WorldWideScience

Sample records for transfer processes final

  1. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  2. Electron transfer processes in ion collisions with atomic hydrogen. Final report for period February 1, 1975--June 30, 1976

    International Nuclear Information System (INIS)

    Bayfield, J.E.

    1976-07-01

    Results of experiments completed with Yale equipment coupled to the Oak Ridge Test Bench and Tandem Accelerator facilities are presented. Electron transfer cross sections have been measured at keV collision energies for B, C, N and O ions colliding with H, H 2 , Ar and He gas targets. The ion charge states studied range from +2 through +5. Also reported are cross sections for Si and Fe ions on H, H 2 and Ar at energies between 1.5 and 14 MeV, with charge states varying between +5 and +13. Also measured were the cross sections for H + collisions with H, H 2 and Ar for energies between 0.8 and 2.5 MeV. At keV energies the cross sections for highly charged B, C, N and O ions are found to be 1 x 10 -14 cm 2 . The cross sections for 4 MeV Fe ions scale roughly with the square of the ion charge, and have values as high as 0.5 x 10 -14 cm 2 for Fe 10+ + H collisions. A strong energy dependence is found for Fe ion collisions between 4 and 14 MeV. Previous results for MeV H + + Ar collisions are nicely reproduced, while our first results for the fundamental MeV H + - H collision problem are cross sections higher than many theoretical predictions

  3. Energy transfer mechanisms in photobiological reactions. Final report, 1 April 1960--31 March 1979. [Photodynamic processes in selected biomolecules

    Energy Technology Data Exchange (ETDEWEB)

    Spikes, J.D.

    1979-03-31

    This project was concerned primarily with studies of the mechanisms of the sensitized photooxidation of selected biomolecules using a variety of phtosensitizers. Such reactions are often termed photodynamic processes. In particular we have carried out steady-state kinetic studies, flash photolysis and spectral studies, and product formation studies of the sensitized photooxidation of the five susceptible amino acids (cycteine, histidine, methonine, tryptophan, and tyrosine) and their derivatives, as well as purines and pyrimidines. A number of studies were also carried out on the mechanisms of the photodynamic inactivation of enzymes (trypsin, ribonuclease, lysozyme). Mechanism of photosensitization were studied using a variety of sensitizers including flavins, porphyrins, and a number of synthetic dyes (substituted fluoresceins, acridines, thyazines).

  4. Alpha-capture reaction rates for 22 Ne (α , n) via sub-Coulomb alpha-transfer and its effect on final abundances of s-process isotopes

    Science.gov (United States)

    Jayatissa, Heshani; Rogachev, Grigory; Koshchiy, Yevgeny; Goldberg, Vladilen; Hooker, Joshua; Hunt, Curtis; Magana, Cordero; Roeder, Brian; Saastamoinen, Antti; Spiridon, Alexandria; Upadhyayula, Sriteja; Trippella, Oscar

    2017-09-01

    The 22 Ne (α , n) reaction is a very important neutron source reaction for the slow neutron capture process (s-process) in asymptotic giant branch stars. These direct measurements are very difficult to carry out at the energy regimes of interest for astrophysics (Gamow energies) due to the extremely small reaction cross section. The large uncertainties introduced when extrapolating direct measurements at high energies down to the Gamow energies can be overcome by measuring the Asymptotic Normalization Coefficients (ANC) of the relevant states using α-transfer reactions at sub-Coulomb energies to reduce the optical model dependence. The study of the 22Ne(6Li,d) and 22Ne(7Li,t) reaction was carried out at the Cyclotron Institute at Texas A&M University. The α-ANC measurements for the near α-threshold resonances of 26Mg provide constraints for the 22Ne(α,n) reaction rate. The effect of this reaction rate on the final abundances of the s-process isotopes will be discussed.

  5. MASS TRANSFER IN FERMENTATION PROCESSES

    Directory of Open Access Journals (Sweden)

    A. Shevchenko

    2018-04-01

    Full Text Available The peculiarities of anaerobic fermentation processes with the accumulation of dissolved ethyl alcohol and carbon dioxide in the culture media are considered in the article.The solubility of CO2 is limited by the state of saturation in accordance with Henry’s law. This, with all else being equal, limits the mass transfer on the interface surface of yeast cells and the liquid phase of the medium. A phenomenological model of the media restoration technologies based on the unsaturation index on СО2 is developed. It is shown that this restoration in the existing technologies of fermentation of sugar-rich media occurs, to a limited extent, in self-organized flow circuits, with variable values of temperatures and hydrostatic pressures, due to the creation of unsaturated local zones.It is shown that increasing the height of the media in isovolumetric apparatuses leads to an increase in the levels of flow circuits organization and to the improvement of the desaturation and saturation modes of the liquid phase and intensification of mass transfer processes. Among the deterministic principles of restoring the saturation possibilities of the media, there are forced variables of pressures with time pauses on their lower and upper levels. In such cases, the possibilities of short-term intensive desaturations in full media volumes, the restoration of their saturation perception of CO2, and the activation of fermentation processes are achieved. This direction is technically feasible for active industrial equipment.The cumulative effect of the action of variable pressures and temperatures corresponds to the superposition principle, but at the final stages of fermentation, the pressure and temperature values are leveled, so the restoration of the unsaturation state slows down to the level of the bacteriostatic effect. The possibility of eliminating the disadvantages of the final stage of fermentation by means of programmable variable pressures is shown

  6. Game theoretic aspect of production process transfer functions ...

    African Journals Online (AJOL)

    Game theoretic aspect of production process transfer functions. ... On the final analysis, it was shown that relating transfer function to Bayesian games and mechanism design would lead to optimal bids, optimal ... AJOL African Journals Online.

  7. Cornish heat transfer experiment - final report

    International Nuclear Information System (INIS)

    Bourke, P.J.; Hodgkinson, D.P.

    1985-01-01

    The transfer of heat released in an in-site heating experiment simulating high level radioactive waste packages in granite in Cornwall has been found to be mainly by conduction but some appreciable convection does occur. Interim analysis of the data suggests that the latter may account for about 20% of the total. (author)

  8. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  9. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  10. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  11. Energy transfer processes in Er-doped crystals

    International Nuclear Information System (INIS)

    Georgescu, Serban; Toma, Octavian

    2005-01-01

    In this paper, the microparameters characteristic to various energy-transfer processes in erbium doped crystals are estimated using the Dexter theory. For all the investigated processes, electric dipole-dipole interaction between donor and acceptor ions is assumed. The spectra appearing in Dexter's expression of the microparameter are simulated as a superposition of Lorentzian lines, knowing the positions of both initial and final Stark levels, and calibrated using the Judd-Ofelt model. This approach can give an estimation of the importance of the energy-transfer processes. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Hadron final states in deep inelastic processes

    International Nuclear Information System (INIS)

    Bjorken, J.D.

    1976-05-01

    Lectures are presented dealing mainly with the description and discussion of hadron final states in electroproduction, colliding beams, and neutrino reactions from the point of view of the simple parton model. Also the space-time evolution of final states in the parton model is considered. It is found that the picture of space-time evolution of hadron final states in deep inelastic processes isn't totally trivial and that it can be made consistent with the hypotheses of the parton model. 39 references

  13. Controlling the digital transfer process

    Science.gov (United States)

    Brunner, Felix

    1997-02-01

    The accuracy of today's color management systems fails to satisfy the requirements of the graphic arts market. A first explanation for this is that color calibration charts on which these systems rely, because of print technical reasons, are subject to color deviations and inconsistencies. A second reason is that colorimetry describes the human visual perception of color differences and has no direct relation to the rendering technology itself of a proofing or printing device. The author explains that only firm process control of the many parameters in offset printing by means of a system as for example EUROSTANDARD System Brunner, can lead to accurate and consistent calibration of scanner, display, proof and print. The same principles hold for the quality management of digital presses.

  14. Indicators for Building Process without Final Defects -

    DEFF Research Database (Denmark)

    Jørgensen, Kirsten; Rasmussen, Grane Mikael Gregaard; Thuesen, Christian Langhoff

    2011-01-01

    This article introduces the preliminary data analysis, as well as the underlying theories and methods for identifying the indicators for building process without final defects. Since 2004, the Benchmark Centre for the Danish Construction Sector (BEC) has collected information about legal defects...

  15. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  16. ATAC Process Proof of Concept Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Bri Rolston; Sarah Freeman

    2014-03-01

    Researchers at INL with funding from the Department of Energy’s Office of Electricity Delivery and Energy Reliability (DOE-OE) evaluated a novel approach for near real-time consumption of threat intelligence. Demonstration testing in an industry environment supported the development of this new process to assist the electric sector in securing their critical networks. This report provides the reader with an understanding of the methods used during this proof of concept project. The processes and templates were further advanced with an industry partner during an onsite assessment. This report concludes with lessons learned and a roadmap for final development of these materials for use by industry.

  17. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  18. Concept Generation Process for Patient Transferring Device

    Science.gov (United States)

    Dandavate, A. L.; Sarje, S. H.

    2012-07-01

    In this paper, an attempt has been made to develop concepts for patient transferring tasks. The concept generation process of patient transferring device (PTD), which includes interviews of the customers, interpretation of the needs, organizing the needs into a hierarchy, establishing relative importance of the needs, establishing target specifications, and conceptualization has been discussed in this paper. The authors conducted the interviews of customers at Mobilink NGO, St. John's Hospital, Bangalore in order to know the needs and wants for the PTD. AHP technique was used for establishing and evaluating relative importance of needs, and based on the importance of the customer needs, concepts were developed through brainstorming.

  19. Remote process cell mercury transfer pumps for DWPF

    International Nuclear Information System (INIS)

    Nielsen, M.G.; Vaughn, V.G.

    1986-01-01

    Final design and the results of the testing performed thus far show that the water displacement of mercury to a height of 40 feet is feasible with just 6 gallons of motive water. Control of the transfer is achieved by monitoring the pump discharge pressure. An air actuated plug valve configuration successfully contained the required discharge pressure of 260 psi. The requirements of low flow and maximum separation of mercury from particulates are achieved due to the configuration of the pressure canister. The pump is capable of transferring a discrete amount of mercury with little additional slurry particulates. The success of this new pumping configuration is highlighted by the fact that it was the inspiration for other remote transfer applications tested at SRP. These application include the dual canister sample pump shown in Figure 7, as well as a successful prototype pump designed at Pacific Northwest Laboratories (PNL). The PNL pump was designed for the purpose of metering waste slurries to an electric melter. Upon completion of final pump fabrication, the Defense Waste Processing facility (DWPF) facility will have a simple and highly reliable method of remotely transferring small discrete batches of mercury as required from radioactive process vessels. 3 refs., 7 figs., 1 tab

  20. Cast Metals Coalition Technology Transfer and Program Management Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Gwyn, Mike

    2009-03-31

    The Cast Metals Coalition (CMC) partnership program was funded to ensure that the results of the Department of Energy's (DOE) metalcasting research and development (R&D) projects are successfully deployed into industry. Specifically, the CMC program coordinated the transfer and deployment of energy saving technologies and process improvements developed under separately funded DOE programs and projects into industry. The transition of these technologies and process improvements is a critical step in the path to realizing actual energy savings. At full deployment, DOE funded metalcasting R&D results are projected to save 55% of the energy used by the industry in 1998. This closely aligns with DOE's current goal of driving a 25% reduction in industrial energy intensity by 2017. In addition to benefiting DOE, these energy savings provide metalcasters with a significant economic advantage. Deployment of already completed R&D project results and those still underway is estimated to return over 500% of the original DOE and industry investment. Energy savings estimates through December 2008 from the Energy-Saving Melting and Revert Reduction Technology (E-SMARRT) portfolio of projects alone are 12 x 1012 BTUs, with a projection of over 50 x 1012 BTUs ten years after program completion. These energy savings and process improvements have been made possible through the unique collaborative structure of the CMC partnership. The CMC team consists of DOE's Office of Industrial Technology, the three leading metalcasting technical societies in the U.S: the American Foundry Society; the North American Die Casting Association; and the Steel Founders Society of America; and the Advanced Technology Institute (ATI), a recognized leader in distributed technology management. CMC provides collaborative leadership to a complex industry composed of approximately 2,100 companies, 80% of which employ less than 100 people, and only 4% of which employ more than 250 people

  1. 40 CFR 61.134 - Standard: Naphthalene processing, final coolers, and final-cooler cooling towers.

    Science.gov (United States)

    2010-07-01

    ... coolers, and final-cooler cooling towers. 61.134 Section 61.134 Protection of Environment ENVIRONMENTAL... Standard: Naphthalene processing, final coolers, and final-cooler cooling towers. (a) No (“zero”) emissions are allowed from naphthalene processing, final coolers and final-cooler cooling towers at coke by...

  2. FINAL REPORT: Transformational electrode drying process

    Energy Technology Data Exchange (ETDEWEB)

    Claus Daniel, C.; Wixom, M.(A123 Systems, Inc.)

    2013-12-19

    This report includes major findings and outlook from the transformational electrode drying project performance period from January 6, 2012 to August 1, 2012. Electrode drying before cell assembly is an operational bottleneck in battery manufacturing due to long drying times and batch processing. Water taken up during shipment and other manufacturing steps needs to be removed before final battery assembly. Conventional vacuum ovens are limited in drying speed due to a temperature threshold needed to avoid damaging polymer components in the composite electrode. Roll to roll operation and alternative treatments can increase the water desorption and removal rate without overheating and damaging other components in the composite electrode, thus considerably reducing drying time and energy use. The objective of this project was the development of an electrode drying procedure, and the demonstration of processes with no decrease in battery performance. The benchmark for all drying data was an 80°C vacuum furnace treatment with a residence time of 18 – 22 hours. This report demonstrates an alternative roll to roll drying process with a 500-fold improvement in drying time down to 2 minutes and consumption of only 30% of the energy compared to vacuum furnace treatment.

  3. Final processing vessel for radioactive waste

    International Nuclear Information System (INIS)

    Tejima, Takaya; Hiraki, Akimitsu.

    1989-01-01

    An inorganic inner layer comprising dense inorganic material such as organic polymer-impregnated concretes is formed to about 10 - 50 mm in average thickness at the inside of a metal vessel. Further, the surface of the vessel is formed as a flat surface with no or only small reinforcing protrusions. Thus, if the final processing vessel should be dropped during transportation or handling by mistake, since impact shocks do not concentrate to protrusions as usual, no local stress concentration occurs to the inorganic inner liner layer. Accordingly, the risk of rapture can be reduced greatly. Further, since impact shock resistance layer put between the metal vessel and the inorganic inner liner layer absorbs shocks, a further sufficient strength can be obtained against dropping accident. (T.M.)

  4. Dynamics of high momentum transfer processes

    International Nuclear Information System (INIS)

    Efremov, A.V.

    1977-01-01

    The high momentum transfer processes are considered in terms of field theory of quarks interacting through scalar or pseudoscalar gluons. This approach is based on an algorithm involving the consideration of the Feynman diagram asymptotical behaviour and its summation. The Parton model and quark counting power are an approximation of not too high momentum transfer when anti g 2 (q 2 )ln(-q 2 /Λ) 2 -invariant charge, Λ-boundary parameter. The violation of scaling beyond this region depends on the character of charge renormalization and is of the same kind as in the Wilson expansion approach. Scaling in this region is suppressed by anti g 4 factor for high psub(UPSILON) hadroproduction and wide angle elastic scattering, and by anti g 2 factor for inclusive lepton production and wide angle electro- and photoproduction. Parameter Λ is controlled by hadron masses and can be essential for not too high psub(UPSILON)

  5. Heat transfer in a thermoacoustic process

    International Nuclear Information System (INIS)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)

  6. Fundamental Processes in Plasmas. Final report

    International Nuclear Information System (INIS)

    O'Neil, Thomas M.; Driscoll, C. Fred

    2009-01-01

    This research focuses on fundamental processes in plasmas, and emphasizes problems for which precise experimental tests of theory can be obtained. Experiments are performed on non-neutral plasmas, utilizing three electron traps and one ion trap with a broad range of operating regimes and diagnostics. Theory is focused on fundamental plasma and fluid processes underlying collisional transport and fluid turbulence, using both analytic techniques and medium-scale numerical simulations. The simplicity of these systems allows a depth of understanding and a precision of comparison between theory and experiment which is rarely possible for neutral plasmas in complex geometry. The recent work has focused on three areas in basic plasma physics. First, experiments and theory have probed fundamental characteristics of plasma waves: from the low-amplitude thermal regime, to inviscid damping and fluid echoes, to cold fluid waves in cryogenic ion plasmas. Second, the wide-ranging effects of dissipative separatrices have been studied experimentally and theoretically, finding novel wave damping and coupling effects and important plasma transport effects. Finally, correlated systems have been investigated experimentally and theoretically: UCSD experients have now measured the Salpeter correlation enhancement, and theory work has characterized the 'guiding center atoms of antihydrogen created at CERN

  7. Transference of mass in fermentation process

    International Nuclear Information System (INIS)

    Rios E, R.; Buitrago H, G

    1998-01-01

    Based on bibliographical references, in a theoretical model based on a fermentation process, the relationship between the speed of oxygen transfer and the biochemistry demand is implemented, in order to discover the different conditions of aeration and of agitation speed, under those which the microbial growth is not affected by deficiency in the oxygen supply. This correlation was adapted to the cultivation of B. Thuringiensis, and of this form, maximum biomass concentration to the one, which is possible to supply oxygen efficiently with a group of defined operation conditions, could be estimated

  8. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report; FINAL

    International Nuclear Information System (INIS)

    Suslick, K. S.

    2001-01-01

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions

  9. Heat and mass transfer enhancement in absorbing processes

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Lee, S.K.

    1993-01-01

    The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)

  10. Software engineering technology transfer: Understanding the process

    Science.gov (United States)

    Zelkowitz, Marvin V.

    1993-01-01

    Technology transfer is of crucial concern to both government and industry today. In this report, the mechanisms developed by NASA to transfer technology are explored and the actual mechanisms used to transfer software development technologies are investigated. Time, cost, and effectiveness of software engineering technology transfer is reported.

  11. Exploring the Critical Role of Motivation to Transfer in the Training Transfer Process

    Science.gov (United States)

    Grohmann, Anna; Beller, Johannes; Kauffeld, Simone

    2014-01-01

    The present study aims at exploring the critical role of motivation to transfer within the training transfer process. In a sample of N?=?252 employees of one industrial company, one peer rating and several self-ratings of transfer were used to investigate the mediating role of motivation to transfer in the relationship between training…

  12. When Creativity Met Transfer: Increasing Creativity and Transfer by Controlling the Styles of Processing

    Science.gov (United States)

    Kaniel, Shlomo

    2013-01-01

    The primary purpose of this article is to combine both transfer of learning (hereafter, transfer) and creativity into similar processes that can increase the products of transfer and creativity. Both transfer and creativity operate within reciprocal relationships between memory storage and working memory. Moreover, they are also based on moving…

  13. Requirements for facilities transferring or receiving select agents. Final rule.

    Science.gov (United States)

    2001-08-31

    CDC administers regulations that govern the transfer of certain biological agents and toxins ("select agents"). These regulations require entities that transfer or receive select agents to register with CDC and comply with biosafety standards contained in the Third Edition of the CDC/NIH publication "Biosafety in Microbiological and Biomedical Laboratories ("BMBL")." On October 28,1999, CDC published a Notice of Proposed Rulemaking ("NPRM") seeking both to revise the biosafety standards facilities must follow when handling select agents and to provide new biosecurity standards for such facilities. These new standards are contained in the Fourth Edition of BMBL, which the NPRM proposed to incorporate by reference, thereby replacing the Third Edition. No comments were received in response to this proposal. CDC is therefore amending its regulations to incorporate the Fourth Edition.

