gel runs and overnight capillary transfer by rapid vacuum-blotting adapted to Northern analysis. Short uv irradiation was used as a substitute for the usual RNA fixation by baking. Direct staining of RNA before electrophoresis made it possible to check RNA integrity and to evaluate the quality of the size separation immediately after electrophoresis. In this system, RNA transfer onto the membrane support could also be quickly assessed after the blotting step. The net result of all modifications was a doubling of the autoradiography signal compared with that obtained by modern Northern protocols. At the same time, the duration of the procedure was shortened drastically, allowing an autoradiography signal to be obtained within 24 h

  20. Efficient RNA extraction protocol for the wood mangrove species Laguncularia racemosa suited for next-generation RNA sequencing

    International Nuclear Information System (INIS)

    Wilwerth, M. W.; Rossetto, P.

    2016-01-01

    Mangrove flora and habitat have immeasurable importance in marine and coastal ecology as well as in the economy. Despite their importance, they are constantly threatened by oil spill accidents and environmental contamination; therefore, it is crucial to understand the changes in gene expression to better predict toxicity in these plants. Among the species of Atlantic coast mangrove (Americas and Africa), Laguncularia racemosa, or white mangrove, is a conspicuous species. The wide distribution of L. racemosa in areas where marine oil exploration is rapidly increasing make it a candidate mangrove species model to uncover the impact of oil spills at the molecular level with the use of massive transcriptome sequencing. However, for this purpose, the RNA extraction protocol should ensure low levels of contaminants and structure integrity. In this study, eight RNA extraction methods were tested and analysed using downstream applications. The InviTrap Spin Plant RNA Mini Kit performed best with regard to purity and integrity. Moreover, the obtained RNA was submitted to cDNA synthesis and RT-PCR, successfully generating amplification products of the expected size. These Results show the applicability of the RNA obtained here for downstream methodologies, such as the construction of cDNA libraries for the Illumina Hi-seq platform. (author)

  1. Small RNA-based feedforward loop with AND-gate logic regulates extrachromosomal DNA transfer in Salmonella.

    Science.gov (United States)

    Papenfort, Kai; Espinosa, Elena; Casadesús, Josep; Vogel, Jörg

    2015-08-25

    Horizontal gene transfer via plasmid conjugation is a major driving force in microbial evolution but constitutes a complex process that requires synchronization with the physiological state of the host bacteria. Although several host transcription factors are known to regulate plasmid-borne transfer genes, RNA-based regulatory circuits for host-plasmid communication remain unknown. We describe a posttranscriptional mechanism whereby the Hfq-dependent small RNA, RprA, inhibits transfer of pSLT, the virulence plasmid of Salmonella enterica. RprA employs two separate seed-pairing domains to activate the mRNAs of both the sigma-factor σ(S) and the RicI protein, a previously uncharacterized membrane protein here shown to inhibit conjugation. Transcription of ricI requires σ(S) and, together, RprA and σ(S) orchestrate a coherent feedforward loop with AND-gate logic to tightly control the activation of RicI synthesis. RicI interacts with the conjugation apparatus protein TraV and limits plasmid transfer under membrane-damaging conditions. To our knowledge, this study reports the first small RNA-controlled feedforward loop relying on posttranscriptional activation of two independent targets and an unexpected role of the conserved RprA small RNA in controlling extrachromosomal DNA transfer.

  2. Charge transfer through DNA/DNA duplexes and DNA/RNA hybrids: complex theoretical and experimental studies.

    Science.gov (United States)

    Kratochvílová, Irena; Vala, Martin; Weiter, Martin; Špérová, Miroslava; Schneider, Bohdan; Páv, Ondřej; Šebera, Jakub; Rosenberg, Ivan; Sychrovský, Vladimír

    2013-01-01

    Oligonucleotides conduct electric charge via various mechanisms and their characterization and understanding is a very important and complicated task. In this work, experimental (temperature dependent steady state fluorescence spectroscopy, time-resolved fluorescence spectroscopy) and theoretical (Density Functional Theory) approaches were combined to study charge transfer processes in short DNA/DNA and RNA/DNA duplexes with virtually equivalent sequences. The experimental results were consistent with the theoretical model - the delocalized nature of HOMO orbitals and holes, base stacking, electronic coupling and conformational flexibility formed the conditions for more effective short distance charge transfer processes in RNA/DNA hybrids. RNA/DNA and DNA/DNA charge transfer properties were strongly connected with temperature affected structural changes of molecular systems - charge transfer could be used as a probe of even tiny changes of molecular structures and settings. © 2013. Published by Elsevier B.V. All rights reserved.

  3. Pollen irradiation and possible gene transfer in Nicotiana species

    DEFF Research Database (Denmark)

    Engvild, Kjeld Christensen

    1985-01-01

    , and Petunia parodii with irradiated pollen from N. alata and Petunia hybrida showed no evidence of gene transfer, nor did experiments with irradiated mentor pollen. This indicates that gene transfer with irradiated pollen between non-crossing species or between species giving sterile hybrids is probably...

  4. Analysis of the RNA species isolated from defective particles of vesicular stomatitis virus.

    Science.gov (United States)

    Adler, R; Banerjee, A K

    1976-10-01

    Serial high multiplicity passage of a cloned stock of vesicular stomatitis virus was found to generate defective interfering particles containing three size classes of RNA, with sedimentaiton coefficients of 31 S, 23 S and 19 S. The 31 S and 23 S RNA species were found to be complementary to both the 12 to 18 S and 31 S size classes of VSV mRNAs. The 19 S class of RNA was found to be partially base-paired. All three RNA species were found to contain ppAp at their 5' termini.

  5. Transfer of the 3' non-translated region of grapevine chrome mosaic virus RNA-1 by recombination to tomato black ring virus RNA-2 in pseudorecombinant isolates.

    Science.gov (United States)

    Le Gall, O; Candresse, T; Dunez, J

    1995-05-01

    In grapevine chrome mosaic and tomato black ring viruses (GCMV and TBRV), as in many other nepoviruses, the 3' non-translated regions (3'NTR) are identical between the two genomic RNAs. We have investigated the structure of the 3'NTR of two recombinant isolates which contain GCMV RNA-1 and TBRV RNA-2. In these isolates, the 3'NTR of RNA-1 was transferred to RNA-2, thus restoring the 3' identity. The transfer occurred within three passages, and probably contributes to the spread of randomly appearing mutations from one genomic RNA to the other. The site of recombination is near the 3' end of the open reading frame.

  6. Structural organization of the transfer RNA operon I of Vibrio cholerae

    Indian Academy of Sciences (India)

    Unknown

    [Ghatak A, Majumdar A and Ghosh R K 2005 Structural organization of the transfer RNA operon I of Vibrio cholerae: Differences ..... clonal relationship are of utmost importance. ... rately derived from environmental, nontoxigenic, non-O1.

  7. High-Resolution Nuclear Magnetic Resonance Determination of Transfer RNA Tertiary Base Pairs in Solution. 2. Species Containing a Large Variable Loop

    NARCIS (Netherlands)

    HURD, RE; ROBILLARD, GT; REID, BR

    1977-01-01

    The number of base pairs in the solution structure of several class III D3VN tRNA species from E. coli has been determined by analyzing the number of low-field (-15 to -11 ppm) proton resonances in their nuclear magnetic resonance spectra at 360 MHz. Contrary to previous reports indicating the

  8. Ecological niche transferability using invasive species as a case study.

    Directory of Open Access Journals (Sweden)

    Miguel Fernández

    Full Text Available Species distribution modeling is widely applied to predict invasive species distributions and species range shifts under climate change. Accurate predictions depend upon meeting the assumption that ecological niches are conserved, i.e., spatially or temporally transferable. Here we present a multi-taxon comparative analysis of niche conservatism using biological invasion events well documented in natural history museum collections. Our goal is to assess spatial transferability of the climatic niche of a range of noxious terrestrial invasive species using two complementary approaches. First we compare species' native versus invasive ranges in environmental space using two distinct methods, Principal Components Analysis and Mahalanobis distance. Second we compare species' native versus invaded ranges in geographic space as estimated using the species distribution modeling technique Maxent and the comparative index Hellinger's I. We find that species exhibit a range of responses, from almost complete transferability, in which the invaded niches completely overlap with the native niches, to a complete dissociation between native and invaded ranges. Intermediate responses included expansion of dimension attributable to either temperature or precipitation derived variables, as well as niche expansion in multiple dimensions. We conclude that the ecological niche in the native range is generally a poor predictor of invaded range and, by analogy, the ecological niche may be a poor predictor of range shifts under climate change. We suggest that assessing dimensions of niche transferability prior to standard species distribution modeling may improve the understanding of species' dynamics in the invaded range.

  9. New species of RNA formed during tobacco mosaic virus infection

    Energy Technology Data Exchange (ETDEWEB)

    Siegel, A.; Hari, V.; Montgomery, I.; Kolacz, K.

    1976-01-01

    Previous investigations have demonstrated that extracts of TMV infected leaf tissue contain several unique virus related RNA species, including viral RNA, RF, RI and a low-molecular-weight component (LMC) of approximately 2.5 x 10/sup 5/ daltons. We have found that LMC becomes heavily labelled when infected tissue is incubated in the dark in the presence of actinomycin D and /sup 3/H-uridine. This component was isolated by sucrose-density gradient centrifugation and polyacrylamide gel electrophoresis and was used as a messenger in a wheat-germ derived cell-free protein synthesizing system. Analysis of the products produced by SDS-gel electrophoresis revealed a protein the same size as TMV coat protein. It was confirmed as coat protein by its reaction with specific antiserum in a gel-diffusion test. We conclude that LMC acts as a messenger for coat protein in the in vitro system and deduce that it probably does so in vivo. During the course of isolating LMC, we have observed several previously unreported new RNA species, probably unique to infected tissue. Among these are a component of approximately 1.1 x 10/sup 6/ daltons and another of a size similar to that of, but distinct from, viral RNA. There are indications that other unique RNA species may also be present and evidence for these will be presented. Our evidence to date points to the likelihood that TMV RNA may be processed into smaller pieces for translation rather than, as in the case of poliovirus, being translated into a polyprotein. It is possible that other groups of non-split genome plant viruses may behave in manner similar to that of TMV in this regard. We have observed that tobacco etch virus (a member of the Pot Y group) infected tissue also contains a component similar to that of LMC but larger (ca. 350,000 daltons). A peculiar feature of this system is that it appears to be sensitive to actinomycin D.

  10. Short communication: Identification of coagulase-negative staphylococcus species from goat milk with the API Staph identification test and with transfer RNA-intergenic spacer PCR combined with capillary electrophoresis.

    Science.gov (United States)

    Koop, G; De Visscher, A; Collar, C A; Bacon, D A C; Maga, E A; Murray, J D; Supré, K; De Vliegher, S; Haesebrouck, F; Rowe, J D; Nielen, M; van Werven, T

    2012-12-01

    Coagulase-negative staphylococci (CNS) are the most commonly isolated bacteria from goat milk, but they have often been identified with phenotypic methods, which may have resulted in misclassification. The aims of this paper were to assess the amount of misclassification of a phenotypic test for identifying CNS species from goat milk compared with transfer RNA intergenic spacer PCR (tDNA-PCR) followed by capillary electrophoresis, and to apply the tDNA-PCR technique on different capillary electrophoresis equipment. Milk samples were collected from 416 does in 5 Californian dairy goat herds on 3 occasions during lactation. In total, 219 CNS isolates were identified at the species level with tDNA-PCR and subjected to the API 20 Staph identification test kit (API Staph; bioMérieux, Durham, NC). If the same species was isolated multiple times from the same udder gland, only the first isolate was used for further analyses, resulting in 115 unique CNS isolates. According to the tDNA-PCR test, the most prevalent CNS species were Staphylococcus epidermidis, Staphylococcus caprae, and Staphylococcus simulans. Typeability with API staph was low (72%). Although the API Staph test was capable of identifying the majority of Staph. epidermidis and Staph. caprae isolates, sensitivity for identification of Staph. simulans was low. The true positive fraction was high for the 3 most prevalent species. It was concluded that the overall performance of API Staph in differentiating CNS species from goat milk was moderate to low, mainly because of the low typeability, and that genotypic methods such as tDNA-PCR are preferred. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  11. Microparticle conferred microRNA profiles - implications in the transfer and dominance of cancer traits

    Directory of Open Access Journals (Sweden)

    Jaiswal Ritu

    2012-06-01

    Full Text Available Abstract Background Microparticles (MPs are membrane vesicles which are released from normal and malignant cells following a process of budding and detachment from donor cells. MPs contain surface antigens, proteins and genetic material and serve as vectors of intercellular communication. MPs comprise the major source of systemic RNA including microRNA (miRNA, the aberrant expression of which appears to be associated with stage, progression and spread of many cancers. Our previous study showed that MPs carry both transcripts and miRNAs associated with the acquisition of multidrug resistance in cancer. Results Herein, we expand on our previous finding and demonstrate that MPs carry the transcripts of the membrane vesiculation machinery (floppase and scramblase as well as nucleic acids encoding the enzymes essential for microRNA biogenesis (Drosha, Dicer and Argonaute. We also demonstrate using microarray miRNA profiling analysis, the selective packaging of miRNAs (miR-1228*, miR-1246, miR-1308, miR-149*, miR-455-3p, miR-638 and miR-923 within the MP cargo upon release from the donor cells. Conclusions These miRNAs are present in both haematological and non-haematological cancer cells and are involved in pathways implicated in cancer pathogenesis, membrane vesiculation and cascades regulated by ABC transporters. Our recent findings reinforce our earlier reports that MP transfer ‘re-templates’ recipient cells so as to reflect donor cell traits. We now demonstrate that this process is likely to occur via a process of selective packaging of nucleic acid species, including regulatory nucleic acids upon MP vesiculation. These findings have significant implications in understanding the cellular basis governing the intercellular acquisition and dominance of deleterious traits in cancers.

  12. Identification of pathogenic Nocardia species by reverse line blot hybridization targeting the 16S rRNA and 16S-23S rRNA gene spacer regions.

    Science.gov (United States)

    Xiao, Meng; Kong, Fanrong; Sorrell, Tania C; Cao, Yongyan; Lee, Ok Cha; Liu, Ying; Sintchenko, Vitali; Chen, Sharon C A

    2010-02-01

    Although 16S rRNA gene sequence analysis is employed most often for the definitive identification of Nocardia species, alternate molecular methods and polymorphisms in other gene targets have also enabled species determinations. We evaluated a combined Nocardia PCR-based reverse line blot (RLB) hybridization assay based on 16S and 16S-23S rRNA gene spacer region polymorphisms to identify 12 American Type Culture Collection and 123 clinical Nocardia isolates representing 14 species; results were compared with results from 16S rRNA gene sequencing. Thirteen 16S rRNA gene-based (two group-specific and 11 species-specific) and five 16S-23S spacer-targeted (two taxon-specific and three species-specific) probes were utilized. 16S rRNA gene-based probes correctly identified 124 of 135 isolates (sensitivity, 92%) but were unable to identify Nocardia paucivorans strains (n = 10 strains) and a Nocardia asteroides isolate with a novel 16S rRNA gene sequence. Nocardia farcinica and Nocardia cyriacigeorgica strains were identified by the sequential use of an N. farcinica-"negative" probe and a combined N. farcinica/N. cyriacigeorgica probe. The assay specificity was high (99%) except for weak cross-reactivity between the Nocardia brasiliensis probe with the Nocardia thailandica DNA product; however, cross-hybridization with closely related nontarget species may occur. The incorporation of 16S-23S rRNA gene spacer-based probes enabled the identification of all N. paucivorans strains. The overall sensitivity using both probe sets was >99%. Both N. farcinica-specific 16S-23S rRNA gene spacer-directed probes were required to identify all N. farcinica stains by using this probe set. The study demonstrates the utility of a combined PCR/RLB assay for the identification of clinically relevant Nocardia species and its potential for studying subtypes of N. farcinica. Where species assignment is ambiguous or not possible, 16S rRNA gene sequencing is recommended.

  13. Characterization of murine hepatitis virus (JHM) RNA from rats with experimental encephalomyelitis.

    Science.gov (United States)

    Jackson, D P; Percy, D H; Morris, V L

    1984-09-01

    When Wistar Furth rats are inoculated intracerebrally with the murine hepatitis virus JHM they often develop a demyelinating disease with resulting hind leg paralysis. Using an RNA transfer procedure and hybridization kinetic analysis, the virus-specific RNA in these rats was characterized. The pattern of JHM-specific RNA varied with individual infections of Wistar Furth rats. However, two species of JHM-specific RNA, the nucleocapsid and a 2.1-2.4 X 10(6)-Da RNA species were generally present. A general decrease in JHM-specific RNA in brains and spinal cord samples taken later than 20 days postinoculation was observed; however, JHM-specific RNA persisted in the spinal cord longer than in the brain of these rats.

  14. Rapid identification of probiotic Lactobacillus species by multiplex PCR using species-specific primers based on the region extending from 16S rRNA through 23S rRNA.

    Science.gov (United States)

    Kwon, Hyuk-Sang; Yang, Eun-Hee; Yeon, Seung-Woo; Kang, Byoung-Hwa; Kim, Tae-Yong

    2004-10-15

    This study aimed to develop a novel multiplex polymerase chain reaction (PCR) primer set for the identification of seven probiotic Lactobacillus species such as Lactobacillus acidophilus, Lactobacillus delbrueckii, Lactobacillus casei, Lactobacillus gasseri, Lactobacillus plantarum, Lactobacillus reuteri and Lactobacillus rhamnosus. The primer set, comprising of seven specific and two conserved primers, was derived from the integrated sequences of 16S and 23S rRNA genes and their rRNA intergenic spacer region of each species. It was able to identify the seven target species with 93.6% accuracy, which exceeds that of the general biochemical methods. The phylogenetic analyses, using 16S rDNA sequences of the probiotic isolates, also provided further support that the results from the multiplex PCR assay were trustworthy. Taken together, we suggest that the multiplex primer set is an efficient tool for simple, rapid and reliable identification of seven Lactobacillus species.

  15. Transfer RNA and human disease

    Directory of Open Access Journals (Sweden)

    Jamie A Abbott

    2014-06-01

    Full Text Available Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA genes are hotspots for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase, mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers, and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes. Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing. Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  16. Transfer RNA and human disease.

    Science.gov (United States)

    Abbott, Jamie A; Francklyn, Christopher S; Robey-Bond, Susan M

    2014-01-01

    Pathological mutations in tRNA genes and tRNA processing enzymes are numerous and result in very complicated clinical phenotypes. Mitochondrial tRNA (mt-tRNA) genes are "hotspots" for pathological mutations and over 200 mt-tRNA mutations have been linked to various disease states. Often these mutations prevent tRNA aminoacylation. Disrupting this primary function affects protein synthesis and the expression, folding, and function of oxidative phosphorylation enzymes. Mitochondrial tRNA mutations manifest in a wide panoply of diseases related to cellular energetics, including COX deficiency (cytochrome C oxidase), mitochondrial myopathy, MERRF (Myoclonic Epilepsy with Ragged Red Fibers), and MELAS (mitochondrial encephalomyopathy, lactic acidosis, and stroke-like episodes). Diseases caused by mt-tRNA mutations can also affect very specific tissue types, as in the case of neurosensory non-syndromic hearing loss and pigmentary retinopathy, diabetes mellitus, and hypertrophic cardiomyopathy. Importantly, mitochondrial heteroplasmy plays a role in disease severity and age of onset as well. Not surprisingly, mutations in enzymes that modify cytoplasmic and mitochondrial tRNAs are also linked to a diverse range of clinical phenotypes. In addition to compromised aminoacylation of the tRNAs, mutated modifying enzymes can also impact tRNA expression and abundance, tRNA modifications, tRNA folding, and even tRNA maturation (e.g., splicing). Some of these pathological mutations in tRNAs and processing enzymes are likely to affect non-canonical tRNA functions, and contribute to the diseases without significantly impacting on translation. This chapter will review recent literature on the relation of mitochondrial and cytoplasmic tRNA, and enzymes that process tRNAs, to human disease. We explore the mechanisms involved in the clinical presentation of these various diseases with an emphasis on neurological disease.

  17. Genetic relatedness of orbiviruses by RNA-RNA blot hybridization

    International Nuclear Information System (INIS)

    Bodkin, D.K.

    1985-01-01

    RNA-RNA blot hybridization was developed in order to identify type-specific genes among double-stranded (ds) RNA viruses, to assess the genetic relatedness of dsRNA viruses and to classify new strains. Viral dsRNA segments were electrophoresed through 10% polyacrylamide gels, transferred to membranes, and hybridized to [5' 32 P]-pCp labeled genomic RNA from a related strain. Hybridization was performed at 52 0 C, 50% formamide, 5X SSC. Under these conditions heterologous RNA species must share ≥ 74% sequence homology in order to form stable dsRNA hybrids. Cognate genes of nine members of the Palyam serogroup of orbiviruses were identified and their sequence relatedness to the prototype. Palyam virus, was determined. Reciprocal blot hybridizations were performed using radiolabeled genomic RNA of all members of the Palyam serogroup. Unique and variant genes were identified by lack of cross-homology or by weak homology between segments. Since genes 2 and 6 exhibited the highest degree of sequence variability, response to the vertebrate immune system may be a major cause of sequence divergence among members of a single serogroup. Changuinola serogroup isolates were compared by dot-blot hybridization, while Colorado tick fever (CTF) serogroup isolates were compared by the RNA-RNA blot hybridization procedure described for reovirus and Palyam serogroup isolates. Preliminary blot hybridization data were also obtained on the relatedness of members of different Orbivirus serogroups

  18. NGScloud: RNA-seq analysis of non-model species using cloud computing.

    Science.gov (United States)

    Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai

    2018-05-03

    RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.

  19. Development of SSR Markers in Hickory (Carya cathayensis Sarg.) and Their Transferability to Other Species of Carya.

    Science.gov (United States)

    Li, Juan; Zeng, Yanru; Shen, Dengfeng; Xia, Guohua; Huang, Yinzhi; Huang, Youjun; Chang, Jun; Huang, Jianqin; Wang, Zhengjia

    2014-10-01

    Hickory (Carya cathayensis Sarg.), an important nut-producing species in Southeastern China, has high economic value, but so far there has been no cultivar bred under species although it is mostly propagated by seeding and some elite individuals have been found. It has been found recently that this species has a certain rate of apomixis and poor knowledge of its genetic background has influenced development of a feasible breeding strategy. Here in this paper we first release SSR (Simple sequence repeat) markers developed in this species and their transferability to other three species of the same genus, Carya. A total of 311 pairs of SSR primers in hickory were developed based on sequenced cDNAs of a fruit development-associated cDNA library and RNA-seq data of developing female floral buds and could be used to distinguish hickory, C. hunanensis Cheng et R. H. Chang ex R. H. Chang et Lu, C. illinoensis K. Koch (pecan) and C. dabieshanensis M. C. Liu et Z. J. Li, but they were monomorphic in both hickory and C. hunanensis although multi-alleles have been identified in all the four species. There is a transferability rate of 63.02% observed between hickory and pecan and the markers can be applied to study genetic diversity of accessions in pecan. When used in C. dabieshanensis, it was revealed that C. dabieshanensis had the number of alleles per locus ranging from 2 to 4, observed heterozygosity from 0 to 0.6667 and expected heterozygosity from 0.333 to 0.8667, respectively, which supports the existence of C. dabieshanensis as a separate species different from hickory and indicates that there is potential for selection and breeding in this species.

  20. Determination of the number of copies of genes coding for 5s-rRNA and tRNA in the genomes of 43 species of wheat and Aegilops

    International Nuclear Information System (INIS)

    Vakhitov, V.A.; Gimalov, F.R.; Nikonorov, Yu.M.

    1986-01-01

    The number of 5s-rRNA and tRNA genes has been studied in 43 species of wheat and Aegilops differing in ploidy level, genomic composition and origin. It has been demonstrated that the repeatability of the 5s-rRNA and tRNA genes increases in wheat with increasing ploidy level, but not in proportion to the genome size. In Aegilops, in distinction from wheat, the relative as well as absolute number of 5s-RNA genes increases with increasing ploidy level. The proportion of the sequences coding for tRNA in the dipoloid and polyploid Aegilops species is practically similar, while the number of tRNA genes increases almost 2-3 times with increasing ploidy level. Large variability has been recorded between the species with similar genomic composition and ploidy level in respect of the number of the 5s-rRNA and tRNA genes. It has been demonstrated that integration of the initial genomes of the amphidiploids is accompanied by elimination of a particular part of these genomes. It has been concluded that the mechanisms of establishment and evolution of genomes in the intra- and intergeneric allopolyploids are not identical

  1. Four new species of Metschnikowia and the transfer of seven Candida species to Metschnikowia and Clavispora as new combinations

    Science.gov (United States)

    From comparisons of ITS1-5.8S-ITS2 and gene sequences for nuclear D1/D2 LSU rRNA, nuclear SSU (18S) rRNA, translation elongation factor 1-a (EF1-a) and RNA polymerase II subunit 2 (RPB2), the following four new ascosporogenous yeast species were resolved and are described as Metschnikowia anglica (N...

  2. Catalytic mechanism of Sep-tRNA:Cys-tRNA synthase: sulfur transfer is mediated by disulfide and persulfide.

    Science.gov (United States)

    Liu, Yuchen; Dos Santos, Patricia C; Zhu, Xiang; Orlando, Ron; Dean, Dennis R; Söll, Dieter; Yuan, Jing

    2012-02-17

    Sep-tRNA:Cys-tRNA synthase (SepCysS) catalyzes the sulfhydrylation of tRNA-bound O-phosphoserine (Sep) to form cysteinyl-tRNA(Cys) (Cys-tRNA(Cys)) in methanogens that lack the canonical cysteinyl-tRNA synthetase (CysRS). A crystal structure of the Archaeoglobus fulgidus SepCysS apoenzyme provides information on the binding of the pyridoxal phosphate cofactor as well as on amino acid residues that may be involved in substrate binding. However, the mechanism of sulfur transfer to form cysteine was not known. Using an in vivo Escherichia coli complementation assay, we showed that all three highly conserved Cys residues in SepCysS (Cys(64), Cys(67), and Cys(272) in the Methanocaldococcus jannaschii enzyme) are essential for the sulfhydrylation reaction in vivo. Biochemical and mass spectrometric analysis demonstrated that Cys(64) and Cys(67) form a disulfide linkage and carry a sulfane sulfur in a portion of the enzyme. These results suggest that a persulfide group (containing a sulfane sulfur) is the proximal sulfur donor for cysteine biosynthesis. The presence of Cys(272) increased the amount of sulfane sulfur in SepCysS by 3-fold, suggesting that this Cys residue facilitates the generation of the persulfide group. Based upon these findings, we propose for SepCysS a sulfur relay mechanism that recruits both disulfide and persulfide intermediates.

  3. RNA mobility in parasitic plant – host interactions

    Science.gov (United States)

    Kim, Gunjune

    2017-01-01

    ABSTRACT The parasitic plant Cuscuta exchanges mRNAs with its hosts. Systemic mobility of mRNAs within plants is well documented, and has gained increasing attention as studies using grafted plant systems have revealed new aspects of mobile mRNA regulation and function. But parasitic plants take this phenomenon to a new level by forming seamless connections to a wide range of host species, and raising questions about how mRNAs might function after transfer to a different species. Cuscuta and other parasitic plant species also take siRNAs from their hosts, indicating that multiple types of RNA are capable of trans-specific movement. Parasitic plants are intriguing systems for studying RNA mobility, in part because such exchange opens new possibilities for control of parasitic weeds, but also because they provide a fresh perspective into understanding roles of RNAs in inter-organismal communication. PMID:28277936

  4. Defining reference sequences for Nocardia species by similarity and clustering analyses of 16S rRNA gene sequence data.

    Directory of Open Access Journals (Sweden)

    Manal Helal

    Full Text Available BACKGROUND: The intra- and inter-species genetic diversity of bacteria and the absence of 'reference', or the most representative, sequences of individual species present a significant challenge for sequence-based identification. The aims of this study were to determine the utility, and compare the performance of several clustering and classification algorithms to identify the species of 364 sequences of 16S rRNA gene with a defined species in GenBank, and 110 sequences of 16S rRNA gene with no defined species, all within the genus Nocardia. METHODS: A total of 364 16S rRNA gene sequences of Nocardia species were studied. In addition, 110 16S rRNA gene sequences assigned only to the Nocardia genus level at the time of submission to GenBank were used for machine learning classification experiments. Different clustering algorithms were compared with a novel algorithm or the linear mapping (LM of the distance matrix. Principal Components Analysis was used for the dimensionality reduction and visualization. RESULTS: The LM algorithm achieved the highest performance and classified the set of 364 16S rRNA sequences into 80 clusters, the majority of which (83.52% corresponded with the original species. The most representative 16S rRNA sequences for individual Nocardia species have been identified as 'centroids' in respective clusters from which the distances to all other sequences were minimized; 110 16S rRNA gene sequences with identifications recorded only at the genus level were classified using machine learning methods. Simple kNN machine learning demonstrated the highest performance and classified Nocardia species sequences with an accuracy of 92.7% and a mean frequency of 0.578. CONCLUSION: The identification of centroids of 16S rRNA gene sequence clusters using novel distance matrix clustering enables the identification of the most representative sequences for each individual species of Nocardia and allows the quantitation of inter- and intra-species

  5. Multiple independent insertions of 5S rRNA genes in the spliced-leader gene family of trypanosome species.

    Science.gov (United States)

    Beauparlant, Marc A; Drouin, Guy

    2014-02-01

    Analyses of the 5S rRNA genes found in the spliced-leader (SL) gene repeat units of numerous trypanosome species suggest that such linkages were not inherited from a common ancestor, but were the result of independent 5S rRNA gene insertions. In trypanosomes, 5S rRNA genes are found either in the tandemly repeated units coding for SL genes or in independent tandemly repeated units. Given that trypanosome species where 5S rRNA genes are within the tandemly repeated units coding for SL genes are phylogenetically related, one might hypothesize that this arrangement is the result of an ancestral insertion of 5S rRNA genes into the tandemly repeated SL gene family of trypanosomes. Here, we use the types of 5S rRNA genes found associated with SL genes, the flanking regions of the inserted 5S rRNA genes and the position of these insertions to show that most of the 5S rRNA genes found within SL gene repeat units of trypanosome species were not acquired from a common ancestor but are the results of independent insertions. These multiple 5S rRNA genes insertion events in trypanosomes are likely the result of frequent founder events in different hosts and/or geographical locations in species having short generation times.

  6. Lost in Translation: Defects in Transfer RNA Modifications and Neurological Disorders

    Directory of Open Access Journals (Sweden)

    Andrea Bednářová

    2017-05-01

    Full Text Available Transfer RNAs (tRNAs are key molecules participating in protein synthesis. To augment their functionality they undergo extensive post-transcriptional modifications and, as such, are subject to regulation at multiple levels including transcription, transcript processing, localization and ribonucleoside base modification. Post-transcriptional enzyme-catalyzed modification of tRNA occurs at a number of base and sugar positions and influences specific anticodon–codon interactions and regulates translation, its efficiency and fidelity. This phenomenon of nucleoside modification is most remarkable and results in a rich structural diversity of tRNA of which over 100 modified nucleosides have been characterized. Most often these hypermodified nucleosides are found in the wobble position of tRNAs, where they play a direct role in codon recognition as well as in maintaining translational efficiency and fidelity, etc. Several recent studies have pointed to a link between defects in tRNA modifications and human diseases including neurological disorders. Therefore, defects in tRNA modifications in humans need intensive characterization at the enzymatic and mechanistic level in order to pave the way to understand how lack of such modifications are associated with neurological disorders with the ultimate goal of gaining insights into therapeutic interventions.

  7. Lost in translation: Defects in transfer RNA modifications and neurological disorders

    Czech Academy of Sciences Publication Activity Database

    Bednářová, Andrea; Hanna, M.; Durham, I.; Van Cleave, T.; England, A.; Chaudhuri, A.; Krishnan, N.

    2017-01-01

    Roč. 10, MAY 09 (2017), č. článku 135. ISSN 1662-5099 Grant - others:GA ČR(CZ) L200961701 Institutional support: RVO:60077344 Keywords : transfer RNA modifications * modified nucleosides * neurological disease Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3) Impact factor: 5.076, year: 2016 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5422465/

  8. Evolutionary acquisition of promoter-associated non-coding RNA (pancRNA) repertoires diversifies species-dependent gene activation mechanisms in mammals

    OpenAIRE

    Uesaka, Masahiro; Agata, Kiyokazu; Oishi, Takao; Nakashima, Kinichi; Imamura, Takuya

    2017-01-01

    Background Recent transcriptome analyses have shown that long non-coding RNAs (ncRNAs) play extensive roles in transcriptional regulation. In particular, we have reported that promoter-associated ncRNAs (pancRNAs) activate the partner gene expression via local epigenetic changes. Results Here, we identify thousands of genes under pancRNA-mediated transcriptional activation in five mammalian species in common. In the mouse, 1) pancRNA-partnered genes confined their expression pattern to certai...

  9. Evolution of blue-flowered species of genus Linum based on high-throughput sequencing of ribosomal RNA genes.

    Science.gov (United States)

    Bolsheva, Nadezhda L; Melnikova, Nataliya V; Kirov, Ilya V; Speranskaya, Anna S; Krinitsina, Anastasia A; Dmitriev, Alexey A; Belenikin, Maxim S; Krasnov, George S; Lakunina, Valentina A; Snezhkina, Anastasiya V; Rozhmina, Tatiana A; Samatadze, Tatiana E; Yurkevich, Olga Yu; Zoshchuk, Svyatoslav A; Amosova, Аlexandra V; Kudryavtseva, Anna V; Muravenko, Olga V

    2017-12-28

    The species relationships within the genus Linum have already been studied several times by means of different molecular and phylogenetic approaches. Nevertheless, a number of ambiguities in phylogeny of Linum still remain unresolved. In particular, the species relationships within the sections Stellerolinum and Dasylinum need further clarification. Also, the question of independence of the species of the section Adenolinum still remains unanswered. Moreover, the relationships of L. narbonense and other species of the section Linum require further clarification. Additionally, the origin of tetraploid species of the section Linum (2n = 30) including the cultivated species L. usitatissimum has not been explored. The present study examines the phylogeny of blue-flowered species of Linum by comparisons of 5S rRNA gene sequences as well as ITS1 and ITS2 sequences of 35S rRNA genes. High-throughput sequencing has been used for analysis of multicopy rRNA gene families. In addition to the molecular phylogenetic analysis, the number and chromosomal localization of 5S and 35S rDNA sites has been determined by FISH. Our findings confirm that L. stelleroides forms a basal branch from the clade of blue-flowered flaxes which is independent of the branch formed by species of the sect. Dasylinum. The current molecular phylogenetic approaches, the cytogenetic analysis as well as different genomic DNA fingerprinting methods applied previously did not discriminate certain species within the sect. Adenolinum. The allotetraploid cultivated species L. usitatissimum and its wild ancestor L. angustifolium (2n = 30) could originate either as the result of hybridization of two diploid species (2n = 16) related to the modern L. gandiflorum and L. decumbens, or hybridization of a diploid species (2n = 16) and a diploid ancestor of modern L. narbonense (2n = 14). High-throughput sequencing of multicopy rRNA gene families allowed us to make several adjustments to the

  10. Species distribution model transferability and model grain size - finer may not always be better.

    Science.gov (United States)

    Manzoor, Syed Amir; Griffiths, Geoffrey; Lukac, Martin

    2018-05-08

    Species distribution models have been used to predict the distribution of invasive species for conservation planning. Understanding spatial transferability of niche predictions is critical to promote species-habitat conservation and forecasting areas vulnerable to invasion. Grain size of predictor variables is an important factor affecting the accuracy and transferability of species distribution models. Choice of grain size is often dependent on the type of predictor variables used and the selection of predictors sometimes rely on data availability. This study employed the MAXENT species distribution model to investigate the effect of the grain size on model transferability for an invasive plant species. We modelled the distribution of Rhododendron ponticum in Wales, U.K. and tested model performance and transferability by varying grain size (50 m, 300 m, and 1 km). MAXENT-based models are sensitive to grain size and selection of variables. We found that over-reliance on the commonly used bioclimatic variables may lead to less accurate models as it often compromises the finer grain size of biophysical variables which may be more important determinants of species distribution at small spatial scales. Model accuracy is likely to increase with decreasing grain size. However, successful model transferability may require optimization of model grain size.

  11. A natural M RNA reassortant arising from two distinct tospovirus species

    Science.gov (United States)

    The complete nucleotide sequence of a tospovirus isolate from south Florida tomatoes was determined. Phylogenetic reconstructions of each genomic RNA segment showed that this isolate was produced by reassortment of segments from two distinct tospovirus species. The S and L segments are most closel...

  12. Deletions and recombinations with the RNA1 3' ends of different tobraviruses have created a multitude of tobacco rattle virus TCM-related RNA2 species in Alstroemeria and tulip.

    Science.gov (United States)

    Koenig, R; Lesemann, D-E; Pfeilstetter, E; Winter, S; Pleij, C W A

    2011-04-01

    In vegetatively propagated Alstroemeria plants that showed pronounced stunting and necrotic leaf spots, a tobravirus infection was diagnosed in which one tobacco rattle virus (TRV, strain AL) RNA1 species was associated with seven different RNA2 species. The latter differed considerably in size and in the types of their 3' RNA1-related sequences. The 5' RNA2-specific part of all these RNA2 molecules showed almost 100% sequence identity with that of RNA2 of the TRV isolate TCM from tulip, but in some of these RNA2 molecules it was shorter than in the TCM isolate, whereas in others it was longer. One of the TRV AL RNA2 molecules, i.e. TC3'PE-a, contained the full set of three full-length RNA2-specific ORFs (ORF2a, -2b and -2c), whereas the previously analysed TCM sequence contained only ORF2a and -2b. In four of these TRV AL RNA2 molecules, i.e. those that had a relatively short RNA2-specific part, the 3' end was identical to that of the cognate TRV AL RNA1, but in the other three, which had a long RNA2-specific part, it was closely related to that of pea early browning virus (PEBV) RNA1, which was not detected in the infected plants. A comparison with previously described TRV/PEBV RNA2 recombinants suggested that the various TRV AL RNA2 molecules may represent various steps and side steps in an evolutionary process, which is apt to open the wide host range of TRV also to PEBV-derived RNA2 species.

  13. Cloning of an endangered species (Bos gaurus) using interspecies nuclear transfer.

    Science.gov (United States)

    Lanza, R P; Cibelli, J B; Diaz, F; Moraes, C T; Farin, P W; Farin, C E; Hammer, C J; West, M D; Damiani, P

    2000-01-01

    Approximately 100 species become extinct a day. Despite increasing interest in using cloning to rescue endangered species, successful interspecies nuclear transfer has not been previously described, and only a few reports of in vitro embryo formation exist. Here we show that interspecies nuclear transfer can be used to clone an endangered species with normal karyotypic and phenotypic development through implantation and the late stages of fetal growth. Somatic cells from a gaur bull (Bos gaurus), a large wild ox on the verge of extinction, (Species Survival Plan cloned animals was gaurus in origin. The gaur nuclei were shown to direct normal fetal development, with differentiation into complex tissue and organs, even though the mitochondrial DNA (mtDNA) within all the tissue types evaluated was derived exclusively from the recipient bovine oocytes. These results suggest that somatic cell cloning methods could be used to restore endangered, or even extinct, species and populations.

  14. Variable Copy Number, Intra-Genomic Heterogeneities and Lateral Transfers of the 16S rRNA Gene in Pseudomonas

    Science.gov (United States)

    Bodilis, Josselin; Nsigue-Meilo, Sandrine; Besaury, Ludovic; Quillet, Laurent

    2012-01-01

    Even though the 16S rRNA gene is the most commonly used taxonomic marker in microbial ecology, its poor resolution is still not fully understood at the intra-genus level. In this work, the number of rRNA gene operons, intra-genomic heterogeneities and lateral transfers were investigated at a fine-scale resolution, throughout the Pseudomonas genus. In addition to nineteen sequenced Pseudomonas strains, we determined the 16S rRNA copy number in four other Pseudomonas strains by Southern hybridization and Pulsed-Field Gel Electrophoresis, and studied the intra-genomic heterogeneities by Denaturing Gradient Gel Electrophoresis and sequencing. Although the variable copy number (from four to seven) seems to be correlated with the evolutionary distance, some close strains in the P. fluorescens lineage showed a different number of 16S rRNA genes, whereas all the strains in the P. aeruginosa lineage displayed the same number of genes (four copies). Further study of the intra-genomic heterogeneities revealed that most of the Pseudomonas strains (15 out of 19 strains) had at least two different 16S rRNA alleles. A great difference (5 or 19 nucleotides, essentially grouped near the V1 hypervariable region) was observed only in two sequenced strains. In one of our strains studied (MFY30 strain), we found a difference of 12 nucleotides (grouped in the V3 hypervariable region) between copies of the 16S rRNA gene. Finally, occurrence of partial lateral transfers of the 16S rRNA gene was further investigated in 1803 full-length sequences of Pseudomonas available in the databases. Remarkably, we found that the two most variable regions (the V1 and V3 hypervariable regions) had probably been laterally transferred from another evolutionary distant Pseudomonas strain for at least 48.3 and 41.6% of the 16S rRNA sequences, respectively. In conclusion, we strongly recommend removing these regions of the 16S rRNA gene during the intra-genus diversity studies. PMID:22545126

  15. Detection and molecular identification of leishmania RNA virus (LRV) in Iranian Leishmania species.

    Science.gov (United States)

    Hajjaran, Homa; Mahdi, Maryam; Mohebali, Mehdi; Samimi-Rad, Katayoun; Ataei-Pirkooh, Angila; Kazemi-Rad, Elham; Naddaf, Saied Reza; Raoofian, Reza

    2016-12-01

    Leishmania RNA virus (LRV) was first detected in members of the subgenus Leishmania (Viannia), and later, the virulence and metastasis of the New World species were attributed to this virus. The data on the presence of LRV in Old World species are confined to Leishmania major and a few Leishmania aethiopica isolates. The aim of this study was to survey the presence of LRV in various Iranian Leishmania species originating from patients and animal reservoir hosts. Genomic nucleic acids were extracted from 50 cultured isolates belonging to the species Leishmania major, Leishmania tropica, and Leishmania infantum. A partial sequence of the viral RNA-dependent RNA polymerase (RdRp) gene was amplified, sequenced and compared with appropriate sequences from the GenBank database. We detected the virus in two parasite specimens: an isolate of L. infantum derived from a visceral leishmaniasis (VL) patient who was unresponsive to meglumine antimoniate treatment, and an L. major isolate originating from a great gerbil, Rhombomys opimus. The Iranian LRV sequences showed the highest similarities to an Old World L. major LRV2 and were genetically distant from LRV1 isolates detected in New World Leishmania parasites. We could not attribute treatment failure in VL patient to the presence of LRV due to the limited number of specimens analyzed. Further studies with inclusion of more clinical samples are required to elucidate the potential role of LRVs in pathogenesis or treatment failure of Old World leishmaniasis.

  16. Investigating the prevalence of queuine in Escherichia coli RNA via incorporation of the tritium-labeled precursor, preQ1

    International Nuclear Information System (INIS)

    Brooks, Allen F.; Vélez-Martínez, Carol S.; Hollis Showalter, H.D.; Garcia, George A.

    2012-01-01

    Highlights: ► Escherichia coli cells deficient in preQ 1 biosynthesis can utilize exogenous preQ 1 from growth media. ► Exogenous radiolabeled preQ 1 is incorporated into cellular RNA in both wild-type and preQ 1 deficient cells. ► Radiolabeled preQ 1 is incorporated into RNAs of differing sizes larger than tRNA. ► Analysis of isolated ribosomes shows that radiolabeled preQ 1 is incorporated into ribosomal RNA. ► The conclusion of this study is that queuine is incorporated into many other RNAs in addition to the known tRNAs. -- Abstract: There are over 100 modified bases that occur in RNA with the majority found in transfer RNA. It has been widely believed that the queuine modification is limited to four transfer RNA species in vivo. However, given the vast amount of the human genome (60–70%) that is transcribed into non-coding RNA (Mattick ), probing the presence of modified bases in these RNAs is of fundamental importance. The mechanism of incorporation of queuine, via transglycosylation, makes this uniquely poised to probe base modification in RNA. Results of incubations of Escherichia coli cell cultures with [ 3 H] preQ 1 (a queuine precursor in eubacteria) clearly demonstrate preQ 1 incorporation into a number of RNA species of various sizes larger than transfer RNA. Specifically, significant levels of preQ 1 incorporation into ribosomal RNA are observed. The modification of other large RNAs was also observed. These results confirm that non-coding RNAs contain modified bases and lead to the supposition that these modifications are necessary to control non-coding RNA structure and function as has been shown for transfer RNA.

  17. Efficiency and fidelity of cell-free protein synthesis by transfer RNA from aged mice

    Energy Technology Data Exchange (ETDEWEB)

    Foote, R.S.; Stulberg, M.P.

    1980-01-01

    Transfer RNAs (tRNAs) from heart, kidney, liver, and spleen of mature (10 to 12 months old) and aged (29 months old) C57BL/6 mice were tested for their ability to translate encephalomyocarditis viral RNA in a tRNA-dependent cell-free system derived from mouse ascites tumor cells. The rates of in vitro protein synthesis were compared as a function of tRNA concentration, and the fidelity of translation was examined by sodium dodecyl sulfate gel electrophoresis and isoelectric focusing of the viral polypeptides synthesized in vitro. No significant age-related differences in either the efficiency or fidelity of synthesis were discovered, indicating that alternations in tRNAs are probably not involved in the cellular aging of these tissues.

  18. Lionfish, Pterois volitans Linnaeus 1758, the complete mitochondrial DNA of an invasive species.

    Science.gov (United States)

    Del Río-Portilla, Miguel A; Vargas-Peralta, Carmen E; Machkour-M'Rabet, Salima; Hénaut, Yann; García-De-León, Francisco J

    2016-01-01

    The lionfish, Pterois volitans, native from the Indo-Pacific, has been found in Atlantic and Caribbean waters and is considered as an invasive species. Here we sequence its mitogenome (Genbank accession number KJ739816), which has a total length of 16,500 bp, and the arrangement consist of 13 protein-coding genes, 2 ribosomal RNA (rRNA) genes and 22 transfer RNA similar to other Pteroinae subfamily (family Scorpaenidae). This mitogenome will be useful for phylogenetic and population genetic studies of this invasive species.

  19. Classification of Rhizomonas suberifaciens, an unnamed Rhizomonas species, and Sphingomonas spp. in rRNA superfamily IV.

    Science.gov (United States)

    van Bruggen, A H; Jochimsen, K N; Steinberger, E M; Segers, P; Gillis, M

    1993-01-01

    Thermal melting profiles of hybrids between 3H-labeled rRNA of Rhizomonas suberifaciens, the causal agent of corky root of lettuce, and chromosomal DNAs from 27 species of gram-negative bacteria indicated that the genus Rhizomonas belongs to superfamily IV of De Ley. On the basis of the melting temperatures of DNA hybrids with rRNAs from the type strains of R. suberifaciens, Sphingomonas paucimobilis, and Sphingomonas capsulata, Rhizomonas strains constitute a separate branch in superfamily IV, which is closely related to but separate from branches containing Zymomonas mobilis, Sphingomonas spp., and S. capsulata. Sphingomonas yanoikuyae and Rhizomonas sp. strain WI4 are located toward the base of the Rhizomonas rRNA branch. DNA-DNA hybridization indicated that S. yanoikuyae is equidistant from Rhizomonas sp. strain WI4 and S. paucimobilis. Sequences of 270 bp of 16S ribosomal DNAs from eight strains of Rhizomonas spp., eight strains of Sphingomonas spp., and Agrobacterium tumefaciens indicated that S. yanoikuyae and Rhizomonas sp. strains WI4 and CA16 are genetically more closely related to R. suberifaciens than to Sphingomonas spp. Thus, S. yanoikuyae may need to be transferred to the genus Rhizomonas on the basis of the results of further study.

  20. Quantitative RNA-Seq analysis in non-model species: assessing transcriptome assemblies as a scaffold and the utility of evolutionary divergent genomic reference species

    Directory of Open Access Journals (Sweden)

    Hornett Emily A

    2012-08-01

    Full Text Available Abstract Background How well does RNA-Seq data perform for quantitative whole gene expression analysis in the absence of a genome? This is one unanswered question facing the rapidly growing number of researchers studying non-model species. Using Homo sapiens data and resources, we compared the direct mapping of sequencing reads to predicted genes from the genome with mapping to de novo transcriptomes assembled from RNA-Seq data. Gene coverage and expression analysis was further investigated in the non-model context by using increasingly divergent genomic reference species to group assembled contigs by unique genes. Results Eight transcriptome sets, composed of varying amounts of Illumina and 454 data, were assembled and assessed. Hybrid 454/Illumina assemblies had the highest transcriptome and individual gene coverage. Quantitative whole gene expression levels were highly similar between using a de novo hybrid assembly and the predicted genes as a scaffold, although mapping to the de novo transcriptome assembly provided data on fewer genes. Using non-target species as reference scaffolds does result in some loss of sequence and expression data, and bias and error increase with evolutionary distance. However, within a 100 million year window these effect sizes are relatively small. Conclusions Predicted gene sets from sequenced genomes of related species can provide a powerful method for grouping RNA-Seq reads and annotating contigs. Gene expression results can be produced that are similar to results obtained using gene models derived from a high quality genome, though biased towards conserved genes. Our results demonstrate the power and limitations of conducting RNA-Seq in non-model species.

  1. Transfer RNA methylases in rat placenta

    International Nuclear Information System (INIS)

    Jagtiani, S.K.; Narurkar, L.M.; Narurkar, M.V.

    1977-01-01

    Presence of tRNA methylases (5-adenosylmethionine : tRNA methyltransferases) was demonstrated at various stages of gestation in rat placenta, the enzyme being 50-100% higher than that of adult rat liver during early gestation. Placental tRNA methylases were shown to differ from those of liver in the extent of methylation. Glycine methyltransferase (S-adenosylmethionine : glycine methyltransferase), a regulatory enzyme in adult rat liver, was absent in placenta throughout gestation. The placental tRNA methylases could be inhibited in vitro by semipurified glycine methyltransferase from adult rat liver. The high placental tRNA methylase activity was comparable with the inhibitor-free enzyme activity of the adult rat liver. S-adenosyl-[Me- 14 C]-methionine was used in the investigation. (author)

  2. Interspecific comparison of radiocesium trophic transfer in two tropical fish species.

    Science.gov (United States)

    Pouil, Simon; Teyssié, Jean-Louis; Fowler, Scott W; Metian, Marc; Warnau, Michel

    2018-09-01

    The trophic transfer of radiocesium ( 134 Cs) was investigated in two tropical fish, the silver moony Monodactylus argenteus and the spotted scat Scatophagus argus. Juveniles of both species were exposed to dietary 134 Cs using the pulse-chase feeding methodology. The food was brine shrimp (Artemia salina) previously exposed to the dissolved radiotracer. Depuration kinetics of 134 Cs were followed for 45 d. Results showed that Cs was similarly efficiently assimilated by both species (AE > 50%). The estimated trophic transfer factors in the two species ranked from 1 to 2, suggesting that 134 Cs could be biomagnified in both omnivorous species. In complement, dissections of 7 body compartments were carried out at three different times in order to highlight 134 Cs organotropism. 134 Cs organotropism was similar in both species: more than 50% of 134 Cs was quickly distributed in the muscles and skeleton (after 3 days of depuration), which is likely related to the analogous behavior between Cs and K, an essential element for muscle contractions and bone formation. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Data Mining of Small RNA-Seq Suggests an Association Between Prostate Cancer and Altered Abundance of 5′ Transfer RNA Halves in Seminal Fluid and Prostatic Tissues

    Directory of Open Access Journals (Sweden)

    Joseph M Dhahbi

    2018-02-01

    Full Text Available Extracellular RNAs are gaining clinical interest as biofluid-based noninvasive markers for diseases, especially cancer. In particular, derivatives of transfer RNA (tRNA are emerging as a new class of small-noncoding RNAs with high biomarker potential. We and others previously reported alterations in serum levels of specific tRNA halves in disease states including cancer. Here, we explored seminal fluid for tRNA halves as potential markers of prostate cancer. We found that 5′ tRNA halves are abundant in seminal fluid and are elevated in prostate cancer relative to noncancer patients. Importantly, most of these tRNA halves are also detectable in prostatic tissues, and a subset were increased in malignant relative to adjacent normal tissue. These findings emphasize the potential of 5′ tRNA halves as noninvasive markers for prostate cancer screening and diagnosis and provide leads for future work to elucidate a putative role of the 5′ tRNA halves in carcinogenesis.

  4. Transferability of retrotransposon primers derived from Persimmon (Diospyros kaki Thunb.) across other plant species.

    Science.gov (United States)

    Du, X Y; Hu, Q N; Zhang, Q L; Wang, Y B; Luo, Z R

    2013-06-06

    Retrotransposon-based molecular markers are powerful molecular tools. However, these markers are not readily available due to the difficulty in obtaining species-specific retrotransposon primers. Although recent techniques enabling the rapid isolation of retrotransposon sequences have facilitated primer development, this process nonetheless remains time-consuming and costly. Therefore, research into the transferability of retrotransposon primers developed from one plant species onto others would be of great value. The present study investigated the transferability of retrotransposon primers derived from 'Luotian-tianshi' persimmon (Diospyros kaki Thunb.) across other fruit crops, as well as within the genus using inter-retrotransposon amplified polymorphism molecular marker. Fourteen of the 26 retrotransposon primers tested (53.85%) produced robust and reproducible amplification products across all fruit crops tested, indicating their applicability across plant species. Four of the 13 fruit crops showed the best transferability performances: persimmon, grape, citrus, and peach. Furthermore, similarity coefficients and UPGMA clustering indicated that these primers could further offer a potential tool for germplasm differentiation, parentage identification, genetic diversity assessment, classification, and phylogenetic studies across a variety of plant species. Transferability was further confirmed by examining published primers derived from Rosaceae, Gramineae, and Solanaceae. This study is one of the few currently available studies concerning the transferability of retrotransposon primers across plant species in general, and is the first successful study of the transferability of retrotransposon primers derived from persimmon. The primers presented here will help reduce costs for future retrotransposon primer development and therefore contribute to the popularization of retrotransposon molecular markers.

  5. Phylogenetic relationships between Sarcocystis species from reindeer and other Sarcocystidae deduced from ssu rRNA gene sequences

    DEFF Research Database (Denmark)

    Dahlgren, S.S.; Oliveira, Rodrigo Gouveia; Gjerde, B.

    2008-01-01

    any effect on previously inferred phylogenetic relationships within the Sarcocystidae. The complete small subunit (ssu) rRNA gene sequences of all six Sarcocystis species from reindeer were used in the phylogenetic analyses along with ssu rRNA gene sequences of 85 other members of the Coccidea. Trees...... the six species in phylogenetic analyses of the Sarcocystidae, and also to investigate the phylogenetic relationships between the species from reindeer and those from other hosts. The study also aimed at revealing whether the inclusion of six Sarcocystis species from the same intermediate host would have....... tarandivulpes, formed a sister group to other Sarcocystis species with a canine definitive host. The position of S. hardangeri on the tree suggested that it uses another type of definitive host than the other Sarcocystis species in this clade. Considering the geographical distribution and infection intensity...

  6. Transferability of Newly Developed Pear SSR Markers to Other Rosaceae Species.

    Science.gov (United States)

    Fan, L; Zhang, M-Y; Liu, Q-Z; Li, L-T; Song, Y; Wang, L-F; Zhang, S-L; Wu, J

    2013-01-01

    A set of 120 simple sequence repeats (SSRs) was developed from the newly assembled pear sequence and evaluated for polymorphisms in seven genotypes of pear from different genetic backgrounds. Of these, 67 (55.8 %) primer pairs produced polymorphic amplifications. Together, the 67 SSRs detected 277 alleles with an average of 4.13 per locus. Sequencing of the amplification products from randomly picked loci NAUPy31a and NAUpy53a verified the presence of the SSR loci. When the 67 primer pairs were tested on 96 individual members of eight species in the Rosaceae family, 61.2 % (41/67) of the tested SSRs successfully amplified a PCR product in at least one of the Rosaceae genera. The transferability from pear to different species varied from 58.2 % (apple) to 11.9 % (cherry). The ratio of transferability also reflected the closer relationships within Maloideae over Prunoideae. Two pear SSR markers, NAUpy43c and NAUpy55k, could distinguish the 20 different apple genotypes thoroughly, and UPGMA cluster analysis grouped them into three groups at the similarity level of 0.56. The high level of polymorphism and good transferability of pear SSRs to Rosaceae species indicate their promise for application to future molecular screening, map construction, and comparative genomic studies among pears and other Rosaceae species.

  7. N transfer in three species grass-clover mixtures with chicory, ribwort plantain or caraway

    DEFF Research Database (Denmark)

    Dhamala, Nawa Raj; Rasmussen, Jim; Carlsson, Georg

    2017-01-01

    Background and aimsThere is substantial evidence that legume-derived Nitrogen (N) is transferred to neighboring non-legumes in grassland mixtures. However, there is sparse information about how deep rooted non-legume forage herbs (forbs) influence N transfer in multi-species grasslands. Methodology......Red clover (Trifolium pretense L.) was grown together with perennial ryegrass (Lolium perenne L.) and one of three forb species: chicory (Cichorium intybus L.), ribwort plantain (Plantago lanceolata L.) or caraway (Carum carvi L.) in a field experiment. During the first year after the establishment, red...... clover leaves were labeled with 15N-urea to determine the N transfer from red clover to companion ryegrass and forbs. ResultsOn an annual basis, up to 15 % of red clover N was transferred to the companion ryegrass and forbs, but predominantly to the grass. The forb species did not differ in their ability...

  8. MicroRNA Transfer Between Bone Marrow Adipose and Multiple Myeloma Cells.

    Science.gov (United States)

    Soley, Luna; Falank, Carolyne; Reagan, Michaela R

    2017-06-01

    Multiple myeloma remains an incurable disease, largely due to the tumor-supportive role of the bone marrow microenvironment. Bone marrow adipose tissue (BMAT) is one component of the fertile microenvironment which is believed to contribute to myeloma progression and drug resistance, as well as participate in a vicious cycle of osteolysis and tumor growth. MicroRNAs (miRNAs) have recently emerged as instrumental regulators of cellular processes that enable the development and dissemination of cancer. This review highlights the intersection between two emerging research fields and pursues the scientific and clinical implications of miRNA transfer between BMAT and myeloma cells. This review provides a concise and provocative summary of the evidence to support exosome-mediated transfer of tumor-supportive miRNAs. The work may prompt researchers to better elucidate the mechanisms by which this novel means of genetic communication between tumor cells and their environment could someday yield targeted therapeutics.

  9. Horizontal antimicrobial resistance transfer drives epidemics of multiple Shigella species.

    Science.gov (United States)

    Baker, Kate S; Dallman, Timothy J; Field, Nigel; Childs, Tristan; Mitchell, Holly; Day, Martin; Weill, François-Xavier; Lefèvre, Sophie; Tourdjman, Mathieu; Hughes, Gwenda; Jenkins, Claire; Thomson, Nicholas

    2018-04-13

    Horizontal gene transfer has played a role in developing the global public health crisis of antimicrobial resistance (AMR). However, the dynamics of AMR transfer through bacterial populations and its direct impact on human disease is poorly elucidated. Here, we study parallel epidemic emergences of multiple Shigella species, a priority AMR organism, in men who have sex with men to gain insight into AMR emergence and spread. Using genomic epidemiology, we show that repeated horizontal transfer of a single AMR plasmid among Shigella enhanced existing and facilitated new epidemics. These epidemic patterns contrasted with slighter, slower increases in disease caused by organisms with vertically inherited (chromosomally encoded) AMR. This demonstrates that horizontal transfer of AMR directly affects epidemiological outcomes of globally important AMR pathogens and highlights the need for integration of genomic analyses into all areas of AMR research, surveillance and management.

  10. Exploring internal features of 16S rRNA gene for identification of clinically relevant species of the genus Streptococcus

    Science.gov (United States)

    2011-01-01

    Background Streptococcus is an economically important genus as a number of species belonging to this genus are human and animal pathogens. The genus has been divided into different groups based on 16S rRNA gene sequence similarity. The variability observed among the members of these groups is low and it is difficult to distinguish them. The present study was taken up to explore 16S rRNA gene sequence to develop methods that can be used for preliminary identification and can supplement the existing methods for identification of clinically-relevant isolates of the genus Streptococcus. Methods 16S rRNA gene sequences belonging to the isolates of S. dysgalactiae, S. equi, S. pyogenes, S. agalactiae, S. bovis, S. gallolyticus, S. mutans, S. sobrinus, S. mitis, S. pneumoniae, S. thermophilus and S. anginosus were analyzed with the purpose to define genetic variability within each species to generate a phylogenetic framework, to identify species-specific signatures and in-silico restriction enzyme analysis. Results The framework based analysis was used to segregate Streptococcus spp. previously identified upto genus level. This segregation was validated using species-specific signatures and in-silico restriction enzyme analysis. 43 uncharacterized Streptococcus spp. could be identified using this approach. Conclusions The markers generated exploring 16S rRNA gene sequences provided useful tool that can be further used for identification of different species of the genus Streptococcus. PMID:21702978

  11. Replication of honey bee-associated RNA viruses across multiple bee species in apple orchards of Georgia, Germany and Kyrgyzstan.

    Science.gov (United States)

    Radzevičiūtė, Rita; Theodorou, Panagiotis; Husemann, Martin; Japoshvili, George; Kirkitadze, Giorgi; Zhusupbaeva, Aigul; Paxton, Robert J

    2017-06-01

    The essential ecosystem service of pollination is provided largely by insects, which are considered threatened by diverse biotic and abiotic global change pressures. RNA viruses are one such pressure, and have risen in prominence as a major threat for honey bees (Apis mellifera) and global apiculture, as well as a risk factor for other bee species through pathogen spill-over between managed honey bees and sympatric wild pollinator communities. Yet despite their potential role in global bee decline, the prevalence of honey bee-associated RNA viruses in wild bees is poorly known from both geographic and taxonomic perspectives. We screened members of pollinator communities (honey bees, bumble bees and other wild bees belonging to four families) collected from apple orchards in Georgia, Germany and Kyrgyzstan for six common honey bee-associated RNA virus complexes encompassing nine virus targets. The Deformed wing virus complex (DWV genotypes A and B) had the highest prevalence across all localities and host species and was the only virus complex found in wild bee species belonging to all four studied families. Based on amplification of negative-strand viral RNA, we found evidence for viral replication in wild bee species of DWV-A/DWV-B (hosts: Andrena haemorrhoa and several Bombus spp.) and Black queen cell virus (hosts: Anthophora plumipes, several Bombus spp., Osmia bicornis and Xylocopa spp.). Viral amplicon sequences revealed that DWV-A and DWV-B are regionally distinct but identical in two or more bee species at any one site, suggesting virus is shared amongst sympatric bee taxa. This study demonstrates that honey bee associated RNA viruses are geographically and taxonomically widespread, likely infective in wild bee species, and shared across bee taxa. Copyright © 2017 Elsevier Inc. All rights reserved.

  12. Transferability of microsatellite markers located in candidate genes for wood properties between Eucalyptus species

    Directory of Open Access Journals (Sweden)

    Cintia V. Acuña

    2014-12-01

    Full Text Available Aim of study:  To analyze the feasibility of extrapolating conclusions on wood quality genetic control between different Eucalyptus species, particularly from species with better genomic information, to those less characterized. For this purpose, the first step is to analyze the conservation and cross-transferability of microsatellites markers (SSRs located in candidate genes.Area of study: Eucalyptus species implanted in Argentina coming from different Australian origins.Materials and methods: Twelve validated and polymorphic SSRs in candidate genes (SSR-CGs for wood quality in E. globulus were selected for cross species amplification in six species: E. grandis, E. saligna, E. dunnii, E. viminalis, E. camaldulensis and E. tereticornis.Main results: High cross-species transferability (92% to 100% was found for the 12 polymorphic SSRs detected in E. globulus. These markers revealed allelic diversity in nine important candidate genes: cinnamoyl CoA reductase (CCR, cellulose synthase 3 (CesA3, the transcription factor LIM1, homocysteine S-methyltransferase (HMT, shikimate kinase (SK, xyloglucan endotransglycosylase 2 (XTH2, glutathione S-transferase (GST, glutamate decarboxylase (GAD and peroxidase (PER.Research highlights: The markers described are potentially suitable for comparative QTL mapping, molecular marker assisted breeding (MAB and for population genetic studies across different species within the subgenus Symphyomyrtus.Keywords: validation; cross-transferability; SSR; functional markers; eucalypts; Symphyomyrtus.

  13. Characterization of functional SSR markers in Prosopis alba and their transferability across Prosopis species

    Directory of Open Access Journals (Sweden)

    María F. Pomponio

    2015-08-01

    Full Text Available Aim of study: The aim of the study was to characterize functional microsatellite markers in Prosopis alba and examine the transferability to species from the Prosopis genus. Area of the study: samples were obtained from natural populations of Argentina. Material and Methods: Eleven SSR functional markers related to stress and metabolism were amplified in a sample of 152 genotypes from P.alba, P. denudans, P. hassleriP. chilensis, P. flexuosa, and interspecific hybrids. Main results: In P. alba, the PIC average value was 0.36; and 6 out of the 11 primers showed high values of polymorphism ranging from 0.40 to 0.71. The cross-species transferability was high with high percentages of polymorphic loci. Research highlights: The SSR markers developed in P.alba were easily transferred to other Prosopis species which did not have functional markers.

  14. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Directory of Open Access Journals (Sweden)

    Tilton Susan C

    2012-11-01

    Full Text Available Abstract Background MicroRNAs (miRNAs are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis generation tool for systems biology. The miRNA workflow in BRM allows for efficient processing of multiple miRNA and mRNA datasets in a single

  15. Bioinformatics resource manager v2.3: an integrated software environment for systems biology with microRNA and cross-species analysis tools

    Science.gov (United States)

    2012-01-01

    Background MicroRNAs (miRNAs) are noncoding RNAs that direct post-transcriptional regulation of protein coding genes. Recent studies have shown miRNAs are important for controlling many biological processes, including nervous system development, and are highly conserved across species. Given their importance, computational tools are necessary for analysis, interpretation and integration of high-throughput (HTP) miRNA data in an increasing number of model species. The Bioinformatics Resource Manager (BRM) v2.3 is a software environment for data management, mining, integration and functional annotation of HTP biological data. In this study, we report recent updates to BRM for miRNA data analysis and cross-species comparisons across datasets. Results BRM v2.3 has the capability to query predicted miRNA targets from multiple databases, retrieve potential regulatory miRNAs for known genes, integrate experimentally derived miRNA and mRNA datasets, perform ortholog mapping across species, and retrieve annotation and cross-reference identifiers for an expanded number of species. Here we use BRM to show that developmental exposure of zebrafish to 30 uM nicotine from 6–48 hours post fertilization (hpf) results in behavioral hyperactivity in larval zebrafish and alteration of putative miRNA gene targets in whole embryos at developmental stages that encompass early neurogenesis. We show typical workflows for using BRM to integrate experimental zebrafish miRNA and mRNA microarray datasets with example retrievals for zebrafish, including pathway annotation and mapping to human ortholog. Functional analysis of differentially regulated (p<0.05) gene targets in BRM indicates that nicotine exposure disrupts genes involved in neurogenesis, possibly through misregulation of nicotine-sensitive miRNAs. Conclusions BRM provides the ability to mine complex data for identification of candidate miRNAs or pathways that drive phenotypic outcome and, therefore, is a useful hypothesis

  16. Efficient recovery of whole blood RNA - a comparison of commercial RNA extraction protocols for high-throughput applications in wildlife species

    Directory of Open Access Journals (Sweden)

    Schwochow Doreen

    2012-06-01

    Full Text Available Abstract Background Since the emergence of next generation sequencing platforms, unprecedented opportunities have arisen in the study of natural vertebrate populations. In particular, insights into the genetic and epigenetic mechanisms of adaptation can be revealed through study of the expression profiles of genes. However, as a pre-requisite to expression profiling, care must be taken in RNA preparation as factors like DNA contamination, RNA integrity or transcript abundance can affect downstream applications. Here, we evaluated five commonly used RNA extraction methods using whole blood sampled under varying conditions from 20 wild carnivores. Results Despite the use of minute starting volumes, all methods produced quantifiable RNA extracts (1.4 – 18.4 μg with varying integrity (RIN 4.6 - 7.7, the latter being significantly affected by the storage and extraction method used. We observed a significant overall effect of the extraction method on DNA contamination. One particular extraction method, the LeukoLOCK™ filter system, yielded high RNA integrity along with low DNA contamination and efficient depletion of hemoglobin transcripts highly abundant in whole blood. In a proof of concept sequencing experiment, we found globin RNA transcripts to occupy up to ¼ of all sequencing reads if libraries were not depleted of hemoglobin prior to sequencing. Conclusion By carefully choosing the appropriate RNA extraction method, whole blood can become a valuable source for high-throughput applications like expression arrays or transcriptome sequencing from natural populations. Additionally, candidate genes showing signs of selection could subsequently be genotyped in large population samples using whole blood as a source for RNA without harming individuals from rare or endangered species.

  17. Principles of Long Noncoding RNA Evolution Derived from Direct Comparison of Transcriptomes in 17 Species

    Directory of Open Access Journals (Sweden)

    Hadas Hezroni

    2015-05-01

    Full Text Available The inability to predict long noncoding RNAs from genomic sequence has impeded the use of comparative genomics for studying their biology. Here, we develop methods that use RNA sequencing (RNA-seq data to annotate the transcriptomes of 16 vertebrates and the echinoid sea urchin, uncovering thousands of previously unannotated genes, most of which produce long intervening noncoding RNAs (lincRNAs. Although in each species, >70% of lincRNAs cannot be traced to homologs in species that diverged >50 million years ago, thousands of human lincRNAs have homologs with similar expression patterns in other species. These homologs share short, 5′-biased patches of sequence conservation nested in exonic architectures that have been extensively rewired, in part by transposable element exonization. Thus, over a thousand human lincRNAs are likely to have conserved functions in mammals, and hundreds beyond mammals, but those functions require only short patches of specific sequences and can tolerate major changes in gene architecture.

  18. Radionuclide transfer to marine biota species: review of Russian language studies.

    Science.gov (United States)

    Fesenko, S; Fesenko, E; Titov, I; Karpenko, E; Sanzharova, N; Fonseca, A Gondin; Brown, J

    2010-11-01

    An extensive programme of experiments on transfer of radionuclides to aquatic species was conducted in the former USSR starting from the early 1950s. Only a few of these studies were made available in the English language literature or taken into account in international reviews of radionuclide behaviour in marine ecosystems. Therefore, an overview of original information on radionuclide transfer to marine biota species available from Russian language literature sources is presented here. The concentration ratio (CR) values for many radionuclides and for marine species such as: (239)Pu, (106)Ru and (95)Zr (crustacean), (54)Mn, (90)Sr, (95)Nb, (106)Ru, (137)Cs (239)Pu, (241)Am and natural U (molluscs), and (54)Mn, (90)Sr, (137)Cs and (144)Ce (fish) are in good agreement with those previously published, whilst for some of them, in particular, for (32)P and (110)Ag (crustaceans), (35)S (molluscs), (32)P, (35)S, (95)Nb, and (106)Ru (macroalgae) and (60)Co and (239,240)Pu (fish) the data presented here suggest that changes in the default CR reference values presented in recent marine reviews may be required. The data presented here are intended to supplement substantially the CR values being collated within the handbook on Wildlife Transfer Coefficients, coordinated under the IAEA EMRAS II programme.

  19. Evaluation of 5.8S rRNA to identify Penaeus semisulcatus and its subspecies, Penaeus semisulcatus persicus (Penaeidae and some Decapoda species

    Directory of Open Access Journals (Sweden)

    Zahra Noroozi

    2015-10-01

    Full Text Available The green tiger prawn, Penaeus semisulcatus is one of the most important members of the family Penaeidae in the Persian Gulf. Based on the morphological characteristics, two groups, including P. semisulcatus and its subspecies viz. P. s. persicus are recognized. This study was conducted to investigate the genetic distance between P. semisulcatus and P. s. persicus by analyzing partial sequence of 5.8S rRNA. Another objective of this study is to evaluate the ability of 5.8S rRNA to identify the species of Decapoda. The results indicated that the 5.8S rRNA gene of both P. semisulcatus and P. s. persicus were exactly identical, and sequence variation was not observed. The results also indicated that 5.8S rRNA sequences between species of the same genus of analysed species of Decapoda are conserved, and no genetic distance was observed in species level. The low evolutionary rate and efficient conservation of the 5.8S rRNA can be attributed to its role in the translation process.

  20. Transfer of alien genes by means of induced translocation in oats and other crop species

    International Nuclear Information System (INIS)

    Thomas, H.; Taing Aung

    1977-01-01

    Some of the best sources of resistance to mildew, which is the most important disease of the oat crop in the United Kingdom, occur in related weed species. The mildew resistance found in a genotype of the tetraploid species Avena barbata has been transferred into the germ plasm of the cultivated hexaploid species A. sativa by means of an induced translocation. The procedures adopted to isolate the desirable translocation and to determine its breeding behaviour are described. A number of alien genes have been transferred into wheat by means of induced translocations and genetic induction, but their successful introduction into commercial varieties has been limited. In this paper, the use and limitations of alien transfers as breeding material are discussed. (author)

  1. Structural studies of a bacterial tRNA(HIS guanylyltransferase (Thg1-like protein, with nucleotide in the activation and nucleotidyl transfer sites.

    Directory of Open Access Journals (Sweden)

    Samantha J Hyde

    Full Text Available All nucleotide polymerases and transferases catalyze nucleotide addition in a 5' to 3' direction. In contrast, tRNA(His guanylyltransferase (Thg1 enzymes catalyze the unusual reverse addition (3' to 5' of nucleotides to polynucleotide substrates. In eukaryotes, Thg1 enzymes use the 3'-5' addition activity to add G-1 to the 5'-end of tRNA(His, a modification required for efficient aminoacylation of the tRNA by the histidyl-tRNA synthetase. Thg1-like proteins (TLPs are found in Archaea, Bacteria, and mitochondria and are biochemically distinct from their eukaryotic Thg1 counterparts TLPs catalyze 5'-end repair of truncated tRNAs and act on a broad range of tRNA substrates instead of exhibiting strict specificity for tRNA(His. Taken together, these data suggest that TLPs function in distinct biological pathways from the tRNA(His maturation pathway, perhaps in tRNA quality control. Here we present the first crystal structure of a TLP, from the gram-positive soil bacterium Bacillus thuringiensis (BtTLP. The enzyme is a tetramer like human THG1, with which it shares substantial structural similarity. Catalysis of the 3'-5' reaction with 5'-monophosphorylated tRNA necessitates first an activation step, generating a 5'-adenylylated intermediate prior to a second nucleotidyl transfer step, in which a nucleotide is transferred to the tRNA 5'-end. Consistent with earlier characterization of human THG1, we observed distinct binding sites for the nucleotides involved in these two steps of activation and nucleotidyl transfer. A BtTLP complex with GTP reveals new interactions with the GTP nucleotide in the activation site that were not evident from the previously solved structure. Moreover, the BtTLP-ATP structure allows direct observation of ATP in the activation site for the first time. The BtTLP structural data, combined with kinetic analysis of selected variants, provide new insight into the role of key residues in the activation step.