  14. Mechanics/heat-transfer relation for particulate materials. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Campbell, C.S.; Wang, D.G.; Rahman, K.

    1991-11-01

    The original goal of this study was to try and understand the relationship between the thermal and mechanical properties of particulate flows. Two situations were examined. The first is a study of the effects of simple shear flows, as a embryonic flow type on the apparent thermal conductivity and apparent viscosity of a dry granular flow. The second study involved fluidized beds. The original idea was to try and relate the heat transfer behavior of a fluidized bed to the ``particle pressure,`` the forces by only the particle phase of the two-phase mixture. (VC)

  15. Transfer process studies through a toarcian argilite

    International Nuclear Information System (INIS)

    Boisson, J.Y.

    1996-01-01

    Concerning long lived and high level radioactive wastes, the French Wastes Management Research Act (30th December 1991) has set three ways to be studied: separation and/or transmutation, conditioning processes and volumes reduction, and feasibility of geological disposal. ANDRA, in charge of this last point; has the responsibility to create and develop underground laboratories, to elaborate and propose the concept of the future disposal installations with safety demonstration, to be submitted to the French safety governmental authorities (Direction de la Surete des Installations Nucleaires). In order to asses these safety demonstrations, to build up its judgement, DSIN will ask technical advice, from Institut de Protection et de Surete Nucleaire (IPSN). To be able to meet these requirements, IPSN is developing, in the framework of its research and development safety programs, in situ research concerning the confining properties of geological formations. In order to perform experiments in representative conditions concerning mainly geotechnical and hydrogeological properties of very low permeability rocks, appropriate underground sites have been selected in the past in granite and shale formations. IPSN activities at the Tournemire site are the most important activities regarding specifically research about characterization of transfers through an argilite formation. This programme is developed in the framework of a cost sharing research contract between IPSN and EC. (author)

  16. Rockfall Hazard Process Assessment : Final Project Report

    Science.gov (United States)

    2017-10-01

    After a decade of using the Rockfall Hazard Rating System (RHRS), the Montana Department of Transportation (MDT) sought a reassessment of their rockfall hazard evaluation process. Their prior system was a slightly modified version of the RHRS and was...

  17. Electronic construction collaboration system -- final phase : [tech transfer summary].

    Science.gov (United States)

    2014-07-01

    Construction projects have been growing more complex in terms of : project team composition, design aspects, and construction processes. : To help manage the shop/working drawings and requests for information : (RFIs) for its large, complex projects,...

  18. Graphite curtain vacuum outgassing and heat transfer. Final report

    International Nuclear Information System (INIS)

    Fivel, H.J.; Lang, G.P.; Kipp, H.W.

    1976-12-01

    Thermal conductivity of a bundle of high conductivity graphite fibers (T-50) was measured as a function of temperature, density and fiber orientation at pressures of 10 -4 to 10 -5 torr. All 3 variables had a significant influence on thermal conductivity. The highest conductivity fiber bundle tested had a conductivity significantly less than dense, bulk nuclear grade graphite. The incorporation of heat pipes into a graphite spectral shaper will permit a 2-fold thicker shaper. Heat pipes not only increase the transport of heat within the spectral shaper but can increase heat transfer at the shaper-first wall interface and potentially serve as a means of attaching shaper modules to the first wall. A heat pipe using a liquid metal working fluid was fabricated and tested in magnetic fields of 1 and 2 Tesla. Liquid metal heat pipes can be used in a magnetic field of at least up to 2 Tesla. Much more work needs to be done to establish the capabilities for high performance heat pipes when used in magnetic fields. Four different types of graphite fibers were exposed in EBR-II to a neutron fluence of 3.5 x 10 21 cm -2 EFF at 470 0 C. Large axial shrinkages of 6.6 to 8.6% resulted

  19. FY-2010 Process Monitoring Technology Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Orton, Christopher R.; Bryan, Samuel A.; Casella, Amanda J.; Hines, Wes; Levitskaia, Tatiana G.; henkell, J.; Schwantes, Jon M.; Jordan, Elizabeth A.; Lines, Amanda M.; Fraga, Carlos G.; Peterson, James M.; Verdugo, Dawn E.; Christensen, Ronald N.; Peper, Shane M.

    2011-01-01

    During FY 2010, work under the Spectroscopy-Based Process Monitoring task included ordering and receiving four fluid flow meters and four flow visible-near infrared spectrometer cells to be instrumented within the centrifugal contactor system at Pacific Northwest National Laboratory (PNNL). Initial demonstrations of real-time spectroscopic measurements on cold-stream simulants were conducted using plutonium (Pu)/uranium (U) (PUREX) solvent extraction process conditions. The specific test case examined the extraction of neodymium nitrate (Nd(NO3)3) from an aqueous nitric acid (HNO3) feed into a tri-n-butyl phosphate (TBP)/ n-dodecane solvent. Demonstration testing of this system included diverting a sample from the aqueous feed meanwhile monitoring the process in every phase using the on-line spectroscopic process monitoring system. The purpose of this demonstration was to test whether spectroscopic monitoring is capable of determining the mass balance of metal nitrate species involved in a cross-current solvent extraction scheme while also diverting a sample from the system. The diversion scenario involved diverting a portion of the feed from a counter-current extraction system while a continuous extraction experiment was underway. A successful test would demonstrate the ability of the process monitoring system to detect and quantify the diversion of material from the system during a real-time continuous solvent extraction experiment. The system was designed to mimic a PUREX-type extraction process with a bank of four centrifugal contactors. The aqueous feed contained Nd(NO3)3 in HNO3, and the organic phase was composed of TBP/n-dodecane. The amount of sample observed to be diverted by on-line spectroscopic process monitoring was measured to be 3 mmol (3 x 10-3 mol) Nd3+. This value was in excellent agreement with the 2.9 mmol Nd3+ value based on the known mass of sample taken (i.e., diverted) directly from the system feed solution.

  20. Parton dynamics in hadronic processes. Final report

    International Nuclear Information System (INIS)

    Sukhatme, U.P.

    1984-07-01

    We have elucidated several aspects of the dual parton fragmentation model for low transverse momentum multiparticle production in hadronic collisions previously developed by the author and collaborators at Orsay, France. In particular, we have verified that the dual parton model correctly reproduces recently obtained two particle inclusive distributions and particle ratios in the central region of pp and anti pp collisions. This work sheds light on the dynamics of partons in a hadronic collision since it strongly indicates that a valence quark from each initial hadron is held back with a small momentum fraction. Also, we have extended the dual parton approach to include diffraction dissocation and studied the consequences on inclusive pion production in pp interactions. We have investigated the virtues and limitations of logarithmic perturbation theory, which is often a much simpler alternative to standard Rayleigh-Schroedinger perturbation theory. Finally, we have developed and studied the shifted 1/N expansion for the enrgy eigenstates in non-relativistic quantum mechanics. Our results provide an accurate, rapidly convergent, powerful new way of handling any spherically symmetric potential. 18 references

  1. Vibrational energy transfer kinetics in molecular disequilibrium. Final technical report

    International Nuclear Information System (INIS)

    Rich, J.W.

    1982-09-01

    The present Calspan experiments have shown direct evidence of preferential vibrational pumping of two heavy isotopes of CO: 13 C 16 O and 12 C 18 O. The nature of the enhancement is generally consistent with the predictions of theoretical modeling. These are the first direct experimental demonstrations of this isotope selection method. The potential advantages of such a means of isotope separation are inherent in the V-V pumping process itself. Summarizing these: (1) Selectivity actually increases at higher reactant pressures, since the selection mechanism is collisional. Accordingly, rather high throughputs are possible, unlike other techniques in which molecular collisions actually decrease selectivity. (2) A variety of excitation methods can potentially be used - electric discharge, optical excitation by coherent or incoherent sources, or chemical excitation; laser excitation is not critical to the process. (3) The method can be applied to many isotopes of the lighter atoms. It is not inherently species-specific

  2. Hydrodynamics and mass transfer in trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing; Xiang Qinfang; Guo Jianzheng

    1995-01-01

    The initial research results of the hydrodynamic behavior and mass transfer of the trickle leaching process are summarized. It was shown that the dropping mode, the height of uranium ore heap and the flow rate of the dropping fluid affect the mass transfer of the trickle leaching process. Based on the concept of the keeping form of liquid in ore particle bed and the diffusion in porous medium, a mass transfer pattern, i.e. 'double-membrane transfer process' controlled by porous diffusion, was presented and proved for trickle leaching process

  3. Study of The Final Customer Loyalty Process

    Directory of Open Access Journals (Sweden)

    Juan Carlos Fandos

    2013-12-01

    Full Text Available For any business is important to maintain a loyal customer base to help they to survive over time. This situation is accentuated even to the extent that increases competition and increases uncertainty. At present these are two features that are really developed. Because of the deep crisis in which we are, and other elements such as globalization and the development of new technologies and communication systems, we are faced with a scenario of intense competition and uncertainty manifest. It is therefore more necessary than ever to know in depth how to get customers to be faithful, and develop true loyalty strategies.In this paper, we present the sequential approach to the formation of consumer loyalty in order to deepen understanding of the concept. It is supplemented by studying the combined effect of switching costs as an element that promotes the continuity of the relationship. The results shows that the consumer takes a more cognitive process information in their initial assessments of the service and therefore in the early stages of loyalty. As advances in consumer behavior process becomes more direct and mechanic, so we can say that the customer-company bond is stronger.

  4. Borehole plugging by compaction process. Final report

    International Nuclear Information System (INIS)

    Fernandez, R.; MacGowan, C.; Nolan, E.; Morey, R.; Palty, A.

    1976-08-01

    The requirements of an overall program to preserve the integrity of a repository formation are documented. The repository is intended to be in stable earth stratum used as a safe and permanent storage area for nuclear waste material. These wastes represent an environmental hazard for a period of up to 200,000 years. An engineering analysis, a reliability and quality-assurance program, and a development program for borehole plugging by compaction process, using natural earthen materials, are presented. Part 1 provides the engineering analysis of downhole compaction methods and related instrumentation along with a recommended development plan from concept through a pilot in-situ experiment. Part 2 provides a reliability and quality-assurance program from laboratory testing of materials through an in-situ experiment

  5. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  6. Toward a new nanoLIFT transfer process

    International Nuclear Information System (INIS)

    Mezel, C.; Hallo, L.; Breil, J.; Souquet, A.; Guillemot, F.; Bourgeade, A.; Hebert, D.; Saut, O.

    2010-01-01

    The Laser Induced Forward Transfer (LIFT) is a direct-write technique used to print biological materials such as living cells or molecules. During the LIFT process, the biomaterial to be printed is deposited on a target submitted to a nanosecond laser shot, and the ejecta are collected onto a receiving substrate. Despite the several advantages of this technique (control of the propelled quantity, no spoiling of the substrate), it remains difficult to be employed due to the high sensitivity of its control parameters. Recently, Duocastella published some experimental results which exhibit the real-time jet formation process, under conditions similar to those present in the LIFT process. In the first Section, a typical experimental setup for LIFT process is presented. Then, simulations of Duocastella's and Guillemot's experiments are carried out to model the jet formation in water when irradiated by an ultraviolet nanosecond laser pulse. The 2D axisymmetric hydrodynamic code CHIC (Code d'Hydrodynamique et d'Implosion du CELIA) is used for these simulations with included equations of state (EOS) to take into account the behavior of water under standard conditions. Finally, an improvement of the LIFT technique which consists in using femtosecond lasers instead of nanosecond ones, is presented. It would allow to process smaller bioelements and to control the jet diameter, as it is directly related to the laser beam waist.

  7. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  8. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  9. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-01-01

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed

  10. Process of international kaizen transfer in the Netherlands

    NARCIS (Netherlands)

    Yokozawa, Kodo; Steenhuis, H.J.; de Bruijn, E.J.

    2011-01-01

    This study sheds light on the international kaizen transfer process. Two research questions were explored: what are the major stages in the kaizen transfer process? And what are the activities, positive and negative factors influencing each stage? Case studies with 15 Japanese manufacturers in the

  11. Single stage anaerobic digestion process. Megas process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Malarich, M.

    1985-12-01

    The rate-limiting step in the anaerobic digestion of domestic sewage sludge and agricultural manures is usually considered the conversion of acetate to methane and carbon dioxide. Some reports have suggested that phase transfer of endproduct carbon dioxide from the liquid to gaseous state may be the overall rate-limiting step. Research to date has focused on batch fermentation studies at varying carbon dioxide partial pressures (pCO/sub 2/) using simple substrates such as glucose or acetate. The results indicate that lowering the pCO/sub 2/ may increase methane production and waste stabilization rates. This research was conducted using continuous fermentations. Continuous fermentations using a complex synthetic waste were performed over a five-month period. The results obtained failed to support the findings of earlier batch studies where methane production increased as pCO/sub 2/ decreased. No significant difference in methane production was found between anaerobic digestion at low pCO/sub 2/ (0.1 to 0.15 atm) and normal pCO/sub 2/ (0.4 to 0.5 atm). 15 refs., 8 figs., 2 tabs.

  12. Final Rule for Industrial Process Cooling Towers: Fact Sheet

    Science.gov (United States)

    Fact sheet concerning a final rule to reduce air toxics emissions from industrial process cooling towers. Air toxics are those pollutants known or suspected of causing cancer or other serious health effects.

  13. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  14. Feedback Specificity, Information Processing, and Transfer of Training

    Science.gov (United States)

    Goodman, Jodi S.; Wood, Robert E.; Chen, Zheng

    2011-01-01

    This study examines the effects of feedback specificity on transfer of training and the mechanisms through which feedback can enhance or inhibit transfer. We used concurrent verbal protocol methodology to elicit and operationalize the explicit information processing activities used by 48 trainees performing the Furniture Factory computer…

  15. Graphene transfer process and optimization of graphene coverage

    OpenAIRE

    Sabki Syarifah Norfaezah; Shamsuri Shafiq Hafly; Fauzi Siti Fazlina; Chon-Ki Meghashama Lim; Othman Noraini

    2017-01-01

    Graphene grown on transition metal is known to be high in quality due to its controlled amount of defects and potentially used for many electronic applications. The transfer process of graphene grown on transition metal to a new substrate requires optimization in order to ensure that high graphene coverage can be obtained. In this work, an improvement in the graphene transfer process is performed from graphene grown on copper foil. It has been observed that the graphene coverage is affected b...

  16. Study of primary energy transfer process in ultrafast plastic scintillators

    International Nuclear Information System (INIS)

    Bengtson, B.; Moszynski, M.

    1978-01-01

    The study of the light-pulse shape, the initial delay of light pulses and the light yield of plastics prepared by a modification of the NE111 scintillator were performed. The NE111 scintillator doped with several quench agents, the plastics prepared as a solution of butyl PBD in PVT of different concentration and PVT alone were studied. The study confirmed that the light pulse shape from fast binary plastics is well described analytically by the convolution of the clipped Gaussian and exponential functions. The investigation of the PVT-butyl PBD plastics shows that even more than three times larger concentration of butyl PBD compared to that of PBD in the NE111 solution does not improve the rise of the light pulse. Thus the rise time seems to be not controlled by the intermolecular energy transfer process. Finally, the observed rise time of the light pulse from the PVT sample was also approximated well by the Gaussian function. Altogether it brought a strong support for the earlier hypothesis that the initial slow rise of light pulses from plastic scintillators may come from the deexcitation of several higher levels of the solvent molecules excited by nuclear particles. (Auth.)

  17. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  18. Final-state interaction in processes of deuteron breaking

    International Nuclear Information System (INIS)

    Thome Filho, Z.D.

    1974-12-01

    Interaction between particles in the final state of reactions can strongly affect the experimental angular distributions, as in the scattering processes with the breaking of the deuteron target, where the final state interaction is responsible for the disappearance of the differential cross section in the front direction. It is then necessary to include the contribution of the final state interaction to small angles of incoherent processes particle-deuteron. In this work line, an analysis is made of the process πd → πpn for different values of the incident energy. The data obtained are compared with existing experimental data. The hypothesis is also considered of the nucleon which collides with the incident particle being outside the mass layer. An analytical extension of the resonant amplitude πN outwards the mass layer is also used

  19. Computer simulation of transitional process to the final stable Brayton cycle in magnetic refrigeration

    International Nuclear Information System (INIS)

    Numasawa, T.; Hashimoto, T.

    1981-01-01

    The final working cycle in the magnetic refrigeration largely depends on the heat transfer coefficient β in the system, the parameter γ of the heat inflow from the outer system to this cycle and the period tau of the cycle. Therefore, so as to make clear this dependence, the time variation of the Brayton cycle with β, γ and tau has been investigated. In the present paper the transitional process of this cycle and the dependence of the final cooling temperature of the heat load on β, γ and tau have all been shown. (orig.)

  20. The evaporation of viscose process liquors: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Thornton, R

    1984-01-01

    A program of work aimed at producing designs for an energy efficient process for the evaporation of water from viscose process liquors has been completed. The process uses mechanical vapor recompression in conjunction with a thin plastic heat transfer surface. A bench laboratory evaporation rig was built to prove the technical viability of the process. This was followed by the construction of a research plant at a viscose production site. The capacity of this plant was 100 to 150 kg/h of water evaporated. The construction and operation of a plastic heat exchanger with thin walled plastic tubes was achieved with considerable success. The lining of the concrete containment vessel proved more difficult, and the technique employed may not be the best for commercial units. Heat transfer coefficients of up to 550 Wm/sup -2/ K/sup -1/ were measured on the research plant. These agreed well with results obtained from a mathematical model developed for the process. An optimum design for a commercial unit has been costed and the financial parameters determined. Courtaulds considers that the construction of a demonstration plant is justified. 3 refs., 8 figs.

  1. Space Processing Applications Rocket project, SPAR 1. Final report

    International Nuclear Information System (INIS)

    Reeves, F.; Chassay, R.

    1976-12-01

    The experiment objectives, design/operational concepts, and final results of each of nine scientific experiments conducted during the first Space Processing Applications Rocket (SPAR) flight are summarized. The nine individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: solidification of Pb-Sb eutectic, feasibility of producing closed-cell metal foams, characterization of rocket vibration environment by measurement of mixing of two liquids, uniform dispersions of crystallization processing, direct observation of solidification as a function of gravity levels, casting thoria dispersion-strengthened interfaces, contained polycrystalline solidification, and preparation of a special alloy for manufacturing of magnetic hard superconductor under zero-g environment

  2. Space Processing Applications rocket project SPAR III. Final report

    International Nuclear Information System (INIS)

    Reeves, F.

    1978-01-01

    This document presents the engineering report and science payload III test report and summarizes the experiment objectives, design/operational concepts, and final results of each of five scientific experiments conducted during the third Space Processing Applications Rocket (SPAR) flight flown by NASA in December 1976. The five individual SPAR experiments, covering a wide and varied range of scientific materials processing objectives, were entitled: Liquid Mixing, Interaction of Bubbles with Solidification Interfaces, Epitaxial Growth of Single Crystal Film, Containerless Processing of Beryllium, and Contact and Coalescence of Viscous Bodies

  3. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    International Nuclear Information System (INIS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; Tok, A. I. Y.; Krishna, D. Siva Rama

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes. (plasma technology)

  4. Chemical-cleaning process evaluation: Westinghouse steam generators. Final report

    International Nuclear Information System (INIS)

    Cleary, W.F.; Gockley, G.B.