  2. Identification, validation and cross-species transferability of novel Lavandula EST-SSRs.

    Science.gov (United States)

    Adal, Ayelign M; Demissie, Zerihun A; Mahmoud, Soheil S

    2015-04-01

    We identified and characterized EST-SSRs with strong discrimination power against Lavandula angustifolia and Lavandula x intermedia . The markers also showed considerable cross-species transferability rate into six related Lavandula species. Lavenders (Lavandula) are important economical crops grown around the globe for essential oil production. In an attempt to develop genetic markers for these plants, we analyzed over 13,000 unigenes developed from L. angustifolia and L. x intermedia EST databases, and identified 3,459 simple sequence repeats (SSR), which were dominated by trinucleotides (41.2 %) and dinucleotides (31.45 %). Approximately, 19 % of the unigenes contained at least one SSR marker, over 60 % of which were localized in the UTRs. Only 252 EST-SSRs were 18 bp or longer from which 31 loci were validated, and 24 amplified discrete fragments with 85 % polymorphism in L. x intermedia and L. angustifolia. The average number of alleles in L. x intermedia and L. angustifolia were 3.42 and 3.71 per marker with average PIC values of 0.47 and 0.52, respectively. These values suggest a moderate to strong level of informativeness for the markers, with some loci producing unique fingerprints. The cross-species transferability rate of the markers ranges 50-100 % across eight species. The utility of these markers was assessed in eight Lavandula species and 15 L. angustifolia and L. x intermedia cultivars, and the dendrogram deduced from their similarity indexes successfully delineated the species into their respective sections and the cultivars into their respective species. These markers have potential for application in fingerprinting, diversity studies and marker-assisted breeding of Lavandula.

  3. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees.

    Science.gov (United States)

    Stolzer, Maureen; Lai, Han; Xu, Minli; Sathaye, Deepa; Vernot, Benjamin; Durand, Dannie

    2012-09-15

    Gene duplication (D), transfer (T), loss (L) and incomplete lineage sorting (I) are crucial to the evolution of gene families and the emergence of novel functions. The history of these events can be inferred via comparison of gene and species trees, a process called reconciliation, yet current reconciliation algorithms model only a subset of these evolutionary processes. We present an algorithm to reconcile a binary gene tree with a nonbinary species tree under a DTLI parsimony criterion. This is the first reconciliation algorithm to capture all four evolutionary processes driving tree incongruence and the first to reconcile non-binary species trees with a transfer model. Our algorithm infers all optimal solutions and reports complete, temporally feasible event histories, giving the gene and species lineages in which each event occurred. It is fixed-parameter tractable, with polytime complexity when the maximum species outdegree is fixed. Application of our algorithms to prokaryotic and eukaryotic data show that use of an incomplete event model has substantial impact on the events inferred and resulting biological conclusions. Our algorithms have been implemented in Notung, a freely available phylogenetic reconciliation software package, available at http://www.cs.cmu.edu/~durand/Notung. mstolzer@andrew.cmu.edu.

  4. Novel and highly informative Capsicum SSR markers and their cross-species transferability.

    Science.gov (United States)

    Buso, G S C; Reis, A M M; Amaral, Z P S; Ferreira, M E

    2016-09-23

    This study was undertaken primarily to develop new simple sequence repeat (SSR) markers for Capsicum. As part of this project aimed at broadening the use of molecular tools in Capsicum breeding, two genomic libraries enriched for AG/TC repeat sequences were constructed for Capsicum annuum. A total of 475 DNA clones were sequenced from both libraries and 144 SSR markers were tested on cultivated and wild species of Capsicum. Forty-five SSR markers were randomly selected to genotype a panel of 48 accessions of the Capsicum germplasm bank. The number of alleles per locus ranged from 2 to 11, with an average of 6 alleles. The polymorphism information content was on average 0.60, ranging from 0.20 to 0.83. The cross-species transferability to seven cultivated and wild Capsicum species was tested with a set of 91 SSR markers. We found that a high proportion of the loci produced amplicons in all species tested. C. frutescens had the highest number of transferable markers, whereas the wild species had the lowest. Our results indicate that the new markers can be readily used in genetic analyses of Capsicum.

  5. Estimating radionuclide transfer to wild species-data requirements and availability for terrestrial ecosystems

    International Nuclear Information System (INIS)

    Beresford, N A; Broadley, M R; Howard, B J; Barnett, C L; White, P J

    2004-01-01

    Assessment of the transfer of radionuclides to wild species is an important component in the estimation of predicted doses to biota. Reviews of available data for the many potential radionuclide-biota combinations which may be required for environmental assessments highlight many data gaps for terrestrial species. Here, we discuss different approaches which have been suggested to compensate for these data gaps. All of the reviewed approaches have merit; however, there is a requirement for transparency in methodology and data provenance which in some instances is currently missing. Furthermore, there is a need to validate the various methodologies to enable their use with confidence. The requirements of improving our ability to predict radionuclide transfer to wild species are discussed and recommendations made

  6. Genetic variability and evolutionary implications of RNA silencing suppressor genes in RNA1 of sweet potato chlorotic stunt virus isolates infecting sweetpotato and related wild species.

    Directory of Open Access Journals (Sweden)

    Arthur K Tugume

    Full Text Available BACKGROUND: The bipartite single-stranded RNA genome of Sweet potato chlorotic stunt virus (SPCSV, genus Crinivirus; Closteroviridae encodes a Class 1 RNase III (RNase3, a putative hydrophobic protein (p7 and a 22-kDa protein (p22 from genes located in RNA1. RNase3 and p22 suppress RNA silencing, the basal antiviral defence mechanism in plants. RNase3 is sufficient to render sweetpotato (Ipomoea batatas virus-susceptible and predisposes it to development of severe diseases following infection with unrelated virus. The incidence, strains and gene content of SPCSV infecting wild plant species have not been studied. METHODOLOGY/PRINCIPAL FINDINGS: Thirty SPCSV isolates were characterized from 10 wild Ipomoea species, Hewittia sublobata or Lepistemon owariensis (family Convolvulaceae in Uganda and compared with 34 local SPCSV isolates infecting sweetpotatoes. All isolates belonged to the East African (EA strain of SPCSV and contained RNase3 and p7, but p22 was not detected in six isolates. The three genes showed only limited genetic variability and the proteins were under purifying selection. SPCSV isolates lacking p22 synergized with Sweet potato feathery mottle virus (SPFMV, genus potyvirus; Potyviridae and caused severe symptoms in co-infected sweetpotato plants. One SPCSV isolate enhanced accumulation of SPFMV, but no severe symptoms developed. A new whitefly-transmitted virus (KML33b encoding an RNase3 homolog (<56% identity to SPCSV RNase3 able to suppresses sense-mediated RNA silencing was detected in I. sinensis. CONCLUSIONS/SIGNIFICANCE: SPCSV isolates infecting wild species and sweetpotato in Uganda were genetically undifferentiated, suggesting inter-species transmission of SPCSV. Most isolates in Uganda contained p22, unlike SPCSV isolates characterized from other countries and continents. Enhanced accumulation of SPFMV and increased disease severity were found to be uncoupled phenotypic outcomes of RNase3-mediated viral synergism in

  7. Trans-activation of the 5' to 3' viral DNA strand transfer by nucleocapsid protein during reverse transcription of HIV1 RNA.

    Science.gov (United States)

    Darlix, J L; Vincent, A; Gabus, C; de Rocquigny, H; Roques, B

    1993-08-01

    Two DNA strand transfer reactions take place during reverse transcription of the retroviral genome. The first transfer, that of the minus-strand strong stop DNA from the 5' end of the viral RNA to the 3' end, has been studied in vitro with two RNAs mimicking the 5' and 3' regions of the HIV1 genome and with nucleocapsid protein, NCp7, and reverse transcriptase. The results show that NCp7 strongly activates the 5' to 3' DNA strand transfer during reverse transcription while a basic peptide resembling NCp7 is inactive. Activation of the first transfer by several NCp7 derived peptides and the influence of the terminal redundancies (R) present at the 5' and 3' ends of HIV1 RNA were also examined. The first transfer is optimal in the presence of intact NCp7 and necessitates R on both the 5' and 3' RNAs. Sequencing of full length viral DNA products reveals approximately 40% misincorporations at the first nucleotide beyond the transfer point. If such base misincorporations occur during proviral DNA synthesis with possible homologous recombinations it may well contribute to the high level of genetic variability of HIV.

  8. The virion RNA species of the Kirsten murine sarcoma-leukemia virus complex released from a clonally related series of mouse cells

    International Nuclear Information System (INIS)

    Clewley, J.P.; Avery, R.J.

    1982-01-01

    We have characterized the virion RNA species of Kirsten sarcoma (KiSV) and Kirsten leukemia (KiLV) viruses released from a clonally related series of mouse cells (14). We have identified the KiLV and KiSV genome RNAs. In addition to the viral RNA species we find large amounts of a virus-like RNA (VL30 RNA), which is heterogeneous and shows variability in its expression. The amount of VL30 RNA in virions does not correlate with the state of transformation of the cells releasing the virus or the ability of the virus to transform other cells. Characterization of RNA rescued from non-producer cells has revealed a sarcoma virus (KiSVsub(SB3) with an oligonucleotide fingerprint different from that of a standard KiSV RNA, suggesting that it has lost some viral sequences. The oligonucleotide fingerprints of KiLV and VL30 RNAs are distinct from each other and from those reported for other murine leukemia virus RNAs. (Author)

  9. Specific primer design of mitochondrial 12S rRNA for species identification in raw meats

    Science.gov (United States)

    Cahyadi, M.; Puruhita; Barido, F. H.; Hertanto, B. S.

    2018-01-01

    Polymerase chain reaction (PCR) is a molecular technique that widely used in agriculture area including species identification in animal-based products for halalness and food safety reasons. Amplification of DNA using PCR needs a primer pair (forward and reverse primers) to isolate specific DNA fragment in the genome. This objective of this study was to design specific primer from mitochondrial 12S rRNA region for species identification in raw beef, pork and chicken meat. Three published sequences, HQ184045, JN601075, and KT626857, were downloaded from National Center for Biotechnology Information (NCBI) website. Furthermore, those reference sequences were used to design specific primer for bovine, pig, and chicken species using primer3 v.0.4.0. A total of 15 primer pairs were picked up from primer3 software. Of these, an universal forward primer and three reverse primers which are specific for bovine, pig, and chicken species were selected to be optimized using multiplex-PCR technique. The selected primers were namely UNIF (5’-ACC GCG GTC ATA CGA TTA AC-3’), SPR (5’-AGT GCG TCG GCT ATT GTA GG-3’), BBR (5’-GAA TTG GCA AGG GTT GGT AA-3’), and AR (5’-CGG TAT GTA CGT GCC TCA GA-3’). In addition, the PCR products were visualized using 2% agarose gels under the UV light and sequenced to be aligned with reference sequences using Clustal Omega. The result showed that those primers were specifically amplified mitochondrial 12S rRNA regions from bovine, pig, and chicken using PCR. It was indicated by the existence of 155, 357, and 611 bp of DNA bands for bovine, pig, and chicken species, respectively. Moreover, sequence analysis revealed that our sequences were identically similar with reference sequences. It can be concluded that mitochondrial 12S rRNA may be used as a genetic marker for species identification in meat products.

  10. Species-independent MicroRNA Gene Discovery

    KAUST Repository

    Kamanu, Timothy K.

    2012-01-01

    and other incurable diseases such as autism and Alzheimer’s. Functional miRNAs are excised from hairpin-like sequences that are known as miRNA genes. There are about 21,000 known miRNA genes, most of which have been determined using experimental methods. mi

  11. Confamiliar transferability of simple sequence repeat (SSR) markers from cotton (Gossypium hirsutum L.) and jute (Corchorus olitorius L.) to twenty two Malvaceous species.

    Science.gov (United States)

    Satya, Pratik; Paswan, Pramod Kumar; Ghosh, Swagata; Majumdar, Snehalata; Ali, Nasim

    2016-06-01

    Cross-species transferability is a quick and economic method to enrich SSR database, particularly for minor crops where little genomic information is available. However, transferability of SSR markers varies greatly between species, genera and families of plant species. We assessed confamiliar transferability of SSR markers from cotton (Gossypium hirsutum) and jute (Corchorus olitorius) to 22 species distributed in different taxonomic groups of Malvaceae. All the species selected were potential industrial crop species having little or no genomic resources or SSR database. Of the 14 cotton SSR loci tested, 13 (92.86 %) amplified in G. arboreum and 71.43 % exhibited cross-genera transferability. Nine out of 11 jute SSRs (81.81 %) showed cross-transferability across genera. SSRs from both the species exhibited high polymorphism and resolving power in other species. The correlation between transferability of cotton and jute SSRs were highly significant (r = 0.813). The difference in transferability among species was also significant for both the marker groups. High transferability was observed at genus, tribe and subfamily level. At tribe level, transferability of jute SSRs (41.04 %) was higher than that of cotton SSRs (33.74 %). The tribe Byttnerieae exhibited highest SSR transferability (48.7 %). The high level of cross-genera transferability (>50 %) in ten species of Malvaceae, where no SSR resource is available, calls for large scale transferability testing from the enriched SSR databases of cotton and jute.

  12. Synaptic vesicles contain small ribonucleic acids (sRNAs) including transfer RNA fragments (trfRNA) and microRNAs (miRNA).

    Science.gov (United States)

    Li, Huinan; Wu, Cheng; Aramayo, Rodolfo; Sachs, Matthew S; Harlow, Mark L

    2015-10-08

    Synaptic vesicles (SVs) are neuronal presynaptic organelles that load and release neurotransmitter at chemical synapses. In addition to classic neurotransmitters, we have found that synaptic vesicles isolated from the electric organ of Torpedo californica, a model cholinergic synapse, contain small ribonucleic acids (sRNAs), primarily the 5' ends of transfer RNAs (tRNAs) termed tRNA fragments (trfRNAs). To test the evolutionary conservation of SV sRNAs we examined isolated SVs from the mouse central nervous system (CNS). We found abundant levels of sRNAs in mouse SVs, including trfRNAs and micro RNAs (miRNAs) known to be involved in transcriptional and translational regulation. This discovery suggests that, in addition to inducing changes in local dendritic excitability through the release of neurotransmitters, SVs may, through the release of specific trfRNAs and miRNAs, directly regulate local protein synthesis. We believe these findings have broad implications for the study of chemical synaptic transmission.

  13. Variability in secondary structure of 18S ribosomal RNA as topological marker for identification of Paramecium species.

    Science.gov (United States)

    Shakoori, Farah R; Tasneem, Fareeda; Al-Ghanim, K; Mahboob, S; Al-Misned, F; Jahan, Nusrat; Shakoori, Abdul Rauf

    2014-12-01

    Besides cytological and molecular applications, Paramecium is being used in water quality assessment and for determination of saprobic levels. An unambiguous identification of these unicellular eukaryotes is not only essential, but its ecological diversity must also be explored in the local environment. 18SrRNA genes of all the strains of Paramecium species isolated from waste water were amplified, cloned and sequenced. Phylogenetic comparison of the nucleotide sequences of these strains with 23 closely related Paramecium species from GenBank Database enabled identification of Paramecium multimicronucleatum and Paramecium jenningsi. Some isolates did not show significant close association with other Paramecium species, and because of their unique position in the phylogenetic tree, they were considered new to the field. In the present report, these isolates are being designated as Paramecium caudatum pakistanicus. In this article, secondary structure of 18SrRNA has also been analyzed as an additional and perhaps more reliable topological marker for species discrimination and for determining possible phylogenetic relationship between the ciliate species. On the basis of comparison of secondary structure of 18SrRNA of various isolated Paramacium strains, and among Paramecium caudatum pakistanicus, Tetrahymena thermophila, Drosophila melanogaster, and Homo sapiens, it can be deduced that variable regions are more helpful in differentiating the species at interspecific level rather than at intraspecific level. It was concluded that V3 was the least variable region in all the organisms, V2 and V7 were the longest expansion segments of D. melanogaster and there was continuous mutational bias towards G.C base pairing in H. sapiens. © 2014 Wiley Periodicals, Inc.

  14. Diversity of antisense and other non-coding RNAs in Archaea revealed by comparative small RNA sequencing in four Pyrobaculum species

    Directory of Open Access Journals (Sweden)

    David L Bernick

    2012-07-01

    Full Text Available A great diversity of small, non-coding RNA molecules with roles in gene regulation and RNA processing have been intensely studied in eukaryotic and bacterial model organisms, yet our knowledge of possible parallel roles for small RNAs in archaea is limited. We employed RNA-seq to identify novel small RNA across multiple species of the hyperthermophilic genus Pyrobaculum, known for unusual RNA gene characteristics. By comparing transcriptional data collected in parallel among four species, we were able to identify conserved RNA genes fitting into known and novel families. Among our findings, we highlight three novel cis-antisense small RNAs encoded opposite to key regulatory (ferric uptake regulator, metabolic (triose-phosphate isomerase, and core transcriptional apparatus genes (transcription factor B. We also found a large increase in the number of conserved C/D box small RNA genes over what had been previously recognized; many of these genes are encoded antisense to protein coding genes. The conserved opposition to orthologous genes across the Pyrobaculum genus suggests similarities to other cis-antisense regulatory systems. Furthermore, the genus-specific nature of these small RNAs indicates they are relatively recent, stable adaptations.

  15. Targeted Integration of RNA-Seq and Metabolite Data to Elucidate Curcuminoid Biosynthesis in Four Curcuma Species.

    Science.gov (United States)

    Li, Donghan; Ono, Naoaki; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Ohta, Daisaku; Suzuki, Hideyuki; Arita, Masanori; Tanaka, Ken; Ma, Zhiqiang; Kanaya, Shigehiko

    2015-05-01

    Curcuminoids, namely curcumin and its analogs, are secondary metabolites that act as the primary active constituents of turmeric (Curcuma longa). The contents of these curcuminoids vary among species in the genus Curcuma. For this reason, we compared two wild strains and two cultivars to understand the differences in the synthesis of curcuminoids. Because the fluxes of metabolic reactions depend on the amounts of their substrate and the activity of the catalysts, we analyzed the metabolite concentrations and gene expression of related enzymes. We developed a method based on RNA sequencing (RNA-Seq) analysis that focuses on a specific set of genes to detect expression differences between species in detail. We developed a 'selection-first' method for RNA-Seq analysis in which short reads are mapped to selected enzymes in the target biosynthetic pathways in order to reduce the effect of mapping errors. Using this method, we found that the difference in the contents of curcuminoids among the species, as measured by gas chromatography-mass spectrometry, could be explained by the changes in the expression of genes encoding diketide-CoA synthase, and curcumin synthase at the branching point of the curcuminoid biosynthesis pathway. © The Author 2015. Published by Oxford University Press on behalf of Japanese Society of Plant Physiologists. All rights reserved. For permissions, please email: journals.permissions@oup.com.

  16. Nitrogen transfer from forage legumes to nine neighbouring plants in a multi-species grassland

    DEFF Research Database (Denmark)

    Pirhofer-Walzl, Karin; Rasmussen, Jim; Jensen, Henning Høgh

    2012-01-01

    Legumes play a crucial role in nitrogen supply to grass-legume mixtures for ruminant fodder. To quantify N transfer from legumes to neighbouring plants in multi-species grasslands we established a grass-legume-herb mixture on a loamy-sandy site in Denmark. White clover (Trifolium repens L.), red...... amounts of N from legumes than dicotyledonous plants which generally have taproots. Slurry application mainly increased N transfer from legumes to grasses. During the growing season the three legumes transferred approximately 40 kg N ha-1 to neighbouring plants. Below-ground N transfer from legumes...

  17. Inhibition of long non-coding RNA TUG1 on gastric cancer cell transference and invasion through regulating and controlling the expression of miR-144/c-Met axis.

    Science.gov (United States)

    Ji, Ting-Ting; Huang, Xuan; Jin, Jie; Pan, Sheng-Hua; Zhuge, Xiao-Ju

    2016-05-01

    To discuss the expression of long noncoding RNA TUG1 (lncRNA-TUG1) in gastric carcinoma (GC) and its effects on the transferring and invading capacity of gastric carcinoma cells. Forty cases of carcinoma tissue and para-carcinoma tissue were selected from GC patients who underwent surgical removal in Zhejiang Provincial Hospital of Chinese Traditional Medicine and Wenzhou Central Hospital from January, 2013 to December, 2014; the expressing level of lncRNA-TUG1 in GC and para-C tissues was detected by applying the qRT-PCR technique. The correlation between lncRNA-TUG1 expression and patients' clinical data was classified and analyzed. SGC-7901 cells were transfected using lncRNA-TUG1 specific siRNA. Changes of the transferring and invading capacity of siRNA-transfected SGC-7901 cells were scratch-tested and transwell-detected. qRT-PCR was applied to detect the expression level of microRNA-144 after lncRNA-TUG1 was silenced. Changes of c-Met mRNA and protein expressions was detected by qRT-PCR and western-blot test. The expression level of lncRNA-TUG1 in GC tissue was significant higher than that in para-C tissue (P TUG1 in GC tissue was significantly correlated with tumor lymph nodes metastasis and advance TNM phasing (P TUG1 specific siRNA (P TUG1 was silenced (P TUG1 shows an up-regulated expression in GC tissue and that bears a correlation with clinicopathological features of malignant tumor. lncRNA-TUG1 can promote the transferring and invading capacity of GC by inhibiting the pathway of microRNA-144/c-Met. Copyright © 2016 Hainan Medical College. Production and hosting by Elsevier B.V. All rights reserved.

  18. A selection of reference genes and early-warning mRNA biomarkers for environmental monitoring using Mytilus spp. as sentinel species.

    Science.gov (United States)

    Lacroix, C; Coquillé, V; Guyomarch, J; Auffret, M; Moraga, D

    2014-09-15

    mRNA biomarkers are promising tools for environmental health assessment and reference genes are needed to perform relevant qPCR analyses in tissue samples of sentinel species. In the present study, potential reference genes and mRNA biomarkers were tested in the gills and digestive glands of native and caged mussels (Mytilus spp.) exposed to harbor pollution. Results highlighted the difficulty to find stable reference genes in wild, non-model species and suggested the use of normalization indices instead of single genes as they exhibit a higher stability. Several target genes were found differentially expressed between mussel groups, especially in gills where cyp32, π-gst and CuZn-sod mRNA levels could be biomarker candidates. Multivariate analyses confirmed the ability of mRNA levels to highlight site-effects and suggested the use of several combined markers instead of individual ones. These findings support the use of qPCR technology and mRNA levels as early-warning biomarkers in marine monitoring programs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Transfer of several phytopathogenic Pseudomonas species to Acidovorax as Acidovorax avenae subsp. avenae subsp. nov., comb. nov., Acidovorax avenae subsp. citrulli, Acidovorax avenae subsp. cattleyae, and Acidovorax konjaci.

    Science.gov (United States)

    Willems, A; Goor, M; Thielemans, S; Gillis, M; Kersters, K; De Ley, J

    1992-01-01

    DNA-rRNA hybridizations, DNA-DNA hybridizations, polyacrylamide gel electrophoresis of whole-cell proteins, and a numerical analysis of carbon assimilation tests were carried out to determine the relationships among the phylogenetically misnamed phytopathogenic taxa Pseudomonas avenae, Pseudomonas rubrilineans, "Pseudomonas setariae," Pseudomonas cattleyae, Pseudomonas pseudoalcaligenes subsp. citrulli, and Pseudomonas pseudoalcaligenes subsp. konjaci. These organisms are all members of the family Comamonadaceae, within which they constitute a separate rRNA branch. Only P. pseudoalcaligenes subsp. konjaci is situated on the lower part of this rRNA branch; all of the other taxa cluster very closely around the type strain of P. avenae. When they are compared phenotypically, all of the members of this rRNA branch can be differentiated from each other, and they are, as a group, most closely related to the genus Acidovorax. DNA-DNA hybridization experiments showed that these organisms constitute two genotypic groups. We propose that the generically misnamed phytopathogenic Pseudomonas species should be transferred to the genus Acidovorax as Acidovorax avenae and Acidovorax konjaci. Within Acidovorax avenae we distinguished the following three subspecies: Acidovorax avenae subsp. avenae, Acidovorax avenae subsp. cattleyae, and Acidovorax avenae subsp. citrulli. Emended descriptions of the new taxa are presented.

  20. In vitro base modification of Escherichia coli glutamate 2 transfer-RNA and phenylalanine transfer-RNA gene transcripts

    International Nuclear Information System (INIS)

    Shahan, M.N.

    1989-01-01

    Plasmids were constructed that contain an E. Coli tRNA 2 Glu or tRNA Phe gene in a system transcribable by T7 or SP6 RNA polymerase. Selectively 32 P-labeled transcripts of these plasmids were used to study tRNA base modification in vitro in crude extracts by nearest neighbor analysis. The synthesis of 5-methyl-aminomethyl-2-thiouridine (mnm 5 s 2 U) was studied. Complete synthesis of mnm 5 s 2 2U is not observed. Instead, 2-thiouridine (s 2 U) is synthesized. Synthesis requires ATP, cysteine, Mg + , and monovalent cation concentrations below 50 mM. The reaction has a pH optimum above 7.0. Sulfide ion will substitute for cysteine in the reaction but sulfate, sulfite, methionine, homocysteine, and β-mercaptopyruvate will not. Extracts from E. coli strains carrying either the asuE or asuF mutations have reduced s 2 U synthetic activity which supports in vivo evidence that the wild type genes are involved in 2-thiolation of uridine. The enzyme is shown to be unstable both upon storage at -80 degree C and during the modification reaction. A method was developed to study the synthesis of any one of four pseudouridines ψ found at different positions of the tRNA cloverleaf. Synthesis of ψ is observed at three of the four positions-positions 32, 39, and 55. The asuC mutation is shown to affect ψ synthesis only at position 39 confirming that it is an allele of hisT and that the hisT mutations do not affect ψ synthesis at position 32 in E. coli. Synthesis of ψ32, ψ39, and ψ55 does not require any prior modification. Synthesis of dihydrouridine, 7-methylguanosine, and 3(3-amino-3-carboxypropyl)uridine is also observed. Synthesis of 2-methyladenosine and ψ 13 is not seen. Removal of part of the aminoacyl stem reduces synthesis of all modifications examined by 3' fold or more

  1. Hypoxic exosomes facilitate bladder tumor growth and development through transferring long non-coding RNA-UCA1.

    Science.gov (United States)

    Xue, Mei; Chen, Wei; Xiang, An; Wang, Ruiqi; Chen, He; Pan, Jingjing; Pang, Huan; An, Hongli; Wang, Xiang; Hou, Huilian; Li, Xu

    2017-08-25

    To overcome the hostile hypoxic microenvironment of solid tumors, tumor cells secrete a large number of non-coding RNA-containing exosomes that facilitate tumor development and metastasis. However, the precise mechanisms of tumor cell-derived exosomes during hypoxia are unknown. Here, we aim to clarify whether hypoxia affects tumor growth and progression by transferring long non-coding RNA-urothelial cancer-associated 1 (lncRNA-UCA1) enriched exosomes secreted from bladder cancer cells. We used bladder cancer 5637 cells with high expression of lncRNA-UCA1 as exosome-generating cells and bladder cancer UMUC2 cells with low expression of lncRNA-UCA1 as recipient cells. Exosomes derived from 5637 cells cultured under normoxic or hypoxic conditions were isolated and identified by transmission electron microscopy, nanoparticle tracking analysis and western blotting analysis. These exosomes were co-cultured with UMUC2 cells to evaluate cell proliferation, migration and invasion. We further investigated the roles of exosomal lncRNA-UCA1 derived from hypoxic 5637 cells by xenograft models. The availability of lncRNA-UCA1 in serum-derived exosomes as a biomarker for bladder cancer was also assessed. We found that hypoxic exosomes derived from 5637 cells promoted cell proliferation, migration and invasion, and hypoxic exosomal RNAs could be internalized by three bladder cancer cell lines. Importantly, lncRNA-UCA1 was secreted in hypoxic 5637 cell-derived exosomes. Compared with normoxic exosomes, hypoxic exosomes derived from 5637 cells showed the higher expression levels of lncRNA-UCA1. Moreover, Hypoxic exosomal lncRNA-UCA1 could promote tumor growth and progression though epithelial-mesenchymal transition, in vitro and in vivo. In addition, the expression levels of lncRNA-UCA1 in the human serum-derived exosomes of bladder cancer patients were higher than that in the healthy controls. Together, our results demonstrate that hypoxic bladder cancer cells remodel tumor

  2. Inefficient cationic lipid-mediated siRNA and antisense oligonucleotide transfer to airway epithelial cells in vivo

    Directory of Open Access Journals (Sweden)

    Hu Jim

    2006-02-01

    Full Text Available Abstract Background The cationic lipid Genzyme lipid (GL 67 is the current "gold-standard" for in vivo lung gene transfer. Here, we assessed, if GL67 mediated uptake of siRNAs and asODNs into airway epithelium in vivo. Methods Anti-lacZ and ENaC (epithelial sodium channel siRNA and asODN were complexed to GL67 and administered to the mouse airway epithelium in vivo Transfection efficiency and efficacy were assessed using real-time RT-PCR as well as through protein expression and functional studies. In parallel in vitro experiments were carried out to select the most efficient oligonucleotides. Results In vitro, GL67 efficiently complexed asODNs and siRNAs, and both were stable in exhaled breath condensate. Importantly, during in vitro selection of functional siRNA and asODN we noted that asODNs accumulated rapidly in the nuclei of transfected cells, whereas siRNAs remained in the cytoplasm, a pattern consistent with their presumed site of action. Following in vivo lung transfection siRNAs were only visible in alveolar macrophages, whereas asODN also transfected alveolar epithelial cells, but no significant uptake into conducting airway epithelial cells was seen. SiRNAs and asODNs targeted to β-galactosidase reduced βgal mRNA levels in the airway epithelium of K18-lacZ mice by 30% and 60%, respectively. However, this was insufficient to reduce protein expression. In an attempt to increase transfection efficiency of the airway epithelium, we increased contact time of siRNA and asODN using the in vivo mouse nose model. Although highly variable and inefficient, transfection of airway epithelium with asODN, but not siRNA, was now seen. As asODNs more effectively transfected nasal airway epithelial cells, we assessed the effect of asODN against ENaC, a potential therapeutic target in cystic fibrosis; no decrease in ENaC mRNA levels or function was detected. Conclusion This study suggests that although siRNAs and asODNs can be developed to inhibit

  3. Complete mitochondrial genome of endangered Yellow-shouldered Amazon (Amazona barbadensis): two control region copies in parrot species of the Amazona genus.

    Science.gov (United States)

    Urantowka, Adam Dawid; Hajduk, Kacper; Kosowska, Barbara

    2013-08-01

    Amazona barbadensis is an endangered species of parrot living in northern coastal Venezuela and in several Caribbean islands. In this study, we sequenced full mitochondrial genome of the considered species. The total length of the mitogenome was 18,983 bp and contained 13 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, duplicated control region, and degenerate copies of ND6 and tRNA (Glu) genes. High degree of identity between two copies of control region suggests their coincident evolution and functionality. Comparative analysis of both the control region sequences from four Amazona species revealed their 89.1% identity over a region of 1300 bp and indicates the presence of distinctive parts of two control region copies.

  4. Transferability of species distribution models: a functional habitat approach for two regionally threatened butterflies.

    Science.gov (United States)

    Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans

    2007-02-01

    Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.

  5. Alterations in the muscle force transfer apparatus in aged rats during unloading and reloading: Impact of microRNA-31.

    Science.gov (United States)

    Hughes, David C; Marcotte, George R; Baehr, Leslie M; West, Daniel W D; Marshall, Andrea G; Ebert, Scott M; Davidyan, Arik; Adams, Christopher M; Bodine, Sue C; Baar, Keith

    2018-05-03

    Force transfer is integral for maintaining skeletal muscle structure and function. One important component is dystrophin. There is limited understanding of how force transfer is impacted by age and loading. Here, we investigate the force transfer apparatus in muscles of adult and old rats exposed to periods of disuse and reloading. Our results demonstrate an increase in dystrophin protein during the reloading phase in the adult TA muscle that is delayed in old. The consequence of this delay is an increased susceptibility towards contraction-induced muscle injury. Central to the lack of dystrophin protein is an increase in miR-31, a microRNA that inhibits dystrophin translation. In vivo electroporation with a miR-31 sponge led to increased dystrophin protein and decreased contraction-induced muscle injury in old skeletal muscle. Overall, our results detail the importance of the force transfer apparatus and provide new mechanisms for contraction-induced injury in aging skeletal muscle. In healthy muscle, the dystrophin-associated glycoprotein (DGC) and integrin/focal adhesion complexes, intermediate filaments, and Z-line proteins transmit force from the contractile proteins to the extracellular matrix. How loading and age affect these proteins is poorly understood. The experiments reported here sought to determine the effect of aging on the force transfer apparatus following muscle unloading and reloading. Adult (9 months) and old (29 months) rats were subjected to 14 days hindlimb unloading (HU) and 1, 3, 7 and 14 days of reloading (REL). The DGC complex, intermediate filament and z-line protein and mRNA levels, as well as dystrophin-targeting miRNAs (miR-31, -146b and -374) were examined in the tibialis anterior (TA) and medial gastrocnemius (MG) muscles at both ages. There was a significant increase in dystrophin protein levels (2.79-fold) upon 3 days of reloading in the adult TA muscle that did not occur in the old rats (p ≤ 0.05), and the rise in

  6. On infrared spectroscopic analysis of transfer RNA secondary structure

    Energy Technology Data Exchange (ETDEWEB)

    Semenov, M A; Starikov, E B

    1987-07-14

    Various techniques of IR spectroscopy in the 1550-1750 cm/sup -1/ region employed to analyse the tRNA secondary structure are discussed and a novel improved method is proposed. The main novel features of this method are the approximation of tRNA helical region spectra by catalogue carbonyl absorption bands and approximation of tRNA nonhelical region spectra by those of homopolyribonucleotides. The IR spectra of tRNA/sub yeast//sup phe/ and tRNA/sub E.coli//sup fmet/ in the carbonyl vibration region are explained on the basis of calculated transition moment coupling.

  7. Efficiency of RNA extraction from selected bacteria in the context of biogas production and metatranscriptomics.

    Science.gov (United States)

    Stark, Lucy; Giersch, Tina; Wünschiers, Röbbe

    2014-10-01

    Understanding the microbial population in anaerobic digestion is an essential task to increase efficient substrate use and process stability. The metabolic state, represented e.g. by the transcriptome, of a fermenting system can help to find markers for monitoring industrial biogas production to prevent failures or to model the whole process. Advances in next-generation sequencing make transcriptomes accessible for large-scale analyses. In order to analyze the metatranscriptome of a mixed-species sample, isolation of high-quality RNA is the first step. However, different extraction methods may yield different efficiencies in different species. Especially in mixed-species environmental samples, unbiased isolation of transcripts is important for meaningful conclusions. We applied five different RNA-extraction protocols to nine taxonomic diverse bacterial species. Chosen methods are based on various lysis and extraction principles. We found that the extraction efficiency of different methods depends strongly on the target organism. RNA isolation of gram-positive bacteria was characterized by low yield whilst from gram-negative species higher concentrations can be obtained. Transferring our results to mixed-species investigations, such as metatranscriptomics with biofilms or biogas plants, leads to the conclusion that particular microorganisms might be over- or underrepresented depending on the method applied. Special care must be taken when using such metatranscriptomics data for, e.g. process modeling. Copyright © 2013 Elsevier Ltd. All rights reserved.

  8. Charge-transfer interactions of Cr species with DNA.

    Science.gov (United States)

    Nowicka, Anna M; Matysiak-Brynda, Edyta; Hepel, Maria

    2017-10-01

    Interactions of Cr species with nucleic acids in living organisms depend strongly on Cr oxidation state and the environmental conditions. As the effects of these interactions range from benign to pre-mutagenic to carcinogenic, careful assessment of the hazard they pose to human health is necessary. We have investigated methods that would enable quantifying the DNA damage caused by Cr species under varying environmental conditions, including UV, O 2 , and redox potential, using simple instrumental techniques which could be in future combined into a field-deployable instrumentation. We have employed electrochemical quartz crystal nanogravimetry (EQCN), cyclic voltammetry (CV), and electrochemical impedance spectroscopy (EIS) to evaluate the extent of DNA damage expressed in terms of guanine oxidation yield (η) and changes in specific characteristics provided by these techniques. The effects of the interactions of Cr species with DNA were analyzed using a model calf thymus DNA (ctDNA) film on a gold electrode (Au@ctDNA) in different media, including: (i) Cr(VI), (ii) Cr(VI) reduced at -0.2V, (iii) Cr(III)+UV radiation+O 2 , and Cr(III), obtaining the η values: 7.4±1.4, 1.5±0.4, 1.1±0.31%, and 0%, respectively, thus quantifying the hazard posed. The EIS measurements have enabled utilizing the decrease in charge-transfer resistance (R ct ) for ferri/ferrocyanide redox probe at an Au@ctDNA electrode to assess the oxidative ctDNA damage by Cr(VI) species. In this case, circular dichroism indicates an extensive damage to the ctDNA hydrogen bonding. On the other hand, Cr(III) species have not induced any damage to ctDNA, although the EQCN measurements show an electrostatic binding to DNA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Whole-Proteome Analysis of Twelve Species of Alphaproteobacteria Links Four Pathogens

    Directory of Open Access Journals (Sweden)

    Yunyun Zhou

    2013-11-01

    Full Text Available Thousands of whole-genome and whole-proteome sequences have been made available through advances in sequencing technology, and sequences of millions more organisms will become available in the coming years. This wealth of genetic information will provide numerous opportunities to enhance our understanding of these organisms including a greater understanding of relationships among species. Researchers have used 16S rRNA and other gene sequences to study the evolutionary origins of bacteria, but these strategies do not provide insight into the sharing of genes among bacteria via horizontal transfer. In this work we use an open source software program called pClust to cluster proteins from the complete proteomes of twelve species of Alphaproteobacteria and generate a dendrogram from the resulting orthologous protein clusters. We compare the results with dendrograms constructed using the 16S rRNA gene and multiple sequence alignment of seven housekeeping genes. Analysis of the whole proteomes of these pathogens grouped Rickettsia typhi with three other animal pathogens whereas conventional sequence analysis failed to group these pathogens together. We conclude that whole-proteome analysis can give insight into relationships among species beyond their phylogeny, perhaps reflecting the effects of horizontal gene transfer and potentially providing insight into the functions of shared genes by means of shared phenotypes.

  10. Analysis of extracellular RNA by digital PCR

    Directory of Open Access Journals (Sweden)

    Kenji eTakahashi

    2014-06-01

    Full Text Available The transfer of extracellular RNA is emerging as an important mechanism for intracellular communication. The ability for the transfer of functionally active RNA molecules from one cell to another within vesicles such as exosomes enables a cell to modulate cellular signaling and biological processes within recipient cells. The study of extracellular RNA requires sensitive methods for the detection of these molecules. In this methods article, we will describe protocols for the detection of such extracellular RNA using sensitive detection technologies such as digital PCR. These protocols should be valuable to researchers interested in the role and contribution of extracellular RNA to tumor cell biology.

  11. Anti-tumor effects of an engineered “killer” transfer RNA

    International Nuclear Information System (INIS)

    Zhou, Dong-hui; Lee, Jiyoung; Frankenberger, Casey; Geslain, Renaud; Rosner, Marsha; Pan, Tao

    2012-01-01

    Highlights: ► tRNA with anti-cancer effects. ► tRNA induced protein misfolding. ► tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA Ser (AAU) is an engineered human tRNA Ser with an anticodon coding for isoleucine. Here we test the possibility that tRNA Ser (AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA Ser (AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA Ser (AAU) in both tumorigenic and non-tumorigenic cells. tRNA Ser (AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA Ser (AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA Ser (AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA Ser (AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  12. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection.

    Science.gov (United States)

    Barker, Gregory A; Diamond, Scott L

    2008-09-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.

  13. Formation of nucleoli in interspecies nuclear transfer embryos derived from bovine, porcine, and rabbit oocytes and nuclear donor cells of various species.

    Science.gov (United States)

    Lagutina, Irina; Zakhartchenko, Valeri; Fulka, Helena; Colleoni, Silvia; Wolf, Eckhard; Fulka, Josef; Lazzari, Giovanna; Galli, Cesare

    2011-04-01

    The most successful development of interspecies somatic cell nuclear transfer (iSCNT) embryos has been achieved in closely related species. The analyses of embryonic gene activity in iSCNT embryos of different species combinations have revealed the existence of significant aberrations in expression of housekeeping genes and genes dependent on the major embryonic genome activation (EGA). However, there are many studies with successful blastocyst (BL) development of iSCNT embryos derived from donor cells and oocytes of animal species with distant taxonomical relations (inter-family/inter-class) that should indicate proper EGA at least in terms of RNA polymerase I activation, nucleoli formation, and activation of genes engaged in morula and BL formation. We investigated the ability of bovine, porcine, and rabbit oocytes to activate embryonic nucleoli formation in the nuclei of somatic cells of different mammalian species. In iSCNT embryos, nucleoli precursor bodies originate from the oocyte, while most proteins engaged in the formation of mature nucleoli should be transcribed from genes de novo in the donor nucleus at the time of EGA. Thus, the success of nucleoli formation depends on species compatibility of many components of this complex process. We demonstrate that the time and cell stage of nucleoli formation are under the control of recipient ooplasm. Oocytes of the studied species possess different abilities to support nucleoli formation. Formation of nucleoli, which is a complex but small part of the whole process of EGA, is essential but not absolutely sufficient for the development of iSCNT embryos to the morula and BL stages.

  14. PCR-Independent Detection of Bacterial Species-Specific 16S rRNA at 10 fM by a Pore-Blockage Sensor

    Directory of Open Access Journals (Sweden)

    Leyla Esfandiari

    2016-07-01

    Full Text Available A PCR-free, optics-free device is used for the detection of Escherichia coli (E. coli 16S rRNA at 10 fM, which corresponds to ~100–1000 colony forming units/mL (CFU/mL depending on cellular rRNA levels. The development of a rapid, sensitive, and cost-effective nucleic acid detection platform is sought for the detection of pathogenic microbes in food, water and body fluids. Since 16S rRNA sequences are species specific and are present at high copy number in viable cells, these nucleic acids offer an attractive target for microbial pathogen detection schemes. Here, target 16S rRNA of E. coli at 10 fM concentration was detected against a total RNA background using a conceptually simple approach based on electromechanical signal transduction, whereby a step change reduction in ionic current through a pore indicates blockage by an electrophoretically mobilized bead-peptide nucleic acid probe conjugate hybridized to target nucleic acid. We investigated the concentration detection limit for bacterial species-specific 16S rRNA at 1 pM to 1 fM and found a limit of detection of 10 fM for our device, which is consistent with our previous finding with single-stranded DNA of similar length. In addition, no false positive responses were obtained with control RNA and no false negatives with target 16S rRNA present down to the limit of detection (LOD of 10 fM. Thus, this detection scheme shows promise for integration into portable, low-cost systems for rapid detection of pathogenic microbes in food, water and body fluids.

  15. Climatic associations of British species distributions show good transferability in time but low predictive accuracy for range change.

    Directory of Open Access Journals (Sweden)

    Giovanni Rapacciuolo

    Full Text Available Conservation planners often wish to predict how species distributions will change in response to environmental changes. Species distribution models (SDMs are the primary tool for making such predictions. Many methods are widely used; however, they all make simplifying assumptions, and predictions can therefore be subject to high uncertainty. With global change well underway, field records of observed range shifts are increasingly being used for testing SDM transferability. We used an unprecedented distribution dataset documenting recent range changes of British vascular plants, birds, and butterflies to test whether correlative SDMs based on climate change provide useful approximations of potential distribution shifts. We modelled past species distributions from climate using nine single techniques and a consensus approach, and projected the geographical extent of these models to a more recent time period based on climate change; we then compared model predictions with recent observed distributions in order to estimate the temporal transferability and prediction accuracy of our models. We also evaluated the relative effect of methodological and taxonomic variation on the performance of SDMs. Models showed good transferability in time when assessed using widespread metrics of accuracy. However, models had low accuracy to predict where occupancy status changed between time periods, especially for declining species. Model performance varied greatly among species within major taxa, but there was also considerable variation among modelling frameworks. Past climatic associations of British species distributions retain a high explanatory power when transferred to recent time--due to their accuracy to predict large areas retained by species--but fail to capture relevant predictors of change. We strongly emphasize the need for caution when using SDMs to predict shifts in species distributions: high explanatory power on temporally-independent records

  16. tRNA--the golden standard in molecular biology.

    Science.gov (United States)

    Barciszewska, Mirosława Z; Perrigue, Patrick M; Barciszewski, Jan

    2016-01-01

    Transfer RNAs (tRNAs) represent a major class of RNA molecules. Their primary function is to help decode a messenger RNA (mRNA) sequence in order to synthesize protein and thus ensures the precise translation of genetic information that is imprinted in DNA. The discovery of tRNA in the late 1950's provided critical insight into a genetic machinery when little was known about the central dogma of molecular biology. In 1965, Robert Holley determined the first nucleotide sequence of alanine transfer RNA (tRNA(Ala)) which earned him the 1968 Nobel Prize in Physiology or Medicine. Today, tRNA is one of the best described and characterized biological molecules. Here we review some of the key historical events in tRNA research which led to breakthrough discoveries and new developments in molecular biology.

  17. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Science.gov (United States)

    Pearson, T.; Giffard, P.; Beckstrom-Sternberg, S.; Auerbach, R.; Hornstra, H.; Tuanyok, A.; Price, E.P.; Glass, M.B.; Leadem, B.; Beckstrom-Sternberg, J. S.; Allan, G.J.; Foster, J.T.; Wagner, D.M.; Okinaka, R.T.; Sim, S.H.; Pearson, O.; Wu, Z.; Chang, J.; Kaul, R.; Hoffmaster, A.R.; Brettin, T.S.; Robison, R.A.; Mayo, M.; Gee, J.E.; Tan, P.; Currie, B.J.; Keim, P.

    2009-01-01

    Background: Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results: Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia. Conclusion: We describe an

  18. Phylogeographic reconstruction of a bacterial species with high levels of lateral gene transfer

    Directory of Open Access Journals (Sweden)

    Kaul Rajinder

    2009-11-01

    Full Text Available Abstract Background Phylogeographic reconstruction of some bacterial populations is hindered by low diversity coupled with high levels of lateral gene transfer. A comparison of recombination levels and diversity at seven housekeeping genes for eleven bacterial species, most of which are commonly cited as having high levels of lateral gene transfer shows that the relative contributions of homologous recombination versus mutation for Burkholderia pseudomallei is over two times higher than for Streptococcus pneumoniae and is thus the highest value yet reported in bacteria. Despite the potential for homologous recombination to increase diversity, B. pseudomallei exhibits a relative lack of diversity at these loci. In these situations, whole genome genotyping of orthologous shared single nucleotide polymorphism loci, discovered using next generation sequencing technologies, can provide very large data sets capable of estimating core phylogenetic relationships. We compared and searched 43 whole genome sequences of B. pseudomallei and its closest relatives for single nucleotide polymorphisms in orthologous shared regions to use in phylogenetic reconstruction. Results Bayesian phylogenetic analyses of >14,000 single nucleotide polymorphisms yielded completely resolved trees for these 43 strains with high levels of statistical support. These results enable a better understanding of a separate analysis of population differentiation among >1,700 B. pseudomallei isolates as defined by sequence data from seven housekeeping genes. We analyzed this larger data set for population structure and allele sharing that can be attributed to lateral gene transfer. Our results suggest that despite an almost panmictic population, we can detect two distinct populations of B. pseudomallei that conform to biogeographic patterns found in many plant and animal species. That is, separation along Wallace's Line, a biogeographic boundary between Southeast Asia and Australia

  19. Mycobacterial RNA isolation optimized for non-coding RNA: high fidelity isolation of 5S rRNA from Mycobacterium bovis BCG reveals novel post-transcriptional processing and a complete spectrum of modified ribonucleosides.

    Science.gov (United States)

    Hia, Fabian; Chionh, Yok Hian; Pang, Yan Ling Joy; DeMott, Michael S; McBee, Megan E; Dedon, Peter C

    2015-03-11

    A major challenge in the study of mycobacterial RNA biology is the lack of a comprehensive RNA isolation method that overcomes the unusual cell wall to faithfully yield the full spectrum of non-coding RNA (ncRNA) species. Here, we describe a simple and robust procedure optimized for the isolation of total ncRNA, including 5S, 16S and 23S ribosomal RNA (rRNA) and tRNA, from mycobacteria, using Mycobacterium bovis BCG to illustrate the method. Based on a combination of mechanical disruption and liquid and solid-phase technologies, the method produces all major species of ncRNA in high yield and with high integrity, enabling direct chemical and sequence analysis of the ncRNA species. The reproducibility of the method with BCG was evident in bioanalyzer electrophoretic analysis of isolated RNA, which revealed quantitatively significant differences in the ncRNA profiles of exponentially growing and non-replicating hypoxic bacilli. The method also overcame an historical inconsistency in 5S rRNA isolation, with direct sequencing revealing a novel post-transcriptional processing of 5S rRNA to its functional form and with chemical analysis revealing seven post-transcriptional ribonucleoside modifications in the 5S rRNA. This optimized RNA isolation procedure thus provides a means to more rigorously explore the biology of ncRNA species in mycobacteria. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  20. Using information theory to assess the communicative capacity of circulating microRNA.

    Science.gov (United States)

    Finn, Nnenna A; Searles, Charles D

    2013-10-11

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e., microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed that miRNA-mediated information transfer is redundant, as evidenced by negative Zipf's Statistics with magnitudes greater than one. In healthy subjects, the potential communicative capacity of miRNA in complex with circulating proteins was significantly lower than that of miRNA encapsulated in circulating microparticles and exosomes. Moreover, the presence of coronary heart disease significantly lowered the communicative capacity of all circulating miRNA transport modalities. To assess the internal organization of circulating miRNA signals, Shannon's zero- and first-order entropies were calculated. Microparticles (MPs) exhibited the lowest Shannon entropic slope, indicating a relatively high capacity for information transfer. Furthermore, compared to the other miRNA transport modalities, MPs appeared to be the most efficient at transferring miRNA to cultured endothelial cells. Taken together, these findings suggest that although all transport modalities have the capacity for miRNA-based information transfer, MPs may be the simplest and most robust way to achieve miRNA-based signal transduction in sera. This study presents a novel method for analyzing the quantitative capacity of miRNA-mediated information transfer while providing insight into the communicative characteristics of distinct circulating miRNA transport modalities. Published by Elsevier Inc.

  1. Efficient procedure for transferring specific human genes into Chinese hamster cell mutants: interspecific transfer of the human genes encoding leucyl- and asparaginyl-tRNA synthetases

    International Nuclear Information System (INIS)

    Cirullo, R.E.; Dana, S.; Wasmuth, J.J.

    1983-01-01

    A simple and efficient procedure for transferring specific human genes into mutant Chinese hamster ovary cell recipients has been developed that does not rely on using calcium phosphate-precipitated high-molecular-weight DNA. Interspecific cell hybrids between human leukocytes and temperature-sensitive Chinese hamster cell mutants with either a thermolabile leucyl-tRNA synthetase or a thermolabile asparaginyl-tRNA synthetase were used as the starting material in these experiments. These hybrids contain only one or a few human chromosomes and require expression of the appropriate human aminoacyl-tRNA synthetase gene to grow at 39 degrees C. Hybrids were exposed to very high doses of gamma-irradiation to extensively fragment the chromosomes and re-fused immediately to the original temperature-sensitive Chinese hamster mutant, and secondary hybrids were isolated at 39 degrees C. Secondary hybrids, which had retained small fragments of the human genome containing the selected gene, were subjected to another round of irradiation, refusion, and selection at 39 degrees C to reduce the amount of human DNA even further. Using this procedure, Chinese hamster cell lines have been constructed that express the human genes encoding either asparaginyl- or leucyl-tRNA synthetase, yet less than 0.1% of their DNA is derived from the human genome, as quantitated by a sensitive dot-blot nucleic acid hybridization procedure

  2. Isolation of Microarray-Grade Total RNA, MicroRNA, and DNA from a Single PAXgene Blood RNA Tube

    DEFF Research Database (Denmark)

    Kruhøffer, Mogens; Andersen, Lars Dyrskjøt; Voss, Thorsten

    2007-01-01

    We have developed a procedure for isolation of microRNA and genomic DNA in addition to total RNA from whole blood stabilized in PAXgene Blood RNA tubes. The procedure is based on automatic extraction on a BioRobot MDx and includes isolation of DNA from a fraction of the stabilized blood...... and recovery of small RNA species that are otherwise lost. The procedure presented here is suitable for large-scale experiments and is amenable to further automation. Procured total RNA and DNA was tested using Affymetrix Expression and single-nucleotide polymorphism GeneChips, respectively, and isolated micro......RNA was tested using spotted locked nucleic acid-based microarrays. We conclude that the yield and quality of total RNA, microRNA, and DNA from a single PAXgene blood RNA tube is sufficient for downstream microarray analysis....

  3. Micro RNA in Exosomes from HIV-Infected Macrophages

    Directory of Open Access Journals (Sweden)

    William W. Roth

    2015-12-01

    Full Text Available Exosomes are small membrane-bound vesicles secreted by cells that function to shuttle RNA and proteins between cells. To examine the role of exosomal micro RNA (miRNA during the early stage of HIV-1 infection we characterized miRNA in exosomes from HIV-infected macrophages, compared with exosomes from non-infected macrophages. Primary human monocytes from uninfected donors were differentiated to macrophages (MDM which were either mock-infected or infected with the macrophage-tropic HIV-1 BaL strain. Exosomes were recovered from culture media and separated from virus particles by centrifugation on iodixanol density gradients. The low molecular weight RNA fraction was prepared from purified exosomes. After pre-amplification, RNA was hybridized to microarrays containing probes for 1200 miRNA species of known and unknown function. We observed 48 miRNA species in both infected and uninfected MDM exosomes. Additionally, 38 miRNAs were present in infected-cell exosomes but not uninfected-cell exosomes. Of these, 13 miRNAs were upregulated in exosomes from HIV-infected cells, including 4 miRNA species that were increased by more than 10-fold. Though numerous miRNA species have been identified in HIV-infected cells, relatively little is known about miRNA content in exosomes from these cells. In the future, we plan to investigate whether the upregulated miRNA species we identified are increased in exosomes from HIV-1-positive patients.

  4. The RNA gene information: retroelement-microRNA entangling as the RNA quantum code.

    Science.gov (United States)

    Fujii, Yoichi Robertus

    2013-01-01

    MicroRNA (miRNA) and retroelements may be a master of regulator in our life, which are evolutionally involved in the origin of species. To support the Darwinism from the aspect of molecular evolution process, it has tremendously been interested in the molecular information of naive RNA. The RNA wave model 2000 consists of four concepts that have altered from original idea of the miRNA genes for crosstalk among embryonic stem cells, their niche cells, and retroelements as a carrier vesicle of the RNA genes. (1) the miRNA gene as a mobile genetic element induces transcriptional and posttranscriptional silencing via networking-processes (no hierarchical architecture); (2) the RNA information supplied by the miRNA genes expands to intracellular, intercellular, intraorgan, interorgan, intraspecies, and interspecies under the cycle of life into the global environment; (3) the mobile miRNAs can self-proliferate; and (4) cells contain two types information as resident and genomic miRNAs. Based on RNA wave, we have developed an interest in investigation of the transformation from RNA information to quantum bits as physicochemical characters of RNA with the measurement of RNA electron spin. When it would have been given that the fundamental bases for the acquired characters in genetics can be controlled by RNA gene information, it may be available to apply for challenging against RNA gene diseases, such as stress-induced diseases.

  5. Transferability of short tandem repeat markers for two wild Canid species inhabiting the Brazilian Cerrado.

    Science.gov (United States)

    Rodrigues, F M; Telles, M P C; Resende, L V; Soares, T N; Diniz-Filho, J A F; Jácomo, A T A; Silveira, L

    2006-12-13

    The maned wolf (Chrysocyon brachyurus) and the crab-eating fox (Cerdocyon thous) are two wild-canid species found in the Brazilian Cerrado. We tested cross-amplification and transferability of 29 short tandem repeat primers originally developed for cattle and domestic dogs and cats on 38 individuals of each of these two species, collected in the Emas National Park, which is the largest national park in the Cerrado region. Six of these primers were successfully transferred (CSSM-038, PEZ-05, PEZ-12, LOCO-13, LOCO-15, and PEZ-20); five of which were found to be polymorphic. Genetic parameter values (number of alleles per locus, observed and expected heterozygosities, and fixation indices) were within the expected range reported for canid populations worldwide.

  6. 5'-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping.

    Science.gov (United States)

    Ogino, Minako; Ogino, Tomoaki

    2017-03-15

    The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5'-phospho-RNA (pRNA) from 5'-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5'-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m 7 G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m 7 GpppA (cap 0), respectively. Furthermore, either the 2'- or 3'-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5'-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups of GDP as

  7. Computational Insights into the High-Fidelity Catalysis of Aminoacyl-tRNA Synthetases

    Science.gov (United States)

    Aboelnga, Mohamed M.

    Obtaining insights into the catalytic function of enzymes is an important area of research due to their widespread applications in the biotechnology and pharmaceutical industries. Among these enzymes, the aminoacyl-tRNA synthetases (aaRSs) are known for their remarkable fidelity in catalyzing the aminoacylation reactions of tRNA in protein biosynthesis. Despite the exceptional execution of this critical function, mechanistic details of the reactions catalyzed by aminoacyl-tRNA synthetases remain elusive demonstrating the obvious need to explore their remarkable chemistry. During the PhD studies reported in this thesis the mechanism of aminoacylation, pre?transfer editing and post?transfer editing catalyzed by different aaRS have been established using multi-scale computational enzymology. In the first two chapters a detailed information about aaRS and the addressed questions was given in addition to an overview of the used computational methodology currently used to investigate the enzymatic mechanisms. The aminoacylation mechanism of threonine by Threonyl-tRNA synthetases, glutamine by Glutaminyl-tRNA synthetases and glutamate by Glutamyl-tRNA synthetases have been clearly unveiled in chapter 3 and 4. Also, valuable information regarding the role of cofactors and active site residues has been obtained. While investigating the post-transfer editing mechanisms, which proceed in a remote and distinct active site, two different scenarios were experimentally suggested for two types of threonyl-tRNA synthetase species to correct the misacylation of the structurally related serine. We explored these two mechanisms as in chapters 5 and 6. Moreover, the synthetic site in which the aminoacylation reaction is catalyzed, is also responsible for a second type of proofreading reaction called pre-transfer editing mechanism. In chapter 7, this latter mechanism has been elucidated for both Seryl-tRNA synthetases and Isoleucyl-tRNA synthetases against their non-cognate substrates

  8. Transferability of simple sequence repeat (SSR) markers developed in guava (Psidium guajava L.) to four Myrtaceae species.

    Science.gov (United States)

    Rai, Manoj K; Phulwaria, Mahendra; Shekhawat, N S

    2013-08-01

    Present study demonstrated the cross-genera transferability of 23 simple sequence repeat (SSR) primer pairs developed for guava (Psidium guajava L.) to four new targets, two species of eucalypts (Eucalyptus citriodora, Eucalyptus camaldulensis), bottlebrush (Callistemon lanceolatus) and clove (Syzygium aromaticum), belonging to the family Myrtaceae and subfamily Myrtoideae. Off the 23 SSR loci assayed, 18 (78.2%) gave cross-amplification in E. citriodora, 14 (60.8%) in E. camaldulensis and 17-17 (73.9%) in C. lanceolatus and S. aromaticum. Eight primer pairs were found to be transferable to all four species. The number of alleles detected at each locus ranged from one to nine, with an average of 4.8, 2.6, 4.5 and 4.6 alleles in E. citriodora, E. camaldulensis, C. lanceolatus and S. aromaticum, respectively. The high levels of cross-genera transferability of guava SSRs may be applicable for the analysis of intra- and inter specific genetic diversity of target species, especially in E. citriodora, C. lanceolatus and S. aromaticum, for which till date no information about EST-derived as well as genomic SSR is available.

  9. A small and efficient dimerization/packaging signal of rat VL30 RNA and its use in murine leukemia virus-VL30-derived vectors for gene transfer.

    Science.gov (United States)

    Torrent, C; Gabus, C; Darlix, J L

    1994-02-01

    Retroviral genomes consist of two identical RNA molecules associated at their 5' ends by the dimer linkage structure located in the packaging element (Psi or E) necessary for RNA dimerization in vitro and packaging in vivo. In murine leukemia virus (MLV)-derived vectors designed for gene transfer, the Psi + sequence of 600 nucleotides directs the packaging of recombinant RNAs into MLV virions produced by helper cells. By using in vitro RNA dimerization as a screening system, a sequence of rat VL30 RNA located next to the 5' end of the Harvey mouse sarcoma virus genome and as small as 67 nucleotides was found to form stable dimeric RNA. In addition, a purine-rich sequence located at the 5' end of this VL30 RNA seems to be critical for RNA dimerization. When this VL30 element was extended by 107 nucleotides at its 3' end and inserted into an MLV-derived vector lacking MLV Psi +, it directed the efficient encapsidation of recombinant RNAs into MLV virions. Because this VL30 packaging signal is smaller and more efficient in packaging recombinant RNAs than the MLV Psi + and does not contain gag or glyco-gag coding sequences, its use in MLV-derived vectors should render even more unlikely recombinations which could generate replication-competent viruses. Therefore, utilization of the rat VL30 packaging sequence should improve the biological safety of MLV vectors for human gene transfer.

  10. Spontaneous reverse movement of mRNA-bound tRNA through the ribosome.

    Science.gov (United States)

    Konevega, Andrey L; Fischer, Niels; Semenkov, Yuri P; Stark, Holger; Wintermeyer, Wolfgang; Rodnina, Marina V

    2007-04-01

    During the translocation step of protein synthesis, a complex of two transfer RNAs bound to messenger RNA (tRNA-mRNA) moves through the ribosome. The reaction is promoted by an elongation factor, called EF-G in bacteria, which, powered by GTP hydrolysis, induces an open, unlocked conformation of the ribosome that allows for spontaneous tRNA-mRNA movement. Here we show that, in the absence of EF-G, there is spontaneous backward movement, or retrotranslocation, of two tRNAs bound to mRNA. Retrotranslocation is driven by the gain in affinity when a cognate E-site tRNA moves into the P site, which compensates the affinity loss accompanying the movement of peptidyl-tRNA from the P to the A site. These results lend support to the diffusion model of tRNA movement during translocation. In the cell, tRNA movement is biased in the forward direction by EF-G, which acts as a Brownian ratchet and prevents backward movement.

  11. MicroRNA from Moringa oleifera: Identification by High Throughput Sequencing and Their Potential Contribution to Plant Medicinal Value.

    Science.gov (United States)

    Pirrò, Stefano; Zanella, Letizia; Kenzo, Maurice; Montesano, Carla; Minutolo, Antonella; Potestà, Marina; Sobze, Martin Sanou; Canini, Antonella; Cirilli, Marco; Muleo, Rosario; Colizzi, Vittorio; Galgani, Andrea

    2016-01-01

    Moringa oleifera is a widespread plant with substantial nutritional and medicinal value. We postulated that microRNAs (miRNAs), which are endogenous, noncoding small RNAs regulating gene expression at the post-transcriptional level, might contribute to the medicinal properties of plants of this species after ingestion into human body, regulating human gene expression. However, the knowledge is scarce about miRNA in Moringa. Furthermore, in order to test the hypothesis on the pharmacological potential properties of miRNA, we conducted a high-throughput sequencing analysis using the Illumina platform. A total of 31,290,964 raw reads were produced from a library of small RNA isolated from M. oleifera seeds. We identified 94 conserved and two novel miRNAs that were validated by qRT-PCR assays. Results from qRT-PCR trials conducted on the expression of 20 Moringa miRNA showed that are conserved across multiple plant species as determined by their detection in tissue of other common crop plants. In silico analyses predicted target genes for the conserved miRNA that in turn allowed to relate the miRNAs to the regulation of physiological processes. Some of the predicted plant miRNAs have functional homology to their mammalian counterparts and regulated human genes when they were transfected into cell lines. To our knowledge, this is the first report of discovering M. oleifera miRNAs based on high-throughput sequencing and bioinformatics analysis and we provided new insight into a potential cross-species control of human gene expression. The widespread cultivation and consumption of M. oleifera, for nutritional and medicinal purposes, brings humans into close contact with products and extracts of this plant species. The potential for miRNA transfer should be evaluated as one possible mechanism of action to account for beneficial properties of this valuable species.

  12. Developmental changes in translatable RNA species and protein synthesis during sporulation in the aquatic fungus Blastocladiella emersonii

    International Nuclear Information System (INIS)

    Silva, A.M. da; Costa Maia, J.C. da; Juliani, M.H.

    1986-01-01

    Protein synthesis during sporulation in Blastocladiella emersonii is developmentally regulated as revealed using ( 35 S)methionine pulse labeling and two-dimensional gel electrophoresis. A large increase in the synthesis of several proteins is associated with particular stages. A large number of basic proteins are synthesized exclusively during late sporulation. Changes in translatable mRNA species were also detected by two-dimensional gel electrophoresis of the polypeptides produced in a cell-free rabbit reticulocyte lysate primed with RNA prepared at different stages of sporulation. The synthesis of several proteins during sporulation seems to be transcriptionally controlled. Most of the sporulation-specific messages are not present in the mature zoospores. (Author)

  13. 5′-Phospho-RNA Acceptor Specificity of GDP Polyribonucleotidyltransferase of Vesicular Stomatitis Virus in mRNA Capping

    Science.gov (United States)

    Ogino, Minako

    2017-01-01

    ABSTRACT The GDP polyribonucleotidyltransferase (PRNTase) domain of the multifunctional L protein of rhabdoviruses, such as vesicular stomatitis virus (VSV) and rabies virus, catalyzes the transfer of 5′-phospho-RNA (pRNA) from 5′-triphospho-RNA (pppRNA) to GDP via a covalent enzyme-pRNA intermediate to generate a 5′-cap structure (GpppA). Here, using an improved oligo-RNA capping assay with the VSV L protein, we showed that the Michaelis constants for GDP and pppAACAG (VSV mRNA-start sequence) are 0.03 and 0.4 μM, respectively. A competition assay between GDP and GDP analogues in the GpppA formation and pRNA transfer assay using GDP analogues as pRNA acceptors indicated that the PRNTase domain recognizes the C-2-amino group, but not the C-6-oxo group, N-1-hydrogen, or N-7-nitrogen, of GDP for the cap formation. 2,6-Diaminopurine-riboside (DAP), 7-deazaguanosine (7-deaza-G), and 7-methylguanosine (m7G) diphosphates efficiently accepted pRNA, resulting in the formation of DAPpppA, 7-deaza-GpppA, and m7GpppA (cap 0), respectively. Furthermore, either the 2′- or 3′-hydroxyl group of GDP was found to be required for efficient pRNA transfer. A 5′-diphosphate form of antiviral ribavirin weakly inhibited the GpppA formation but did not act as a pRNA acceptor. These results indicate that the PRNTase domain has a unique guanosine-binding mode different from that of eukaryotic mRNA capping enzyme, guanylyltransferase. IMPORTANCE mRNAs of nonsegmented negative-strand (NNS) RNA viruses, such as VSV, possess a fully methylated cap structure, which is required for mRNA stability, efficient translation, and evasion of antiviral innate immunity in host cells. GDP polyribonucleotidyltransferase (PRNTase) is an unconventional mRNA capping enzyme of NNS RNA viruses that is distinct from the eukaryotic mRNA capping enzyme, guanylyltransferase. In this study, we studied the pRNA acceptor specificity of VSV PRNTase using various GDP analogues and identified chemical groups

  14. Anti-tumor effects of an engineered 'killer' transfer RNA

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Dong-hui [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Lee, Jiyoung; Frankenberger, Casey [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Geslain, Renaud, E-mail: rgeslain@depaul.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States); Department of Biology, DePaul University, Chicago, IL 60614 (United States); Rosner, Marsha, E-mail: m-rosner@uchicago.edu [Ben May Department for Cancer Research, University of Chicago, Chicago, IL 60637 (United States); Pan, Tao, E-mail: taopan@uchicago.edu [Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637 (United States)

    2012-10-12

    Highlights: Black-Right-Pointing-Pointer tRNA with anti-cancer effects. Black-Right-Pointing-Pointer tRNA induced protein misfolding. Black-Right-Pointing-Pointer tRNA as anti-tumor agent. -- Abstract: A hallmark of cancer cells is their ability to continuously divide; and rapid proliferation requires increased protein translation. Elevating levels of misfolded proteins can elicit growth arrest due to ER stress and decreased global translation. Failure to correct prolonged ER stress eventually results in cell death via apoptosis. tRNA{sup Ser}(AAU) is an engineered human tRNA{sup Ser} with an anticodon coding for isoleucine. Here we test the possibility that tRNA{sup Ser}(AAU) can be an effective killing agent of breast cancer cells and can effectively inhibit tumor-formation in mice. We found that tRNA{sup Ser}(AAU) exert strong effects on breast cancer translation activity, cell viability, and tumor formation. Translation is strongly inhibited by tRNA{sup Ser}(AAU) in both tumorigenic and non-tumorigenic cells. tRNA{sup Ser}(AAU) significantly decreased the number of viable cells over time. A short time treatment with tRNA{sup Ser}(AAU) was sufficient to eliminate breast tumor formation in a xenograft mouse model. Our results indicate that tRNA{sup Ser}(AAU) can inhibit breast cancer metabolism, growth and tumor formation. This RNA has strong anti-cancer effects and presents an opportunity for its development into an anti-tumor agent. Because tRNA{sup Ser}(AAU) corrupts the protein synthesis mechanism that is an integral component of the cell, it would be extremely difficult for tumor cells to evolve and develop resistance against this anti-tumor agent.

  15. tRNA modification profiles of the fast-proliferating cancer cells

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Chao; Niu, Leilei; Song, Wei [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Xiong, Xin; Zhang, Xianhua [Departmentof Pharmacy, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhang, Zhenxi; Yang, Yi; Yi, Fan [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhan, Jun; Zhang, Hongquan [Department of Anatomy, Histology and Embryology, Laboratory of Molecular Cell Biology and Tumor Biology, Peking University, Beijing 100191 (China); Yang, Zhenjun; Zhang, Li-He [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Zhai, Suodi [Departmentof Pharmacy, Peking University Third Hospital, Peking University, Beijing 100191 (China); Li, Hua, E-mail: huali88@sina.com [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Ye, Min, E-mail: yemin@bjmu.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China); Du, Quan, E-mail: quan.du@pku.edu.cn [State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Department of Obstetrics and Gynecology, Peking University Third Hospital, Peking University, Beijing 100191 (China)

    2016-08-05

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In addition to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.

  16. tRNA modification profiles of the fast-proliferating cancer cells

    International Nuclear Information System (INIS)

    Dong, Chao; Niu, Leilei; Song, Wei; Xiong, Xin; Zhang, Xianhua; Zhang, Zhenxi; Yang, Yi; Yi, Fan; Zhan, Jun; Zhang, Hongquan; Yang, Zhenjun; Zhang, Li-He; Zhai, Suodi; Li, Hua; Ye, Min; Du, Quan

    2016-01-01

    Despite the recent progress in RNA modification study, a comprehensive modification profile is still lacking for mammalian cells. Using a quantitative HPLC/MS/MS assay, we present here a study where RNA modifications are examined in term of the major RNA species. With paired slow- and fast-proliferating cell lines, distinct RNA modification profiles are first revealed for diverse RNA species. Compared to mRNAs, increased ribose and nucleobase modifications are shown for the highly-structured tRNAs and rRNAs, lending support to their contribution to the formation of high-order structures. This study also reveals a dynamic tRNA modification profile in the fast-proliferating cells. In addition to cultured cells, this unique tRNA profile has been further confirmed with endometrial cancers and their adjacent normal tissues. Taken together, the results indicate that tRNA is a actively regulated RNA species in the fast-proliferating cancer cells, and suggest that they may play a more active role in biological process than expected. -- Highlights: •RNA modifications were first examined in term of the major RNA species. •A dynamic tRNA modifications was characterized for the fast-proliferating cells. •The unique tRNA profile was confirmed with endometrial cancers and their adjacent normal tissues. •tRNA was predicted as an actively regulated RNA species in the fast-proliferating cancer cells.

  17. RNA-dependent RNA polymerase 1 in potato (Solanum tuberosum) and its relationship to other plant RNA-dependent RNA polymerases.

    Science.gov (United States)

    Hunter, Lydia J R; Brockington, Samuel F; Murphy, Alex M; Pate, Adrienne E; Gruden, Kristina; MacFarlane, Stuart A; Palukaitis, Peter; Carr, John P

    2016-03-16

    Cellular RNA-dependent RNA polymerases (RDRs) catalyze synthesis of double-stranded RNAs that can serve to initiate or amplify RNA silencing. Arabidopsis thaliana has six RDR genes; RDRs 1, 2 and 6 have roles in anti-viral RNA silencing. RDR6 is constitutively expressed but RDR1 expression is elevated following plant treatment with defensive phytohormones. RDR1 also contributes to basal virus resistance. RDR1 has been studied in several species including A. thaliana, tobacco (Nicotiana tabacum), N. benthamiana, N. attenuata and tomato (Solanum lycopersicum) but not to our knowledge in potato (S. tuberosum). StRDR1 was identified and shown to be salicylic acid-responsive. StRDR1 transcript accumulation decreased in transgenic potato plants constitutively expressing a hairpin construct and these plants were challenged with three viruses: potato virus Y, potato virus X, and tobacco mosaic virus. Suppression of StRDR1 gene expression did not increase the susceptibility of potato to these viruses. Phylogenetic analysis of RDR genes present in potato and in a range of other plant species identified a new RDR gene family, not present in potato and found only in Rosids (but apparently lost in the Rosid A. thaliana) for which we propose the name RDR7.

  18. Association of Circulating Transfer RNA fragments with antibody response to Mycoplasma bovis in beef cattle.

    Science.gov (United States)

    Casas, Eduardo; Cai, Guohong; Kuehn, Larry A; Register, Karen B; McDaneld, Tara G; Neill, John D

    2018-03-13

    High throughput sequencing allows identification of small non-coding RNAs. Transfer RNA Fragments are a class of small non-coding RNAs, and have been identified as being involved in inhibition of gene expression. Given their role, it is possible they may be involved in mediating the infection-induced defense response in the host. Therefore, the objective of this study was to identify 5' transfer RNA fragments (tRF5s) associated with a serum antibody response to M. bovis in beef cattle. The tRF5s encoding alanine, glutamic acid, glycine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with antibody response against M. bovis. tRF5s encoding alanine, glutamine, glutamic acid, glycine, histidine, lysine, proline, selenocysteine, threonine, and valine were associated (P < 0.05) with season, which could be attributed to calf growth. There were interactions (P < 0.05) between antibody response to M. bovis and season for tRF5 encoding selenocysteine (anticodon UGA), proline (anticodon CGG), and glutamine (anticodon TTG). Selenocysteine is a rarely used amino acid that is incorporated into proteins by the opal stop codon (UGA), and its function is not well understood. Differential expression of tRF5s was identified between ELISA-positive and negative animals. Production of tRF5s may be associated with a host defense mechanism triggered by bacterial infection, or it may provide some advantage to a pathogen during infection of a host. Further studies are needed to establish if tRF5s could be used as a diagnostic marker of chronic exposure.

  19. Multiple RNA processing defects and impaired chloroplast function in plants deficient in the organellar protein-only RNase P enzyme.

    Directory of Open Access Journals (Sweden)

    Wenbin Zhou

    Full Text Available Transfer RNA (tRNA precursors undergo endoribonucleolytic processing of their 5' and 3' ends. 5' cleavage of the precursor transcript is performed by ribonuclease P (RNase P. While in most organisms RNase P is a ribonucleoprotein that harbors a catalytically active RNA component, human mitochondria and the chloroplasts (plastids and mitochondria of seed plants possess protein-only RNase P enzymes (PRORPs. The plant organellar PRORP (PRORP1 has been characterized to some extent in vitro and by transient gene silencing, but the molecular, phenotypic and physiological consequences of its down-regulation in stable transgenic plants have not been assessed. Here we have addressed the function of the dually targeted organellar PRORP enzyme in vivo by generating stably transformed Arabidopsis plants in which expression of the PRORP1 gene was suppressed by RNA interference (RNAi. PRORP1 knock-down lines show defects in photosynthesis, while mitochondrial respiration is not appreciably affected. In both plastids and mitochondria, the effects of PRORP1 knock-down on the processing of individual tRNA species are highly variable. The drastic reduction in the levels of mature plastid tRNA-Phe(GAA and tRNA-Arg(ACG suggests that these two tRNA species limit plastid gene expression in the PRORP1 mutants and, hence, are causally responsible for the mutant phenotype.

  20. Transferability of species distribution models for the detection of an invasive alien bryophyte using imaging spectroscopy data

    Science.gov (United States)

    Skowronek, Sandra; Van De Kerchove, Ruben; Rombouts, Bjorn; Aerts, Raf; Ewald, Michael; Warrie, Jens; Schiefer, Felix; Garzon-Lopez, Carol; Hattab, Tarek; Honnay, Olivier; Lenoir, Jonathan; Rocchini, Duccio; Schmidtlein, Sebastian; Somers, Ben; Feilhauer, Hannes

    2018-06-01

    Remote sensing is a promising tool for detecting invasive alien plant species. Mapping and monitoring those species requires accurate detection. So far, most studies relied on models that are locally calibrated and validated against available field data. Consequently, detecting invasive alien species at new study areas requires the acquisition of additional field data which can be expensive and time-consuming. Model transfer might thus provide a viable alternative. Here, we mapped the distribution of the invasive alien bryophyte Campylopus introflexus to i) assess the feasibility of spatially transferring locally calibrated models for species detection between four different heathland areas in Germany and Belgium and ii) test the potential of combining calibration data from different sites in one species distribution model (SDM). In a first step, four different SDMs were locally calibrated and validated by combining field data and airborne imaging spectroscopy data with a spatial resolution ranging from 1.8 m to 4 m and a spectral resolution of about 10 nm (244 bands). A one-class classifier, Maxent, which is based on the comparison of probability densities, was used to generate all SDMs. In a second step, each model was transferred to the three other study areas and the performance of the models for predicting C. introflexus occurrences was assessed. Finally, models combining calibration data from three study areas were built and tested on the remaining fourth site. In this step, different combinations of Maxent modelling parameters were tested. For the local models, the area under the curve for a test dataset (test AUC) was between 0.57-0.78, while the test AUC for the single transfer models ranged between 0.45-0.89. For the combined models the test AUC was between 0.54-0.9. The success of transferring models calibrated in one site to another site highly depended on the respective study site; the combined models provided higher test AUC values than the locally

  1. Dinucleotide Composition in Animal RNA Viruses Is Shaped More by Virus Family than by Host Species.

    Science.gov (United States)

    Di Giallonardo, Francesca; Schlub, Timothy E; Shi, Mang; Holmes, Edward C

    2017-04-15

    Viruses use the cellular machinery of their hosts for replication. It has therefore been proposed that the nucleotide and dinucleotide compositions of viruses should match those of their host species. If this is upheld, it may then be possible to use dinucleotide composition to predict the true host species of viruses sampled in metagenomic surveys. However, it is also clear that different taxonomic groups of viruses tend to have distinctive patterns of dinucleotide composition that may be independent of host species. To determine the relative strength of the effect of host versus virus family in shaping dinucleotide composition, we performed a comparative analysis of 20 RNA virus families from 15 host groupings, spanning two animal phyla and more than 900 virus species. In particular, we determined the odds ratios for the 16 possible dinucleotides and performed a discriminant analysis to evaluate the capability of virus dinucleotide composition to predict the correct virus family or host taxon from which it was isolated. Notably, while 81% of the data analyzed here were predicted to the correct virus family, only 62% of these data were predicted to their correct subphylum/class host and a mere 32% to their correct mammalian order. Similarly, dinucleotide composition has a weak predictive power for different hosts within individual virus families. We therefore conclude that dinucleotide composition is generally uniform within a virus family but less well reflects that of its host species. This has obvious implications for attempts to accurately predict host species from virus genome sequences alone. IMPORTANCE Determining the processes that shape virus genomes is central to understanding virus evolution and emergence. One question of particular importance is why nucleotide and dinucleotide frequencies differ so markedly between viruses. In particular, it is currently unclear whether host species or virus family has the biggest impact on dinucleotide frequencies and

  2. Cross-Species Extrapolation of Models for Predicting Lead Transfer from Soil to Wheat Grain.

    Directory of Open Access Journals (Sweden)

    Ke Liu

    Full Text Available The transfer of Pb from the soil to crops is a serious food hygiene security problem in China because of industrial, agricultural, and historical contamination. In this study, the characteristics of exogenous Pb transfer from 17 Chinese soils to a popular wheat variety (Xiaoyan 22 were investigated. In addition, bioaccumulation prediction models of Pb in grain were obtained based on soil properties. The results of the analysis showed that pH and OC were the most important factors contributing to Pb uptake by wheat grain. Using a cross-species extrapolation approach, the Pb uptake prediction models for cultivar Xiaoyan 22 in different soil Pb levels were satisfactorily applied to six additional non-modeled wheat varieties to develop a prediction model for each variety. Normalization of the bioaccumulation factor (BAF to specific soil physico-chemistry is essential, because doing so could significantly reduce the intra-species variation of different wheat cultivars in predicted Pb transfer and eliminate the influence of soil properties on ecotoxicity parameters for organisms of interest. Finally, the prediction models were successfully verified against published data (including other wheat varieties and crops and used to evaluate the ecological risk of Pb for wheat in contaminated agricultural soils.

  3. Rapid identification of 11 human intestinal Lactobacillus species by multiplex PCR assays using group- and species-specific primers derived from the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA.

    Science.gov (United States)

    Song, Y; Kato, N; Liu, C; Matsumiya, Y; Kato, H; Watanabe, K

    2000-06-15

    Rapid and reliable two-step multiplex polymerase chain reaction (PCR) assays were established to identify human intestinal lactobacilli; a multiplex PCR was used for grouping of lactobacilli with a mixture of group-specific primers followed by four multiplex PCR assays with four sorts of species-specific primer mixtures for identification at the species level. Primers used were designed from nucleotide sequences of the 16S-23S rRNA intergenic spacer region and its flanking 23S rRNA gene of members of the genus Lactobacillus which are commonly isolated from human stool specimens: Lactobacillus acidophilus, Lactobacillus crispatus, Lactobacillus delbrueckii (ssp. bulgaricus and ssp. lactis), Lactobacillus fermentum, Lactobacillus gasseri, Lactobacillus jensenii, Lactobacillus paracasei (ssp. paracasei and ssp. tolerans), Lactobacillus plantarum, Lactobacillus reuteri, Lactobacillus rhamnosus and Lactobacillus salivarius (ssp. salicinius and ssp. salivarius). The established two-step multiplex PCR assays were applied to the identification of 84 Lactobacillus strains isolated from human stool specimens and the PCR results were consistent with the results from the DNA-DNA hybridization assay. These results suggest that the multiplex PCR system established in this study is a simple, rapid and reliable method for the identification of common Lactobacillus isolates from human stool samples.

  4. Plastid, nuclear and reverse transcriptase sequences in the mitochondrial genome of Oenothera: is genetic information transferred between organelles via RNA?

    Science.gov (United States)

    Schuster, W; Brennicke, A

    1987-01-01

    We describe an open reading frame (ORF) with high homology to reverse transcriptase in the mitochondrial genome of Oenothera. This ORF displays all the characteristics of an active plant mitochondrial gene with a possible ribosome binding site and 39% T in the third codon position. It is located between a sequence fragment from the plastid genome and one of nuclear origin downstream from the gene encoding subunit 5 of the NADH dehydrogenase. The nuclear derived sequence consists of 528 nucleotides from the small ribosomal RNA and contains an expansion segment unique to nuclear rRNAs. The plastid sequence contains part of the ribosomal protein S4 and the complete tRNA(Ser). The observation that only transcribed sequences have been found i more than one subcellular compartment in higher plants suggests that interorganellar transfer of genetic information may occur via RNA and subsequent local reverse transcription and genomic integration. PMID:14650433

  5. Quantification of Different Eubacterium spp. in Human Fecal Samples with Species-Specific 16S rRNA-Targeted Oligonucleotide Probes

    OpenAIRE

    Schwiertz, Andreas; Le Blay, Gwenaelle; Blaut, Michael

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none...

  6. A technical assessment of the porcine ejaculated spermatozoa for a sperm-specific RNA-seq analysis.

    Science.gov (United States)

    Gòdia, Marta; Mayer, Fabiana Quoos; Nafissi, Julieta; Castelló, Anna; Rodríguez-Gil, Joan Enric; Sánchez, Armand; Clop, Alex

    2018-04-26

    The study of the boar sperm transcriptome by RNA-seq can provide relevant information on sperm quality and fertility and might contribute to animal breeding strategies. However, the analysis of the spermatozoa RNA is challenging as these cells harbor very low amounts of highly fragmented RNA, and the ejaculates also contain other cell types with larger amounts of non-fragmented RNA. Here, we describe a strategy for a successful boar sperm purification, RNA extraction and RNA-seq library preparation. Using these approaches our objectives were: (i) to evaluate the sperm recovery rate (SRR) after boar spermatozoa purification by density centrifugation using the non-porcine-specific commercial reagent BoviPure TM ; (ii) to assess the correlation between SRR and sperm quality characteristics; (iii) to evaluate the relationship between sperm cell RNA load and sperm quality traits and (iv) to compare different library preparation kits for both total RNA-seq (SMARTer Universal Low Input RNA and TruSeq RNA Library Prep kit) and small RNA-seq (NEBNext Small RNA and TailorMix miRNA Sample Prep v2) for high-throughput sequencing. Our results show that pig SRR (~22%) is lower than in other mammalian species and that it is not significantly dependent of the sperm quality parameters analyzed in our study. Moreover, no relationship between the RNA yield per sperm cell and sperm phenotypes was found. We compared a RNA-seq library preparation kit optimized for low amounts of fragmented RNA with a standard kit designed for high amount and quality of input RNA and found that for sperm, a protocol designed to work on low-quality RNA is essential. We also compared two small RNA-seq kits and did not find substantial differences in their performance. We propose the methodological workflow described for the RNA-seq screening of the boar spermatozoa transcriptome. FPKM: fragments per kilobase of transcript per million mapped reads; KRT1: keratin 1; miRNA: micro-RNA; miscRNA: miscellaneous

  7. High-resolution melting of 12S rRNA and cytochrome b DNA sequences for discrimination of species within distinct European animal families.

    Directory of Open Access Journals (Sweden)

    Jana Naue

    Full Text Available The cheap and easy identification of species is necessary within multiple fields of molecular biology. The use of high-resolution melting (HRM of DNA provides a fast closed-tube method for analysis of the sequence composition of the mitochondrial genes 12S rRNA and cytochrome b. We investigated the potential use of HRM for species identification within eleven different animal groups commonly found in Europe by animal-group-specific DNA amplification followed by DNA melting. Influence factors as DNA amount, additional single base alterations, and the existence of mixed samples were taken into consideration. Visual inspection combined with mathematical evaluation of the curve shapes did resolve nearly all species within an animal group. The assay can therefore not only be used for identification of animal groups and mixture analysis but also for species identification within the respective groups. The use of a universal 12S rRNA system additionally revealed a possible approach for species discrimination, mostly by exclusion. The use of the HRM assay showed to be a reliable, fast, and cheap method for species discrimination within a broad range of different animal species and can be used in a flexible "modular" manner depending on the question to be solved.

  8. Identification of RNA species in the RNA-toxin complex and structure of the complex in Clostridium botulinum type E.

    Science.gov (United States)

    Kitamura, Masaru

    2002-02-15

    Clostridium botulinum type E toxin was isolated in the form of a complex with RNA(s) from bacterial cells. Characterization of the complexed RNA remains to be elucidated. The RNA is identified here as ribosomal RNA (rRNA) having 23S and 16S components. The RNA-toxin complexes were found to be made up of three types with different molecular sizes. The three types of RNA-toxin complex are toxin bound to both the 23S and 16S rRNA, toxin bound to the 16S rRNA and a small amount of 23S rRNA, and toxin bound only to the 16S rRNA. ©2002 Elsevier Science (USA).

  9. Paths of lateral gene transfer of lysyl-aminoacyl-tRNA synthetases with a unique evolutionary transition stage of prokaryotes coding for class I and II varieties by the same organisms

    Directory of Open Access Journals (Sweden)

    Nussinov Ruth

    2006-03-01

    Full Text Available Abstract Background While the premise that lateral gene transfer (LGT is a dominant evolutionary force is still in considerable dispute, the case for widespread LGT in the family of aminoacyl-tRNA synthetases (aaRS is no longer contentious. aaRSs are ancient enzymes, guarding the fidelity of the genetic code. They are clustered in two structurally unrelated classes. Only lysine aminoacyl-tRNA synthetase (LysRS is found both as a class 1 and a class 2 enzyme (LysRS1-2. Remarkably, in several extant prokaryotes both classes of the enzyme coexist, a unique phenomenon that has yet to receive its due attention. Results We applied a phylogenetic approach for determining the extent and origin of LGT in prokaryotic LysRS. Reconstructing species trees for Archaea and Bacteria, and inferring that their last common ancestors encoded LysRS1 and LysRS2, respectively, we studied the gains and losses of both classes. A complex pattern of LGT events emerged. In specific groups of organisms LysRS1 was replaced by LysRS2 (and vice versa. In one occasion, within the alpha proteobacteria, a LysRS2 to LysRS1 LGT was followed by reversal to LysRS2. After establishing the most likely LGT paths, we studied the possible origins of the laterally transferred genes. To this end, we reconstructed LysRS gene trees and evaluated the likely origins of the laterally transferred genes. While the sources of LysRS1 LGTs were readily identified, those for LysRS2 remain, for now, uncertain. The replacement of one LysRS by another apparently transits through a stage simultaneously coding for both synthetases, probably conferring a selective advantage to the affected organisms. Conclusion The family of LysRSs features complex LGT events. The currently available data were sufficient for identifying unambiguously the origins of LysRS1 but not of LysRS2 gene transfers. A selective advantage is suggested to organisms encoding simultaneously LysRS1-2.

  10. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs.

    Science.gov (United States)

    Zhou, Geyu; Zhou, Yu; Chen, Xi

    2017-01-01

    Small RNAs (sRNAs), including small interfering RNAs (siRNAs) and microRNAs (miRNAs), are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups' subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  11. New Insight into Inter-kingdom Communication: Horizontal Transfer of Mobile Small RNAs

    Directory of Open Access Journals (Sweden)

    Xi Chen

    2017-05-01

    Full Text Available Small RNAs (sRNAs, including small interfering RNAs (siRNAs and microRNAs (miRNAs, are conventionally regarded as critical molecular regulators of various intracellular processes. However, recent accumulating evidence indicates that sRNAs can be transferred within cells and tissues and even across species. In plants, nematodes and microbes, these mobile sRNAs can mediate inter-kingdom communication, environmental sensing, gene expression regulation, host-parasite defense and many other biological functions. Strikingly, a recent study by our group suggested that ingested plant miRNAs are transferred to blood, accumulate in tissues and regulate transcripts in consuming animals. While our and other independent groups’ subsequent studies further explored the emerging field of sRNA-mediated crosstalk between species, some groups reported negative results and questioned its general applicability. Thus, further studies carefully evaluating the horizontal transfer of exogenous sRNAs and its potential biological functions are urgently required. Here, we review the current state of knowledge in the field of the horizontal transfer of mobile sRNAs, suggest its future directions and key points for examination and discuss its potential mechanisms and application prospects in nutrition, agriculture and medicine.

  12. Animal experiments to study the connection between the radioreaction of the RNA metabolism of the liver and the activity of the protein metabolism

    Energy Technology Data Exchange (ETDEWEB)

    Peters, E

    1973-02-05

    After selective deep X-ray irradiation of rat livers with 200 KeV X-rays, an enhanced incorporation of tritium uridine into various RNA species is observed. The extent and the rate of the radioreaction could be modified by experimentally changing the metabolic status of the liver cells. Partial deproteinisation of the plasma by means of an exchange function lead to a marked rise in the RNA synthesis rate of the liver for a short period of time. Additional irradiation had an inhibiting and delaying effect on the induction-dependent increase in tritium uridine incorporation in the case of transfer-RNA and m-RNA, while there was an enhanced incorporation in the messenger RNA of the heavy ribosome and polymer fraction.

  13. The complete mitochondrial genomes of five Eimeria species infecting domestic rabbits.

    Science.gov (United States)

    Liu, Guo-Hua; Tian, Si-Qin; Cui, Ping; Fang, Su-Fang; Wang, Chun-Ren; Zhu, Xing-Quan

    2015-12-01

    Rabbit coccidiosis caused by members of the genus Eimeria can cause enormous economic impact worldwide, but the genetics, epidemiology and biology of these parasites remain poorly understood. In the present study, we sequenced and annotated the complete mitochondrial (mt) genomes of five Eimeria species that commonly infect the domestic rabbits. The complete mt genomes of Eimeria intestinalis, Eimeria flavescens, Eimeria media, Eimeria vejdovskyi and Eimeria irresidua were 6261bp, 6258bp, 6168bp, 6254bp, 6259bp in length, respectively. All of the mt genomes consist of 3 genes for proteins (cytb, cox1, and cox3), 14 gene fragments for the large subunit (LSU) rRNA and 11 gene fragments for the small subunit (SSU) rRNA, but no transfer RNA (tRNA) genes. The gene order of the mt genomes is similar to that of Plasmodium, but distinct from Haemosporida and Theileria. Phylogenetic analyses based on full nucleotide sequences using Bayesian analysis revealed that the monophyly of the Eimeria of rabbits was strongly statistically supported with a Bayesian posterior probabilities. These data provide novel mtDNA markers for studying the population genetics and molecular epidemiology of the Eimeria species, and should have implications for the molecular diagnosis, prevention and control of coccidiosis in rabbits. Copyright © 2015 Elsevier Inc. All rights reserved.

  14. Resonance energy transfer study on the proximity relationship between the GTP binding site and the rifampicin binding site of Escherichia coli RNA polymerase

    International Nuclear Information System (INIS)

    Kumar, K.P.; Chatterji, D.

    1990-01-01

    Terbium(III) upon complexation with guanosine 5'-triphosphate showed remarkable enhancement of fluorescence emission at 488 and 545 nm when excited at 295 nm. Analysis of the binding data yielded a value for the mean K d between Tb(III) and GTP of 0.2 μM, with three binding sites for TB(III) on GTP. 31 P and 1 H NMR measurements revealed that Tb(III) mainly binds the phosphate moiety of GTP. Fluorescence titration of the emission signals of the TbGTP complex with varying concentrations of Escherichia coli RNA polymerase resulted in a K d values of 4 μM between the TbGTP and the enzyme. It was observed that TbGTP can be incorporated in the place of GTP during E. coli RNA polymerase catalyzed abortive synthesis of dinucleotide tetraphosphate at T7A2 promoter. Both the substrate TbGTP and the inhibitor of the initiation of transcription rifampicin bind to the β-subunit of E. coli RNA polymerase. This allows the measurement of the fluorescence excited-state energy transfer from the donor TbGTP-RNA polymerase to the acceptor rifampicin. Both emission bands of Tb(III) overlap with the rifampicin absorption, and the distances at 50% efficiency of energy transfer were calculated to be 28 and 24 angstrom for the 488- and 545-nm emission bands, respectively. The distance between the substrate binding site and the rifampicin binding site on the β-subunit of E. coli RNA polymerase was measured to be around 30 angstrom. This suggest that the nature of inhibition of transcription by rifampicin is essentially noncompetitive with the substrate

  15. Basic science for the clinician 49: expanding the description of the RNA universe.

    Science.gov (United States)

    Sigal, Leonard H

    2009-03-01

    We have come a long way in paying RNA its due respect. Originally thought to be nothing more than a shuttle of information from DNA to protein, a bearer of amino acids to the ribosome, and a splicer of messenger RNA, we now know that other RNA species are pivotal in controlling cellular functions that assure normal development and differentiation of immune cells, modulation of inflammatory mechanisms, control of proliferation of a number of hematologic lineages, and spermatogenesis (clearly, vital for the maintenance of the species!). In the future, ribozymes, antisense RNA and oligonucleotides, decoy RNA, peptide-nucleic acid chimeras, and other RNAs will probably be part of the routine armamentarium in a variety of medical practices. Targeting these to the appropriate cell may allow for highly directed therapies, maximizing efficacy and minimizing toxicity. It is a new world, an RNA world, and we will all benefit from the insights broadly outlined in this article. When I was in college and medical school, RNA was known to come in only a few varieties. There was messenger RNA, ribosomal RNA, transfer RNA, and double-stranded RNA in some viruses. And that was that! My, how times have changed!! The truth, as always, is much more complicated than we had thought. We now know that RNA is involved in splicing of mRNA and in cleaving RNA. And, recent studies have revealed even more: DNA transcription, mRNA stability, and levels of protein synthesis are all, to some degree, controlled by an entirely different set of RNAs, such as small RNAs, which come in at least 3 different broad varieties. Thus, there are now at least 10 varieties of RNAs of which I am aware at the time I write these words, and who is to say that there are not more out there? Just as the entire repertoire of the known classes of small RNAs has not yet been described, there may be different RNAs out there yet to be identified. If, in fact, the bio-universe was initially determined by RNA, not DNA, there

  16. Expansion of the known Klebsiella pneumoniae species gene pool by characterization of novel alien DNA islands integrated into tmRNA gene sites.

    Science.gov (United States)

    Zhang, Jie; van Aartsen, Jon Jurriaan; Jiang, Xiaofei; Shao, Yucheng; Tai, Cui; He, Xinyi; Tan, Zhilei; Deng, Zixin; Jia, Shiru; Rajakumar, Kumar; Ou, Hong-Yu

    2011-02-01

    Klebsiella pneumoniae is an important bacterial pathogen of man that is commonly associated with opportunistic and hospital-associated infections. Increasing levels of multiple-antibiotic resistance associated with this species pose a major emerging clinical problem. This organism also occurs naturally in other diverse environments, including the soil. Consistent with its varied lifestyle and membership of the Enterobacteriaceae family, K. pneumoniae genomes exhibit highly plastic architecture comprising a core genome backbone interspersed with numerous and varied alien genomic islands. In this study the size of the presently known K. pneumoniae pan-genome gene pool was estimated through analysis of complete sequences of three chromosomes and 31 plasmids belonging to K. pneumoniae strains. In addition, using a PCR-based strategy the genomic content of eight tRNA/tmRNA gene sites that serve as DNA insertion hotspots were investigated in 28 diverse environmental and clinical strains of K. pneumoniae. Sequencing and characterization of five newly identified horizontally-acquired tmRNA-associated islands further expanded the archived K. pneumoniae gene pool to a total of 7648 unique gene members. Large-scale investigation of the content of tRNA/tmRNA hotspots will be useful to identify and/or survey accessory sequences dispersed amongst hundreds to thousands of members of many key bacterial species. Copyright © 2010 Elsevier B.V. All rights reserved.

  17. Probe the Binding Mode of Aristololactam-β-D-glucoside to Phenylalanine Transfer RNA in Silico

    DEFF Research Database (Denmark)

    Xiao, Xingqing; Zhao, Binwu; Yang, Li

    2016-01-01

    Understanding the interactions of drug molecules with biomacromolecules at a micro-scale level is essential to design potent drugs for the treatments of human genome diseases. To unravel the mechanism of binding of aristololactam-β-D-glucoside (ADG) and phenylalanine transfer RNA (t...... on the tRNAPhe, and atomistic MD simulations were conducted to examine the thermal stability of five predicted binding poses for the complex of ADG and the tRNAPhe. The binding free energies of the five complexes were then calculated using the molecular mechanics/generalized born surface area approach...

  18. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM

    Energy Technology Data Exchange (ETDEWEB)

    Mrdakovic Popic, Jelena, E-mail: jelena.mrdakovic.popic@umb.no; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ({sup 232}Th and {sup 238}U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ({sup 232}Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the {sup 232}Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ({sup 238}U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for {sup 232}Th and {sup 238}U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 {mu}Gy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated {sup 232}Th and {sup 238}U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of

  19. Functional characterization of the Drosophila MRP (mitochondrial RNA processing) RNA gene.

    Science.gov (United States)

    Schneider, Mary D; Bains, Anupinder K; Rajendra, T K; Dominski, Zbigniew; Matera, A Gregory; Simmonds, Andrew J

    2010-11-01

    MRP RNA is a noncoding RNA component of RNase mitochondrial RNA processing (MRP), a multi-protein eukaryotic endoribonuclease reported to function in multiple cellular processes, including ribosomal RNA processing, mitochondrial DNA replication, and cell cycle regulation. A recent study predicted a potential Drosophila ortholog of MRP RNA (CR33682) by computer-based genome analysis. We have confirmed the expression of this gene and characterized the phenotype associated with this locus. Flies with mutations that specifically affect MRP RNA show defects in growth and development that begin in the early larval period and end in larval death during the second instar stage. We present several lines of evidence demonstrating a role for Drosophila MRP RNA in rRNA processing. The nuclear fraction of Drosophila MRP RNA localizes to the nucleolus. Further, a mutant strain shows defects in rRNA processing that include a defect in 5.8S rRNA processing, typical of MRP RNA mutants in other species, as well as defects in early stages of rRNA processing.

  20. Highly divergent 16S rRNA sequences in ribosomal operons of Scytonema hyalinum (Cyanobacteria.

    Directory of Open Access Journals (Sweden)

    Jeffrey R Johansen

    Full Text Available A highly divergent 16S rRNA gene was found in one of the five ribosomal operons present in a species complex currently circumscribed as Scytonema hyalinum (Nostocales, Cyanobacteria using clone libraries. If 16S rRNA sequence macroheterogeneity among ribosomal operons due to insertions, deletions or truncation is excluded, the sequence heterogeneity observed in S. hyalinum was the highest observed in any prokaryotic species thus far (7.3-9.0%. The secondary structure of the 16S rRNA molecules encoded by the two divergent operons was nearly identical, indicating possible functionality. The 23S rRNA gene was examined for a few strains in this complex, and it was also found to be highly divergent from the gene in Type 2 operons (8.7%, and likewise had nearly identical secondary structure between the Type 1 and Type 2 operons. Furthermore, the 16S-23S ITS showed marked differences consistent between operons among numerous strains. Both operons have promoter sequences that satisfy consensus requirements for functional prokaryotic transcription initiation. Horizontal gene transfer from another unknown heterocytous cyanobacterium is considered the most likely explanation for the origin of this molecule, but does not explain the ultimate origin of this sequence, which is very divergent from all 16S rRNA sequences found thus far in cyanobacteria. The divergent sequence is highly conserved among numerous strains of S. hyalinum, suggesting adaptive advantage and selective constraint of the divergent sequence.

  1. Diversity of 23S rRNA genes within individual prokaryotic genomes.

    Directory of Open Access Journals (Sweden)

    Anna Pei

    Full Text Available BACKGROUND: The concept of ribosomal constraints on rRNA genes is deduced primarily based on the comparison of consensus rRNA sequences between closely related species, but recent advances in whole-genome sequencing allow evaluation of this concept within organisms with multiple rRNA operons. METHODOLOGY/PRINCIPAL FINDINGS: Using the 23S rRNA gene as an example, we analyzed the diversity among individual rRNA genes within a genome. Of 184 prokaryotic species containing multiple 23S rRNA genes, diversity was observed in 113 (61.4% genomes (mean 0.40%, range 0.01%-4.04%. Significant (1.17%-4.04% intragenomic variation was found in 8 species. In 5 of the 8 species, the diversity in the primary structure had only minimal effect on the secondary structure (stem versus loop transition. In the remaining 3 species, the diversity significantly altered local secondary structure, but the alteration appears minimized through complex rearrangement. Intervening sequences (IVS, ranging between 9 and 1471 nt in size, were found in 7 species. IVS in Deinococcus radiodurans and Nostoc sp. encode transposases. T. tengcongensis was the only species in which intragenomic diversity >3% was observed among 4 paralogous 23S rRNA genes. CONCLUSIONS/SIGNIFICANCE: These findings indicate tight ribosomal constraints on individual 23S rRNA genes within a genome. Although classification using primary 23S rRNA sequences could be erroneous, significant diversity among paralogous 23S rRNA genes was observed only once in the 184 species analyzed, indicating little overall impact on the mainstream of 23S rRNA gene-based prokaryotic taxonomy.

  2. Exploration of miRNA families for hypotheses generation.

    KAUST Repository

    Kamanu, T.K.

    2013-10-15

    Technological improvements have resulted in increased discovery of new microRNAs (miRNAs) and refinement and enrichment of existing miRNA families. miRNA families are important because they suggest a common sequence or structure configuration in sets of genes that hint to a shared function. Exploratory tools to enhance investigation of characteristics of miRNA families and the functions of family-specific miRNA genes are lacking. We have developed, miRNAVISA, a user-friendly web-based tool that allows customized interrogation and comparisons of miRNA families for hypotheses generation, and comparison of per-species chromosomal distribution of miRNA genes in different families. This study illustrates hypothesis generation using miRNAVISA in seven species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  3. The pulmonary histopathology of anti-KS transfer RNA synthetase syndrome.

    Science.gov (United States)

    Schneider, Frank; Aggarwal, Rohit; Bi, David; Gibson, Kevin; Oddis, Chester; Yousem, Samuel A

    2015-01-01

    The clinical spectrum of the antisynthetase syndromes (AS) has been poorly defined, although some frequently present with pulmonary manifestations. The anti-KS anti-asparaginyl-transfer RNA synthetase syndrome is one in which pulmonary interstitial lung disease is almost always present and yet the histopathologic spectrum is not well described. To define the morphologic manifestations of pulmonary disease in those patients with anti-KS antiasparaginyl syndrome. We reviewed the connective tissue disorder registry of the University of Pittsburgh and identified those patients with anti-KS autoantibodies who presented with interstitial lung disease and had surgical lung biopsies. The 5 patients with anti-KS antisynthetase syndrome were usually women presenting with dyspnea and without myositis, but with mechanic's hands (60%) and Raynaud phenomenon (40%). They most often presented with a usual interstitial pneumonia pattern of fibrosis (80%), with the final patient displaying organizing pneumonia. Pulmonary interstitial lung disease is a common presentation in patients with the anti-KS-antisynthetase syndrome, who are often women with rather subtle or subclinical connective tissue disease, whereas the literature emphasizes the nonspecific interstitial pneumonia pattern often diagnosed clinically. Usual interstitial pneumonia and organizing pneumonia patterns of interstitial injury need to be added to this clinical differential diagnosis.

  4. Comparison of primary and secondary 26S rRNA structures in two Tetrahymena species: evidence for a strong evolutionary and structural constraint in expansion segments

    DEFF Research Database (Denmark)

    Engberg, J; Nielsen, Henrik; Lenaers, G

    1990-01-01

    We have determined the nucleotide sequence of the 26S large subunit (LSU) rRNA genes for two Tetrahymena species, T. thermophila and T. pyriformis. The inferred rRNA sequences are presented in their most probable secondary structures based on compensatory mutations, energy, and conservation crite...

  5. Beyond 16S rRNA Community Profiling: Intra-Species Diversity in the Gut Microbiota

    Science.gov (United States)

    Ellegaard, Kirsten M.; Engel, Philipp

    2016-01-01

    Interactions with microbes affect many aspects of animal biology, including immune system development, nutrition and health. In vertebrates, the gut microbiota is dominated by a small subset of phyla, but the species composition within these phyla is typically not conserved. Moreover, several recent studies have shown that bacterial species in the gut are composed of a multitude of strains, which frequently co-exist in their host, and may be host-specific. However, since the study of intra-species diversity is challenging, particularly in the setting of complex, host-associated microbial communities, our current understanding of the distribution, evolution and functional relevance of intra-species diversity in the gut is scarce. In order to unravel how genomic diversity translates into phenotypic diversity, community analyses going beyond 16S rRNA profiling, in combination with experimental approaches, are needed. Recently, the honeybee has emerged as a promising model for studying gut bacterial communities, particularly in terms of strain-level diversity. Unlike most other invertebrates, the honeybee gut is colonized by a remarkably consistent and specific core microbiota, which is dominated by only eight bacterial species. As for the vertebrate gut microbiota, these species are composed of highly diverse strains suggesting that similar evolutionary forces shape gut community structures in vertebrates and social insects. In this review, we outline current knowledge on the evolution and functional relevance of strain diversity within the gut microbiota, including recent insights gained from mammals and other animals such as the honeybee. We discuss methodological approaches and propose possible future avenues for studying strain diversity in complex bacterial communities. PMID:27708630

  6. Cooperation of an RNA Packaging Signal and a Viral Envelope Protein in Coronavirus RNA Packaging

    OpenAIRE

    Narayanan, Krishna; Makino, Shinji

    2001-01-01

    Murine coronavirus mouse hepatitis virus (MHV) produces a genome-length mRNA, mRNA 1, and six or seven species of subgenomic mRNAs in infected cells. Among these mRNAs, only mRNA 1 is efficiently packaged into MHV particles. MHV N protein binds to all MHV mRNAs, whereas envelope M protein interacts only with mRNA 1. This M protein-mRNA 1 interaction most probably determines the selective packaging of mRNA 1 into MHV particles. A short cis-acting MHV RNA packaging signal is necessary and suffi...

  7. Semiautomated improvement of RNA alignments

    DEFF Research Database (Denmark)

    Andersen, Ebbe Sloth; Lind-Thomsen, Allan; Knudsen, Bjarne

    2007-01-01

    connects to external tools to provide a flexible semiautomatic editing environment. A new method, Pcluster, is introduced for dividing the sequences of an RNA alignment into subgroups with secondary structure differences. Pcluster was used to evaluate 574 seed alignments obtained from the Rfam database...... and we identified 71 alignments with significant prediction of inconsistent base pairs and 102 alignments with significant prediction of novel base pairs. Four RNA families were used to illustrate how SARSE can be used to manually or automatically correct the inconsistent base pairs detected by Pcluster......: the mir-399 RNA, vertebrate telomase RNA (vert-TR), bacterial transfer-messenger RNA (tmRNA), and the signal recognition particle (SRP) RNA. The general use of the method is illustrated by the ability to accommodate pseudoknots and handle even large and divergent RNA families. The open architecture...

  8. RNA Editing in Plant Mitochondria

    Science.gov (United States)

    Hiesel, Rudolf; Wissinger, Bernd; Schuster, Wolfgang; Brennicke, Axel

    1989-12-01

    Comparative sequence analysis of genomic and complementary DNA clones from several mitochondrial genes in the higher plant Oenothera revealed nucleotide sequence divergences between the genomic and the messenger RNA-derived sequences. These sequence alterations could be most easily explained by specific post-transcriptional nucleotide modifications. Most of the nucleotide exchanges in coding regions lead to altered codons in the mRNA that specify amino acids better conserved in evolution than those encoded by the genomic DNA. Several instances show that the genomic arginine codon CGG is edited in the mRNA to the tryptophan codon TGG in amino acid positions that are highly conserved as tryptophan in the homologous proteins of other species. This editing suggests that the standard genetic code is used in plant mitochondria and resolves the frequent coincidence of CGG codons and tryptophan in different plant species. The apparently frequent and non-species-specific equivalency of CGG and TGG codons in particular suggests that RNA editing is a common feature of all higher plant mitochondria.

  9. The role of containerships as transfer mechanisms of marine biofouling species.

    Science.gov (United States)

    Davidson, Ian C; Brown, Christopher W; Sytsma, Mark D; Ruiz, Gregory M

    2009-10-01

    Fouling of ships is an important historical and enduring transfer mechanism of marine nonindigenous species (NIS). Although containerships have risen to the forefront of global maritime shipping since the 1950s, few studies have directly sampled fouling communities on their submerged surfaces, and little is known about differences in the fouling characteristics among commercial ship types. Twenty-two in-service containerships at the Port of Oakland (San Francisco Bay, California) were sampled to test the hypothesis that the extent and taxonomic richness of fouling would be low on this type of ship, resulting from relatively fast speeds and short port durations. The data showed that the extent of macroorganisms (invertebrates and algae) was indeed low, especially across the large surface areas of the hull. Less than 1% of the exposed hull was colonized for all apart from one vessel. These ships had submerged surface areas of >7000 m(2), and fouling coverage on this area was estimated to be species in its fouling assemblage, including non-native species (already established in San Francisco Bay) and mobile species that were not detected in visual surveys. In contrast to other studies, dry dock block areas did not support many organisms, despite little antifouling deterrence in some cases. Comparisons with previous studies suggest that the accumulation of fouling on containerships may be lower than on other ship types (eg bulkers and general cargo vessels), but more data are needed to determine the hierarchy of factors contributing to differences in the extent of macrofouling and non-native species vector risks within the commercial fleet.

  10. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    Energy Technology Data Exchange (ETDEWEB)

    Tuovinen, Tiina S.; Roivainen, Paeivi, E-mail: paivi.roivainen@uef.fi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-12-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R{sup 2}-values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  11. Soil-to-plant transfer of elements is not linear: Results for five elements relevant to radioactive waste in five boreal forest species

    International Nuclear Information System (INIS)

    Tuovinen, Tiina S.; Roivainen, Päivi; Makkonen, Sari; Kolehmainen, Mikko; Holopainen, Toini; Juutilainen, Jukka

    2011-01-01

    Element-specific concentration ratios (CRs) assuming that plant uptake of elements is linear are commonly used in radioecological modelling to describe the soil-to-plant transfer of elements. The goal of this study was to investigate the validity of the linearity assumption in boreal forest plants, for which only limited relevant data are available. The soil-to-plant transfer of three essential (Mo, Ni, Zn) and two non-essential (Pb, U) elements relevant to the safety of radioactive waste disposal was studied. Three understory species (blueberry, narrow buckler fern and May lily) and two tree species (Norway spruce and rowan) were included. Examining CRs as a function of soil concentration showed that CR was not constant but decreased with increasing soil concentrations for all elements and plant species. A non-linear equation fitted fairly well with the empirical data; the R 2 -values for this equation were constantly higher than those for the linear fit. The difference between the two fits was most evident at low soil concentrations where the use of constant CRs underestimated transfer from soil to plants. Site-specific factors affected the transfer of Mo and Ni. The results suggested that systematic variation with soil concentrations explains a part of the large variation of empirically determined CRs, and the accuracy of modelling the soil-to-plant transfer might be improved by using non-linear methods. Non-linearity of soil-to-plant transfer has been previously reported for a few different species, elements and environments. The present study systematically tested the linearity assumption for five elements (both essential and non-essential) and in five boreal forest species representing different growth traits and phylogenies. The data supported non-linearity in all cases.

  12. Characterisation of peacock (Pavo cristatus) mitochondrial 12S rRNA sequence and its use in differentiation from closely related poultry species.

    Science.gov (United States)

    Saini, M; Das, D K; Dhara, A; Swarup, D; Yadav, M P; Gupta, P K

    2007-04-01

    1. Poaching of peacocks, the national bird of India, is illegal. People kill this beautiful pheasant bird for tail feathers and mix the meat with chicken or turkey. Differentiation of the meat of these species is essential in order to address the ambiguity about the origin of the sample. 2. The present study was carried out to investigate the use of polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) of mitochondrial 12S rRNA gene for identification of these species. 3. Peacock mitochondrial 12S rRNA partial gene was amplified using universal primers, cloned and characterised. It was found to be 446 nucleotides long. 4. Sequence analysis revealed 86.8 and 84.1% similarity with reported turkey and chicken sequences, respectively. Sequence and phylogenetic analysis showed that the peacock is much closer to the turkey than the chicken. 5. PCR-RFLP of 446 bp amplicon using commonly available restriction enzymes AluI and Sau3AI produced a differential pattern for identifying these poultry species unambiguously.

  13. Models of alien species richness show moderate predictive accuracy and poor transferability

    Directory of Open Access Journals (Sweden)

    César Capinha

    2018-06-01

    Full Text Available Robust predictions of alien species richness are useful to assess global biodiversity change. Nevertheless, the capacity to predict spatial patterns of alien species richness remains largely unassessed. Using 22 data sets of alien species richness from diverse taxonomic groups and covering various parts of the world, we evaluated whether different statistical models were able to provide useful predictions of absolute and relative alien species richness, as a function of explanatory variables representing geographical, environmental and socio-economic factors. Five state-of-the-art count data modelling techniques were used and compared: Poisson and negative binomial generalised linear models (GLMs, multivariate adaptive regression splines (MARS, random forests (RF and boosted regression trees (BRT. We found that predictions of absolute alien species richness had a low to moderate accuracy in the region where the models were developed and a consistently poor accuracy in new regions. Predictions of relative richness performed in a superior manner in both geographical settings, but still were not good. Flexible tree ensembles-type techniques (RF and BRT were shown to be significantly better in modelling alien species richness than parametric linear models (such as GLM, despite the latter being more commonly applied for this purpose. Importantly, the poor spatial transferability of models also warrants caution in assuming the generality of the relationships they identify, e.g. by applying projections under future scenario conditions. Ultimately, our results strongly suggest that predictability of spatial variation in richness of alien species richness is limited. The somewhat more robust ability to rank regions according to the number of aliens they have (i.e. relative richness, suggests that models of aliens species richness may be useful for prioritising and comparing regions, but not for predicting exact species numbers.

  14. RNA trafficking in parasitic plant systems

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  15. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  16. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions.

    NARCIS (Netherlands)

    Nolte-'t Hoen, E.N.M.; Buermans, H.P.; Waasdorp, M.; Stoorvogel, W.; Wauben, M.H.M.; `t Hoen, P.A.C.

    2012-01-01

    Cells release RNA-carrying vesicles and membrane-free RNA/protein complexes into the extracellular milieu. Horizontal vesicle-mediated transfer of such shuttle RNA between cells allows dissemination of genetically encoded messages, which may modify the function of target cells. Other studies used

  17. Ecological transfer of radionuclides and metals to free-living earthworm species in natural habitats rich in NORM.

    Science.gov (United States)

    Mrdakovic Popic, Jelena; Salbu, Brit; Skipperud, Lindis

    2012-01-01

    Transfer of radionuclides ((232)Th and (238)U) and associated metals (As, Cd, Pb and Cr) from soil to free-living earthworm species was investigated in a thorium ((232)Th) rich area in Norway. Sampling took place within former mining sites representing the technologically enhanced naturally occurring radioactive materials (TENORM), at undisturbed site with unique bedrock geology representing the naturally occurring radioactive materials (NORM) and at site outside the (232)Th rich area taken as reference Background site. Soil analysis revealed the elevated levels of investigated elements at NORM and TENORM sites. Based on sequential extraction, uranium ((238)U) and cadmium (Cd) were quite mobile, while the other elements were strongly associated with mineral components of soil. Four investigated earthworm species (Aporrectodea caliginosa, Aporrectodea rosea, Dendrodrilus rubidus and Lumbricus rubellus) showed large individual variability in the accumulation of radionuclides and metals. Differences in uptake by epigeic and endogeic species, as well as differences within same species from the NORM, TENORM and Background sites were also seen. Based on total concentrations in soil, the transfer factors (TF) were in ranges 0.03-0.08 and 0.09-0.25, for (232)Th and (238)U, respectively. TFs for lead (Pb), chromium (Cr) and arsenic (As) were low (less than 0.5), while TFs for Cd were higher (about 10). Using the ERICA tool, the estimated radiation exposure dose rate of the earthworms ranged from 2.2 to 3.9 μGy/h. The radiological risk for investigated earthworms was low (0.28). The obtained results demonstrated that free-living earthworm species can survive in soil containing elevated (232)Th and (238)U, as well As, Cd, Pb and Cr levels, although certain amount of radionuclides was accumulated within their bodies. The present investigation contributes to general better understanding of complex soil-to-biota transfer processes of radionuclides and metals and to assessment

  18. Structural insights into RNA processing by the human RISC-loading complex.

    Science.gov (United States)

    Wang, Hong-Wei; Noland, Cameron; Siridechadilok, Bunpote; Taylor, David W; Ma, Enbo; Felderer, Karin; Doudna, Jennifer A; Nogales, Eva

    2009-11-01

    Targeted gene silencing by RNA interference (RNAi) requires loading of a short guide RNA (small interfering RNA (siRNA) or microRNA (miRNA)) onto an Argonaute protein to form the functional center of an RNA-induced silencing complex (RISC). In humans, Argonaute2 (AGO2) assembles with the guide RNA-generating enzyme Dicer and the RNA-binding protein TRBP to form a RISC-loading complex (RLC), which is necessary for efficient transfer of nascent siRNAs and miRNAs from Dicer to AGO2. Here, using single-particle EM analysis, we show that human Dicer has an L-shaped structure. The RLC Dicer's N-terminal DExH/D domain, located in a short 'base branch', interacts with TRBP, whereas its C-terminal catalytic domains in the main body are proximal to AGO2. A model generated by docking the available atomic structures of Dicer and Argonaute homologs into the RLC reconstruction suggests a mechanism for siRNA transfer from Dicer to AGO2.

  19. Dynamic evolution of Geranium mitochondrial genomes through multiple horizontal and intracellular gene transfers.

    Science.gov (United States)

    Park, Seongjun; Grewe, Felix; Zhu, Andan; Ruhlman, Tracey A; Sabir, Jamal; Mower, Jeffrey P; Jansen, Robert K

    2015-10-01

    The exchange of genetic material between cellular organelles through intracellular gene transfer (IGT) or between species by horizontal gene transfer (HGT) has played an important role in plant mitochondrial genome evolution. The mitochondrial genomes of Geraniaceae display a number of unusual phenomena including highly accelerated rates of synonymous substitutions, extensive gene loss and reduction in RNA editing. Mitochondrial DNA sequences assembled for 17 species of Geranium revealed substantial reduction in gene and intron content relative to the ancestor of the Geranium lineage. Comparative analyses of nuclear transcriptome data suggest that a number of these sequences have been functionally relocated to the nucleus via IGT. Evidence for rampant HGT was detected in several Geranium species containing foreign organellar DNA from diverse eudicots, including many transfers from parasitic plants. One lineage has experienced multiple, independent HGT episodes, many of which occurred within the past 5.5 Myr. Both duplicative and recapture HGT were documented in Geranium lineages. The mitochondrial genome of Geranium brycei contains at least four independent HGT tracts that are absent in its nearest relative. Furthermore, G. brycei mitochondria carry two copies of the cox1 gene that differ in intron content, providing insight into contrasting hypotheses on cox1 intron evolution. © 2015 The Authors. New Phytologist © 2015 New Phytologist Trust.

  20. Complete mitochondrial genome of the giant African snail, Achatina fulica (Mollusca: Achatinidae): a novel location of putative control regions (CR) in the mitogenome within Pulmonate species.

    Science.gov (United States)

    He, Zhang-Ping; Dai, Xia-Bin; Zhang, Shuai; Zhi, Ting-Ting; Lun, Zhao-Rong; Wu, Zhong-Dao; Yang, Ting-Bao

    2016-01-01

    The whole sequence (15,057 bp) of the mitochondrial DNA (mtDNA) of the terrestrial snail Achatina fulica (order Stylommatophora) was determined. The mitogenome, as the typical metazoan mtDNA, contains 13 protein-coding genes (PCG), 2 ribosomal RNA genes (rRNA) and 22 transfer RNA genes (tRNA). The tRNA genes include two trnS without standard secondary structure. Interestingly, among the known mitogenomes of Pulmonata species, we firstly characterized an unassigned lengthy sequence (551 bp) between the cox1 and the trnV which may be the CR for the sake of its AT bases usage bias (65.70%) and potential hairpin structure.

  1. Descripción del ARN de transferencia mitocondrial para Serina (UCN de Lutzomyia columbiana (Diptera, Psychodidae Description of the mitochondrial serine transfer RNA (UCN of Lutzomyia columbiana (Diptera, Psychodidae

    Directory of Open Access Journals (Sweden)

    Alveiro Pérez-Doria

    2008-01-01

    putative secondary structure of the mitochondrial serine transfer RNA that recognizes the codon UCN of Lu. columbiana (tRNA Ser. DNA was extracted, amplified and sequenced from six individuals collected in human biting activity. The secondary structure of the tRNA Ser was inferred using the program tRNAscan-SE 1.21. The tRNA Ser gene length was 67 pair of bases (pb, and a single haplotype was detected among the six specimens sequenced. In the inferred secondary structure of the tRNA Ser of Lu. columbiana, the acceptor arm consisted of 7 bp, the dihydrouridine (DHU arm of 3 pb, the anticodon arm of 5 pb, and the ribothymidine-pseudouridine-cytosine (TøC arm of 5 pb. Similarity, the estimated size of the loops was 5 nucleotides in the DHU, 7 in the anticodon, 4 in the variable, and 7 in the TøC. Lu. columbiana differs from other Lutzomyia and Phlebotomus species sequenced to date by the presence of guanine in the nucleotide position 64, which induce a non-canonical base pair conformation type uracil-guanine in the acceptor arm. More studies are necessary to confirm the usefulness of the tRNA Ser as a suitable molecular tool for sand fly species identification.

  2. Molecular modeling and molecular dynamics simulation study of archaeal leucyl-tRNA synthetase in complex with different mischarged tRNA in editing conformation.

    Science.gov (United States)

    Rayevsky, A V; Sharifi, M; Tukalo, M A

    2017-09-01

    Aminoacyl-tRNA synthetases (aaRSs) play important roles in maintaining the accuracy of protein synthesis. Some aaRSs accomplish this via editing mechanisms, among which leucyl-tRNA synthetase (LeuRS) edits non-cognate amino acid norvaline mainly by post-transfer editing. However, the molecular basis for this pathway for eukaryotic and archaeal LeuRS remain unclear. In this study, a complex of archaeal P. horikoshii LeuRS (PhLeuRS) with misacylated tRNA Leu was modeled wherever tRNA's acceptor stem was oriented directly into the editing site. To understand the distinctive features of organization we reconstructed a complex of PhLeuRS with tRNA and visualize post-transfer editing interactions mode by performing molecular dynamics (MD) simulation studies. To study molecular basis for substrate selectivity by PhLeuRS's editing site we utilized MD simulation of the entire LeuRS complexes using a diverse charged form of tRNAs, namely norvalyl-tRNA Leu and isoleucyl-tRNA Leu . In general, the editing site organization of LeuRS from P.horikoshii has much in common with bacterial LeuRS. The MD simulation results revealed that the post-transfer editing substrate norvalyl-A76, binds more strongly than isoleucyl-A76. Moreover, the branched side chain of isoleucine prevents water molecules from being closer and hence the hydrolysis reaction slows significantly. To investigate a possible mechanism of the post-transfer editing reaction, by PhLeuRS we have determined that two water molecules (the attacking and assisting water molecules) are localized near the carbonyl group of the amino acid to be cleaved off. These water molecules approach the substrate from the opposite side to that observed for Thermus thermophilus LeuRS (TtLeuRS). Based on the results obtained, it was suggested that the post-transfer editing mechanism of PhLeuRS differs from that of prokaryotic TtLeuRS. Copyright © 2017 Elsevier Inc. All rights reserved.

  3. Re-criticizing RNA-mediated cell evolution: a radical perspective

    Science.gov (United States)

    Kotakis, Christos

    2016-01-01

    Genetic inter-communication of the nucleic-organellar dual in eukaryotes is dominated by DNA-directed phenomena. RNA regulatory circuits have also been observed in artificial laboratory prototypes where gene transfer events are reconstructed, but they are excluded from the primary norm due to their rarity. Recent technical advances in organellar biotechnology, genome engineering and single-molecule tracking give novel experimental insights on RNA metabolism not only at cellular level, but also on organismal survival. Here, I put forward a hypothesis for RNA's involvement in gene piece transfer, taken together the current knowledge on the primitive RNA character as a biochemical modulator with model organisms from peculiar natural habitats. It is proposed that RNA molecules of special structural signature and functional identity can drive evolution, integrating the ecological pressure of environmental oscillations into genome imprinting by buffering-out epigenetic aberrancies.

  4. siRNA as an alternative therapy against viral infections

    Directory of Open Access Journals (Sweden)

    Hana A. Pawestri

    2012-07-01

    Full Text Available siRNA (small interfering ribonucleic acid adalah sebuah metode yang dapat digunakan untuk mengatasi infeksi virus yang prinsip kerjanya berdasarkan metode komplementer dsRNA (double stranded RNA pada RNA virus sehingga menyebabkan kegagalan proses transkripsi (silencing.  Untuk lebih memahami bagaimana proses kerja dan ulasan penelitian siRNA yang terkini, di dalam tulisan ini ditinjau siRNA sebagai metoda yang dikembangkan untuk mengatasi infeksi dan meneliti efeknya pada replikasi beberapa virus seperti Hepatitis C, Influenza, Polio, dan HIV. Kami menemukan bahwa urutan basa nukleotida dari target siRNA sangat penting. Hal tersebut harus homolog dengan target RNA virus dan tidak menganggu RNA sel inang. Untuk mengurangi kegagalan terapi siRNA oleh adanya mutasi, digunakan beberapa siRNA yang sekaligus menjadi target RNA virus yang berbeda. Namun demikian, terapi siRNA masih menghadapi beberapa kesulitan seperti pengiriman (transfer khusus ke jaringan yang terinfeksi dan perlindungan siRNA dari perusakan oleh nuklease. Berdasarkan beberapa penelitian yang telah dilakukan, siRNA dapat digunakan sebagai alternatif untuk mengobati infeksi yang disebabkan oleh virus. Terapi tersebut direkomendasikan untuk dilakukan uji klinis dengan memperhatikan beberapa aspek seperti desain siRNA dan mekanisme transfer. (Health Science Indones 2010; 1: 58 - 65 Kata kunci: siRNA, infeksi virus, target virus, alternatif terapi Abstract SiRNA is a promising method to deal with viral infections. The principle of siRNA is based on the complementarily of (synthetic dsRNA to an RNA virus which, in consequence, will be silenced. Many studies are currently examining the effects of siRNA on replication of diverse virus types like Hepatitis C, polio and HIV. The choice of the siRNA target sequence is crucial. It has to be very homologous to the target RNA, but it cannot target RNA of the host cell. To reduce the possibility for the virus to escape from the siRNA therapy by

  5. Radionuclide transfer to freshwater biota species: review of Russian language studies

    International Nuclear Information System (INIS)

    Fesenko, S.; Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I.

    2011-01-01

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: → The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for 90 Sr and 137 Cs. → For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. → For 241 Am (bivalve molluscs, gastropods and pelagic fish), 60 Co (gastropods, benthic fish and insect larvae), 90 Sr and 137 Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. → Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  6. Teat apex colonization with coagulase-negative Staphylococcus species before parturition: Distribution and species-specific risk factors.

    Science.gov (United States)

    De Visscher, A; Piepers, S; Haesebrouck, F; De Vliegher, S

    2016-02-01

    Coagulase-negative staphylococci (CNS) are the main cause of bovine intramammary infections and are also abundantly present in extramammary habitats such as teat apices. Teat apex colonization (TAC) with CNS has already been explored in lactating dairy cows at the species level, whereas this is not true for dry cows and end-term heifers. Therefore, the aim of this observational study was to describe CNS TAC in nonlactating dairy cows and end-term heifers in Flemish dairy herds and to identify associated risk factors at the herd, cow, and quarter level. All CNS were molecularly identified to the species level using transfer RNA intergenic spacer PCR (tDNA-PCR) and sequencing of the 16S rRNA gene, allowing for species-specific statistical analyses using multivariable, multilevel logistic regression. Staphylococcus devriesei, Staphylococcus chromogenes, Staphylococcus haemolyticus, and Staphylococcus equorum were the most frequently isolated species. Staphylococcus chromogenes was the sole species colonizing teat apices of cows and heifers in all herds, whereas large between-herd differences were observed for the other species. Teat apices of red and white Holstein Friesians, of quarters dried off without an internal teat sealer, and swabbed in months with lower precipitation and higher ambient temperature were significantly more likely to be colonized by S. devriesei. Slightly dirty teat apices and teat apices swabbed in months with lower precipitation had higher odds of being colonized by S. chromogenes, whereas teat apices sampled in months with lower precipitation and higher ambient temperature were more likely to be colonized by S. haemolyticus. Dirty teat apices and teat apices swabbed in months with lower ambient temperature in combination with low precipitation had higher odds of being colonized by S. equorum. Diverse factors explaining CNS TAC, yet mostly related to humidity, ambient temperature, and hygiene, substantiate differences in epidemiological

  7. Social learning within and across species: information transfer in mouse-eared bats

    DEFF Research Database (Denmark)

    Clarin, T. M. A.; Borissov, I.; Page, R. A.

    2014-01-01

    of observation versus interaction in intraspecific social learning and by considering interspecific social learning in sympatric bat species. Observers learned from demonstrators to identify food sources using a light cue. We show that intraspecific social learning exists in the greater mouse-eared bat (Myotis......). Additionally, we opportunistically retested one individual that we recaptured from the wild 1 year after initial learning and found long-term memory of the trained association. Our study adds to the understanding of learning, information transfer, and long-term memory in wild-living animals....

  8. Using a Specific RNA-Protein Interaction To Quench the Fluorescent RNA Spinach.

    Science.gov (United States)

    Roszyk, Laura; Kollenda, Sebastian; Hennig, Sven

    2017-12-15

    RNAs are involved in interaction networks with other biomolecules and are crucial for proper cell function. Yet their biochemical analysis remains challenging. For Förster Resonance Energy Transfer (FRET), a common tool to study such interaction networks, two interacting molecules have to be fluorescently labeled. "Spinach" is a genetically encodable RNA aptamer that starts to fluoresce upon binding of an organic molecule. Therefore, it is a biological fluorophore tag for RNAs. However, spinach has never been used in a FRET assembly before. Here, we describe how spinach is quenched when close to acceptors. We used RNA-DNA hybridization to bring quenchers or red organic dyes in close proximity to spinach. Furthermore, we investigate RNA-protein interactions quantitatively on the example of Pseudomonas aeruginosa phage coat protein 7 (PP7) and its interacting pp7-RNA. We utilize spinach quenching as a fully genetically encodable system even under lysate conditions. Therefore, this work represents a direct method to analyze RNA-protein interactions by quenching the spinach aptamer.

  9. Separation of transfer ribonucleic acids on polystyrene anion exchangers

    Energy Technology Data Exchange (ETDEWEB)

    Singhal, R.P.; Griffin, G.D.; Novelli, G.D.

    1976-11-16

    The transfer RNA separation by chromatography on strong-base-polystyrene exchange materials is examined and compared with the widely used reversed-phase chromatography. Results indicate important differences in some transfer RNA (tRNA) elution patterns by the anion-exchange chromatography, as compared with the reversed-phase chromatography. Transfer RNAs containing hydrophobic groups are adsorbed more strongly. The anion exchanger has twice the number of theoretical plates. Single peaks of tRNA/sub 2//sup Glu/ and tRNA/sub 1//sup Phe/ obtained from the reversed-phase column give multiple peaks on polystyrene anion-exchange chromatography. All six leucine tRNAs (Escherichia coli) and differences in tRNA populations synthesized during early and late stages of the dividing lymphocytes from normal human blood can be characterized by the anion-exchange chromatography. Different separation profiles are obtained by two separation systems for tyrosine tRNAs from mouse liver and mouse-plasma-cell tumor. The results indicate that, in contrast to the reversed-phase chromatography, strong-base-polystyrene anion-exchange chromatography is capable of separating tRNAs with minor structural differences.

  10. Cross-species transferability of SSR loci developed from transciptome sequencing in lodgepole pine.

    Science.gov (United States)

    Lesser, Mark R; Parchman, Thomas L; Buerkle, C Alex

    2012-05-01

    With the advent of next generation sequencing technologies, transcriptome level sequence collections are arising as prominent resources for the discovery of gene-based molecular markers. In a previous study more than 15,000 simple sequence repeats (SSRs) in expressed sequence tag (EST) sequences resulting from 454 pyrosequencing of Pinus contorta cDNA were identified. From these we developed PCR primers for approximately 4000 candidate SSRs. Here, we tested 184 of these SSRs for successful amplification across P. contorta and eight other pine species and examined patterns of polymorphism and allelic variability for a subset of these SSRs. Cross-species transferability was high, with high percentages of loci producing PCR products in all species tested. In addition, 50% of the loci we screened across panels of individuals from three of these species were polymorphic and allelically diverse. We examined levels of diversity in a subset of these SSRs by collecting genotypic data across several populations of Pinus ponderosa in northern Wyoming. Our results indicate the utility of mining pyrosequenced EST collections for gene-based SSRs and provide a source of molecular markers that should bolster evolutionary genetic investigations across the genus Pinus. © 2011 Blackwell Publishing Ltd.

  11. Poliovirus Polymerase Leu420 Facilitates RNA Recombination and Ribavirin Resistance

    Science.gov (United States)

    Kempf, Brian J.; Peersen, Olve B.

    2016-01-01

    ABSTRACT RNA recombination is important in the formation of picornavirus species groups and the ongoing evolution of viruses within species groups. In this study, we examined the structure and function of poliovirus polymerase, 3Dpol, as it relates to RNA recombination. Recombination occurs when nascent RNA products exchange one viral RNA template for another during RNA replication. Because recombination is a natural aspect of picornavirus replication, we hypothesized that some features of 3Dpol may exist, in part, to facilitate RNA recombination. Furthermore, we reasoned that alanine substitution mutations that disrupt 3Dpol-RNA interactions within the polymerase elongation complex might increase and/or decrease the magnitudes of recombination. We found that an L420A mutation in 3Dpol decreased the frequency of RNA recombination, whereas alanine substitutions at other sites in 3Dpol increased the frequency of recombination. The 3Dpol Leu420 side chain interacts with a ribose in the nascent RNA product 3 nucleotides from the active site of the polymerase. Notably, the L420A mutation that reduced recombination also rendered the virus more susceptible to inhibition by ribavirin, coincident with the accumulation of ribavirin-induced G→A and C→U mutations in viral RNA. We conclude that 3Dpol Leu420 is critically important for RNA recombination and that RNA recombination contributes to ribavirin resistance. IMPORTANCE Recombination contributes to the formation of picornavirus species groups and the emergence of circulating vaccine-derived polioviruses (cVDPVs). The recombinant viruses that arise in nature are occasionally more fit than either parental strain, especially when the two partners in recombination are closely related, i.e., members of characteristic species groups, such as enterovirus species groups A to H or rhinovirus species groups A to C. Our study shows that RNA recombination requires conserved features of the viral polymerase. Furthermore, a

  12. Extractions of High Quality RNA from the Seeds of Jerusalem Artichoke and Other Plant Species with High Levels of Starch and Lipid

    Directory of Open Access Journals (Sweden)

    Tanupat Mornkham

    2013-04-01

    Full Text Available Jerusalem artichoke (Helianthus tuberosus L. is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011 yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides.

  13. Extractions of High Quality RNA from the Seeds of Jerusalem Artichoke and Other Plant Species with High Levels of Starch and Lipid.

    Science.gov (United States)

    Mornkham, Tanupat; Wangsomnuk, Preeya Puangsomlee; Fu, Yong-Bi; Wangsomnuk, Pinich; Jogloy, Sanun; Patanothai, Aran

    2013-04-29

    Jerusalem artichoke (Helianthus tuberosus L.) is an important tuber crop. However, Jerusalem artichoke seeds contain high levels of starch and lipid, making the extraction of high-quality RNA extremely difficult and the gene expression analysis challenging. This study was aimed to improve existing methods for extracting total RNA from Jerusalem artichoke dry seeds and to assess the applicability of the improved method in other plant species. Five RNA extraction methods were evaluated on Jerusalem artichoke seeds and two were modified. One modified method with the significant improvement was applied to assay seeds of diverse Jerusalem artichoke accessions, sunflower, rice, maize, peanut and marigold. The effectiveness of the improved method to extract total RNA from seeds was assessed using qPCR analysis of four selected genes. The improved method of Ma and Yang (2011) yielded a maximum RNA solubility and removed most interfering substances. The improved protocol generated 29 to 41 µg RNA/30 mg fresh weight. An A260/A280 ratio of 1.79 to 2.22 showed their RNA purity. Extracted RNA was effective for downstream applications such as first-stranded cDNA synthesis, cDNA cloning and qPCR. The improved method was also effective to extract total RNA from seeds of sunflower, rice, maize and peanut that are rich in polyphenols, lipids and polysaccharides.

  14. Hybrid male sterility between Drosophila willistoni species is caused by male failure to transfer sperm during copulation.

    Science.gov (United States)

    Civetta, Alberto; Gaudreau, Chelsea

    2015-05-01

    The biological concept of species stresses the importance of understanding what mechanisms maintain species reproductively isolated from each other. Often such mechanisms are divided into premating and postmating, with the latest being the result of either prezygotic or postzygotic isolation barriers. Drosophila willistoni quechua and Drosophila willistoni willistoni are two subspecies that experience reproductive isolation. When a D. w. quechua female is crossed with a D. w. willistoni male, the hybrid males (F1QW) are unable to father progeny; however, the reciprocal cross produces fertile hybrids. Thus, the mechanism of isolation is unidirectional hybrid male sterility. However, the sterile F1QW males contain large amounts of motile sperm. Here we explore whether pre-copulatory or post-copulatory pre-zygotic mechanisms serve as major deterrents in the ability of F1QW males to father progeny. Comparisons of parental and hybrid males copulation durations showed no significant reduction in copulation duration of F1QW males. Interrupted copulations of the parental species confirmed that sperm transfer occurs before the minimum copulation duration registered for F1QW males. However, we found that when females mate with F1QW males, sperm is not present inside the female storage organs and that the lack of sperm in storage is due to failure to transfer sperm rather than spillage or active sperm dumping by females. Sterility of F1QW hybrid males is primarily driven by their inability to transfer sperm during copulation.

  15. The RNASeq-er API-a gateway to systematically updated analysis of public RNA-seq data.

    Science.gov (United States)

    Petryszak, Robert; Fonseca, Nuno A; Füllgrabe, Anja; Huerta, Laura; Keays, Maria; Tang, Y Amy; Brazma, Alvis

    2017-07-15

    The exponential growth of publicly available RNA-sequencing (RNA-Seq) data poses an increasing challenge to researchers wishing to discover, analyse and store such data, particularly those based in institutions with limited computational resources. EMBL-EBI is in an ideal position to address these challenges and to allow the scientific community easy access to not just raw, but also processed RNA-Seq data. We present a Web service to access the results of a systematically and continually updated standardized alignment as well as gene and exon expression quantification of all public bulk (and in the near future also single-cell) RNA-Seq runs in 264 species in European Nucleotide Archive, using Representational State Transfer. The RNASeq-er API (Application Programming Interface) enables ontology-powered search for and retrieval of CRAM, bigwig and bedGraph files, gene and exon expression quantification matrices (Fragments Per Kilobase Of Exon Per Million Fragments Mapped, Transcripts Per Million, raw counts) as well as sample attributes annotated with ontology terms. To date over 270 00 RNA-Seq runs in nearly 10 000 studies (1PB of raw FASTQ data) in 264 species in ENA have been processed and made available via the API. The RNASeq-er API can be accessed at http://www.ebi.ac.uk/fg/rnaseq/api . The commands used to analyse the data are available in supplementary materials and at https://github.com/nunofonseca/irap/wiki/iRAP-single-library . rnaseq@ebi.ac.uk ; rpetry@ebi.ac.uk. Supplementary data are available at Bioinformatics online. © The Author(s) 2017. Published by Oxford University Press.

  16. Quantification of different Eubacterium spp. in human fecal samples with species-specific 16S rRNA-targeted oligonucleotide probes.

    Science.gov (United States)

    Schwiertz, A; Le Blay, G; Blaut, M

    2000-01-01

    Species-specific 16S rRNA-targeted, Cy3 (indocarbocyanine)-labeled oligonucleotide probes were designed and validated to quantify different Eubacterium species in human fecal samples. Probes were directed at Eubacterium barkeri, E. biforme, E. contortum, E. cylindroides (two probes), E. dolichum, E. hadrum, E. lentum, E. limosum, E. moniliforme, and E. ventriosum. The specificity of the probes was tested with the type strains and a range of common intestinal bacteria. With one exception, none of the probes showed cross-hybridization under stringent conditions. The species-specific probes were applied to fecal samples obtained from 12 healthy volunteers. E. biforme, E. cylindroides, E. hadrum, E. lentum, and E. ventriosum could be determined. All other Eubacterium species for which probes had been designed were under the detection limit of 10(7) cells g (dry weight) of feces(-1). The cell counts obtained are essentially in accordance with the literature data, which are based on colony counts. This shows that whole-cell in situ hybridization with species-specific probes is a valuable tool for the enumeration of Eubacterium species in feces.

  17. Functional role of bacteriophage transfer RNAs: codon usage analysis of genomic sequences stored in the GENBANK/EMBL/DDBJ databases

    Directory of Open Access Journals (Sweden)

    T Kunisawa

    2006-01-01

    Full Text Available Complete genomic sequence data are stored in the public GenBank/EMBL/DDBJ databases so that any investigator can make use of the data. This report describes a comparative analysis of codon usage that is impossible without such a public and open data system. A limited number of bacteriophages harbor their own transfer RNAs. Based on a comparison between T4 phage-encoded tRNA species and the relative cellular amounts of host Escherichia coli tRNAs, it is hypothesized that T4 tRNAs could serve to supplement host isoacceptor tRNA species that are present in minor amounts and thus enhance the translational efficiency of phage proteins. When compared to their respective host bacteria, the codon usage data of bacteriophages D3, φC31, HP1, D29 and 933W all show an increased frequency of synonymous codons or amino acids that correspond to phage tRNA species, suggesting their supplemental role in the efficient production of phage proteins. The data-analysis presents an example in which the availability of an open and fully accessible database system would allow one to obtain comprehensive insights into a fundamental problem in molecular biology.

  18. Next-generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species in East Australia (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Chen, Ching-Hung; Hsiao, Chung-Der; Durand, Jean-Dominique

    2016-09-01

    In this study, the complete mitogenome sequence of a cryptic species from East Australia (Mugil sp. H) belonging to the worldwide Mugil cephalus species complex (Teleostei: Mugilidae) has been sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,845 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop consists of 1067 bp length, and is located between tRNA-Pro and tRNA-Phe. The overall base composition of East Australia M. cephalus is 28.4% for A, 29.3% for C, 15.4% for G and 26.9% for T. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  19. NSun2-Mediated Cytosine-5 Methylation of Vault Noncoding RNA Determines Its Processing into Regulatory Small RNAs

    Directory of Open Access Journals (Sweden)

    Shobbir Hussain

    2013-07-01

    Full Text Available Autosomal-recessive loss of the NSUN2 gene has been identified as a causative link to intellectual disability disorders in humans. NSun2 is an RNA methyltransferase modifying cytosine-5 in transfer RNAs (tRNAs, yet the identification of cytosine methylation in other RNA species has been hampered by the lack of sensitive and reliable molecular techniques. Here, we describe miCLIP as an additional approach for identifying RNA methylation sites in transcriptomes. miCLIP is a customized version of the individual-nucleotide-resolution crosslinking and immunoprecipitation (iCLIP method. We confirm site-specific methylation in tRNAs and additional messenger and noncoding RNAs (ncRNAs. Among these, vault ncRNAs contained six NSun2-methylated cytosines, three of which were confirmed by RNA bisulfite sequencing. Using patient cells lacking the NSun2 protein, we further show that loss of cytosine-5 methylation in vault RNAs causes aberrant processing into Argonaute-associated small RNA fragments that can function as microRNAs. Thus, impaired processing of vault ncRNA may contribute to the etiology of NSun2-deficiency human disorders.