    1983-04-01

    The Steam Generator Owners Group (SGOG)/Electric Power Research Institute (EPRI) Steam Generator Secondary Side Chemical Cleaning Program, under develpment since 1978, has resulted in a generic process for the removal of accumulated corrosion products and tube deposits in the tube support plate crevices. The SGOG/EPRI Project S150-3 was established to obtain an evaluation of the generic process in regard to its applicability to Westinghouse steam generators. The results of the evaluation form the basis for recommendations for transferring the generic process to a plant specific application and identify chemical cleaning corrosion guidelines for the materials in Westinghouse Steam Generators. The results of the evaluation, recommendations for plant-specific applications and corrosion guidelines for chemical cleaning are presented in this report

  5. Effect of Electromagnetic Fields on Transfer Processes in Heterogeneous Systems

    Czech Academy of Sciences Publication Activity Database

    Levdansky, V.V.; Kim, H. Y.; Kim, H. C.; Smolík, Jiří; Moravec, Pavel

    2001-01-01

    Roč. 44, č. 5 (2001), s. 1065-1071 ISSN 0017-9310 Institutional research plan: CEZ:AV0Z4072921 Keywords : electromagnetic field * transfer processes * heterogeneous system Subject RIV: CF - Physical ; Theoretical Chemistry Impact factor: 1.240, year: 2001

  6. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the

  7. Mass transfer processes in crystalline aggregates containing a fluid phase

    NARCIS (Netherlands)

    Visser, H.J.M.

    1999-01-01

    Understanding mass transfer processes in porous crystalline aggregates containing a fluid phase is of major importance for modelling partially molten regions of the Earth's mantle, such as those under mid-ocean spreading ridges. Despite the fact that mid-ocean ridges can be considered the simplest

  8. Trust, Knowledge Creation and Mediating Effects of Knowledge Transfer Processes

    Directory of Open Access Journals (Sweden)

    Anna Sankowska

    2016-01-01

    Full Text Available This paper investigates how organizational trust contributes to knowledge transfer processes and knowledge creation both directly and indirectly. The mediation analyses were used. The findings using cross-sectional data from Polish companies suggest a new way of thinking in respect of how crucial is trust to creation of knowledge unconnected to organizational memory.

  9. Hadronic final states and sum rules in deep inelastic processes

    International Nuclear Information System (INIS)

    Pal, B.K.

    1977-01-01

    In order to get maximum information on the hadronic final states and sum rules in deep inelastic processes, Regge phenomenology and quarks parton model have been used. The unified picture for the production of hadrons of type i as a function of Bjorken and Feyman variables with only one adjustable parameter is formulated. The results of neutrino experiments and the production of charm particles are discussed in sum rules. (author)

  10. Phase change heat transfer device for process heat applications

    International Nuclear Information System (INIS)

    Sabharwall, Piyush; Patterson, Mike; Utgikar, Vivek; Gunnerson, Fred

    2010-01-01

    The next generation nuclear plant (NGNP) will most likely produce electricity and process heat, with both being considered for hydrogen production. To capture nuclear process heat, and transport it to a distant industrial facility requires a high temperature system of heat exchangers, pumps and/or compressors. The heat transfer system is particularly challenging not only due to the elevated temperatures (up to ∼1300 K) and industrial scale power transport (≥50 MW), but also due to a potentially large separation distance between the nuclear and industrial plants (100+ m) dictated by safety and licensing mandates. The work reported here is the preliminary analysis of two-phase thermosyphon heat transfer performance with alkali metals. A thermosyphon is a thermal device for transporting heat from one point to another with quite extraordinary properties. In contrast to single-phased forced convective heat transfer via 'pumping a fluid', a thermosyphon (also called a wickless heat pipe) transfers heat through the vaporization/condensing process. The condensate is further returned to the hot source by gravity, i.e., without any requirement of pumps or compressors. With this mode of heat transfer, the thermosyphon has the capability to transport heat at high rates over appreciable distances, virtually isothermally and without any requirement for external pumping devices. Two-phase heat transfer by a thermosyphon has the advantage of high enthalpy transport that includes the sensible heat of the liquid, the latent heat of vaporization, and vapor superheat. In contrast, single-phase forced convection transports only the sensible heat of the fluid. Additionally, vapor-phase velocities within a thermosyphon are much greater than single-phase liquid velocities within a forced convective loop. Thermosyphon performance can be limited by the sonic limit (choking) of vapor flow and/or by condensate entrainment. Proper thermosyphon requires analysis of both.

  11. Mechanism for the Excited-State Multiple Proton Transfer Process of Dihydroxyanthraquinone Chromophores.

    Science.gov (United States)

    Zhou, Qiao; Du, Can; Yang, Li; Zhao, Meiyu; Dai, Yumei; Song, Peng

    2017-06-22

    The single and dual cooperated proton transfer dynamic process in the excited state of 1,5-dihydroxyanthraquinone (1,5-DHAQ) was theoretically investigated, taking solvent effects (ethanol) into account. The absorption and fluorescence spectra were simulated, and dual fluorescence exhibited, which is consistent with previous experiments. Analysis of the calculated IR and Raman vibration spectra reveals that the intramolecular hydrogen bonding interactions (O 20 -H 21 ···O 24 and O 22 -H 23 ···O 25 ) are strengthened following the excited proton transfer process. Finally, by constructing the potential energy surfaces of the ground state, first excited singlet state, and triplet state, the mechanism of the intramolecular proton transfer of 1,5-DHAQ can be revealed.

  12. The Competence Accumulation Process in the Technology Transference Strategy

    Directory of Open Access Journals (Sweden)

    André Silva de Souza

    2008-04-01

    Full Text Available The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001 and during the technology transference process(2002-2005. Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch office, the technological functions and activities developed by the receiver and, at last, the critical factors present in this process. The echnological competences accumulation exam was accomplished based on an analytical structure existent in the literature that was adapted to the researched segment analysis. The obtained results showed that the planed, organized, controlled and continuous effort to generating and disseminating knowledge allowed the enterprise to speed up the accumulation process of technological competences promoting the converting of this process from individual level to the organizational one: besides, it also allowed the identification of barriers and facilitators involved in this process.

  13. Theoretical treatment of charge transfer processes of relevance to astrophysics

    Energy Technology Data Exchange (ETDEWEB)

    Krstic, P.S.; Stancil, P.C.; Schultz, D.R.

    1997-12-01

    Charge transfer is an important process in many astrophysical and atmospheric environments. While numerous experimental and theoretical studies exist for H and He targets, data on other targets, particularly metals and molecules, are sparse. Using a variety of theoretical methods and computational techniques the authors are developing methods to estimate the cross sections for electron capture (charge transfer) in slow collisions of low charge state ions with heavy (Mg, Ca, Fe, Co, Ni and Zn) neutrals. In this ongoing work particular attention is paid to ascertaining the importance of double electron capture.

  14. Technology Transfer, Labour and Local Learning Processes in Malaysian Industry

    DEFF Research Database (Denmark)

    Wangel, Arne

    1999-01-01

    The transfer of technologies by the foreign electronic industries operating in Malaysia involves training of workers for various purposes. The upgrading of skills to assimilate the transferred technology aims at increasing productivity and product quality. Communicating awareness about work hazards...... is meant to reduce breakdowns in production and workers' accidents. How do the training paradigms, which transnationals introduce in their subsidiaries in Malaysia, interact with the preconditions of learning with the local labour force? In shaping local learning processes, what is the scope for workers...

  15. Theoretical treatment of charge transfer processes of relevance to astrophysics

    International Nuclear Information System (INIS)

    Krstic, P.S.; Stancil, P.C.; Schultz, D.R.

    1997-12-01

    Charge transfer is an important process in many astrophysical and atmospheric environments. While numerous experimental and theoretical studies exist for H and He targets, data on other targets, particularly metals and molecules, are sparse. Using a variety of theoretical methods and computational techniques the authors are developing methods to estimate the cross sections for electron capture (charge transfer) in slow collisions of low charge state ions with heavy (Mg, Ca, Fe, Co, Ni and Zn) neutrals. In this ongoing work particular attention is paid to ascertaining the importance of double electron capture

  16. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  17. Photoinduced Electron Transfer in Ordered Macromolecular Assemblies. Final report for May 1, 1988 - June 30, 2002

    Energy Technology Data Exchange (ETDEWEB)

    Jones, G.

    2005-02-11

    The final report describes studies over a 13 year period having to do with photoinduced electron transfer for active chromophores and redox agents, including assembly of the components in water soluble polymers or polypeptides. The findings include observation of long range charge separation and electron transport using laser phototransient spectroscopy. The systems targeted in these studies include peptide assemblies for which helical conformations and aggregation are documented. Oligomeric peptides modified with non-native redox active groups were also selected for investigation. Highly charged polymers or peptides were investigated as host agents that resemble proteins. The overall goal of these investigations focused on the design and characterization of systems capable of artificial photosynthesis.

  18. Optimal Selection Method of Process Patents for Technology Transfer Using Fuzzy Linguistic Computing

    Directory of Open Access Journals (Sweden)

    Gangfeng Wang

    2014-01-01

    Full Text Available Under the open innovation paradigm, technology transfer of process patents is one of the most important mechanisms for manufacturing companies to implement process innovation and enhance the competitive edge. To achieve promising technology transfers, we need to evaluate the feasibility of process patents and optimally select the most appropriate patent according to the actual manufacturing situation. Hence, this paper proposes an optimal selection method of process patents using multiple criteria decision-making and 2-tuple fuzzy linguistic computing to avoid information loss during the processes of evaluation integration. An evaluation index system for technology transfer feasibility of process patents is designed initially. Then, fuzzy linguistic computing approach is applied to aggregate the evaluations of criteria weights for each criterion and corresponding subcriteria. Furthermore, performance ratings for subcriteria and fuzzy aggregated ratings of criteria are calculated. Thus, we obtain the overall technology transfer feasibility of patent alternatives. Finally, a case study of aeroengine turbine manufacturing is presented to demonstrate the applicability of the proposed method.

  19. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.; Shaw, D.

    1990-05-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controller processor, in conjunction with DPMs, renders bus arbitration unnecessary leading to very simple interfacing logic and operating software. The four high speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (author)

  20. An 80 Mbytes/s data transfer and processing system

    International Nuclear Information System (INIS)

    Belusevic, R.; Nixon, G.; Shaw, D.

    1990-01-01

    We describe hardware and software aspects of a very fast and versatile, yet conceptually simple, data transfer and processing system for use with future accelerators. It consists of a transputer-based crate controller (CC), which includes an Intel i860 microcomputer, and of a set of readout cards (RC), each containing a digital signal processor (DSP) for fast data parametrisation and compaction. The reduced data is written into a dual port memory (DPM), where it can be accessed concurrently by the transputer and transferred to a common DPM on the CC card. A crateful of data thus assembled at one place can further be processed by the powerful i860 microcomputer. Address generators (simple binary counters) are included on the crate controller and each readout card to enable direct memory access (DMA) operations, resulting in a considerable increase in data transfer speed (maximum 80 Mbytes/s). The use of a transputer as the sole controlling processor, in conjunction with DPMs, renders bus arbitration unnecessary, leading to very simple interfacing logic and operating software. The four high-speed serial links of the transputer greatly facilitate downloading of programs and intercrate communications. An Intel i960CA processor, situated on the CC card, is used for fast data transfer between crates by means of its 32-bit wide DMA channel. The operating software is written in the Occam language, which was specially developed for programming concurrent systems based on transputers. (orig.)

  1. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  2. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.; Smith, Casey; Hussain, Muhammad Mustafa

    2013-01-01

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene's most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  3. New memory devices based on the proton transfer process

    International Nuclear Information System (INIS)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing  information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices. (paper)

  4. New memory devices based on the proton transfer process

    Science.gov (United States)

    Wierzbowska, Małgorzata

    2016-01-01

    Memory devices operating due to the fast proton transfer (PT) process are proposed by the means of first-principles calculations. Writing information is performed using the electrostatic potential of scanning tunneling microscopy (STM). Reading information is based on the effect of the local magnetization induced at the zigzag graphene nanoribbon (Z-GNR) edge—saturated with oxygen or the hydroxy group—and can be realized with the use of giant magnetoresistance (GMR), a magnetic tunnel junction or spin-transfer torque devices. The energetic barriers for the hop forward and backward processes can be tuned by the distance and potential of the STM tip; this thus enables us to tailor the non-volatile logic states. The proposed system enables very dense packing of the logic cells and could be used in random access and flash memory devices.

  5. Simplistic graphene transfer process and its impact on contact resistance

    KAUST Repository

    Ghoneim, Mohamed T.

    2013-05-09

    Chemical vapor deposition based graphene grown on copper foil is attractive for electronic applications owing to its reliable growth process, large area coverage, and relatively defect free nature. However, transfer of the synthesized graphene to host substrate for subsequent device fabrication is extremely sensitive and can impact ultimate performance. Although ultra-high mobility is graphene\\'s most prominent feature, problems with high contact resistance have severely limited its true potential. Therefore, we report a simple poly-(methyl methacrylate) based transfer process without post-annealing to achieve specific contact resistivity of 3.8 × 10−5 Ω cm2 which shows 80% reduction compared to previously reported values.

  6. Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.

    Directory of Open Access Journals (Sweden)

    Christopher Y Park

    Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics

  7. Using CASE to Exploit Process Modeling in Technology Transfer

    Science.gov (United States)

    Renz-Olar, Cheryl

    2003-01-01

    A successful business will be one that has processes in place to run that business. Creating processes, reengineering processes, and continually improving processes can be accomplished through extensive modeling. Casewise(R) Corporate Modeler(TM) CASE is a computer aided software engineering tool that will enable the Technology Transfer Department (TT) at NASA Marshall Space Flight Center (MSFC) to capture these abilities. After successful implementation of CASE, it could then go on to be applied in other departments at MSFC and other centers at NASA. The success of a business process is dependent upon the players working as a team and continuously improving the process. A good process fosters customer satisfaction as well as internal satisfaction in the organizational infrastructure. CASE provides a method for business process success through functions consisting of systems and processes business models; specialized diagrams; matrix management; simulation; report generation and publishing; and, linking, importing, and exporting documents and files. The software has an underlying repository or database to support these functions. The Casewise. manual informs us that dynamics modeling is a technique used in business design and analysis. Feedback is used as a tool for the end users and generates different ways of dealing with the process. Feedback on this project resulted from collection of issues through a systems analyst interface approach of interviews with process coordinators and Technical Points of Contact (TPOCs).

  8. Dynamics of process at the final stage of nuclear fission

    International Nuclear Information System (INIS)

    Koljari, I.G.; Mavlitov, N.D.

    2005-01-01

    Numerous experimental data show, that the final stage of nuclear fission near to a scission point plays an essential role at formation of characteristics of fission products. At the description of a final stage of fission there is a number of problems: Definition of the form of the nuclear near the scission point and definition forms of a fission fragments; The account of dynamic processes in compound nuclear directly before of fission. The condition of the quasistatic al adiabatic process - dS/dt=0 - is applied in a point of transition from the uniform compound nuclei to several forms for definition of generalized coordinates and speeds. Calculation of dependence of post neutrons from nuclear mass of fission fragments for reactions is α+ 83 Bi 209 → 85 At 213 (E lab = 45 MeV); α+ 92 U 242 → 94 Pu 242 (E lab = 45 MeV); 8 O 18 + 79 Au 197 → 97 Fr 215 (E lab = 159 MeV). System of equations, which describes behaviour of system in a point of nuclear fission-transition from the uniform form to system of a two (and, probably more) fission fragments is given. The system of the equations allows in a fission point to define the generalized coordinates, and the generalized speeds for each of the generalized coordinates of collective deformation variables

  9. Transfer of training between music and speech: common processing, attention and memory

    Directory of Open Access Journals (Sweden)

    Mireille eBesson

    2011-05-01

    Full Text Available After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than nonmusicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the Event-Related Potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing.

  10. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory.

    Science.gov (United States)

    Besson, Mireille; Chobert, Julie; Marie, Céline

    2011-01-01

    After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-term experience in one domain influences the building-up of abstract and specific percepts in another domain, results are taken as evidence for transfer of training effects. Moreover, we also discuss the influence of attention and working memory on transfer effects and we highlight the usefulness of the event-related potentials method to disentangle the different processes that unfold in the course of music and speech perception. Finally, we give an overview of an on-going longitudinal project with children aimed at testing transfer effects from music to different levels and aspects of speech processing.

  11. Numerical Analysis of Heat Transfer During Quenching Process

    Science.gov (United States)

    Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana

    2018-04-01

    A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.

  12. Economic assessment of advanced flue gas desulfurization processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bierman, G. R.; May, E. H.; Mirabelli, R. E.; Pow, C. N.; Scardino, C.; Wan, E. I.

    1981-09-01

    This report presents the results of a project sponsored by the Morgantown Energy Technology Center (METC). The purpose of the study was to perform an economic and market assessment of advanced flue gas desulfurization (FGD) processes for application to coal-fired electric utility plants. The time period considered in the study is 1981 through 1990, and costs are reported in 1980 dollars. The task was divided into the following four subtasks: (1) determine the factors affecting FGD cost evaluations; (2) select FGD processes to be cost-analyzed; (3) define the future electric utility FGD system market; and (4) perform cost analyses for the selected FGD processes. The study was initiated in September 1979, and separate reports were prepared for the first two subtasks. The results of the latter two subtasks appear only in this final reprot, since the end-date of those subtasks coincided with the end-date of the overall task. The Subtask 1 report, Criteria and Methods for Performing FGD Cost Evaluations, was completed in October 1980. A slightly modified and condensed version of that report appears as appendix B to this report. The Subtask 2 report, FGD Candidate Process Selection, was completed in January 1981, and the principal outputs of that subtask appear in Appendices C and D to this report.

  13. Triboelectric effect: A new perspective on electron transfer process

    Science.gov (United States)

    Pan, Shuaihang; Zhang, Zhinan

    2017-10-01

    As interest in the triboelectric effect increases in line with the development of tribo-electrification related devices, the mechanisms involved in this phenomenon require more systematic review from the dual perspectives of developed classical insights and emerging quantum understanding. In this paper, the clear energy changing and transferring process of electrons have been proposed from the quantum point of view as the trigger for the charging initiation process in the triboelectric effect, and the phonon modes on the friction surfaces are believed to hold great importance as one of the main driving forces. Compatible with Maxwell Displacement Current theory, the complete consideration for charging steady state, i.e., the competition mechanisms between the breakdown process and the continuously charging process, and the balance mechanisms of phonon-electron interaction, built voltage, and induced polarization, are illustrated. In brief, the proposed theory emphasizes the fundamental role of electron transferring in tribo-electrical fields. By comparing certain experimental results from the previous studies, the theory is justified.

  14. Development of microforming process combined with thin film transfer printing

    Directory of Open Access Journals (Sweden)

    Koshimizu Kazushi

    2015-01-01

    Full Text Available Microforming receives a lot of attentions in the recent years due to the increased use of microparts in electronics and medical sectors. For the further functionalization of these micro devices, high functional surface with noble metals are strongly required for the devices in bio- and medical fields, such as bio-sensors. To realize the submillimeter structure of metal foils and micro to nanometer structures in one forming process, the present study proposes a combined process of microforming for metal foils and transfer printing of gold (Au thin films. To clarify the availability of the proposed combined process, transferability of Au thin films under micro bulging deformation are investigated. 0.1 mm-thick pure titanium (Ti foils and 100 nm-thick Au films were used as blank and functional materials, respectively. The forming tests of the proposed process were conducted. With increasing strain of Ti foils, Au TP areas increase. By this experiment, it’s confirmed that the hydrogen reduction of oxidation layers and the strain of Ti foil are significant factor for Au TP on Ti foils.

  15. Plan for advanced microelectronics processing technology application. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Goland, A.N.