  20. Radionuclide transfer to freshwater biota species: review of Russian language studies

    Energy Technology Data Exchange (ETDEWEB)

    Fesenko, S., E-mail: s.fesenko@iaea.or [International Atomic Energy Agency, NAAL, 1400 Vienna (Austria); Fesenko, J.; Sanzharova, N.; Karpenko, E.; Titov, I. [Russian Institute of Agricultural Radiology and Radioecology, 249020 Obninsk (Russian Federation)

    2011-01-15

    Around 130 publications reporting studies on radionuclide transfer to freshwater biota species conducted in the former USSR were reviewed to provide the concentration ratio values. None of these studies were available up to now in the English language reviews or publications. The values derived have been compared with the CR values used for freshwater systems in the International reviews. For some radionuclides reviewed in this paper, the data are in good agreement with the mean CR values presented earlier, however for some of them, in particular, for {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values given here are substantially different from those presented earlier. The data reported in this paper for thirty five radionuclides and eleven groups of freshwater species markedly improve the extent of available data for evaluation of radiation impact on freshwater species. - Research highlights: {yields} The paper provides information on concentration ratios to freshwater biota species for 35 radionuclides. Many of the data are for {sup 90}Sr and {sup 137}Cs. {yields} For the majority of radionuclides reviewed in this paper, the CR values are in good agreement with those given in the recent International reviews. {yields} For {sup 241}Am (bivalve molluscs, gastropods and pelagic fish), {sup 60}Co (gastropods, benthic fish and insect larvae), {sup 90}Sr and {sup 137}Cs (benthic fish and zooplankton), the mean values based on review of the Russian language publications are substantially different from those presented in the International reviews. {yields} Information presented in the paper significantly increases the availability of data on radionuclide accumulation in freshwater species.

  1. Microbial community profiling of fresh basil and pitfalls in taxonomic assignment of enterobacterial pathogenic species based upon 16S rRNA amplicon sequencing.

    Science.gov (United States)

    Ceuppens, Siele; De Coninck, Dieter; Bottledoorn, Nadine; Van Nieuwerburgh, Filip; Uyttendaele, Mieke

    2017-09-18

    Application of 16S rRNA (gene) amplicon sequencing on food samples is increasingly applied for assessing microbial diversity but may as unintended advantage also enable simultaneous detection of any human pathogens without a priori definition. In the present study high-throughput next-generation sequencing (NGS) of the V1-V2-V3 regions of the 16S rRNA gene was applied to identify the bacteria present on fresh basil leaves. However, results were strongly impacted by variations in the bioinformatics analysis pipelines (MEGAN, SILVAngs, QIIME and MG-RAST), including the database choice (Greengenes, RDP and M5RNA) and the annotation algorithm (best hit, representative hit and lowest common ancestor). The use of pipelines with default parameters will lead to discrepancies. The estimate of microbial diversity of fresh basil using 16S rRNA (gene) amplicon sequencing is thus indicative but subject to biases. Salmonella enterica was detected at low frequencies, between 0.1% and 0.4% of bacterial sequences, corresponding with 37 to 166 reads. However, this result was dependent upon the pipeline used: Salmonella was detected by MEGAN, SILVAngs and MG-RAST, but not by QIIME. Confirmation of Salmonella sequences by real-time PCR was unsuccessful. It was shown that taxonomic resolution obtained from the short (500bp) sequence reads of the 16S rRNA gene containing the hypervariable regions V1-V3 cannot allow distinction of Salmonella with closely related enterobacterial species. In conclusion 16S amplicon sequencing, getting the status of standard method in microbial ecology studies of foods, needs expertise on both bioinformatics and microbiology for analysis of results. It is a powerful tool to estimate bacterial diversity but amenable to biases. Limitations concerning taxonomic resolution for some bacterial species or its inability to detect sub-dominant (pathogenic) species should be acknowledged in order to avoid overinterpretation of results. Copyright © 2017 Elsevier B

  2. Role of plant MicroRNA in cross-species regulatory networks of humans.

    Science.gov (United States)

    Zhang, Hao; Li, Yanpu; Liu, Yuanning; Liu, Haiming; Wang, Hongyu; Jin, Wen; Zhang, Yanmei; Zhang, Chao; Xu, Dong

    2016-08-08

    It has been found that microRNAs (miRNAs) can function as a regulatory factor across species. For example, food-derived plant miRNAs may pass through the gastrointestinal (GI) tract, enter into the plasma and serum of mammals, and interact with endogenous RNAs to regulate their expression. Although this new type of regulatory mechanism is not well understood, it provides a fresh look at the relationship between food consumption and physiology. To investigate this new type of mechanism, we conducted a systematic computational study to analyze the potential functions of these dietary miRNAs in the human body. In this paper, we predicted human and plant target genes using RNAhybrid and set some criteria to further filter them. Then we built the cross-species regulatory network according to the filtered targets, extracted central nodes by PageRank algorithm and built core modules. We summarized the functions of these modules to three major categories: ion transport, metabolic process and stress response, and especially some target genes are highly related to ion transport, polysaccharides and the lipid metabolic process. Through functional analysis, we found that human and plants have similar functions such as ion transport and stress response, so our study also indicates the existence of a close link between exogenous plant miRNA targets and digestive/urinary organs. According to our analysis results, we suggest that the ingestion of these plant miRNAs may have a functional impact on consuming organisms in a cross-kingdom way, and the dietary habit may affect the physiological condition at a genetic level. Our findings may be useful for discovering cross-species regulatory mechanism in further study.

  3. Modulation of microRNA activity by semi-microRNAs (smiRNAs

    Directory of Open Access Journals (Sweden)

    Isabelle ePlante

    2012-06-01

    Full Text Available The ribonuclease Dicer plays a central role in the microRNA pathway by catalyzing the formation of 19 to 24-nucleotide (nt long microRNAs. Subsequently incorporated into Ago2 effector complexes, microRNAs are known to regulate messenger RNA (mRNA translation. Whether shorter RNA species derived from microRNAs exist and play a role in mRNA regulation remains unknown. Here, we report the serendipitous discovery of a 12-nt long RNA species corresponding to the 5’ region of the microRNA let-7, and tentatively termed semi-microRNA, or smiRNA. Using a smiRNA derived from the precursor of miR-223 as a model, we show that 12-nt long smiRNA species are devoid of any direct mRNA regulatory activity, as assessed in a reporter gene activity assay in transfected cultured human cells. However, smiR-223 was found to modulate the ability of the microRNA from which it derives to mediate translational repression or cleavage of reporter mRNAs. Our findings suggest that smiRNAs may be generated along the microRNA pathway and participate to the control of gene expression by regulating the activity of the related full-length mature microRNA in vivo.

  4. Evolutionary Limitation and Opportunities for Developing tRNA Synthetase Inhibitors with 5-Binding-Mode Classification

    Directory of Open Access Journals (Sweden)

    Pengfei Fang

    2015-12-01

    Full Text Available Aminoacyl-tRNA synthetases (aaRSs are enzymes that catalyze the transfer of amino acids to their cognate tRNAs as building blocks for translation. Each of the aaRS families plays a pivotal role in protein biosynthesis and is indispensable for cell growth and survival. In addition, aaRSs in higher species have evolved important non-translational functions. These translational and non-translational functions of aaRS are attractive for developing antibacterial, antifungal, and antiparasitic agents and for treating other human diseases. The interplay between amino acids, tRNA, ATP, EF-Tu and non-canonical binding partners, had shaped each family with distinct pattern of key sites for regulation, with characters varying among species across the path of evolution. These sporadic variations in the aaRSs offer great opportunity to target these essential enzymes for therapy. Up to this day, growing numbers of aaRS inhibitors have been discovered and developed. Here, we summarize the latest developments and structural studies of aaRS inhibitors, and classify them with distinct binding modes into five categories.

  5. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions.

    Science.gov (United States)

    Vacchi-Suzzi, Caterina; Hahne, Florian; Scheubel, Philippe; Marcellin, Magali; Dubost, Valerie; Westphal, Magdalena; Boeglen, Catherine; Büchmann-Møller, Stine; Cheung, Ming Sin; Cordier, André; De Benedetto, Christopher; Deurinck, Mark; Frei, Moritz; Moulin, Pierre; Oakeley, Edward; Grenet, Olivier; Grevot, Armelle; Stull, Robert; Theil, Diethilde; Moggs, Jonathan G; Marrer, Estelle; Couttet, Philippe

    2013-01-01

    MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves) in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744) and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*). The relative abundance of myocardium-enriched (miR-1) and valve-enriched (miR-125b-5p and miR-204) microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.

  6. Heart structure-specific transcriptomic atlas reveals conserved microRNA-mRNA interactions.

    Directory of Open Access Journals (Sweden)

    Caterina Vacchi-Suzzi

    Full Text Available MicroRNAs are short non-coding RNAs that regulate gene expression at the post-transcriptional level and play key roles in heart development and cardiovascular diseases. Here, we have characterized the expression and distribution of microRNAs across eight cardiac structures (left and right ventricles, apex, papillary muscle, septum, left and right atrium and valves in rat, Beagle dog and cynomolgus monkey using microRNA sequencing. Conserved microRNA signatures enriched in specific heart structures across these species were identified for cardiac valve (miR-let-7c, miR-125b, miR-127, miR-199a-3p, miR-204, miR-320, miR-99b, miR-328 and miR-744 and myocardium (miR-1, miR-133b, miR-133a, miR-208b, miR-30e, miR-499-5p, miR-30e*. The relative abundance of myocardium-enriched (miR-1 and valve-enriched (miR-125b-5p and miR-204 microRNAs was confirmed using in situ hybridization. MicroRNA-mRNA interactions potentially relevant for cardiac functions were explored using anti-correlation expression analysis and microRNA target prediction algorithms. Interactions between miR-1/Timp3, miR-125b/Rbm24, miR-204/Tgfbr2 and miR-208b/Csnk2a2 were identified and experimentally investigated in human pulmonary smooth muscle cells and luciferase reporter assays. In conclusion, we have generated a high-resolution heart structure-specific mRNA/microRNA expression atlas for three mammalian species that provides a novel resource for investigating novel microRNA regulatory circuits involved in cardiac molecular physiopathology.

  7. Comparison of bacteroides-prevotella 16S rRNA genetic markers for fecal samples from different animal species.

    Science.gov (United States)

    Fogarty, Lisa R; Voytek, Mary A

    2005-10-01

    To effectively manage surface and ground waters it is necessary to improve our ability to detect and identify sources of fecal contamination. We evaluated the use of the anaerobic bacterial group Bacteroides-Prevotella as a potential fecal indicator. Terminal restriction length polymorphism (T-RFLP) of the 16S rRNA genes from this group was used to determine differences in populations and to identify any unique populations in chickens, cows, deer, dogs, geese, horses, humans, pigs, and seagulls. The group appears to be a good potential fecal indicator in all groups tested except for avians. Cluster analysis of Bacteroides-Prevotella community T-RFLP profiles indicates that Bacteroides-Prevotella populations from samples of the same host species are much more similar to each other than to samples from different source species. We were unable to identify unique peaks that were exclusive to any source species; however, for most host species, at least one T-RFLP peak was identified to be more commonly found in that species, and a combination of peaks could be used to identify the source. T-RFLP profiles obtained from water spiked with known-source feces contained the expected diagnostic peaks from the source. These results indicate that the approach of identifying Bacteroides-Prevotella molecular markers associated with host species might be useful in identifying sources of fecal contamination in the environment.

  8. Rapid differentiation of Francisella species and subspecies by fluorescent in situ hybridization targeting the 23S rRNA

    Directory of Open Access Journals (Sweden)

    Trebesius Karlheinz

    2010-03-01

    Full Text Available Abstract Background Francisella (F. tularensis is the causative agent of tularemia. Due to its low infectious dose, ease of dissemination and high case fatality rate, F. tularensis was the subject in diverse biological weapons programs and is among the top six agents with high potential if misused in bioterrorism. Microbiological diagnosis is cumbersome and time-consuming. Methods for the direct detection of the pathogen (immunofluorescence, PCR have been developed but are restricted to reference laboratories. Results The complete 23S rRNA genes of representative strains of F. philomiragia and all subspecies of F. tularensis were sequenced. Single nucleotide polymorphisms on species and subspecies level were confirmed by partial amplification and sequencing of 24 additional strains. Fluorescent In Situ Hybridization (FISH assays were established using species- and subspecies-specific probes. Different FISH protocols allowed the positive identification of all 4 F. philomiragia strains, and more than 40 F. tularensis strains tested. By combination of different probes, it was possible to differentiate the F. tularensis subspecies holarctica, tularensis, mediasiatica and novicida. No cross reactivity with strains of 71 clinically relevant bacterial species was observed. FISH was also successfully applied to detect different F. tularensis strains in infected cells or tissue samples. In blood culture systems spiked with F. tularensis, bacterial cells of different subspecies could be separated within single samples. Conclusion We could show that FISH targeting the 23S rRNA gene is a rapid and versatile method for the identification and differentiation of F. tularensis isolates from both laboratory cultures and clinical samples.

  9. Detection of Leishmania RNA virus in Leishmania parasites.

    Directory of Open Access Journals (Sweden)

    Haroun Zangger

    Full Text Available Patients suffering from cutaneous leishmaniasis (CL caused by New World Leishmania (Viannia species are at high risk of developing mucosal (ML or disseminated cutaneous leishmaniasis (DCL. After the formation of a primary skin lesion at the site of the bite by a Leishmania-infected sand fly, the infection can disseminate to form secondary lesions. This metastatic phenotype causes significant morbidity and is often associated with a hyper-inflammatory immune response leading to the destruction of nasopharyngeal tissues in ML, and appearance of nodules or numerous ulcerated skin lesions in DCL. Recently, we connected this aggressive phenotype to the presence of Leishmania RNA virus (LRV in strains of L. guyanensis, showing that LRV is responsible for elevated parasitaemia, destructive hyper-inflammation and an overall exacerbation of the disease. Further studies of this relationship and the distribution of LRVs in other Leishmania strains and species would benefit from improved methods of viral detection and quantitation, especially ones not dependent on prior knowledge of the viral sequence as LRVs show significant evolutionary divergence.This study reports various techniques, among which, the use of an anti-dsRNA monoclonal antibody (J2 stands out for its specific and quantitative recognition of dsRNA in a sequence-independent fashion. Applications of J2 include immunofluorescence, ELISA and dot blot: techniques complementing an arsenal of other detection tools, such as nucleic acid purification and quantitative real-time-PCR. We evaluate each method as well as demonstrate a successful LRV detection by the J2 antibody in several parasite strains, a freshly isolated patient sample and lesion biopsies of infected mice.We propose that refinements of these methods could be transferred to the field for use as a diagnostic tool in detecting the presence of LRV, and potentially assessing the LRV-related risk of complications in cutaneous leishmaniasis.

  10. Isolation of endophytic bacteria from arboreal species of the Amazon and identification by sequencing of the 16S rRNA encoding gene

    Directory of Open Access Journals (Sweden)

    Mariza M. Coêlho

    2011-01-01

    Full Text Available Endophytic bacteria from three arboreal species native to the Amazon (Carapa guianenses, Ceiba pentandra, and Swietenia macrophylla, were isolated and identified, through partial sequencing of the 16S rRNA encoding gene. From these, 16 isolates were obtained, although, when compared to sequences deposited in GenBank, only seven had produced identifiable fragments. Bacillus, Pantoea and two non-culturable samples were identified. Results obtained through sequence analysis revealed low genetic diversity across the isolates, even when analyzing different species and plant structures. This is the first report concerning the isolation and identification of endophytic bacteria in these plant species.

  11. Characterization of functional SSR markers in Prosopis alba and their transferability across Prosopis species

    OpenAIRE

    María F. Pomponio; Cintia Acuña; Vivien Pentreath; Diego L. Lauenstein; Susana M. Poltri; Susana Torales

    2015-01-01

    Aim of study: The aim of the study was to characterize functional microsatellite markers in Prosopis alba and examine the transferability to species from the Prosopis genus. Area of the study: samples were obtained from natural populations of Argentina. Material and Methods: Eleven SSR functional markers related to stress and metabolism were amplified in a sample of 152 genotypes from P.alba, P. denudans, P. hassleriP. chilensis, P. flexuosa, and interspecific hybrids. Main res...

  12. Matrin 3 binds and stabilizes mRNA.

    Directory of Open Access Journals (Sweden)

    Maayan Salton

    Full Text Available Matrin 3 (MATR3 is a highly conserved, inner nuclear matrix protein with two zinc finger domains and two RNA recognition motifs (RRM, whose function is largely unknown. Recently we found MATR3 to be phosphorylated by the protein kinase ATM, which activates the cellular response to double strand breaks in the DNA. Here, we show that MATR3 interacts in an RNA-dependent manner with several proteins with established roles in RNA processing, and maintains its interaction with RNA via its RRM2 domain. Deep sequencing of the bound RNA (RIP-seq identified several small noncoding RNA species. Using microarray analysis to explore MATR3's role in transcription, we identified 77 transcripts whose amounts depended on the presence of MATR3. We validated this finding with nine transcripts which were also bound to the MATR3 complex. Finally, we demonstrated the importance of MATR3 for maintaining the stability of several of these mRNA species and conclude that it has a role in mRNA stabilization. The data suggest that the cellular level of MATR3, known to be highly regulated, modulates the stability of a group of gene transcripts.

  13. Deciphering the role of a miRNA in rice domestication

    Directory of Open Access Journals (Sweden)

    Swetha Chenna

    2017-10-01

    Full Text Available MicroRNAs (miRNAs are a class of 21 nt non-coding small RNAs (sRNAs produced from endogenously expressed MIR genes. miRNAs are mostly involved in development and disease resistance. We are interested in identifying key miRNAs that are differentially expressed among wild and cultivated rice species. Analysis of sRNA datasets from two wild species (O. nivara and O. rufipogon and one cultivated species of rice (O. sativa var. indica Pusa Basmati-1, revealed a surprisingly higher abundance of small RNAs originating from Chromosome 2 in wild rice species. This locus codes for a novel 22 nt miRNA. This novel miRNA was found to be highly abundant in flag leaf of wild species, a tissue that usually provides 70% of energy required for grain filling. This miRNA targets a group of proteins (Os03g0273200, Os01g0827300, Os01g0850700, Os11g0708100 and Os01g0842500 which are involved in secondary metabolite production, although a functional significance of this interaction has not been understood. The expression of these targets also differs across the species. Typical of 22 nt miRNAs, the identified miRNA also triggers a secondary cascade silencing by producing small interfering RNAs (siRNAs from target mRNAs in O. nivara. These secondary siRNAs are observed only among wild rice species but not in cultivated rice. Currently we are using a range of genetic, biochemical and molecular techniques to understand role of this novel miRNA in domestication of rice.

  14. The Roles of Mitochondrion in Intergenomic Gene Transfer in Plants: A Source and a Pool

    Directory of Open Access Journals (Sweden)

    Nan Zhao

    2018-02-01

    Full Text Available Intergenomic gene transfer (IGT is continuous in the evolutionary history of plants. In this field, most studies concentrate on a few related species. Here, we look at IGT from a broader evolutionary perspective, using 24 plants. We discover many IGT events by assessing the data from nuclear, mitochondrial and chloroplast genomes. Thus, we summarize the two roles of the mitochondrion: a source and a pool. That is, the mitochondrion gives massive sequences and integrates nuclear transposons and chloroplast tRNA genes. Though the directions are opposite, lots of likenesses emerge. First, mitochondrial gene transfer is pervasive in all 24 plants. Second, gene transfer is a single event of certain shared ancestors during evolutionary divergence. Third, sequence features of homologies vary for different purposes in the donor and recipient genomes. Finally, small repeats (or micro-homologies contribute to gene transfer by mediating recombination in the recipient genome.

  15. RNA deep sequencing reveals differential microRNA expression during development of sea urchin and sea star.

    Directory of Open Access Journals (Sweden)

    Sabah Kadri

    Full Text Available microRNAs (miRNAs are small (20-23 nt, non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin and Patiria miniata (sea star are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc. to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads. Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common. We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html.

  16. RNA Deep Sequencing Reveals Differential MicroRNA Expression during Development of Sea Urchin and Sea Star

    Science.gov (United States)

    Kadri, Sabah; Hinman, Veronica F.; Benos, Panayiotis V.

    2011-01-01

    microRNAs (miRNAs) are small (20–23 nt), non-coding single stranded RNA molecules that act as post-transcriptional regulators of mRNA gene expression. They have been implicated in regulation of developmental processes in diverse organisms. The echinoderms, Strongylocentrotus purpuratus (sea urchin) and Patiria miniata (sea star) are excellent model organisms for studying development with well-characterized transcriptional networks. However, to date, nothing is known about the role of miRNAs during development in these organisms, except that the genes that are involved in the miRNA biogenesis pathway are expressed during their developmental stages. In this paper, we used Illumina Genome Analyzer (Illumina, Inc.) to sequence small RNA libraries in mixed stage population of embryos from one to three days after fertilization of sea urchin and sea star (total of 22,670,000 reads). Analysis of these data revealed the miRNA populations in these two species. We found that 47 and 38 known miRNAs are expressed in sea urchin and sea star, respectively, during early development (32 in common). We also found 13 potentially novel miRNAs in the sea urchin embryonic library. miRNA expression is generally conserved between the two species during development, but 7 miRNAs are highly expressed in only one species. We expect that our two datasets will be a valuable resource for everyone working in the field of developmental biology and the regulatory networks that affect it. The computational pipeline to analyze Illumina reads is available at http://www.benoslab.pitt.edu/services.html. PMID:22216218

  17. Thiol-linked alkylation of RNA to assess expression dynamics.

    Science.gov (United States)

    Herzog, Veronika A; Reichholf, Brian; Neumann, Tobias; Rescheneder, Philipp; Bhat, Pooja; Burkard, Thomas R; Wlotzka, Wiebke; von Haeseler, Arndt; Zuber, Johannes; Ameres, Stefan L

    2017-12-01

    Gene expression profiling by high-throughput sequencing reveals qualitative and quantitative changes in RNA species at steady state but obscures the intracellular dynamics of RNA transcription, processing and decay. We developed thiol(SH)-linked alkylation for the metabolic sequencing of RNA (SLAM seq), an orthogonal-chemistry-based RNA sequencing technology that detects 4-thiouridine (s 4 U) incorporation in RNA species at single-nucleotide resolution. In combination with well-established metabolic RNA labeling protocols and coupled to standard, low-input, high-throughput RNA sequencing methods, SLAM seq enabled rapid access to RNA-polymerase-II-dependent gene expression dynamics in the context of total RNA. We validated the method in mouse embryonic stem cells by showing that the RNA-polymerase-II-dependent transcriptional output scaled with Oct4/Sox2/Nanog-defined enhancer activity, and we provide quantitative and mechanistic evidence for transcript-specific RNA turnover mediated by post-transcriptional gene regulatory pathways initiated by microRNAs and N 6 -methyladenosine. SLAM seq facilitates the dissection of fundamental mechanisms that control gene expression in an accessible, cost-effective and scalable manner.

  18. IIKmTA: Inter and Intra Kingdom miRNA-Target Analyzer.

    Science.gov (United States)

    Mal, Chittabrata; Aftabuddin, Md; Kundu, Sudip

    2018-03-16

    Growing evidences suggest that microRNAs (miRNAs) can efficiently regulate gene expression at intracellular and extracellular levels. It has been previously reported that plant/food-derived miRNAs are highly enriched in human serum or serum from phytophagous animals, and they are responsible for regulating mammalian gene expression. Thus, miRNAs could function as active signaling molecules, which carry information across distinct species or even kingdoms. However, the mode of miRNA shuttling among various organisms is still a mystery to unravel. The intra and inter kingdom miRNA transfer has boosted up the hypothesis about the potential impact of plant or animal miRNAs on each other. To our knowledge, the software for analyzing cross-kingdom miRNA-targets is lacking. We have developed a web-tool "IIKmTA: Inter and Intra Kingdom miRNA-Target Analyzer" utilizing a database; the data of which have been collected from another web server. Here, user can analyze the targeting potential of (i) plant miRNAs on animal UTRs (Untranslated regions), and vice versa (i.e., inter kingdom), (ii) plant miRNAs on plant UTRs and animal miRNAs on animal UTRs (i.e., intra kingdom). Further, user can analyze (i) miRNAs to targets, (ii) targets to miRNAs, and (iii) miRNA sets targeting sets of targets. For a wide variety of animal and plant species, IIKmTA can identify the miRNA binding sites in the probable target UTRs. Moreover, GC% and AU% of miRNAs will be calculated. All the results can be saved as .csv file. Recent researches identified miRNAs in plants and human secretions and their role in regulating the human genes. Such findings indicate the therapeutic role of secretory miRNAs of such plants which exhibits medicinal value and in near future many diseases may be treated by consumption of these plant miRNAs through food. Using our newly developed database and analyzing tool, one can easily determine the different relationships between miRNAs and their targets across kingdoms

  19. Initiation of ribosomal RNA synthesis in Escherichia coli

    NARCIS (Netherlands)

    Hamming, Jantina

    1981-01-01

    Het E. coli chromosoom is éên lang circulair dubbelstrengs DNA molecuul en beslaat ongeveer 3000 genen. Het enzym RNA polymerase is verantwoordelijk voor de transcriptie in RNA van alle genetische informatie in de ce1. Er zijn 2 soorten transcripten: de ribosomale en transfer RNAs die deel uitmaken

  20. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Directory of Open Access Journals (Sweden)

    Cuihua Gu

    2018-02-01

    Full Text Available Qat (Catha edulis, Celastraceae is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA genes, 8 ribosomal RNA (rRNA genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae.

  1. The Complete Chloroplast Genome of Catha edulis: A Comparative Analysis of Genome Features with Related Species

    Science.gov (United States)

    Tembrock, Luke R.; Zheng, Shaoyu; Wu, Zhiqiang

    2018-01-01

    Qat (Catha edulis, Celastraceae) is a woody evergreen species with great economic and cultural importance. It is cultivated for its stimulant alkaloids cathine and cathinone in East Africa and southwest Arabia. However, genome information, especially DNA sequence resources, for C. edulis are limited, hindering studies regarding interspecific and intraspecific relationships. Herein, the complete chloroplast (cp) genome of Catha edulis is reported. This genome is 157,960 bp in length with 37% GC content and is structurally arranged into two 26,577 bp inverted repeats and two single-copy areas. The size of the small single-copy and the large single-copy regions were 18,491 bp and 86,315 bp, respectively. The C. edulis cp genome consists of 129 coding genes including 37 transfer RNA (tRNA) genes, 8 ribosomal RNA (rRNA) genes, and 84 protein coding genes. For those genes, 112 are single copy genes and 17 genes are duplicated in two inverted regions with seven tRNAs, four rRNAs, and six protein coding genes. The phylogenetic relationships resolved from the cp genome of qat and 32 other species confirms the monophyly of Celastraceae. The cp genomes of C. edulis, Euonymus japonicus and seven Celastraceae species lack the rps16 intron, which indicates an intron loss took place among an ancestor of this family. The cp genome of C. edulis provides a highly valuable genetic resource for further phylogenomic research, barcoding and cp transformation in Celastraceae. PMID:29425128

  2. Development and cross-species/genera transferability of microsatellite markers discovered using 454 genome sequencing in chokecherry (Prunus virginiana L.).

    Science.gov (United States)

    Wang, Hongxia; Walla, James A; Zhong, Shaobin; Huang, Danqiong; Dai, Wenhao

    2012-11-01

    Chokecherry (Prunus virginiana L.) (2n = 4x = 32) is a unique Prunus species for both genetics and disease-resistance research due to its tetraploid nature and X-disease resistance. However, no genetic and genomic information on chokecherry is available. A partial chokecherry genome was sequenced using Roche 454 sequencing technology. A total of 145,094 reads covering 4.8 Mbp of the chokecherry genome were generated and 15,113 contigs were assembled, of which 11,675 contigs were larger than 100 bp in size. A total of 481 SSR loci were identified from 234 (out of 11,675) contigs and 246 polymerase chain reaction (PCR) primer pairs were designed. Of 246 primers, 212 (86.2 %) effectively produced amplification from the genomic DNA of chokecherry. All 212 amplifiable chokecherry primers were used to amplify genomic DNA from 11 other rosaceous species (sour cherry, sweet cherry, black cherry, peach, apricot, plum, apple, crabapple, pear, juneberry, and raspberry). Thus, chokecherry SSR primers can be transferable across Prunus species and other rosaceous species. An average of 63.2 and 58.7 % of amplifiable chokecherry primers amplified DNA from cherry and other Prunus species, respectively, while 47.2 % of amplifiable chokecherry primers amplified DNA from other rosaceous species. Using random genome sequence data generated from next-generation sequencing technology to identify microsatellite loci appears to be rapid and cost-efficient, particularly for species with no sequence information available. Sequence information and confirmed transferability of the identified chokecherry SSRs among species will be valuable for genetic research in Prunus and other rosaceous species. Key message A total of 246 SSR primers were identified from chokecherry genome sequences. Of which, 212 were confirmed amplifiable both in chokecherry and other 11 other rosaceous species.

  3. Species of Wadicosa (Araneae, Lycosidae): a new species from Madagascar.

    Science.gov (United States)

    Kronestedt, Torbjörn

    2017-05-10

    Since establishing the wolf spider genus Wadicosa Zyuzin, 1985 (Zyuzin 1985), eleven species have been accepted in it, either by transfer from Lycosa Latreille, 1804 or Pardosa C.L. Koch, 1847 or by original designation (WSC 2017). However, according to Kronestedt (1987), additional species wait to be formally transferred to Wadicosa. The genus is restricted to the Old World, with one species, Wadicosa jocquei Kronestedt, 2015, recently described from Madagascar and surrounding islands.

  4. Detection of Horizontal Gene Transfers from Phylogenetic Comparisons

    Science.gov (United States)

    Pylro, Victor Satler; Vespoli, Luciano de Souza; Duarte, Gabriela Frois; Yotoko, Karla Suemy Clemente

    2012-01-01

    Bacterial phylogenies have become one of the most important challenges for microbial ecology. This field started in the mid-1970s with the aim of using the sequence of the small subunit ribosomal RNA (16S) tool to infer bacterial phylogenies. Phylogenetic hypotheses based on other sequences usually give conflicting topologies that reveal different evolutionary histories, which in some cases may be the result of horizontal gene transfer events. Currently, one of the major goals of molecular biology is to understand the role that horizontal gene transfer plays in species adaptation and evolution. In this work, we compared the phylogenetic tree based on 16S with the tree based on dszC, a gene involved in the cleavage of carbon-sulfur bonds. Bacteria of several genera perform this survival task when living in environments lacking free mineral sulfur. The biochemical pathway of the desulphurization process was extensively studied due to its economic importance, since this step is expensive and indispensable in fuel production. Our results clearly show that horizontal gene transfer events could be detected using common phylogenetic methods with gene sequences obtained from public sequence databases. PMID:22675653

  5. Secondary Structural Models (16S rRNA of Polyhydroxyalkanoates Producing Bacillus Species Isolated from Different Rhizospheric Soil: Phylogenetics and Chemical Analysis

    Directory of Open Access Journals (Sweden)

    Swati Mohapatra

    2016-09-01

    Full Text Available Polyhydroxyalkanoates (PHAs producing bacterial isolates are gaining more importance over the world due to the synthesis of a biodegradable polymer which is extremely desirable to substitute synthetic plastics. PHAs are produced by various microorganisms under certain stress conditions. In this study, sixteen bacterial isolates characterized previously by partial 16S rRNA gene sequencing (NCBI Accession No. KF626466 to KF626481 were again stained by Nile red after three years of preservation in order to confirm their ability to accumulate PHAs. Also, phylogenetic analysis carried out in the present investigation evidenced that the bacterial species belonging to genus Bacillus are the dominant flora of the rhizospheric region, with a potentiality of biodegradable polymer (PHAs production. Again, RNA secondary structure prediction hypothesized that there is no direct correlation between RNA folding pattern stability with a rate of PHAs production among the selected isolates of genus Bacillus.

  6. Complete mitochondrial genomes and nuclear ribosomal RNA operons of two species of Diplostomum (Platyhelminthes: Trematoda): a molecular resource for taxonomy and molecular epidemiology of important fish pathogens.

    Science.gov (United States)

    Brabec, Jan; Kostadinova, Aneta; Scholz, Tomáš; Littlewood, D Timothy J

    2015-06-19

    The genus Diplostomum (Platyhelminthes: Trematoda: Diplostomidae) is a diverse group of freshwater parasites with complex life-cycles and global distribution. The larval stages are important pathogens causing eye fluke disease implicated in substantial impacts on natural fish populations and losses in aquaculture. However, the problematic species delimitation and difficulties in the identification of larval stages hamper the assessment of the distributional and host ranges of Diplostomum spp. and their transmission ecology. Total genomic DNA was isolated from adult worms and shotgun sequenced using Illumina MiSeq technology. Mitochondrial (mt) genomes and nuclear ribosomal RNA (rRNA) operons were assembled using established bioinformatic tools and fully annotated. Mt protein-coding genes and nuclear rRNA genes were subjected to phylogenetic analysis by maximum likelihood and the resulting topologies compared. We characterised novel complete mt genomes and nuclear rRNA operons of two closely related species, Diplostomum spathaceum and D. pseudospathaceum. Comparative mt genome assessment revealed that the cox1 gene and its 'barcode' region used for molecular identification are the most conserved regions; instead, nad4 and nad5 genes were identified as most promising molecular diagnostic markers. Using the novel data, we provide the first genome wide estimation of the phylogenetic relationships of the order Diplostomida, one of the two fundamental lineages of the Digenea. Analyses of the mitogenomic data invariably recovered the Diplostomidae as a sister lineage of the order Plagiorchiida rather than as a basal lineage of the Diplostomida as inferred in rDNA phylogenies; this was concordant with the mt gene order of Diplostomum spp. exhibiting closer match to the conserved gene order of the Plagiorchiida. Complete sequences of the mt genome and rRNA operon of two species of Diplostomum provide a valuable resource for novel genetic markers for species delineation and

  7. Description of Idiomarina insulisalsae sp. nov., isolated from the soil of a sea salt evaporation pond, proposal to transfer the species of the genus Pseudidiomarina to the genus Idiomarina and emended description of the genus Idiomarina.

    Science.gov (United States)

    Taborda, Marco; Antunes, André; Tiago, Igor; Veríssimo, António; Nobre, M Fernanda; da Costa, Milton S

    2009-09-01

    A halophilic, aerobic Gram-negative bacterium, designated strain CVS-6(T), was isolated from a sea salt evaporation pond on the Island of Sal in the Cape Verde Archipelago. Phylogenetic analysis of the 16S rRNA gene sequence revealed a clear affiliation of the organism with members of the family Idiomarinaceae. Sequence similarities between CVS-6(T) and the type strains of the species of the genera Pseudidiomarina and Idiomarina ranged from 93.7% to 96.9%. The major isoprenoid quinone was ubiquinone 8 (Q-8). The major cellular fatty acids were 15:0 iso (21.8%), 17:0 iso (12.5%), 17:1 iso omega9c (10.7%), and 16:1 omega7c (10.6%). The DNA G+C content was 51.6 mol%. The species represented by strain CVS-6(T) could be distinguished from the species of the genera Pseudidiomarina and Idiomarina; however, it was not possible to distinguish both genera from each other using the phenotypic or chemotaxonomic characteristics examined. Consequently, we propose that the species classified in the genus Pseudidiomarina should be transferred to the genus Idiomarina. We also propose that, on the basis of physiological and biochemical characteristics, strain CVS-6(T) (=LMG 23123=CIP 108836) represents a new species which we name Idiomarina insulisalsae.

  8. Diversity of small RNAs expressed in Pseudomonas species

    DEFF Research Database (Denmark)

    Gomez-Lozano, Mara; Marvig, Rasmus Lykke; Molina-Santiago, Carlos

    2015-01-01

    RNA sequencing (RNA-seq) has revealed several hundreds of previously undetected small RNAs (sRNAs) in all bacterial species investigated, including strains of Pseudomonas aeruginosa, Pseudomonas putida and Pseudomonas syringae. Nonetheless, only little is known about the extent of conservation...... of expressed sRNAs across strains and species. In this study, we have used RNA-seq to identify sRNAs in P.putidaDOT-T1E and Pseudomonas extremaustralis 14-3b. This is the first strain of P.extremaustralis and the second strain of P.putida to have their transcriptomes analysed for sRNAs, and we identify...... the presence of around 150 novel sRNAs in each strain. Furthermore, we provide a comparison based on sequence conservation of all the sRNAs detected by RNA-seq in the Pseudomonas species investigated so far. Our results show that the extent of sRNA conservation across different species is very limited...

  9. Evolutionary patterns in the sequence and structure of transfer RNA: early origins of archaea and viruses.

    Directory of Open Access Journals (Sweden)

    Feng-Jie Sun

    2008-03-01

    Full Text Available Transfer RNAs (tRNAs are ancient molecules that are central to translation. Since they probably carry evolutionary signatures that were left behind when the living world diversified, we reconstructed phylogenies directly from the sequence and structure of tRNA using well-established phylogenetic methods. The trees placed tRNAs with long variable arms charging Sec, Tyr, Ser, and Leu consistently at the base of the rooted phylogenies, but failed to reveal groupings that would indicate clear evolutionary links to organismal origin or molecular functions. In order to uncover evolutionary patterns in the trees, we forced tRNAs into monophyletic groups using constraint analyses to generate timelines of organismal diversification and test competing evolutionary hypotheses. Remarkably, organismal timelines showed Archaea was the most ancestral superkingdom, followed by viruses, then superkingdoms Eukarya and Bacteria, in that order, supporting conclusions from recent phylogenomic studies of protein architecture. Strikingly, constraint analyses showed that the origin of viruses was not only ancient, but was linked to Archaea. Our findings have important implications. They support the notion that the archaeal lineage was very ancient, resulted in the first organismal divide, and predated diversification of tRNA function and specificity. Results are also consistent with the concept that viruses contributed to the development of the DNA replication machinery during the early diversification of the living world.

  10. RNA Localization in Astrocytes

    DEFF Research Database (Denmark)

    Thomsen, Rune

    2012-01-01

    , regulation of the blood brain barrier and glial scar tissue formation. Despite the involvement in various CNS functions only a limited number of studies have addressed mRNA localization in astrocytes. This PhD project was initially focused on developing and implementing methods that could be used to asses mRNA......Messenger RNA (mRNA) localization is a mechanism by which polarized cells can regulate protein synthesis to specific subcellular compartments in a spatial and temporal manner, and plays a pivotal role in multiple physiological processes from embryonic development to cell differentiation...... localization in astrocyte protrusions, and following look into the subcellular localization pattern of specific mRNA species of both primary astrocytes isolated from cortical hemispheres of newborn mice, and the mouse astrocyte cell line, C8S. The Boyden chamber cell fractionation assay was optimized, in a way...

  11. RNA damage in biological conflicts and the diversity of responding RNA repair systems

    Science.gov (United States)

    Burroughs, A. Maxwell; Aravind, L.

    2016-01-01

    RNA is targeted in biological conflicts by enzymatic toxins or effectors. A vast diversity of systems which repair or ‘heal’ this damage has only recently become apparent. Here, we summarize the known effectors, their modes of action, and RNA targets before surveying the diverse systems which counter this damage from a comparative genomics viewpoint. RNA-repair systems show a modular organization with extensive shuffling and displacement of the constituent domains; however, a general ‘syntax’ is strongly maintained whereby systems typically contain: a RNA ligase (either ATP-grasp or RtcB superfamilies), nucleotidyltransferases, enzymes modifying RNA-termini for ligation (phosphatases and kinases) or protection (methylases), and scaffold or cofactor proteins. We highlight poorly-understood or previously-uncharacterized repair systems and components, e.g. potential scaffolding cofactors (Rot/TROVE and SPFH/Band-7 modules) with their respective cognate non-coding RNAs (YRNAs and a novel tRNA-like molecule) and a novel nucleotidyltransferase associating with diverse ligases. These systems have been extensively disseminated by lateral transfer between distant prokaryotic and microbial eukaryotic lineages consistent with intense inter-organismal conflict. Components have also often been ‘institutionalized’ for non-conflict roles, e.g. in RNA-splicing and in RNAi systems (e.g. in kinetoplastids) which combine a distinct family of RNA-acting prim-pol domains with DICER-like proteins. PMID:27536007

  12. Optimization of the southern electrophoretic transfer method

    International Nuclear Information System (INIS)

    Allison, M.A.; Fujimura, R.K.

    1987-01-01

    The technique of separating DNA fragments using agarose gel electrophoresis is essential in the analysis of nucleic acids. Further, after the method of transferring specific DNA fragments from those agarose gels to cellulose nitrate membranes was developed in 1975, a method was developed to transfer DNA, RNA, protein and ribonucleoprotein particles from various gels onto diazobenzyloxymethyl (DBM) paper using electrophoresis as well. This paper describes the optimum conditions for quantitative electrophoretic transfer of DNA onto nylon membranes. This method exemplifies the ability to hybridize the membrane more than once with specific RNA probes by providing sufficient retention of the DNA. Furthermore, the intrinsic properties of the nylon membrane allow for an increase in the efficiency and resolution of transfer while using somewhat harsh alkaline conditions. The use of alkaline conditions is of critical importance since we can now denature the DNA during transfer and thus only a short pre-treatment in acid is required for depurination. 9 refs., 7 figs

  13. Phylogeny of Cas9 determines functional exchangeability of dual-RNA and Cas9 among orthologous type II CRISPR-Cas systems

    Science.gov (United States)

    Fonfara, Ines; Le Rhun, Anaïs; Chylinski, Krzysztof; Makarova, Kira S.; Lécrivain, Anne-Laure; Bzdrenga, Janek; Koonin, Eugene V.; Charpentier, Emmanuelle

    2014-01-01

    The CRISPR-Cas-derived RNA-guided Cas9 endonuclease is the key element of an emerging promising technology for genome engineering in a broad range of cells and organisms. The DNA-targeting mechanism of the type II CRISPR-Cas system involves maturation of tracrRNA:crRNA duplex (dual-RNA), which directs Cas9 to cleave invading DNA in a sequence-specific manner, dependent on the presence of a Protospacer Adjacent Motif (PAM) on the target. We show that evolution of dual-RNA and Cas9 in bacteria produced remarkable sequence diversity. We selected eight representatives of phylogenetically defined type II CRISPR-Cas groups to analyze possible coevolution of Cas9 and dual-RNA. We demonstrate that these two components are interchangeable only between closely related type II systems when the PAM sequence is adjusted to the investigated Cas9 protein. Comparison of the taxonomy of bacterial species that harbor type II CRISPR-Cas systems with the Cas9 phylogeny corroborates horizontal transfer of the CRISPR-Cas loci. The reported collection of dual-RNA:Cas9 with associated PAMs expands the possibilities for multiplex genome editing and could provide means to improve the specificity of the RNA-programmable Cas9 tool. PMID:24270795

  14. Horizontal Transfer of Small RNAs To and From Plants

    Directory of Open Access Journals (Sweden)

    Lu eHan

    2015-12-01

    Full Text Available Genetic information is traditionally thought to be transferred from parents to offspring. However, there is evidence indicating that gene transfer can also occur from microbes to higher species, such as plants, invertebrates and vertebrates. This horizontal transfer can be carried out by small RNAs (sRNAs. sRNAs have been recently reported to move across kingdoms as mobile signals, spreading silencing information toward targeted genes. sRNAs, especially microRNAs (miRNAs and small interfering RNAs (siRNAs, are non-coding molecules that control gene expression at the transcriptional or post-transcriptional level. Some sRNAs act in a cross-kingdom manner between animals and their parasites, but little is known about such sRNAs associated with plants. In this report, we provide a brief introduction to miRNAs that are transferred from plants to mammals/viruses and siRNAs that are transferred from microbes to plants. Both miRNAs and siRNAs can exert corresponding functions in the target organisms. Additionally, we provide information concerning a host-induced gene silencing (HIGS system as a potential application that utilizes the transgenic trafficking of RNA molecules to silence the genes of interacting organisms. Moreover, we lay out the controversial views regarding cross-kingdom miRNAs and call for better methodology and experimental design to confirm this unique function of miRNAs.

  15. Phylogenetic diversity of Pasteurellaceae and horizontal gene transfer of leukotoxin in wild and domestic sheep.

    Science.gov (United States)

    Kelley, Scott T; Cassirer, E Frances; Weiser, Glen C; Safaee, Shirin

    2007-01-01

    Wild and domestic animal populations are known to be sources and reservoirs of emerging diseases. There is also a growing recognition that horizontal genetic transfer (HGT) plays an important role in bacterial pathogenesis. We used molecular phylogenetic methods to assess diversity and cross-transmission rates of Pasteurellaceae bacteria in populations of bighorn sheep, Dall's sheep, domestic sheep and domestic goats. Members of the Pasteurellaceae cause an array of deadly illnesses including bacterial pneumonia known as "pasteurellosis", a particularly devastating disease for bighorn sheep. A phylogenetic analysis of a combined dataset of two RNA genes (16S ribosomal RNA and RNAse P RNA) revealed remarkable evolutionary diversity among Pasteurella trehalosi and Mannheimia (Pasteurella) haemolytica bacteria isolated from sheep and goats. Several phylotypes appeared to associate with particular host species, though we found numerous instances of apparent cross-transmission among species and populations. Statistical analyses revealed that host species, geographic locale and biovariant classification, but not virulence, correlated strongly with Pasteurellaceae phylogeny. Sheep host species correlated with P. trehalosi isolates phylogeny (PTP test; P=0.002), but not with the phylogeny of M. haemolytica isolates, suggesting that P. trehalosi bacteria may be more host specific. With regards to populations within species, we also discovered a strong correlation between geographic locale and isolate phylogeny in the Rocky Mountain bighorn sheep (PTP test; P=0.001). We also investigated the potential for HGT of the leukotoxin A (lktA) gene, which produces a toxin that plays an integral role in causing disease. Comparative analysis of the combined RNA gene phylogeny and the lktA phylogenies revealed considerable incongruence between the phylogenies, suggestive of HGT. Furthermore, we found identical lktA alleles in unrelated bacterial species, some of which had been isolated

  16. Differential amplicons (ΔAmp)-a new molecular method to assess RNA integrity.

    Science.gov (United States)

    Björkman, J; Švec, D; Lott, E; Kubista, M; Sjöback, R

    2016-01-01

    Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS), Quantitative real-time PCR (qPCR) or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp) of an Endogenous RNase Resistant (ERR) marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  17. Differential amplicons (ΔAmp—a new molecular method to assess RNA integrity

    Directory of Open Access Journals (Sweden)

    J. Björkman

    2016-01-01

    Full Text Available Integrity of the mRNA in clinical samples has major impact on the quality of measured expression levels. This is independent of the measurement technique being next generation sequencing (NGS, Quantitative real-time PCR (qPCR or microarray profiling. If mRNA is highly degraded or damaged, measured data will be very unreliable and the whole study is likely a waste of time and money. It is therefore common strategy to test the quality of RNA in samples before conducting large and costly studies. Most methods today to assess the quality of RNA are ignorant to the nature of the RNA and, therefore, reflect the integrity of ribosomal RNA, which is the dominant species, rather than of mRNAs, microRNAs and long non-coding RNAs, which usually are the species of interest. Here, we present a novel molecular approach to assess the quality of the targeted RNA species by measuring the differential amplification (ΔAmp of an Endogenous RNase Resistant (ERR marker relative to a reference gene, optionally combined with the measurement of two amplicons of different lengths. The combination reveals any mRNA degradation caused by ribonucleases as well as physical, chemical or UV damage. ΔAmp has superior sensitivity to common microfluidic electrophoretic methods, senses the integrity of the actual targeted RNA species, and allows for a smoother and more cost efficient workflow.

  18. Complete genome sequence of Brachyspira intermedia reveals unique genomic features in Brachyspira species and phage-mediated horizontal gene transfer

    Science.gov (United States)

    2011-01-01

    Background Brachyspira spp. colonize the intestines of some mammalian and avian species and show different degrees of enteropathogenicity. Brachyspira intermedia can cause production losses in chickens and strain PWS/AT now becomes the fourth genome to be completed in the genus Brachyspira. Results 15 classes of unique and shared genes were analyzed in B. intermedia, B. murdochii, B. hyodysenteriae and B. pilosicoli. The largest number of unique genes was found in B. intermedia and B. murdochii. This indicates the presence of larger pan-genomes. In general, hypothetical protein annotations are overrepresented among the unique genes. A 3.2 kb plasmid was found in B. intermedia strain PWS/AT. The plasmid was also present in the B. murdochii strain but not in nine other Brachyspira isolates. Within the Brachyspira genomes, genes had been translocated and also frequently switched between leading and lagging strands, a process that can be followed by different AT-skews in the third positions of synonymous codons. We also found evidence that bacteriophages were being remodeled and genes incorporated into them. Conclusions The accessory gene pool shapes species-specific traits. It is also influenced by reductive genome evolution and horizontal gene transfer. Gene-transfer events can cross both species and genus boundaries and bacteriophages appear to play an important role in this process. A mechanism for horizontal gene transfer appears to be gene translocations leading to remodeling of bacteriophages in combination with broad tropism. PMID:21816042

  19. Exportin-5 mediates nuclear export of SRP RNA in vertebrates.

    Science.gov (United States)

    Takeiwa, Toshihiko; Taniguchi, Ichiro; Ohno, Mutsuhito

    2015-04-01

    The signal recognition particle is a ribonucleoprotein complex that is essential for the translocation of nascent proteins into the endoplasmic reticulum. It has been shown that the RNA component (SRP RNA) is exported from the nucleus by CRM1 in the budding yeast. However, how SRP RNA is exported in higher species has been elusive. Here, we show that SRP RNA does not use the CRM1 pathway in Xenopus oocytes. Instead, SRP RNA uses the same export pathway as pre-miRNA and tRNA as showed by cross-competition experiments. Consistently, the recombinant Exportin-5 protein specifically stimulated export of SRP RNA as well as of pre-miRNA and tRNA, whereas an antibody raised against Exportin-5 specifically inhibited export of the same RNA species. Moreover, biotinylated SRP RNA can pull down Exportin-5 but not CRM1 from HeLa cell nuclear extracts in a RanGTP-dependent manner. These results, taken together, strongly suggest that the principal export receptor for SRP RNA in vertebrates is Exportin-5 unlike in the budding yeast. © 2015 The Authors. Genes to Cells published by Molecular Biology Society of Japan and Wiley Publishing Asia Pty Ltd.

  20. General enumeration of RNA secondary structures based on new ...

    African Journals Online (AJOL)

    akpobome

    coding, transferring and retrieving genetic information, and in directing cell metabolism. The nucleic acid includes DNA and RNA molecule. RNA molecule is a single-stranded nucleic acid of four different kinds of nucleotides. The four nucleotides only differ by one part, called bases. Hence, one usually identifies nucleotides.

  1. Analysis of the complement and molecular evolution of tRNA genes in cow

    Directory of Open Access Journals (Sweden)

    Barris Wesley C

    2009-04-01

    Full Text Available Abstract Background Detailed information regarding the number and organization of transfer RNA (tRNA genes at the genome level is becoming readily available with the increase of DNA sequencing of whole genomes. However the identification of functional tRNA genes is challenging for species that have large numbers of repetitive elements containing tRNA derived sequences, such as Bos taurus. Reliable identification and annotation of entire sets of tRNA genes allows the evolution of tRNA genes to be understood on a genomic scale. Results In this study, we explored the B. taurus genome using bioinformatics and comparative genomics approaches to catalogue and analyze cow tRNA genes. The initial analysis of the cow genome using tRNAscan-SE identified 31,868 putative tRNA genes and 189,183 pseudogenes, where 28,830 of the 31,868 predicted tRNA genes were classified as repetitive elements by the RepeatMasker program. We then used comparative genomics to further discriminate between functional tRNA genes and tRNA-derived sequences for the remaining set of 3,038 putative tRNA genes. For our analysis, we used the human, chimpanzee, mouse, rat, horse, dog, chicken and fugu genomes to predict that the number of active tRNA genes in cow lies in the vicinity of 439. Of this set, 150 tRNA genes were 100% identical in their sequences across all nine vertebrate genomes studied. Using clustering analyses, we identified a new tRNA-GlyCCC subfamily present in all analyzed mammalian genomes. We suggest that this subfamily originated from an ancestral tRNA-GlyGCC gene via a point mutation prior to the radiation of the mammalian lineages. Lastly, in a separate analysis we created phylogenetic profiles for each putative cow tRNA gene using a representative set of genomes to gain an overview of common evolutionary histories of tRNA genes. Conclusion The use of a combination of bioinformatics and comparative genomics approaches has allowed the confident identification of a

  2. Transfer of mRNA Encoding Invariant NKT Cell Receptors Imparts Glycolipid Specific Responses to T Cells and γδT Cells.

    Science.gov (United States)

    Shimizu, Kanako; Shinga, Jun; Yamasaki, Satoru; Kawamura, Masami; Dörrie, Jan; Schaft, Niels; Sato, Yusuke; Iyoda, Tomonori; Fujii, Shin-Ichiro

    2015-01-01

    Cell-based therapies using genetically engineered lymphocytes expressing antigen-specific T cell receptors (TCRs) hold promise for the treatment of several types of cancers. Almost all studies using this modality have focused on transfer of TCR from CD8 cytotoxic T lymphocytes (CTLs). The transfer of TCR from innate lymphocytes to other lymphocytes has not been studied. In the current study, innate and adaptive lymphocytes were transfected with the human NKT cell-derived TCRα and β chain mRNA (the Vα24 and Vβ11 TCR chains). When primary T cells transfected with NKT cell-derived TCR were subsequently stimulated with the NKT ligand, α-galactosylceramide (α-GalCer), they secreted IFN-γ in a ligand-specific manner. Furthermore when γδT cells were transfected with NKT cell-derived TCR mRNA, they demonstrated enhanced proliferation, IFN-γ production and antitumor effects after α-GalCer stimulation as compared to parental γδT cells. Importantly, NKT cell TCR-transfected γδT cells responded to both NKT cell and γδT cell ligands, rendering them bi-potential innate lymphocytes. Because NKT cell receptors are unique and universal invariant receptors in humans, the TCR chains do not yield mispaired receptors with endogenous TCR α and β chains after the transfection. The transfection of NKT cell TCR has the potential to be a new approach to tumor immunotherapy in patients with various types of cancer.

  3. Next generation sequencing yields the complete mitochondrial genome of the flathead mullet, Mugil cephalus cryptic species NWP2 (Teleostei: Mugilidae).

    Science.gov (United States)

    Shen, Kang-Ning; Yen, Ta-Chi; Chen, Ching-Hung; Li, Huei-Ying; Chen, Pei-Lung; Hsiao, Chung-Der

    2016-05-01

    In this study, the complete mitogenome sequence of Northwestern Pacific 2 (NWP2) cryptic species of flathead mullet, Mugil cephalus (Teleostei: Mugilidae) has been amplified by long-range PCR and sequenced by next-generation sequencing method. The assembled mitogenome, consisting of 16,686 bp, had the typical vertebrate mitochondrial gene arrangement, including 13 protein-coding genes, 22 transfer RNAs, 2 ribosomal RNAs genes and a non-coding control region of D-loop. D-loop was 909 bp length and was located between tRNA-Pro and tRNA-Phe. The overall base composition of NWP2 M. cephalus was 28.4% for A, 29.8% for C, 26.5% for T and 15.3% for G. The complete mitogenome may provide essential and important DNA molecular data for further phylogenetic and evolutionary analysis for flathead mullet species complex.

  4. FISH and AgNor mapping of the 45S and 5S rRNA genes in wild and cultivated species of Capsicum (Solananceae).

    Science.gov (United States)

    Scaldaferro, Marisel A; da Cruz, M Victoria Romero; Cecchini, Nicolás M; Moscone, Eduardo A

    2016-02-01

    Chromosome number and position of rDNA were studied in 12 wild and cultivated species of the genus Capsicum with chromosome numbers x = 12 and x = 13 (22 samples). For the first time in these species, the 5S and 45S rRNA loci were localized and physically mapped using two-color fluorescence in situ hybridization and AgNOR banding. We focused on the comparison of the results obtained with both methods with the aim of accurately revealing the real functional rRNA genes. The analyzes were based on a previous work that reported that the 18S-5.8S-25S loci mostly coincide with GC-rich heterochromatic regions and likely have given rise to satellite DNAs, which are not active genes. These data show the variability of rDNA within karyotypes of the genus Capsicum, providing anchor points for (comparative) genetic maps. In addition, the obtained information might be useful for studies on evolution of repetitive DNA.

  5. Beyond Streptococcus mutans: Dental Caries Onset Linked to Multiple Species by 16S rRNA Community Analysis

    Science.gov (United States)

    Gross, Erin L.; Beall, Clifford J.; Kutsch, Stacey R.; Firestone, Noah D.; Leys, Eugene J.; Griffen, Ann L.

    2012-01-01

    Dental caries in very young children may be severe, result in serious infection, and require general anesthesia for treatment. Dental caries results from a shift within the biofilm community specific to the tooth surface, and acidogenic species are responsible for caries. Streptococcus mutans, the most common acid producer in caries, is not always present and occurs as part of a complex microbial community. Understanding the degree to which multiple acidogenic species provide functional redundancy and resilience to caries-associated communities will be important for developing biologic interventions. In addition, microbial community interactions in health and caries pathogenesis are not well understood. The purpose of this study was to investigate bacterial community profiles associated with the onset of caries in the primary dentition. In a combination cross-sectional and longitudinal design, bacterial community profiles at progressive stages of caries and over time were examined and compared to those of health. 16S rRNA gene sequencing was used for bacterial community analysis. Streptococcus mutans was the dominant species in many, but not all, subjects with caries. Elevated levels of S. salivarius, S. sobrinus, and S. parasanguinis were also associated with caries, especially in subjects with no or low levels of S. mutans, suggesting these species are alternative pathogens, and that multiple species may need to be targeted for interventions. Veillonella, which metabolizes lactate, was associated with caries and was highly correlated with total acid producing species. Among children without previous history of caries, Veillonella, but not S. mutans or other acid-producing species, predicted future caries. Bacterial community diversity was reduced in caries as compared to health, as many species appeared to occur at lower levels or be lost as caries advanced, including the Streptococcus mitis group, Neisseria, and Streptococcus sanguinis. This may have

  6. Transfer of eleven species of the genus Burkholderia to the genus Paraburkholderia and proposal of Caballeronia gen. nov. to accommodate twelve species of the genera Burkholderia and Paraburkholderia.

    Science.gov (United States)

    Dobritsa, Anatoly P; Samadpour, Mansour

    2016-08-01

    It has been proposed to split the genus Burkholderia into two genera according to phylogenetic clustering: (1) a genus retaining this name and consisting mainly of animal and plant pathogens and (2) the genus Paraburkholderia including so-called environmental bacteria. The latter genus name has been validly published recently. During the period between the effective and valid publications of the genus name Paraburkholderia, 16 novel species of the genus Burkholderiawere described, but only two of them can be classified as members of this genus based on the emended genus description. Analysis of traits and phylogenetic positions of the other 11 species shows that they belong to the genus Paraburkholderia, and we propose to transfer them to this genus. The reclassified species names are proposed as Paraburkholderia dipogonis comb. nov., Paraburkholderia ginsengiterrae comb. nov., Paraburkholderia humisilvae comb. nov., Paraburkholderia insulsa comb. nov., Paraburkholderia kirstenboschensis comb. nov., Paraburkholderia metalliresistens comb. nov., Paraburkholderia monticola comb. nov., Paraburkholderia panaciterrae comb. nov., Paraburkholderia rhizosphaerae comb. nov., Paraburkholderia solisilvae comb. nov. and Paraburkholderia susongensis comb. nov. The remaining three species are transferred to the new genus Caballeronia gen. nov. proposed to accommodate twelve species of the genera Burkholderia and Paraburkholderia forming a distinctive clade in phylogenetic trees. The new genus members are Caballeronia choica comb. nov., Caballeronia cordobensis comb. nov., Caballeronia glathei comb. nov., Caballeronia grimmiae comb. nov., Caballeronia humi comb. nov., Caballeronia megalochromosomata comb. nov., Caballeronia jiangsuensis comb. nov., Caballeronia sordidicola comb. nov., Caballeronia telluris comb. nov., Caballeronia terrestris comb. nov., Caballeronia udeis comb. nov., and Caballeronia zhejiangensis comb. nov.

  7. Overaccumulation of the chloroplast antisense RNA AS5 is correlated with decreased abundance of 5S rRNA in vivo and inefficient 5S rRNA maturation in vitro

    Science.gov (United States)

    Sharwood, Robert E.; Hotto, Amber M.; Bollenbach, Thomas J.; Stern, David B.

    2011-01-01

    Post-transcriptional regulation in the chloroplast is exerted by nucleus-encoded ribonucleases and RNA-binding proteins. One of these ribonucleases is RNR1, a 3′-to-5′ exoribonuclease of the RNase II family. We have previously shown that Arabidopsis rnr1-null mutants exhibit specific abnormalities in the expression of the rRNA operon, including the accumulation of precursor 23S, 16S, and 4.5S species and a concomitant decrease in the mature species. 5S rRNA transcripts, however, accumulate to a very low level in both precursor and mature forms, suggesting that they are unstable in the rnr1 background. Here we demonstrate that rnr1 plants overaccumulate an antisense RNA, AS5, that is complementary to the 5S rRNA, its intergenic spacer, and the downstream trnR gene, which encodes tRNAArg, raising the possibility that AS5 destabilizes 5S rRNA or its precursor and/or blocks rRNA maturation. To investigate this, we used an in vitro system that supports 5S rRNA and trnR processing. We show that AS5 inhibits 5S rRNA maturation from a 5S-trnR precursor, and shorter versions of AS5 demonstrate that inhibition requires intergenic sequences. To test whether the sense and antisense RNAs form double-stranded regions in vitro, treatment with the single-strand-specific mung bean nuclease was used. These results suggest that 5S–AS5 duplexes interfere with a sense-strand secondary structure near the endonucleolytic cleavage site downstream from the 5S rRNA coding region. We hypothesize that these duplexes are degraded by a dsRNA-specific ribonuclease in vivo, contributing to the 5S rRNA deficiency observed in rnr1. PMID:21148395

  8. The identification and functional annotation of RNA structures conserved in vertebrates

    DEFF Research Database (Denmark)

    Seemann, Ernst Stefan; Mirza, Aashiq Hussain; Hansen, Claus

    2017-01-01

    Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure-b......-structured counterparts. Our findings of transcribed uncharacterized regulatory regions that contain CRSs support their RNA-mediated functionality.......Structured elements of RNA molecules are essential in, e.g., RNA stabilization, localization and protein interaction, and their conservation across species suggests a common functional role. We computationally screened vertebrate genomes for Conserved RNA Structures (CRSs), leveraging structure......-based, rather than sequence-based, alignments. After careful correction for sequence identity and GC content, we predict ~516k human genomic regions containing CRSs. We find that a substantial fraction of human-mouse CRS regions (i) co-localize consistently with binding sites of the same RNA binding proteins...

  9. DETECTION OF BACTERIAL SMALL TRANSCRIPTS FROM RNA-SEQ DATA: A COMPARATIVE ASSESSMENT.

    Science.gov (United States)

    Peña-Castillo, Lourdes; Grüell, Marc; Mulligan, Martin E; Lang, Andrew S

    2016-01-01

    Small non-coding RNAs (sRNAs) are regulatory RNA molecules that have been identified in a multitude of bacterial species and shown to control numerous cellular processes through various regulatory mechanisms. In the last decade, next generation RNA sequencing (RNA-seq) has been used for the genome-wide detection of bacterial sRNAs. Here we describe sRNA-Detect, a novel approach to identify expressed small transcripts from prokaryotic RNA-seq data. Using RNA-seq data from three bacterial species and two sequencing platforms, we performed a comparative assessment of five computational approaches for the detection of small transcripts. We demonstrate that sRNA-Detect improves upon current standalone computational approaches for identifying novel small transcripts in bacteria.

  10. 16S rRNA gene-based detection of tetrachloroethene-dechlorinating Desulfuromonas and Dehalococcoides species

    Energy Technology Data Exchange (ETDEWEB)

    Loeffler, F.E.; Sun, Q.; Li, J.; Tiedje, J.M.

    2000-03-01

    Members of the genera Desulfuromonas and Dehalococcoides reductively dechlorinate tetrachloroethene (PCE) and trichloroethene. Two primer pairs specific to hypervariable regions of the 16S rRNA genes of the Dehalococcoides group (comprising Dehalococcoides ethenogenes and Dehalococcoides sp. strain FL2) and the acetate-oxidizing, PCE-dechlorinating Desulfuromonas group (comprising Desulfuromonas sp. strain BB1 and Desulfuromonas chloroethenica) were designed. The detection threshold of a nested PCR approach using universal bacterial primers followed by a second PCR with the Desulfuromonas dechlorinator-targeted primer pair was 1 x 10{sup 3} BB1 cells added per gram (wet weight) of sandy aquifer material. Total community DNA isolated from sediments of three Michigan rivers and six different chloroethene-contaminated aquifer samples was used as template in nested PCR. All river sediment samples yielded positive signals with the BB1- and the Dehalococcoides-targeted primers. One chloroethene-contaminated aquifer tested positive with the Dehalococcoides-targeted primers, and another contaminated aquifer tested positive with the Desulfuromonas dechlorinator-targeted primer pair. Restriction fragment analysis of the amplicons could discriminate strain BB1 from other known Desulfuromonas species. Microcosm studies confirmed the presence of PCE-dechlorinating, acetate-oxidizing Desulfuromonas and hydrogenotrophic Dehalococcoides species in samples yielding positive PCR signals with the specific primers.

  11. Transfecting Human Monocytes with RNA.

    Science.gov (United States)

    Dannull, Jens; Nair, Smita K

    2016-01-01

    Targeting monocytes as a delivery system for drugs or nucleic acids, and thereby harnessing their natural tissue-infiltrating capacity, has become an area of intense investigation in both basic and clinical research. Herein we describe an efficient method to deliver mRNA (messenger RNA) or siRNA (small interfering RNA) into human monocytes by electroporation. This method can be applied in the laboratory to monocytes isolated via magnetic bead-based techniques, or in a clinical setting using monocytes that were collected via counterflow centrifugation elutriation using the Elutra(®) Cell Separation System. We further demonstrate that electroporation of monocytes with RNA represents a robust and highly relevant approach to modify monocytes for cell-based therapies. Last, the procedure described can readily be adapted to monocytes from different species, hence facilitating research in animal models.

  12. Drosophila interspecific hybrids phenocopy piRNA-pathway mutants.

    Directory of Open Access Journals (Sweden)

    Erin S Kelleher

    Full Text Available The Piwi-interacting RNA (piRNA pathway defends the germline of animals from the deleterious activity of selfish transposable elements (TEs through small-RNA mediated silencing. Adaptation to novel invasive TEs is proposed to occur by incorporating their sequences into the piRNA pool that females produce and deposit into their eggs, which then propagates immunity against specific TEs to future generations. In support of this model, the F1 offspring of crosses between strains of the same Drosophila species sometimes suffer from germline derepression of paternally inherited TE families, caused by a failure of the maternal strain to produce the piRNAs necessary for their regulation. However, many protein components of the Drosophila piRNA pathway exhibit signatures of positive selection, suggesting that they also contribute to the evolution of host genome defense. Here we investigate piRNA pathway function and TE regulation in the F1 hybrids of interspecific crosses between D. melanogaster and D. simulans and compare them with intraspecific control crosses of D. melanogaster. We confirm previous reports showing that intraspecific crosses are characterized by derepression of paternally inherited TE families that are rare or absent from the maternal genome and piRNA pool, consistent with the role of maternally deposited piRNAs in shaping TE silencing. In contrast to the intraspecific cross, we discover that interspecific hybrids are characterized by widespread derepression of both maternally and paternally inherited TE families. Furthermore, the pattern of derepression of TE families in interspecific hybrids cannot be attributed to their paucity or absence from the piRNA pool of the maternal species. Rather, we demonstrate that interspecific hybrids closely resemble piRNA effector-protein mutants in both TE misregulation and aberrant piRNA production. We suggest that TE derepression in interspecific hybrids largely reflects adaptive divergence of piRNA

  13. Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus Phytophthora

    Directory of Open Access Journals (Sweden)

    Stephanie eBollmann

    2016-03-01

    Full Text Available Gene regulation by small RNA pathways is ubiquitous among eukaryotes, but little is known about small RNA pathways in the Stramenopile kingdom. Phytophthora, a genus of filamentous oomycetes, contains many devastating plant pathogens, causing multibillion-dollar damage to crops, ornamental plants, and natural environments. The genomes of several oomycetes including Phytophthora species such as the soybean pathogen P. sojae, have been sequenced, allowing evolutionary analysis of small RNA-processing enzymes. This study examined the evolutionary origins of the oomycete small RNA-related genes Dicer-like (DCL, and RNA-dependent RNA polymerase (RDR through broad phylogenetic analyses of the key domains. Two Dicer gene homologs, DCL1 and DCL2, and one RDR homolog were cloned and analyzed from P. sojae. Gene expression analysis revealed only minor changes in transcript levels among different life stages. Oomycete DCL1 homologs clustered with animal and plant Dicer homologs in evolutionary trees, whereas oomycete DCL2 homologs clustered basally to the tree along with Drosha homologs. Phylogenetic analysis of the RDR homologs confirmed a previous study that suggested the last common eukaryote ancestor possessed three RDR homologs, which were selectively retained or lost in later lineages. Our analysis clarifies the position of some Unikont and Chromalveolate RDR lineages within the tree, including oomycete homologs. Finally, we analyzed alterations in the domain structure of oomycete Dicer and RDR homologs, specifically focusing on the proposed domain transfer of the DEAD-box helicase domain from Dicer to RDR. Implications of the oomycete domain structure are discussed, and possible roles of the two oomycete Dicer homologs are proposed.

  14. PCR-SSCP of the 16S rRNA gene, a simple methodology for species identification of fish eggs and larvae

    Directory of Open Access Journals (Sweden)

    Eva Garcia-Vazquez

    2006-10-01

    Full Text Available Patterns of the 16S rRNA gene obtained in 8 and 12% acrylamide gels by the SSCP (Single Strand Conformation Polymorphism method were different for various marine fish species (Macrorhamphosus scolopax, Scomber scombrus, Lepidorhombus boscii, L. whiffiagonis, Trachurus trachurus, T. mediterraneus, Molva molva, Merluccius merluccius. SSCP patterns of this gene were employed to successfully identify formaldehyde-fixed eggs of different species (Merluccius merluccius, Scomber scombrus, Macrorhamphosus scolopax and L. whiffiagonis in plankton samples. The advantages of SSCPs in comparison with current genetic methods of egg identification are based on their technical simplicity and low price. The application of the PCR-SSCP methodology is proposed for routine genetic analyses in plankton surveys.

  15. New gSSR and EST-SSR markers reveal high genetic diversity in the invasive plant Ambrosia artemisiifolia L. and can be transferred to other invasive Ambrosia species.

    Science.gov (United States)

    Meyer, Lucie; Causse, Romain; Pernin, Fanny; Scalone, Romain; Bailly, Géraldine; Chauvel, Bruno; Délye, Christophe; Le Corre, Valérie

    2017-01-01

    Ambrosia artemisiifolia L., (common ragweed), is an annual invasive and highly troublesome plant species originating from North America that has become widespread across Europe. New sets of genomic and expressed sequence tag (EST) based simple sequence repeats (SSRs) markers were developed in this species using three approaches. After validation, 13 genomic SSRs and 13 EST-SSRs were retained and used to characterize the genetic diversity and population genetic structure of Ambrosia artemisiifolia populations from the native (North America) and invasive (Europe) ranges of the species. Analysing the mating system based on maternal families did not reveal any departure from complete allogamy and excess homozygosity was mostly due the presence of null alleles. High genetic diversity and patterns of genetic structure in Europe suggest two main introduction events followed by secondary colonization events. Cross-species transferability of the newly developed markers to other invasive species of the Ambrosia genus was assessed. Sixty-five percent and 75% of markers, respectively, were transferable from A. artemisiifolia to Ambrosia psilostachya and Ambrosia tenuifolia. 40% were transferable to Ambrosia trifida, this latter species being seemingly more phylogenetically distantly related to A. artemisiifolia than the former two.

  16. Bivalve aquaculture transfers in Atlantic Europe. Part A: Transfer activities and legal framework

    DEFF Research Database (Denmark)

    Muehlbauer, F.; Fraser, D.; Brenner, M.

    2014-01-01

    environment and address economic considerations remains unanswered. This study provides the first overview of bivalve transfer activities for aquaculture purposes along the European Atlantic coast. Existing international and EU legislation is described, and potential weaknesses in the existing legislative......Intentional transfers of numerous bivalve species have had a long tradition and are commonly conducted along the European Atlantic coast. However numerous studies have concluded that intentional transfer of species for aquaculture purposes is one of the most principal vectors for the introduction...... frameworks are discussed. Recommendations for the development of integrated risk assessment methods are given. These may help to minimize the intrinsic threats of transfer activities in marine environments. The resulting impacts and effects of transfer activities of bivalves for aquaculture purpose...

  17. Phylogenetic analysis reveals conservation and diversification of micro RNA166 genes among diverse plant species.

    Science.gov (United States)

    Barik, Suvakanta; SarkarDas, Shabari; Singh, Archita; Gautam, Vibhav; Kumar, Pramod; Majee, Manoj; Sarkar, Ananda K

    2014-01-01

    Similar to the majority of the microRNAs, mature miR166s are derived from multiple members of MIR166 genes (precursors) and regulate various aspects of plant development by negatively regulating their target genes (Class III HD-ZIP). The evolutionary conservation or functional diversification of miRNA166 family members remains elusive. Here, we show the phylogenetic relationships among MIR166 precursor and mature sequences from three diverse model plant species. Despite strong conservation, some mature miR166 sequences, such as ppt-miR166m, have undergone sequence variation. Critical sequence variation in ppt-miR166m has led to functional diversification, as it targets non-HD-ZIPIII gene transcript (s). MIR166 precursor sequences have diverged in a lineage specific manner, and both precursors and mature osa-miR166i/j are highly conserved. Interestingly, polycistronic MIR166s were present in Physcomitrella and Oryza but not in Arabidopsis. The nature of cis-regulatory motifs on the upstream promoter sequences of MIR166 genes indicates their possible contribution to the functional variation observed among miR166 species. Copyright © 2013 Elsevier Inc. All rights reserved.

  18. Transfer Factors of Nuclides for Five Fish Species Inhabiting the Sea near the Yonggwang Nuclear Power Plant

    Energy Technology Data Exchange (ETDEWEB)

    Lim, Kwangmuk; Choi, Yongho; Jun, In; Kim, Byungho; Keum, Dongkwon [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2013-05-15

    The IAEA is going to publish a handbook of the TF values of various radionuclides for a number of plant and animal species. However, it is recommended that they be used in case there is no site-specific data. This is because TF values can vary considerably with wild-life species and environmental conditions. Therefore, it is necessary to urgently establish our own database of wild-life transfer factors for use in the wild-life dose assessment probably in the near future. In the present study, TF values of various radionuclides were investigated for several marine fish species living around the Younggwang NPP. It was done by measuring the concentrations of stable isotopes in fish and seawater samples. TF values of 21 nuclides were measured for five fish species inhabiting the sea near the Younggwang NPP. They showed considerable variations with the nuclides and fish species. Determination of TF values needs to be extended to various kinds of domestic wild lives so as to establish an input data file for a Korean assessment model such as K-BIOTA.

  19. Transferability of microsatellite primers developed for stingless bees to four other species of the genus Melipona.

    Science.gov (United States)

    Viana, M V C; Miranda, E A; de Francisco, A K; Carvalho, C A L; Waldschmidt, A M

    2011-11-22

    Microsatellite markers are a useful tool for ecological monitoring of natural and managed populations. A technical limitation is the necessity for investment in the development of primers. Heterologous primers can provide an alternative to searching for new loci. In bees, these markers have been used in populational and intracolonial genetic analyses. The genus Melipona has the largest number of species among bee genera, about 70, occurring throughout the Neotropical region. However, only five species of the genus Melipona have specific microsatellite markers. Given the great diversity of this genus, this number is not representative. We analyzed the transferability of 49 microsatellite loci to four other species of the genus Melipona (M. scutellaris, M. mondury, M. mandacaia, and M. quadrifasciata). Four individuals of each species, from different localities, were used in amplification tests. Primer pairs described for five Melipona species and for Trigona carbonaria were tested. Among the 49 loci, 22 gave amplification products for all four species, while three gave nonspecific bands and five showed no amplification products. The remaining loci varied in the pattern of amplification, according to the species examined. The number of alleles ranged from 1 to 6. The results demonstrate the possibility of using these heterologous markers in other Melipona species, increasing the number of loci that can be analyzed and contributing to further genetic analyses of intra- and intercolonial structure, which is required for conservation measure planning, genetic improvement and resolution of taxonomic problems.

  20. Chitinase mRNA Levels Determined by QPCR in Crab-Eating Monkey (Macaca fascicularis) Tissues: Species-Specific Expression of Acidic Mammalian Chitinase and Chitotriosidase.

    Science.gov (United States)

    Uehara, Maiko; Tabata, Eri; Ishii, Kazuhiro; Sawa, Akira; Ohno, Misa; Sakaguchi, Masayoshi; Matoska, Vaclav; Bauer, Peter O; Oyama, Fumitaka

    2018-05-09

    Mice and humans express two active chitinases: acidic mammalian chitinase (AMCase) and chitotriosidase (CHIT1). Both chitinases are thought to play important roles in specific pathophysiological conditions. The crab-eating monkey ( Macaca fascicularis ) is one of the most frequently used nonhuman primate models in basic and applied biomedical research. Here, we performed gene expression analysis of two chitinases in normal crab-eating monkey tissues by way of quantitative real-time polymerase chain reaction (qPCR) using a single standard DNA molecule. Levels of AMCase and CHIT1 messenger RNAs (mRNAs) were highest in the stomach and the lung, respectively, when compared to other tissues. Comparative gene expression analysis of mouse, monkey, and human using monkey⁻mouse⁻human hybrid standard DNA showed that the AMCase mRNA levels were exceptionally high in mouse and monkey stomachs while very low in the human stomach. As for the CHIT1 mRNA, we detected higher levels in the monkey lung when compared with those of mouse and human. The differences of mRNA expression between the species in the stomach tissues were basically reflecting the levels of the chitinolytic activities. These results indicate that gene expression of AMCase and CHIT1 differs between mammalian species and requiring special attention in handling data in chitinase-related studies in particular organisms.

  1. Conjugal transfer of aac(6')Ie-aph(2″)Ia gene from native species and mechanism of regulation and cross resistance in Enterococcus faecalis MCC3063 by real time-PCR.

    Science.gov (United States)

    Jaimee, G; Halami, P M

    2017-09-01

    High level aminoglycoside resistance (HLAR) in the lactic acid bacteria (LAB) derived from food animals is detrimental. The aim of this study was to investigate the localization and conjugal transfer of aminoglycoside resistance genes, aac(6')Ie-aph(2″)Ia and aph(3')IIIa in different Enterococcus species. The cross resistance patterns in Enterococcus faecalis MCC3063 to clinically important aminoglycosides by real time PCR were also studied. Southern hybridization experiments revealed the presence of aac(6')Ie-aph(2 ″ )Ia and aph(3')IIIa genes conferring HLAR in high molecular weight plasmids except in Lactobacillus plantarum. The plasmid encoded bifunctional aac(6')Ie-aph(2″)Ia gene was transferable from Enterococcus avium (n = 2), E. cecorum (n = 1), E. faecalis (n = 1) and Pediococcus lolii (n = 1) species into the recipient strain; E. faecalis JH2-2 by filter mating experiments thus indicating the possible risks of gene transfer into pathogenic strains. Molecular analysis of cross resistance patterns in native isolate of E. faecalis MCC3063 carrying aac(6')Ie-aph(2″)Ia and aph(3')IIIa gene was displayed by quantification of the mRNA levels in this study. For this, the culture was induced with increasing concentrations of gentamicin, kanamycin and streptomycin (2048, 4096, 8192, 16384 μg/mL) individually. The increasing concentrations of gentamicin and kanamycin induced the expression of the aac(6')Ie-aph(2″)Ia and aph(3')IIIa resistance genes, respectively. Interestingly, it was observed that induction with streptomycin triggered a significant fold increase in the expression of the aph(3')IIIa gene which otherwise was not known to modify the aminoglycoside. This is noteworthy as streptomycin was found to confer cross resistance to structurally unrelated kanamycin. Also, expression of the aph(3')IIIa gene when induced with streptomycin, revealed that bacteria harbouring this gene will be able to overcome streptomycin bactericidal action at

  2. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Directory of Open Access Journals (Sweden)

    Eikan Mishima

    Full Text Available The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A, N6-methyladenosine (m6A, pseudouridine, and 5-methylcytidine (m5C showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  3. Immuno-Northern Blotting: Detection of RNA Modifications by Using Antibodies against Modified Nucleosides.

    Science.gov (United States)

    Mishima, Eikan; Jinno, Daisuke; Akiyama, Yasutoshi; Itoh, Kunihiko; Nankumo, Shinnosuke; Shima, Hisato; Kikuchi, Koichi; Takeuchi, Yoichi; Elkordy, Alaa; Suzuki, Takehiro; Niizuma, Kuniyasu; Ito, Sadayoshi; Tomioka, Yoshihisa; Abe, Takaaki

    2015-01-01

    The biological roles of RNA modifications are still largely not understood. Thus, developing a method for detecting RNA modifications is important for further clarification. We developed a method for detecting RNA modifications called immuno-northern blotting (INB) analysis and herein introduce its various capabilities. This method involves the separation of RNAs using either polyacrylamide or agarose gel electrophoresis, followed by transfer onto a nylon membrane and subsequent immunoblotting using antibodies against modified nucleosides for the detection of specific modifications. We confirmed that INB with the antibodies for 1-methyladenosine (m1A), N6-methyladenosine (m6A), pseudouridine, and 5-methylcytidine (m5C) showed different modifications in a variety of RNAs from various species and organelles. INB with the anti-m5C antibody revealed that the antibody cross-reacted with another modification on DNA, suggesting the application of this method for characterization of the antibody for modified nucleosides. Additionally, using INB with the antibody for m1A, which is a highly specific modification in eukaryotic tRNA, we detected tRNA-derived fragments known as tiRNAs under the cellular stress response, suggesting the application for tracking target RNA containing specific modifications. INB with the anti-m6A antibody confirmed the demethylation of m6A by the specific demethylases fat mass and obesity-associated protein (FTO) and ALKBH5, suggesting its application for quantifying target modifications in separated RNAs. Furthermore, INB demonstrated that the knockdown of FTO and ALKBH5 increased the m6A modification in small RNAs as well as in mRNA. The INB method has high specificity, sensitivity, and quantitative capability, and it can be employed with conventional experimental apparatus. Therefore, this method would be useful for research on RNA modifications and metabolism.

  4. LncRNA, a new component of expanding RNA-protein regulatory network important for animal sperm development.

    Science.gov (United States)

    Zhang, Chenwang; Gao, Liuze; Xu, Eugene Yujun

    2016-11-01

    Spermatogenesis is one of the fundamental processes of sexual reproduction, present in almost all metazoan animals. Like many other reproductive traits, developmental features and traits of spermatogenesis are under strong selective pressure to change, both at morphological and underlying molecular levels. Yet evidence suggests that some fundamental features of spermatogenesis may be ancient and conserved among metazoan species. Identifying the underlying conserved molecular mechanisms could reveal core components of metazoan spermatogenic machinery and provide novel insight into causes of human infertility. Conserved RNA-binding proteins and their interacting RNA network emerge to be a common theme important for animal sperm development. We review research on the recent addition to the RNA family - Long non-coding RNA (lncRNA) and its roles in spermatogenesis in the context of the expanding RNA-protein network. Copyright © 2016 Elsevier Ltd. All rights reserved.

  5. Molecular docking and molecular dynamics simulation studies on Thermus thermophilus leucyl-tRNA synthetase complexed with different amino acids and pre-transfer editing substrates

    OpenAIRE

    Rayevsky A. V.; Tukalo M. A.

    2016-01-01

    Aim. To investigate the structural bases for the amino acid selectivity of the Thermus thermophilus leucyl-tRNA synthetase (LeuRSTT) aminoacylation site and to disclose the binding pattern of pre-transfer editing substrates. Methods. Eight amino acids proposed as semi-cognate substrates for aminoacylation and eight aminoacyl-adenylates (formed from AMP and eight amino acids) were prepared in zwitterions form. The protein structure with a co-crystallized substrate in the aminoacylation site [P...

  6. Non-coding RNA in Deinococcus radiodurans

    International Nuclear Information System (INIS)

    Chen Zhongzhong; Wang Liangyan; Lin Jun; Tian Bing; Hua Yuejin

    2006-01-01

    Researches on DNA damage and repair pathways of Deinococcus radiodurans show its extreme resistance to ionizing radiation, ultraviolet radiation and reactive oxygen species. Non-coding (ncRNA) RNAs are involved in a variety of processes such as transcriptional regulations, RNA processing and modification, mRNA translation, protein transportation and stability. The conserved secondary structures of intergenic regions of Deinococcus radiodurans R1 were predicted using Stochastic Context Free Grammar (SCFG) scan strategy. Results showed that 28 ncRNA families were present in the non-coding regions of the genome of Deinococcus radiodurans R1. Among these families, IRE is the largest family, followed by Histone3, tRNA, SECIS. DicF, ctRNA-pGA1 and tmRNA are one discovered in bacteria. Results from the comparison with other organisms showed that these ncRNA can be applied to the study of biological function of Deinococcus radiodurans and supply reference for the further study of DNA damage and repair mechanisms of this bacterium. (authors)

  7. Search for antisense copies of beta-globin mRNA in anemic mouse spleen

    Directory of Open Access Journals (Sweden)

    Taylor John M

    2001-03-01

    Full Text Available Abstract Background Previous studies by Volloch and coworkers have reported that during the expression of high levels of β-globin mRNA in the spleen of anemic mice, they could also detect small but significant levels of an antisense (AS globin RNA species, which they postulated might have somehow arisen by RNA-directed RNA synthesis. For two reasons we undertook to confirm and possibly extend these studies. First, previous studies in our lab have focussed on what is an unequivocal example of host RNA-directed RNA polymerase activity on the RNA genome of human hepatitis delta virus. Second, if AS globin species do exist they could in turn form double-stranded RNA species which might induce post-transcriptional gene silencing, a phenomenon somehow provoked in eukaryotic cells by AS RNA sequences. Results We reexamined critical aspects of the previous globin studies. We used intraperitoneal injections of phenylhydrazine to induce anemia in mice, as demonstrated by the appearance and ultimate disappearance of splenomegaly. While a 30-fold increase in globin mRNA was detected in the spleen, the relative amount of putative AS RNA could be no more than 0.004%. Conclusions Contrary to earlier reports, induction of a major increase in globin transcripts in the mouse spleen was not associated with a detectable level of antisense RNA to globin mRNA.

  8. Validation of dbEST-SSRs and transferability of some other solanaceous species SSR in ashwagandha [Withania Somnifera (L.) Dunal].

    Science.gov (United States)

    Parmar, Eva K; Fougat, Ranbir S; Patel, Chandni B; Zala, Harshvardhan N; Patel, Mahesh A; Patel, Swati K; Kumar, Sushil

    2015-12-01

    Cross-species transferability and expressed sequence tags (ESTs) in public databases are cost-effective means for developing simple sequence repeats (SSRs) for less-studied species like medicinal plants. In this study, 11 EST-SSR markers developed from 742 available ESTs of Withania Somnifera EST sequences and 95 SSR primer pairs derived from other solanaceous crops (tomato, eggplant, chili, and tobacco) were utilized for their amplification and validation. Out of 11, 10 EST-SSRs showed good amplification quality and produced 13 loci with a product size ranging between 167 and 291 bp. Similarly, of the 95 cross-genera SSR loci assayed, 20 (21 %) markers showed the transferability of 5, 27, 32, and 14.2 % from eggplant, chili, tomato, and tobacco, respectively, to ashwagandha. In toto, these 30 SSR markers reported here will be valuable resources and may be applicable for the analysis of intra- and inter-specific genetic diversity in ashwagandha for which till date no information about SSR is available.

  9. Recent Findings Concerning PAMAM Dendrimer Conjugates with Cyclodextrins as Carriers of DNA and RNA

    Directory of Open Access Journals (Sweden)

    Keiichi Motoyama

    2009-08-01

    Full Text Available We have evaluated the potential use of various polyamidoamine (PAMAM dendrimer [dendrimer, generation (G 2-4] conjugates with cyclodextrins (CyDs as novel DNA and RNA carriers. Among the various dendrimer conjugates with CyDs, the dendrimer (G3 conjugate with α-CyD having an average degree of substitution (DS of 2.4 [α-CDE (G3, DS2] displayed remarkable properties as DNA, shRNA and siRNA delivery carriers through the sensor function of α-CDEs toward nucleic acid drugs, cell surface and endosomal membranes. In an attempt to develop cell-specific gene transfer carriers, we prepared sugar-appended α-CDEs. Of the various sugar-appended α-CDEs prepared, galactose- or mannose-appended α-CDEs provided superior gene transfer activity to α-CDE in various cells, but not cell-specific gene delivery ability. However, lactose-appended α-CDE [Lac-α-CDE (G2] was found to possess asialoglycoprotein receptor (AgpR-mediated hepatocyte-selective gene transfer activity, both in vitro and in vivo. Most recently, we prepared folate-poly(ethylene glycol-appended α-CDE [Fol-PαC (G3] and revealed that Fol-PαC (G3 imparted folate receptor (FR-mediated cancer cell-selective gene transfer activity. Consequently, α-CDEs bearing integrated, multifunctional molecules may possess the potential to be novel carriers for DNA, shRNA and siRNA.

  10. Studies of interactions of porphyrins with transfer RNA by high-resolution NMR

    International Nuclear Information System (INIS)

    Birdsall, W.J.; Lehigh Univ., Bethlehem, PA; Anderson, W.R. Jr; Foster, N.

    1989-01-01

    The interactions of tetra-4N-methulpyridyl porphyrin and its zinc (II), copper (II) and manganese (III) complexes with brewer's yeast type V phenylalanine specific tRNA have been evaluated by high-resolution NMR. Differences in chemical shifts have been noted for thre proton resonances in response to the presence of small quantities of the fre base and the zinc and copper complexes. The protons giving rise to these signals are located on bases T54 and psi55, both of which are involved in the primary intraloop and interloop hydroen bonds that hold the D and TpsiC loops together in the tertiary structure. In addition, broadening of specific resonances due to hydrogen bonding protons in the D stem at low ratios of porphyrin to tRNA indicates that the association of porphyrins increases the rate of imino proton exchange. The titration of the tRNA with the manganese (III) complex did not eveal shifts or spcific broadening comparable to the other porpyrins at low ratios. The changes induced in the NMR spectrum of tNA by porphyrins define their site of interaction with the polynucleotide. This site, at the outside of the elbow-bend in the tRNA 'L', is different from the locus of binding in tRNA for other classical DNA intercalators. Furthermore, a new mode of binding may be involved that is neither intercalative nor simply electrostatic. (author). 36 refs.; 4 figs

  11. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity

    OpenAIRE

    Wyman, Stacia K.; Knouf, Emily C.; Parkin, Rachael K.; Fritz, Brian R.; Lin, Daniel W.; Dennis, Lucas M.; Krouse, Michael A.; Webster, Philippa J.; Tewari, Muneesh

    2011-01-01

    Modification of microRNA sequences by the 3′ addition of nucleotides to generate so-called “isomiRs” adds to the complexity of miRNA function, with recent reports showing that 3′ modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3′ modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications resul...

  12. Proposal to restrict the genus Clostridium Prazmowski to Clostridium butyricum and related species.

    Science.gov (United States)

    Lawson, Paul A; Rainey, Fred A

    2016-02-01

    The genus Clostridium as presently constituted is phylogenetically and phenotypically incoherent. Data from polyphasic taxonomic studies indicate that the genus comprises a collection of very heterogeneous species. Numerous phylogenetic studies, principally based on sequencing of the 16S rRNA gene, indicate that the genus Clostridium should be restricted to Clostridium cluster I as Clostridium sensu stricto . Despite these findings, authors continue to add novel species to the genus Clostridium that do not fall within the radiation of cluster I and the type species Clostridium butyricum , thus perpetuating the confusion associated with the taxonomy of this group. Here, we formally propose that members of the genus Clostridium Prazmowski be restricted to the type species C. butyricum and cluster I species. Eubacterium moniliforme , Eubacterium tarantellae , Sarcina maxima and Sarcina ventriculi should be transferred to the genus Clostridium as Clostridium moniliforme comb. nov., Clostridium tarantellae comb. nov., Clostridium maximum comb. nov. and Clostridium ventriculi comb. nov. A novel genus, Hathewaya gen. nov., is proposed for the species Clostridium histolyticum , Clostridium limosum and Clostridium proteolyticum as Hathewaya histolytica gen. nov. comb. nov., Hathewaya limosa comb. nov. and Hathewaya proteolytica comb. nov. The type species of the genus Hathewaya is Hathewaya histolytica.

  13. Transfer RNA Derived Small RNAs Targeting Defense Responsive Genes Are Induced during Phytophthora capsici Infection in Black Pepper (Piper nigrum L.).

    Science.gov (United States)

    Asha, Srinivasan; Soniya, Eppurath V

    2016-01-01

    Small RNAs derived from transfer RNAs were recently assigned as potential gene regulatory candidates for various stress responses in eukaryotes. In this study, we report on the cloning and identification of tRNA derived small RNAs from black pepper plants in response to the infection of the quick wilt pathogen, Phytophthora capsici. 5'tRFs cloned from black pepper were validated as highly expressed during P. capsici infection. A high-throughput systematic analysis of the small RNAome (sRNAome) revealed the predominance of 5'tRFs in the infected leaf and root. The abundance of 5'tRFs in the sRNAome and the defense responsive genes as their potential targets indicated their regulatory role during stress response in black pepper. The 5'Ala(CGC) tRF mediated cleavage was experimentally mapped at the tRF binding sites on the mRNA targets of Non-expresser of pathogenesis related protein (NPR1), which was down-regulated during pathogen infection. Comparative sRNAome further demonstrated sequence conservation of 5'Ala tRFs across the angiosperm plant groups, and many important genes in the defense response were identified in silico as their potential targets. Our findings uncovered the diversity, differential expression and stress responsive functional role of tRNA-derived small RNAs during Phytophthora infection in black pepper.

  14. A long and abundant non-coding RNA in Lactobacillus salivarius.

    Science.gov (United States)

    Cousin, Fabien J; Lynch, Denise B; Chuat, Victoria; Bourin, Maxence J B; Casey, Pat G; Dalmasso, Marion; Harris, Hugh M B; McCann, Angela; O'Toole, Paul W

    2017-09-01

    Lactobacillus salivarius , found in the intestinal microbiota of humans and animals, is studied as an example of the sub-dominant intestinal commensals that may impart benefits upon their host. Strains typically harbour at least one megaplasmid that encodes functions contributing to contingency metabolism and environmental adaptation. RNA sequencing (RNA-seq)transcriptomic analysis of L. salivarius strain UCC118 identified the presence of a novel unusually abundant long non-coding RNA (lncRNA) encoded by the megaplasmid, and which represented more than 75 % of the total RNA-seq reads after depletion of rRNA species. The expression level of this 520 nt lncRNA in L. salivarius UCC118 exceeded that of the 16S rRNA, it accumulated during growth, was very stable over time and was also expressed during intestinal transit in a mouse. This lncRNA sequence is specific to the L. salivarius species; however, among 45 L . salivarius genomes analysed, not all (only 34) harboured the sequence for the lncRNA. This lncRNA was produced in 27 tested L. salivarius strains, but at strain-specific expression levels. High-level lncRNA expression correlated with high megaplasmid copy number. Transcriptome analysis of a deletion mutant lacking this lncRNA identified altered expression levels of genes in a number of pathways, but a definitive function of this new lncRNA was not identified. This lncRNA presents distinctive and unique properties, and suggests potential basic and applied scientific developments of this phenomenon.

  15. Cell Death-Associated Ribosomal RNA Cleavage in Postmortem Tissues and Its Forensic Applications.

    Science.gov (United States)

    Kim, Ji Yeon; Kim, Yunmi; Cha, Hyo Kyeong; Lim, Hye Young; Kim, Hyungsub; Chung, Sooyoung; Hwang, Juck-Joon; Park, Seong Hwan; Son, Gi Hoon

    2017-06-30

    Estimation of postmortem interval (PMI) is a key issue in the field of forensic pathology. With the availability of quantitative analysis of RNA levels in postmortem tissues, several studies have assessed the postmortem degradation of constitutively expressed RNA species to estimate PMI. However, conventional RNA quantification as well as biochemical and physiological changes employed thus far have limitations related to standardization or normalization. The present study focuses on an interesting feature of the subdomains of certain RNA species, in which they are site-specifically cleaved during apoptotic cell death. We found that the D8 divergent domain of ribosomal RNA (rRNA) bearing cell death-related cleavage sites was rapidly removed during postmortem RNA degradation. In contrast to the fragile domain, the 5' terminal region of 28S rRNA was remarkably stable during the postmortem period. Importantly, the differences in the degradation rates between the two domains in mammalian 28S rRNA were highly proportional to increasing PMI with a significant linear correlation observed in mice as well as human autopsy tissues. In conclusion, we demonstrate that comparison of the degradation rates between domains of a single RNA species provides quantitative information on postmortem degradation states, which can be applied for the estimation of PMI.

  16. Transfer-messenger RNA controls the translation of cell-cycle and stress proteins in Streptomyces

    DEFF Research Database (Denmark)

    Barends, Sharief; Zehl, Martin; Bialek, Sylwia

    2010-01-01

    coelicolor, trans-translation has a specialized role in stress management. Analysis of proteins that were carboxy-terminally His(8)-tagged by a recombinant tmRNA identified only 10 targets, including the stress proteins: DnaK heat-shock protein 70, thiostrepton-induced protein A, universal stress protein A...... functionality for tmRNA, promoting the translation of the same mRNA it targets, at the expense of sacrificing the first nascent protein. In streptomycetes, tmRNA has evolved into a dedicated task force that ensures the instantaneous response to the exposure to stress....

  17. Molecular evidence confirms the taxonomic separation of Lutzomyia tihuiliensis from Lutzomyia pia (Diptera: Psychodidae) and the usefulness of pleural pigmentation patterns in species identification.

    Science.gov (United States)

    Pérez-Doria, Alveiro; Bejarano, Eduar Elías; Sierra, Diana; Vélez, Iván Darío

    2008-07-01

    The phlebotomine sand flies Lutzomyia pia (Fairchild & Hertig 1961) and Lutzomyia tihuiliensis Le Pont, Torrez-Espejo & Dujardin 1997 (Diptera: Psychodidae) belong to the pia series of the Lu. verrucarum species group, which includes several species that bite humans in Andean foci of leishmaniasis. The females of these two species exhibit isometry and isomorphism in anatomical structures of the head and terminalia commonly used in taxonomic identification of sand flies. They can only be differentiated based on subtle differences in the pigmentation of the pleura. In Lu. tihuiliensis, this is restricted to the basal portions of the katepimeron and katepisternum, whereas in Lu. pia both structures are totally pigmented. Taking into account the subtle morphological differences between these species, the objective of the current study was to evaluate the specific taxonomic status of Lu. tihuiliensis with respect to Lu. pia. A 475-bp portion of the mitochondrial genome was sequenced, composed of the 3' end of the cytochrome b gene, intergenic spacer 1, the transfer RNA gene for serine, intergenic spacer 2, and the 3' end of the gene NAD dehydrogenase 1. Genetic analysis confirms that Lu. tihuiliensis and Lu. pia constitute two distinct species and this is supported by four strong lines of evidence, i.e., the paired genetic distances, size differences and amino acid composition of the cytochrome b protein, presence and absence of intergenic spacer one and divergence observed in the sequence of the transfer RNA gene for serine. It also confirms the validity of the pleural pigmentation pattern as a species diagnostic character and the importance of performing a detailed examination of this character during morphological determination of phlebotomine sand flies in the series pia.

  18. The effect of tRNA levels on decoding times of mRNA codons.

    Science.gov (United States)

    Dana, Alexandra; Tuller, Tamir

    2014-08-01

    The possible effect of transfer ribonucleic acid (tRNA) concentrations on codons decoding time is a fundamental biomedical research question; however, due to a large number of variables affecting this process and the non-direct relation between them, a conclusive answer to this question has eluded so far researchers in the field. In this study, we perform a novel analysis of the ribosome profiling data of four organisms which enables ranking the decoding times of different codons while filtering translational phenomena such as experimental biases, extreme ribosomal pauses and ribosome traffic jams. Based on this filtering, we show for the first time that there is a significant correlation between tRNA concentrations and the codons estimated decoding time both in prokaryotes and in eukaryotes in natural conditions (-0.38 to -0.66, all P values decoding times are not correlated with aminoacyl-tRNA levels. The reported results support the conjecture that translation efficiency is directly influenced by the tRNA levels in the cell. Thus, they should help to understand the evolution of synonymous aspects of coding sequences via the adaptation of their codons to the tRNA pool. © The Author(s) 2014. Published by Oxford University Press on behalf of Nucleic Acids Research.

  19. The European Regulatory Environment of RNA-Based Vaccines.

    Science.gov (United States)

    Hinz, Thomas; Kallen, Kajo; Britten, Cedrik M; Flamion, Bruno; Granzer, Ulrich; Hoos, Axel; Huber, Christoph; Khleif, Samir; Kreiter, Sebastian; Rammensee, Hans-Georg; Sahin, Ugur; Singh-Jasuja, Harpreet; Türeci, Özlem; Kalinke, Ulrich

    2017-01-01

    A variety of different mRNA-based drugs are currently in development. This became possible, since major breakthroughs in RNA research during the last decades allowed impressive improvements of translation, stability and delivery of mRNA. This article focuses on antigen-encoding RNA-based vaccines that are either directed against tumors or pathogens. mRNA-encoded vaccines are developed both for preventive or therapeutic purposes. Most mRNA-based vaccines are directly administered to patients. Alternatively, primary autologous cells from cancer patients are modified ex vivo by the use of mRNA and then are adoptively transferred to patients. In the EU no regulatory guidelines presently exist that specifically address mRNA-based vaccines. The existing regulatory framework, however, clearly defines that mRNA-based vaccines in most cases have to be centrally approved. Interestingly, depending on whether RNA-based vaccines are directed against tumors or infectious disease, they are formally considered gene therapy products or not, respectively. Besides an overview on the current clinical use of mRNA vaccines in various therapeutic areas a detailed discussion of the current regulatory situation is provided and regulatory perspectives are discussed.

  20. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Directory of Open Access Journals (Sweden)

    Inkyu Park

    Full Text Available Aconitum species (belonging to the Ranunculaceae are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  1. The complete chloroplast genome sequence of Aconitum coreanum and Aconitum carmichaelii and comparative analysis with other Aconitum species.

    Science.gov (United States)

    Park, Inkyu; Kim, Wook-Jin; Yang, Sungyu; Yeo, Sang-Min; Li, Hulin; Moon, Byeong Cheol

    2017-01-01

    Aconitum species (belonging to the Ranunculaceae) are well known herbaceous medicinal ingredients and have great economic value in Asian countries. However, there are still limited genomic resources available for Aconitum species. In this study, we sequenced the chloroplast (cp) genomes of two Aconitum species, A. coreanum and A. carmichaelii, using the MiSeq platform. The two Aconitum chloroplast genomes were 155,880 and 157,040 bp in length, respectively, and exhibited LSC and SSC regions separated by a pair of inverted repeat regions. Both cp genomes had 38% GC content and contained 131 unique functional genes including 86 protein-coding genes, eight ribosomal RNA genes, and 37 transfer RNA genes. The gene order, content, and orientation of the two Aconitum cp genomes exhibited the general structure of angiosperms, and were similar to those of other Aconitum species. Comparison of the cp genome structure and gene order with that of other Aconitum species revealed general contraction and expansion of the inverted repeat regions and single copy boundary regions. Divergent regions were also identified. In phylogenetic analysis, Aconitum species positon among the Ranunculaceae was determined with other family cp genomes in the Ranunculales. We obtained a barcoding target sequence in a divergent region, ndhC-trnV, and successfully developed a SCAR (sequence characterized amplified region) marker for discrimination of A. coreanum. Our results provide useful genetic information and a specific barcode for discrimination of Aconitum species.

  2. An automated procedure for covariation-based detection of RNA structure

    International Nuclear Information System (INIS)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs

  3. An automated procedure for covariation-based detection of RNA structure

    Energy Technology Data Exchange (ETDEWEB)

    Winker, S.; Overbeek, R.; Woese, C.R.; Olsen, G.J.; Pfluger, N.

    1989-12-01

    This paper summarizes our investigations into the computational detection of secondary and tertiary structure of ribosomal RNA. We have developed a new automated procedure that not only identifies potential bondings of secondary and tertiary structure, but also provides the covariation evidence that supports the proposed bondings, and any counter-evidence that can be detected in the known sequences. A small number of previously unknown bondings have been detected in individual RNA molecules (16S rRNA and 7S RNA) through the use of our automated procedure. Currently, we are systematically studying mitochondrial rRNA. Our goal is to detect tertiary structure within 16S rRNA and quaternary structure between 16S and 23S rRNA. Our ultimate hope is that automated covariation analysis will contribute significantly to a refined picture of ribosome structure. Our colleagues in biology have begun experiments to test certain hypotheses suggested by an examination of our program's output. These experiments involve sequencing key portions of the 23S ribosomal RNA for species in which the known 16S ribosomal RNA exhibits variation (from the dominant pattern) at the site of a proposed bonding. The hope is that the 23S ribosomal RNA of these species will exhibit corresponding complementary variation or generalized covariation. 24 refs.

  4. Identification of species of viridans group streptococci in clinical blood culture isolates by sequence analysis of the RNase P RNA gene, rnpB.

    Science.gov (United States)

    Westling, Katarina; Julander, Inger; Ljungman, Per; Vondracek, Martin; Wretlind, Bengt; Jalal, Shah

    2008-03-01

    Viridans group streptococci (VGS) cause severe diseases such as infective endocarditis and septicaemia. Genetically, VGS species are very close to each other and it is difficult to identify them to species level with conventional methods. The aims of the present study were to use sequence analysis of the RNase P RNA gene (rnpB) to identify VGS species in clinical blood culture isolates, and to compare the results with the API 20 Strep system that is based on phenotypical characteristics. Strains from patients with septicaemia or endocarditis were analysed with PCR amplification and sequence analysis of the rnpB gene. Clinical data were registered as well. One hundred and thirty two VGS clinical blood culture isolates from patients with septicaemia (n=95) or infective endocarditis (n=36) were analysed; all but one were identified by rnpB. Streptococcus oralis, Streptococcus sanguinis and Streptococcus gordonii strains were most common in the patients with infective endocarditis. In the isolates from patients with haematological diseases, Streptococcus mitis and S. oralis dominated. In addition in 76 of the isolates it was possible to compare the results from rnpB analysis and the API 20 Strep system. In 39/76 (51%) of the isolates the results were concordant to species level; in 55 isolates there were no results from API 20 Strep. Sequence analysis of the RNase P RNA gene (rnpB) showed that almost all isolates could be identified. This could be of importance for evaluation of the portal of entry in patients with septicaemia or infective endocarditis.

  5. Uncovering layers of human RNA polymerase II transcription

    DEFF Research Database (Denmark)

    Jensen, Torben Heick

    In recent years DNA microarray and high-throughput sequencing technologies have challenged the “gene-centric” view that pre-mRNA is the only RNA species transcribed off protein-coding genes. Instead unorthodox transcription from within genic- and intergenic regions has been demonstrated to occur...

  6. Novel Positive-Sense, Single-Stranded RNA (+ssRNA) Virus with Di-Cistronic Genome from Intestinal Content of Freshwater Carp (Cyprinus carpio)

    Science.gov (United States)

    Pankovics, Péter; Simmonds, Peter

    2011-01-01

    A novel positive-sense, single-stranded RNA (+ssRNA) virus (Halastavi árva RNA virus, HalV; JN000306) with di-cistronic genome organization was serendipitously identified in intestinal contents of freshwater carps (Cyprinus carpio) fished by line-fishing from fishpond “Lőrinte halastó” located in Veszprém County, Hungary. The complete nucleotide (nt) sequence of the genomic RNA is 9565 nt in length and contains two long - non-in-frame - open reading frames (ORFs), which are separated by an intergenic region. The ORF1 (replicase) is preceded by an untranslated sequence of 827 nt, while an untranslated region of 139 nt follows the ORF2 (capsid proteins). The deduced amino acid (aa) sequences of the ORFs showed only low (less than 32%) and partial similarity to the non-structural (2C-like helicase, 3C-like cystein protease and 3D-like RNA dependent RNA polymerase) and structural proteins (VP2/VP4/VP3) of virus families in Picornavirales especially to members of the viruses with dicistronic genome. Halastavi árva RNA virus is present in intestinal contents of omnivorous freshwater carps but the origin and the host species of this virus remains unknown. The unique viral sequence and the actual position indicate that Halastavi árva RNA virus seems to be the first member of a new di-cistronic ssRNA virus. Further studies are required to investigate the specific host species (and spectrum), ecology and role of Halastavi árva RNA virus in the nature. PMID:22195010

  7. Eukaryotic 5S rRNA biogenesis

    Science.gov (United States)

    Ciganda, Martin; Williams, Noreen

    2012-01-01

    The ribosome is a large complex containing both protein and RNA which must be assembled in a precise manner to allow proper functioning in the critical role of protein synthesis. 5S rRNA is the smallest of the RNA components of the ribosome, and although it has been studied for decades, we still do not have a clear understanding of its function within the complex ribosome machine. It is the only RNA species that binds ribosomal proteins prior to its assembly into the ribosome. Its transport into the nucleolus requires this interaction. Here we present an overview of some of the key findings concerning the structure and function of 5S rRNA and how its association with specific proteins impacts its localization and function. PMID:21957041

  8. GDCRNATools: an R/Bioconductor package for integrative analysis of lncRNA, miRNA, and mRNA data in GDC.

    Science.gov (United States)

    Li, Ruidong; Qu, Han; Wang, Shibo; Wei, Julong; Zhang, Le; Ma, Renyuan; Lu, Jianming; Zhu, Jianguo; Zhong, Wei-De; Jia, Zhenyu

    2018-03-02

    The large-scale multidimensional omics data in the Genomic Data Commons (GDC) provides opportunities to investigate the crosstalk among different RNA species and their regulatory mechanisms in cancers. Easy-to-use bioinformatics pipelines are needed to facilitate such studies. We have developed a user-friendly R/Bioconductor package, named GDCRNATools, for downloading, organizing, and analyzing RNA data in GDC with an emphasis on deciphering the lncRNA-mRNA related competing endogenous RNAs (ceRNAs) regulatory network in cancers. Many widely used bioinformatics tools and databases are utilized in our package. Users can easily pack preferred downstream analysis pipelines or integrate their own pipelines into the workflow. Interactive shiny web apps built in GDCRNATools greatly improve visualization of results from the analysis. GDCRNATools is an R/Bioconductor package that is freely available at Bioconductor (http://bioconductor.org/packages/devel/bioc/html/GDCRNATools.html). Detailed instructions, manual and example code are also available in Github (https://github.com/Jialab-UCR/GDCRNATools). arthur.jia@ucr.edu or zhongwd2009@live.cn or doctorzhujianguo@163.com.

  9. DSAP: deep-sequencing small RNA analysis pipeline.

    Science.gov (United States)

    Huang, Po-Jung; Liu, Yi-Chung; Lee, Chi-Ching; Lin, Wei-Chen; Gan, Richie Ruei-Chi; Lyu, Ping-Chiang; Tang, Petrus

    2010-07-01

    DSAP is an automated multiple-task web service designed to provide a total solution to analyzing deep-sequencing small RNA datasets generated by next-generation sequencing technology. DSAP uses a tab-delimited file as an input format, which holds the unique sequence reads (tags) and their corresponding number of copies generated by the Solexa sequencing platform. The input data will go through four analysis steps in DSAP: (i) cleanup: removal of adaptors and poly-A/T/C/G/N nucleotides; (ii) clustering: grouping of cleaned sequence tags into unique sequence clusters; (iii) non-coding RNA (ncRNA) matching: sequence homology mapping against a transcribed sequence library from the ncRNA database Rfam (http://rfam.sanger.ac.uk/); and (iv) known miRNA matching: detection of known miRNAs in miRBase (http://www.mirbase.org/) based on sequence homology. The expression levels corresponding to matched ncRNAs and miRNAs are summarized in multi-color clickable bar charts linked to external databases. DSAP is also capable of displaying miRNA expression levels from different jobs using a log(2)-scaled color matrix. Furthermore, a cross-species comparative function is also provided to show the distribution of identified miRNAs in different species as deposited in miRBase. DSAP is available at http://dsap.cgu.edu.tw.

  10. In situ DNA-RNA hybridization using in vitro 125I-labeled ribosomal RNA of higher plant

    International Nuclear Information System (INIS)

    Sato, Seiichi; Kikuchi, Tadatoshi; Ishida, M.R.; Tanaka, Ryuso.

    1975-01-01

    In situ hybridization using 125 I-labeled ribosomal RNA was applied to plant cells. Cytoplasmic 25 s rRNA, which was eluted from acrylamide gels after electrophoretic separation, was labeled in vitro with carrier-free 125 I and hybridized with the interphase nuclei in root tips of Vicia faba. In most of the preparations, the nucleoli were more heavily labeled than the other regions within nuclei, and several types of grain distribution were observed on the nucleoli. From these results, it was confirmed that in situ hybridization using 125 I-labeled rRNA can be used very effectively to detect the annealing sites of different molecular species of rRNA within the nuclei of plant cells, for which it is not as easy to obtain high specific radioactive rRNA in vivo as it is in the case of cultured animal cells. (auth.)

  11. Exploration of miRNA families for hypotheses generation.

    KAUST Repository

    Kamanu, T.K.; Radovanovic, Aleksandar; Archer, John A.C.; Bajic, Vladimir B.

    2013-01-01

    species. Our results unveil a subclass of miRNAs that may be regulated by genomic imprinting, and also suggest that some miRNA families may be species-specific, as well as chromosome- and/or strand-specific.

  12. Experimental and in situ investigations on americium, curium and plutonium behaviour in marine benthic species: transfer from water or sediments

    International Nuclear Information System (INIS)

    Miramand, P.

    1984-06-01

    The tranfer of transuranic elements -americium, curium and plutonium- from the sediments containing them to some marine benthic species (endofauna and epifauna) was studied with a twofold approach - laboratory and in-situ investigation. The experimental investigations, divided into three parts, made it possible to specify concentration factors (F.C.), transfer factors (F.T.) and to understand the process involved for 5 benthic species. The result were refined by an in-situ study that brought new data on the marine distribution of the transuranic elements released by the La Hague plant. Finally, the localization of americium and plutonium in the tissues and cells of these species was determined by autoradiography [fr

  13. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r

    International Nuclear Information System (INIS)

    Ramabhadran, T.V.

    1975-01-01

    Fluences (21 to 32 kJ/m 2 ) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA. (author)

  14. Development and characterization of microsatellite markers for Morus spp. and assessment of their transferability to other closely related species

    Science.gov (United States)

    2013-01-01

    Background Adoption of genomics based breeding has emerged as a promising approach for achieving comprehensive crop improvement. Such an approach is more relevant in the case of perennial species like mulberry. However, unavailability of genomic resources of co-dominant marker systems has been the major constraint for adopting molecular breeding to achieve genetic enhancement of Mulberry. The goal of this study was to develop and characterize a large number of locus specific genic and genomic SSR markers which can be effectively used for molecular characterization of mulberry species/genotypes. Result We analyzed a total of 3485 DNA sequences including genomic and expressed sequences (ESTs) of mulberry (Morus alba L.) genome. We identified 358 sequences to develop appropriate microsatellite primer pairs representing 222 genomic and 136 EST regions. Primers amplifying locus specific regions of Dudia white (a genotype of Morus alba L), were identified and 137 genomic and 51 genic SSR markers were standardized. A two pronged strategy was adopted to assess the applicability of these SSR markers using mulberry species and genotypes along with a few closely related species belonging to the family Moraceae viz., Ficus, Fig and Jackfruit. While 100% of these markers amplified specific loci on the mulberry genome, 79% were transferable to other related species indicating the robustness of these markers and the potential they hold in analyzing the molecular and genetic diversity among mulberry germplasm as well as other related species. The inherent ability of these markers in detecting heterozygosity combined with a high average polymorphic information content (PIC) of 0.559 ranging between 0.076 and 0.943 clearly demonstrates their potential as genomic resources in diversity analysis. The dissimilarity coefficient determined based on Neighbor joining method, revealed that the markers were successful in segregating the mulberry species, genotypes and other related species

  15. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR

    Science.gov (United States)

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of “self-target” spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage “self DNA.” Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships. PMID:26327282

  16. Polymorphism of CRISPR shows separated natural groupings of Shigella subtypes and evidence of horizontal transfer of CRISPR.

    Science.gov (United States)

    Yang, Chaojie; Li, Peng; Su, Wenli; Li, Hao; Liu, Hongbo; Yang, Guang; Xie, Jing; Yi, Shengjie; Wang, Jian; Cui, Xianyan; Wu, Zhihao; Wang, Ligui; Hao, Rongzhang; Jia, Leili; Qiu, Shaofu; Song, Hongbin

    2015-01-01

    Clustered, regularly interspaced, short palindromic repeats (CRISPR) act as an adaptive RNA-mediated immune mechanism in bacteria. They can also be used for identification and evolutionary studies based on polymorphisms within the CRISPR locus. We amplified and analyzed 6 CRISPR loci from 237 Shigella strains belonging to the 4 species groups, as well as 13 Escherichia coli strains. The CRISPR-associated (cas) gene sequence arrays of these strains were screened and compared. The CRISPR sequences from Shigella were conserved among subtypes, suggesting that CRISPR may represent a new identification tool for the detection and discrimination of Shigella species. Secondary structure analysis showed a different stem-loop structure at the terminal repeat, suggesting a distinct recognition mechanism in the formation of crRNA. In addition, the presence of "self-target" spacers and polymorphisms within CRISPR in Shigella indicated a selective pressure for inhibition of this system, which has the potential to damage "self DNA." Homology analysis of spacers showed that CRISPR might be involved in the regulation of virulence transmission. Phylogenetic analysis based on CRISPR sequences from Shigella and E. coli indicated that although phenotypic properties maintain convergent evolution, the 4 Shigella species do not represent natural groupings. Surprisingly, comparative analysis of Shigella repeats with other species provided new evidence for CRISPR horizontal transfer. Our results suggested that CRISPR analysis is applicable for the detection of Shigella species and for investigation of evolutionary relationships.

  17. Recurrent rewiring and emergence of RNA regulatory networks.

    Science.gov (United States)

    Wilinski, Daniel; Buter, Natascha; Klocko, Andrew D; Lapointe, Christopher P; Selker, Eric U; Gasch, Audrey P; Wickens, Marvin

    2017-04-04

    Alterations in regulatory networks contribute to evolutionary change. Transcriptional networks are reconfigured by changes in the binding specificity of transcription factors and their cognate sites. The evolution of RNA-protein regulatory networks is far less understood. The PUF (Pumilio and FBF) family of RNA regulatory proteins controls the translation, stability, and movements of hundreds of mRNAs in a single species. We probe the evolution of PUF-RNA networks by direct identification of the mRNAs bound to PUF proteins in budding and filamentous fungi and by computational analyses of orthologous RNAs from 62 fungal species. Our findings reveal that PUF proteins gain and lose mRNAs with related and emergent biological functions during evolution. We demonstrate at least two independent rewiring events for PUF3 orthologs, independent but convergent evolution of PUF4/5 binding specificity and the rewiring of the PUF4/5 regulons in different fungal lineages. These findings demonstrate plasticity in RNA regulatory networks and suggest ways in which their rewiring occurs.

  18. Genetic regulation of salt stress tolerance revealed by RNA-Seq in cotton diploid wild species, Gossypium davidsonii.

    Science.gov (United States)

    Zhang, Feng; Zhu, Guozhong; Du, Lei; Shang, Xiaoguang; Cheng, Chaoze; Yang, Bing; Hu, Yan; Cai, Caiping; Guo, Wangzhen

    2016-02-03

    Cotton is an economically important crop throughout the world, and is a pioneer crop in salt stress tolerance research. Investigation of the genetic regulation of salinity tolerance will provide information for salt stress-resistant breeding. Here, we employed next-generation RNA-Seq technology to elucidate the salt-tolerant mechanisms in cotton using the diploid cotton species Gossypium davidsonii which has superior stress tolerance. A total of 4744 and 5337 differentially expressed genes (DEGs) were found to be involved in salt stress tolerance in roots and leaves, respectively. Gene function annotation elucidated salt overly sensitive (SOS) and reactive oxygen species (ROS) signaling pathways. Furthermore, we found that photosynthesis pathways and metabolism play important roles in ion homeostasis and oxidation balance. Moreover, our studies revealed that alternative splicing also contributes to salt-stress responses at the posttranscriptional level, implying its functional role in response to salinity stress. This study not only provides a valuable resource for understanding the genetic control of salt stress in cotton, but also lays a substantial foundation for the genetic improvement of crop resistance to salt stress.

  19. Trace species detection: Spectroscopy and molecular energy transfer at high temperature

    Energy Technology Data Exchange (ETDEWEB)

    Gray, J.A. [Sandia National Laboratories, Livermore, CA (United States)

    1993-12-01

    Monitoring the concentration of trace species such as atomic and molecular free radicals is essential in forming predictive models of combustion processes. LIF-based techniques have the necessary sensitivity for concentration and temperature measurements but have limited accuracy due to collisional quenching in combustion applications. The goal of this program is to use spectroscopic and kinetic measurements to quantify nonradiative and collisional effects on LIF signals and to develop new background-free alternatives to LIF. The authors have measured the natural linewidth of several OH A-X (3,0) rotational transitions to determine predissociation lifetimes in the upper state, which were presumed to be short compared to quenching lifetimes, and as a result, quantitative predictions about the applicability of predissociation fluorescence methods at high pressures are made. The authors are investigating collisional energy transfer in the A-state of NO. Quenching rates which enable direct corrections to NO LIF quantum yields at high temperature were calculations. These quenching rates are now being used in studies of turbulence/chemistry interactions. The authors have measured the electric dipole moment {mu} of excited-state NO using Stark quantum-beat spectroscopy. {mu} is an essential input to a harpoon model which predicts quenching efficiencies for NO (A) by a variety of combustion-related species. The authors are developing new coherent multiphoton techniques for measurements of atomic hydrogen concentration in laboratory flames to avoid the quenching problems associated with previous multiphoton LIF schemes.

  20. BP Neural Network Could Help Improve Pre-miRNA Identification in Various Species

    Directory of Open Access Journals (Sweden)

    Limin Jiang

    2016-01-01

    Full Text Available MicroRNAs (miRNAs are a set of short (21–24 nt noncoding RNAs that play significant regulatory roles in cells. In the past few years, research on miRNA-related problems has become a hot field of bioinformatics because of miRNAs’ essential biological function. miRNA-related bioinformatics analysis is beneficial in several aspects, including the functions of miRNAs and other genes, the regulatory network between miRNAs and their target mRNAs, and even biological evolution. Distinguishing miRNA precursors from other hairpin-like sequences is important and is an essential procedure in detecting novel microRNAs. In this study, we employed backpropagation (BP neural network together with 98-dimensional novel features for microRNA precursor identification. Results show that the precision and recall of our method are 95.53% and 96.67%, respectively. Results further demonstrate that the total prediction accuracy of our method is nearly 13.17% greater than the state-of-the-art microRNA precursor prediction software tools.

  1. Nucleolar remodeling in nuclear transfer embryos

    DEFF Research Database (Denmark)

    Laurincik, Jozef; Maddox-Hyttel, Poul

    2007-01-01

    Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate the devel......Transcription of the ribosomal RNA (rRNA) genes occurs in the nucleolus and results in ribosome biogenesis. The rRNA gene activation and the associated nucleolus formation may be used as a marker for the activation of the embryonic genome in mammalian embryos and, thus serve to evaluate...... nucleoli are not apparent until the 5th cell cycle, whereas in somatic cell nuclear transfer embryos the functional nucleoli emerge already during the 3rd cell cycle. Intergeneric reconstructed embryos produced by the fusion of bovine differentiated somatic cell to a nonactivated ovine cytoplast fail...

  2. Interspecific nutrient transfer in a tallgrass prairie plant community

    International Nuclear Information System (INIS)

    Walter, L.E.F.; Hartnett, D.C.; Hetrick, B.A.D.; Schwab, A.P.

    1996-01-01

    Interplant nutrient transfer may be an important ecological process in grasslands, and may significantly influence plant neighborhood interactions. We investigated the potential for phosphorus transfer between the dominant grass Andropogon gerardii and several neighboring plant species in tallgrass prairie via a field 32PO4 labelling experiment. The mean amount of 32P received from donor shoots differed significantly among neighboring species and decreased with increasing distance from the donor. In general, forbs and cool-season C3 grasses received more labelled 32P than warm-season C4 grasses. Phosphorus transfer occurred over distances up to 0.5 m. The effects of species and distance on movement of phosphorus changed with increasing time after labelling. The relative mass of receiver and donor shoots did not affect amounts of 32P transfer. A benomyl fungicide treatment, applied to suppress mycorrhizal activity, likely did not affect existing vegetative hyphae and did not affect the amount of 32P transferred. These studies demonstrate that: (1) phosphorus is transferred among neighboring species in tallgrass prairie plant communities, (2) phosphorus may be transferred over significantly greater distances than reported in other grasslands, and (3) there is differential transfer among co-occurring species. Hypothesized mechanisms accounting for these patterns in tallgrass prairie include mycorrhizal hyphal interconnections and/or extensive and differential root and rhizosphere overlap among neighboring species

  3. Vg mRNA induction in an endangered fish species (Anguilla anguilla) from the Loire estuary (France).

    Science.gov (United States)

    Blanchet-Letrouvé, Isabelle; Lafont, Anne-Gaëlle; Poirier, Laurence; Baloche, Sylvie; Zalouk-Vergnoux, Aurore; Dufour, Sylvie; Mouneyrac, Catherine

    2013-11-01

    Estuarine zones are extremely fragile due to increasing stress from anthropogenic activities. Among those, the Loire estuary (France) is potentially exposed to various contaminants including Endocrine Disruptors Compounds (EDCs) able to impact the reproduction physiology of fish. The European eel (Anguilla anguilla), endangered fish species, is apparently not relevant, in its yellow stage, to monitor the effects of endocrine disruption. Despite this weakly responsiveness, this study aimed to investigate whether European eel from the Loire estuary may still be the subject of estrogenic disruption quantifying the hepatic Vg gene expression according to gender and sexual stage. Vitellogenin (Vg) appears as a valuable biomarker of EDCs, as well as for exposure and effects. Quantitative real-time Reverse Transcription Polymerase Chain Reaction (q RT PCR) was used in this study to amplify responses of hepatic Vg transcripts. European eels were sampled in May 2009 (N=57) and November 2010 (during the downstream migration, N=10) in two sites of the Loire estuary with different ecological conditions and contamination pressures (upstream: Varades; downstream: Nantes). Reproductive (gender, sexual maturity stage) and biometric parameters of collected eels were determined. A laboratory exposure of silver male to steroid hormones (Testosterone (T), 11-KetoTestosterone (11-KT), Estradiol (E2)) was conducted in parallel to validate the q RT PCR approach on hepatic Vg mRNA. Results demonstrated the responsiveness of exposed silver male eels, since hepatic mRNA Vg induction was observed in E2 treated males compared to control specimens. In the field, results of female silver eels reflected large inter-individual differences in the activation of hepatic Vg at silvering. However, while only female silver eels should express hepatic Vg mRNA, quantifiable levels were also detected in a proportion of 38% of the other individuals sampled, normally not inclined to express it, those being

  4. Small RNA Deep Sequencing and the Effects of microRNA408 on Root Gravitropic Bending in Arabidopsis

    Science.gov (United States)

    Li, Huasheng; Lu, Jinying; Sun, Qiao; Chen, Yu; He, Dacheng; Liu, Min

    2015-11-01

    MicroRNA (miRNA) is a non-coding small RNA composed of 20 to 24 nucleotides that influences plant root development. This study analyzed the miRNA expression in Arabidopsis root tip cells using Illumina sequencing and real-time PCR before (sample 0) and 15 min after (sample 15) a 3-D clinostat rotational treatment was administered. After stimulation was performed, the expression levels of seven miRNA genes, including Arabidopsis miR160, miR161, miR394, miR402, miR403, miR408, and miR823, were significantly upregulated. Illumina sequencing results also revealed two novel miRNAsthat have not been previously reported, The target genes of these miRNAs included pentatricopeptide repeat-containing protein and diadenosine tetraphosphate hydrolase. An overexpression vector of Arabidopsis miR408 was constructed and transferred to Arabidopsis plant. The roots of plants over expressing miR408 exhibited a slower reorientation upon gravistimulation in comparison with those of wild-type. This result indicate that miR408 could play a role in root gravitropic response.

  5. Cross-species amplification of microsatellite loci developed for Passiflora edulis Sims. in related Passiflora Species

    Directory of Open Access Journals (Sweden)

    Gilmara Alvarenga Fachardo Oliveira

    2013-10-01

    Full Text Available The aim of this study was to evaluate the selected 41 SSR markers developed for yellow passion fruit (Passiflora edulis f. flavicarpa Sims. for their transferability to 11 different Passiflora species. Twenty-one SSR were successfully amplified in 10 wild species of passion fruit producing 101 bands. All the markers were amplifiable for at least one species. The mean transferability was 68,8%, ranging from 15,4% (primer PE11 to 100 % (PE13, PE18, PE37, PE41 and PE88. Transferability was higher for the species from the Passiflora subgenus than for those from the Decaloba and Dysosmia subgenus. The results indicated a high level of nucleotide sequence conservation of the primer regions in the species evaluated, and consequently, they could potentially be used for the establishment of molecular strategies for use in passion fruit breeding and genetics.

  6. Transfer of Pseudomonas pictorum Gray and Thornton 1928 to genus Stenotrophomonas as Stenotrophomonas pictorum comb. nov., and emended description of the genus Stenotrophomonas.

    Science.gov (United States)

    Ouattara, Aboubakar Sidiki; Le Mer, Jean; Joseph, Manon; Macarie, Hervé

    2017-06-01

    A polyphasic taxonomic approach including analysis of phenotypic, physiological and genotypic characteristics, 16S rRNA gene sequence and DNA-DNA hybridization analysis was used to determine the most consistent affiliation of Pseudomonas pictorum. Pseudomonas pictorum ATCC 23328T exhibited phenotypic traits of members of the genus Stenotrophomonas including cellular fatty acid composition, quinone and limited range of substrates that could be used. Antibiotic susceptibility and physiological characteristics were determined. The DNA G+C content was 65.7 mol%. Phylogenetic analysis revealed that the type strains of Stenotrophomonas terrae, Stenotrophomonashumi, Stenotrophomonasnitritireducens and Stenotrophomonasacidaminiphila were the nearest relatives (16S rRNA gene sequence similarity of 98.0 to 98.8 %). All the other type strains of species of the genus Stenotrophomonas showed high 16S rRNA gene sequence similarities (96.8 to 97.2 %). DNA-DNA hybridizations revealed 31.0, 32.0, 43.3 and 43.6 % reassociation between Pseudomonas pictorum ATCC 23328T and the type strains of S. terrae, S. humi, S. nitritireducens and S. acidaminiphila, respectively. Our overall results indicate that Pseudomonas pictorum should be transferred to the genus Stenotrophomonas as a novel species of this genus, Stenotrophomonas pictorum comb. nov. Since the original description of the genus Stenotrophomonaswas made with only one species (Stenotrophomonasmaltophilia), an emendation of the genus description is proposed in order to match better with the characteristics of the eleven novel species assigned to this genus since then.

  7. Kidney-specific Sonoporation-mediated Gene Transfer.

    Science.gov (United States)

    Ishida, Ryo; Kami, Daisuke; Kusaba, Tetsuro; Kirita, Yuhei; Kishida, Tsunao; Mazda, Osam; Adachi, Takaomi; Gojo, Satoshi

    2016-02-01

    Sonoporation can deliver agents to target local organs by systemic administration, while decreasing the associated risk of adverse effects. Sonoporation has been used for a variety of materials and in a variety of organs. Herein, we demonstrated that local sonoporation to the kidney can offer highly efficient transfer of oligonucleotides, which were systemically administrated to the tubular epithelium with high specificity. Ultrasonic wave irradiation to the kidney collapsed the microbubbles and transiently affected the glomerular filtration barrier and increased glomerular permeability. Oligonucleotides were passed through the barrier all at once and were absorbed throughout the tubular epithelium. Tumor necrosis factor alpha (TNFα), which plays a central role in renal ischemia-reperfusion injury, was targeted using small interfering RNA (siRNA) with renal sonoporation in a murine model. The reduction of TNFα expression after single gene transfer significantly inhibited the expression of kidney injury markers, suggesting that systemic administration of siRNA under temporary and local sonoporation could be applicable in the clinical setting of ischemic acute kidney injury.

  8. Evidence of birth-and-death evolution of 5S rRNA gene in Channa species (Teleostei, Perciformes).

    Science.gov (United States)

    Barman, Anindya Sundar; Singh, Mamta; Singh, Rajeev Kumar; Lal, Kuldeep Kumar

    2016-12-01

    In higher eukaryotes, minor rDNA family codes for 5S rRNA that is arranged in tandem arrays and comprises of a highly conserved 120 bp long coding sequence with a variable non-transcribed spacer (NTS). Initially the 5S rDNA repeats are considered to be evolved by the process of concerted evolution. But some recent reports, including teleost fishes suggested that evolution of 5S rDNA repeat does not fit into the concerted evolution model and evolution of 5S rDNA family may be explained by a birth-and-death evolution model. In order to study the mode of evolution of 5S rDNA repeats in Perciformes fish species, nucleotide sequence and molecular organization of five species of genus Channa were analyzed in the present study. Molecular analyses revealed several variants of 5S rDNA repeats (four types of NTS) and networks created by a neighbor net algorithm for each type of sequences (I, II, III and IV) did not show a clear clustering in species specific manner. The stable secondary structure is predicted and upstream and downstream conserved regulatory elements were characterized. Sequence analyses also shown the presence of two putative pseudogenes in Channa marulius. Present study supported that 5S rDNA repeats in genus Channa were evolved under the process of birth-and-death.

  9. Transfer characteristics of cadmium and lead from soil to the edible parts of six vegetable species in southeastern China

    International Nuclear Information System (INIS)

    Wang Guo; Su Miaoyu; Chen Yanhui; Lin Fenfang; Luo Dan; Gao Shufang

    2006-01-01

    The transfer characteristics of Cd and Pb from soils to the edible parts of six vegetable species were calculated from plant and corresponding surface soil samples collected from the fields in Fujian Province, southeastern China. The soil-to-plant transfer factors (TF) calculated from both total and DTPA-extractable Cd and Pb in the soils decreased with increasing total or DTPA-extractable Cd and Pb, indicating that the TF values of Cd and Pb depend on the soil metal content. For most plants studied, there was a significant relation between the TF values and the corresponding soil metal concentrations (total or DTPA-extractable) that was best described by an exponential equation (y = ax b ). We recommend that the representative TF value for a given crop-metal system should be estimated from the regression models between the transfer factors and the corresponding soil metal concentrations and at a given soil metal concentration. - Soil-to-plant transfer factors of Cd and Pb decreased with increasing soil contents of Cd and Pb

  10. Down-Regulation of Gene Expression by RNA-Induced Gene Silencing

    Science.gov (United States)

    Travella, Silvia; Keller, Beat

    Down-regulation of endogenous genes via post-transcriptional gene silencing (PTGS) is a key to the characterization of gene function in plants. Many RNA-based silencing mechanisms such as post-transcriptional gene silencing, co-suppression, quelling, and RNA interference (RNAi) have been discovered among species of different kingdoms (plants, fungi, and animals). One of the most interesting discoveries was RNAi, a sequence-specific gene-silencing mechanism initiated by the introduction of double-stranded RNA (dsRNA), homologous in sequence to the silenced gene, which triggers degradation of mRNA. Infection of plants with modified viruses can also induce RNA silencing and is referred to as virus-induced gene silencing (VIGS). In contrast to insertional mutagenesis, these emerging new reverse genetic approaches represent a powerful tool for exploring gene function and for manipulating gene expression experimentally in cereal species such as barley and wheat. We examined how RNAi and VIGS have been used to assess gene function in barley and wheat, including molecular mechanisms involved in the process and available methodological elements, such as vectors, inoculation procedures, and analysis of silenced phenotypes.

  11. Genetic diversity of symbiotic Paraburkholderia species isolated from nodules of Mimosa pudica (L.) and Phaseolus vulgaris (L.) grown in soils of the Brazilian Atlantic Forest (Mata Atlântica).

    Science.gov (United States)

    Dall'Agnol, Rebeca Fuzinatto; Bournaud, Caroline; de Faria, Sérgio Miana; Béna, Gilles; Moulin, Lionel; Hungria, Mariangela

    2017-04-01

    Some species of the genus Paraburkholderia that are able to nodulate and fix nitrogen in symbiosis with legumes are called β-rhizobia and represent a group of ecological and biotechnological importance. We used Mimosa pudica and Phaseolus vulgaris to trap 427 rhizobial isolates from rhizospheric soil of Mimoseae trees in the Brazilian Atlantic Forest. Eighty-four representative strains were selected according to the 16S rRNA haplotypes and taxonomically characterized using a concatenated 16S rRNA-recA phylogeny. Most strains were assembled in the genus Paraburkholderia, including Paraburkholderia sabiae and Pa. nodosa. Mesorhizobium (α-rhizobia) and Cupriavidus (β-rhizobia) were also isolated, but in smaller proportions. Multilocus sequence analysis and BOX-PCR analyses indicated that six clusters of Paraburkholderia represent potential new species. In the phylogenetic analysis of the nodC gene, the majority of the strains were positioned in the same groups as in the 16S rRNA-recA tree, indicative of stability and vertical inheritance, but we also identified horizontal transfer of nodC in Pa. sabiae. All α- and β-rhizobial species were trapped by both legumes, although preferences of the host plants for specific rhizobial species have been observed. © FEMS 2017. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  12. RNA-binding properties and RNA chaperone activity of human peroxiredoxin 1

    International Nuclear Information System (INIS)

    Kim, Ji-Hee; Lee, Jeong-Mi; Lee, Hae Na; Kim, Eun-Kyung; Ha, Bin; Ahn, Sung-Min; Jang, Ho Hee; Lee, Sang Yeol

    2012-01-01

    Highlights: ► hPrx1 has RNA-binding properties. ► hPrx1 exhibits helix-destabilizing activity. ► Cold stress increases hPrx1 level in the nuclear fraction. ► hPrx1 enhances the viability of cells exposed to cold stress. -- Abstract: Human peroxiredoxin 1 (hPrx1), a member of the peroxiredoxin family, detoxifies peroxide substrates and has been implicated in numerous biological processes, including cell growth, proliferation, differentiation, apoptosis, and redox signaling. To date, Prx1 has not been implicated in RNA metabolism. Here, we investigated the ability of hPrx1 to bind RNA and act as an RNA chaperone. In vitro, hPrx1 bound to RNA and DNA, and unwound nucleic acid duplexes. hPrx1 also acted as a transcription anti-terminator in an assay using an Escherichia coli strain containing a stem–loop structure upstream of the chloramphenicol resistance gene. The overall cellular level of hPrx1 expression was not increased at low temperatures, but the nuclear level of hPrx1 was increased. In addition, hPrx1 overexpression enhanced the survival of cells exposed to cold stress, whereas hPrx1 knockdown significantly reduced cell survival under the same conditions. These findings suggest that hPrx1 may perform biological functions as a RNA-binding protein, which are distinctive from known functions of hPrx1 as a reactive oxygen species scavenger.

  13. Computational prediction of miRNA genes from small RNA sequencing data

    Directory of Open Access Journals (Sweden)

    Wenjing eKang

    2015-01-01

    Full Text Available Next-generation sequencing now for the first time allows researchers to gauge the depth and variation of entire transcriptomes. However, now as rare transcripts can be detected that are present in cells at single copies, more advanced computational tools are needed to accurately annotate and profile them. miRNAs are 22 nucleotide small RNAs (sRNAs that post-transcriptionally reduce the output of protein coding genes. They have established roles in numerous biological processes, including cancers and other diseases. During miRNA biogenesis, the sRNAs are sequentially cleaved from precursor molecules that have a characteristic hairpin RNA structure. The vast majority of new miRNA genes that are discovered are mined from small RNA sequencing (sRNA-seq, which can detect more than a billion RNAs in a single run. However, given that many of the detected RNAs are degradation products from all types of transcripts, the accurate identification of miRNAs remain a non-trivial computational problem. Here we review the tools available to predict animal miRNAs from sRNA sequencing data. We present tools for generalist and specialist use cases, including prediction from massively pooled data or in species without reference genome. We also present wet-lab methods used to validate predicted miRNAs, and approaches to computationally benchmark prediction accuracy. For each tool, we reference validation experiments and benchmarking efforts. Last, we discuss the future of the field.

  14. RNA sequencing: current and prospective uses in metabolic research.

    Science.gov (United States)

    Vikman, Petter; Fadista, Joao; Oskolkov, Nikolay

    2014-10-01

    Previous global RNA analysis was restricted to known transcripts in species with a defined transcriptome. Next generation sequencing has transformed transcriptomics by making it possible to analyse expressed genes with an exon level resolution from any tissue in any species without any a priori knowledge of which genes that are being expressed, splice patterns or their nucleotide sequence. In addition, RNA sequencing is a more sensitive technique compared with microarrays with a larger dynamic range, and it also allows for investigation of imprinting and allele-specific expression. This can be done for a cost that is able to compete with that of a microarray, making RNA sequencing a technique available to most researchers. Therefore RNA sequencing has recently become the state of the art with regards to large-scale RNA investigations and has to a large extent replaced microarrays. The only drawback is the large data amounts produced, which together with the complexity of the data can make a researcher spend far more time on analysis than performing the actual experiment. © 2014 Society for Endocrinology.

  15. Selection of tRNA charging quality control mechanisms that increase mistranslation of the genetic code

    DEFF Research Database (Denmark)

    Yadavalli, Srujana S; Ibba, Michael

    2013-01-01

    Mistranslation can follow two events during protein synthesis: production of non-cognate amino acid:transfer RNA (tRNA) pairs by aminoacyl-tRNA synthetases (aaRSs) and inaccurate selection of aminoacyl-tRNAs by the ribosome. Many aaRSs actively edit non-cognate amino acids, but editing mechanisms...

  16. Transferability of habitat suitability criteria for fishes in warmwater streams

    Science.gov (United States)

    Freeman, Mary C.; Bowen, Z.H.; Crance, J.H.

    1997-01-01

    We developed habitat suitability criteria and tested their transferability for nine fishes inhabiting unregulated Piedmont and Coastal Plain streams in Alabama. Cr iteria for optimal habitat were defined as ranges of depth, velocity, substrate type and cover type for which a species' suitability index (proportional abundance divided by proportional habitat availability, scaled from 0 to 1) equalled or exceeded 0.4. We evaluated the transferability of criteria between study sites by testing the null hypothesis that species occurrence in a sample was independent of whether or not the sample was taken in optimal habitat. We also tested criteria transference to a large, flow-regulated river sampled during low flow periods. Depth, velocity and most substrate criteria developed for the bronze darter Percina palmaris successfully transferred between unregulated streams and to the flow-regulated river samples. All criteria developed for a pair of closely related, allopatric darter species, Etheostoma chuckwachattee and E. jordani, transferred sucessfully when applied between species (in the unregulated sites) and to the regulated river samples. In contrast, criteria for the Alabama shiner Cyprinella callistia failed nearly all tests of transferability. Criteria for E. stigmaeum, P. nigrofasciata, an undescribed Percina species, and a pair of related, allopatric Cyprinella species transferred inconsistently. The species with good criteria transference had high suitability indices for shallow depths, fast current velocities and coarse substrates, characteristic of riffle species. We suggest that microhabitat criteria for riffle fishes are more likely to provide a transferable measure of habitat quality than criteria for fishes that, although restricted to fluvial habitats, commonly occupy a variety of pool and riffle habitats.

  17. Structural insights into Rhino-Deadlock complex for germline piRNA cluster specification.

    Science.gov (United States)

    Yu, Bowen; Lin, Yu An; Parhad, Swapnil S; Jin, Zhaohui; Ma, Jinbiao; Theurkauf, William E; Zhang, Zz Zhao; Huang, Ying

    2018-06-01

    PIWI-interacting RNAs (piRNAs) silence transposons in germ cells to maintain genome stability and animal fertility. Rhino, a rapidly evolving heterochromatin protein 1 (HP1) family protein, binds Deadlock in a species-specific manner and so defines the piRNA-producing loci in the Drosophila genome. Here, we determine the crystal structures of Rhino-Deadlock complex in Drosophila melanogaster and simulans In both species, one Rhino binds the N-terminal helix-hairpin-helix motif of one Deadlock protein through a novel interface formed by the beta-sheet in the Rhino chromoshadow domain. Disrupting the interface leads to infertility and transposon hyperactivation in flies. Our structural and functional experiments indicate that electrostatic repulsion at the interaction interface causes cross-species incompatibility between the sibling species. By determining the molecular architecture of this piRNA-producing machinery, we discover a novel HP1-partner interacting mode that is crucial to piRNA biogenesis and transposon silencing. We thus explain the cross-species incompatibility of two sibling species at the molecular level. © 2018 The Authors.

  18. Respiratory viral RNA on toys in pediatric office waiting rooms.

    Science.gov (United States)

    Pappas, Diane E; Hendley, J Owen; Schwartz, Richard H

    2010-02-01

    Toys in pediatric office waiting rooms may be fomites for transmission of viruses. Eighteen samples were taken from office objects on 3 occasions. Samples were tested for presence of picornavirus (either rhinovirus or enterovirus) on all 3 sample days; in addition, January samples were tested for respiratory syncytial virus and March samples were tested for influenza A and B. In addition, 15 samples were obtained from the sick waiting room before and after cleaning. Polymerase chain reaction was used to detect picornavirus, respiratory syncytial virus, and influenza A or B virus. Finally, 20 samples were obtained from the fingers of a researcher after handling different toys in the sick waiting room, and samples were then obtained from all the same toys; all samples were tested for picornavirus by polymerase chain reaction. Viral RNA was detected on 11 of 52 (21%) of toys sampled. Ten of the positives were picornavirus; 1 was influenza B virus. Three (30%) of 10 toys from the new toy bag, 6 of 30 (20%) in the sick child waiting room, and 2 of 12 (17%) in the well child waiting room were positive. Six (40%) of 15 toys in the sick waiting room were positive for picornaviral RNA before cleaning; after cleaning, 4 (27%) of 15 were positive in spite of the fact that RNA was removed from 4 of 6 of the original positives. Three (15%) of 20 toys in the sick waiting room were positive for picornaviral RNA, but RNA was not transferred to the fingers of the investigator who handled these toys. About 20% of the objects in a pediatric office may be contaminated with respiratory viral RNA, most commonly picornavirus RNA. Cleaning with a disinfectant cloth was only modestly effective in removing the viral RNA from the surfaces of toys, but transfer of picornaviral RNA from toys to fingers was inefficient.

  19. Characterizing the transcriptome upon depletion of RNA processing factors

    DEFF Research Database (Denmark)

    Herudek, Jan

    , it is not clear how they target and discriminate their RNA substrates. Moreover, many novel RNA species are poorly characterized and their function is not understood. Over the last decade, protein function has been studied using RNA interference. However, this approach does not allow investigation of instant......The human genome is pervasively transcribed and produces an enormous amount of non-coding RNA (ncRNA). Compared to protein-coding transcripts, many classes of ncRNAs are very unstable and rapidly degraded by the RNA decay machinery. The RNA exosome complex is a main RNA ‘degrader’ in the human...... nucleus and is responsible for the proper processing and decay of a wide range of RNA molecules. Notably, the RNA exosome complex associates with a plethora of co-factors and activators that assist in the recognition of specific RNA substrates. Although many exosome partners have been characterized...

  20. Isolation of high-quality total RNA from leaves of Myrciaria dubia "CAMU CAMU".

    Science.gov (United States)

    Gómez, Juan Carlos Castro; Reátegui, Alina Del Carmen Egoavil; Flores, Julián Torres; Saavedra, Roberson Ramírez; Ruiz, Marianela Cobos; Correa, Sixto Alfredo Imán

    2013-01-01

    Myrciaria dubia is a main source of vitamin C for people in the Amazon region. Molecular studies of M. dubia require high-quality total RNA from different tissues. So far, no protocols have been reported for total RNA isolation from leaves of this species. The objective of this research was to develop protocols for extracting high-quality total RNA from leaves of M. dubia. Total RNA was purified following two modified protocols developed for leaves of other species (by Zeng and Yang, and by Reid et al.) and one modified protocol developed for fruits of the studied species (by Silva). Quantity and quality of purified total RNA were assessed by spectrophotometric and electrophoretic analysis. Additionally, quality of total RNA was evaluated with reverse-transcription polymerase chain reaction (RT-PCR). With these three modified protocols we were able to isolate high-quality RNA (A260nm/A280nm >1.9 and A260nm/A230nm >2.0). Highest yield was produced with the Zeng and Yang modified protocol (384±46µg ARN/g fresh weight). Furthermore, electrophoretic analysis showed the integrity of isolated RNA and the absence of DNA. Another proof of the high quality of our purified RNA was the successful cDNA synthesis and amplification of a segment of the M. dubia actin 1 gene. We report three modified protocols for isolation total RNA from leaves of M. dubia. The modified protocols are easy, rapid, low in cost, and effective for high-quality and quantity total RNA isolation suitable for cDNA synthesis and polymerase chain reaction.