    1990-10-01

    The ultimate objective of the tasks described in the research agreement was to identify resources primarily, but not exclusively, within New York State that are available for the development of a Center for Advanced Microelectronics Processing (CAMP). Identification of those resources would enable Brookhaven National Laboratory to prepare a program plan for the CAMP. In order to achieve the stated goal, the principal investigators undertook to meet the key personnel in relevant NYS industrial and academic organizations to discuss the potential for economic development that could accompany such a Center and to gauge the extent of participation that could be expected from each interested party. Integrated of these discussions was to be achieved through a workshop convened in the summer of 1990. The culmination of this workshop was to be a report (the final report) outlining a plan for implementing a Center in the state. As events unfolded, it became possible to identify the elements of a major center for x-ray lithography on Lone Island at Brookhaven National Laboratory. The principal investigators were than advised to substitute a working document based upon that concept in place of a report based upon the more general CAMP workshop originally envisioned. Following that suggestion from the New York State Science and Technology Foundation, the principals established a working group consisting of representatives of the Grumman Corporation, Columbia University, the State University of New York at Stony Brook, and Brookhaven National Laboratory. Regular meetings and additional communications between these collaborators have produced a preproposal that constitutes the main body of the final report required by the contract. Other components of this final report include the interim report and a brief description of the activities which followed the establishment of the X-ray Lithography Center working group.

  16. The Theory of High Energy Collision Processes - Final Report DOE/ER/40158-1

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Tai, T.

    2011-09-15

    In 1984, DOE awarded Harvard University a new Grant DE-FG02-84ER40158 to continue their support of Tai Tsun Wu as Principal Investigator of research on the theory of high energy collision processes. This Grant was renewed and remained active continuously from June 1, 1984 through November 30, 2007. Topics of interest during the 23-year duration of this Grant include: the theory and phenomenology of collision and production processes at ever higher energies; helicity methods of QED and QCD; neutrino oscillations and masses; Yang-Mills gauge theory; Beamstrahlung; Fermi pseudopotentials; magnetic monopoles and dyons; cosmology; classical confinement; mass relations; Bose-Einstein condensation; and large-momentum-transfer scattering processes. This Final Report describes the research carried out on Grant DE-FG02-84ER40158 for the period June 1, 1984 through November 30, 2007. Two books resulted from this project and a total of 125 publications.

  17. Process heat transfer principles, applications and rules of thumb

    CERN Document Server

    Serth, Robert W

    2014-01-01

    Process Heat Transfer is a reference on the design and implementation of industrial heat exchangers. It provides the background needed to understand and master the commercial software packages used by professional engineers in the design and analysis of heat exchangers. This book focuses on types of heat exchangers most widely used by industry: shell-and-tube exchangers (including condensers, reboilers and vaporizers), air-cooled heat exchangers and double-pipe (hairpin) exchangers. It provides a substantial introduction to the design of heat exchanger networks using pinch technology, the mos

  18. Coherence and relaxation in energy transfer processes in condensed phases

    International Nuclear Information System (INIS)

    Shelby, R.M.

    1978-03-01

    Investigations of electronic triplet and vibrational energy transfer dynamics and relaxation processes are presented. Emphasis is placed on understanding the role of coherence and interactions which tend to destroy the coherence. In the case of triplet excitons at low temperatures, the importance of coherence in energy migration can be established, and the average coherence parameters can be experimentally determined. In the case of vibrational excitations, both picosecond spectroscopic studies of vibrational relaxation and spontaneous Raman spectroscopy are used to characterize the dynamics and give increased insight into the nature of the mechanisms responsible for vibrational dephasing. The design and operation of the picosecond apparatus used in these experiments is also described

  19. Isotope separation process by transfer of vibrational energy

    International Nuclear Information System (INIS)

    Angelie, C.; Cauchetier, M.; Paris, J.

    1983-01-01

    This process consists in exciting A molecules by absorption of a pulsed light beam, then in exciting until their dissociation X molecules, present in several isotopic forms, by a vibrational transfer between the A molecules and the X molecules, the A molecules having a dissociation energy greater than that of the X molecules, the duration and energy of the light pulses being such that the absorption time by the A molecules is less than the excitation time of the X molecules and the temperature conditions such that the thermal width of the vibration rays is at the most near the isotopic difference between the resonance rays of the two isotopic varieties [fr

  20. Ethanol production by extractive fermentation - Process development and technology transfer

    International Nuclear Information System (INIS)

    Daugulis, A.J.; Axford, D.B.; Mau, T.K.

    1991-01-01

    Extractive Fermentation is an ethanol processing strategy in which the operations of fermentation and product recovery are integrated and undertaken simultaneously in a single step. In this process an inert and biocompatible organic solvent is introduced directly into the fermentation vessel to selectively extract the ethanol product. The ethanol is readily recovered from the solvent at high concentration by means of flash vaporization, and the solvent is recycled in a closed loop back to the fermentor. This process is characterized by a high productivity (since ethanol does not build up to inhibitory levels), continuous operation, significantly reduced water consumption, and lower product recovery costs. The technical advantages of this processing strategy have been extensively demonstrated by means of a continuous, fully integrated and computer-controlled Process Demonstration Unit in the authors' laboratory. Numerous features of this technology have been protected by US patent. A thorough economic comparison of Extractive Fermentation relative to modern ethanol technology (continuous with cell recycle) has been completed for both new plants and retrofitting of existing facilities for a capacity of 100 million liters of ethanol per year. Substantial cost savings are possible with Extractive Fermentation ranging, depending on the process configuration, from 5 cents to 16 cents per liter. Activities are under way to transfer this proprietary technology to the private sector

  1. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  2. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.; Yoo, J.-H.; Grigoropoulos, C. P.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes

  3. Magnetic MIMO Signal Processing and Optimization for Wireless Power Transfer

    Science.gov (United States)

    Yang, Gang; Moghadam, Mohammad R. Vedady; Zhang, Rui

    2017-06-01

    In magnetic resonant coupling (MRC) enabled multiple-input multiple-output (MIMO) wireless power transfer (WPT) systems, multiple transmitters (TXs) each with one single coil are used to enhance the efficiency of simultaneous power transfer to multiple single-coil receivers (RXs) by constructively combining their induced magnetic fields at the RXs, a technique termed "magnetic beamforming". In this paper, we study the optimal magnetic beamforming design in a multi-user MIMO MRC-WPT system. We introduce the multi-user power region that constitutes all the achievable power tuples for all RXs, subject to the given total power constraint over all TXs as well as their individual peak voltage and current constraints. We characterize each boundary point of the power region by maximizing the sum-power deliverable to all RXs subject to their minimum harvested power constraints. For the special case without the TX peak voltage and current constraints, we derive the optimal TX current allocation for the single-RX setup in closed-form as well as that for the multi-RX setup. In general, the problem is a non-convex quadratically constrained quadratic programming (QCQP), which is difficult to solve. For the case of one single RX, we show that the semidefinite relaxation (SDR) of the problem is tight. For the general case with multiple RXs, based on SDR we obtain two approximate solutions by applying time-sharing and randomization, respectively. Moreover, for practical implementation of magnetic beamforming, we propose a novel signal processing method to estimate the magnetic MIMO channel due to the mutual inductances between TXs and RXs. Numerical results show that our proposed magnetic channel estimation and adaptive beamforming schemes are practically effective, and can significantly improve the power transfer efficiency and multi-user performance trade-off in MIMO MRC-WPT systems.

  4. Operational Readiness Review Final Report for K Basin Fuel Transfer System

    International Nuclear Information System (INIS)

    DAVIES, T.H.

    2002-01-01

    An Operational Readiness Review (ORR) was conducted by the U.S. Department of Energy (DOE), Richland Operations Office (RL) to verify that an adequate state of readiness had been achieved for startup of the K Basin Fuel Transfer System (FTS). The DOE ORR was conducted during the period November 6-18, 2002. The DOE ORR team concluded that the K Basin Fuel Transfer System is ready to start operations, subject to completion and verification of identified pre-start findings. The ORR was conducted in accordance with the Spent Nuclear Fuel (SNF) K Basin Fuel Transfer System (FTS) Operational Readiness Review (ORR) Plan of Action and the Operational Readiness Review Implementation Plan for K Basin Fuel Transfer System. Review activities consisted of staff interviews, procedure and document reviews, and observations of normal facility operations, operational upset conditions, and an emergency drill. The DOE ORR Team also reviewed and assessed the adequacy of the contractor ORR3 and the RL line management review. The team concurred with the findings and observations identified in these two reports. The DOE ORR for the FTS evaluated the contractor under single-shift operations. Of concern to the ORR Team was that SNF Project management intended to change from a single-shift FTS operation to a two-shift operation shortly after the completion of the DOE ORR. The ORR team did not assess two-shift FTS operations and the ability of the contractor to conduct a smooth transition from shift to shift. However, the DOE ORR team did observe an operational upset drill that was conducted during day shift and carried over into swing shift; during this drill, swing shift was staffed with fewer personnel as would be expected for two-shift operations. The facility was able to adequately respond to the event with the reduced level of staff. The ORR Team was also able to observe a Shift Manager turnover meeting when one shift manager had to be relieved during the middle of the day. The ORR

  5. Taiwan industrial cooperation program technology transfer for low-level radioactive waste final disposal - phase I.

    Energy Technology Data Exchange (ETDEWEB)

    Knowlton, Robert G.; Cochran, John Russell; Arnold, Bill Walter; Jow, Hong-Nian; Mattie, Patrick D.; Schelling, Frank Joseph Jr. (; .)

    2007-01-01

    Sandia National Laboratories and the Institute of Nuclear Energy Research, Taiwan have collaborated in a technology transfer program related to low-level radioactive waste (LLW) disposal in Taiwan. Phase I of this program included regulatory analysis of LLW final disposal, development of LLW disposal performance assessment capabilities, and preliminary performance assessments of two potential disposal sites. Performance objectives were based on regulations in Taiwan and comparisons to those in the United States. Probabilistic performance assessment models were constructed based on limited site data using software including GoldSim, BLT-MS, FEHM, and HELP. These software codes provided the probabilistic framework, container degradation, waste-form leaching, groundwater flow, radionuclide transport, and cover infiltration simulation capabilities in the performance assessment. Preliminary performance assessment analyses were conducted for a near-surface disposal system and a mined cavern disposal system at two representative sites in Taiwan. Results of example calculations indicate peak simulated concentrations to a receptor within a few hundred years of LLW disposal, primarily from highly soluble, non-sorbing radionuclides.

  6. Engineering study: 105KE to 105KW Basin fuel and sludge transfer. Final report

    International Nuclear Information System (INIS)

    Gant, R.G.

    1994-01-01

    In the last five years, there have been three periods at the 105KE fuel storage basin (KE Basin) where the reported drawdown test rates were in excess of 25 gph. Drawdown rates in excess of this amount have been used during past operations as the primary indicators of leaks in the basin. The latest leak occurred in March, 1993. The reported water loss from the KE Basin was estimated at 25 gph. This engineering study was performed to identify and recommend the most feasible and practical method of transferring canisters of irradiated fuel and basin sludge from the KE Basin to the 105KW fuel storage basin (KW Basin). Six alternatives were identified during the performance of this study as possible methods for transferring the fuel and sludge from the KE Basin to the KW Basin. These methods were then assessed with regard to operations, safety, radiation exposure, packaging, environmental concerns, waste management, cost, and schedule; and the most feasible and practical methods of transfer were identified. The methods examined in detail in this study were based on shipment without cooling water except where noted: Transfer by rail using the previously used transfer system and water cooling; Transfer by rail using the previously used transfer system (without water cooling); Transfer by truck using the K Area fuel transfer cask (K Area cask); Transfer by truck using a DOE shipping cask; Transfer by truck using a commercial shipping cask; and Transfer by truck using a new fuel shipping cask

  7. Process integration and waste heat recovery in Lithuanian and Danish industry. Final report phase 1

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    The present document forms the Final Report for the first phase of the project `Process Integration and Waste Heat Recovery in Lithuanian and Danish Industry`. The project is carried out in the period 1995-1998 in a co-operation between the COWI offices in Lyngby and Vilnius, The Technical University of Denmark (Institute for Energetics), Kaunas University of Technology (CIPAI) and Vilnius Technical University, financed by The Danish Ministry of Energy`s EFP-95-programme, Lithuanian Energy Agency as well as the participants. The first phase of the project has comprised the establishment of the CIPAI centre (Centre for Industrial Process Analysis and Integration) at Kaunas University of Technology, training and knowledge transfer as well as elaboration of 6 industrial case-studies within the area of `Process Integration and waste Heat Recovery`. The second phase of the project has comprised R and D activities in this area in order to present general conclusions from the project as well as to present new and improved methods and tools for PI-analysis. The aim of the Final Report for the first phase of the project is to summarise project activities and the achieved results from case-studies and from the operation of the CIPAI-centre in general. (au)

  8. Coherent control of photoabsorption processes and calculation of nonlinear optical processes. Final technical report

    International Nuclear Information System (INIS)

    Lambropoulos, P.

    1998-01-01

    The work on the grant for the entire period of its duration concentrated on two different but related areas, namely coherent control of photoabsorption processes and the calculation of non linear optical processes with short wavelength radiation. On the first topic, the work dealt with the problem of controlling the population transfer from one to another bound state of a system in a route that passes through a continuum. This question is most important in the context of transferring populations between vibrational states of a molecule through a sequence of two pulses taking the system via the dissociation continuum. On the second topic, their work was motivated by the availability of XUV and soft X-ray coherent radiation sources obtained through high order harmonic generation. In addition, a few other techniques based on schemes of photo-pumped X-ray lasers promise to provide in the near-future similarly coherent sources. It is thus important to have an assessment of the possibility of extending non-linear optical processes to this range of wavelengths. This means assessing the relevant magnitude of the susceptibilities for third harmonic generation, stimulated Raman scattering, two-photon absorption, etc

  9. Negative Transfer Effects on L2 Word Order Processing.

    Science.gov (United States)

    Erdocia, Kepa; Laka, Itziar

    2018-01-01

    Does first language (L1) word order affect the processing of non-canonical but grammatical syntactic structures in second language (L2) comprehension? In the present study, we test whether L1-Spanish speakers of L2-Basque process subject-verb-object (SVO) and object-verb-subject (OVS) non-canonical word order sentences of Basque in the same way as Basque native speakers. Crucially, while OVS orders are non-canonical in both Spanish and Basque, SVO is non-canonical in Basque but is the canonical word order in Spanish. Our electrophysiological results showed that the characteristics of L1 affect the processing of the L2 even at highly proficient and early-acquired bilingual populations. Specifically, in the non-native group, we observed a left anterior negativity-like component when comparing S and O at sentence initial position and a P600 when comparing those elements at sentence final position. Those results are similar of those reported by Casado et al. (2005) for native speakers of Spanish indicating that L2-Basque speakers rely in their L1-Spanish when processing SVO-OVS word order sentences. Our results favored the competition model (MacWhinney, 1997).

  10. Negative Transfer Effects on L2 Word Order Processing

    Directory of Open Access Journals (Sweden)

    Kepa Erdocia

    2018-03-01

    Full Text Available Does first language (L1 word order affect the processing of non-canonical but grammatical syntactic structures in second language (L2 comprehension? In the present study, we test whether L1-Spanish speakers of L2-Basque process subject–verb–object (SVO and object–verb–subject (OVS non-canonical word order sentences of Basque in the same way as Basque native speakers. Crucially, while OVS orders are non-canonical in both Spanish and Basque, SVO is non-canonical in Basque but is the canonical word order in Spanish. Our electrophysiological results showed that the characteristics of L1 affect the processing of the L2 even at highly proficient and early-acquired bilingual populations. Specifically, in the non-native group, we observed a left anterior negativity-like component when comparing S and O at sentence initial position and a P600 when comparing those elements at sentence final position. Those results are similar of those reported by Casado et al. (2005 for native speakers of Spanish indicating that L2-Basque speakers rely in their L1-Spanish when processing SVO–OVS word order sentences. Our results favored the competition model (MacWhinney, 1997.

  11. Survey of potential chlorine production processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1979-04-01

    This report is part of the ongoing study of industrial electrochemical processes for the purpose of identifying methods of improving energy efficiencies. A computerized literature search of past and current chlorine generation methods was performed to identify basic chlorine production processes. Over 200 pertinent references are cited involving 20 separate and distinct chlorine processes. Each basic process is evaluated for its engineering and economic viability and energy efficiency. A flow diagram is provided for each basic process. Four criteria are used to determine the most promising processes: raw material availability, type and amount of energy required, by-product demand/disposal and status of development. The most promising processes are determined to be the membrane process (with and without catalytic electrodes), Kel-Chlor, Mobay (direct electrolysis of hydrogen chloride), the Shell process (catalytic oxidation of hydrogen chloride) and oxidation of ammonium chloride. Each of these processes is further studied to determine what activities may be pursued.

  12. Pair transfer processes probed at deep sub barrier energies

    International Nuclear Information System (INIS)

    Corradi, L.; Mason, P.; Fioretto, E.; Michelagnoli, C.; Stefanini, A.M.; Valiente-Dobon, J.J.; Szinler, S.; Jelavic-Malenica, D.; Soic, N.; Pollarolo, G.; Farnea, E.; Montagnoli, G.; Montanari, D.; Scarlassara, F.; Ur, C.A.; Gadea, A.; Haas, F.; Marginean, N.

    2011-01-01

    Multinucleon transfer cross sections in the system 40 Ca+ 96 Zr have been measured at bombarding energies ranging from the Coulomb barrier to ∼ 25% below. Target-like (lighter) recoils in inverse kinematics have been completely identified in A,Z and Q-value with the large solid angle magnetic spectrometer PRISMA. The experimental slopes of the neutron transfer probabilities at large internuclear separation are consistent with the values derived from the binding energies. A phenomenological interpretation of the transfer probabilities indicates the presence of enhanced values for the even number of neutron transfers. (authors)

  13. University Technology Transfer Information Processing from the Attention Based View

    Science.gov (United States)

    Hamilton, Clovia

    2015-01-01

    Between 2005 and 2011, there was no substantial growth in licenses executed by university technology transfer offices. Since the passage of the Bayh Dole Act of 1980, universities have owned technological inventions afforded by federal research funding. There are still university technology transfer offices that struggle with increasing their…

  14. Dynamic process model of a plutonium oxalate precipitator. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts.

  15. Dynamic process model of a plutonium oxalate precipitator. Final report

    International Nuclear Information System (INIS)

    Miller, C.L.; Hammelman, J.E.; Borgonovi, G.M.

    1977-11-01

    In support of LLL material safeguards program, a dynamic process model was developed which simulates the performance of a plutonium (IV) oxalate precipitator. The plutonium oxalate precipitator is a component in the plutonium oxalate process for making plutonium oxide powder from plutonium nitrate. The model is based on state-of-the-art crystallization descriptive equations, the parameters of which are quantified through the use of batch experimental data. The dynamic model predicts performance very similar to general Hanford oxalate process experience. The utilization of such a process model in an actual plant operation could promote both process control and material safeguards control by serving as a baseline predictor which could give early warning of process upsets or material diversion. The model has been incorporated into a FORTRAN computer program and is also compatible with the DYNSYS 2 computer code which is being used at LLL for process modeling efforts

  16. 14 CFR 11.31 - How does FAA process direct final rules?

    Science.gov (United States)

    2010-01-01

    ... 14 Aeronautics and Space 1 2010-01-01 2010-01-01 false How does FAA process direct final rules? 11... PROCEDURAL RULES GENERAL RULEMAKING PROCEDURES Rulemaking Procedures General § 11.31 How does FAA process direct final rules? (a) A direct final rule will take effect on a specified date unless FAA receives an...