  1. Revival of extinct species using nuclear transfer: hope for the mammoth, true for the Pyrenean ibex, but is it time for "conservation cloning"?

    Science.gov (United States)

    Piña-Aguilar, Raul E; Lopez-Saucedo, Janet; Sheffield, Richard; Ruiz-Galaz, Lilia I; Barroso-Padilla, Jose de J; Gutiérrez-Gutiérrez, Antonio

    2009-09-01

    Recent accomplishments in the fields of nuclear transfer and genomics, such as the cloned offspring production from frozen mouse cells, cryopreserved at not too low temperatures without cryoprotectors; or the sequencing of wooly mammoth genome, have opened the opportunity for the revival of extinct species. As expected, they are receiving a lot of publicity in the media and also scientific attention. Furthermore, it was recently published the "revival" of the first extinct subspecie: the Pyrenean ibex (Capra pyrenaica pyrenaica), a wild goat extinct in 2000. This strengthens the field of cloning as it had been tarnished by induced pluripotent stem cells (iPS) and other methods of reprogramming. However, for biological conservation purposes, cloning is not generally accepted as an alternative for animal conservation, and there is an ongoing debate between reproductive scientists and conservation specialists. Although we believe that nuclear transfer technologies have an opportunity in conservation efforts for some species that are on the brink of extinction and that population status, geographical isolation, reproductive characteristics, and human pressure create a situation that is almost unsustainable. In this article we discuss the barriers in cloning mammoths and cloning controversies in conservation from a zoological perspective, citing the species that might benefit from nuclear transfer techniques in the arduous journey so as not to disappear forever from this, our world.

  2. Conserved and variable domains of RNase MRP RNA.

    Science.gov (United States)

    Dávila López, Marcela; Rosenblad, Magnus Alm; Samuelsson, Tore

    2009-01-01

    Ribonuclease MRP is a eukaryotic ribonucleoprotein complex consisting of one RNA molecule and 7-10 protein subunits. One important function of MRP is to catalyze an endonucleolytic cleavage during processing of rRNA precursors. RNase MRP is evolutionary related to RNase P which is critical for tRNA processing. A large number of MRP RNA sequences that now are available have been used to identify conserved primary and secondary structure features of the molecule. MRP RNA has structural features in common with P RNA such as a conserved catalytic core, but it also has unique features and is characterized by a domain highly variable between species. Information regarding primary and secondary structure features is of interest not only in basic studies of the function of MRP RNA, but also because mutations in the RNA give rise to human genetic diseases such as cartilage-hair hypoplasia.

  3. Deep sequencing of Salmonella RNA associated with heterologous Hfq proteins in vivo reveals small RNAs as a major target class and identifies RNA processing phenotypes.

    Science.gov (United States)

    Sittka, Alexandra; Sharma, Cynthia M; Rolle, Katarzyna; Vogel, Jörg

    2009-01-01

    The bacterial Sm-like protein, Hfq, is a key factor for the stability and function of small non-coding RNAs (sRNAs) in Escherichia coli. Homologues of this protein have been predicted in many distantly related organisms yet their functional conservation as sRNA-binding proteins has not entirely been clear. To address this, we expressed in Salmonella the Hfq proteins of two eubacteria (Neisseria meningitides, Aquifex aeolicus) and an archaeon (Methanocaldococcus jannaschii), and analyzed the associated RNA by deep sequencing. This in vivo approach identified endogenous Salmonella sRNAs as a major target of the foreign Hfq proteins. New Salmonella sRNA species were also identified, and some of these accumulated specifically in the presence of a foreign Hfq protein. In addition, we observed specific RNA processing defects, e.g., suppression of precursor processing of SraH sRNA by Methanocaldococcus Hfq, or aberrant accumulation of extracytoplasmic target mRNAs of the Salmonella GcvB, MicA or RybB sRNAs. Taken together, our study provides evidence of a conserved inherent sRNA-binding property of Hfq, which may facilitate the lateral transmission of regulatory sRNAs among distantly related species. It also suggests that the expression of heterologous RNA-binding proteins combined with deep sequencing analysis of RNA ligands can be used as a molecular tool to dissect individual steps of RNA metabolism in vivo.

  4. Chromosomal mapping of H3 histone and 5S rRNA genes in eight species of Astyanax (Pisces, Characiformes) with different diploid numbers: syntenic conservation of repetitive genes.

    Science.gov (United States)

    Piscor, Diovani; Parise-Maltempi, Patricia Pasquali

    2016-03-01

    The genus Astyanax is widely distributed from the southern United States to northern Patagonia, Argentina. While cytogenetic studies have been performed for this genus, little is known about the histone gene families. The aim of this study was to examine the chromosomal relationships among the different species of Astyanax. The chromosomal locations of the 5S rRNA and H3 histone genes were determined in A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, A. mexicanus (all 2n = 50), A. fasciatus (2n = 46), and A. schubarti (2n = 36). All eight species exhibited H3 histone clusters on two chromosome pairs. In six species (A. abramis, A. asuncionensis, A. altiparanae, A. bockmanni, A. eigenmanniorum, and A. fasciatus), syntenic clusters of H3 histone and 5S rDNA were observed on metacentric (m) or submetacentric (sm) chromosomes. In seven species, clusters of 5S rDNA sequences were located on one or two chromosome pairs. In A. mexicanus, 5S rDNA clusters were located on four chromosome pairs. This study demonstrates that H3 histone clusters are conserved on two chromosome pairs in the genus Astyanax, and specific chromosomal features may contribute to the genomic organization of the H3 histone and 5S rRNA genes.

  5. Unexpected expansion of tRNA substrate recognition by the yeast m1G9 methyltransferase Trm10.

    Science.gov (United States)

    Swinehart, William E; Henderson, Jeremy C; Jackman, Jane E

    2013-08-01

    N-1 Methylation of the nearly invariant purine residue found at position 9 of tRNA is a nucleotide modification found in multiple tRNA species throughout Eukarya and Archaea. First discovered in Saccharomyces cerevisiae, the tRNA methyltransferase Trm10 is a highly conserved protein both necessary and sufficient to catalyze all known instances of m1G9 modification in yeast. Although there are 19 unique tRNA species that contain a G at position 9 in yeast, and whose fully modified sequence is known, only 9 of these tRNA species are modified with m1G9 in wild-type cells. The elements that allow Trm10 to distinguish between structurally similar tRNA species are not known, and sequences that are shared between all substrate or all nonsubstrate tRNAs have not been identified. Here, we demonstrate that the in vitro methylation activity of yeast Trm10 is not sufficient to explain the observed pattern of modification in vivo, as additional tRNA species are substrates for Trm10 m1G9 methyltransferase activity. Similarly, overexpression of Trm10 in yeast yields m1G9 containing tRNA species that are ordinarily unmodified in vivo. Thus, yeast Trm10 has a significantly broader tRNA substrate specificity than is suggested by the observed pattern of modification in wild-type yeast. These results may shed light onto the suggested involvement of Trm10 in other pathways in other organisms, particularly in higher eukaryotes that contain up to three different genes with sequence similarity to the single TRM10 gene in yeast, and where these other enzymes have been implicated in pathways beyond tRNA processing.

  6. Mitochondrial tRNA cleavage by tRNA-targeting ribonuclease causes mitochondrial dysfunction observed in mitochondrial disease

    Energy Technology Data Exchange (ETDEWEB)

    Ogawa, Tetsuhiro, E-mail: atetsu@mail.ecc.u-tokyo.ac.jp; Shimizu, Ayano; Takahashi, Kazutoshi; Hidaka, Makoto; Masaki, Haruhiko, E-mail: amasaki@mail.ecc.u-tokyo.ac.jp

    2014-08-15

    Highlights: • MTS-tagged ribonuclease was translocated successfully to the mitochondrial matrix. • MTS-tagged ribonuclease cleaved mt tRNA and reduced COX activity. • Easy and reproducible method of inducing mt tRNA dysfunction. - Abstract: Mitochondrial DNA (mtDNA) is a genome possessed by mitochondria. Since reactive oxygen species (ROS) are generated during aerobic respiration in mitochondria, mtDNA is commonly exposed to the risk of DNA damage. Mitochondrial disease is caused by mitochondrial dysfunction, and mutations or deletions on mitochondrial tRNA (mt tRNA) genes are often observed in mtDNA of patients with the disease. Hence, the correlation between mt tRNA activity and mitochondrial dysfunction has been assessed. Then, cybrid cells, which are constructed by the fusion of an enucleated cell harboring altered mtDNA with a ρ{sup 0} cell, have long been used for the analysis due to difficulty in mtDNA manipulation. Here, we propose a new method that involves mt tRNA cleavage by a bacterial tRNA-specific ribonuclease. The ribonuclease tagged with a mitochondrial-targeting sequence (MTS) was successfully translocated to the mitochondrial matrix. Additionally, mt tRNA cleavage, which resulted in the decrease of cytochrome c oxidase (COX) activity, was observed.

  7. The Old and New RNA World

    Directory of Open Access Journals (Sweden)

    Zofia Szweykowska-Kulińska

    2014-12-01

    Full Text Available Among the numerous hypotheses offering a scenario for the origin of life on Earth, the one called “The RNA World” has gained the most attention. According to this hypothesis RNA acted as a genetic information storage material, as a catalyst of all metabolic reactions, and as a regulator of all processes in the primordial world. Various experiments show that RNA molecules could have been synthesized abiotically, with the potential to mediate a whole repertoire of metabolic reactions. Ribozymes carrying out aminoacyl-tRNA reactions have been found in SELEX (systematic evolution of ligands by exponential enrichment approaches and the development of a ribosome from a RNA-built protoribosome is easy to imagine. Transfer RNA aminoacylation, protoribosome origin, and the availability of amino acids on early Earth allowed the genetic code to evolve. Encoded proteins most likely stabilized RNA molecules and were able to create channels across membranes. In the modern cell, DNA replaced RNA as the main depositor of genetic information and proteins carry out almost all metabolic reactions. However, RNA is still playing versatile, crucial roles in the cell. Apart from its classical functions in the cell, a huge small RNA world is controlling gene expression, chromatin condensation, response to environmental cues, and protecting the cell against the invasion of various nucleic acids forms. Long non-coding RNAs act as crucial gene expression regulators. Riboswitches act at the level of transcription, splicing or translation and mediate feedback regulation on biosynthesis and transport of the ligand they sense. Alternative splicing generates genetic variability and increases the protein repertoire in response to developmental or environmental changes. All these regulatory functions are essential in shaping cell plasticity in the changing milieu. Recent discoveries of new, unexpected and important functions of RNA molecules support the hypothesis that we

  8. Transfer of 238U, 230Th, 226Ra, and 210Pb from soils to tree and shrub species in a Mediterranean area

    International Nuclear Information System (INIS)

    Blanco Rodriguez, P.; Vera Tome, F.; Lozano, J.C.; Perez Fernandez, M.A.

    2010-01-01

    The soil-to-plant transfer factors of natural uranium isotopes ( 238 U and 234 U), 230 Th, 226 Ra, and 210 Pb were studied in a disused uranium mine located in the Extremadura region in the south-west of Spain. The plant samples included trees (Quercus ilex, Quercus suber, and Eucalyptus cameldulensis) and one shrub (Cytisus multiflorus). All of them are characteristic of Mediterranean environments. The activity concentrations in leaves and fruit were determined for the tree species at different stages of growth. For the shrub, the total above-ground fraction was considered in three seasons. For old leaves and fruit, the highest activity concentrations were found in Eucalyptus cameldulensis for all the radionuclides studied, except in the case of 230 Th that presented similar activity concentrations in all of the tree species studied. In every case, the transfer to fruit was less than the transfer to leaves. In the shrub, the results depended on the season of sampling, with the highest value obtained in spring and the lowest in autumn. Important correlations were obtained for 238 U and 226 Ra between the activity ratio in soils with that in leaves or fruit.

  9. RNA structure alignment by a unit-vector approach.

    Science.gov (United States)

    Capriotti, Emidio; Marti-Renom, Marc A

    2008-08-15

    The recent discovery of tiny RNA molecules such as microRNAs and small interfering RNA are transforming the view of RNA as a simple information transfer molecule. Similar to proteins, the native three-dimensional structure of RNA determines its biological activity. Therefore, classifying the current structural space is paramount for functionally annotating RNA molecules. The increasing numbers of RNA structures deposited in the PDB requires more accurate, automatic and benchmarked methods for RNA structure comparison. In this article, we introduce a new algorithm for RNA structure alignment based on a unit-vector approach. The algorithm has been implemented in the SARA program, which results in RNA structure pairwise alignments and their statistical significance. The SARA program has been implemented to be of general applicability even when no secondary structure can be calculated from the RNA structures. A benchmark against the ARTS program using a set of 1275 non-redundant pairwise structure alignments results in inverted approximately 6% extra alignments with at least 50% structurally superposed nucleotides and base pairs. A first attempt to perform RNA automatic functional annotation based on structure alignments indicates that SARA can correctly assign the deepest SCOR classification to >60% of the query structures. The SARA program is freely available through a World Wide Web server http://sgu.bioinfo.cipf.es/services/SARA/. Supplementary data are available at Bioinformatics online.

  10. RAPD and microsatellite transferability studies in selected species of Prosopis (section Algarobia) with emphasis on Prosopis juliflora and P. pallida.

    Science.gov (United States)

    Sherry, Minu; Smith, Steve; Patel, Ashok; Harris, Phil; Hand, Paul; Trenchard, Liz; Henderson, Janey

    2011-08-01

    The genus Prosopis (Leguminosae, Mimosoideae), comprises 44 species widely distributed in arid and semi-arid zones. Prosopis pallida (Humb. and Bonpl. ex Willd.) Kunth and P. juliflora (Sw.) DC. are the two species that are truly tropical apart from P. africana, which is native to tropical Africa (Pasiecznik et al. 2004), and they have been introduced widely beyond their native ranges. However, taxonomic confusion within the genus has hampered exploitation and better management of the species. The present study focusses primarily on evaluating the genetic relationship between Prosopis species from the section Algarobia, containing most species of economic importance, though P. tamarugo from section Strombocarpa is also included for comparison. In total, 12 Prosopis species and a putative P. pallida x P. chilensis hybrid were assessed for their genetic relationships based on RAPD markers and microsatellite transferability. The results show that P. pallida and P. juliflora are not closely related despite some morphological similarity. Evidence also agrees with previous studies which suggest that the grouping of series in section Algarobia is artificial.

  11. A cost-effective method for Illumina small RNA-Seq library preparation using T4 RNA ligase 1 adenylated adapters

    Directory of Open Access Journals (Sweden)

    Chen Yun-Ru

    2012-09-01

    Full Text Available Abstract Background Deep sequencing is a powerful tool for novel small RNA discovery. Illumina small RNA sequencing library preparation requires a pre-adenylated 3’ end adapter containing a 5’,5’-adenyl pyrophosphoryl moiety. In the absence of ATP, this adapter can be ligated to the 3’ hydroxyl group of small RNA, while RNA self-ligation and concatenation are repressed. Pre-adenylated adapters are one of the most essential and costly components required for library preparation, and few are commercially available. Results We demonstrate that DNA oligo with 5’ phosphate and 3’ amine groups can be enzymatically adenylated by T4 RNA ligase 1 to generate customized pre-adenylated adapters. We have constructed and sequenced a small RNA library for tomato (Solanum lycopersicum using the T4 RNA ligase 1 adenylated adapter. Conclusion We provide an efficient and low-cost method for small RNA sequencing library preparation, which takes two days to complete and costs around $20 per library. This protocol has been tested in several plant species for small RNA sequencing including sweet potato, pepper, watermelon, and cowpea, and could be readily applied to any RNA samples.

  12. A biologically inspired two-species exclusion model: effects of RNA polymerase motor traffic on simultaneous DNA replication

    Science.gov (United States)

    Ghosh, Soumendu; Mishra, Bhavya; Patra, Shubhadeep; Schadschneider, Andreas; Chowdhury, Debashish

    2018-04-01

    We introduce a two-species exclusion model to describe the key features of the conflict between the RNA polymerase (RNAP) motor traffic, engaged in the transcription of a segment of DNA, concomitant with the progress of two DNA replication forks on the same DNA segment. One of the species of particles (P) represents RNAP motors while the other (R) represents the replication forks. Motivated by the biological phenomena that this model is intended to capture, a maximum of two R particles only are allowed to enter the lattice from two opposite ends whereas the unrestricted number of P particles constitutes a totally asymmetric simple exclusion process (TASEP) in a segment in the middle of the lattice. The model captures three distinct pathways for resolving the co-directional as well as head-on collision between the P and R particles. Using Monte Carlo simulations and heuristic analytical arguments that combine exact results for the TASEP with mean-field approximations, we predict the possible outcomes of the conflict between the traffic of RNAP motors (P particles engaged in transcription) and the replication forks (R particles). In principle, the model can be adapted to experimental conditions to account for the data quantitatively.

  13. Distribution of 16S rRNA Methylases Among Different Species of Aminoglycoside-Resistant Enterobacteriaceae in a Tertiary Care Hospital in Poland.

    Science.gov (United States)

    Piekarska, Katarzyna; Zacharczuk, Katarzyna; Wołkowicz, Tomasz; Rzeczkowska, Magdalena; Bareja, Elżbieta; Olak, Monika; Gierczyński, Rafał

    2016-01-01

    Aminoglycosides are a group of antimicrobial agents still the most commonly used in the treatment of life-threatening bacterial infections in human and animals. The emergence and spread of 16S rRNA methylases, which confer high-level resistance to the majority of clinically relevant aminoglycosides, constitute a major public health concern. Our goal was to evaluate the distribution of 16S rRNA methylases among different species of Enterobacteriaceae during a five month-long survey in a tertiary hospital in Warszawa, Poland. In the survey, a total of 1770 non-duplicate clinical isolates were collected from all hospital wards in a tertiary hospital in Warszawa, Poland. The survey was conducted between 19 April and 19 September 2010. The ability to produce 16S rRNA methylase was examined by determining MICs for gentamicin, kanamycin, amikacin by means of the agar dilution method. The isolates resistant to high concentration of aminoglycosides were PCR tested for genes: armA, rmtA, rmtB and rmtC. PCR products were subjected to DNA sequencing by the Sanger method. The genetic similarity of the ArmA-producing isolates was analysed by pulsed-filed gel electrophoresis (PFGE). ArmA was the only 16S rRNA methylase detected in 20 of 1770 tested isolates. The overall prevalence rate of ArmA was 1.13%. In K. pneumoniae (n = 742), P. mirabilis (n = 130), and E. cloacae (n = 253) collected in the survey, the prevalence of ArmA was 0.4%, 0.8% and 5.9%, respectively. The PFGE revealed both horizontal and clonal spread of the armA gene in the hospital. The prevalence of 16S rRNA methylase ArmA reported in this study is significantly higher than observed in other countries in Europe.

  14. Low-level lasers on microRNA and uncoupling protein 2 mRNA levels in human breast cancer cells

    Science.gov (United States)

    Canuto, K. S.; Teixeira, A. F.; Rodrigues, J. A.; Paoli, F.; Nogueira, E. M.; Mencalha, A. L.; Fonseca, A. S.

    2017-06-01

    MicroRNA is short non-coding RNA and is a mediator of post-transcriptional regulation of gene expression. In addition, uncoupling proteins (UCPs) regulate thermogenesis, metabolic and energy balance, and decrease reactive oxygen species production. Both microRNA and UCP2 expression can be altered in cancer cells. At low power, laser wavelength, frequency, fluence and emission mode deternube photobiological responses, which are the basis of low-level laser therapy. There are few studies on miRNA and UCP mRNA levels after low-level laser exposure on cancer cells. In this work, we evaluate the micrRNA (mir-106b and mir-15a) and UCP2 mRNA levels in human breast cancer cells exposed to low-level lasers. MDA-MB-231 human breast cancer cells were exposed to low-level red and infrared lasers, total RNA was extracted for cDNA synthesis and mRNA levels by real time quantitative polymerase chain reaction were evaluated. Data show that mir-106b and mir-15a relative levels are not altered, but UCP2 mRNA relative levels are increased in MDA-MB-231 human breast cancer cells exposed to low-level red and infrared lasers at fluences used in therapeutic protocols.

  15. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation.

    Directory of Open Access Journals (Sweden)

    Jiang Shu

    Full Text Available MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details.

  16. Computational Characterization of Exogenous MicroRNAs that Can Be Transferred into Human Circulation

    Science.gov (United States)

    Shu, Jiang; Chiang, Kevin; Zempleni, Janos; Cui, Juan

    2015-01-01

    MicroRNAs have been long considered synthesized endogenously until very recent discoveries showing that human can absorb dietary microRNAs from animal and plant origins while the mechanism remains unknown. Compelling evidences of microRNAs from rice, milk, and honeysuckle transported to human blood and tissues have created a high volume of interests in the fundamental questions that which and how exogenous microRNAs can be transferred into human circulation and possibly exert functions in humans. Here we present an integrated genomics and computational analysis to study the potential deciding features of transportable microRNAs. Specifically, we analyzed all publicly available microRNAs, a total of 34,612 from 194 species, with 1,102 features derived from the microRNA sequence and structure. Through in-depth bioinformatics analysis, 8 groups of discriminative features have been used to characterize human circulating microRNAs and infer the likelihood that a microRNA will get transferred into human circulation. For example, 345 dietary microRNAs have been predicted as highly transportable candidates where 117 of them have identical sequences with their homologs in human and 73 are known to be associated with exosomes. Through a milk feeding experiment, we have validated 9 cow-milk microRNAs in human plasma using microRNA-sequencing analysis, including the top ranked microRNAs such as bta-miR-487b, miR-181b, and miR-421. The implications in health-related processes have been illustrated in the functional analysis. This work demonstrates the data-driven computational analysis is highly promising to study novel molecular characteristics of transportable microRNAs while bypassing the complex mechanistic details. PMID:26528912

  17. Simultaneous visualization of the subfemtomolar expression of microRNA and microRNA target gene using HILO microscopy.

    Science.gov (United States)

    Lin, Yi-Zhen; Ou, Da-Liang; Chang, Hsin-Yuan; Lin, Wei-Yu; Hsu, Chiun; Chang, Po-Ling

    2017-09-01

    The family of microRNAs (miRNAs) not only plays an important role in gene regulation but is also useful for the diagnosis of diseases. A reliable method with high sensitivity may allow researchers to detect slight fluctuations in ultra-trace amounts of miRNA. In this study, we propose a sensitive imaging method for the direct probing of miR-10b (miR-10b-3p, also called miR-10b*) and its target ( HOXD10 mRNA) in fixed cells based on the specific recognition of molecular beacons combined with highly inclined and laminated optical sheet (HILO) fluorescence microscopy. The designed dye-quencher-labelled molecular beacons offer excellent efficiencies of fluorescence resonance energy transfer that allow us to detect miRNA and the target mRNA simultaneously in hepatocellular carcinoma cells using HILO fluorescence microscopy. Not only can the basal trace amount of miRNA be observed in each individual cell, but the obtained images also indicate that this method is useful for monitoring the fluctuations in ultra-trace amounts of miRNA when the cells are transfected with a miRNA precursor or a miRNA inhibitor (anti-miR). Furthermore, a reasonable causal relation between the miR-10b and HOXD10 expression levels was observed in miR-10b* precursor-transfected cells and miR-10b* inhibitor-transfected cells. The trends of the miRNA alterations obtained using HILO microscopy completely matched the RT-qPCR data and showed remarkable reproducibility (the coefficient of variation [CV] = 0.86%) and sensitivity (<1.0 fM). This proposed imaging method appears to be useful for the simultaneous visualisation of ultra-trace amounts of miRNA and target mRNA and excludes the procedures for RNA extraction and amplification. Therefore, the visualisation of miRNA and the target mRNA should facilitate the exploration of the functions of ultra-trace amounts of miRNA in fixed cells in biological studies and may serve as a powerful tool for diagnoses based on circulating cancer cells.

  18. Use of species-specific PCR for the identification of 10 sea cucumber species

    Science.gov (United States)

    Wen, Jing; Zeng, Ling

    2014-11-01

    We developed a species-specific PCR method to identify species among dehydrated products of 10 sea cucumber species. Ten reverse species-specific primers designed from the 16S rRNA gene, in combination with one forward universal primer, generated PCR fragments of ca. 270 bp length for each species. The specificity of the PCR assay was tested with DNA of samples of 21 sea cucumber species. Amplification was observed in specific species only. The species-specific PCR method we developed was successfully applied to authenticate species of commercial products of dehydrated sea cucumber, and was proven to be a useful, rapid, and low-cost technique to identify the origin of the sea cucumber product.

  19. Comparison of traditional phenotypic identification methods with partial 5' 16S rRNA gene sequencing for species-level identification of nonfermenting Gram-negative bacilli.

    Science.gov (United States)

    Cloud, Joann L; Harmsen, Dag; Iwen, Peter C; Dunn, James J; Hall, Gerri; Lasala, Paul Rocco; Hoggan, Karen; Wilson, Deborah; Woods, Gail L; Mellmann, Alexander

    2010-04-01

    Correct identification of nonfermenting Gram-negative bacilli (NFB) is crucial for patient management. We compared phenotypic identifications of 96 clinical NFB isolates with identifications obtained by 5' 16S rRNA gene sequencing. Sequencing identified 88 isolates (91.7%) with >99% similarity to a sequence from the assigned species; 61.5% of sequencing results were concordant with phenotypic results, indicating the usability of sequencing to identify NFB.

  20. The staphylococcal accessory regulator, SarA, is an RNA-binding protein that modulates the mRNA turnover properties of late-exponential and stationary phase Staphylococcus aureus cells

    Directory of Open Access Journals (Sweden)

    John M Morrison

    2012-03-01

    Full Text Available The modulation of mRNA turnover is gaining recognition as a mechanism by which Staphylococcus aureus regulates gene expression, but the factors that orchestrate alterations in transcript degradation are poorly understood. In that regard, we previously found that 138 mRNA species, including the virulence factors protein A (spa and collagen binding protein (cna, are stabilized in a sarA-dependent manner during exponential phase growth, suggesting that SarA protein may directly or indirectly effect the RNA turnover properties of these transcripts. Herein, we expanded our characterization of the effects of sarA on mRNA turnover during late exponential and stationary phases of growth. Results revealed that the locus affects the RNA degradation properties of cells during both growth phases. Further, using gel mobility shift assays and RIP-ChIP, it was found that SarA protein is capable of binding mRNA species that it stabilizes both in vitro and within bacterial cells. Taken together, these results suggest that SarA post-transcriptionally regulates S. aureus gene expression in a manner that involves binding to and consequently altering the mRNA turnover properties of target transcripts.

  1. Sequence and Secondary Structure of the Mitochondrial Small-Subunit rRNA V4, V6, and V9 Domains Reveal Highly Species-Specific Variations within the Genus Agrocybe

    OpenAIRE

    Gonzalez, Patrice; Labarère, Jacques

    1998-01-01

    A comparative study of variable domains V4, V6, and V9 of the mitochondrial small-subunit (SSU) rRNA was carried out with the genus Agrocybe by PCR amplification of 42 wild isolates belonging to 10 species, Agrocybe aegerita, Agrocybe dura, Agrocybe chaxingu, Agrocybe erebia, Agrocybe firma, Agrocybe praecox, Agrocybe paludosa, Agrocybe pediades, Agrocybe alnetorum, and Agrocybe vervacti. Sequencing of the PCR products showed that the three domains in the isolates belonging to the same specie...

  2. Biological assessment for the transfer of the DP land tract

    Energy Technology Data Exchange (ETDEWEB)

    Keller, D.C.

    1996-10-01

    The Department of Energy (DOE) is proposing to transfer to the County of Los Alamos up to 10-ha (25-ac) of federal land located in Technical Area-21 to be developed for commercial uses. Previous studies for the proposed land transfer area indicate that potential habitat for four threatened, endangered, and sensitive species occurs in or adjacent to the proposed land transfer area. These include the northern goshawk (federal species of concern), Mexican spotted owl (federal threatened), the spotted bat (federal species of concern, state threatened), die peregrine falcon (federal endangered, state endangered), and the. In order to determine the possible influences of the land transfer on these organisms, information from species-specific surveys was collected. These surveys were used to confirm the presence of these species or to infer their absence in or near the project area. It was concluded that none of die above mentioned species occur in the project area. Stretches of the stream channel within Los Alamos Canyon have been identified as palustrine and riverine, temporarily flooded wetlands. The proposed land transfer should not affect these wetlands.

  3. The 3'-terminal 55 nucleotides of bovine coronavirus defective interfering RNA harbor cis-acting elements required for both negative- and positive-strand RNA synthesis.

    Directory of Open Access Journals (Sweden)

    Wei-Yu Liao

    Full Text Available The synthesis of the negative-strand [(--strand] complement of the ∼30 kilobase, positive-strand [(+-strand] coronaviral genome is a necessary early step for genome replication. The identification of cis-acting elements required for (--strand RNA synthesis in coronaviruses, however, has been hampered due to insufficiencies in the techniques used to detect the (--strand RNA species. Here, we employed a method of head-to-tail ligation and real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR to detect and quantitate the synthesis of bovine coronavirus (BCoV defective interfering (DI RNA (- strands. Furthermore, using the aforementioned techniques along with Northern blot assay, we specifically defined the cis-acting RNA elements within the 3'-terminal 55 nucleotides (nts which function in the synthesis of (-- or (+-strand BCoV DI RNA. The major findings are as follows: (i nts from -5 to -39 within the 3'-terminal 55 nts are the cis-acting elements responsible for (--strand BCoV DI RNA synthesis, (ii nts from -3 to -34 within the 3'-terminal 55 nts are cis-acting elements required for (+-strand BCoV DI RNA synthesis, and (iii the nucleotide species at the 3'-most position (-1 is important, but not critical, for both (-- and (+-strand BCoV DI RNA synthesis. These results demonstrate that the 3'-terminal 55 nts in BCoV DI RNA harbor cis-acting RNA elements required for both (-- and (+-strand DI RNA synthesis and extend our knowledge on the mechanisms of coronavirus replication. The method of head-to-tail ligation and qRT-PCR employed in the study may also be applied to identify other cis-acting elements required for (--strand RNA synthesis in coronaviruses.

  4. Extracellular vesicles shed by melanoma cells contain a modified form of H1.0 linker histone and H1.0 mRNA-binding proteins.

    Science.gov (United States)

    Schiera, Gabriella; Di Liegro, Carlo Maria; Puleo, Veronica; Colletta, Oriana; Fricano, Anna; Cancemi, Patrizia; Di Cara, Gianluca; Di Liegro, Italia

    2016-11-01

    Extracellular vesicles (EVs) are now recognized as a fundamental way for cell-to-cell horizontal transfer of properties, in both physiological and pathological conditions. Most of EV-mediated cross-talk among cells depend on the exchange of proteins, and nucleic acids, among which mRNAs, and non-coding RNAs such as different species of miRNAs. Cancer cells, in particular, use EVs to discard molecules which could be dangerous to them (for example differentiation-inducing proteins such as histone H1.0, or antitumor drugs), to transfer molecules which, after entering the surrounding cells, are able to transform their phenotype, and even to secrete factors, which allow escaping from immune surveillance. Herein we report that melanoma cells not only secrete EVs which contain a modified form of H1.0 histone, but also transport the corresponding mRNA. Given the already known role in tumorigenesis of some RNA binding proteins (RBPs), we also searched for proteins of this class in EVs. This study revealed the presence in A375 melanoma cells of at least three RBPs, with apparent MW of about 65, 45 and 38 kDa, which are able to bind H1.0 mRNA. Moreover, we purified one of these proteins, which by MALDI-TOF mass spectrometry was identified as the already known transcription factor MYEF2.

  5. New insights into siRNA amplification and RNAi.

    Science.gov (United States)

    Zhang, Chi; Ruvkun, Gary

    2012-08-01

    In the nematode Caenorhabditis elegans (C. elegans), gene inactivation by RNA interference can achieve remarkable potency due to the amplification of initial silencing triggers by RNA-dependent RNA polymerases (RdRPs). RdRPs catalyze the biogenesis of an abundant species of secondary small interfering RNAs (siRNAs) using the target mRNA as template. The interaction between primary siRNAs derived from the exogenous double-stranded RNA (dsRNA) trigger and the target mRNA is required for the recruitment of RdRPs. Other genetic requirements for RdRP activities have not been characterized. Recent studies have identified the RDE-10/RDE-11 complex which interacts with the primary siRNA bound target mRNA and acts upstream of the RdRPs. rde-10 and rde-11 mutants show an RNAi defective phenotype because the biogenesis of secondary siRNAs is completely abolished. In addition, the RDE-10/RDE-11 complex plays a similar role in the endogenous RNAi pathway for the biogenesis of a subset of siRNAs targeting recently acquired, duplicated genes.

  6. Recognition of Escherichia coli valine transfer RNA by its cognate synthetase: A fluorine-19 NMR study

    International Nuclear Information System (INIS)

    Chu, Wenchy; Horowitz, J.

    1991-01-01

    Interactions of 5-fluorouracil-substituted Escherichia coli tRNA Val with its cognate synthetase have been investigated by fluorine-19 nuclear magnetic resonance. Valyl-tRNA synthetase (VRS) (EC 6.1.1.9), purified to homogeneity from an overproducing strain of E. coli, differs somewhat from VRS previously isolated from E. coli K12. Its amino acid composition and N-terminal sequence agree well with results derived from the sequence of the VRS gene. Apparent K M and V max values of the purified VRS are the same for both normal and 5-fluorouracil (FUra)-substituted tRNA Val . Binding of VRS to (FUra)tRNA Val induces structural perturbations that are reflected in selective changes in the 19 F NMR spectrum of the tRNA. Addition of increasing amounts of VRS results in a gradual loss of intensity at resonances corresponding to FU34, FU7, and FU67, with FU34, at the wobble position of the anticodon, being affected most. At higher VRS/tRNA ratios, a broadening and shifting of FU12 and of FU4 and/or FU8 occur. These results indicate that VRS interacts with tRNA Val along the entire inside of the L-shape molecule, from the acceptor stem to the anticodon. Valyl-tRNA synthetase also causes a splitting of resonances FU55 and FU64 in the T-loop and stem of tRNA Val , suggesting conformational changes in this part of the molecule. No 19 F NMR evidence was found for formation of the Michael adduct between VRS and FU8 of 5-fluorouracil-substituted tRNA Val that has been proposed as a common intermediate in the aminoacylation reaction

  7. Deriving a Benefit Transfer Function for Threatened and Endangered Species in Interaction with Their Level of Charisma

    Directory of Open Access Journals (Sweden)

    Franklin Amuakwa-Mensah

    2018-02-01

    Full Text Available Biodiversity and species conservation are among the most urgent global issues. Both are under serious threat because of human intrusion and as a result, it is likely that present and future projects will affect threatened and endangered species. Thus, it is important to account for these impacts when evaluating and conducting cost and benefit analyses of projects. Due to their public good character and non-tradability, the total economic value of threatened and endangered species cannot be reflected by a market price and therefore, alternative approaches (stated preference method are needed to determine their monetary value. This paper reviews and compares the valuation literature on threatened and endangered animals and conducts a meta-analysis regression to identify explanatory variables for the variation in willingness to pay for threatened and endangered species. The main findings of the meta-analysis show that the interaction of the level of threat and charisma have a positive effect on willingness to pay. Furthermore, developed countries have a higher willingness to pay compared to developing countries. Similarly, visitors of conservation sites have higher willingness to pay than residents. The provided example of a benefit transfer of the estimated function shows the practicability of our results.

  8. Engineering and Validation of a Vector for Concomitant Expression of Rare Transfer RNA (tRNA and HIV-1 nef Genes in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Siti Aisyah Mualif

    Full Text Available Relative ease in handling and manipulation of Escherichia coli strains make them primary candidate to express proteins heterologously. Overexpression of heterologous genes that contain codons infrequently used by E. coli is related with difficulties such as mRNA instability, early termination of transcription and/or translation, deletions and/or misincorporation, and cell growth inhibition. These codon bias -associated problems are addressed by co-expressing ColE1-compatible, rare tRNA expressing helper plasmids. However, this approach has inadequacies, which we have addressed by engineering an expression vector that concomitantly expresses the heterologous protein of interest, and rare tRNA genes in E. coli. The expression vector contains three (argU, ileY, leuW rare tRNA genes and a useful multiple cloning site for easy in-frame cloning. To maintain the overall size of the parental plasmid vector, the rare tRNA genes replaced the non-essential DNA segments in the vector. The cloned gene is expressed under the control of T7 promoter and resulting recombinant protein has a C-terminal 6His tag for IMAC-mediated purification. We have evaluated the usefulness of this expression vector by expressing three HIV-1 genes namely HIV-1 p27 (nef, HIV-1 p24 (ca, and HIV-1 vif in NiCo21(DE3 E.coli and demonstrated the advantages of using expression vector that concomitantly expresses rare tRNA and heterologous genes.

  9. Coronavirus minus-strand RNA synthesis and effect of cycloheximide on coronavirus RNA synthesis

    International Nuclear Information System (INIS)

    Sawicki, S.G.; Sawicki, D.L.

    1986-01-01

    The temporal sequence of coronavirus plus-strand and minus-strand RNA synthesis was determined in 17CL1 cells infected with the A59 strain of mouse hepatitis virus (MHV). MHV-induced fusion was prevented by keeping the pH of the medium below pH 6.8. This had no effect on the MHV replication cycle, but gave 5- to 10-fold-greater titers of infectious virus and delayed the detachment of cells from the monolayer which permitted viral RNA synthesis to be studied conveniently until at least 10 h postinfection. Seven species of poly(A)-containing viral RNAs were synthesized at early and late times infection, in nonequal but constant ratios. MHV minus-strand RNA synthesis was first detected at about 3 h after infection and was found exclusively in the viral replicative intermediates and was not detected in 60S single-stranded form in infected cells. Early in the replication cycle, from 45 to 65% of the [ 3 H]uridine pulse-labeled RF core of purified MHV replicative intermediates was in minus-strand RNA. The rate of minus-strand synthesis peaked at 5 to 6 h postinfection and then declined to about 20% of the maximum rate. The addition of cycloheximide before 3 h postinfection prevented viral RNA synthesis, whereas the addition of cycloheximide after viral RNA synthesis had begun resulted in the inhibition of viral RNA synthesis. The synthesis of both genome and subgenomic mRNAs and of viral minus strands required continued protein synthesis, and minis-strand RNA synthesis was three- to fourfold more sensitive to inhibition of cycloheximide than was plus-strand synthesis

  10. miRge - A Multiplexed Method of Processing Small RNA-Seq Data to Determine MicroRNA Entropy.

    Directory of Open Access Journals (Sweden)

    Alexander S Baras

    Full Text Available Small RNA RNA-seq for microRNAs (miRNAs is a rapidly developing field where opportunities still exist to create better bioinformatics tools to process these large datasets and generate new, useful analyses. We built miRge to be a fast, smart small RNA-seq solution to process samples in a highly multiplexed fashion. miRge employs a Bayesian alignment approach, whereby reads are sequentially aligned against customized mature miRNA, hairpin miRNA, noncoding RNA and mRNA sequence libraries. miRNAs are summarized at the level of raw reads in addition to reads per million (RPM. Reads for all other RNA species (tRNA, rRNA, snoRNA, mRNA are provided, which is useful for identifying potential contaminants and optimizing small RNA purification strategies. miRge was designed to optimally identify miRNA isomiRs and employs an entropy based statistical measurement to identify differential production of isomiRs. This allowed us to identify decreasing entropy in isomiRs as stem cells mature into retinal pigment epithelial cells. Conversely, we show that pancreatic tumor miRNAs have similar entropy to matched normal pancreatic tissues. In a head-to-head comparison with other miRNA analysis tools (miRExpress 2.0, sRNAbench, omiRAs, miRDeep2, Chimira, UEA small RNA Workbench, miRge was faster (4 to 32-fold and was among the top-two methods in maximally aligning miRNAs reads per sample. Moreover, miRge has no inherent limits to its multiplexing. miRge was capable of simultaneously analyzing 100 small RNA-Seq samples in 52 minutes, providing an integrated analysis of miRNA expression across all samples. As miRge was designed for analysis of single as well as multiple samples, miRge is an ideal tool for high and low-throughput users. miRge is freely available at http://atlas.pathology.jhu.edu/baras/miRge.html.

  11. Effects of near-ultraviolet and violet radiations (313-405 NM) on DNA, RNA, and protein synthesis in E. coli B/r. Implications for growth delay

    Energy Technology Data Exchange (ETDEWEB)

    Ramabhadran, T V [Texas Univ., Dallas (USA). Inst. for Molecular Biology

    1975-09-01

    Fluences (21 to 32 kJ/m/sup 2/) of near-ultraviolet radiation that induced about a 1 hour growth delay in continuously growing cultures of E.coli B/r were found to produce complete cessation of net RNA synthesis, while the effects on protein and DNA synthesis were considerably milder. The near-UV action spectrum for this inhibition of RNA synthesis was similar to the action spectrum for growth decay in E.coli B and to the absorption spectrum of E.coli valyl transfer RNA. In addition, the fluences required for inhibition of RNA synthesis and growth delay were similar to those reported for formation of 4-thiouridine-cytidine adducts in transfer RNA. These findings suggest that the chromophore and target for near-UV-induced inhibition of both net RNA synthesis and growth in E.coli may be 4-thiouridine in transfer RNA.

  12. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae.

    Science.gov (United States)

    Szczecińska, Monika; Sawicki, Jakub

    2015-09-15

    The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB) were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161-162 kb, and 21 were duplicated in the inverted repeats (IR) region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S) of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2) enabled the molecular delimitation of closely-related Pulsatilla patens and Pulsatilla vernalis. The determination of complete

  13. Evolutionary patterns of RNA-based duplication in non-mammalian chordates.

    Directory of Open Access Journals (Sweden)

    Ming Chen

    Full Text Available The role of RNA-based duplication, or retroposition, in the evolution of new gene functions in mammals, plants, and Drosophila has been widely reported. However, little is known about RNA-based duplication in non-mammalian chordates. In this study, we screened ten non-mammalian chordate genomes for retrocopies and investigated their evolutionary patterns. We identified numerous retrocopies in these species. Examination of the age distribution of these retrocopies revealed no burst of young retrocopies in ancient chordate species. Upon comparing these non-mammalian chordate species to the mammalian species, we observed that a larger fraction of the non-mammalian retrocopies was under strong evolutionary constraints than mammalian retrocopies are, as evidenced by signals of purifying selection and expression profiles. For the Western clawed frog, Medaka, and Sea squirt, many retrogenes have evolved gonad and brain expression patterns, similar to what was observed in human. Testing of retrogene movement in the Medaka genome, where the nascent sex chrosomes have been well assembled, did not reveal any significant gene movement. Taken together, our analyses demonstrate that RNA-based duplication generates many functional genes and can make a significant contribution to the evolution of non-mammalian genomes.

  14. Conserved generation of short products at piRNA loci

    Directory of Open Access Journals (Sweden)

    Khorshid Mohsen

    2011-01-01

    Full Text Available Abstract Background The piRNA pathway operates in animal germ lines to ensure genome integrity through retrotransposon silencing. The Piwi protein-associated small RNAs (piRNAs guide Piwi proteins to retrotransposon transcripts, which are degraded and thereby post-transcriptionally silenced through a ping-pong amplification process. Cleavage of the retrotransposon transcript defines at the same time the 5' end of a secondary piRNA that will in turn guide a Piwi protein to a primary piRNA precursor, thereby amplifying primary piRNAs. Although several studies provided evidence that this mechanism is conserved among metazoa, how the process is initiated and what enzymatic activities are responsible for generating the primary and secondary piRNAs are not entirely clear. Results Here we analyzed small RNAs from three mammalian species, seeking to gain further insight into the mechanisms responsible for the piRNA amplification loop. We found that in all these species piRNA-directed targeting is accompanied by the generation of short sequences that have a very precisely defined length, 19 nucleotides, and a specific spatial relationship with the guide piRNAs. Conclusions This suggests that the processing of the 5' product of piRNA-guided cleavage occurs while the piRNA target is engaged by the Piwi protein. Although they are not stabilized through methylation of their 3' ends, the 19-mers are abundant not only in testes lysates but also in immunoprecipitates of Miwi and Mili proteins. They will enable more accurate identification of piRNA loci in deep sequencing data sets.

  15. Molecular characterization and phylogenetic relationships among microsporidian isolates infecting silkworm, Bombyx mori using small subunit rRNA (SSU-rRNA) gene sequence analysis.

    Science.gov (United States)

    Nath, B Surendra; Gupta, S K; Bajpai, A K

    2012-12-01

    The life cycle, spore morphology, pathogenicity, tissue specificity, mode of transmission and small subunit rRNA (SSU-rRNA) gene sequence analysis of the five new microsporidian isolates viz., NIWB-11bp, NIWB-12n, NIWB-13md, NIWB-14b and NIWB-15mb identified from the silkworm, Bombyx mori have been studied along with type species, NIK-1s_mys. The life cycle of the microsporidians identified exhibited the sequential developmental cycles that are similar to the general developmental cycle of the genus, Nosema. The spores showed considerable variations in their shape, length and width. The pathogenicity observed was dose-dependent and differed from each of the microsporidian isolates; the NIWB-15mb was found to be more virulent than other isolates. All of the microsporidians were found to infect most of the tissues examined and showed gonadal infection and transovarial transmission in the infected silkworms. SSU-rRNA sequence based phylogenetic tree placed NIWB-14b, NIWB-12n and NIWB-11bp in a separate branch along with other Nosema species and Nosema bombycis; while NIWB-15mb and NIWB-13md together formed another cluster along with other Nosema species. NIK-1s_mys revealed a signature sequence similar to standard type species, N. bombycis, indicating that NIK-1s_mys is similar to N. bombycis. Based on phylogenetic relationships, branch length information based on genetic distance and nucleotide differences, we conclude that the microsporidian isolates identified are distinctly different from the other known species and belonging to the genus, Nosema. This SSU-rRNA gene sequence analysis method is found to be more useful approach in detecting different and closely related microsporidians of this economically important domestic insect.

  16. Phytoplasma phylogenetics based on analysis of secA and 23S rRNA gene sequences for improved resolution of candidate species of 'Candidatus Phytoplasma'.

    Science.gov (United States)

    Hodgetts, Jennifer; Boonham, Neil; Mumford, Rick; Harrison, Nigel; Dickinson, Matthew

    2008-08-01

    Phytoplasma phylogenetics has focused primarily on sequences of the non-coding 16S rRNA gene and the 16S-23S rRNA intergenic spacer region (16-23S ISR), and primers that enable amplification of these regions from all phytoplasmas by PCR are well established. In this study, primers based on the secA gene have been developed into a semi-nested PCR assay that results in a sequence of the expected size (about 480 bp) from all 34 phytoplasmas examined, including strains representative of 12 16Sr groups. Phylogenetic analysis of secA gene sequences showed similar clustering of phytoplasmas when compared with clusters resolved by similar sequence analyses of a 16-23S ISR-23S rRNA gene contig or of the 16S rRNA gene alone. The main differences between trees were in the branch lengths, which were elongated in the 16-23S ISR-23S rRNA gene tree when compared with the 16S rRNA gene tree and elongated still further in the secA gene tree, despite this being a shorter sequence. The improved resolution in the secA gene-derived phylogenetic tree resulted in the 16SrII group splitting into two distinct clusters, while phytoplasmas associated with coconut lethal yellowing-type diseases split into three distinct groups, thereby supporting past proposals that they represent different candidate species within 'Candidatus Phytoplasma'. The ability to differentiate 16Sr groups and subgroups by virtual RFLP analysis of secA gene sequences suggests that this gene may provide an informative alternative molecular marker for pathogen identification and diagnosis of phytoplasma diseases.

  17. Nuclear export of RNA: Different sizes, shapes and functions.

    Science.gov (United States)

    Williams, Tobias; Ngo, Linh H; Wickramasinghe, Vihandha O

    2018-03-01

    Export of protein-coding and non-coding RNA molecules from the nucleus to the cytoplasm is critical for gene expression. This necessitates the continuous transport of RNA species of different size, shape and function through nuclear pore complexes via export receptors and adaptor proteins. Here, we provide an overview of the major RNA export pathways in humans, highlighting the similarities and differences between each. Its importance is underscored by the growing appreciation that deregulation of RNA export pathways is associated with human diseases like cancer. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  18. Enzymatic synthesis of tRNA-peptide conjugates and spectroscopic studies of fluorine-modified RNA

    International Nuclear Information System (INIS)

    Graber, D.

    2010-01-01

    possess the naturally occurring nucleoside modifications. Hence, an alternative process for access to 5'-fragments containing these modifications was needed. Starting from wild-type tRNA, a DNA-enzyme mediated position-specific cleavage at the desired cleavage site was elaborated. For quantitative cleavage, the introduction of repeated temperature cycles was inevitable. Dephosphorylation of the so obtained 2',3'-cyclophosphate cleavage products had to be performed prior to ligating the wild-type 5'-fragment by T4 RNA ligase to the chimeric 3'-fragment yielding the fully modified tRNA-peptide conjugate. The broad applicability of that approach was demonstrated by successful ligation of various tRNA, and tRNA from different species. In the second part of this thesis fluorinated nucleic acids were applied to 19F NMR spectroscopic investigations. One subproject concerned fluorinated nucleic acids for probing secondary structures. For that reason, a 2,4-difluorotoluyl-ribofuranose phosphoramidite was synthesized and site-specifically incorporated into oligonucleotides. As a proof of principle, the differentiation between monomolecular and bimolecular melting transitions was demonstrated by monitoring the temperature dependent alterations in the chemical shift signatures. It was also shown that oligonucleotides of self-complementary sequences - which simultaneously adopt different secondary structures - can be analyzed in terms of quantification of the coexisting populations. Moreover, melting temperatures determined by 19F NMR spectroscopy were in excellent accordance with those found using traditional UV-techniques. In another subproject, the interaction of tRNA pseudouridine synthase (TruB) with its TΨC loop tRNA substrate was studied using 19F NMR spectroscopy. So far, published contributions have focused on 5-fluorouridine substrate/enzyme reactions which were expected to result in a stable covalently linked RNA-enzyme complex. However, the enzyme was capable of

  19. Complete plastid genome sequence of Primula sinensis (Primulaceae: structure comparison, sequence variation and evidence for accD transfer to nucleus

    Directory of Open Access Journals (Sweden)

    Tong-Jian Liu

    2016-06-01

    Full Text Available Species-rich genus Primula L. is a typical plant group with which to understand genetic variance between species in different levels of relationships. Chloroplast genome sequences are used to be the information resource for quantifying this difference and reconstructing evolutionary history. In this study, we reported the complete chloroplast genome sequence of Primula sinensis and compared it with other related species. This genome of chloroplast showed a typical circular quadripartite structure with 150,859 bp in sequence length consisting of 37.2% GC base. Two inverted repeated regions (25,535 bp were separated by a large single-copy region (82,064 bp and a small single-copy region (17,725 bp. The genome consists of 112 genes, including 78 protein-coding genes, 30 tRNA genes and four rRNA genes. Among them, seven coding genes, seven tRNA genes and four rRNA genes have two copies due to their locations in the IR regions. The accD and infA genes lacking intact open reading frames (ORF were identified as pseudogenes. SSR and sequence variation analyses were also performed on the plastome of Primula sinensis, comparing with another available plastome of P. poissonii. The four most variable regions, rpl36–rps8, rps16–trnQ, trnH–psbA and ndhC–trnV, were identified. Phylogenetic relationship estimates using three sub-datasets extracted from a matrix of 57 protein-coding gene sequences showed the identical result that was consistent with previous studies. A transcript found from P. sinensis transcriptome showed a high similarity to plastid accD functional region and was identified as a putative plastid transit peptide at the N-terminal region. The result strongly suggested that plastid accD has been functionally transferred to the nucleus in P. sinensis.

  20. The flavoprotein Mcap0476 (RlmFO) catalyzes m5U1939 modification in Mycoplasma capricolum 23S rRNA

    DEFF Research Database (Denmark)

    Lartigue, Carole; Lebaudy, Anne; Blanchard, Alain

    2014-01-01

    Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl g...... specifically modifies m5U1939 in 23S rRNA, a conserved methylation catalyzed by AdoMet-dependent enzymes in all other characterized bacteria. The Mcap0476 methyltransferase (renamed RlmFO) represents the first folate-dependent flavoprotein seen to modify ribosomal RNA.......Efficient protein synthesis in all organisms requires the post-transcriptional methylation of specific ribosomal ribonucleic acid (rRNA) and transfer RNA (tRNA) nucleotides. The methylation reactions are almost invariably catalyzed by enzymes that use S-adenosylmethionine (AdoMet) as the methyl...... group donor. One noteworthy exception is seen in some bacteria, where the conserved tRNA methylation at m5U54 is added by the enzyme TrmFO using flavin adenine dinucleotide together with N5,N10-methylenetetrahydrofolate as the one-carbon donor. The minimalist bacterium Mycoplasma capricolum possesses...

  1. RNA Export through the NPC in Eukaryotes.

    Science.gov (United States)

    Okamura, Masumi; Inose, Haruko; Masuda, Seiji

    2015-03-20

    In eukaryotic cells, RNAs are transcribed in the nucleus and exported to the cytoplasm through the nuclear pore complex. The RNA molecules that are exported from the nucleus into the cytoplasm include messenger RNAs (mRNAs), ribosomal RNAs (rRNAs), transfer RNAs (tRNAs), small nuclear RNAs (snRNAs), micro RNAs (miRNAs), and viral mRNAs. Each RNA is transported by a specific nuclear export receptor. It is believed that most of the mRNAs are exported by Nxf1 (Mex67 in yeast), whereas rRNAs, snRNAs, and a certain subset of mRNAs are exported in a Crm1/Xpo1-dependent manner. tRNAs and miRNAs are exported by Xpot and Xpo5. However, multiple export receptors are involved in the export of some RNAs, such as 60S ribosomal subunit. In addition to these export receptors, some adapter proteins are required to export RNAs. The RNA export system of eukaryotic cells is also used by several types of RNA virus that depend on the machineries of the host cell in the nucleus for replication of their genome, therefore this review describes the RNA export system of two representative viruses. We also discuss the NPC anchoring-dependent mRNA export factors that directly recruit specific genes to the NPC.

  2. Development and use of fluorescent 16S rRNA-targeted probes for the specific detection of Methylophaga species by in situ hybridization in marine sediments.

    Science.gov (United States)

    Janvier, Monique; Regnault, Béatrice; Grimont, Patrick

    2003-09-01

    Methylotrophic bacteria are widespread in nature. They may play an important role in the cycling of carbon and in the metabolism of dimethylsulfide in a marine environment. Bacteria belonging to the genus Methylophaga are a unique group of aerobic, halophilic, non-methane-utilizing methylotrophs. Two 16S rRNA-targeted oligonucleotide probes were developed for the specific detection of Methylophaga species, marine methylobacteria, by fluorescence in situ hybridization. Probe MPH-730 was highly specific for all members of the genus Methylophaga while probe MPHm-994 targeted exclusively M. marina. The application of these probes were demonstrated by the detection of Methylophaga species in enrichment cultures from various marine sediments. All isolates recovered were visualized by using the genus specific probe MPH-730. The results were confirmed by 16S rDNA sequencing which demonstrated that all selected isolates belong to Methylophaga. Five isolates could be detected by the M. marina-specific probe MPHm-994 and were confirmed by rRNA gene restriction pattern (ribotyping). With the development of these specific probes, fluorescence in situ hybridization shows that the genus Methylophaga is widespread in marine samples.

  3. Phylogeny of 54 representative strains of species in the family Pasteurellaceae as determined by comparison of 16S rRNA sequences.

    Science.gov (United States)

    Dewhirst, F E; Paster, B J; Olsen, I; Fraser, G J

    1992-03-01

    Virtually complete 16S rRNA sequences were determined for 54 representative strains of species in the family Pasteurellaceae. Of these strains, 15 were Pasteurella, 16 were Actinobacillus, and 23 were Haemophilus. A phylogenetic tree was constructed based on sequence similarity, using the Neighbor-Joining method. Fifty-three of the strains fell within four large clusters. The first cluster included the type strains of Haemophilus influenzae, H. aegyptius, H. aphrophilus, H. haemolyticus, H. paraphrophilus, H. segnis, and Actinobacillus actinomycetemcomitans. This cluster also contained A. actinomycetemcomitans FDC Y4, ATCC 29522, ATCC 29523, and ATCC 29524 and H. aphrophilus NCTC 7901. The second cluster included the type strains of A. seminis and Pasteurella aerogenes and H. somnus OVCG 43826. The third cluster was composed of the type strains of Pasteurella multocida, P. anatis, P. avium, P. canis, P. dagmatis, P. gallinarum, P. langaa, P. stomatis, P. volantium, H. haemoglobinophilus, H. parasuis, H. paracuniculus, H. paragallinarum, and A. capsulatus. This cluster also contained Pasteurella species A CCUG 18782, Pasteurella species B CCUG 19974, Haemophilus taxon C CAPM 5111, H. parasuis type 5 Nagasaki, P. volantium (H. parainfluenzae) NCTC 4101, and P. trehalosi NCTC 10624. The fourth cluster included the type strains of Actinobacillus lignieresii, A. equuli, A. pleuropneumoniae, A. suis, A. ureae, H. parahaemolyticus, H. parainfluenzae, H. paraphrohaemolyticus, H. ducreyi, and P. haemolytica. This cluster also contained Actinobacillus species strain CCUG 19799 (Bisgaard taxon 11), A. suis ATCC 15557, H. ducreyi ATCC 27722 and HD 35000, Haemophilus minor group strain 202, and H. parainfluenzae ATCC 29242. The type strain of P. pneumotropica branched alone to form a fifth group. The branching of the Pasteurellaceae family tree was quite complex. The four major clusters contained multiple subclusters. The clusters contained both rapidly and slowly evolving

  4. Characterization of a mimivirus RNA cap guanine-N2 methyltransferase.

    Science.gov (United States)

    Benarroch, Delphine; Qiu, Zhicheng R; Schwer, Beate; Shuman, Stewart

    2009-04-01

    A 2,2,7-trimethylguanosine (TMG) cap is a signature feature of eukaryal snRNAs, telomerase RNAs, and trans-spliced nematode mRNAs. TMG and 2,7-dimethylguanosine (DMG) caps are also present on mRNAs of two species of alphaviruses (positive strand RNA viruses of the Togaviridae family). It is presently not known how viral mRNAs might acquire a hypermethylated cap. Mimivirus, a giant DNA virus that infects amoeba, encodes many putative enzymes and proteins implicated in RNA transactions, including the synthesis and capping of viral mRNAs and the promotion of cap-dependent translation. Here we report the identification, purification, and characterization of a mimivirus cap-specific guanine-N2 methyltransferase (MimiTgs), a monomeric enzyme that catalyzes a single round of methyl transfer from AdoMet to an m(7)G cap substrate to form a DMG cap product. MimiTgs, is apparently unable to convert a DMG cap to a TMG cap, and is thereby distinguished from the structurally homologous yeast and human Tgs1 enzymes. Nonetheless, we show genetically that MimiTgs is a true ortholog of Saccharomyces cerevisiae Tgs1. Our results hint that DMG caps can satisfy many of the functions of TMG caps in vivo. We speculate that DMG capping of mimivirus mRNAs might favor viral protein synthesis in the infected host.

  5. Beet Necrotic Yellow Vein Virus Noncoding RNA Production Depends on a 5′→3′ Xrn Exoribonuclease Activity

    Directory of Open Access Journals (Sweden)

    Alyssa Flobinus

    2018-03-01

    Full Text Available The RNA3 species of the beet necrotic yellow vein virus (BNYVV, a multipartite positive-stranded RNA phytovirus, contains the ‘core’ nucleotide sequence required for its systemic movement in Beta macrocarpa. Within this ‘core’ sequence resides a conserved “coremin” motif of 20 nucleotides that is absolutely essential for long-distance movement. RNA3 undergoes processing steps to yield a noncoding RNA3 (ncRNA3 possessing “coremin” at its 5′ end, a mandatory element for ncRNA3 accumulation. Expression of wild-type (wt or mutated RNA3 in Saccharomyces cerevisiae allows for the accumulation of ncRNA3 species. Screening of S. cerevisiae ribonuclease mutants identified the 5′-to-3′ exoribonuclease Xrn1 as a key enzyme in RNA3 processing that was recapitulated both in vitro and in insect cell extracts. Xrn1 stalled on ncRNA3-containing RNA substrates in these decay assays in a similar fashion as the flavivirus Xrn1-resistant structure (sfRNA. Substitution of the BNYVV-RNA3 ‘core’ sequence by the sfRNA sequence led to the accumulation of an ncRNA species in yeast in vitro but not in planta and no viral long distance occurred. Interestingly, XRN4 knockdown reduced BNYVV RNA accumulation suggesting a dual role for the ribonuclease in the viral cycle.

  6. The Secret Life of RNA: Lessons from Emerging Methodologies.

    Science.gov (United States)

    Medioni, Caroline; Besse, Florence

    2018-01-01

    The last past decade has witnessed a revolution in our appreciation of transcriptome complexity and regulation. This remarkable expansion in our knowledge largely originates from the advent of high-throughput methodologies, and the consecutive discovery that up to 90% of eukaryotic genomes are transcribed, thus generating an unanticipated large range of noncoding RNAs (Hangauer et al., 15(4):112, 2014). Besides leading to the identification of new noncoding RNA species, transcriptome-wide studies have uncovered novel layers of posttranscriptional regulatory mechanisms controlling RNA processing, maturation or translation, and each contributing to the precise and dynamic regulation of gene expression. Remarkably, the development of systems-level studies has been accompanied by tremendous progress in the visualization of individual RNA molecules in single cells, such that it is now possible to image RNA species with a single-molecule resolution from birth to translation or decay. Monitoring quantitatively, with unprecedented spatiotemporal resolution, the fate of individual molecules has been key to understanding the molecular mechanisms underlying the different steps of RNA regulation. This has also revealed biologically relevant, intracellular and intercellular heterogeneities in RNA distribution or regulation. More recently, the convergence of imaging and high-throughput technologies has led to the emergence of spatially resolved transcriptomic techniques that provide a means to perform large-scale analyses while preserving spatial information. By generating transcriptome-wide data on single-cell RNA content, or even subcellular RNA distribution, these methodologies are opening avenues to a wide range of network-level studies at the cell and organ-level, and promise to strongly improve disease diagnostic and treatment.In this introductory chapter, we highlight how recently developed technologies aiming at detecting and visualizing RNA molecules have contributed to

  7. Taxonomic resolutions based on 18S rRNA genes: a case study of subclass copepoda.

    Directory of Open Access Journals (Sweden)

    Shu Wu

    Full Text Available Biodiversity studies are commonly conducted using 18S rRNA genes. In this study, we compared the inter-species divergence of variable regions (V1-9 within the copepod 18S rRNA gene, and tested their taxonomic resolutions at different taxonomic levels. Our results indicate that the 18S rRNA gene is a good molecular marker for the study of copepod biodiversity, and our conclusions are as follows: 1 18S rRNA genes are highly conserved intra-species (intra-species similarities are close to 100%; and could aid in species-level analyses, but with some limitations; 2 nearly-whole-length sequences and some partial regions (around V2, V4, and V9 of the 18S rRNA gene can be used to discriminate between samples at both the family and order levels (with a success rate of about 80%; 3 compared with other regions, V9 has a higher resolution at the genus level (with an identification success rate of about 80%; and 4 V7 is most divergent in length, and would be a good candidate marker for the phylogenetic study of Acartia species. This study also evaluated the correlation between similarity thresholds and the accuracy of using nuclear 18S rRNA genes for the classification of organisms in the subclass Copepoda. We suggest that sample identification accuracy should be considered when a molecular sequence divergence threshold is used for taxonomic identification, and that the lowest similarity threshold should be determined based on a pre-designated level of acceptable accuracy.

  8. De novo transcriptome analysis and molecular marker development of two Hemarthria species

    Directory of Open Access Journals (Sweden)

    Xiu eHuang

    2016-04-01

    Full Text Available Hemarthria R. Br. is an important genus of perennial forage grasses that is widely used in subtropical and tropical regions. Hemarthria grasses have made remarkable contributions to the development of animal husbandry and agro-ecosystem maintenance; however, there is currently a lack of comprehensive genomic data available for these species. In this study, we used Illumina high-throughput deep sequencing to characterize of two agriculturally important Hemarthria materials, H. compressa ‘Yaan’ and H. altissima ‘1110.’ Sequencing runs that used each of four normalized RNA samples from the leaves or roots of the two materials yielded more than 24 million high-quality reads. After de novo assembly, 137,142 and 77,150 unigenes were obtained for ‘Yaan’ and ‘1110’, respectively. In addition, a total of 86,731 ‘Yaan’ and 48,645 ‘1110’ unigenes were successfully annotated. After consolidating the unigenes for both materials, 42,646 high-quality SNPs were identified in 10,880 unigenes and 10,888 SSRs were identified in 8,330 unigenes. To validate the identified markers, high quality PCR primers were designed for both SNPs and SSRs. We randomly tested 16 of the SNP primers and 54 of the SSR primers and found that the majority of these primers successfully amplified the desired PCR product. In addition, high cross-species transferability (61.11%-87.04% of SSR markers was achieved for four other Poaceae species. The amount of RNA sequencing data that was generated for these two Hemarthria species greatly increases the amount of genomic information available for Hemarthria and the SSR and SNP markers identified in this study will facilitate further advancements in genetic and molecular studies of the Hemarthria genus.

  9. Origins and Early Evolution of the tRNA Molecule

    Directory of Open Access Journals (Sweden)

    Koji Tamura

    2015-12-01

    Full Text Available Modern transfer RNAs (tRNAs are composed of ~76 nucleotides and play an important role as “adaptor” molecules that mediate the translation of information from messenger RNAs (mRNAs. Many studies suggest that the contemporary full-length tRNA was formed by the ligation of half-sized hairpin-like RNAs. A minihelix (a coaxial stack of the acceptor stem on the T-stem of tRNA can function both in aminoacylation by aminoacyl tRNA synthetases and in peptide bond formation on the ribosome, indicating that it may be a vestige of the ancestral tRNA. The universal CCA-3′ terminus of tRNA is also a typical characteristic of the molecule. “Why CCA?” is the fundamental unanswered question, but several findings give a comprehensive picture of its origin. Here, the origins and early evolution of tRNA are discussed in terms of various perspectives, including nucleotide ligation, chiral selectivity of amino acids, genetic code evolution, and the organization of the ribosomal peptidyl transferase center (PTC. The proto-tRNA molecules may have evolved not only as adaptors but also as contributors to the composition of the ribosome.

  10. Polyethylenimine-based polyplex delivery of self-replicating RNA vaccines.

    Science.gov (United States)

    Démoulins, Thomas; Milona, Panagiota; Englezou, Pavlos C; Ebensen, Thomas; Schulze, Kai; Suter, Rolf; Pichon, Chantal; Midoux, Patrick; Guzmán, Carlos A; Ruggli, Nicolas; McCullough, Kenneth C

    2016-04-01

    Self-amplifying replicon RNA (RepRNA) are large molecules (12-14 kb); their self-replication amplifies mRNA template numbers, affording several rounds of antigen production, effectively increasing vaccine antigen payloads. Their sensitivity to RNase-sensitivity and inefficient uptake by dendritic cells (DCs) - absolute requirements for vaccine design - were tackled by condensing RepRNA into synthetic, nanoparticulate, polyethylenimine (PEI)-polyplex delivery vehicles. Polyplex-delivery formulations for small RNA molecules cannot be transferred to RepRNA due to its greater size and complexity; the N:P charge ratio and impact of RepRNA folding would influence polyplex condensation, post-delivery decompaction and the cytosolic release essential for RepRNA translation. Polyplex-formulations proved successful for delivery of RepRNA encoding influenza virus hemagglutinin and nucleocapsid to DCs. Cytosolic translocation was facilitated, leading to RepRNA translation. This efficacy was confirmed in vivo, inducing both humoral and cellular immune responses. Accordingly, this paper describes the first PEI-polyplexes providing efficient delivery of the complex and large, self-amplifying RepRNA vaccines. The use of self-amplifying replicon RNA (RepRNA) to increase vaccine antigen payloads can potentially be useful in effective vaccine design. Nonetheless, its use is limited by the degradation during the uptake process. Here, the authors attempted to solve this problem by packaging RepRNA using polyethylenimine (PEI)-polyplex delivery vehicles. The efficacy was confirmed in vivo by the appropriate humoral and cellular immune responses. This novel delivery method may prove to be very useful for future vaccine design. Copyright © 2015 Elsevier Inc. All rights reserved.

  11. Comparative analyses of plastid genomes from fourteen Cornales species: inferences for phylogenetic relationships and genome evolution.

    Science.gov (United States)

    Fu, Chao-Nan; Li, Hong-Tao; Milne, Richard; Zhang, Ting; Ma, Peng-Fei; Yang, Jing; Li, De-Zhu; Gao, Lian-Ming

    2017-12-08

    The Cornales is the basal lineage of the asterids, the largest angiosperm clade. Phylogenetic relationships within the order were previously not fully resolved. Fifteen plastid genomes representing 14 species, ten genera and seven families of Cornales were newly sequenced for comparative analyses of genome features, evolution, and phylogenomics based on different partitioning schemes and filtering strategies. All plastomes of the 14 Cornales species had the typical quadripartite structure with a genome size ranging from 156,567 bp to 158,715 bp, which included two inverted repeats (25,859-26,451 bp) separated by a large single-copy region (86,089-87,835 bp) and a small single-copy region (18,250-18,856 bp) region. These plastomes encoded the same set of 114 unique genes including 31 transfer RNA, 4 ribosomal RNA and 79 coding genes, with an identical gene order across all examined Cornales species. Two genes (rpl22 and ycf15) contained premature stop codons in seven and five species respectively. The phylogenetic relationships among all sampled species were fully resolved with maximum support. Different filtering strategies (none, light and strict) of sequence alignment did not have an effect on these relationships. The topology recovered from coding and noncoding data sets was the same as for the whole plastome, regardless of filtering strategy. Moreover, mutational hotspots and highly informative regions were identified. Phylogenetic relationships among families and intergeneric relationships within family of Cornales were well resolved. Different filtering strategies and partitioning schemes do not influence the relationships. Plastid genomes have great potential to resolve deep phylogenetic relationships of plants.

  12. Non-standard amino acid recognition by Escherichia coli leucyl-tRNA synthetase

    Science.gov (United States)

    Martinis, S. A.; Fox, G. E.

    1997-01-01

    Recombinant E. coli leucyl-tRNA synthetase was screened for amino acid-dependent pyrophosphate exchange activity using noncognate aliphatic amino acids including norvaline, homocysteine, norleucine, methionine, and homoserine. [32P]-labeled reaction products were separated by thin layer chromatography using a novel solvent system and then quantified by phosphorimaging. Norvaline which differs from leucine by only one methyl group stimulated pyrophosphate exchange activity as did both homocysteine and norleucine to a lesser extent. The KM parameters for leucine and norvaline were measured to be 10 micromoles and 1.5 mM, respectively. Experiments are in progress to determine if norvaline is transferred to tRNA(Leu) and/or edited by a pre- or post-transfer mechanism.

  13. Genomic Resources of Three Pulsatilla Species Reveal Evolutionary Hotspots, Species-Specific Sites and Variable Plastid Structure in the Family Ranunculaceae

    Directory of Open Access Journals (Sweden)

    Monika Szczecińska

    2015-09-01

    Full Text Available Background: The European continent is presently colonized by nine species of the genus Pulsatilla, five of which are encountered only in mountainous regions of southwest and south-central Europe. The remaining four species inhabit lowlands in the north-central and eastern parts of the continent. Most plants of the genus Pulsatilla are rare and endangered, which is why most research efforts focused on their biology, ecology and hybridization. The objective of this study was to develop genomic resources, including complete plastid genomes and nuclear rRNA clusters, for three sympatric Pulsatilla species that are most commonly found in Central Europe. The results will supply valuable information about genetic variation, which can be used in the process of designing primers for population studies and conservation genetics research. The complete plastid genomes together with the nuclear rRNA cluster can serve as a useful tool in hybridization studies. Methodology/principal findings: Six complete plastid genomes and nuclear rRNA clusters were sequenced from three species of Pulsatilla using the Illumina sequencing technology. Four junctions between single copy regions and inverted repeats and junctions between the identified locally-collinear blocks (LCB were confirmed by Sanger sequencing. Pulsatilla genomes of 120 unique genes had a total length of approximately 161–162 kb, and 21 were duplicated in the inverted repeats (IR region. Comparative plastid genomes of newly-sequenced Pulsatilla and the previously-identified plastomes of Aconitum and Ranunculus species belonging to the family Ranunculaceae revealed several variations in the structure of the genome, but the gene content remained constant. The nuclear rRNA cluster (18S-ITS1-5.8S-ITS2-26S of studied Pulsatilla species is 5795 bp long. Among five analyzed regions of the rRNA cluster, only Internal Transcribed Spacer 2 (ITS2 enabled the molecular delimitation of closely-related Pulsatilla

  14. DCJ-RNA - double cut and join for RNA secondary structures.

    Science.gov (United States)

    Badr, Ghada H; Al-Aqel, Haifa A

    2017-10-16

    Genome rearrangements are essential processes for evolution and are responsible for existing varieties of genome architectures. Many studies have been conducted to obtain an algorithm that identifies the minimum number of inversions that are necessary to transform one genome into another; this allows for genome sequence representation in polynomial time. Studies have not been conducted on the topic of rearranging a genome when it is represented as a secondary structure. Unlike sequences, the secondary structure preserves the functionality of the genome. Sequences can be different, but they all share the same structure and, therefore, the same functionality. This paper proposes a double cut and join for RNA secondary structures (DCJ-RNA) algorithm. This algorithm allows for the description of evolutionary scenarios that are based on secondary structures rather than sequences. The main aim of this paper is to suggest an efficient algorithm that can help researchers compare two ribonucleic acid (RNA) secondary structures based on rearrangement operations. The results, which are based on real datasets, show that the algorithm is able to count the minimum number of rearrangement operations, as well as to report an optimum scenario that can increase the similarity between the two structures. The algorithm calculates the distance between structures and reports a scenario based on the minimum rearrangement operations required to make the given structure similar to the other. DCJ-RNA can also be used to measure the distance between the two structures. This can help identify the common functionalities between different species.