  17. Simulation of the heat and mass transfer processes during the vacuum frying of potato chips

    Directory of Open Access Journals (Sweden)

    Ram Yamsaengsung

    2008-01-01

    Full Text Available A fundamental two-dimensional model to predict the heat and mass transfer that occur during the vacuum frying of potato chips was solved using the Finite Element toolbox in MATLAB 6.1. The simulation of the heat transfer process included the convection of heat from the surface to the product, the conduction of heat into the product, and a loss of heat using the heat source term representing evaporation. The mass transfer process was divided into two periods: (1 water loss and (2 oil absorption. The first scenario included a diffusion term and a source term. The source term represented the convection and evaporation of water from the product. For the second period, the diffusion term represented the gradual absorption of oil through capillary diffusion.From the simulation, a good agreement between the experimental data and the predicted values was obtained. From the heat transfer model, the rapid increase in temperature of the product toward the boiling point of water (at the associated pressure followed by its steady increase toward the temperature of the oil was validated. Furthermore, by separating the rate of moisture loss into two parts to represent the constant rate and falling rate period of drying, the model was able to predict an initial period of rapid moisture loss followed by a decreasing rate of moisture loss. The simulation also demonstrated the formation of the crust and the gradual movement of the crust inward. Finally, using two sets of diffusion coefficients that correlated to the two schemes of moisture loss, the model predicted the rapid flux of oil into the product during the constant drying stage, followed by a small amount of oil absorption into its interior once the crust had been established.

  18. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me

    2012-01-01

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  19. Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces

    KAUST Repository

    Van Regemorter, Tanguy

    2012-09-15

    In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.

  20. 242-A Campaign 99-1 process control plan; FINAL

    International Nuclear Information System (INIS)

    LE, E.Q.

    1999-01-01

    242-A Evaporator 99-1 will process approximately one million gallons of waste from tank 102-AW in June 1999. The process control Plan provides a general description of activities, which will occur during 242-A Evaporator Campaign 99-1 and to document analyses conducted to demonstrate that 102-AW waste is acceptable for processing. Predict is a registered trademark of Risk Decisions England Corporation, United Kingdom

  1. High Level Waste Feed Delivery AZ-101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements

    International Nuclear Information System (INIS)

    DUNCAN, G.P.

    2000-01-01

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC

  2. Knowledge and Processes in Design. DPS Final Report.

    Science.gov (United States)

    Pirolli, Peter

    Four papers from a project concerning information-processing characterizations of the knowledge and processes involved in design are presented. The project collected and analyzed verbal protocols from instructional designers, architects, and mechanical engineers. A framework was developed for characterizing the problem spaces of design that…

  3. Methods of Dust Air Flows Reduction at Ore Transfer Facilities of Mining and Processing Plants

    Directory of Open Access Journals (Sweden)

    Gulmira K. Saparova

    2013-01-01

    Full Text Available The article describes the most typical schemes of ore stationary transfers. Aspirate units, depending on dust intensity are divided into three groups. Typical schemes of stationary transfers were presented. On the ground of the research, the classification of ore transfer facilities types at mining and processing plants was offered

  4. Devices with extended area structures for mass transfer processing of fluids

    Science.gov (United States)

    TeGrotenhuis, Ward E.; Wegeng, Robert S.; Whyatt, Greg A.; King, David L.; Brooks, Kriston P.; Stenkamp, Victoria S.

    2009-04-21

    A microchannel device includes several mass transfer microchannels to receive a fluid media for processing at least one heat transfer microchannel in fluid communication with a heat transfer fluid defined by a thermally conductive wall, and at several thermally conductive fins each connected to the wall and extending therefrom to separate the mass transfer microchannels from one another. In one form, the device may optionally include another heat transfer microchannel and corresponding wall that is positioned opposite the first wall and has the fins and the mass transfer microchannels extending therebetween.

  5. Final Report: Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters

    Energy Technology Data Exchange (ETDEWEB)

    Haggerty, Roy [Oregon State Univ., Corvallis, OR (United States); Day-Lewis, Fred [U.S. Geological Survey, Storrs, CT (United States); Singha, Kamini [Colorado School of Mines, Golden, CO (United States); Johnson, Timothy [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Binley, Andrew [Lancaster Univ. (United Kingdom); Lane, John [U.S. Geological Survey, Storrs, CT (United States)

    2014-03-20

    Mass transfer affects contaminant transport and is thought to control the efficiency of aquifer remediation at a number of sites within the Department of Energy (DOE) complex. An improved understanding of mass transfer is critical to meeting the enormous scientific and engineering challenges currently facing DOE. Informed design of site remedies and long-term stewardship of radionuclide-contaminated sites will require new cost-effective laboratory and field techniques to measure the parameters controlling mass transfer spatially and across a range of scales. In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Including the NMR component, our revised study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3

  6. Survey of electrochemical metal winning processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Vaaler, L.E.

    1979-03-01

    The subject program was undertaken to find electrometallurgical technology that could be developed into energy saving commercial metal winning processes. Metals whose current production processes consume significant energy (excepting copper and aluminum) are magnesium, zinc, lead, chromium, manganese, sodium, and titanium. The technology of these metals, with the exception of titanium, was reviewed. Growth of titanium demand has been too small to justify the installation of an electrolyte process that has been developed. This fact and the uncertainty of estimates of future demand dissuaded us from reviewing titanium technology. Opportunities for developing energy saving processes were found for magnesium, zinc, lead, and sodium. Costs for R and D and demonstration plants have been estimated. It appeared that electrolytic methods for chromium and manganese cannot compete energywise or economically with the pyrometallurgical methods of producing the ferroalloys, which are satisfactory for most uses of chromium and manganese.

  7. FINAL PROCESS DEPENDENT DIMENSIONAL CHANGES OF DOUBLE KNIT FABRICS

    Directory of Open Access Journals (Sweden)

    Vedat ÖZYAZGAN

    2012-01-01

    Full Text Available In this paper Ne 30/1 cotton yarn obtained by using pure cotton fibers is employed. 1x1, 2x1 and 3x1 Rib fabrics were knitted with yarns at different gauges. During the knitting process, the tension was kept constant. In order to investigate the relaxation on the knitting process fabric samples were treated using three relaxation processes; dry, wet and full respectively. After each relaxation process, stitches dimensions were measured. As a result of these measurements, it is observed that as the relaxation increases the stitches length decreases while the stitches width increases. In rib knitting, As the fabric stretches increases the stitch length increases. As a result it is observed that as the stitch length increases, the width of the stitches increases linearly. In all rib fabrics, increase in the stitch density leads to an increase in the weight of the fabric.

  8. Process applications for geothermal energy resources. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Mikic, B.B.; Meal, H.C.; Packer, M.B.; Guillamon-Duch, H.

    1981-08-01

    The principal goal of the program was to demonstrate economical and technical suitability of geothermal energy as a source of industrial process heat through a cooperative program with industrial firms. To accomplish that: a critical literature survey in the field was performed; a workshop with the paper and pulp industry representatives was organized; and four parallel methods dealing with technical and economical details of geothermal energy use as a source of industrial process heat were developed.

  9. Mathematical modeling of the voloxidation process. Final report

    International Nuclear Information System (INIS)

    Stanford, T.G.

    1979-06-01

    A mathematical model of the voloxidation process, a head-end reprocessing step for the removal of volatile fission products from spent nuclear fuel, has been developed. Three types of voloxidizer operation have been considered; co-current operation in which the gas and solid streams flow in the same direction, countercurrent operation in which the gas and solid streams flow in opposite directions, and semi-batch operation in which the gas stream passes through the reactor while the solids remain in it and are processed batch wise. Because of the complexity of the physical ahd chemical processes which occur during the voloxidation process and the lack of currently available kinetic data, a global kinetic model has been adapted for this study. Test cases for each mode of operation have been simulated using representative values of the model parameters. To process 714 kgm/day of spent nuclear fuel, using an oxidizing atmosphere containing 20 mole percent oxygen, it was found that a reactor 0.7 m in diameter and 2.49 m in length would be required for both cocurrent and countercurrent modes of operation while for semibatch operation a 0.3 m 3 reactor and an 88200 sec batch processing time would be required

  10. Acromioclavicular joint reconstruction by coracoid process transfer augmented with hook plate.

    Science.gov (United States)

    Wang, Yeming; Zhang, Jianguo

    2014-06-01

    Various techniques have been reported for the treatment of chronic acromioclavicular (AC) joint separation. The purpose of this study was to evaluate the results of surgical construction of coracoclavicular ligament using coracoid process transfer augmented with a hook plate fixation. Twenty-one patients treated with coracoid process transfer augmented with a hook plate fixation for chronic type III and V AC injuries were retrospectively analysed in 2003-2009. The age of the patients ranged from 23 to 58 years with an average age of 41.6 years. The patients were followed up clinically and radiographically, with an average of 33.0 months. Functional status and the ability to return to work were recorded during follow-up. Constant score and visual analogue scale (VAS) for pain were measured. The mean Constant score has increased from 70.9 points preoperatively to 90.7 points at follow-up. The mean VAS score has decreased from 4.7 preoperatively to 1.2 at follow-up. The average abduction was 172°, forward flexion was 170° and external rotation was 56°. There were 10 excellent results, 10 good results and one fair result. All patients had resumed their job or returned to original sport activity at mean 3.7 months postoperatively. No reduction loss was observed after plate removal and the final follow-up. Despite retrospective nature of the study, the outcomes of surgical construction with process transfer augmented with hook plate fixation are promising for chronic type III and V AC injuries. Therapeutic level IV. Retrospective case series, treatment study. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Simulation of the Press Hardening Process and Prediction of the Final Mechanical Material Properties

    Science.gov (United States)

    Hochholdinger, Bernd; Hora, Pavel; Grass, Hannes; Lipp, Arnulf

    2011-08-01

    Press hardening is a well-established production process in the automotive industry today. The actual trend of this process technology points towards the manufacturing of parts with tailored properties. Since the knowledge of the mechanical properties of a structural part after forming and quenching is essential for the evaluation of for example the crash performance, an accurate as possible virtual assessment of the production process is more than ever necessary. In order to achieve this, the definition of reliable input parameters and boundary conditions for the thermo-mechanically coupled simulation of the process steps is required. One of the most important input parameters, especially regarding the final properties of the quenched material, is the contact heat transfer coefficient (IHTC). The CHTC depends on the effective pressure or the gap distance between part and tool. The CHTC at different contact pressures and gap distances is determined through inverse parameter identification. Furthermore a simulation strategy for the subsequent steps of the press hardening process as well as adequate modeling approaches for part and tools are discussed. For the prediction of the yield curves of the material after press hardening a phenomenological model is presented. This model requires the knowledge of the microstructure within the part. By post processing the nodal temperature history with a CCT diagram the quantitative distribution of the phase fractions martensite, bainite, ferrite and pearlite after press hardening is determined. The model itself is based on a Hockett-Sherby approach with the Hockett-Sherby parameters being defined in function of the phase fractions and a characteristic cooling rate.

  12. High-efficiency pump for space helium transfer. Final Technical Report

    International Nuclear Information System (INIS)

    Hasenbein, R.; Izenson, M.G.; Swift, W.L.; Sixsmith, H.

    1991-12-01

    A centrifugal pump was developed for the efficient and reliable transfer of liquid helium in space. The pump can be used to refill cryostats on orbiting satellites which use liquid helium for refrigeration at extremely low temperatures. The pump meets the head and flow requirements of on-orbit helium transfer: a flow rate of 800 L/hr at a head of 128 J/kg. The overall pump efficiency at the design point is 0.45. The design head and flow requirements are met with zero net positive suction head, which is the condition in an orbiting helium supply Dewar. The mass transfer efficiency calculated for a space transfer operation is 0.99. Steel ball bearings are used with gas fiber-reinforced teflon retainers to provide solid lubrication. These bearings have demonstrated the longest life in liquid helium endurance tests under simulated pumping conditions. Technology developed in the project also has application for liquid helium circulation in terrestrial facilities and for transfer of cryogenic rocket propellants in space

  13. Boiling heat transfer and stability problems. Final report, November 1, 1976--March 31, 1979

    International Nuclear Information System (INIS)

    Hsieh, D.Y.

    1979-03-01

    Substantial progress has been made in two areas relating to the boiling heat transfer: the stability of a vapor-liquid system and the dynamics of bubbles. For the stability problem, a simplified formulation retaining the essential feature of the interfacial mass transfer has been established for the complex interfacial stability problem with mass and heat transfer. The simplified version was first applied to the linear Rayleigh-Taylor and Kelvin--Helmholtz stability problems. General agreement with results from previous more comprehensive treatment is obtained. Then the simplified formulation is utilized to study the nonlinear Rayleigh-Taylor stability problem. It is found that the combined effects of finite amplitude and the heat and mass transfer can stabilize the system in a regime which is linearly unstable. A single non-dimensional parameter can be found to characterize the stability criterion for certain configuration relevant to the problem of boiling heat transfer. For the problem of bubble dynamics, the investigation of the nonlinear coupling between the subharmonic spherical oscillation and the nonspherical oscillation has been carried out

  14. Improving NASA's technology transfer process through increased screening and evaluation in the information dissemination program

    Science.gov (United States)

    Laepple, H.

    1979-01-01

    The current status of NASA's technology transfer system can be improved if the technology transfer process is better understood. This understanding will only be gained if a detailed knowledge about factors generally influencing technology transfer is developed, and particularly those factors affecting technology transfer from government R and D agencies to industry. Secondary utilization of aerospace technology is made more difficult because it depends on a transfer process which crosses established organizational lines of authority and which is outside well understood patterns of technical applications. In the absence of a sound theory about technology transfer and because of the limited capability of government agencies to explore industry's needs, a team approach to screening and evaluation of NASA generated technologies is proposed which calls for NASA, and other organizations of the private and public sectors which influence the transfer of NASA generated technology, to participate in a screening and evaluation process to determine the commercial feasibility of a wide range of technical applications.

  15. A novel process for methanol synthesis. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Tierney, J.W.; Wender, I.

    1994-01-25

    The use of methanol (MeOH) as a fuel additive and in MTBE production has renewed interest in the search for improved MeOH processes. Commercial processes are characterized by high pressures and temperatures with low per pass conversion (10--12%). Efforts are underway to find improved MeOH synthesis processes. A slurry phase ``concurrent`` synthesis of MeOH/methyl formate (MeF) which operates under relatively mild conditions (100{degrees}C lower than present commercial processes) was the subject of investigation in this work. Evidence for a reaction scheme involving the carbonylation of MeOH to MeF followed by the hydrogenolysis of MeF to two molecules of MeOH -- the net result being the reaction of H{sub 2} with CO to give MeOH via MeF, is presented. Up to 90% per pass conversion and 98% selectivity to methanol at rates comparable to commercial processes have been obtained in spite of the presence of as much as 10,000 ppM CO{sub 2} and 3000 ppM H{sub 2}O in the gas and liquid respectively. The effect of process parameters such as temperature, pressure, H{sub 2}/CO ratio in the reactor, flow rate and catalyst loading were also investigated. The use of temperatures above 170{degrees}C at a pressure of 50 atm results in MeF being the limiting reactant. Small amounts of CH{sub 4} are also formed. Significant MeOH synthesis rates at a pressure in the range of 40--50 atm makes possible the elimination of an upstream shift reactor and the use of an air-blown syngas generator. The nature of the catalysts was studied and correlated with the behavior of the various species in the concurrent synthesis.

  16. New Process for Grain Refinement of Aluminum. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Joseph A. Megy

    2000-09-22

    A new method of grain refining aluminum involving in-situ formation of boride nuclei in molten aluminum just prior to casting has been developed in the subject DOE program over the last thirty months by a team consisting of JDC, Inc., Alcoa Technical Center, GRAS, Inc., Touchstone Labs, and GKS Engineering Services. The Manufacturing process to make boron trichloride for grain refining is much simpler than preparing conventional grain refiners, with attendant environmental, capital, and energy savings. The manufacture of boride grain refining nuclei using the fy-Gem process avoids clusters, salt and oxide inclusions that cause quality problems in aluminum today.

  17. Interfacial area and interfacial transfer in two-phase systems. DOE final report

    Energy Technology Data Exchange (ETDEWEB)

    Ishii, Mamoru; Hibiki, T.; Revankar, S.T.; Kim, S.; Le Corre, J.M.

    2002-07-01

    In the two-fluid model, the field equations are expressed by the six conservation equations consisting of mass, momentum and energy equations for each phase. The existence of the interfacial transfer terms is one of the most important characteristics of the two-fluid model formulation. The interfacial transfer terms are strongly related to the interfacial area concentration and to the local transfer mechanisms such as the degree of turbulence near interfaces. This study focuses on the development of a closure relation for the interfacial area concentration. A brief summary of several problems of the current closure relation for the interfacial area concentration and a new concept to overcome the problem are given.

  18. 32 CFR 206.5 - Final proposal process.

    Science.gov (United States)

    2010-07-01

    ... the basis of “educational value for the dollar.” NSEP is interested in funding proposals in areas... institution to integrate the efforts of the proposed program into the educational process? What plans are...) MISCELLANEOUS NATIONAL SECURITY EDUCATION PROGRAM (NSEP) GRANTS TO INSTITUTIONS OF HIGHER EDUCATION § 206.5...

  19. Modelling of heat and mass transfer processes in neonatology

    Energy Technology Data Exchange (ETDEWEB)

    Ginalski, Maciej K [FLUENT Europe, Sheffield Business Park, Europa Link, Sheffield S9 1XU (United Kingdom); Nowak, Andrzej J [Institute of Thermal Technology, Silesian University of Technology, Konarskiego 22, 44-100 Gliwice (Poland); Wrobel, Luiz C [School of Engineering and Design, Brunel University, Uxbridge UB8 3PH (United Kingdom)], E-mail: maciej.ginalski@ansys.com, E-mail: Andrzej.J.Nowak@polsl.pl, E-mail: luiz.wrobel@brunel.ac.uk

    2008-09-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices.

  20. Modelling of heat and mass transfer processes in neonatology

    International Nuclear Information System (INIS)

    Ginalski, Maciej K; Nowak, Andrzej J; Wrobel, Luiz C

    2008-01-01

    This paper reviews some of our recent applications of computational fluid dynamics (CFD) to model heat and mass transfer problems in neonatology and investigates the major heat and mass transfer mechanisms taking place in medical devices such as incubators and oxygen hoods. This includes novel mathematical developments giving rise to a supplementary model, entitled infant heat balance module, which has been fully integrated with the CFD solver and its graphical interface. The numerical simulations are validated through comparison tests with experimental results from the medical literature. It is shown that CFD simulations are very flexible tools that can take into account all modes of heat transfer in assisting neonatal care and the improved design of medical devices

  1. Emergency transfer tube closure and process for sealing transfer tube under emergency conditions

    International Nuclear Information System (INIS)

    Hardin, R.T. Jr.; Marshall, J.R.