  15. tRNA gene diversity in the three domains of life

    Directory of Open Access Journals (Sweden)

    Kosuke eFujishima

    2014-05-01

    Full Text Available Transfer RNA (tRNA is widely known for its key role in decoding mRNA into protein. Despite their necessity and relatively short nucleotide sequences, a large diversity of gene structures and RNA secondary structures of pre-tRNAs and mature tRNAs have recently been discovered in the three domains of life. Growing evidences of disrupted tRNA genes in the genomes of Archaea reveals unique gene structures such as, intron-containing tRNA, split tRNA, and permuted tRNA. Coding sequence for these tRNAs are either separated with introns, fragmented, or permuted at the genome level. Although evolutionary scenario behind the tRNA gene disruption is still unclear, diversity of tRNA structure seems to be co-evolved with their processing enzyme, so-called RNA splicing endonuclease. Metazoan mitochondrial tRNAs (mtRNAs are known for their unique lack of either one or two arms from the typical tRNA cloverleaf structure, while still maintaining functionality. Recently identified nematode-specific V-arm containing tRNAs (nev-tRNAs possess long variable arms that are specific to eukaryotic class II tRNASer and tRNALeu but also decode class I tRNA codons. Moreover, many tRNA-like sequences have been found in the genomes of different organisms and viruses. Thus this review is aimed to cover the latest knowledge on tRNA gene diversity and further recapitulate the evolutionary and biological aspects that caused such uniqueness.

  16. Analysis of the RNA Content of the Yeast "Saccharomyces Cerevisiae"

    Science.gov (United States)

    Deutch, Charles E.; Marshall, Pamela A.

    2008-01-01

    In this article, the authors describe an interconnected set of relatively simple laboratory experiments in which students determine the RNA content of yeast cells and use agarose gel electrophoresis to separate and analyze the major species of cellular RNA. This set of experiments focuses on RNAs from the yeast "Saccharomyces cerevisiae", a…

  17. Regulation of Gene Expression by DNA Methylation and RNA Editing in Animals

    DEFF Research Database (Denmark)

    Li, Qiye

    , there has been growing interest in exploring the modifications occurring at the RNA level, which can impact the fate and function of mRNA. One fascinating type of such modifications is RNA editing, which alters specific nucleotides in transcribed RNA and thus can produce transcripts that are not encoded...... (Heterocephalus glaber), a eusocial mammal living in cooperative colonies. Finally, I introduce a software package that I developed that is specifically designed for the genome-wide identification of RNA-editing sites in animals, with the ultimate aim of promoting the evolutionary and functional study of RNA...... editing in different species....

  18. CBC bound proteins and RNA fate

    DEFF Research Database (Denmark)

    Giacometti, Simone

    ) complex (CBCN), were recently shown to target capped RNA either toward export or degradation, but the mechanisms by which they can discriminate between different RNA families and route them toward different metabolic pathways still remain unclear. A major question to be answered is how and when...... the different CBC subcomplexes are recruited to the RNP. Here, we used an individual nucleotide-resolution UV cross-linking and immunoprecipitation (iCLIP) approach to identify the transcriptome-wide targets for 5 different components of the CBCAP and CBCN complexes, and compared results to the previously...... analysed NEXT-component RBM7. We report that: (i) CBP20, ARS2, PHAX and ZC3H18 bind close to the cap, while RBM7 and MTR4 bind throughout the mRNA body; (ii) CBP20, ARS2, PHAX and ZC3H18 associate with a broad set of RNA polymerase II (PolII)-derived RNAs and have only mild species preferences; (iii...

  19. A mitochondrial tRNA(His) gene mutation causing pigmentary retinopathy and neurosensorial deafness.

    Science.gov (United States)

    Crimi, M; Galbiati, S; Perini, M P; Bordoni, A; Malferrari, G; Sciacco, M; Biunno, I; Strazzer, S; Moggio, M; Bresolin, N; Comi, G P

    2003-04-08

    We have identified a heteroplasmic G to A mutation at position 12,183 of the mitochondrial transfer RNA Histidine (tRNA(His)) gene in three related patients. These phenotypes varied according to mutation heteroplasmy: one had severe pigmentary retinopathy, neurosensorial deafness, testicular dysfunction, muscle hypotrophy, and ataxia; the other two had only retinal and inner ear involvement. The mutation is in a highly conserved region of the T(psi)C stem of the tRNA(His) gene and may alter secondary structure formation. This is the first described pathogenic, maternally inherited mutation of the mitochondrial tRNA(His) gene.

  20. Heavy ion effects on yeast: Inhibition of ribosomal RNA synthesis

    International Nuclear Information System (INIS)

    Weber, K.J.; Schneider, E.; Kiefer, J.; Kraft, G.

    1990-01-01

    Diploid wild-type yeast cells were exposed to beams of heavy ions covering a wide range of linear energy transfer (LET) (43-13,700 keV/microns). Synthesis of ribosomal RNA (rRNA) was assessed as a functional measure of damage produced by particle radiation. An exponential decrease of relative rRNA synthesis with particle fluence was demonstrated in all cases. The inactivation cross sections derived were found to increase with LET over the entire range of LET studied. The corresponding values for relative biological effectiveness were slightly less than unity. Maximum cross sections measured were close to 1 micron 2, implying that some larger structure within the yeast nucleus (e.g., the nucleolus) might represent the target for an impairment of synthetic activity by very heavy ions rather than the genes coding for rRNA. Where tested, an oxygen effect for rRNA synthesis could not be demonstrated

  1. A review of 137Cs transfer to fungi and consequences for modelling environmental transfer

    International Nuclear Information System (INIS)

    Gillett, A.G.; Crout, N.M.J.

    2000-01-01

    A review of the published literature describing 137 Cs transfer to fungi was carried out, summarising the collated data to determine factors controlling transfer and identify an appropriate modelling approach to predict future contamination. 137 Cs transfer ratios (TR) are derived for fungi species collected within Europe and the CIS. Considerable variability in TRs is demonstrated, with TRs varying between 10 m 2 kg -1 across all species and over three orders of magnitude for individual species (e.g. Boletus badius). Generally, meta-information (such as habitat and soil attributes) is poorly reported in the literature so that classification of the TR is limited to the effect of nutritional type (P saprophytic∼parasitic. Analysis of the literature data set (a heterogeneous source) suggests that there is no statistical evidence to indicate a decrease in TRs for 10 years after the Chernobyl accident. Spatial analysis of a data set for Belgium indicates variability in 137 Cs transfer within a sampling location, such that fruitbodies collected over a scale of approximately 5 km would show activities as variable as those collected over a much larger scale (∼ or>50 km). Therefore, it is proposed that the collated data sets for individual species can be used to derive 'best estimates' for the parameters describing the distribution of TRs. These can then be used to estimate an 'effective' TR, which, when combined with local soil deposition level and frequency and effect of culinary practices, can give an estimate of the activity of fungi consumed by the general population

  2. Mycoplasma non-coding RNA: identification of small RNAs and targets

    Directory of Open Access Journals (Sweden)

    Franciele Maboni Siqueira

    2016-10-01

    Full Text Available Abstract Background Bacterial non-coding RNAs act by base-pairing as regulatory elements in crucial biological processes. We performed the identification of trans-encoded small RNAs (sRNA from the genomes of Mycoplama hyopneumoniae, Mycoplasma flocculare and Mycoplasma hyorhinis, which are Mycoplasma species that have been identified in the porcine respiratory system. Results A total of 47, 15 and 11 putative sRNAs were predicted in M. hyopneumoniae, M. flocculare and M. hyorhinis, respectively. A comparative genomic analysis revealed the presence of species or lineage specific sRNA candidates. Furthermore, the expression profile of some M. hyopneumoniae sRNAs was determined by a reverse transcription amplification approach, in three different culture conditions. All tested sRNAs were transcribed in at least one condition. A detailed investigation revealed a differential expression profile for two M. hyopneumoniae sRNAs in response to oxidative and heat shock stress conditions, suggesting that their expression is influenced by environmental signals. Moreover, we analyzed sRNA-mRNA hybrids and accessed putative target genes for the novel sRNA candidates. The majority of the sRNAs showed interaction with multiple target genes, some of which could be linked to pathogenesis and cell homeostasis activity. Conclusion This study contributes to our knowledge of Mycoplasma sRNAs and their response to environmental changes. Furthermore, the mRNA target prediction provides a perspective for the characterization and comprehension of the function of the sRNA regulatory mechanisms.

  3. Molecular identification of sibling species of Sclerodermus (Hymenoptera: Bethylidae that parasitize buprestid and cerambycid beetles by using partial sequences of mitochondrial DNA cytochrome oxidase subunit 1 and 28S ribosomal RNA gene.

    Directory of Open Access Journals (Sweden)

    Yuan Jiang

    Full Text Available The species belonging to Sclerodermus (Hymenoptera: Bethylidae are currently the most important insect natural enemies of wood borer pests, mainly buprestid and cerambycid beetles, in China. However, some sibling species of this genus are very difficult to distinguish because of their similar morphological features. To address this issue, we conducted phylogenetic and genetic analyses of cytochrome oxidase subunit I (COI and 28S RNA gene sequences from eight species of Sclerodermus reared from different wood borer pests. The eight sibling species were as follows: S. guani Xiao et Wu, S. sichuanensis Xiao, S. pupariae Yang et Yao, and Sclerodermus spp. (Nos. 1-5. A 594-bp fragment of COI and 750-bp fragment of 28S were subsequently sequenced. For COI, the G-C content was found to be low in all the species, averaging to about 30.0%. Sequence divergences (Kimura-2-parameter distances between congeneric species averaged to 4.5%, and intraspecific divergences averaged to about 0.09%. Further, the maximum sequence divergences between congeneric species and Sclerodermus sp. (No. 5 averaged to about 16.5%. All 136 samples analyzed were included in six reciprocally monophyletic clades in the COI neighbor-joining (NJ tree. The NJ tree inferred from the 28S rRNA sequence yielded almost identical results, but the samples from S. guani, S. sichuanensis, S. pupariae, and Sclerodermus spp. (Nos. 1-4 clustered together and only Sclerodermus sp. (No. 5 clustered separately. Our findings indicate that the standard barcode region of COI can be efficiently used to distinguish morphologically similar Sclerodermus species. Further, we speculate that Sclerodermus sp. (No. 5 might be a new species of Sclerodermus.

  4. Fluctuations between multiple EF-G-induced chimeric tRNA states during translocation on the ribosome

    Science.gov (United States)

    Adio, Sarah; Senyushkina, Tamara; Peske, Frank; Fischer, Niels; Wintermeyer, Wolfgang; Rodnina, Marina V.

    2015-06-01

    The coupled translocation of transfer RNA and messenger RNA through the ribosome entails large-scale structural rearrangements, including step-wise movements of the tRNAs. Recent structural work has visualized intermediates of translocation induced by elongation factor G (EF-G) with tRNAs trapped in chimeric states with respect to 30S and 50S ribosomal subunits. The functional role of the chimeric states is not known. Here we follow the formation of translocation intermediates by single-molecule fluorescence resonance energy transfer. Using EF-G mutants, a non-hydrolysable GTP analogue, and fusidic acid, we interfere with either translocation or EF-G release from the ribosome and identify several rapidly interconverting chimeric tRNA states on the reaction pathway. EF-G engagement prevents backward transitions early in translocation and increases the fraction of ribosomes that rapidly fluctuate between hybrid, chimeric and posttranslocation states. Thus, the engagement of EF-G alters the energetics of translocation towards a flat energy landscape, thereby promoting forward tRNA movement.

  5. Phylogenetic diversity analysis of Trichoderma species based on ...

    African Journals Online (AJOL)

    vi-4177/CSAU be assigned as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit ...

  6. miRNA genes of an invasive vector mosquito, Aedes albopictus.

    Directory of Open Access Journals (Sweden)

    Jinbao Gu

    Full Text Available Aedes albopictus, a vector of Dengue and Chikungunya viruses, is a robust invasive species in both tropical and temperate environments. MicroRNAs (miRNAs regulate gene expression and biological processes including embryonic development, innate immunity and infection. While a number of miRNAs have been discovered in some mosquitoes, no comprehensive effort has been made to characterize them from different developmental stages from a single species. Systematic analysis of miRNAs in Ae. albopictus will improve our understanding of its basic biology and inform novel strategies to prevent virus transmission. Between 10-14 million Illumina sequencing reads per sample were obtained from embryos, larvae, pupae, adult males, sugar-fed and blood-fed adult females. A total of 119 miRNA genes represented by 215 miRNA or miRNA star (miRNA* sequences were identified, 15 of which are novel. Eleven, two, and two of the newly-discovered miRNA genes appear specific to Aedes, Culicinae, and Culicidae, respectively. A number of miRNAs accumulate predominantly in one or two developmental stages and the large number that showed differences in abundance following a blood meal likely are important in blood-induced mosquito biology. Gene Ontology (GO analysis of the targets of all Ae. albopictus miRNAs provides a useful starting point for the study of their functions in mosquitoes. This study is the first systematic analysis of miRNAs based on deep-sequencing of small RNA samples of all developmental stages of a mosquito species. A number of miRNAs are related to specific physiological states, most notably, pre- and post-blood feeding. The distribution of lineage-specific miRNAs is consistent with mosquito phylogeny and the presence of a number of Aedes-specific miRNAs likely reflects the divergence between the Aedes and Culex genera.

  7. Molecular-Sized DNA or RNA Sequencing Machine | NCI Technology Transfer Center | TTC

    Science.gov (United States)

    The National Cancer Institute's Gene Regulation and Chromosome Biology Laboratory is seeking statements of capability or interest from parties interested in collaborative research to co-develop a molecular-sized DNA or RNA sequencing machine.

  8. RNA interference in designing transgenic crops.

    Science.gov (United States)

    Ali, Nusrat; Datta, Swapan K; Datta, Karabi

    2010-01-01

    RNA interference (RNAi) is a sequence specific gene silencing mechanism, triggered by the introduction of dsRNA leading to mRNA degradation. It helps in switching on and off the targeted gene, which might have significant impact in developmental biology. Discovery of RNAi represents one of the most promising and rapidly advancing frontiers in plant functional genomics and in crop improvement by plant metabolic engineering and also plays an important role in reduction of allergenicity by silencing specific plant allergens. In plants the RNAi technology has been employed successfully in improvement of several plant species- by increasing their nutritional value, overall quality and by conferring resistance against pathogens and diseases. The review gives an insight to the perspective use of the technology in designing crops with innovation, to bring improvement to crop productivity and quality.

  9. Molecular characterization of 5S ribosomal RNA genes and transcripts in the protozoan parasite Leishmania major.

    Science.gov (United States)

    Moreno-Campos, Rodrigo; Florencio-Martínez, Luis E; Nepomuceno-Mejía, Tomás; Rojas-Sánchez, Saúl; Vélez-Ramírez, Daniel E; Padilla-Mejía, Norma E; Figueroa-Angulo, Elisa; Manning-Cela, Rebeca; Martínez-Calvillo, Santiago

    2016-12-01

    Eukaryotic 5S rRNA, synthesized by RNA polymerase III (Pol III), is an essential component of the large ribosomal subunit. Most organisms contain hundreds of 5S rRNA genes organized into tandem arrays. However, the genome of the protozoan parasite Leishmania major contains only 11 copies of the 5S rRNA gene, which are interspersed and associated with other Pol III-transcribed genes. Here we report that, in general, the number and order of the 5S rRNA genes is conserved between different species of Leishmania. While in most organisms 5S rRNA genes are normally associated with the nucleolus, combined fluorescent in situ hybridization and indirect immunofluorescence experiments showed that 5S rRNA genes are mainly located at the nuclear periphery in L. major. Similarly, the tandemly repeated 5S rRNA genes in Trypanosoma cruzi are dispersed throughout the nucleus. In contrast, 5S rRNA transcripts in L. major were localized within the nucleolus, and scattered throughout the cytoplasm, where mature ribosomes are located. Unlike other rRNA species, stable antisense RNA complementary to 5S rRNA is not detected in L. major.

  10. Biological fixation and nitrogen transfer by three legume species in mango and soursop organic orchards

    International Nuclear Information System (INIS)

    Paulino, Gleicia Miranda; Barroso, Deborah Guerra

    2009-01-01

    The objective of this work was to evaluate the biological nitrogen fixation (BNF) and the N transfer derived from BNF of the legume species - Gliricidia sepium (gliricidia), Crotalaria juncea (sunnhemp) and Cajanus cajan (pigeon pea) - for an intercropped organic orchard with mango and soursop, through the 15 N natural abundance method. The following inter cropping systems were evaluated: mango and soursop with gliricidia; mango and soursop with sunnhemp; mango and soursop with pigeon pea; and mango and soursop as control. Gliricidia showed the highest BNF potential (80%) , followed by sunnhemp (64.5%) and pigeon pea (45%). After two sunnhemp prunes, 149.5 kg ha -1 of N per year were supplied, with 96.5 kg derived from BNF. After three annual prunes, gliricidia supplied 56.4 and 80.3 kg ha -1 of N per year, with 45 and 64 kg derived from BNF, in two consecutive years. The quantity of N supplied to the system was higher than the mango and soursop requirements. Variations in the natural abundance of 15 N were found only in soursop leaves. Gliricidia and sunnhemp were prominent in N transfer, with approximately 22.5 and 40% respectively. Green manuring using gliricidia permits fractioning of the N supply, which is an advantage in N obtention by the fruit trees (author)

  11. Prebiotic RNA Synthesis by Montmorillonite Catalysis

    Directory of Open Access Journals (Sweden)

    Sohan Jheeta

    2014-08-01

    Full Text Available This review summarizes our recent findings on the role of mineral salts in prebiotic RNA synthesis, which is catalyzed by montmorillonite clay minerals. The clay minerals not only catalyze the synthesis of RNA but also facilitate homochiral selection. Preliminary data of these findings have been presented at the “Horizontal Gene Transfer and the Last Universal Common Ancestor (LUCA” conference at the Open University, Milton Keynes, UK, 5–6 September 2013. The objective of this meeting was to recognize the significance of RNA in LUCA. We believe that the prebiotic RNA synthesis from its monomers must have been a simple process. As a first step, it may have required activation of the 5'-end of the mononucleotide with a leaving group, e.g., imidazole in our model reaction (Figure 1. Wide ranges of activating groups are produced from HCN under plausible prebiotic Earth conditions. The final step is clay mineral catalysis in the presence of mineral salts to facilitate selective production of functional RNA. Both the clay minerals and mineral salts would have been abundant on early Earth. We have demonstrated that while montmorillonite (pH 7 produced only dimers from its monomers in water, addition of sodium chloride (1 M enhanced the chain length multifold, as detected by HPLC. The effect of monovalent cations on RNA synthesis was of the following order: Li+ > Na+ > K+. A similar effect was observed with the anions, enhancing catalysis in the following order: Cl− > Br− > I−. The montmorillonite-catalyzed RNA synthesis was not affected by hydrophobic or hydrophilic interactions. We thus show that prebiotic synthesis of RNA from its monomers was a simple process requiring only clay minerals and a small amount of salt.

  12. The ITS1-5.8S rRNA gene -ITS2 sequence variability during the divergence of sweet-grass species (gen us Glyceria R. Br.

    Directory of Open Access Journals (Sweden)

    Alexander V Rodionov

    2011-12-01

    Full Text Available Comparative analysis of the sequence ITS1-5.8S rRNA gene-ITS2 of the nuclear genome of 13 species of genus Glyceria, 4 species of Melica and a species of monotypic genus Pleuropogon showed that the species of the genus Glyceria have 3 haplotypes: 1 Haplotype A was found only in species of the subgenus Glyceria section Glyceria (G. septentrionalis, G. fluitans, G. declinata, G. occidentalis, G. notata, G. borealis, G. leptostachya and in Pleuropogon sabinii; 2 Haplotype C is characteristic of the subgenus Hydropoa, section Hydropoa (G. grandis, G. х amurensis, G. triflora, G. maxima and sect. Lithuanicae (G. leptolepis; 3 Haplotype B is found in the species of the subgenus Hydropoa sections Striatae (G. elata, G. striata, G. neogaea, G. canadensis, Scolochloiformes (G. alnasteretum, G. spiculosa and G. lithuanica of sect. Lithuanicae. Species carring haplotype B are located at the base of the phylogenetic tree of the genus Glyceria and/or clustered with low bootstrap indices. On the phylogenetic trees inferred by the analysis of the sequences ITS and 5.8S rDNA both sect. Glyceria and sect. Hydropoa represented two sister monophyly branches. The species Pleuropogon sabinii belong to the branch of subgenus Glyceria as a sister monotypic branch to the branch of the sect. Glyceria.

  13. Post-transcriptional generation of miRNA variants by multiple nucleotidyl transferases contributes to miRNA transcriptome complexity.

    Science.gov (United States)

    Wyman, Stacia K; Knouf, Emily C; Parkin, Rachael K; Fritz, Brian R; Lin, Daniel W; Dennis, Lucas M; Krouse, Michael A; Webster, Philippa J; Tewari, Muneesh

    2011-09-01

    Modification of microRNA sequences by the 3' addition of nucleotides to generate so-called "isomiRs" adds to the complexity of miRNA function, with recent reports showing that 3' modifications can influence miRNA stability and efficiency of target repression. Here, we show that the 3' modification of miRNAs is a physiological and common post-transcriptional event that shows selectivity for specific miRNAs and is observed across species ranging from C. elegans to human. The modifications result predominantly from adenylation and uridylation and are seen across tissue types, disease states, and developmental stages. To quantitatively profile 3' nucleotide additions, we developed and validated a novel assay based on NanoString Technologies' nCounter platform. For certain miRNAs, the frequency of modification was altered by processes such as cell differentiation, indicating that 3' modification is a biologically regulated process. To investigate the mechanism of 3' nucleotide additions, we used RNA interference to screen a panel of eight candidate miRNA nucleotidyl transferases for 3' miRNA modification activity in human cells. Multiple enzymes, including MTPAP, PAPD4, PAPD5, ZCCHC6, ZCCHC11, and TUT1, were found to govern 3' nucleotide addition to miRNAs in a miRNA-specific manner. Three of these enzymes-MTPAP, ZCCHC6, and TUT1-have not previously been known to modify miRNAs. Collectively, our results indicate that 3' modification observed in next-generation small RNA sequencing data is a biologically relevant process, and identify enzymatic mechanisms that may lead to new approaches for modulating miRNA activity in vivo.

  14. Circular RNA (circRNA) was an important bridge in the switch from the RNA world to the DNA world.

    Science.gov (United States)

    Soslau, Gerald

    2018-06-14

    The concept that life on Earth began as an RNA world has been built upon extensive experimentation demonstrating that many of the building blocks required for living cells could be synthesized in the laboratory under conditions approximating our primordial world. Many of the building blocks for life have also been found in meteorites indicating that meteors may have been a source for these molecules, or more likely, that they represent the chemical library present in most/all bodies in the universe after the big bang. Perhaps the most important support for the concept comes from the fact that some RNA species possess catalytic activity, ribozymes, and that RNA could be reverse transcribe to DNA. The thrust of numerous papers on this topic has been to explore how the available molecules on Earth, at its birth, gave rise to life as we know it today. This paper focuses more on a reverse view of the topic. The "how" molecular building blocks were synthesized is not addressed nor how the "first" RNA molecules were synthesized. We can clearly speculate on the variable environmental conditions and chemistry available on Earth billions of years ago. However, we can never truly replicate the changing conditions or know the chemical composition of Earth at the beginning of time. We can, however, confirm that over millions, perhaps billions of years the basic building blocks for life accumulated sufficiently to initiate evolution to an RNA world followed by our RNA/DNA world. Here we are attempting to take the information from our current knowledge of biology and by inference and extrapolation work backward to hypothesize biological events in the march forward from RNA to DNA. It is proposed that the primordial replicating RNA cell, the ribocyte, evolved from liposomes encompassing required reactants and products for "life" and that ribonucleopeptide complexes formed membrane pores to support bidirectional ion and molecular transport to maintain biological functions and

  15. Quantifying the transfer of radionuclides to food products from domestic farm animals

    International Nuclear Information System (INIS)

    Howard, B.J.; Beresford, N.A.; Barnett, C.L.; Fesenko, S.

    2009-01-01

    Databases have been compiled to derive parameter values relevant to the transfer of radionuclides from feedstuffs to domestic animal products to provide a revision to the IAEA Handbook on transfer parameters TRS 364. Significant new data inputs have been incorporated into the databases from an extensive review of Russian language information and inclusion of data published since the early 1990s. Fractional gastrointestinal absorption in adult ruminants presented in the revised handbook are generally similar to those recommended for adult humans by the ICRP. Transfer coefficient values are presented in the handbook for a range of radionuclides to farm animal products. For most animal products, transfer coefficient values for elements additional to those in TRS 364 are provided although many data gaps remain. Transfer coefficients generally vary between species with larger species having lower values than smaller species. It has been suggested that the difference is partly due to the inclusion of dietary dry matter intake in the estimation of transfer coefficient and that whilst dietary intake increases with size nutrient concentrations do not. An alternative approach to quantifying transfer by using concentration ratios (CR), which do not consider dietary intake, has been evaluated. CR values compiled for the handbook vary considerably less between species than transfer coefficient values. The advantage of the CR approach is that values derived for one species could be applied to species for which there are no data. However, transfer coefficients will continue to be used as few studies currently report CR values or give data from which they can be estimated.

  16. Transcription factor trapping by RNA in gene regulatory elements.

    Science.gov (United States)

    Sigova, Alla A; Abraham, Brian J; Ji, Xiong; Molinie, Benoit; Hannett, Nancy M; Guo, Yang Eric; Jangi, Mohini; Giallourakis, Cosmas C; Sharp, Phillip A; Young, Richard A

    2015-11-20

    Transcription factors (TFs) bind specific sequences in promoter-proximal and -distal DNA elements to regulate gene transcription. RNA is transcribed from both of these DNA elements, and some DNA binding TFs bind RNA. Hence, RNA transcribed from regulatory elements may contribute to stable TF occupancy at these sites. We show that the ubiquitously expressed TF Yin-Yang 1 (YY1) binds to both gene regulatory elements and their associated RNA species across the entire genome. Reduced transcription of regulatory elements diminishes YY1 occupancy, whereas artificial tethering of RNA enhances YY1 occupancy at these elements. We propose that RNA makes a modest but important contribution to the maintenance of certain TFs at gene regulatory elements and suggest that transcription of regulatory elements produces a positive-feedback loop that contributes to the stability of gene expression programs. Copyright © 2015, American Association for the Advancement of Science.

  17. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic

  18. Structural features in the HIV-1 repeat region facilitate strand transfer during reverse transcription

    NARCIS (Netherlands)

    Berkhout, B.; Vastenhouw, N. L.; Klasens, B. I.; Huthoff, H.

    2001-01-01

    Two obligatory DNA strand transfers take place during reverse transcription of a retroviral RNA genome. The first strand transfer is facilitated by terminal repeat (R) elements in the viral genome. This strand-transfer reaction depends on base pairing between the cDNA of the 5'R and the 3'R. There

  19. Mutually Exclusive CBC-Containing Complexes Contribute to RNA Fate

    Directory of Open Access Journals (Sweden)

    Simone Giacometti

    2017-03-01

    Full Text Available The nuclear cap-binding complex (CBC stimulates processing reactions of capped RNAs, including their splicing, 3′-end formation, degradation, and transport. CBC effects are particular for individual RNA families, but how such selectivity is achieved remains elusive. Here, we analyze three main CBC partners known to impact different RNA species. ARS2 stimulates 3′-end formation/transcription termination of several transcript types, ZC3H18 stimulates degradation of a diverse set of RNAs, and PHAX functions in pre-small nuclear RNA/small nucleolar RNA (pre-snRNA/snoRNA transport. Surprisingly, these proteins all bind capped RNAs without strong preferences for given transcripts, and their steady-state binding correlates poorly with their function. Despite this, PHAX and ZC3H18 compete for CBC binding and we demonstrate that this competitive binding is functionally relevant. We further show that CBC-containing complexes are short lived in vivo, and we therefore suggest that RNA fate involves the transient formation of mutually exclusive CBC complexes, which may only be consequential at particular checkpoints during RNA biogenesis.

  20. DNA-binding proteins regulating pIP501 transfer and replication

    Directory of Open Access Journals (Sweden)

    Elisabeth Grohmann

    2016-08-01

    Full Text Available pIP501 is a Gram-positive broad-host-range model plasmid intensively used for studying plasmid replication and conjugative transfer. It is a multiple antibiotic resistance plasmid frequently found in clinical Enterococcus faecalis and Enterococcus faecium isolates. Replication of pIP501 proceeds unidirectionally by a theta mechanism. The minimal replicon of pIP501 is composed of the repR gene encoding the essential rate-limiting replication initiator protein RepR and the origin of replication, oriR, located downstream of repR. RepR is similar to RepE of related streptococcal plasmid pAMβ1, which has been shown to possess RNase activity cleaving free RNA molecules in close proximity of the initiation site of DNA synthesis. Replication of pIP501 is controlled by the concerted action of a small protein, CopR, and an antisense RNA, RNAIII. CopR has a dual role: It acts as transcriptional repressor at the repR promoter and prevents convergent transcription of RNAIII and repR mRNA (RNAII, thereby indirectly increasing RNAIII synthesis. CopR binds asymmetrically as a dimer at two consecutive binding sites upstream of and overlapping with the repR promoter. RNAIII induces transcriptional attenuation within the leader region of the repR mRNA (RNAII. Deletion of either control component causes a 10- to 20-fold increase of plasmid copy number, while simultaneous deletions have no additional effect. Conjugative transfer of pIP501 depends on a type IV secretion system (T4SS encoded in a single operon. Its transfer host-range is considerably broad, as it has been transferred to virtually all Gram-positive bacteria including filamentous streptomycetes and even the Gram-negative Escherichia coli. Expression of the 15 genes encoding the T4SS is tightly controlled by binding of the relaxase TraA, the transfer initiator protein, to the operon promoter, which overlaps with the origin of transfer (oriT. The T4SS operon encodes the DNA-binding proteins TraJ (VirD4

  1. miRBase: integrating microRNA annotation and deep-sequencing data.

    Science.gov (United States)

    Kozomara, Ana; Griffiths-Jones, Sam

    2011-01-01

    miRBase is the primary online repository for all microRNA sequences and annotation. The current release (miRBase 16) contains over 15,000 microRNA gene loci in over 140 species, and over 17,000 distinct mature microRNA sequences. Deep-sequencing technologies have delivered a sharp rise in the rate of novel microRNA discovery. We have mapped reads from short RNA deep-sequencing experiments to microRNAs in miRBase and developed web interfaces to view these mappings. The user can view all read data associated with a given microRNA annotation, filter reads by experiment and count, and search for microRNAs by tissue- and stage-specific expression. These data can be used as a proxy for relative expression levels of microRNA sequences, provide detailed evidence for microRNA annotations and alternative isoforms of mature microRNAs, and allow us to revisit previous annotations. miRBase is available online at: http://www.mirbase.org/.

  2. Purification and characterization of RNA allied extracellular tyrosinase from Aspergillus species.

    Science.gov (United States)

    Inamdar, Shrirang; Joshi, Swati; Bapat, Vishwas; Jadhav, Jyoti

    2014-02-01

    Production of L-DOPA, an anti-Parkinson's drug, using biological sources is widely studied in which tyrosinase is known to play a vital role. Tyrosinase is an omnipresent type 3 copper enzyme participating in many essential biological functions. Understanding properties of tyrosinase is essential for developing useful tyrosinase-based applications. Hence, extracellular tyrosinase from Aspergillus flavus UWFP 570 was purified using ammonium sulphate precipitation and DEAE ion exchange chromatography up to 8.3-fold. Purified protein was a riboprotein in nature containing significant amount of RNA which was confirmed colorimetrically and by electrophoresis. Removal of RNA reduced the activity and altered the conformation of tyrosinase as suggested by spectroflurometric results. Optimum pH and temperature of this 140 kDa protein were 7 and 40 °C, respectively. Copper sulphate and magnesium chloride enhanced the activity whereas in contrast FeCl₃ inhibited the activity completely. Purified tyrosinase transformed L-tyrosine (5 mM) to L-DOPA within 5 h.

  3. Accurate identification of RNA editing sites from primitive sequence with deep neural networks.

    Science.gov (United States)

    Ouyang, Zhangyi; Liu, Feng; Zhao, Chenghui; Ren, Chao; An, Gaole; Mei, Chuan; Bo, Xiaochen; Shu, Wenjie

    2018-04-16

    RNA editing is a post-transcriptional RNA sequence alteration. Current methods have identified editing sites and facilitated research but require sufficient genomic annotations and prior-knowledge-based filtering steps, resulting in a cumbersome, time-consuming identification process. Moreover, these methods have limited generalizability and applicability in species with insufficient genomic annotations or in conditions of limited prior knowledge. We developed DeepRed, a deep learning-based method that identifies RNA editing from primitive RNA sequences without prior-knowledge-based filtering steps or genomic annotations. DeepRed achieved 98.1% and 97.9% area under the curve (AUC) in training and test sets, respectively. We further validated DeepRed using experimentally verified U87 cell RNA-seq data, achieving 97.9% positive predictive value (PPV). We demonstrated that DeepRed offers better prediction accuracy and computational efficiency than current methods with large-scale, mass RNA-seq data. We used DeepRed to assess the impact of multiple factors on editing identification with RNA-seq data from the Association of Biomolecular Resource Facilities and Sequencing Quality Control projects. We explored developmental RNA editing pattern changes during human early embryogenesis and evolutionary patterns in Drosophila species and the primate lineage using DeepRed. Our work illustrates DeepRed's state-of-the-art performance; it may decipher the hidden principles behind RNA editing, making editing detection convenient and effective.

  4. miRDis: a Web tool for endogenous and exogenous microRNA discovery based on deep-sequencing data analysis.

    Science.gov (United States)

    Zhang, Hanyuan; Vieira Resende E Silva, Bruno; Cui, Juan

    2018-05-01

    Small RNA sequencing is the most widely used tool for microRNA (miRNA) discovery, and shows great potential for the efficient study of miRNA cross-species transport, i.e., by detecting the presence of exogenous miRNA sequences in the host species. Because of the increased appreciation of dietary miRNAs and their far-reaching implication in human health, research interests are currently growing with regard to exogenous miRNAs bioavailability, mechanisms of cross-species transport and miRNA function in cellular biological processes. In this article, we present microRNA Discovery (miRDis), a new small RNA sequencing data analysis pipeline for both endogenous and exogenous miRNA detection. Specifically, we developed and deployed a Web service that supports the annotation and expression profiling data of known host miRNAs and the detection of novel miRNAs, other noncoding RNAs, and the exogenous miRNAs from dietary species. As a proof-of-concept, we analyzed a set of human plasma sequencing data from a milk-feeding study where 225 human miRNAs were detected in the plasma samples and 44 show elevated expression after milk intake. By examining the bovine-specific sequences, data indicate that three bovine miRNAs (bta-miR-378, -181* and -150) are present in human plasma possibly because of the dietary uptake. Further evaluation based on different sets of public data demonstrates that miRDis outperforms other state-of-the-art tools in both detection and quantification of miRNA from either animal or plant sources. The miRDis Web server is available at: http://sbbi.unl.edu/miRDis/index.php.

  5. Soil-leaf transfer of chemical elements for the Atlantic Forest

    International Nuclear Information System (INIS)

    Joacir De Franca, E.; De Nadai Fernandes, E.A.; Bacchi, M.A.; Tagliaferro, F.S.

    2007-01-01

    Soil analysis could improve environmental studies since soil is the main source of chemical elements for plants. In this study, soil samples collected at 0-10 cm depth under tree crown projection were analyzed by INAA. Using the chemical composition of the leaf previously determined, the leaf-soil transfer factors of chemical elements could be estimated for the Atlantic Forest. Despite the variability of the intra-species, the transfer factors were specific for some plant species due to their element accumulation in the leaves. Similar Br-Zn combined transfer factors were obtained for the species grouped according to habitats in relation to their position (understory or dominant species) in the forest canopy. (author)

  6. Using Information Theory to Assess the Communicative Capacity of Circulating MicroRNA

    OpenAIRE

    Finn, Nnenna A.; Searles, Charles D.

    2013-01-01

    The discovery of extracellular microRNAs (miRNAs) and their transport modalities (i.e. microparticles, exosomes, proteins and lipoproteins) has sparked theories regarding their role in intercellular communication. Here, we assessed the information transfer capacity of different miRNA transport modalities in human serum by utilizing basic principles of information theory. Zipf Statistics were calculated for each of the miRNA transport modalities identified in human serum. Our analyses revealed...

  7. Good quality Vitis RNA obtained from an adapted DNA isolation protocol

    Directory of Open Access Journals (Sweden)

    Isabel Baiges

    2003-03-01

    Full Text Available Grapevine is a woody plant, whose high carbohydrate and phenolic compound contents usually interferes with nucleic acid isolation. After we tried several protocols for isolating RNA from the Vitis rootstock Richter- 110 (R-110 with little or no success, we adapted a method reported to be satisfactory for grapevine DNA isolation, to extract RNA. With slight protocol modifications, we succeeded to obtain polysaccharide- and phenolic-free RNA preparations from all vegetative tissues, without excessive sample handling. RNA isolated by the reported method permitted to obtain highly pure mRNA (messenger RNA to construct a cDNA (complementary DNA library and allowed gene transcription analysis by reverse Northern, which guarantees RNA integrity. This method may also be suitable for other plant species with high polysaccharide or phenolic contents.

  8. Inference of miRNA targets using evolutionary conservation and pathway analysis

    Directory of Open Access Journals (Sweden)

    van Nimwegen Erik

    2007-03-01

    Full Text Available Abstract Background MicroRNAs have emerged as important regulatory genes in a variety of cellular processes and, in recent years, hundreds of such genes have been discovered in animals. In contrast, functional annotations are available only for a very small fraction of these miRNAs, and even in these cases only partially. Results We developed a general Bayesian method for the inference of miRNA target sites, in which, for each miRNA, we explicitly model the evolution of orthologous target sites in a set of related species. Using this method we predict target sites for all known miRNAs in flies, worms, fish, and mammals. By comparing our predictions in fly with a reference set of experimentally tested miRNA-mRNA interactions we show that our general method performs at least as well as the most accurate methods available to date, including ones specifically tailored for target prediction in fly. An important novel feature of our model is that it explicitly infers the phylogenetic distribution of functional target sites, independently for each miRNA. This allows us to infer species-specific and clade-specific miRNA targeting. We also show that, in long human 3' UTRs, miRNA target sites occur preferentially near the start and near the end of the 3' UTR. To characterize miRNA function beyond the predicted lists of targets we further present a method to infer significant associations between the sets of targets predicted for individual miRNAs and specific biochemical pathways, in particular those of the KEGG pathway database. We show that this approach retrieves several known functional miRNA-mRNA associations, and predicts novel functions for known miRNAs in cell growth and in development. Conclusion We have presented a Bayesian target prediction algorithm without any tunable parameters, that can be applied to sequences from any clade of species. The algorithm automatically infers the phylogenetic distribution of functional sites for each miRNA, and

  9. Cigarette smoke exposure-associated alterations to noncoding RNA

    Directory of Open Access Journals (Sweden)

    Matthew Alan Maccani

    2012-04-01

    Full Text Available Environmental exposures vary by timing, severity, and frequency and may have a number of deleterious effects throughout the life course. The period of in utero development, for example, is one of the most crucial stages of development during which adverse environmental exposures can both alter the growth and development of the fetus as well as lead to aberrant fetal programming, increasing disease risk. During fetal development and beyond, the plethora of exposures, including nutrients, drugs, stress, and trauma, influence health, development, and survival. Recent research in environmental epigenetics has investigated the roles of environmental exposures in influencing epigenetic modes of gene regulation during pregnancy and at various stages of life. Many relatively common environmental exposures, such as cigarette smoking, alcohol consumption, and drug use, may have consequences for the expression and function of noncoding RNA (ncRNA, important post-transcriptional regulators of gene expression. A number of ncRNA have been discovered, including microRNA (miRNA, Piwi-interacting RNA (piRNA, and long noncoding RNA (long ncRNA. The best-characterized species of ncRNA are miRNA, the mature forms of which are ~22 nucleotides in length and capable of post-transcriptionally regulating target mRNA utilizing mechanisms based largely on the degree of complementarity between miRNA and target mRNA. Because miRNA can still negatively regulate gene expression when imperfectly base-paired with a target mRNA, a single miRNA can have a large number of potential mRNA targets and can regulate many different biological processes critical for health and development. The following review analyzes the current literature detailing links between cigarette smoke exposure and aberrant expression and function of noncoding RNA, assesses how such alterations may have consequences throughout the life course, and proposes future directions for this intriguing field of

  10. Association of Myosin Va and Schwann cells-derived RNA in mammal myelinated axons, analyzed by immunocytochemistry and confocal FRET microscopy.

    Science.gov (United States)

    Canclini, Lucía; Wallrabe, Horst; Di Paolo, Andrés; Kun, Alejandra; Calliari, Aldo; Sotelo-Silveira, José Roberto; Sotelo, José Roberto

    2014-03-15

    Evidence from multiple sources supports the hypothesis that Schwann cells in the peripheral nervous system transfer messenger RNA and ribosomes to the axons they ensheath. Several technical and methodological difficulties exist for investigators to unravel this process in myelinated axons - a complex two-cell unit. We present an experimental design to demonstrate that newly synthesized RNA is transferred from Schwann cells to axons in association with Myosin Va. The use of quantitative confocal FRET microscopy to track newly-synthesized RNA and determine the molecular association with Myosin Va, is described in detail. Copyright © 2013 Elsevier Inc. All rights reserved.

  11. Coronary Heart Disease Alters Intercellular Communication by Modifying Microparticle-Mediated MicroRNA Transport

    Science.gov (United States)

    Finn, Nnenna A.; Eapen, Danny; Manocha, Pankaj; Kassem, Hatem Al; Lassegue, Bernard; Ghasemzadeh, Nima; Quyyumi, Arshed; Searles, Charles D.

    2013-01-01

    Coronary heart disease (CHD) is characterized by abnormal intercellular communication and circulating microRNAs (miRNAs) are likely involved in this process. Here, we show that CHD was associated with changes in the transport of circulating miRNA, particularly decreased miRNA enrichment in microparticles (MPs). Additionally, MPs from CHD patients were less efficient at transferring miRNA to cultured HUVECs, which correlated with their diminished capacity to bind developmental endothelial locus-1 (Del-1). In summary, CHD was associated with distinct changes in circulating miRNA transport and these changes may contribute to the abnormal intercellular communication that underlies CHD initiation and progression. PMID:24042051

  12. Activation of ribosomal RNA genes in porcine embryos produced in vitro or by somatic cell nuclear transfer

    DEFF Research Database (Denmark)

    Bjerregaard, Bolette; Pedersen, Hanne Gervi; Jakobsen, Anne Sørig

    2007-01-01

    The onset of ribosomal RNA (rRNA) synthesis occurs during the second half of the third cell cycle, that is, at the four-cell stage, in porcine embryos developed in vivo. In the present study the onset of rRNA synthesis was investigated in porcine embryos produced in vitro (IVP) or by somatic cell...

  13. Some coagulase-negative Staphylococcus species affect udder health more than others.

    Science.gov (United States)

    Supré, K; Haesebrouck, F; Zadoks, R N; Vaneechoutte, M; Piepers, S; De Vliegher, S

    2011-05-01

    A longitudinal study in 3 dairy herds was conducted to profile the distribution of coagulase-negative Staphylococcus (CNS) species causing bovine intramammary infection (IMI) using molecular identification and to gain more insight in the pathogenic potential of CNS as a group and of the most prevalent species causing IMI. Monthly milk samples from 25 cows in each herd as well as samples from clinical mastitis were collected over a 13-mo period. Coagulase-negative staphylococci were identified to the species level using transfer-RNA intergenic spacer PCR. The distribution of CNS causing IMI was highly herd-dependent, but overall, Staphylococcus chromogenes, Staphylococcus xylosus, Staphylococcus cohnii, and Staphylococcus simulans were the most prevalent. No CNS species were found to cause clinical mastitis. The effect of the most prevalent species on the quarter milk somatic cell count (SCC) was analyzed using a linear mixed model, showing that Staph. chromogenes, Staph. simulans, and Staph. xylosus induced an increase in the SCC that is comparable with that of Staphylococcus aureus. Almost all CNS species were able to cause persistent IMI, with Staph. chromogenes causing the most persistent infections. In conclusion, accurate species identification cannot be ignored when studying the effect of CNS on udder health, as the effect on SCC differs between species and species distribution is herd-specific. Staphylococcus chromogenes, Staph. simulans, and Staph. xylosus seem to be the more important species and deserve special attention in further studies. Reasons for herd dependency and possible cow- and quarter-level risk factors should be examined in detail for the different species, eventually leading to cost-benefit analyses for management changes and, if needed, treatment recommendations. Copyright © 2011 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  14. Lentiviral transgenic microRNA-based shRNA suppressed mouse cytochromosome P450 3A (CYP3A expression in a dose-dependent and inheritable manner.

    Directory of Open Access Journals (Sweden)

    Yong Wang

    Full Text Available Cytochomosome P450 enzymes (CYP are heme-containing monooxygenases responsible for oxidative metabolism of many exogenous and endogenous compounds including drugs. The species difference of CYP limits the extent to which data obtained from animals can be translated to humans in pharmacodynamics or pharmacokinetics studies. Transgenic expression of human CYP in animals lacking or with largely reduced endogenous CYP counterparts is recognized as an ideal strategy to correct CYP species difference. CYP3A is the most abundant CYP subfamily both in human and mammals. In this study, we designed a microRNA-based shRNA (miR-shRNA simultaneously targeting four members of mouse CYP3A subfamily (CYP3A11, CYP3A16, CYP3A41 and CYP3A44, and transgenic mice expressing the designed miR-shRNA were generated by lentiviral transgenesis. Results showed that the CYP3A expression level in transgenic mice was markedly reduced compared to that in wild type or unrelated miR-shRNA transgenic mice, and was inversely correlated to the miR-shRNA expression level. The CYP3A expression levels in transgenic offspring of different generations were also remarkably lower compared to those of controls, and moreover the inhibition rate of CYP3A expression remained comparable over generations. The ratio of the targeted CYP3A transcriptional levels was comparable between knockdown and control mice of the same gender as detected by RT-PCR DGGE analysis. These data suggested that transgenic miR-shRNA suppressed CYP3A expression in a dose-dependent and inheritable manner, and transcriptional levels of the targeted CYP3As were suppressed to a similar extent. The observed knockdown efficacy was further confirmed by enzymatic activity analysis, and data showed that CYP3A activities in transgenic mice were markedly reduced compared to those in wild-type or unrelated miR-shRNA transgenic controls (1.11±0.71 vs 5.85±1.74, 5.9±2.4; P<0.01. This work laid down a foundation to further knock

  15. Defining Optimized Properties of Modified mRNA to Enhance Virus- and DNA- Independent Protein Expression in Adult Stem Cells and Fibroblasts

    Directory of Open Access Journals (Sweden)

    Frauke Hausburg

    2015-02-01

    Full Text Available Background: By far, most strategies for cell reprogramming and gene therapy are based on the introduction of DNA after viral delivery. To avoid the high risks accompanying these goals, non-viral and DNA-free delivery methods for various cell types are required. Methods: Relying on an initially established PCR-based protocol for convenient template DNA production, we synthesized five differently modified EGFP mRNA (mmRNA species, incorporating various degrees of 5-methylcytidine-5'-triphosphate (5mC and pseudouridine-5'-triphosphate (Ψ. We then investigated their effect on i protein expression efficiencies and ii cell viability for human mesenchymal stem cells (hMSCs and fibroblasts from different origins. Results: Our protocol allows highly efficient mmRNA production in vitro, enabling rapid and stable protein expression after cell transfection. However, our results also demonstrate that the terminally optimal modification needs to be defined in pilot experiments for each particular cell type. Transferring our approach to the conversion of fibroblasts into skeletal myoblasts using mmRNA encoding MyoD, we confirm the huge potential of mmRNA based protein expression for virus- and DNA-free reprogramming strategies. Conclusion: The achieved high protein expression levels combined with good cell viability not only in fibroblasts but also in hMSCs provides a promising option for mmRNA based modification of various cell types including slowly proliferating adult stem cells. Therefore, we are confident that our findings will substantially contribute to the improvement of efficient cell reprogramming and gene therapy approaches.

  16. Sequencing of 16S rRNA gene for id ntification of Sta h lococcus ...

    African Journals Online (AJOL)

    Asdmin

    2014-01-15

    Jan 15, 2014 ... as the type strains of a species of genus Trichoderma based on phylogenetic tree analysis together with the 18S rRNA gene sequence search in Ribosomal Database Project, small subunit rRNA and large subunit rRNA databases. The sequence was deposited in GenBank with the accession numbers.

  17. Combined analysis of mRNA and miRNA identifies dehydration and salinity responsive key molecular players in citrus roots.

    Science.gov (United States)

    Xie, Rangjin; Zhang, Jin; Ma, Yanyan; Pan, Xiaoting; Dong, Cuicui; Pang, Shaoping; He, Shaolan; Deng, Lie; Yi, Shilai; Zheng, Yongqiang; Lv, Qiang

    2017-02-06

    Citrus is one of the most economically important fruit crops around world. Drought and salinity stresses adversely affected its productivity and fruit quality. However, the genetic regulatory networks and signaling pathways involved in drought and salinity remain to be elucidated. With RNA-seq and sRNA-seq, an integrative analysis of miRNA and mRNA expression profiling and their regulatory networks were conducted using citrus roots subjected to dehydration and salt treatment. Differentially expressed (DE) mRNA and miRNA profiles were obtained according to fold change analysis and the relationships between miRNAs and target mRNAs were found to be coherent and incoherent in the regulatory networks. GO enrichment analysis revealed that some crucial biological processes related to signal transduction (e.g. 'MAPK cascade'), hormone-mediated signaling pathways (e.g. abscisic acid- activated signaling pathway'), reactive oxygen species (ROS) metabolic process (e.g. 'hydrogen peroxide catabolic process') and transcription factors (e.g., 'MYB, ZFP and bZIP') were involved in dehydration and/or salt treatment. The molecular players in response to dehydration and salt treatment were partially overlapping. Quantitative reverse transcriptase-polymerase chain reaction (qRT-PCR) analysis further confirmed the results from RNA-seq and sRNA-seq analysis. This study provides new insights into the molecular mechanisms how citrus roots respond to dehydration and salt treatment.

  18. 5S rRNA gene arrangements in protists: a case of nonadaptive evolution.

    Science.gov (United States)

    Drouin, Guy; Tsang, Corey

    2012-06-01

    Given their high copy number and high level of expression, one might expect that both the sequence and organization of eukaryotic ribosomal RNA genes would be conserved during evolution. Although the organization of 18S, 5.8S and 28S ribosomal RNA genes is indeed relatively well conserved, that of 5S rRNA genes is much more variable. Here, we review the different types of 5S rRNA gene arrangements which have been observed in protists. This includes linkages to the other ribosomal RNA genes as well as linkages to ubiquitin, splice-leader, snRNA and tRNA genes. Mapping these linkages to independently derived phylogenies shows that these diverse linkages have repeatedly been gained and lost during evolution. This argues against such linkages being the primitive condition not only in protists but also in other eukaryote species. Because the only characteristic the diverse genes with which 5S rRNA genes are found linked with is that they are tandemly repeated, these arrangements are unlikely to provide any selective advantage. Rather, the observed high variability in 5S rRNA genes arrangements is likely the result of the fact that 5S rRNA genes contain internal promoters, that these genes are often transposed by diverse recombination mechanisms and that these new gene arrangements are rapidly homogenized by unequal crossingovers and/or by gene conversions events in species with short generation times and frequent founder events.

  19. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    OpenAIRE

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.; Navas-Castillo, Jesús

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV).

  20. Genetic classification and distinguishing of Staphylococcus species based on different partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf gene sequences.

    Science.gov (United States)

    Ghebremedhin, B; Layer, F; König, W; König, B

    2008-03-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (approximately 931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (approximately 97%), rpoB (approximately 86%), hsp60 (approximately 82%), and sodA (approximately 78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification.

  1. Genetic Classification and Distinguishing of Staphylococcus Species Based on Different Partial gap, 16S rRNA, hsp60, rpoB, sodA, and tuf Gene Sequences▿

    Science.gov (United States)

    Ghebremedhin, B.; Layer, F.; König, W.; König, B.

    2008-01-01

    The analysis of 16S rRNA gene sequences has been the technique generally used to study the evolution and taxonomy of staphylococci. However, the results of this method do not correspond to the results of polyphasic taxonomy, and the related species cannot always be distinguished from each other. Thus, new phylogenetic markers for Staphylococcus spp. are needed. We partially sequenced the gap gene (∼931 bp), which encodes the glyceraldehyde-3-phosphate dehydrogenase, for 27 Staphylococcus species. The partial sequences had 24.3 to 96% interspecies homology and were useful in the identification of staphylococcal species (F. Layer, B. Ghebremedhin, W. König, and B. König, J. Microbiol. Methods 70:542-549, 2007). The DNA sequence similarities of the partial staphylococcal gap sequences were found to be lower than those of 16S rRNA (∼97%), rpoB (∼86%), hsp60 (∼82%), and sodA (∼78%). Phylogenetically derived trees revealed four statistically supported groups: S. hyicus/S. intermedius, S. sciuri, S. haemolyticus/S. simulans, and S. aureus/epidermidis. The branching of S. auricularis, S. cohnii subsp. cohnii, and the heterogeneous S. saprophyticus group, comprising S. saprophyticus subsp. saprophyticus and S. equorum subsp. equorum, was not reliable. Thus, the phylogenetic analysis based on the gap gene sequences revealed similarities between the dendrograms based on other gene sequences (e.g., the S. hyicus/S. intermedius and S. sciuri groups) as well as differences, e.g., the grouping of S. arlettae and S. kloosii in the gap-based tree. From our results, we propose the partial sequencing of the gap gene as an alternative molecular tool for the taxonomical analysis of Staphylococcus species and for decreasing the possibility of misidentification. PMID:18174295

  2. RNA Interference in Moths: Mechanisms, Applications, and Progress

    Directory of Open Access Journals (Sweden)

    Jin Xu

    2016-10-01

    Full Text Available The vast majority of lepidopterans, about 90%, are moths. Some moths, particularly their caterpillars, are major agricultural and forestry pests in many parts of the world. However, some other members of moths, such as the silkworm Bombyx mori, are famous for their economic value. Fire et al. in 1998 initially found that exogenous double-stranded RNA (dsRNA can silence the homolog endogenous mRNA in organisms, which is called RNA interference (RNAi. Soon after, the RNAi technique proved to be very promising not only in gene function determination but also in pest control. However, later studies demonstrate that performing RNAi in moths is not as straightforward as shown in other insect taxa. Nevertheless, since 2007, especially after 2010, an increasing number of reports have been published that describe successful RNAi experiments in different moth species either on gene function analysis or on pest management exploration. So far, more than 100 peer-reviewed papers have reported successful RNAi experiments in moths, covering 10 families and 25 species. By using classic and novel dsRNA delivery methods, these studies effectively silence the expression of various target genes and determine their function in larval development, reproduction, immunology, resistance against chemicals, and other biological processes. In addition, a number of laboratory and field trials have demonstrated that RNAi is also a potential strategy for moth pest management. In this review, therefore, we summarize and discuss the mechanisms and applications of the RNAi technique in moths by focusing on recent progresses.

  3. DIVERSITY OF THE TYPE 1 INTRON-ITS REGION OF THE 18S rRNA GENE IN PSEUDOGYMNOASCUS SPECIES FROM THE RED HILLS OF KANSAS.

    Science.gov (United States)

    Chen, Xi; Crupper, Scott S

    2016-09-01

    Gypsum caves found throughout the Red Hills of Kansas have the state's most diverse and largest population of cave-roosting bats. White-nose syndrome (WNS), a disease caused by the fungus Pseudogymnoascus destructans, which threatens all temperate bat species, has not been previously detected in the gypsum caves as this disease moves westward from the eastern United States. Cave soil was obtained from the gypsum caves, and using the polymerase chain reaction, a 624-nucleotide DNA fragment specific to the Type 1 intron-internal transcribed spacer region of the 18S rRNA gene from Pseudogymnoascus species was amplified. Subsequent cloning and DNA sequencing indicated P. destructans DNA was present, along with 26 uncharacterized Pseudogymnoascus DNA variants. However, no evidence of WNS was observed in bat populations residing in these caves.

  4. Beyond Agrobacterium-Mediated Transformation: Horizontal Gene Transfer from Bacteria to Eukaryotes.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2018-03-03

    Besides the massive gene transfer from organelles to the nuclear genomes, which occurred during the early evolution of eukaryote lineages, the importance of horizontal gene transfer (HGT) in eukaryotes remains controversial. Yet, increasing amounts of genomic data reveal many cases of bacterium-to-eukaryote HGT that likely represent a significant force in adaptive evolution of eukaryotic species. However, DNA transfer involved in genetic transformation of plants by Agrobacterium species has traditionally been considered as the unique example of natural DNA transfer and integration into eukaryotic genomes. Recent discoveries indicate that the repertoire of donor bacterial species and of recipient eukaryotic hosts potentially are much wider than previously thought, including donor bacterial species, such as plant symbiotic nitrogen-fixing bacteria (e.g., Rhizobium etli) and animal bacterial pathogens (e.g., Bartonella henselae, Helicobacter pylori), and recipient species from virtually all eukaryotic clades. Here, we review the molecular pathways and potential mechanisms of these trans-kingdom HGT events and discuss their utilization in biotechnology and research.

  5. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao.

    Science.gov (United States)

    Ferraz Dos Santos, Lucas; Moreira Fregapani, Roberta; Falcão, Loeni Ludke; Togawa, Roberto Coiti; Costa, Marcos Mota do Carmo; Lopes, Uilson Vanderlei; Peres Gramacho, Karina; Alves, Rafael Moyses; Micheli, Fabienne; Marcellino, Lucilia Helena

    2016-01-01

    The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches' broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.

  6. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao.

    Directory of Open Access Journals (Sweden)

    Lucas Ferraz Dos Santos

    Full Text Available The cupuassu tree (Theobroma grandiflorum (Willd. ex Spreng. Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified. The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches' broom disease, as well as to pulp quality (SST/ATT values. Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively.

  7. First Microsatellite Markers Developed from Cupuassu ESTs: Application in Diversity Analysis and Cross-Species Transferability to Cacao

    Science.gov (United States)

    Ferraz dos Santos, Lucas; Moreira Fregapani, Roberta; Falcão, Loeni Ludke; Togawa, Roberto Coiti; Costa, Marcos Mota do Carmo; Lopes, Uilson Vanderlei; Peres Gramacho, Karina; Alves, Rafael Moyses

    2016-01-01

    The cupuassu tree (Theobroma grandiflorum) (Willd. ex Spreng.) Schum. is a fruitful species from the Amazon with great economical potential, due to the multiple uses of its fruit´s pulp and seeds in the food and cosmetic industries, including the production of cupulate, an alternative to chocolate. In order to support the cupuassu breeding program and to select plants presenting both pulp/seed quality and fungal disease resistance, SSRs from Next Generation Sequencing ESTs were obtained and used in diversity analysis. From 8,330 ESTs, 1,517 contained one or more SSRs (1,899 SSRs identified). The most abundant motifs identified in the EST-SSRs were hepta- and trinucleotides, and they were found with a minimum and maximum of 2 and 19 repeats, respectively. From the 1,517 ESTs containing SSRs, 70 ESTs were selected based on their functional annotation, focusing on pulp and seed quality, as well as resistance to pathogens. The 70 ESTs selected contained 77 SSRs, and among which, 11 were polymorphic in cupuassu genotypes. These EST-SSRs were able to discriminate the cupuassu genotype in relation to resistance/susceptibility to witches’ broom disease, as well as to pulp quality (SST/ATT values). Finally, we showed that these markers were transferable to cacao genotypes, and that genome availability might be used as a predictive tool for polymorphism detection and primer design useful for both Theobroma species. To our knowledge, this is the first report involving EST-SSRs from cupuassu and is also a pioneer in the analysis of marker transferability from cupuassu to cacao. Moreover, these markers might contribute to develop or saturate the cupuassu and cacao genetic maps, respectively. PMID:26949967

  8. Platelet RNA as a circulating biomarker trove for cancer diagnostics.

    Science.gov (United States)

    Best, M G; Vancura, A; Wurdinger, T

    2017-07-01

    Platelets are multifunctional cell fragments, circulating in blood in high abundance. Platelets assist in thrombus formation, sensing of pathogens entering the blood stream, signaling to immune cells, releasing vascular remodeling factors, and, negatively, enhancing cancer metastasis. Platelets are 'educated' by their environment, including in patients with cancer. Cancer cells appear to initiate intraplatelet signaling, resulting in splicing of platelet pre-mRNAs, and enhance secretion of cytokines. Platelets can induce leukocyte and endothelial cell modeling factors, for example, through adenine nucleotides (ATP), thereby facilitating extravasation of cancer cells. Besides releasing factors, platelets can also sequester RNAs and proteins released by cancer cells. Thus, platelets actively respond to queues from local and systemic conditions, thereby altering their transcriptome and molecular content. Platelets contain a rich repertoire of RNA species, including mRNAs, small non-coding RNAs and circular RNAs; although studies regarding the functionality of the various platelet RNA species require more attention. Recent advances in high-throughput characterization of platelet mRNAs revealed 10 to > 1000 altered mRNAs in platelets in the presence of disease. Hence, platelet RNA appears to be dynamically affected by pathological conditions, thus possibly providing opportunities to use platelet RNA as diagnostic, prognostic, predictive, or monitoring biomarkers. In this review, we cover the literature regarding the platelet RNA families, processing of platelet RNAs, and the potential application of platelet RNA as disease biomarkers. © 2017 International Society on Thrombosis and Haemostasis.

  9. Requirements for DNA strand transfer during reverse transcription in mutant HIV-1 virions

    NARCIS (Netherlands)

    Berkhout, B.; van Wamel, J.; Klaver, B.

    1995-01-01

    Retroviruses convert their RNA genome into a DNA form by means of reverse transcription. According to the current model of reverse transcription, two strand transfer reactions are needed to synthesize a full-length DNA genome. Because reverse transcription is initiated close to the 5' end of the RNA

  10. Spliced RNA of woodchuck hepatitis virus.

    Science.gov (United States)

    Ogston, C W; Razman, D G

    1992-07-01

    Polymerase chain reaction was used to investigate RNA splicing in liver of woodchucks infected with woodchuck hepatitis virus (WHV). Two spliced species were detected, and the splice junctions were sequenced. The larger spliced RNA has an intron of 1300 nucleotides, and the smaller spliced sequence shows an additional downstream intron of 1104 nucleotides. We did not detect singly spliced sequences from which the smaller intron alone was removed. Control experiments showed that spliced sequences are present in both RNA and DNA in infected liver, showing that the viral reverse transcriptase can use spliced RNA as template. Spliced sequences were detected also in virion DNA prepared from serum. The upstream intron produces a reading frame that fuses the core to the polymerase polypeptide, while the downstream intron causes an inframe deletion in the polymerase open reading frame. Whereas the splicing patterns in WHV are superficially similar to those reported recently in hepatitis B virus, we detected no obvious homology in the coding capacity of spliced RNAs from these two viruses.

  11. SSR markers: a tool for species identification in Psidium (Myrtaceae).

    Science.gov (United States)

    Tuler, A C; Carrijo, T T; Nóia, L R; Ferreira, A; Peixoto, A L; da Silva Ferreira, M F

    2015-11-01

    Molecular DNA markers are used for detection of polymorphisms in individuals. As they are independent of developmental stage of the plant and environmental influences, they can be useful tools in taxonomy. The alleles of simple sequence repeat (SSR) markers (or microsatellites) are traditionally used to identify taxonomic units. This application demands the laborious and costly delimitation of exclusive alleles in order to avoid homoplasy. Here, we propose a method for identification of species based on the amplification profile of groups of SSR markers obtained by a transferability study. The approach considers that the SSR are conserved among related species. In this context, using Psidium as a model, 141 SSR markers developed for Psidium guajava were transferred to 13 indigenous species of Psidium from the Atlantic Rainforest. Transferability of the markers was high and 28 SSR were conserved in all species. Four SSR groups were defined and they can help in the identification of all 13 Psidium species studied. A group of 31 SSR was genotyped, with one to six alleles each. The H0 varied from 0.0 to 0.46, and PIC from 0.0 to 0.74. Cluster analysis revealed shared alleles among species. The high percentage of SSR transferability found in Psidium evidences the narrow phylogenetic relationship existing among these species since transferability occurs by the preservation of the microsatellites and anchoring regions. The proposed method was useful for distinguishing the species of Psidium, being useful in taxonomic studies.

  12. Prediction of RNA-Binding Proteins by Voting Systems

    Directory of Open Access Journals (Sweden)

    C. R. Peng

    2011-01-01

    Full Text Available It is important to identify which proteins can interact with RNA for the purpose of protein annotation, since interactions between RNA and proteins influence the structure of the ribosome and play important roles in gene expression. This paper tries to identify proteins that can interact with RNA using voting systems. Firstly through Weka, 34 learning algorithms are chosen for investigation. Then simple majority voting system (SMVS is used for the prediction of RNA-binding proteins, achieving average ACC (overall prediction accuracy value of 79.72% and MCC (Matthew’s correlation coefficient value of 59.77% for the independent testing dataset. Then mRMR (minimum redundancy maximum relevance strategy is used, which is transferred into algorithm selection. In addition, the MCC value of each classifier is assigned to be the weight of the classifier’s vote. As a result, best average MCC values are attained when 22 algorithms are selected and integrated through weighted votes, which are 64.70% for the independent testing dataset, and ACC value is 82.04% at this moment.

  13. Regulatory mechanisms of RNA function: emerging roles of DNA repair enzymes.

    Science.gov (United States)

    Jobert, Laure; Nilsen, Hilde

    2014-07-01

    The acquisition of an appropriate set of chemical modifications is required in order to establish correct structure of RNA molecules, and essential for their function. Modification of RNA bases affects RNA maturation, RNA processing, RNA quality control, and protein translation. Some RNA modifications are directly involved in the regulation of these processes. RNA epigenetics is emerging as a mechanism to achieve dynamic regulation of RNA function. Other modifications may prevent or be a signal for degradation. All types of RNA species are subject to processing or degradation, and numerous cellular mechanisms are involved. Unexpectedly, several studies during the last decade have established a connection between DNA and RNA surveillance mechanisms in eukaryotes. Several proteins that respond to DNA damage, either to process or to signal the presence of damaged DNA, have been shown to participate in RNA quality control, turnover or processing. Some enzymes that repair DNA damage may also process modified RNA substrates. In this review, we give an overview of the DNA repair proteins that function in RNA metabolism. We also discuss the roles of two base excision repair enzymes, SMUG1 and APE1, in RNA quality control.

  14. A simple and efficient method for isolating small RNAs from different plant species

    Directory of Open Access Journals (Sweden)

    de Folter Stefan

    2011-02-01

    Full Text Available Abstract Background Small RNAs emerged over the last decade as key regulators in diverse biological processes in eukaryotic organisms. To identify and study small RNAs, good and efficient protocols are necessary to isolate them, which sometimes may be challenging due to the composition of specific tissues of certain plant species. Here we describe a simple and efficient method to isolate small RNAs from different plant species. Results We developed a simple and efficient method to isolate small RNAs from different plant species by first comparing different total RNA extraction protocols, followed by streamlining the best one, finally resulting in a small RNA extraction method that has no need of first total RNA extraction and is not based on the commercially available TRIzol® Reagent or columns. This small RNA extraction method not only works well for plant tissues with high polysaccharide content, like cactus, agave, banana, and tomato, but also for plant species like Arabidopsis or tobacco. Furthermore, the obtained small RNA samples were successfully used in northern blot assays. Conclusion Here we provide a simple and efficient method to isolate small RNAs from different plant species, such as cactus, agave, banana, tomato, Arabidopsis, and tobacco, and the small RNAs from this simplified and low cost method is suitable for downstream handling like northern blot assays.

  15. iSRAP - a one-touch research tool for rapid profiling of small RNA-seq data.

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-Hee; Bellingham, Shayne A; Lonie, Andrew; Hill, Andrew F

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes.

  16. Selection of the in vitro culture media influences mRNA expression of Hedgehog genes, Il-6, and important genes regarding reactive oxygen species in single murine preimplantation embryos.

    Science.gov (United States)

    Pfeifer, N; Baston-Büst, D M; Hirchenhain, J; Friebe-Hoffmann, U; Rein, D T; Krüssel, J S; Hess, A P

    2012-01-01

    The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  17. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Science.gov (United States)

    Pfeifer, N.; Baston-Büst, D. M.; Hirchenhain, J.; Friebe-Hoffmann, U.; Rein, D. T.; Krüssel, J. S.; Hess, A. P.

    2012-01-01

    Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK's Cleavage medium or Vitrolife's G-1 PLUS medium) or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies. PMID:22919324

  18. Selection of the In Vitro Culture Media Influences mRNA Expression of Hedgehog Genes, Il-6, and Important Genes regarding Reactive Oxygen Species in Single Murine Preimplantation Embryos

    Directory of Open Access Journals (Sweden)

    N. Pfeifer

    2012-01-01

    Full Text Available Background. The aim of this paper was to determine the influence of different in vitro culture media on mRNA expression of Hedgehog genes, il-6, and important genes regarding reactive oxygen species in single mouse embryos. Methods. Reverse transcription of single embryos either cultured in vitro from day 0.5 until 3.5 (COOK’s Cleavage medium or Vitrolife’s G-1 PLUS medium or in vivo until day 3.5 post coitum. PCR was carried out for β-actin followed by nested-PCR for shh, ihh, il-6, nox, gpx4, gpx1, and prdx2. Results. The number of murine blastocysts cultured in COOK medium which expressed il-6, gpx4, gpx1, and prdx2 mRNA differed significantly compared to the in vivo group. Except for nox, the mRNA profile of the Vitrolife media group embryos varied significantly from the in vivo ones regarding the number of blastocysts expressing the mRNA of shh, ihh, il-6, gpx4, gpx1 and prdx2. Conclusions. The present study shows that different in vitro culture media lead to different mRNA expression profiles during early development. Even the newly developed in vitro culture media are not able to mimic the female reproductive tract. The question of long-term consequences for children due to assisted reproduction techniques needs to be addressed in larger studies.

  19. Profiling microRNA expression in bovine alveolar macrophages using RNA-seq.

    Science.gov (United States)

    Vegh, Peter; Foroushani, Amir B K; Magee, David A; McCabe, Matthew S; Browne, John A; Nalpas, Nicolas C; Conlon, Kevin M; Gordon, Stephen V; Bradley, Daniel G; MacHugh, David E; Lynn, David J

    2013-10-01

    MicroRNAs (miRNAs) are important regulators of gene expression and are known to play a key role in regulating both adaptive and innate immunity. Bovine alveolar macrophages (BAMs) help maintain lung homeostasis and constitute the front line of host defense against several infectious respiratory diseases, such as bovine tuberculosis. Little is known, however, about the role miRNAs play in these cells. In this study, we used a high-throughput sequencing approach, RNA-seq, to determine the expression levels of known and novel miRNAs in unchallenged BAMs isolated from lung lavages of eight different healthy Holstein-Friesian male calves. Approximately 80 million sequence reads were generated from eight BAM miRNA Illumina sequencing libraries, and 80 miRNAs were identified as being expressed in BAMs at a threshold of at least 100 reads per million (RPM). The expression levels of miRNAs varied over a large dynamic range, with a few miRNAs expressed at very high levels (up to 800,000RPM), and the majority lowly expressed. Notably, many of the most highly expressed miRNAs in BAMs have known roles in regulating immunity in other species (e.g. bta-let-7i, bta-miR-21, bta-miR-27, bta-miR-99b, bta-miR-146, bta-miR-147, bta-miR-155 and bta-miR-223). The most highly expressed miRNA in BAMs was miR-21, which has been shown to regulate the expression of antimicrobial peptides in Mycobacterium leprae-infected human monocytes. Furthermore, the predicted target genes of BAM-expressed miRNAs were found to be statistically enriched for roles in innate immunity. In addition to profiling the expression of known miRNAs, the RNA-seq data was also analysed to identify potentially novel bovine miRNAs. One putatively novel bovine miRNA was identified. To the best of our knowledge, this is the first RNA-seq study to profile miRNA expression in BAMs and provides an important reference dataset for investigating the regulatory roles miRNAs play in this important immune cell type. Copyright

  20. Complete Genome Sequence of a Double-Stranded RNA Virus from Avocado

    Science.gov (United States)

    Villanueva, Francisco; Sabanadzovic, Sead; Valverde, Rodrigo A.

    2012-01-01

    A number of avocado (Persea americana) cultivars are known to contain high-molecular-weight double-stranded RNA (dsRNA) molecules for which a viral nature has been suggested, although sequence data are not available. Here we report the cloning and complete sequencing of a 13.5-kbp dsRNA virus isolated from avocado and show that it corresponds to the genome of a new species of the genus Endornavirus (family Endornaviridae), tentatively named Persea americana endornavirus (PaEV). PMID:22205720

  1. Biochemical studies of immune RNA using a cell-mediated cytotoxicity assay

    Energy Technology Data Exchange (ETDEWEB)

    Griffin, G.D.; Sellin, H.G.; Novelli, G.D.

    1980-01-01

    Immune RNA (iRNA), a subcellular macromolecular species usually prepared by phenol extraction of lymphoid tissue, can confer some manifestation(s) of cellular immunity on naive lymphocytes. Experiments were done to develop an assay system to detect activation of lymphocytes by iRNA to become cytotoxic toward tumor cells, and to study certain properties of iRNA using this system. Guinea pigs were immunized with human mammary carcinoma cells and the iRNA, prepared from spleens of animals shown by prior assay to have blood lymphocytes highly cytotoxic against the tumor cells, was assayed by ability of iRNA-activated lymphocytes to lyse /sup 51/Cr-labelled tumor cells. The ability of iRNA to activate lymphocytes to tumor cytotoxicity could only be differentiated from a cytotoxic activation by RNA preparations from unimmunized animals at very low doses of RNA. The most active iRNA preparations were from cytoplasmic subcellular fractions, extracted by a cold phenol procedure, while iRNA isolated by hot phenol methods was no more active than control RNA prepared by the same techniques. Attempts to demonstrate poly(A) sequences in iRNA were inconclusive.