    1987-01-01

    In a nuclear fuel reactor well that includes a transfer tube projecting outwardly from wall thereof, the transfer tube is described having a first closure assembly. The transfer tube has a circumferential flange extending outwardly laterally therefrom, an emergency transfer tube closure therefor comprising; a pair of elongated, vertically-extending U-shaped guides, one U-shaped guide disposed laterally on each side of the transfer tube, each of the U-shaped guides comprising a base and laterally extending flanges thereon, the U-shaped guides having their open ends facing each other, a closure plate, having a surface facing the circumferential flange greater in area than the area circumscribed by the outer circumference of the circumferential flange, vertically disposed the U-shaped guides, the closure plate normally being disposed in a vertical plane just slightly in front of the vertical plane of the circumferential flange, two pairs of rollers, one pair of which is rotatably mounted on each side of the closure plate adjacent the U-shaped guides, riding on the inner portion of each of the flanges of each of the U-shaped guides. Each of the U-shaped guides is provided with a pair of spatially disposed openings on a flange thereof adjacent the wall of the nuclear fuel reactor well, each of the pairs of openings being disposed on each of the U-shaped guides a distance equal to the distance between the center lines of the corresponding pair of rollers riding within the U-shaped guides, each of the openings being sufficiently large to receive a corresponding roller of the pairs of rollers in the U-shaped guides. The openings is shaped on the flanges of the U-shaped guides so that when the pairs of rollers are disposed therein, the face of the closure plate will be in sealing engagement with the circumferential flange of the transfer tube

  2. UMTRA Surface Project management action process document: Final. Revision 2

    International Nuclear Information System (INIS)

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites

  3. Cavitational Hydrothermal Oxidation: A New Remediation Process - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Suslick, K. S.

    2001-07-05

    During the past year, we have continued to make substantial scientific progress on our understanding of cavitation phenomena in aqueous media and applications of cavitation to remediation processes. Our efforts have focused on three separate areas: sonoluminescence as a probe of conditions created during cavitational collapse in aqueous media, the use of cavitation for remediation of contaminated water, and an addition of the use of ultrasound in the synthesis of novel heterogeneous catalysts for hydrodehalogenation of halocarbons under mild conditions.

  4. UMTRA Surface Project management action process document: Final. Revision 2

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    Title 1 of the UMTRCA authorized the DOE to undertake remedial actions at these designed sites and associated vicinity properties (VP), which contain uranium mill tailings and other residual radioactive materials (RRM) derived from the processing sites. Title 2 of the UMTRCA addresses uranium mill sites that were licensed at the time the UMTRCA was enacted. Cleanup of these Title 2 sites is the responsibility of the licensees. The cleanup of the Title 1 sites has been split into two separate projects: the Surface Project, which deals with the mill buildings, tailings, and contaminated soils at the sites and VPs; and the Ground Water Project, which is limited to the contaminated ground water at the sites. This management action process (MAP) document discusses the Uranium Mill Tailings Remedial Action (UMTRA) Surface Project. Since its inception through March 1996, the Surface Project (hereinafter called the Project) has cleaned up 16 of the 24 designated processing sites and approximately 5,000 VPs, reducing the risk to human health and the environment posed by the uranium mill tailings. Two of the 24 sites, Belfield and Bowman, North Dakota, will not be remediated at the request of the state, reducing the total number of sites to 22. By the start of FY1998, the remaining 6 processing sites and associated VPs will be cleaned up. The remedial action activities to be funded in FY1998 by the FY1998 budget request are remediation of the remaining Grand Junction, Colorado, VPs; closure of the Cheney disposal cell in Grand Junction, Colorado; and preparation of the completion reports for 4 completed sites.

  5. Mixing Processes in High-Level Waste Tanks - Final Report

    International Nuclear Information System (INIS)

    Peterson, P.F.

    1999-01-01

    The mixing processes in large, complex enclosures using one-dimensional differential equations, with transport in free and wall jets is modeled using standard integral techniques. With this goal in mind, we have constructed a simple, computationally efficient numerical tool, the Berkeley Mechanistic Mixing Model, which can be used to predict the transient evolution of fuel and oxygen concentrations in DOE high-level waste tanks following loss of ventilation, and validate the model against a series of experiments

  6. Electrochemical processing of nitrate waste solutions. Phase 2, Final report

    Energy Technology Data Exchange (ETDEWEB)

    Genders, D.; Weinberg, N.; Hartsough, D. [Electrosynthesis Co., Inc., Cheektowaga, NY (US)

    1992-10-07

    The second phase of research performed at The Electrosynthesis Co., Inc. has demonstrated the successful removal of nitrite and nitrate from a synthetic effluent stream via a direct electrochemical reduction at a cathode. It was shown that direct reduction occurs at good current efficiencies in 1,000 hour studies. The membrane separation process is not readily achievable for the removal of nitrites and nitrates due to poor current efficiencies and membrane stability problems. A direct reduction process was studied at various cathode materials in a flow cell using the complete synthetic mix. Lead was found to be the cathode material of choice, displaying good current efficiencies and stability in short and long term tests under conditions of high temperature and high current density. Several anode materials were studied in both undivided and divided cell configurations. A divided cell configuration was preferable because it would prevent re-oxidation of nitrite by the anode. The technical objective of eliminating electrode fouling and solids formation was achieved although anode materials which had demonstrated good stability in short term divided cell tests corroded in 1,000 hour experiments. The cause for corrosion is thought to be F{sup {minus}} ions from the synthetic mix migrating across the cation exchange membrane and forming HF in the acid anolyte. Other possibilities for anode materials were explored. A membrane separation process was investigated which employs an anion and cation exchange membrane to remove nitrite and nitrate, recovering caustic and nitric acid. Present research has shown poor current efficiencies for nitrite and nitrate transport across the anion exchange membrane due to co-migration of hydroxide anions. Precipitates form within the anion exchange membranes which would eventually result in the failure of the membranes. Electrochemical processing offers a highly promising and viable method for the treatment of nitrate waste solutions.

  7. IMPROVING TACONITE PROCESSING PLANT EFFICIENCY BY COMPUTER SIMULATION, Final Report

    Energy Technology Data Exchange (ETDEWEB)

    William M. Bond; Salih Ersayin

    2007-03-30

    This project involved industrial scale testing of a mineral processing simulator to improve the efficiency of a taconite processing plant, namely the Minorca mine. The Concentrator Modeling Center at the Coleraine Minerals Research Laboratory, University of Minnesota Duluth, enhanced the capabilities of available software, Usim Pac, by developing mathematical models needed for accurate simulation of taconite plants. This project provided funding for this technology to prove itself in the industrial environment. As the first step, data representing existing plant conditions were collected by sampling and sample analysis. Data were then balanced and provided a basis for assessing the efficiency of individual devices and the plant, and also for performing simulations aimed at improving plant efficiency. Performance evaluation served as a guide in developing alternative process strategies for more efficient production. A large number of computer simulations were then performed to quantify the benefits and effects of implementing these alternative schemes. Modification of makeup ball size was selected as the most feasible option for the target performance improvement. This was combined with replacement of existing hydrocyclones with more efficient ones. After plant implementation of these modifications, plant sampling surveys were carried out to validate findings of the simulation-based study. Plant data showed very good agreement with the simulated data, confirming results of simulation. After the implementation of modifications in the plant, several upstream bottlenecks became visible. Despite these bottlenecks limiting full capacity, concentrator energy improvement of 7% was obtained. Further improvements in energy efficiency are expected in the near future. The success of this project demonstrated the feasibility of a simulation-based approach. Currently, the Center provides simulation-based service to all the iron ore mining companies operating in northern

  8. Optical absorption and energy transfer processes in dendrimers

    International Nuclear Information System (INIS)

    Reineker, P.; Engelmann, A.; Yudson, V.I.

    2004-01-01

    For dendrimers of various sizes the energy transfer and the optical absorption is investigated theoretically. The molecular subunits of a dendrimer are modeled as two-level systems. The electronic interaction between them is described via transfer integrals and the influence of vibrational degrees of freedom is taken into account in a first approach using a stochastic model. We discuss the time dependence of the energy transport and show that rim states of the dendrimer dominate the absorption spectra, that in general the electronic excitation energy is concentrated on peripheric molecules, and that the energetically lowest absorption peak is redshifted with increasing dendrimer size due to delocalization of the electronic excitation

  9. Partnew - New solvent extraction processes for minor actinides - final report

    International Nuclear Information System (INIS)

    Madic, C.; Testard, F.; Hudson, M.J.; Liljenzin, J.O.; Christiansen, B.; Ferrando, M.; Facchini, A.; Geist, A.; Modolo, G.; Gonzalez-Espartero, A.; Mendoza, J. de

    2004-01-01

    The objectives of the European project PARTNEW were to define solvent extraction processes for the partitioning of the minor actinides, Am and Cm, from the aqueous high active raffinate or high active concentrate issuing the reprocessing of nuclear spent fuels by the PUREX process. Eleven laboratories participated to the research: 1/ CEA-DEN (Marcoule), 2/ CEA-DSM (Saclay), 3/ UREAD (U.K.), 4/ CTU (Sweden), 5/ ITU (Germany), 6/ ENEA (Italy), 7/ PoliMi (Italy), 8/ FZK-INE (Germany), 9/ FZJ-ISR (Germany), 10/ CIEMAT (Spain) and 11/ UAM (Spain). The research was organised into eight work packages (WP): Basic and applied DIAMEX studies, using diamide extractants for the co-extraction of actinides(III) (An(III)) and lanthanides(III) (Ln(III)) nitrates (WP1 and WP2), Basic and applied SANEX studies based on the use of polydentate N-ligands for the An(III)/Ln(III) separation (WP3 and WP4), Basic and applied SANEX studies based on the use of synergistic mixtures made of bis-(chloro-phenyl)-di-thio-phosphinic acid + neutral O-bearing ligand, (WP5 and WP6), Basic SANEX studies for the An(III)/Ln(III) separation, based on the use of new S-bearing ligands, Basic and applied studies for the Am(III)/Cm(III) separation. The work done in the fundamental and applied domains was very fruitful. Several processes have been successfully tested with genuine high active raffinates and concentrate. (authors)

  10. Integration of Heat Transfer, Stress, and Particle Trajectory Simulation. Final report

    International Nuclear Information System (INIS)

    Bui, Thuc; Read, Michael; Ives, Lawrence

    2012-01-01

    Calabazas Creek Research, Inc. developed and currently markets Beam Optics Analyzer (BOA) in the United States and abroad. BOA is a 3D, charged particle optics code that solves the electric and magnetic fields with and without the presence of particles. It includes automatic and adaptive meshing to resolve spatial scales ranging from a few millimeters to meters. It is fully integrated with CAD packages, such as SolidWorks, allowing seamless geometry updates. The code includes iterative procedures for optimization, including a fully functional, graphical user interface. Recently, time dependent, particle in cell capability was added, pushing particles synchronically under quasistatic electromagnetic fields to obtain particle bunching under RF conditions. A heat transfer solver was added during this Phase I program. Completed tasks include: (1) Added a 3D finite element heat transfer solver with adaptivity; (2) Determined the accuracy of the linear heat transfer field solver to provide the basis for development of higher order solvers in Phase II; (3) Provided more accurate and smoother power density fields; and (4) Defined the geometry using the same CAD model, while maintaining different meshes, and interfacing the power density field between the particle simulator and heat transfer solvers. These objectives were achieved using modern programming techniques and algorithms. All programming was in C++ and parallelization in OpenMP, utilizing state-of-the-art multi-core technology. Both x86 and x64 versions are supported. The GUI design and implementation used Microsoft Foundation Class.

  11. Effect of translucence of engineering ceramics on heat transfer in diesel engines. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wahiduzzaman, S.; Morel, T. [Integral Technologies, Inc., Westmont, IL (United States)

    1992-04-01

    This report describes the experimental portion of a broader study undertaken to assess the effects of translucence of ceramic materials used as thermal barrier coatings in diesel engines. In an earlier analytical work a parametric study was performed, varying several radiative properties over ranges typical of engineering ceramics, thereby identifying the most important radiative properties and their impact on in-cylinder heat transfer. In the current study these properties were experimentally determined for several specific zirconia coatings considered for thermal barrier applications in diesel engines. The methodology of this study involved formulation of a model capable of describing radiative transfer through a semitransparent medium as a function of three independent model parameters, ie, absorption coefficient, scattering coefficient and refractive index. For the zirconia-based ceramics investigated in this study, it was concluded that for usual coating thicknesses (1.5--2.5 mm) these ceramics are optically thick and hence, are effective as radiative heat transfer barriers. These ceramics possess high scattering coefficients and low absorption coefficients causing them to be highly reflective (60-80%) in the spectral region where thermal radiation is important. The performance of the investigated ceramics and the mechanism of heat transfer were found to depend on surface condition, specifically on soot deposition. Thus, to insure the optimum thermal barrier operation for either clean or heavily sooted surfaces, a ceramic material with high scattering coefficient provides the best choice.

  12. 31 CFR 205.33 - How are funds transfers processed?

    Science.gov (United States)

    2010-07-01

    ... needed by the State and must time the disbursement to be in accord with the actual, immediate cash... funds transfers must be as close as is administratively feasible to a State's actual cash outlay for direct program costs and the proportionate share of any allowable indirect costs. States should exercise...

  13. Quantum electron transfer processes induced by thermo-coherent ...

    Indian Academy of Sciences (India)

    WINTEC

    Thermo-coherent state; electron transfer; quantum rate. 1. Introduction. The study ... two surfaces,16 namely, one electron two-centered exchange problem,7–10 many ... temperature classical regime for the single and the two-mode cases have ...

  14. Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes - FY-98 Final Report for LDRD 2349

    Energy Technology Data Exchange (ETDEWEB)

    Kessinger, Glen Frank; Nelson, Lee Orville; Grandy, Jon Drue; Zuck, Larry Douglas; Kong, Peter Chuen Sun; Anderson, Gail

    1999-08-01

    The purpose of LDRD #2349, Characterize and Model Final Waste Formulations and Offgas Solids from Thermal Treatment Processes, was to develop a set of tools that would allow the user to, based on the chemical composition of a waste stream to be immobilized, predict the durability (leach behavior) of the final waste form and the phase assemblages present in the final waste form. The objectives of the project were: • investigation, testing and selection of thermochemical code • development of auxiliary thermochemical database • synthesis of materials for leach testing • collection of leach data • using leach data for leach model development • thermochemical modeling The progress toward completion of these objectives and a discussion of work that needs to be completed to arrive at a logical finishing point for this project will be presented.

  15. Host state screening process: Regional management plan: [Final report

    International Nuclear Information System (INIS)

    Drobny, N.L.

    1986-01-01

    This report discusses the procedure and cirteria that the Commission selected for designating a host state, should a state not volunteer for this role. Section 2 describes the wide range of approaches considered. Advantages and disadvantages of each are reviewed briefly, and the overall timetable established by the Commission for host state selection is presented. Section 3 describes the selected process for host state designation which involves emphasis on waste quantities generated and transportation factors. Section 4 presents relevant data on characteristics of wastes presently generated and presents estimates for future waste generation to Year 2015. Section 5 presents the results of transportation analyses considering the distance over which waste would be transported and safety (accident) statistics for waste transport routes. Section 6 integrates the conclusions from the analysis of waste volumes generated and transportation factors and suggests how these results might be used to designate a host state. 11 refs., 6 figs., 9 tabs

  16. Anion-exchange resin-based desulfurization process. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sheth, A C; Dharmapurikar, R; Strevel, S D

    1994-01-01

    The following investigations were performed: (1) batch mode screening of eleven(11) commercially available resins and selection of three candidate resins for further evaluation in a fixed-bed setup. (2) Process variables study using three candidate resins in the fixed-bed setup and selection of the ``best`` resin for process economics development. (3) Exhaustion efficiency and solution concentration were found to be inversely related necessitating a trade-off between the resin cost versus the cost of evaporation/concentration of ensuing effluents. (4) Higher concentration of the HCO{sub 3}{sup {minus}} form of active sites over less active CO{sub 3}{sup 2{minus}} form of sites in the resin was believed to be the main reason for the observed increase in the equilibrium capacity of the resin at an elevated static CO{sub 2}-pressure. This Increase in capacity was found to level off around 80--120 psig range. The increase in CO{sub 2}-pressure, however, did not appear to affect the overall ion-exchange kinetics. (5) In the fixed-bed mode, the solution concentration was found to affect the equilibrium capacity of candidate resins. Their relationship was well satisfied by the Langmuir type non-linear equilibrium isotherm. Alternatively, the effect of solution concentration on overall ion-exchange kinetics varied from resin to resin. (6) Product inhibition effect on the resin was observed as an initial increase followed by a significant decrease in the resin`s equilibrium capacity for SO{sub 4}{sup 2{minus}} as the HCO{sub 3}{sup {minus}}/SO{sub 4}{sup 2{minus}} molar ratio in the solution was increased from 0 to 1.0. This ratio, however, did not affect the overall ion-exchange kinetics.

  17. Power Transfer Potential to the Southeast in Response to a Renewable Portfolio Standard: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Key, Thomas S [Electric Power Research Institute (EPRI); Hadley, Stanton W [ORNL; Deb, Rajat [LCG Consulting

    2010-02-01

    Electricity consumption in the Southeastern US, including Florida, is approximately 32% of the total US. The availability of renewable resources for electricity production is relatively small compared to the high consumption. Therefore meeting a national renewable portfolio standard (RPS) is particularly challenging in this region. Neighboring regions, particularly to the west, have significant wind resources and given sufficient transmission these resources could serve energy markets in the SE. This report looks at renewable resource supply relative to demands and the potential for power transfer into the SE. We found that significant wind energy transfers, at the level of 30-60 GW, are expected to be economic in case of federal RPC or CO2 policy. Development of wind resources will depend not only on the available transmission capacity and required balancing resources, but also on electricity supply and demand factors.

  18. Clean and efficient energy conversion processes (Cecon-project). Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The objectives of the work programme reported are the development and testing of two optimised energy conversion processes, both consisting of a radiant surface gas burner and a ceramic heat exchanger. The first sub-objective of the programme is related to industrial heating, drying and curing processes requireing low and medium heat fluxes. It is estimated that around one tenth of the total EC industrial energy use is associated with such processes. The majority of these processes currently use convection and conduction as the main heat transfer mechanisms and overall energy efficiencies are typically below 25%. For many drying and finishing processes (such as curing powder coatings and drying paints, varnishes, inks, and for the fabrication of paper and textiles), radiant heating can achieve much faster dyring rates and higher energy efficiency than convective heating. In the project new concepts of natural gas fired radiant heating have been investigated which would be much more efficient than the existing processes. One element of the programme was the evelopment of gas burners having enhanced radiant efficiencies. A second concerned the investigation of the safety of gas burners containing significant volumes of mixed gas and air. Finally the new gas burners were tested in combination with the high temperature heat exchanger to create highly efficient radiant heating systems. The second sub-objective concerned the development of a compact low cost heat exchanger capable of achieving high levels of heat recovery (up to 60%) which could be easily installed on industrial processes. This would make heat recovery a practical proposition on processes where existing heat recovery technology is currently not cost effective. The project will have an impact on industrial processes consuming around 80 MTOE of energy per year within EU countries (1 MTOE equals 41.8 PJ). The overall energy saving potential of the project is estimated to be around 22 MTOE which is around 10

  19. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  20. Process Inherent Ultimate Safety (PIUS) reactor evaluation study: Final report

    International Nuclear Information System (INIS)

    1987-02-01

    This report presents the results of an independent study by United Engineers and Constructors (UNITED) of the SECURE-P Process Inherent Ultimate Safety (PIUS) Reactor Concept which is presently under development by the Swedish light water reactor vendor ASEA-ATOM of Vasteras, Sweden. This study was performed to investigate whether there is any realistic basis for believing that the PIUS reactor could be a viable competitor in the US energy market in the future. Assessments were limited to the technical, economic and licensing aspects of PIUS. Socio-political issues, while certainly important in answering this question, are so broad and elusive that it was considered that addressing them with the limited perspective of one small group from one company would be of questionable value and likely be misleading. Socio-political issues aside, the key issue is economics. For this reason, the specific objectives of this study were to determine if the estimated PIUS plant cost will be competitive in the US market and to identify and evaluate the technical and licensing risks that might make PIUS uneconomical or otherwise unacceptable

  1. Linear and Nonlinear MHD Wave Processes in Plasmas. Final Report

    International Nuclear Information System (INIS)

    Tataronis, J. A.

    2004-01-01

    This program treats theoretically low frequency linear and nonlinear wave processes in magnetized plasmas. A primary objective has been to evaluate the effectiveness of MHD waves to heat plasma and drive current in toroidal configurations. The research covers the following topics: (1) the existence and properties of the MHD continua in plasma equilibria without spatial symmetry; (2) low frequency nonresonant current drive and nonlinear Alfven wave effects; and (3) nonlinear electron acceleration by rf and random plasma waves. Results have contributed to the fundamental knowledge base of MHD activity in symmetric and asymmetric toroidal plasmas. Among the accomplishments of this research effort, the following are highlighted: Identification of the MHD continuum mode singularities in toroidal geometry. Derivation of a third order ordinary differential equation that governs nonlinear current drive in the singular layers of the Alfven continuum modes in axisymmetric toroidal geometry. Bounded solutions of this ODE implies a net average current parallel to the toroidal equilibrium magnetic field. Discovery of a new unstable continuum of the linearized MHD equation in axially periodic circular plasma cylinders with shear and incompressibility. This continuum, which we named ''accumulation continuum'' and which is related to ballooning modes, arises as discrete unstable eigenfrequency accumulate on the imaginary frequency axis in the limit of large mode numbers. Development of techniques to control nonlinear electron acceleration through the action of multiple coherent and random plasmas waves. Two important elements of this program aye student participation and student training in plasma theory

  2. Interpolation of final geometry and result fields in process parameter space

    NARCIS (Netherlands)

    Misiun, Grzegorz Stefan; Wang, Chao; Geijselaers, Hubertus J.M.; van den Boogaard, Antonius H.; Saanouni, K.

    2016-01-01

    Different routes to produce a product in a bulk forming process can be described by a limited set of process parameters. The parameters determine the final geometry as well as the distribution of state variables in the final shape. Ring rolling has been simulated using different parameter settings.

  3. Correlation of heat transfer coefficient in quenching process using ABAQUS

    Science.gov (United States)

    Davare, Sandeep Kedarnath; Balachandran, G.; Singh, R. K. P.

    2018-04-01

    During the heat treatment by quenching in a liquid medium the convective heat transfer coefficient plays a crucial role in the extraction of heat. The heat extraction ultimately influences the cooling rate and hence the hardness and mechanical properties. A Finite Element analysis of quenching a simple flat copper sample with different orientation of sample and with different quenchant temperatures were carried out to check and verify the results obtained from the experiments. The heat transfer coefficient (HTC) was calculated from temperature history in a simple flat copper disc sample experimentally. This HTC data was further used as input to simulation software and the cooling curves were back calculated. The results obtained from software and using experimentation shows nearly consistent values.

  4. The defense waste processing facility: the final processing step for defense high-level waste disposal

    International Nuclear Information System (INIS)

    Cowan, S.P.; Sprecher, W.M.; Walton, R.D.

    1983-01-01

    The policy of the U.S. Department of Energy is to pursue an aggressive and credible waste management program that advocates final disposal of government generated (defense) high-level nuclear wastes in a manner consistent with environmental, health, and safety responsibilities and requirements. The Defense Waste Processing Facility (DWPF) is an essential component of the Department's program. It is the first project undertaken in the United States to immobilize government generated high-level nuclear wastes for geologic disposal. The DWPF will be built at the Department's Savannah River Plant near Aiken, South Carolina. When construction is complete in 1989, the DWPF will begin processing the high-level waste at the Savannah River Plant into a borosilicate glass form, a highly insoluble and non-dispersable product, in easily handled canisters. The immobilized waste will be stored on site followed by transportation to and disposal in a Federal repository. The focus of this paper is on the DWPF. The paper discusses issues which justify the project, summarizes its technical attributes, analyzes relevant environmental and insitutional factors, describes the management approach followed in transforming technical and other concepts into concrete and steel, and concludes with observations about the future role of the facility

  5. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  6. Evaluation of technology transferring: The experiences of the first Navy Domestic Technology Transfair. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-31

    In August 1989 the Office of the Chief of Naval Research and the American Defense Preparedness Association conducted the first Navy Domestic Technology Transfair. The objective of the Transfair was to expose the US Navy`s years of solid experience across a broad span of technology to organizations outside of the Navy. It was an opportunity for private industry to capitalize on the Navy developed technology and this opening for industry was the primary focus of the Transfair. The event provided a unique forum to meet leading Navy scientific and engineering innovators face-to-face. Information was available concerning licensing of naval technology that was for sale to the private sector. Further, discussions covered opportunities for new cooperative research and development agreements with Navy laboratories and R&D activities. These agreements were authorized under the Federal Technology Transfer Act of 1986. The Transfair program was conducted in such a manner as to allow each Navy inventor, either scientist or engineer, to present a system, piece of hardware, or licensable concept in a formal paper presentation. Then, the Navy inventors were available in two, two-hour periods in which individual discussions were conducted, with attendees pursuing specific venues of cooperative agreements as desired. This report provides specifics concerning the technologies that were made available for transfer to the private sector during the Transfair. The Transfair concept sought to add special emphasis to the opening that the 1988 Technology Transfer Act brought to the marketplace. The experience was a step in the education of the possibilities for cooperation between the government and the private sector to share technology. Of additional significance is the economic enhancement for business expansion with the application of the technology to markets beyond defense.

  7. Scale Up of Malonic Acid Fermentation Process: Cooperative Research and Development Final Report, CRADA Number CRD-16-612

    Energy Technology Data Exchange (ETDEWEB)

    Schell, Daniel J [National Renewable Energy Laboratory (NREL), Golden, CO (United States)

    2018-04-16

    The goal of this work is to use the large fermentation vessels in the National Renewable Energy Laboratory's (NREL) Integrated Biorefinery Research Facility (IBRF) to scale-up Lygos' biological-based process for producing malonic acid and to generate performance data. Initially, work at the 1 L scale validated successful transfer of Lygos' fermentation protocols to NREL using a glucose substrate. Outside of the scope of the CRADA with NREL, Lygos tested their process on lignocellulosic sugars produced by NREL at Lawrence Berkeley National Laboratory's (LBNL) Advanced Biofuels Process Development Unit (ABPDU). NREL produced these cellulosic sugar solutions from corn stover using a separate cellulose/hemicellulose process configuration. Finally, NREL performed fermentations using glucose in large fermentors (1,500- and 9,000-L vessels) to intermediate product and to demonstrate successful performance of Lygos' technology at larger scales.

  8. The ISHTE [In-Situ Heat Transfer Experiment] lander: Final report

    International Nuclear Information System (INIS)

    Olson, L.O.; Harrison, J.G.

    1986-12-01

    This report describes the design and development of a sea floor lander constructed to support the In-Situ Heat Transfer Experiment (ISHTE). The work entailed fabricating and testing a steel space frame that would support and accurately position delicate instruments which would monitor a heat source driven into the sediments of the deep ocean. This lander is capable of being (1) transported from Seattle to Hawaii and back several times; (2) deployed from a ship at sea; (3) operated on the sea floor to field delicate experimental equipment; and (4) recovered for retrofit to support a one-year experiment on the sea floor

  9. [Evaluation of two closed-system drug transfer device in the antineoplastic drug elaboration process].

    Science.gov (United States)

    Gómez-Álvarez, Sandra; Porta-Oltra, Begoña; Hernandez-Griso, Marta; Pérez-Labaña, Francisca; Climente-Martí, Mónica

    2016-01-01

    to assess the impact of two closed-system drug transfer device on the local and environmental contamination and preparation times in the process of preparation of parenteral chemotherapy compared to the standard system. prospective observational study. Two different closed- systems providers, Care Fusion® and Icu Medical®, were compared to standard preparation. 15 nurses of Pharmacy Department prepared 5 preparations each one, one with the standard procedure and four using closed-systems. To evaluate the contamination, a fluorescein solution 0.5% was prepared. Two kind of contamination were evaluated, local (three points connection: closed-system connect vial, syringe and final infusion bags) and environmental (gloves and countertop). Percentage of contaminated preparations was obtained in each one. Time taken by each nurse in each preparation was recorded. 75 preparations were prepared. Local contamination was reduced 21% and 75% in closed-system Icu Medical® and Care Fusion® respectively. Care Fusion® closed system, local contamination was significantly lower than the standard system to the vial, syringe and final package, while Icu Medical® closed-systems only was significantly lower in the connection to the vial. Time of preparation was increased significantly with the use of closed-system between 23.4 and 30.5 seconds. both closed-systems drug transfer device have shown an improvement in contamination than the use of the standard system. However, preparation time has been significantly increased with the use of both systems. Copyright AULA MEDICA EDICIONES 2014. Published by AULA MEDICA. All rights reserved.

  10. Danish-Czech wind resource know-how transfer project. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Rathmann, O.; Noergaerd, P.; Frandsen, S.

    2004-06-01

    The course of the Danish-Czech Wind Resource Know-how Transfer Project is reported. The know-how transfer component of the project has consisted in performing a wind resource training work-shop for about 13 individuals from the Czech Republic, ranging from scientists to wind farm project developers, and in donating modern software for evaluating wind resources. The project has also included a review of a Czech overview-study of wind speeds inside the country as well as an investigation of the electricity tariffs and their impact on wind energy utilization in the Czech Republic. A problematic existing Czech wind farm project, locked up in a no-production situation, was also addressed. Not until the purchase by a new owner-company, which initiated the necessary repair and maintenance, the wind farm resumed normal operation. As its last task, the present project assisted in consolidating future operation through a helping package consisting of a training course for the wind farm technicians and in a package of relevant spare parts. (au)

  11. Biological transfer of plutonium via in vivo labeled goat's milk. Final report

    International Nuclear Information System (INIS)

    Sutton, W.W.; Mullen, A.A.; Lloyd, S.R.; Mosley, R.E.

    1976-03-01

    The long physical and biological half-life and high relative toxicity have dictated that considerable effort be devoted to quantifying plutonium transport through the various trophic levels. Despite the fact that biological transport of plutonium has been studied for many years, quantitative values for its transfer to milk, and its subsequent uptake by suckling animals have not been established. Three lactating goats were given intravenous injections of citrate-buffered plutonium nitrate at a rate of 75 microcuries per animal per day for three consecutive days. In all three goats approximately one percent of the total plutonium dose was transferred to the milk by the fifth post-treatment day. Plutonium retained by the tissues was deposited primarily in the liver and bone. In vitro plutonium-labeled milk was also fed to groups of rats and juvenile goats. Tissue concentrations of plutonium from juvenile goats which had received either in vivo or in vitro labeled milk were somewhat variable. Due possibly to this, within group variability and the small number of animals per group (two) there were no clearly discernible differences between treatments. The only comparison point to show a consistent trend was the observation that, as expected, juvenile rats retained more of the ingested dose than the adult animals

  12. Experimental investigation of natural convection heat transfer in volumetrically heated spherical segments. Final report

    International Nuclear Information System (INIS)

    Asfia, F.; Dhir, V.

    1998-03-01

    One strategy for preventing the failure of lower head of a nuclear reactor vessel is to flood the concrete cavity with subcooled water in accidents in which relocation of core material into the vessel lower head occurs. After the core material relocates into the vessel, a crust of solid material forms on the inner wall of the vessel, however, most of the pool remains molten and natural convection exists in the pool. At present, uncertainty exists with respect to natural convection heat transfer coefficients between the pool of molten core material and the reactor vessel wall. In the present work, experiments were conducted to examine natural convection heat transfer in internally heated partially filled spherical pools with external cooling. In the experiments, Freon-113 contained in a Pyrex bell jar was used as a test liquid. The pool was bounded with a spherical segment at the bottom, and was heated with magnetrons taken from a conventional microwave oven. The vessel was cooled from the outside with natural convection of water or with nucleate boiling of liquid nitrogen

  13. Manipulation of Energy Transfer Processes in Nano channels

    International Nuclear Information System (INIS)

    Devaux, A.; Calzaferri, G.

    2010-01-01

    The realisation of molecular assemblies featuring specific macroscopic properties is a prime example for the versatility of supramolecular organisation. Microporous materials such as zeolite L are well suited for the preparation of host-guest composites containing dyes, complexes, or clusters. This short tutorial focuses on the possibilities offered by zeolite L to study and influence Forster resonance energy transfer inside of its nano channels. The highly organised host-guest materials can in turn be structured on a larger scale to form macroscopic patterns, making it possible to create large-scale structures from small, highly organised building blocks for novel optical applications.

  14. A short comparison of electron and proton transfer processes in biological systems

    International Nuclear Information System (INIS)

    Bertrand, Patrick

    2005-01-01

    The main differences between electron and proton transfers that take place in biological systems are examined. The relation between the distance dependence of the rate constant and the mass of the transferred particle is analyzed in detail. Differences between the two processes have important consequences at the experimental level, which are discussed. The various mechanisms that ensure the coupling between electron and proton transfers are briefly described

  15. Estimation of the heat transfer coefficient in melt spinning process

    International Nuclear Information System (INIS)

    Tkatch, V I; Maksimov, V V; Grishin, A M

    2009-01-01

    Effect of the quenching wheel velocity in the range 20.7-26.5 m/s on the cooling rate as well as on the structure and microtopology of the contact surfaces of the glass-forming FeNiPB melt-spun ribbons has been experimentally studied. Both the values of the cooling rate and heat transfer coefficient at the wheel-ribbon interface estimated from the temperature vs. time curves recorded during melt spinning runs are in the ranges (1.6-5.2)x10 6 K/s and (2.8-5.2)x10 5 Wm -2 K -1 , respectively, for ribbon thicknesses of 31.4-22.0 μm. It was found that the density of the air pockets at the underside surface of ribbons decreases while its average depth remains essentially unchanged with the wheel velocity. Using the surface quality parameters the values of the heat transfer coefficient in the areas of direct ribbon-wheel contact were evaluated to be ranging from 5.75 to 6.65x10 5 Wm -2 K -1 .

  16. Luminescence and energy transfer processes in rare earth compounds

    International Nuclear Information System (INIS)

    Vliet, J.P.M. van.

    1989-01-01

    In this thesis some studies are presented of the luminescence and energy transfer in compounds containing Eu 3+ , Pr 3+ and Gd 3+ ions. Ch. 2 deals with the energy migration in the system Gd 1 - xEu x(IO 3) 3. In ch 3 the luminescence properties of the Pr 3+ ion in the system La 1 - xPr xMgAl 1 10 1 9 are reported. Ch. 4 discusses the luminescence properties of alkali europium double tungstates and molybdates AEuW 20 8 and AEuMo 20 * (A + = alkali metal atom). The luminiscence and energy migration characteristics of the isostructural system LiGd 1 - xEu xF 4 and Gd 1 - xEu xNbO 4 are reported in ch. 5. In ch. 6 the mechanism of energy migration in (La,Gd)AlO 3 and (Gd,Eu)AlO 3 is discussed. Ch. 7 deals with the system Na 5(Gd,Eu) (WO 4) 4. In ch. 8 the luminescence and energy transfer properties of two europium tellurite anti-glass phases are reported. The two phases are Eu 1 . 7 9TeO x, which has a pseudotetragonal structure, and Eu 1 . 0 6TeO x, which has a monoclinic, ordered structure. (author). 201 refs.; 39 figs.; 8 tabs

  17. Final Technical Report: Using Solid Particles as Heat Transfer Fluid for use in Concentrating Solar Power (CSP) Plants

    Energy Technology Data Exchange (ETDEWEB)

    Lattanzi, Aaron [Univ. of Colorado, Boulder, CO (United States); Hrenya, Christine [Univ. of Colorado, Boulder, CO (United States)

    2016-03-31

    feedback on the efficiency and feasibility of various designs. Namely, a prototype design consisting of an array of heated hexagonal tubes was later supplanted by a vertical conduit with internal baffles. Due to low solids heat transfer on the bottom faces of the hexagonal tubes in the prototype, the predicted wall temperature gradients exceeded the design limitations. By contrast, the vertical conduit can be constructed to continually force particle-wall contacts, and thus, result in more desirable solids heat transfer and wall temperature gradients. Finally, a new heat flux boundary condition was developed for DEM simulations to assess the aforementioned wall temperature gradients. The new boundary condition advances current state-of-the-art techniques by allowing the heat fluxes to each phase to vary with space and time while the total flux remains constant. Simulations with the new boundary condition show that the total boundary heat flux is in good agreement with the imposed total boundary heat flux. While the methods we have utilized here are primarily numerical and fundamental by nature, they offer some key advantages of: (i) being robust and valid over a large range of conditions, (ii) able to quickly explore large parameter spaces, and (iii) aid in the construction of experiments. We have ultimately leveraged our computational capabilities to provide feedback on the design of a CSP which possesses great potential to become a cost effective source of clean and renewable electricity. Overall, ensuring that future energy demands are met in a responsible and efficient manner has far reaching impacts that span both ecologic and economic concerns. Regarding logistics, the project was successfully re-negotiated after the go/no-decisions of Years 1 and 2. All milestones were successfully completed.

  18. Technology Transfer From The University of Minas Gerais to a Private Company: Process and Results

    OpenAIRE

    Alves De Oliveira, Maria Do Rosário; Girolleti, Domingos A.; Maccari, Emerson Antonio; Storopoli, José Eduardo

    2016-01-01

    Economic growth and technological development are closely related. In this article, the   process of technology transfer developed by the UFMG (a new sole cushioning system for a footwear industry in Nova Serrana city, in Minas Gerais State) is analyzed, using a case study. The data were collected from UFMG document research and through semi-structured interviews with the principal stakeholders. The process of technology transfer from the university to Crômic was a great learning process for ...

  19. Chemical vapor deposition graphene transfer process to a polymeric substrate assisted by a spin coater

    International Nuclear Information System (INIS)

    Kessler, Felipe; Da Rocha, Caique O C; Medeiros, Gabriela S; Fechine, Guilhermino J M

    2016-01-01

    A new method to transfer chemical vapor deposition graphene to polymeric substrates is demonstrated here, it is called direct dry transfer assisted by a spin coater (DDT-SC). Compared to the conventional method DDT, the improvement of the contact between graphene-polymer due to a very thin polymeric film deposited by spin coater before the transfer process prevented air bubbles and/or moisture and avoided molecular expansion on the graphene-polymer interface. An acrylonitrile-butadiene-styrene copolymer, a high impact polystyrene, polybutadiene adipate-co-terephthalate, polylactide acid, and a styrene-butadiene-styrene copolymer are the polymers used for the transfers since they did not work very well by using the DDT process. Raman spectroscopy and optical microscopy were used to identify, to quantify, and to qualify graphene transferred to the polymer substrates. The quantity of graphene transferred was substantially increased for all polymers by using the DDT-SC method when compared with the DDT standard method. After the transfer, the intensity of the D band remained low, indicating low defect density and good quality of the transfer. The DDT-SC transfer process expands the number of graphene applications since the polymer substrate candidates are increased. (paper)

  20. Taming tosyl azide: the development of a scalable continuous diazo transfer process.

    Science.gov (United States)

    Deadman, Benjamin J; O'Mahony, Rosella M; Lynch, Denis; Crowley, Daniel C; Collins, Stuart G; Maguire, Anita R

    2016-04-07

    Heat and shock sensitive tosyl azide was generated and used on demand in a telescoped diazo transfer process. Small quantities of tosyl azide were accessed in a 'one pot' batch procedure using shelf stable, readily available reagents. For large scale diazo transfer reactions tosyl azide was generated and used in a telescoped flow process, to mitigate the risks associated with handling potentially explosive reagents on scale. The in situ formed tosyl azide was used to rapidly perform diazo transfer to a range of acceptors, including β-ketoesters, β-ketoamides, malonate esters and β-ketosulfones. An effective in-line quench of sulfonyl azides was also developed, whereby a sacrificial acceptor molecule ensured complete consumption of any residual hazardous diazo transfer reagent. The telescoped diazo transfer process with in-line quenching was used to safely prepare over 21 g of an α-diazocarbonyl in >98% purity without any column chromatography.