  2. Food transfers in immature wild western lowland gorillas (Gorilla gorilla gorilla).

    Science.gov (United States)

    Nowell, Angela A; Fletcher, Alison W

    2006-10-01

    The transfer of food items between individuals has been described in primates as serving an informative purpose in addition to supplementing the diet of immature individuals. This behaviour has yet to be described in western lowland gorillas (Gorilla gorilla gorilla), and results are presented here of observations of food transfers in immature gorillas at Mbeli Bai, Republic of Congo. The frequency of food transfers decreased with increasing immature age, while the frequency of independent feeding and processing of food increased. Transfers between mothers and infants were the most frequent, with infants attempting to take items from the mother. These attempts were not always successful and the item was relinquished on less than 50% of attempts. Mothers also took items from their offspring. The results point to the functional significance of food transfers in western lowland gorillas being informational. In a bai environment, where one species forms the majority of a visiting gorilla's diet despite other species being available, the initiation of food transfers by immatures is proposed to serve the purpose of familiarising them with which species, and which parts of those species, may be eaten.

  3. Quantifying Temporal Autocorrelations for the Expression of Geobacter species mRNA Gene Transcripts at Variable Ammonium Levels during in situ U(VI) Bioremediation

    Science.gov (United States)

    Mouser, P. J.

    2010-12-01

    In order to develop decision-making tools for the prediction and optimization of subsurface bioremediation strategies, we must be able to link the molecular-scale activity of microorganisms involved in remediation processes with biogeochemical processes observed at the field-scale. This requires the ability to quantify changes in the in situ metabolic condition of dominant microbes and associate these changes to fluctuations in nutrient levels throughout the bioremediation process. It also necessitates a need to understand the spatiotemporal variability of the molecular-scale information to develop meaningful parameters and constraint ranges in complex bio-physio-chemical models. The expression of three Geobacter species genes (ammonium transporter (amtB), nitrogen fixation (nifD), and a housekeeping gene (recA)) were tracked at two monitoring locations that differed significantly in ammonium (NH4+) concentrations during a field-scale experiment where acetate was injected into the subsurface to simulate Geobacteraceae in a uranium-contaminated aquifer. Analysis of amtB and nifD mRNA transcript levels indicated that NH4+ was the primary form of fixed nitrogen during bioremediation. Overall expression levels of amtB were on average 8-fold higher at NH4+ concentrations of 300 μM or more than at lower NH4+ levels (average 60 μM). The degree of temporal correlation in Geobacter species mRNA expression levels was calculated at both locations using autocorrelation methods that describe the relationship between sample semi-variance and time lag. At the monitoring location with lower NH4+, a temporal correlation lag of 8 days was observed for both amtB and nifD transcript patterns. At the location where higher NH4+ levels were observed, no discernable temporal correlation lag above the sampling frequency (approximately every 2 days) was observed for amtB or nifD transcript fluctuations. Autocorrelation trends in recA expression levels at both locations indicated that

  4. A review of {sup 137}Cs transfer to fungi and consequences for modelling environmental transfer

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, A.G. E-mail: andy.gillett@nottingham.ac.uk; Crout, N.M.J

    2000-03-01

    A review of the published literature describing {sup 137}Cs transfer to fungi was carried out, summarising the collated data to determine factors controlling transfer and identify an appropriate modelling approach to predict future contamination. {sup 137}Cs transfer ratios (TR) are derived for fungi species collected within Europe and the CIS. Considerable variability in TRs is demonstrated, with TRs varying between <0.001 and >10 m{sup 2} kg{sup -1} across all species and over three orders of magnitude for individual species (e.g. Boletus badius). Generally, meta-information (such as habitat and soil attributes) is poorly reported in the literature so that classification of the TR is limited to the effect of nutritional type (P<0.025) in the order mycorrhizal>saprophytic{approx}parasitic. Analysis of the literature data set (a heterogeneous source) suggests that there is no statistical evidence to indicate a decrease in TRs for 10 years after the Chernobyl accident. Spatial analysis of a data set for Belgium indicates variability in {sup 137}Cs transfer within a sampling location, such that fruitbodies collected over a scale of approximately 5 km would show activities as variable as those collected over a much larger scale ({approx} or>50 km). Therefore, it is proposed that the collated data sets for individual species can be used to derive 'best estimates' for the parameters describing the distribution of TRs. These can then be used to estimate an 'effective' TR, which, when combined with local soil deposition level and frequency and effect of culinary practices, can give an estimate of the activity of fungi consumed by the general population.

  5. Molecular evolution of adiponectin in Carnivora and its mRNA expression in relation to hepatic lipidosis.

    Science.gov (United States)

    Nieminen, Petteri; Rouvinen-Watt, Kirsti; Kapiainen, Suvi; Harris, Lora; Mustonen, Anne-Mari

    2010-09-15

    Adiponectin is a novel adipocyte-derived hormone with low circulating concentrations and/or mRNA expression in obesity and non-alcoholic fatty liver disease (NAFLD). The adiponectin mRNA of several Carnivora species was sequenced to enable further gene expression studies in this clade with potential experimental species to examine the connections of hypoadiponectinemia to hepatic lipidosis. In addition, adiponectin mRNA expression was studied in the retroperitoneal fat of the American mink (Neovison vison), as hepatic lipidosis with close similarities to NAFLD can be rapidly induced to the species by fasting. The mRNA expression was determined after overnight-7d of food deprivation and 28d of re-feeding and correlated to the liver fat %. The homologies between the determined carnivoran mRNA sequences and that of the domestic dog were 92.2-99.1%. As the mRNA expression was not affected by short-term fasting and did not correlate with the liver fat %, there seems to be no clear connection between adiponectin and the development of lipidosis in the American mink. In the future, the obtained sequences can be utilized in further studies of adiponectin expression in comparative endocrinology. Copyright (c) 2010 Elsevier Inc. All rights reserved.

  6. SRD: a Staphylococcus regulatory RNA database.

    Science.gov (United States)

    Sassi, Mohamed; Augagneur, Yoann; Mauro, Tony; Ivain, Lorraine; Chabelskaya, Svetlana; Hallier, Marc; Sallou, Olivier; Felden, Brice

    2015-05-01

    An overflow of regulatory RNAs (sRNAs) was identified in a wide range of bacteria. We designed and implemented a new resource for the hundreds of sRNAs identified in Staphylococci, with primary focus on the human pathogen Staphylococcus aureus. The "Staphylococcal Regulatory RNA Database" (SRD, http://srd.genouest.org/) compiled all published data in a single interface including genetic locations, sequences and other features. SRD proposes novel and simplified identifiers for Staphylococcal regulatory RNAs (srn) based on the sRNA's genetic location in S. aureus strain N315 which served as a reference. From a set of 894 sequences and after an in-depth cleaning, SRD provides a list of 575 srn exempt of redundant sequences. For each sRNA, their experimental support(s) is provided, allowing the user to individually assess their validity and significance. RNA-seq analysis performed on strains N315, NCTC8325, and Newman allowed us to provide further details, upgrade the initial annotation, and identified 159 RNA-seq independent transcribed sRNAs. The lists of 575 and 159 sRNAs sequences were used to predict the number and location of srns in 18 S. aureus strains and 10 other Staphylococci. A comparison of the srn contents within 32 Staphylococcal genomes revealed a poor conservation between species. In addition, sRNA structure predictions obtained with MFold are accessible. A BLAST server and the intaRNA program, which is dedicated to target prediction, were implemented. SRD is the first sRNA database centered on a genus; it is a user-friendly and scalable device with the possibility to submit new sequences that should spread in the literature. © 2015 Sassi et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.

  7. The RNA silencing pathway: the bits and pieces that matter.

    Directory of Open Access Journals (Sweden)

    2005-07-01

    Full Text Available Cellular pathways are generally proposed on the basis of available experimental knowledge. The proposed pathways, however, may be inadequate to describe the phenomena they are supposed to explain. For instance, by means of concise mathematical models we are able to reveal shortcomings in the current description of the pathway of RNA silencing. The silencing pathway operates by cleaving siRNAs from dsRNA. siRNAs can associate with RISC, leading to the degradation of the target mRNA. We propose and analyze a few small extensions to the pathway: a siRNA degrading RNase, primed amplification of aberrant RNA pieces, and cooperation between aberrant RNA to trigger amplification. These extensions allow for a consistent explanation for various types of silencing phenomena, such as virus induced silencing, transgene and transposon induced silencing, and avoidance of self-reactivity, as well as for differences found between species groups.

  8. Phylogenetic analysis of subgenus vigna species using nuclear ribosomal RNA ITS: evidence of hybridization among Vigna unguiculata subspecies.

    Science.gov (United States)

    Vijaykumar, Archana; Saini, Ajay; Jawali, Narendra

    2010-01-01

    Molecular phylogeny among species belonging to subgenus Vigna (genus Vigna) was inferred based on internal transcribed spacer (ITS) sequences of 18S-5.8S-26S ribosomal RNA gene unit. Analysis showed a total of 356 polymorphic sites of which approximately 80% were parsimony informative. Phylogenetic reconstruction by neighbor joining and maximum parsimony methods placed the 57 Vigna accessions (belonging to 15 species) into 5 major clades. Five species viz. Vigna heterophylla, Vigna pubigera, Vigna parkeri, Vigna laurentii, and Vigna gracilis whose position in the subgenus was previously not known were placed in the section Vigna. A single accession (Vigna unguiculata ssp. tenuis, NI 1637) harbored 2 intragenomic ITS variants, indicative of 2 different types of ribosomal DNA (rDNA) repeat units. ITS variant type-I was close to ITS from V. unguiculata ssp. pubescens, whereas type-II was close to V. unguiculata ssp. tenuis. Transcript analysis clearly demonstrates that in accession NI 1637, rDNA repeat units with only type-II ITS variants are transcriptionally active. Evidence from sequence analysis (of 5.8S, ITS1, and ITS2) and secondary structure analysis (of ITS1 and ITS2) indicates that the type-I ITS variant probably does not belong to the pseudogenic rDNA repeat units. The results from phylogenetic and transcript analysis suggest that the rDNA units with the type-I ITS may have introgressed as a result of hybridization (between ssp. tenuis and ssp. pubescens); however, it has been epigenetically silenced. The results also demonstrate differential evolution of ITS sequence among wild and cultivated forms of V. unguiculata.

  9. Global RNA association with the transcriptionally active chromosome of chloroplasts.

    Science.gov (United States)

    Lehniger, Marie-Kristin; Finster, Sabrina; Melonek, Joanna; Oetke, Svenja; Krupinska, Karin; Schmitz-Linneweber, Christian

    2017-10-01

    Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

  10. Integrating microRNA and mRNA expression profiles in response to radiation-induced injury in rat lung

    International Nuclear Information System (INIS)

    Xie, Ling; Zhou, Jundong; Zhang, Shuyu; Chen, Qing; Lai, Rensheng; Ding, Weiqun; Song, ChuanJun; Meng, XingJun; Wu, Jinchang

    2014-01-01

    Exposure to radiation provokes cellular responses, which are likely regulated by gene expression networks. MicroRNAs are small non-coding RNAs, which regulate gene expression by promoting mRNA degradation or inhibiting protein translation. The expression patterns of both mRNA and miRNA during the radiation-induced lung injury (RILI) remain less characterized and the role of miRNAs in the regulation of this process has not been studied. The present study sought to evaluate miRNA and mRNA expression profiles in the rat lung after irradiation. Male Wistar rats were subjected to single dose irradiation with 20 Gy using 6 MV x-rays to the right lung. (A dose rate of 5 Gy/min was applied). Rats were sacrificed at 3, 12 and 26 weeks after irradiation, and morphological changes in the lung were examined by haematoxylin and eosin. The miRNA and mRNA expression profiles were evaluated by microarrays and followed by quantitative RT-PCR analysis. A cDNA microarray analysis found 2183 transcripts being up-regulated and 2917 transcripts down-regulated (P ≤ 0.05, ≥2.0 fold change) in the lung tissues after irradiation. Likewise, a miRNAs microarray analysis indicated 15 miRNA species being up-regulated and 8 down-regulated (P ≤ 0.05). Subsequent bioinformatics anal -yses of the differentially expressed mRNA and miRNAs revealed that alterations in mRNA expression following irradiation were negatively correlated with miRNAs expression. Our results provide evidence indicating that irradiation induces alterations of mRNA and miRNA expression in rat lung and that there is a negative correlation of mRNA and miRNA expression levels after irradiation. These findings significantly advance our understanding of the regulatory mechanisms underlying the pathophysiology of radiation-induced lung injury. In summary, RILI does not develop gradually in a linear process. In fact, different cell types interact via cytokines in a very complex network. Furthermore, this study suggests that

  11. Ribosome dynamics and tRNA movement by time-resolved electron cryomicroscopy.

    Science.gov (United States)

    Fischer, Niels; Konevega, Andrey L; Wintermeyer, Wolfgang; Rodnina, Marina V; Stark, Holger

    2010-07-15

    The translocation step of protein synthesis entails large-scale rearrangements of the ribosome-transfer RNA (tRNA) complex. Here we have followed tRNA movement through the ribosome during translocation by time-resolved single-particle electron cryomicroscopy (cryo-EM). Unbiased computational sorting of cryo-EM images yielded 50 distinct three-dimensional reconstructions, showing the tRNAs in classical, hybrid and various novel intermediate states that provide trajectories and kinetic information about tRNA movement through the ribosome. The structures indicate how tRNA movement is coupled with global and local conformational changes of the ribosome, in particular of the head and body of the small ribosomal subunit, and show that dynamic interactions between tRNAs and ribosomal residues confine the path of the tRNAs through the ribosome. The temperature dependence of ribosome dynamics reveals a surprisingly flat energy landscape of conformational variations at physiological temperature. The ribosome functions as a Brownian machine that couples spontaneous conformational changes driven by thermal energy to directed movement.

  12. Correlation of repressed transcription of alpha-tocopherol transfer protein with serum alpha-tocopherol during hepatocarcinogenesis

    NARCIS (Netherlands)

    Wu, C. G.; Hoek, F. J.; Groenink, M.; Reitsma, P. H.; van Deventer, S. J.; Chamuleau, R. A.

    1997-01-01

    Using a subtraction-enhanced display technique, we identified a rodent alpha-tocopherol transfer protein (alpha-TTP) cDNA which exhibited markedly lower messenger RNA (mRNA) amounts in rat hepatocellular carcinoma (HCC) than in healthy controls. Several lines of evidence have substantiated that

  13. Re-editing the paradigm of Cytidine (C) to Uridine (U) RNA editing.

    Science.gov (United States)

    Fossat, Nicolas; Tam, Patrick P L

    2014-01-01

    Cytidine (C) to Uridine (U) RNA editing is a post-trancriptional modification that until recently was known to only affect Apolipoprotein b (Apob) RNA and minimally require 2 components of the C to U editosome, the deaminase APOBEC1 and the RNA-binding protein A1CF. Our latest work has identified a novel RNA-binding protein, RBM47, as a core component of the editosome, which can substitute A1CF for the editing of ApoB mRNA. In addition, new RNA species that are subjected to C to U editing have been identified. Here, we highlight these recent discoveries and discuss how they change our view of the composition of the C to U editing machinery and expand our knowledge of the functional attributes of C to U RNA editing.

  14. High-throughput sequencing of RNA silencing-associated small RNAs in olive (Olea europaea L..

    Directory of Open Access Journals (Sweden)

    Livia Donaire

    Full Text Available Small RNAs (sRNAs of 20 to 25 nucleotides (nt in length maintain genome integrity and control gene expression in a multitude of developmental and physiological processes. Despite RNA silencing has been primarily studied in model plants, the advent of high-throughput sequencing technologies has enabled profiling of the sRNA component of more than 40 plant species. Here, we used deep sequencing and molecular methods to report the first inventory of sRNAs in olive (Olea europaea L.. sRNA libraries prepared from juvenile and adult shoots revealed that the 24-nt class dominates the sRNA transcriptome and atypically accumulates to levels never seen in other plant species, suggesting an active role of heterochromatin silencing in the maintenance and integrity of its large genome. A total of 18 known miRNA families were identified in the libraries. Also, 5 other sRNAs derived from potential hairpin-like precursors remain as plausible miRNA candidates. RNA blots confirmed miRNA expression and suggested tissue- and/or developmental-specific expression patterns. Target mRNAs of conserved miRNAs were computationally predicted among the olive cDNA collection and experimentally validated through endonucleolytic cleavage assays. Finally, we use expression data to uncover genetic components of the miR156, miR172 and miR390/TAS3-derived trans-acting small interfering RNA (tasiRNA regulatory nodes, suggesting that these interactive networks controlling developmental transitions are fully operational in olive.

  15. Examining the intersection between splicing, nuclear export and small RNA pathways.

    Science.gov (United States)

    Nabih, Amena; Sobotka, Julia A; Wu, Monica Z; Wedeles, Christopher J; Claycomb, Julie M

    2017-11-01

    Nuclear Argonaute/small RNA pathways in a variety of eukaryotic species are generally known to regulate gene expression via chromatin modulation and transcription attenuation in a process known as transcriptional gene silencing (TGS). However, recent data, including genetic screens, phylogenetic profiling, and molecular mechanistic studies, also point to a novel and emerging intersection between the splicing and nuclear export machinery with nuclear Argonaute/small RNA pathways in many organisms. In this review, we summarize the field's current understanding regarding the relationship between splicing, export and small RNA pathways, and consider the biological implications for coordinated regulation of transcripts by these pathways. We also address the importance and available approaches for understanding the RNA regulatory logic generated by the intersection of these particular pathways in the context of synthetic biology. The interactions between various eukaryotic RNA regulatory pathways, particularly splicing, nuclear export and small RNA pathways provide a type of combinatorial code that informs the identity ("self" versus "non-self") and dictates the fate of each transcript in a cell. Although the molecular mechanisms for how splicing and nuclear export impact small RNA pathways are not entirely clear at this early stage, the links between these pathways are widespread across eukaryotic phyla. The link between splicing, nuclear export, and small RNA pathways is emerging and establishes a new frontier for understanding the combinatorial logic of gene regulation across species that could someday be harnessed for therapeutic, biotechnology and agricultural applications. This article is part of a Special Issue entitled "Biochemistry of Synthetic Biology - Recent Developments" Guest Editor: Dr. Ilka Heinemann and Dr. Patrick O'Donoghue. Copyright © 2017 Elsevier B.V. All rights reserved.

  16. Neutral Polymeric Micelles for RNA Delivery

    Science.gov (United States)

    Lundy, Brittany B.; Convertine, Anthony; Miteva, Martina; Stayton, Patrick S.

    2013-01-01

    RNA interference (RNAi) drugs have significant therapeutic potential but delivery systems with appropriate efficacy and toxicity profiles are still needed. Here, we describe a neutral, ampholytic polymeric delivery system based on conjugatable diblock polymer micelles. The diblock copolymer contains a hydrophilic poly[N-(2-hydroxypropyl) methacrylamide-co-N-(2-(pyridin-2- yldisulfanyl)ethyl)methacrylamide) (poly[HPMA-co-PDSMA]) segment to promote aqueous stability and facilitate thiol-disulfide exchange reactions, and a second ampholytic block composed of propyl acrylic acid (PAA), dimethylaminoethyl methacrylate (DMAEMA), and butyl methacrylate (BMA). The poly[(HPMA-co-PDSMA)-b-(PAA-co-DMAEMA-co-BMA)] was synthesized using Reversible Addition-Fragmentation chain Transfer (RAFT) polymerization with an overall molecular weight of 22,000 g/mol and a PDI of 1.88. Dynamic light scattering and fluorescence measurements indicated that the diblock copolymers self-assemble under aqueous conditions to form polymeric micelles with a hydrodynamic radius and critical micelle concentration of 25 nm and 25 μg/mL respectively. Red blood cell hemolysis experiments show that the neutral hydrophilic micelles have potent membrane destabilizing activity at endosomal pH values. Thiolated siRNA targeting glyceraldehyde 3-phosphate dehydrogenase (GAPDH) was directly conjugated to the polymeric micelles via thiol exchange reactions with the pyridal disulfide groups present in the micelle corona. Maximum silencing activity in HeLa cells was observed at a 1:10 molar ratio of siRNA to polymer following a 48 h incubation period. Under these conditions 90 % mRNA knockdown and 65 % and protein knockdown of at 48 h was achieved with negligible toxicity. In contrast the polymeric micelles lacking a pH-responsive endosomalytic segment demonstrated negligible mRNA and protein knockdown under these conditions. The potent mRNA knockdown and excellent biocompatibility of the neutral siRNA conjugates

  17. New contribution to the species-rich genus Euplotes: Morphology, ontogeny and systematic position of two species (Ciliophora; Euplotia).

    Science.gov (United States)

    Yan, Ying; Fan, Yangbo; Luo, Xiaotian; El-Serehy, Hamed A; Bourland, William; Chen, Xiangrui

    2018-06-01

    The morphology, ontogeny and phylogeny of two Euplotes species, E. estuarinus sp. nov. and a population of E. platystoma Dragesco and Dragesco-Kernéis, 1986, both collected from tropical brackish waters in south China, were investigated based on living morphology, ciliary pattern and molecular data. Euplotes estuarinus sp. nov. is small (about 60 × 40 μm in vivo), has a dargyrome of the double-eurystomus type, and the transverse cirri are arranged in two groups, with two left and three right ones. The original description of the poorly known species, E. platystoma, is brief, and the species was never investigated using live observation and molecular methods Hence, we provided a detailed redescription. Some stages of their morphogenesis were observed which proceed in the same pattern as in their congeners. The new species E. estuarinus sp. nov. clusters with E. curdsi, differing only by 1 bp in their SSU rRNA gene sequences, which is likely due to the recent speciation event and the limited resolution of the SSU rRNA gene at species level in this group as the two species are clearly morphologically distinct. Copyright © 2018 Elsevier GmbH. All rights reserved.

  18. Effect of human vascular endothelial growth factor gene transfer on endogenous vascular endothelial growth factor mRNA expression in a rat fibroblast and osteoblast culture model.

    Science.gov (United States)

    Li, Ru; Li, Claire H; Nauth, Aaron; McKee, Michael D; Schemitsch, Emil H

    2010-09-01

    Vascular endothelial growth factor (VEGF) plays an important role in promoting angiogenesis and osteogenesis during fracture repair. Our previous studies have shown that cell-based VEGF gene therapy enhances bone healing of a rabbit tibia segmental bone defect in vivo. The aim of this project was to examine the effect of exogenous human VEGF on the endogenous rat VEGF messenger RNA (mRNA) expression in a cell-based gene transfer model. Rat fibroblasts and osteoblasts were harvested from the dermal tissue and periosteum, respectively, of Fisher 344 rats. The cells were then cultured and transfected with pcDNA-human VEGF using Superfect reagent (Qiagen). Four experimental groups were created: 1) fibroblast-VEGF; 2) osteoblast-VEGF; 3) nontransfected fibroblast controls; and 4) nontransfected osteoblast controls. The cultured cells were harvested at 1, 3, and 7 days after the gene transfection. The total mRNA was extracted (Trizol; Invitrogen); both human VEGF and rat VEGF mRNA were measured by reverse transcriptase-polymerase chain reaction and quantified by VisionWorksLS. The human VEGF165 mRNA was detected by reverse transcriptase-polymerase chain reaction from transfected fibroblasts and osteoblasts at 1, 3, and 7 days after gene transfection. The human VEGF165 levels peaked at Day 1 and then gradually reduced expression in both transfected fibroblasts and osteoblasts. Two endogenous rat VEGF isoforms were detected in this cell culture model: rat VEGF120 and rat VEGF164. We compared the rat VEGF120 and rat VEGF164 expression level of the fibroblasts or osteoblasts that were transfected with human VEGF165, with nontransfected control cells. Both the transfected fibroblasts and osteoblasts showed greater expression of rat VEGF164 than nontransfected controls at Day 1 (peak level) and Day 3, but not at Day 7. The expression of rat VEGF120 was lower in transfected fibroblasts, but higher in transfected osteoblasts, than the relevant control groups at any time point

  19. Molecular phylogenetic studies on an unnamed bovine Babesia sp. based on small subunit ribosomal RNA gene sequences.

    Science.gov (United States)

    Luo, Jianxun; Yin, Hong; Liu, Zhijie; Yang, Dongying; Guan, Guiquan; Liu, Aihong; Ma, Miling; Dang, Shengzhi; Lu, Bingyi; Sun, Caiqin; Bai, Qi; Lu, Wenshun; Chen, Puyan

    2005-10-10

    The 18S small subunit ribosomal RNA (18S rRNA) gene of an unnamed Babesia species (designated B. U sp.) was sequenced and analyzed in an attempt to distinguish it from other Babesia species in China. The target DNA segment was amplified by polymerase chain reaction (PCR). The PCR product was ligated to the pGEM-T Easy vector for sequencing. It was found that the length of the 18S rRNA gene of all B. U sp. Kashi 1 and B. U sp. Kashi 2 was 1699 bp and 1689 bp. Two phylogenetic trees were, respectively, inferred based on 18S rRNA sequence of the Chinese bovine Babesia isolates and all of Babesia species available in GenBank. The first tree showed that B. U sp. was situated in the branch between B. major Yili and B. bovis Shannxian, and the second tree revealed that B. U sp. was confined to the same group as B. caballi. The percent identity of B. U sp. with other Chinese Babesia species was between 74.2 and 91.8, while the percent identity between two B. U sp. isolates was 99.7. These results demonstrated that this B. U sp. is different from other Babesia species, but that two B. U sp. isolates obtained with nymphal and adultal Hyalomma anatolicum anatolicum tick belong to the same species.

  20. Formation of RNA phosphodiester bond by histidine-containing dipeptides

    DEFF Research Database (Denmark)

    Wieczorek, Rafal; Dörr, Mark; Chotera, Agata

    2013-01-01

    A new scenario for prebiotic formation of nucleic acid oligomers is presented. Peptide catalysis is applied to achieve condensation of activated RNA monomers into short RNA chains. As catalysts, L-dipeptides containing a histidine residue, primarily Ser-His, were used. Reactions were carried out...... in self-organised environment, a water-ice eutectic phase, with low concentrations of reactants. Incubation periods up to 30 days resulted in the formation of short oligomers of RNA. During the oligomerisation, an active intermediate (dipeptide-mononucleotide) is produced, which is the reactive species...... by a transamination mechanism. Because peptides are much more likely products of spontaneous condensation than nucleotide chains, their potential as catalysts for the formation of RNA is interesting from the origin-of-life perspective. Finally, the formation of the dipeptide-mononucleotide intermediate and its...

  1. Mining and characterization of EST-SSR markers for Zingiber officinale Roscoe with transferability to other species of Zingiberaceae.

    Science.gov (United States)

    Awasthi, Praveen; Singh, Ashish; Sheikh, Gulfam; Mahajan, Vidushi; Gupta, Ajai Prakash; Gupta, Suphla; Bedi, Yashbir S; Gandhi, Sumit G

    2017-10-01

    Zingiber officinale is a model spice herb, well known for its medicinal value. It is primarily a vegetatively propagated commercial crop. However, considerable diversity in its morphology, fiber content and chemoprofiles has been reported. The present study explores the utility of EST-derived markers in studying genetic diversity in different accessions of Z. officinale and their cross transferability within the Zingiberaceae family. A total of 38,115 ESTs sequences were assembled to generate 7850 contigs and 10,762 singletons. SSRs were searched in the unigenes and 515 SSR-containing ESTs were identified with a frequency of 1 SSR per 25.21 kb of the genome. These ESTs were also annotated using BLAST2GO. Primers were designed for 349 EST-SSRs and 25 primer pairs were randomly picked for EST SSR study. Out of these, 16 primer pairs could be optimized for amplification in different accessions of Z. officinale as well as other species belonging to Zingiberaceae. GES454, GES466, GES480 and GES486 markers were found to exhibit 100% cross-transferability among different members of Zingiberaceae.

  2. Identification of novel RNA viruses in alfalfa (Medicago sativa): an Alphapartitivirus, a Deltapartitivirus, and a Marafivirus.

    Science.gov (United States)

    Kim, Hyein; Park, Dongbin; Hahn, Yoonsoo

    2018-01-05

    Genomic RNA molecules of plant RNA viruses are often co-isolated with the host RNAs, and their sequences can be detected in plant transcriptome datasets. Here, an alfalfa (Medicago sativa) transcriptome dataset was analyzed and three new RNA viruses were identified, which were named Medicago sativa alphapartitivirus 1 (MsAPV1), Medicago sativa deltapartitivirus 1 (MsDPV1), and Medicago sativa marafivirus 1 (MsMV1). The RNA-dependent RNA polymerases of MsAPV1, MsDPV1, and MsMV1 showed about 68%, 58%, and 46% amino acid sequence identity, respectively, with their closest virus species. Sequence similarity and phylogenetic analyses indicated that MsAPV1, MsDPV1, and MsMV1 were novel RNA virus species that belong to the genus Alphapartitivirus of the family Partitiviridae, the genus Deltapartitivirus of the family Partitiviridae, and the genus Marafivirus of the family Tymoviridae, respectively. The bioinformatics procedure applied in this study may facilitate the identification of novel RNA viruses from plant transcriptome data. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. RNA Pseudouridylation in Physiology and Medicine: For Better and for Worse

    Directory of Open Access Journals (Sweden)

    Marianna Penzo

    2017-11-01

    Full Text Available Pseudouridine is the most abundant modification found in RNA. Today, thanks to next-generation sequencing techniques used in the detection of RNA modifications, pseudouridylation sites have been described in most eukaryotic RNA classes. In the present review, we will first consider the available information on the functional roles of pseudouridine(s in different RNA species. We will then focus on how alterations in the pseudouridylation process may be connected with a series of human pathologies, including inherited disorders, cancer, diabetes, and viral infections. Finally, we will discuss how the availability of novel technical approaches are likely to increase the knowledge in this field.

  4. RNA polymerase II transcriptional fidelity control and its functional interplay with DNA modifications

    Science.gov (United States)

    Xu, Liang; Wang, Wei; Chong, Jenny; Shin, Ji Hyun; Xu, Jun; Wang, Dong

    2016-01-01

    Accurate genetic information transfer is essential for life. As a key enzyme involved in the first step of gene expression, RNA polymerase II (Pol II) must maintain high transcriptional fidelity while it reads along DNA template and synthesizes RNA transcript in a stepwise manner during transcription elongation. DNA lesions or modifications may lead to significant changes in transcriptional fidelity or transcription elongation dynamics. In this review, we will summarize recent progress towards understanding the molecular basis of RNA Pol II transcriptional fidelity control and impacts of DNA lesions and modifications on Pol II transcription elongation. PMID:26392149

  5. The RNA-binding protein repertoire of Arabidopsis thaliana

    KAUST Repository

    Marondedze, Claudius

    2016-07-11

    RNA-binding proteins (RBPs) have essential roles in determining the fate of RNA from synthesis to decay and have been studied on a protein-by-protein basis, or computationally based on a number of well-characterised RNA-binding domains. Recently, high-throughput methods enabled the capture of mammalian RNA-binding proteomes. To gain insight into the role of Arabidopsis thaliana RBPs at the systems level, we have employed interactome capture techniques using cells from different ecotypes grown in cultures and leaves. In vivo UV-crosslinking of RNA to RBPs, oligo(dT) capture and mass spectrometry yielded 1,145 different proteins including 550 RBPs that either belong to the functional category ‘RNA-binding’, have known RNA-binding domains or have orthologs identified in mammals, C. elegans, or S. cerevisiae in addition to 595 novel candidate RBPs. We noted specific subsets of RBPs in cultured cells and leaves and a comparison of Arabidopsis, mammalian, C. elegans, and S. cerevisiae RBPs reveals a common set of proteins with a role in intermediate metabolism, as well as distinct differences suggesting that RBPs are also species and tissue specific. This study provides a foundation for studies that will advance our understanding of the biological significance of RBPs in plant developmental and stimulus specific responses.

  6. Methods for small RNA preparation for digital gene expression profiling by next-generation sequencing

    NARCIS (Netherlands)

    Linsen, S.E.V.; Cuppen, E.

    2012-01-01

    Digital gene expression (DGE) profiling techniques are playing an eminent role in the detection, localization, and differential expression quantification of many small RNA species, including microRNAs (1-3). Procedures in small RNA library preparation techniques typically include adapter ligation by

  7. Decreased expression of microRNA-29 family in leiomyoma contributes to increased major fibrillar collagen production.

    Science.gov (United States)

    Marsh, Erica E; Steinberg, Marissa L; Parker, J Brandon; Wu, Ju; Chakravarti, Debabrata; Bulun, Serdar E

    2016-09-01

    To determine the expression and function of the microRNA-29 family (miRNA-29a, miRNA-29b, miRNA-29c) in human leiomyoma and myometrium. Basic science experimental design. Academic medical center. Women undergoing surgery for symptomatic uterine fibroids. Overexpression and knockdown of miRNA-29a, miRNA-29b, and miRNA-29c in primary leiomyoma and myometrial cells. [1] Expression of the miRNA-29 family members in vivo in leiomyoma versus myometrium; [2] Major fibrillar collagen (I, II, III) expression in leiomyoma and myometrial cells with manipulation of miRNA-29 species. Members of the miRNA-29 family (29a, 29b, 29c) are all down-regulated in leiomyoma versus myometrium in vivo. The expression of the miRNA-29 family can be successfully modulated in primary leiomyoma and myometrial cells. Overexpression of the miRNA-29 family in leiomyoma cells results in down-regulation of the major fibrillar collagens. Down-regulation of the miRNA-29 species in myometrium results in an increase in collagen type III deposition. The miRNA-29 family is consistently down-regulated in leiomyoma compared to matched myometrial tissue. This down-regulation contributes to the increased collagen seen in leiomyomas versus myometrium. When miRNA-29 members are overexpressed in leiomyoma cells, protein levels of all of the major fibrillar collagens decrease. The miRNA-29 members are potential therapeutic targets in this highly prevalent condition. Copyright © 2016 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.

  8. Detection of subgenomic mRNA of feline coronavirus by real-time polymerase chain reaction based on primer-probe energy transfer (P-sg-QPCR).

    Science.gov (United States)

    Hornyák, Akos; Bálint, Adám; Farsang, Attila; Balka, Gyula; Hakhverdyan, Mikhayil; Rasmussen, Thomas Bruun; Blomberg, Jonas; Belák, Sándor

    2012-05-01

    Feline infectious peritonitis is one of the most severe devastating diseases of the Felidae. Upon the appearance of clinical signs, a cure for the infected animal is impossible. Therefore rapid and proper diagnosis for both the presence of the causative agent, feline coronavirus (FCoV) and the manifestation of feline infectious peritonitis is of paramount importance. In the present work, a novel real-time RT-PCR method is described which is able to detect FCoV and to determine simultaneously the quantity of the viral RNA. The new assay combines the M gene subgenomic messenger RNA (sg-mRNA) detection and the quantitation of the genome copies of FCoV. In order to detect the broadest spectrum of potential FCoV variants and to achieve the most accurate results in the detection ability the new assay is applying the primer-probe energy transfer (PriProET) principle. This technology was chosen since PriProET is very robust to tolerate the nucleotide substitutions in the target area. Therefore, this technology provides a very broad-range system, which is able to detect simultaneously many variants of the virus(es) even if the target genomic regions show large scale of variations. The detection specificity of the new assay was proven by positive amplification from a set of nine different FCoV strains and negative from the tested non-coronaviral targets. Examination of faecal samples of healthy young cats, organ samples of perished animals, which suffered from feline infectious peritonitis, and cat leukocytes from uncertain clinical cases were also subjected to the assay. The sensitivity of the P-sg-QPCR method was high, since as few as 10 genome copies of FCoV were detected. The quantitative sg-mRNA detection method revealed more than 10-50,000 times increase of the M gene sg-mRNA in organ materials of feline infectious peritonitis cases, compared to those of the enteric FCoV variants present in the faeces of normal, healthy cats. These results indicate the applicability of

  9. High-throughput SNP genotyping in the highly heterozygous genome of Eucalyptus: assay success, polymorphism and transferability across species

    Science.gov (United States)

    2011-01-01

    Background High-throughput SNP genotyping has become an essential requirement for molecular breeding and population genomics studies in plant species. Large scale SNP developments have been reported for several mainstream crops. A growing interest now exists to expand the speed and resolution of genetic analysis to outbred species with highly heterozygous genomes. When nucleotide diversity is high, a refined diagnosis of the target SNP sequence context is needed to convert queried SNPs into high-quality genotypes using the Golden Gate Genotyping Technology (GGGT). This issue becomes exacerbated when attempting to transfer SNPs across species, a scarcely explored topic in plants, and likely to become significant for population genomics and inter specific breeding applications in less domesticated and less funded plant genera. Results We have successfully developed the first set of 768 SNPs assayed by the GGGT for the highly heterozygous genome of Eucalyptus from a mixed Sanger/454 database with 1,164,695 ESTs and the preliminary 4.5X draft genome sequence for E. grandis. A systematic assessment of in silico SNP filtering requirements showed that stringent constraints on the SNP surrounding sequences have a significant impact on SNP genotyping performance and polymorphism. SNP assay success was high for the 288 SNPs selected with more rigorous in silico constraints; 93% of them provided high quality genotype calls and 71% of them were polymorphic in a diverse panel of 96 individuals of five different species. SNP reliability was high across nine Eucalyptus species belonging to three sections within subgenus Symphomyrtus and still satisfactory across species of two additional subgenera, although polymorphism declined as phylogenetic distance increased. Conclusions This study indicates that the GGGT performs well both within and across species of Eucalyptus notwithstanding its nucleotide diversity ≥2%. The development of a much larger array of informative SNPs across

  10. Chromatin structure of ribosomal RNA genes in dipterans and its relationship to the location of nucleolar organizers.

    Science.gov (United States)

    Madalena, Christiane Rodriguez Gutierrez; Díez, José Luís; Gorab, Eduardo

    2012-01-01

    Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs) located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA), allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

  11. Chromatin structure of ribosomal RNA genes in dipterans and its relationship to the location of nucleolar organizers.

    Directory of Open Access Journals (Sweden)

    Christiane Rodriguez Gutierrez Madalena

    Full Text Available Nucleoli, nuclear organelles in which ribosomal RNA is synthesized and processed, emerge from nucleolar organizers (NORs located in distinct chromosomal regions. In polytene nuclei of dipterans, nucleoli of some species can be observed under light microscopy exhibiting distinctive morphology: Drosophila and chironomid species display well-formed nucleoli in contrast to the fragmented and dispersed nucleoli seen in sciarid flies. The available data show no apparent relationship between nucleolar morphology and location of NORs in Diptera. The regulation of rRNA transcription involves controlling both the transcription rate per gene as well as the proportion of rRNA genes adopting a proper chromatin structure for transcription, since active and inactive rRNA gene copies coexist in NORs. Transcription units organized in nucleosomes and those lacking canonical nucleosomes can be analyzed by the method termed psoralen gel retarding assay (PGRA, allowing inferences on the ratio of active to inactive rRNA gene copies. In this work, possible connections between chromosomal location of NORs and proportion of active rRNA genes were studied in Drosophila melanogaster, and in chironomid and sciarid species. The data suggested a link between location of NORs and proportion of active rRNA genes since the copy number showing nucleosomal organization predominates when NORs are located in the pericentric heterochromatin. The results presented in this work are in agreement with previous data on the chromatin structure of rRNA genes from distantly related eukaryotes, as assessed by the PGRA.

  12. iSRAP – a one-touch research tool for rapid profiling of small RNA-seq data

    Science.gov (United States)

    Quek, Camelia; Jung, Chol-hee; Bellingham, Shayne A.; Lonie, Andrew; Hill, Andrew F.

    2015-01-01

    Small non-coding RNAs have been significantly recognized as the key modulators in many biological processes, and are emerging as promising biomarkers for several diseases. These RNA species are transcribed in cells and can be packaged in extracellular vesicles, which are small vesicles released from many biotypes, and are involved in intercellular communication. Currently, the advent of next-generation sequencing (NGS) technology for high-throughput profiling has further advanced the biological insights of non-coding RNA on a genome-wide scale and has become the preferred approach for the discovery and quantification of non-coding RNA species. Despite the routine practice of NGS, the processing of large data sets poses difficulty for analysis before conducting downstream experiments. Often, the current analysis tools are designed for specific RNA species, such as microRNA, and are limited in flexibility for modifying parameters for optimization. An analysis tool that allows for maximum control of different software is essential for drawing concrete conclusions for differentially expressed transcripts. Here, we developed a one-touch integrated small RNA analysis pipeline (iSRAP) research tool that is composed of widely used tools for rapid profiling of small RNAs. The performance test of iSRAP using publicly and in-house available data sets shows its ability of comprehensive profiling of small RNAs of various classes, and analysis of differentially expressed small RNAs. iSRAP offers comprehensive analysis of small RNA sequencing data that leverage informed decisions on the downstream analyses of small RNA studies, including extracellular vesicles such as exosomes. PMID:26561006

  13. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Directory of Open Access Journals (Sweden)

    Noah Fahlgren

    Full Text Available In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  14. Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs.

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R; Kasschau, Kristin D; Cuperus, Josh T; Press, Caroline M; Sullivan, Christopher M; Chapman, Elisabeth J; Hoyer, J Steen; Gilbert, Kerrigan B; Grünwald, Niklaus J; Carrington, James C

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work.

  15. Phytophthora Have Distinct Endogenous Small RNA Populations That Include Short Interfering and microRNAs

    Science.gov (United States)

    Fahlgren, Noah; Bollmann, Stephanie R.; Kasschau, Kristin D.; Cuperus, Josh T.; Press, Caroline M.; Sullivan, Christopher M.; Chapman, Elisabeth J.; Hoyer, J. Steen; Gilbert, Kerrigan B.; Grünwald, Niklaus J.; Carrington, James C.

    2013-01-01

    In eukaryotes, RNA silencing pathways utilize 20-30-nucleotide small RNAs to regulate gene expression, specify and maintain chromatin structure, and repress viruses and mobile genetic elements. RNA silencing was likely present in the common ancestor of modern eukaryotes, but most research has focused on plant and animal RNA silencing systems. Phytophthora species belong to a phylogenetically distinct group of economically important plant pathogens that cause billions of dollars in yield losses annually as well as ecologically devastating outbreaks. We analyzed the small RNA-generating components of the genomes of P. infestans, P. sojae and P. ramorum using bioinformatics, genetic, phylogenetic and high-throughput sequencing-based methods. Each species produces two distinct populations of small RNAs that are predominantly 21- or 25-nucleotides long. The 25-nucleotide small RNAs were primarily derived from loci encoding transposable elements and we propose that these small RNAs define a pathway of short-interfering RNAs that silence repetitive genetic elements. The 21-nucleotide small RNAs were primarily derived from inverted repeats, including a novel microRNA family that is conserved among the three species, and several gene families, including Crinkler effectors and type III fibronectins. The Phytophthora microRNA is predicted to target a family of amino acid/auxin permeases, and we propose that 21-nucleotide small RNAs function at the post-transcriptional level. The functional significance of microRNA-guided regulation of amino acid/auxin permeases and the association of 21-nucleotide small RNAs with Crinkler effectors remains unclear, but this work provides a framework for testing the role of small RNAs in Phytophthora biology and pathogenesis in future work. PMID:24204767

  16. Comparison of sequencing the D2 region of the large subunit ribosomal RNA gene (MicroSEQ®) versus the internal transcribed spacer (ITS) regions using two public databases for identification of common and uncommon clinically relevant fungal species.

    Science.gov (United States)

    Arbefeville, S; Harris, A; Ferrieri, P

    2017-09-01

    Fungal infections cause considerable morbidity and mortality in immunocompromised patients. Rapid and accurate identification of fungi is essential to guide accurately targeted antifungal therapy. With the advent of molecular methods, clinical laboratories can use new technologies to supplement traditional phenotypic identification of fungi. The aims of the study were to evaluate the sole commercially available MicroSEQ® D2 LSU rDNA Fungal Identification Kit compared to the in-house developed internal transcribed spacer (ITS) regions assay in identifying moulds, using two well-known online public databases to analyze sequenced data. 85 common and uncommon clinically relevant fungi isolated from clinical specimens were sequenced for the D2 region of the large subunit (LSU) of ribosomal RNA (rRNA) gene with the MicroSEQ® Kit and the ITS regions with the in house developed assay. The generated sequenced data were analyzed with the online GenBank and MycoBank public databases. The D2 region of the LSU rRNA gene identified 89.4% or 92.9% of the 85 isolates to the genus level and the full ITS region (f-ITS) 96.5% or 100%, using GenBank or MycoBank, respectively, when compared to the consensus ID. When comparing species-level designations to the consensus ID, D2 region of the LSU rRNA gene aligned with 44.7% (38/85) or 52.9% (45/85) of these isolates in GenBank or MycoBank, respectively. By comparison, f-ITS possessed greater specificity, followed by ITS1, then ITS2 regions using GenBank or MycoBank. Using GenBank or MycoBank, D2 region of the LSU rRNA gene outperformed phenotypic based ID at the genus level. Comparing rates of ID between D2 region of the LSU rRNA gene and the ITS regions in GenBank or MycoBank at the species level against the consensus ID, f-ITS and ITS2 exceeded performance of the D2 region of the LSU rRNA gene, but ITS1 had similar performance to the D2 region of the LSU rRNA gene using MycoBank. Our results indicated that the MicroSEQ® D2 LSU r

  17. How short RNAs impact the human ribonuclease Dicer activity: putative regulatory feedback-loops and other RNA-mediated mechanisms controlling microRNA processing.

    Science.gov (United States)

    Koralewska, Natalia; Hoffmann, Weronika; Pokornowska, Maria; Milewski, Marek; Lipinska, Andrea; Bienkowska-Szewczyk, Krystyna; Figlerowicz, Marek; Kurzynska-Kokorniak, Anna

    2016-01-01

    Ribonuclease Dicer plays a pivotal role in RNA interference pathways by processing long double-stranded RNAs and single-stranded hairpin RNA precursors into small interfering RNAs (siRNAs) and microRNAs (miRNAs), respectively. While details of Dicer regulation by a variety of proteins are being elucidated, less is known about non-protein factors, e.g. RNA molecules, that may influence this enzyme's activity. Therefore, we decided to investigate the question of whether the RNA molecules can function not only as Dicer substrates but also as its regulators. Our previous in vitro studies indicated that the activity of human Dicer can be influenced by short RNA molecules that either bind to Dicer or interact with its substrates, or both. Those studies were carried out with commercial Dicer preparations. Nevertheless, such preparations are usually not homogeneous enough to carry out more detailed RNA-binding studies. Therefore, we have established our own system for the production of human Dicer in insect cells. In this manuscript, we characterize the RNA-binding and RNA-cleavage properties of the obtained preparation. We demonstrate that Dicer can efficiently bind single-stranded RNAs that are longer than ~20-nucleotides. Consequently, we revisit possible scenarios of Dicer regulation by single-stranded RNA species ranging from ~10- to ~60-nucleotides, in the context of their binding to this enzyme. Finally, we show that siRNA/miRNA-sized RNAs may affect miRNA production either by binding to Dicer or by participating in regulatory feedback-loops. Altogether, our studies suggest a broad regulatory role of short RNAs in Dicer functioning.

  18. Schizosaccharomyces pombe Polysome Profile Analysis and RNA Purification.

    Science.gov (United States)

    Wolf, Dieter A; Bähler, Jürg; Wise, Jo Ann

    2017-04-03

    Polysome profile analysis is widely used by investigators studying the mechanism and regulation of translation. The method described here uses high-velocity centrifugation of whole cell extracts on linear sucrose gradients to separate 40S and 60S ribosomal subunits from 80S monosomes and polysomes. Cycloheximide is included in the lysis buffer to "freeze" polysomes by blocking translation. After centrifugation, the gradient is fractionated and RNA (and/or protein) is prepared from each fraction for subsequent analysis of individual species using northern or western blots. The entire RNA population in each fraction can be analyzed by hybridization to microarrays or by high-throughput RNA sequencing, and the proteins present can be identified by mass spectrometry analysis. © 2017 Cold Spring Harbor Laboratory Press.

  19. What history tells us XXIX. Transfers from plant biology

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Biosciences; Volume 37; Issue 6. What history tells us XXIX. Transfers from plant biology: From cross protection to RNA interference and DNA vaccination. Michel Morange. Series Volume 37 Issue 6 December 2012 pp 949-952 ...

  20. Analysis of ribosomal RNA stability in dead cells of wine yeast by quantitative PCR.

    Science.gov (United States)

    Sunyer-Figueres, Merce; Wang, Chunxiao; Mas, Albert

    2018-04-02

    During wine production, some yeasts enter a Viable But Not Culturable (VBNC) state, which may influence the quality and stability of the final wine through remnant metabolic activity or by resuscitation. Culture-independent techniques are used for obtaining an accurate estimation of the number of live cells, and quantitative PCR could be the most accurate technique. As a marker of cell viability, rRNA was evaluated by analyzing its stability in dead cells. The species-specific stability of rRNA was tested in Saccharomyces cerevisiae, as well as in three species of non-Saccharomyces yeast (Hanseniaspora uvarum, Torulaspora delbrueckii and Starmerella bacillaris). High temperature and antimicrobial dimethyl dicarbonate (DMDC) treatments were efficient in lysing the yeast cells. rRNA gene and rRNA (as cDNA) were analyzed over 48 h after cell lysis by quantitative PCR. The results confirmed the stability of rRNA for 48 h after the cell lysis treatments. To sum up, rRNA may not be a good marker of cell viability in the wine yeasts that were tested. Copyright © 2018 Elsevier B.V. All rights reserved.

  1. An RNA Virome Associated to the Golden Orb-Weaver Spider Nephila clavipes

    Directory of Open Access Journals (Sweden)

    Humberto J. Debat

    2017-10-01

    Full Text Available The golden orb-weaver spider Nephila clavipes, known for its sexual size dimorphism, is abundant and widespread in the New World. The first annotated genome of orb-weaver spiders, exploring N. clavipes, has recently been reported. The study, focused primarily on the diversity of silk specific genes, shed light into the complex evolutionary history of spiders. Furthermore, a robust transcriptome analysis provided a massive resource for N. clavipes RNA survey. Here, I present evidence of viral sequences corresponding to the first 10 extant virus species associated to N. clavipes and indeed, nephilids. The putatively new species are linked to ssRNA positive-strand viruses, such as Picornavirales, and to ssRNA negative-strand and dsRNA viruses. In addition, I detected sequence data of new strains of two recently reported arthropod viruses, which complemented and extended the corresponding sequence references. The identified viruses appear to be complete, potentially functional, and presenting the typical architecture and consistent viral domains. The intrinsic nature of the detected sequences and their absence in the recently generated genome assembly, suggest that they correspond to bona fide RNA virus sequences. The available RNA data allowed for the first time to address a tissue/organ specific analysis of virus loads/presence in spiders, suggesting a complex spatial and differential distribution of the tentative viruses, encompassing the spider brain and also silk and venom glands. Until recently, the virus landscape associated to spiders remained elusive. The discovered viruses described here provide only a fragmented glimpse of the potential magnitude of the Aranea virosphere. Future studies should focus not only on complementing and expanding these findings, but also on addressing the potential ecological role of these viruses, which might influence the biology of these outstanding arthropod species.

  2. Evolutionary analysis reveals regulatory and functional landscape of coding and non-coding RNA editing.

    Science.gov (United States)

    Zhang, Rui; Deng, Patricia; Jacobson, Dionna; Li, Jin Billy

    2017-02-01

    Adenosine-to-inosine RNA editing diversifies the transcriptome and promotes functional diversity, particularly in the brain. A plethora of editing sites has been recently identified; however, how they are selected and regulated and which are functionally important are largely unknown. Here we show the cis-regulation and stepwise selection of RNA editing during Drosophila evolution and pinpoint a large number of functional editing sites. We found that the establishment of editing and variation in editing levels across Drosophila species are largely explained and predicted by cis-regulatory elements. Furthermore, editing events that arose early in the species tree tend to be more highly edited in clusters and enriched in slowly-evolved neuronal genes, thus suggesting that the main role of RNA editing is for fine-tuning neurological functions. While nonsynonymous editing events have been long recognized as playing a functional role, in addition to nonsynonymous editing sites, a large fraction of 3'UTR editing sites is evolutionarily constrained, highly edited, and thus likely functional. We find that these 3'UTR editing events can alter mRNA stability and affect miRNA binding and thus highlight the functional roles of noncoding RNA editing. Our work, through evolutionary analyses of RNA editing in Drosophila, uncovers novel insights of RNA editing regulation as well as its functions in both coding and non-coding regions.

  3. Description of the first Palaearctic species of Tineobius Ashmead, 1896 with DNA data, a checklist of world species, and nomenclatural changes in Eupelmidae (Hymenoptera, Chalcidoidea

    Directory of Open Access Journals (Sweden)

    Lucian Fusu

    2017-01-01

    Full Text Available Tineobius (Tineobius tamaricis Ribes & Fusu sp. nov. is newly described from Parapodia sinaica (Frauenfeld, 1859 (Lepidoptera, Gelechiidae galls from Catalonia in Spain. This is the first record of the so far Palaeotropical genus Tineobius Ashmead, 1896 in the Palaearctic region. Basic biological data and a DNA barcode are provided for the new species. Parapodia sinaica (the host of T. tamaricis sp. nov. is reported for the first time to form galls on Tamarix canariensis (Willd. A checklist of described world Tineobius species is provided, with nine species formally transferred to Tineobius from Anastatoidea Gahan, 1927 and thirteen species newly assigned to T. (Tineobius. Metapelma seyrigi (Risbec, 1952 is transferred to Tineobius and the replacement name Tineobius (Tineobius madagascariensis nom. nov. is proposed, as the name is preoccupied by Tineobius (Tineobius seyrigi (Ferrière, 1938 comb. nov.; Tineobius (Tineobius albopalpalis (Brues, 1907 comb. nov. is transferred from Charitopus Förster, 1856 (a genus in Encyrtidae. One species is transferred from Anastatoidea to Eupelmus Dalman, 1820 as Eupelmus (Episolindelia ambatomangae (Risbec, 1958 comb. nov.

  4. Evaluation of experimental studies on technetium transfers to sediments and benthic marine species, and comparison with in situ data

    Energy Technology Data Exchange (ETDEWEB)

    Aprosi, G [Electricite de France, 78 - Chatou; Masson, M [Commisariat a l' Energie Atomique, Institut de Protection et de Surete Nucleaire, 50 - Cherbourg (France)

    1984-01-01

    To obtain basic information for the evaluation of the radiological impact of technetium (Tc) on the marine environment, investigations are performed by different laboratories. Technetium is not a natural element and the main source of production is the nuclear fuel cycle. Under anoxic conditions, in presence of reducing sediments, the distribution coefficients are very high (Ksub(D)=10/sup 3/). Concentration factors from water to species are mostly very low (FC 1 to 10); however, concentration factors up to 1000 have been observed for a few species such as macrophytic brown algae, worms and lobster. Biochemical analysis shows that Tc is bound with protein. The transfer factors between sediment and species are very low (FT<0,5). The biological half-life (Tb) was determined in some marine organisms which had accumulated the radionuclide from water-contamined food or from sediments. The loss is biphasic in storage organs (liver and kidney); uptake in the edible parts is low. Among the parameters studied (light for algae, physico-chemical form of Tc, salinity and temperature) only light and the physico-chemical forms have an effect on the accumulation of technetium. Analyses of /sup 99/Tc concentrations in species collected near the La Hague and Windscale (Sellafield) reprocessing plants confirm the experimental studies. Since sea water is likely to be an oxidant environment, technetium appears as a conservative element.

  5. RNA Interference and its therapeutic applications

    Directory of Open Access Journals (Sweden)

    Srinivasa Rao T

    2011-10-01

    Full Text Available RNAi is a potent method, requiring only a few molecules of dsRNA per cell to silence the expression. Long molecules of double stranded RNA (dsRNA trigger the process. The dsRNA comes from virus and transposon activity in natural RNAi process, while it can be injected in the cells in experimental processes. The strand of the dsRNA that is identical in sequence to a region in target mRNA molecule is called the sense strand, and the other strand which is complimentary is termed the antisense strand. An enzyme complex called DICER thought to be similar to RNAase III then recognizes dsRNA, and cuts it into roughly 22- nucleotide long fragments. These fragments termed siRNAs for “small interfering RNAs” remain in double stranded duplexes with very short 3' overhangs. However, only one of the two strands, known as the guide strand or antisense strand binds the argonaute protein of RNA-induced silencing complex (RISC and target the complementary mRNA resulting gene silencing. The other anti-guide strand or passenger strand is degraded as a RISC substrate during the process of RISC activation. This form of RNAi is termed as post transcriptional gene silencing (PTGS; other forms are also thought to operate at the genomic or transcriptional level in some organisms. In mammals dsRNA longer than 30 base pairs induces a nonspecific antiviral response. This so-called interferon response results in a nonspecific arrest in translation and induction of apoptosis. This cascade induces a global non-specific suppression of translation, which in turn triggers apoptosis. Interestingly, dsRNAs less than 30 nt in length do not activate the antiviral response and specifically switched off genes in human cells without initiating the acute phase response. Thus these siRNAs are suitable for gene target validation and therapeutic applications in many species, including humans. [Vet. World 2011; 4(5.000: 225-229

  6. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  7. RNA chaperoning and intrinsic disorder in the core proteins of Flaviviridae.

    Science.gov (United States)

    Ivanyi-Nagy, Roland; Lavergne, Jean-Pierre; Gabus, Caroline; Ficheux, Damien; Darlix, Jean-Luc

    2008-02-01

    RNA chaperone proteins are essential partners of RNA in living organisms and viruses. They are thought to assist in the correct folding and structural rearrangements of RNA molecules by resolving misfolded RNA species in an ATP-independent manner. RNA chaperoning is probably an entropy-driven process, mediated by the coupled binding and folding of intrinsically disordered protein regions and the kinetically trapped RNA. Previously, we have shown that the core protein of hepatitis C virus (HCV) is a potent RNA chaperone that can drive profound structural modifications of HCV RNA in vitro. We now examined the RNA chaperone activity and the disordered nature of core proteins from different Flaviviridae genera, namely that of HCV, GBV-B (GB virus B), WNV (West Nile virus) and BVDV (bovine viral diarrhoea virus). Despite low-sequence similarities, all four proteins demonstrated general nucleic acid annealing and RNA chaperone activities. Furthermore, heat resistance of core proteins, as well as far-UV circular dichroism spectroscopy suggested that a well-defined 3D protein structure is not necessary for core-induced RNA structural rearrangements. These data provide evidence that RNA chaperoning-possibly mediated by intrinsically disordered protein segments-is conserved in Flaviviridae core proteins. Thus, besides nucleocapsid formation, core proteins may function in RNA structural rearrangements taking place during virus replication.

  8. Transfer of DNA from Bacteria to Eukaryotes

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    2016-07-01

    Full Text Available Historically, the members of the Agrobacterium genus have been considered the only bacterial species naturally able to transfer and integrate DNA into the genomes of their eukaryotic hosts. Yet, increasing evidence suggests that this ability to genetically transform eukaryotic host cells might be more widespread in the bacterial world. Indeed, analyses of accumulating genomic data reveal cases of horizontal gene transfer from bacteria to eukaryotes and suggest that it represents a significant force in adaptive evolution of eukaryotic species. Specifically, recent reports indicate that bacteria other than Agrobacterium, such as Bartonella henselae (a zoonotic pathogen, Rhizobium etli (a plant-symbiotic bacterium related to Agrobacterium, or even Escherichia coli, have the ability to genetically transform their host cells under laboratory conditions. This DNA transfer relies on type IV secretion systems (T4SSs, the molecular machines that transport macromolecules during conjugative plasmid transfer and also during transport of proteins and/or DNA to the eukaryotic recipient cells. In this review article, we explore the extent of possible transfer of genetic information from bacteria to eukaryotic cells as well as the evolutionary implications and potential applications of this transfer.

  9. Rootstock-to-scion transfer of transgene-derived small interfering RNAs and their effect on virus resistance in nontransgenic sweet cherry.

    Science.gov (United States)

    Zhao, Dongyan; Song, Guo-qing

    2014-12-01

    Small interfering RNAs (siRNAs) are silencing signals in plants. Virus-resistant transgenic rootstocks developed through siRNA-mediated gene silencing may enhance virus resistance of nontransgenic scions via siRNAs transported from the transgenic rootstocks. However, convincing evidence of rootstock-to-scion movement of siRNAs of exogenous genes in woody plants is still lacking. To determine whether exogenous siRNAs can be transferred, nontransgenic sweet cherry (scions) was grafted on transgenic cherry rootstocks (TRs), which was transformed with an RNA interference (RNAi) vector expressing short hairpin RNAs of the genomic RNA3 of Prunus necrotic ringspot virus (PNRSV-hpRNA). Small RNA sequencing was conducted using bud tissues of TRs and those of grafted (rootstock/scion) trees, locating at about 1.2 m above the graft unions. Comparison of the siRNA profiles revealed that the PNRSV-hpRNA was efficient in producing siRNAs and eliminating PNRSV in the TRs. Furthermore, our study confirmed, for the first time, the long-distance (1.2 m) transfer of PNRSV-hpRNA-derived siRNAs from the transgenic rootstock to the nontransgenic scion in woody plants. Inoculation of nontransgenic scions with PNRSV revealed that the transferred siRNAs enhanced PNRSV resistance of the scions grafted on the TRs. Collectively, these findings provide the foundation for 'using transgenic rootstocks to produce products of nontransgenic scions in fruit trees'. © 2014 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  10. DNA?RNA: What Do Students Think the Arrow Means?

    Science.gov (United States)

    Wright, L. Kate; Fisk, J. Nick; Newman, Dina L.

    2014-01-01

    The central dogma of molecular biology, a model that has remained intact for decades, describes the transfer of genetic information from DNA to protein though an RNA intermediate. While recent work has illustrated many exceptions to the central dogma, it is still a common model used to describe and study the relationship between genes and protein…

  11. The Juxtaposition of Ribose Hydroxyl Groups: The Root of Biological Catalysis and the RNA World?

    Science.gov (United States)

    Bernhardt, Harold S.

    2015-06-01

    We normally think of enzymes as being proteins; however, the RNA world hypothesis suggests that the earliest biological catalysts may have been composed of RNA. One of the oldest surviving RNA enzymes we are aware of is the peptidyl transferase centre (PTC) of the large ribosomal RNA, which joins amino acids together to form proteins. Recent evidence indicates that the enzymatic activity of the PTC is principally due to ribose 2 '-OHs. Many other reactions catalyzed by RNA and/or in which RNA is a substrate similarly utilize ribose 2 '-OHs, including phosphoryl transfer reactions that involve the cleavage and/or ligation of the ribose-phosphate backbone. It has recently been proposed by Yakhnin (2013) that phosphoryl transfer reactions were important in the prebiotic chemical evolution of RNA, by enabling macromolecules composed of polyols joined by phosphodiester linkages to undergo recombination reactions, with the reaction energy supplied by the phosphodiester bond itself. The almost unique juxtaposition of the ribose 2'-hydroxyl and 3'-oxygen in ribose-containing polymers such as RNA, which gives ribose the ability to catalyze such reactions, may have been an important factor in the selection of ribose as a component of the first biopolymer. In addition, the juxtaposition of hydroxyl groups in free ribose: (i) allows coordination of borate ions, which could have provided significant and preferential stabilization of ribose in a prebiotic environment; and (ii) enhances the rate of permeation by ribose into a variety of lipid membrane systems, possibly favouring its incorporation into early metabolic pathways and an ancestral ribose-phosphate polymer. Somewhat more speculatively, hydrogen bonds formed by juxtaposed ribose hydroxyl groups may have stabilized an ancestral ribose-phosphate polymer against degradation (Bernhardt and Sandwick 2014). I propose that the almost unique juxtaposition of ribose hydroxyl groups constitutes the root of both biological

  12. Appearance of newly formed mRNA and rRNA as ribonucleoprotein-particles in the cytoplasmic subribosomal fraction of pea embryos

    International Nuclear Information System (INIS)

    Takahashi, Noribumi; Takaiwa, Fumio; Fukuei, Keisuke; Sakamaki, Tadashi; Tanifuji, Shigeyuki

    1977-01-01

    Incorporation studies with 3 H-uridine or 3 H-adenosine showed that germinating pea embryos synthesize all types of poly A(+) RNA, rRNA and 4-5S RNA at the early stage of germination. After the pulse labeling for 30 min, only heterodisperse RNA and 4-5S RNA appeared in the cytoplasm as labeled RNA species. At this time the radioactivity was associated with cytoplasmic structures heavier than 80S and RNP particles of 68-70S, 52-55S, 36-38S and 20-22S which are presumed to be free mRNP particles in plants. When the pulse-labeled embryos were incubated for a further 60 min in an isotope-free medium, the labeled 17S and 25S rRNA emerged in the cytoplasm, together with labeled heterodisperse and 4-5S RNAs. More radioactivity accumulated in the regions of the polysome, 62-65S and 38-42S particles. The results of analysis of RNAs extracted from the whole cytoplasm, polysome or subribosomal fractions indicated that small subunits of newly formed ribosomes appear more rapidly in the cytoplasm than new large subunits, which accumulate for a while as free particles in the cytoplasm than are incorporated into polysomes. The actinomycin treatment which caused preferential inhibition of rRNA synthesis reduced the accumulation of free, newly formed ribosome subunits and partially permitted detection of the presumed mRNP particles in the subribosomal region even after the chase treatment. (auth.)

  13. Primary and secondary structure of U8 small nuclear RNA

    International Nuclear Information System (INIS)

    Reddy, R.; Henning, D.; Busch, H.

    1985-01-01

    U8 small nuclear RNA is a new, capped, 140 nucleotides long RNA species found in Novikoff hepatoma cells. Its sequence is: m3GpppAmUmCGUCAGGA GGUUAAUCCU UACCUGUCCC UCCUUUCGGA GGGCAGAUAG AAAAUGAUGA UUGGAGCUUG CAUGAUCUGC UGAUUAUAGC AUUUCCGUGU AAUCAGGACC UGACAACAUC CUGAUUGCUU CUAUCUGAUUOH. This RNA is present in approximately 25,000 copies/cell, and it is enriched in nucleolar preparations. Like U1, U2, U4/U6, and U5 RNAs, U8 RNA was also present as a ribonucleoprotein associated with the Sm antigen. The rat U8 RNA was highly homologous (greater than 90%) to a recently characterized 5.4 S RNA from mouse cells infected with spleen focus-forming virus. In addition to the U8 RNA, three other U small nuclear RNAs were found in anti-Sm antibody immunoprecipitates from labeled rat and HeLa cells. Each of these contained a m3GpppAm cap structure; their apparent chain lengths were 60, 130, and 65 nucleotides. These U small nuclear RNAs are designated U7, U9, and U10 RNAs, respectively

  14. Single-cell mRNA transfection studies: delivery, kinetics and statistics by numbers.

    Science.gov (United States)

    Leonhardt, Carolin; Schwake, Gerlinde; Stögbauer, Tobias R; Rappl, Susanne; Kuhr, Jan-Timm; Ligon, Thomas S; Rädler, Joachim O

    2014-05-01

    In artificial gene delivery, messenger RNA (mRNA) is an attractive alternative to plasmid DNA (pDNA) since it does not require transfer into the cell nucleus. Here we show that, unlike for pDNA transfection, the delivery statistics and dynamics of mRNA-mediated expression are generic and predictable in terms of mathematical modeling. We measured the single-cell expression time-courses and levels of enhanced green fluorescent protein (eGFP) using time-lapse microscopy and flow cytometry (FC). The single-cell analysis provides direct access to the distribution of onset times, life times and expression rates of mRNA and eGFP. We introduce a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby the dose-response relation. Our results establish a statistical framework for mRNA transfection and as such should advance the development of RNA carriers and small interfering/micro RNA-based drugs. This team of authors established a statistical framework for mRNA transfection by using a two-step stochastic delivery model that reproduces the number distribution of successfully delivered and translated mRNA molecules and thereby their dose-response relation. This study establishes a nice connection between theory and experimental planning and will aid the cellular delivery of mRNA molecules. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Differential Regulation of rRNA and tRNA Transcription from the rRNA-tRNA Composite Operon in Escherichia coli.

    Directory of Open Access Journals (Sweden)

    Hiraku Takada

    Full Text Available Escherichia coli contains seven rRNA operons, each consisting of the genes for three rRNAs (16S, 23S and 5S rRNA in this order and one or two tRNA genes in the spacer between 16S and 23S rRNA genes and one or two tRNA genes in the 3' proximal region. All of these rRNA and tRNA genes are transcribed from two promoters, P1 and P2, into single large precursors that are afterward processed to individual rRNAs and tRNAs by a set of RNases. In the course of Genomic SELEX screening of promoters recognized by RNA polymerase (RNAP holoenzyme containing RpoD sigma, a strong binding site was identified within 16S rRNA gene in each of all seven rRNA operons. The binding in vitro of RNAP RpoD holoenzyme to an internal promoter, referred to the promoter of riRNA (an internal RNA of the rRNA operon, within each 16S rRNA gene was confirmed by gel shift assay and AFM observation. Using this riRNA promoter within the rrnD operon as a representative, transcription in vitro was detected with use of the purified RpoD holoenzyme, confirming the presence of a constitutive promoter in this region. LacZ reporter assay indicated that this riRNA promoter is functional in vivo. The location of riRNA promoter in vivo as identified using a set of reporter plasmids agrees well with that identified in vitro. Based on transcription profile in vitro and Northern blot analysis in vivo, the majority of transcript initiated from this riRNA promoter was estimated to terminate near the beginning of 23S rRNA gene, indicating that riRNA leads to produce the spacer-coded tRNA. Under starved conditions, transcription of the rRNA operon is markedly repressed to reduce the intracellular level of ribosomes, but the levels of both riRNA and its processed tRNAGlu stayed unaffected, implying that riRNA plays a role in the continued steady-state synthesis of tRNAs from the spacers of rRNA operons. We then propose that the tRNA genes organized within the spacers of rRNA-tRNA composite operons

  16. The Complex Exogenous RNA Spectra in Human Plasma: An Interface with Human Gut Biota?

    Science.gov (United States)

    Wang, Kai; Li, Hong; Yuan, Yue; Etheridge, Alton; Zhou, Yong; Huang, David; Wilmes, Paul; Galas, David

    2012-01-01

    Human plasma has long been a rich source for biomarker discovery. It has recently become clear that plasma RNA molecules, such as microRNA, in addition to proteins are common and can serve as biomarkers. Surveying human plasma for microRNA biomarkers using next generation sequencing technology, we observed that a significant fraction of the circulating RNA appear to originate from exogenous species. With careful analysis of sequence error statistics and other controls, we demonstrated that there is a wide range of RNA from many different organisms, including bacteria and fungi as well as from other species. These RNAs may be associated with protein, lipid or other molecules protecting them from RNase activity in plasma. Some of these RNAs are detected in intracellular complexes and may be able to influence cellular activities under in vitro conditions. These findings raise the possibility that plasma RNAs of exogenous origin may serve as signaling molecules mediating for example the human-microbiome interaction and may affect and/or indicate the state of human health. PMID:23251414

  17. X-ray Crystal Structures Elucidate the Nucleotidyl Transfer Reaction of Transcript Initiation Using Two Nucleotides

    Energy Technology Data Exchange (ETDEWEB)

    M Gleghorn; E Davydova; R Basu; L Rothman-Denes; K Murakami

    2011-12-31

    We have determined the X-ray crystal structures of the pre- and postcatalytic forms of the initiation complex of bacteriophage N4 RNA polymerase that provide the complete set of atomic images depicting the process of transcript initiation by a single-subunit RNA polymerase. As observed during T7 RNA polymerase transcript elongation, substrate loading for the initiation process also drives a conformational change of the O helix, but only the correct base pairing between the +2 substrate and DNA base is able to complete the O-helix conformational transition. Substrate binding also facilitates catalytic metal binding that leads to alignment of the reactive groups of substrates for the nucleotidyl transfer reaction. Although all nucleic acid polymerases use two divalent metals for catalysis, they differ in the requirements and the timing of binding of each metal. In the case of bacteriophage RNA polymerase, we propose that catalytic metal binding is the last step before the nucleotidyl transfer reaction.

  18. Detection of bacteriophage phi 6 minus-strand RNA and novel mRNA isoconformers synthesized in vivo and in vitro, by strand-separating agarose gels

    International Nuclear Information System (INIS)

    Pagratis, N.; Revel, H.R.

    1990-01-01

    Two urea-free agarose gel protocols that resolve the six individual strands of bacteriophage phi 6 dsRNA were developed and used to analyze phage RNA synthesis in vivo and in vitro. Citrate gels separate strands of the large and medium chromosomes while Tris-borate-EDTA (TBE) gels resolve the medium and small dsRNA segments. Minus strands migrate faster than plus strands on citrate gels but are retarded on TBE gels. A study of electrophoretic conditions showed that pH affects strand resolution on citrate gels, and that voltage gradient, agarose concentration, and ethidium bromide significantly alter strand migration on TBE gels. Analysis of native phi 6 RNA synthesized in vivo and in vitro showed that the large and medium message RNAs comigrate with the corresponding plus strands of denatured virion dsRNA. The small messenger RNA is exceptional. Native small mRNA was detected as three isoconformers in vivo and in vitro. The isoconformers were converted by heat denaturation to a single RNA species that comigrates with the virion s+ strand. Minus strands labeled in vivo were detected only after heat denaturation. Minus strand synthesis was detected also in heat-denatured samples from in vitro phi 6 nucleocapsid RNA polymerase reactions at pH values suboptimal for transcription

  19. Plasmid transfer by conjugation in Xylella fastidiosa.

    Science.gov (United States)

    Recombination and horizontal gene transfer have been implicated in the adaption of Xylella fastidiosa (Xf) to infect a wide variety of different plant species. There is evidence that certain strains of Xf carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as ...

  20. Dendrimers as Carriers for siRNA Delivery and Gene Silencing: A Review

    Directory of Open Access Journals (Sweden)

    Jiangyu Wu

    2013-01-01

    Full Text Available RNA interference (RNAi was first literaturally reported in 1998 and has become rapidly a promising tool for therapeutic applications in gene therapy. In a typical RNAi process, small interfering RNAs (siRNA are used to specifically downregulate the expression of the targeted gene, known as the term “gene silencing.” One key point for successful gene silencing is to employ a safe and efficient siRNA delivery system. In this context, dendrimers are emerging as potential nonviral vectors to deliver siRNA for RNAi purpose. Dendrimers have attracted intense interest since their emanating research in the 1980s and are extensively studied as efficient DNA delivery vectors in gene transfer applications, due to their unique features based on the well-defined and multivalent structures. Knowing that DNA and RNA possess a similar structure in terms of nucleic acid framework and the electronegative nature, one can also use the excellent DNA delivery properties of dendrimers to develop effective siRNA delivery systems. In this review, the development of dendrimer-based siRNA delivery vectors is summarized, focusing on the vector features (siRNA delivery efficiency, cytotoxicity, etc. of different types of dendrimers and the related investigations on structure-activity relationship to promote safe and efficient siRNA delivery system.