  1. On knowledge transfer management as a learning process for ad hoc teams

    Science.gov (United States)

    Iliescu, D.

    2017-08-01

    Knowledge management represents an emerging domain becoming more and more important. Concepts like knowledge codification and personalisation, knowledge life-cycle, social and technological dimensions, knowledge transfer and learning management are integral parts. Focus goes here in the process of knowledge transfer for the case of ad hoc teams. The social dimension of knowledge transfer plays an important role. No single individual actors involved in the process, but a collective one, representing the organisation. It is critically important for knowledge to be managed from the life-cycle point of view. A complex communication network needs to be in place to supports the process of knowledge transfer. Two particular concepts, the bridge tie and transactive memory, would eventually enhance the communication. The paper focuses on an informational communication platform supporting the collaborative work on knowledge transfer. The platform facilitates the creation of a topic language to be used in knowledge modelling, storage and reuse, by the ad hoc teams.

  2. 76 FR 13101 - Requirements for Processing, Clearing, and Transfer of Customer Positions

    Science.gov (United States)

    2011-03-10

    ... for Processing, Clearing, and Transfer of Customer Positions AGENCY: Commodity Futures Trading... (Commission) is proposing regulations to implement Title VII of the Dodd-Frank Wall Street Reform and Consumer...), requiring a DCO, upon customer request, to promptly transfer customer positions and related funds from one...

  3. Phenylnaphthalene Derivatives as Heat Transfer Fluids for Concentrating Solar Power: Loop Experiments and Final Report

    Energy Technology Data Exchange (ETDEWEB)

    McFarlane, Joanna [ORNL; Bell, Jason R [ORNL; Felde, David K [ORNL; Joseph III, Robert Anthony [ORNL; Qualls, A L [ORNL; Weaver, Samuel P [ORNL

    2013-02-01

    ORNL and subcontractor Cool Energy completed an investigation of higher-temperature, organic thermal fluids for solar thermal applications. Although static thermal tests showed promising results for 1-phenylnaphthalene, loop testing at temperatures to 450 C showed that the material isomerized at a slow rate. In a loop with a temperature high enough to drive the isomerization, the higher melting point byproducts tended to condense onto cooler surfaces. So, as experienced in loop operation, eventually the internal channels of cooler components such as the waste heat rejection exchanger may become coated or clogged and loop performance will decrease. Thus, pure 1-phenylnaphthalene does not appear to be a fluid that would have a sufficiently long lifetime (years to decades) to be used in a loop at the increased temperatures of interest. Hence a decision was made not to test the ORNL fluid in the loop at Cool Energy Inc. Instead, Cool Energy tested and modeled power conversion from a moderate-temperature solar loop using coupled Stirling engines. Cool Energy analyzed data collected on third and fourth generation SolarHeart Stirling engines operating on a rooftop solar field with a lower temperature (Marlotherm) heat transfer fluid. The operating efficiencies of the Stirling engines were determined at multiple, typical solar conditions, based on data from actual cycle operation. Results highlighted the advantages of inherent thermal energy storage in the power conversion system.

  4. Charge amplification and transfer processes in the gas electron multiplier

    International Nuclear Information System (INIS)

    Bachmann, S.; Bressan, A.; Ropelewski, L.; Sauli, F.; Sharma, A.; Moermann, D.

    1999-01-01

    We report the results of systematic investigations on the operating properties of detectors based on the gas electron multiplier (GEM). The dependence of gain and charge collection efficiency on the external fields has been studied in a range of values for the hole diameter and pitch. The collection efficiency of ionization electrons into the multiplier, after an initial increase, reaches a plateau extending to higher values of drift field the larger the GEM voltage and its optical transparency. The effective gain, fraction of electrons collected by an electrode following the multiplier, increases almost linearly with the collection field, until entering a steeper parallel plate multiplication regime. The maximum effective gain attainable increases with the reduction in the hole diameter, stabilizing to a constant value at a diameter approximately corresponding to the foil thickness. Charge transfer properties appear to depend only on ratios of fields outside and within the channels, with no interaction between the external fields. With proper design, GEM detectors can be optimized to satisfy a wide range of experimental requirements: tracking of minimum ionizing particles, good electron collection with small distortions in high magnetic fields, improved multi-track resolution and strong ion feedback suppression in large volume and time-projection chambers

  5. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  6. APPRAISAL OF FINAL TAILINGS APPLICABILITY FOR PROCESSING AND PRODUCTION OF MODIFIERS OF IRON-CARBON ALLOYS

    Directory of Open Access Journals (Sweden)

    A. S. Panasugin

    2011-01-01

    Full Text Available The methodology of rating of the galvanic final tailings applicability for further processing in the interests of needs of metallurgical production of the Republic Belarus is offered.

  7. An alternative method for processing northern blots after capillary transfer.

    Science.gov (United States)

    Nilsen, Timothy W

    2015-03-02

    Different laboratories use different methods for the prehybridization, hybridization, and washing steps of the northern blotting procedure. In this protocol, a northern blot is pretreated with Church and Gilbert hybridization buffer to block nonspecific probe-binding sites. The immobilized RNA is then hybridized to a DNA probe specific for the RNA of interest. Finally, the membrane is washed and subjected to autoradiography or phosphorimaging. The solutions and conditions described here may be ideal for those who prefer to use fewer ingredients in their solutions. This protocol is designed to achieve the same goals as other northern blotting approaches. It minimizes background (nonspecific adherence of probe to membrane and nonspecific hybridization) and maximizes specific hybridization to RNAs immobilized on a membrane. © 2015 Cold Spring Harbor Laboratory Press.

  8. Heat transfer and fluid flow in biological processes advances and applications

    CERN Document Server

    Becker, Sid

    2015-01-01

    Heat Transfer and Fluid Flow in Biological Processes covers emerging areas in fluid flow and heat transfer relevant to biosystems and medical technology. This book uses an interdisciplinary approach to provide a comprehensive prospective on biofluid mechanics and heat transfer advances and includes reviews of the most recent methods in modeling of flows in biological media, such as CFD. Written by internationally recognized researchers in the field, each chapter provides a strong introductory section that is useful to both readers currently in the field and readers interested in learning more about these areas. Heat Transfer and Fluid Flow in Biological Processes is an indispensable reference for professors, graduate students, professionals, and clinical researchers in the fields of biology, biomedical engineering, chemistry and medicine working on applications of fluid flow, heat transfer, and transport phenomena in biomedical technology. Provides a wide range of biological and clinical applications of fluid...

  9. Industry to Education Technology Transfer Program. Composite Materials--Personnel Development. Final Report.

    Science.gov (United States)

    Tomezsko, Edward S. J.

    A composite materials education program was established to train Boeing Helicopter Company employees in the special processing of new filament-reinforced polymer composite materials. During the personnel development phase of the joint Boeing-Penn State University project, an engineering instructor from Penn State completed a 5-month, full-time…

  10. Sustainable Approach for Landfill Management at Final Processing Site Cikundul in Sukabumi City, Indonesia

    OpenAIRE

    Sri Darwati

    2012-01-01

    The main problem of landfill management in Indonesia is the difficulty in getting a location for Final Processing Sites (FPS) due to limited land and high land prices. Besides, about 95% of existing landfills are uncontrolled dumping sites, which could potentially lead to water, soil and air pollution. Based on data from the Ministry of Environment (2010), The Act of the Republic of Indonesia Number 18 Year 2008 Concerning Solid Waste Management, prohibits open dumping at final processing sit...

  11. Dynamical interaction of He atoms with metal surfaces: Charge transfer processes

    International Nuclear Information System (INIS)

    Flores, F.; Garcia Vidal, F.J.; Monreal, R.

    1993-01-01

    A self-consistent Kohn-Sham LCAO method is presented to calculate the charge transfer processes between a He * -atom and metal surfaces. Intra-atomic correlation effects are taken into account by considering independently each single He-orbital and by combining the different charge transfer processes into a set of dynamical rate equations for the different ion charge fractions. Our discussion reproduces qualitatively the experimental evidence and gives strong support to the method presented here. (author). 24 refs, 4 figs

  12. Simulating the heat transfer process of horizontal anode baking furnace

    Energy Technology Data Exchange (ETDEWEB)

    L.Q. Zhang; C.G. Zheng; M.H. Xu [Huazhong University of Science and Technology, Wuhan (China). State Key Laboratory of Coal Combustion

    2005-07-01

    A transient two-dimensional mathematical model of a horizontal baking furnace is presented. The model combines complex thermal phenomena in a baking process such as air infiltration, evolution and combustion of volatile matters, combustion of packing coke, and heat losses. The predicted results are in good agreement with measured data. Furthermore, the process is simulated under different operating conditions such as firing cycle time, airflow and air infiltration. The simulated results indicate that the fuel consumption decreases as the firing cycle time decreases. It is also found that reducing the airflow and air infiltration will help to save fuel. The model is proved to be a useful tool for the process optimisation of the baking furnace in the aluminum industry.

  13. THOREX processing and zeolite transfer for high-level waste stream processing blending

    International Nuclear Information System (INIS)

    Kelly, S. Jr.; Meess, D.C.

    1997-07-01

    The West Valley Demonstration Project (WVDP) completed the pretreatment of the high-level radioactive waste (HLW) prior to the start of waste vitrification. The HLW originated form the two million liters of plutonium/uranium extraction (PUREX) and thorium extraction (THOREX) wastes remaining from Nuclear Fuel Services' (NFS) commercial nuclear fuel reprocessing operations at the Western New York Nuclear Service Center (WNYNSC) from 1966 to 1972. The pretreatment process removed cesium as well as other radionuclides from the liquid wastes and captured these radioactive materials onto silica-based molecular sieves (zeolites). The decontaminated salt solutions were volume-reduced and then mixed with portland cement and other admixtures. Nineteen thousand eight hundred and seventy-seven 270-liter square drums were filled with the cement-wastes produced from the pretreatment process. These drums are being stored in a shielded facility on the site until their final disposition is determined. Over 6.4 million liters of liquid HLW were processed through the pretreatment system. PUREX supernatant was processed first, followed by two PUREX sludge wash solutions. A third wash of PUREX/THOREX sludge was then processed after the neutralized THOREX waste was mixed with the PUREX waste. Approximately 6.6 million curies of radioactive cesium-137 (Cs-137) in the HLW liquid were removed and retained on 65,300 kg of zeolites. With pretreatment complete, the zeolite material has been mobilized, size-reduced (ground), and blended with the PUREX and THOREX sludges in a single feed tank that will supply the HLW slurry to the Vitrification Facility

  14. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  15. [Electron transfer, ionization, and excitation in atomic collisions]. Final technical report, June 15, 1986 - June 14, 1998

    International Nuclear Information System (INIS)

    1998-01-01

    The research on theoretical atomic collisions that was funded at The Pennsylvania State University's Wilkes-Barre Campus by DOE from 1986 to 1998 was carried out by Winger from 1986 to 1989 and by Winter and Alston from 1989 to 1998. The fundamental processes of electron transfer, ionization, and excitation in ion-ion, ion-atom, and, more recently, ion-molecule collisions were addressed. These collision processes were treated in the context of simple one-electron, quasi-one-electron, or two-electron systems in order to provide unambiguous results and reveal more clearly the collisional mechanisms. Winter's work generally focused on the intermediate projectile-energy range corresponding to proton energies from about ten to a few hundred keV. In this velocity-matching energy range, the electron-transfer cross section reaches a peak, and many states, including electron-transfer and ionization states, contribute to the overall electron-cloud distribution and transition probabilities; a large number of states are coupled, and therefore perturbative approaches are generally inappropriate. These coupled-state calculations were sometimes also extended to higher energies to join with perturbative results. Alston concentrated on intermediate-energy asymmetric collision systems, for which coupling with the projectile is weaker, but many target states are included, and on high energies (MeV energies). Thus, while perturbation theory for electron transfer is valid, it is not adequate to first order. The studies by Winter and Alston described were often done in parallel. Alston also developed formal perturbative approaches not tied to any particular system. Materials studied included He + , Li 2+ , Be 3+ , B 4+ , C 5+ , and the H + + Na system

  16. Intensification of mass transfer in wet textile processes by power ultrasound

    NARCIS (Netherlands)

    Moholkar, V.S.; Nierstrasz, Vincent; Warmoeskerken, Marinus

    2003-01-01

    In industrial textile pre-treatment and finishing processes, mass transfer and mass transport are often rate-limiting. As a result, these processes require a relatively long residence time, large amounts of water and chemicals, and are also energy-consuming. In most of these processes, diffusion and

  17. Resistance to awareness of the supervisor's transferences with special reference to the parallel process.

    Science.gov (United States)

    Stimmel, B

    1995-06-01

    Supervision is an essential part of psychoanalytic education. Although not taken for granted, it is not studied with the same critical eye as is the analytic process. This paper examines the supervision specifically with a focus on the supervisor's transference towards the supervisee. The point is made, in the context of clinical examples, that one of the ways these transference reactions may be rationalised is within the setting of the parallel process so often encountered in supervision. Parallel process, a very familiar term, is used frequently and easily when discussing supervision. It may be used also as a resistance to awareness of transference phenomena within the supervisor in relation to the supervisee, particularly because of its clinical presentation. It is an enactment between supervisor and supervisee, thus ripe with possibilities for disguise, displacement and gratification. While transference reactions of the supervisee are often discussed, those of the supervisor are notably missing in our literature.

  18. Hydrogen-transfer and charge transfer in photochemical and high energy radiation induced reactions: effects of thiols. Final report, February 1, 1960-january 31, 1979

    International Nuclear Information System (INIS)

    Cohen, S.G.

    1980-03-01

    Absorption of ultraviolet or visible light, or high energy radiation, may lead to highly reactive free radicals. Thiols affect the reactions of these radicals in the following ways: (1) transfer of hydrogen from sulfur of the thiol to a substrate radical, converting the radical to a stable molecule, and the thiol to a reactive thiyl radical; and (2) transfer of hydrogen from a substrate radical or molecule to thiyl, regenerating thiol. The thiol is thus used repeatedly and a single molecule may affect the consequences of many quanta. Three effects may ensue, depending upon the system irradiated: (1) the substrate radicals may be converted by thiol-thiyl to the original molecules, and protection against radiation damage is afforded. (2) The radicals may be converted to molecules not identical with the starting materials, and in both cases damage caused by radical combination processes is prevented. (3) Product yields may be increased where the initial radicals might otherwise regenerate starting materials. It was shown that rates of reaction of excited species can be correlated with triplet energies and reduction potentials, and with ionization potentials, that amines are very reactive toward excited carbonyl compounds of all types, and that yields of products from these reactions can be increased by thiols, leading to increased efficiency in utilization of light

  19. Bimetallic promotion of cooperative hydrogen transfer and heteroatom removal in coal liquefaction. Final technical report, September 1, 1988--December 31, 1991

    Energy Technology Data Exchange (ETDEWEB)

    Eisch, J.J.

    1992-04-07

    The ultimate objective of this research has been to uncover novel reagents and experimental conditions for heteroatom removal and hydrogen transfer processes, which would be applicable to the liquefaction of coal under low-severity conditions. To this end, one phase of this research has investigated the cleavage of carbon-heteroatom bonds involving sulfur, oxygen, nitrogen and halogen by subvalent transition-metal complexes. A second phase of the study has assessed the capability of the same transition-metal complexes or of organoaluminum Lewis acids to catalyze the cleavage of carbon-hydrogen bonds in aromatics and hence to promote hydrogen shuttling. Finally, a third phase of our work has uncovered a remarkable synergistic effect of combinations of transition metals with organoaluminum Lewis acids on hydrogen shuttling between aromatics and hydroaromatics. (VC)

  20. Investigations of effect of phase change mass transfer rate on cavitation process with homogeneous relaxation model

    Energy Technology Data Exchange (ETDEWEB)

    He, Zhixia; Zhang, Liang; Saha, Kaushik; Som, Sibendu; Duan, Lian; Wang, Qian

    2017-12-01

    The super high fuel injection pressure and micro size of nozzle orifice has been an important development trend for the fuel injection system. Accordingly, cavitation transient process, fuel compressibility, amount of noncondensable gas in the fuel and cavitation erosion have attracted more attention. Based on the fact of cavitation in itself is a kind of thermodynamic phase change process, this paper takes the perspective of the cavitation phase change mass transfer process to analyze above mentioned phenomenon. The two-phase cavitating turbulent flow simulations with VOF approach coupled with HRM cavitation model and U-RANS of standard k-ε turbulence model were performed for investigations of cavitation phase change mass transfer process. It is concluded the mass transfer time scale coefficient in the Homogenous Relaxation Model (HRM) representing mass transfer rate should tend to be as small as possible in a condition that ensured the solver stable. At very fast mass transfer rate, the phase change occurs at very thin interface between liquid and vapor phase and condensation occurs more focused and then will contribute predictably to a more serious cavitation erosion. Both the initial non-condensable gas in fuel and the fuel compressibility can accelerate the cavitation mass transfer process.

  1. Soil transference patterns on bras: Image processing and laboratory dragging experiments.

    Science.gov (United States)

    Murray, Kathleen R; Fitzpatrick, Robert W; Bottrill, Ralph S; Berry, Ron; Kobus, Hilton

    2016-01-01

    In a recent Australian homicide, trace soil on the victim's clothing suggested she was initially attacked in her front yard and not the park where her body was buried. However the important issue that emerged during the trial was how soil was transferred to her clothing. This became the catalyst for designing a range of soil transference experiments (STEs) to study, recognise and classify soil patterns transferred onto fabric when a body is dragged across a soil surface. Soil deposits of interest in this murder were on the victim's bra and this paper reports the results of anthropogenic soil transfer to bra-cups and straps caused by dragging. Transfer patterns were recorded by digital photography and photomicroscopy. Eight soil transfer patterns on fabric, specific to dragging as the transfer method, appeared consistently throughout the STEs. The distinctive soil patterns were largely dependent on a wide range of soil features that were measured and identified for each soil tested using X-ray Diffraction and Non-Dispersive Infra-Red analysis. Digital photographs of soil transfer patterns on fabric were analysed using image processing software to provide a soil object-oriented classification of all soil objects with a diameter of 2 pixels and above transferred. Although soil transfer patterns were easily identifiable by naked-eye alone, image processing software provided objective numerical data to support this traditional (but subjective) interpretation. Image software soil colour analysis assigned a range of Munsell colours to identify and compare trace soil on fabric to other trace soil evidence from the same location; without requiring a spectrophotometer. Trace soil from the same location was identified by linking soils with similar dominant and sub-dominant Munsell colour peaks. Image processing numerical data on the quantity of soil transferred to fabric, enabled a relationship to be discovered between soil type, clay mineralogy (smectite), particle size and

  2. Asset Management Process (AMP) Improvement Project: Final Report of Findings and Recommendations

    Science.gov (United States)

    2009-10-01

    Beach, Sue Meade-Lutz, Gary Reid, Deanna Tauvela, and Larry Majure . John Gorman served as the event’s Process Owner. INVESTIGATIONAL QUESTION The...Reid, Deanna Tauvela, and Larry Majure . John Gorman served as the event’s Process Owner. INVESTIGATIONAL QUESTION For years, the Center has...Provide custodians with receipts that are electronically tracked and use the receipt transaction to trigger forced asset transfers in ERP. See Appendix F

  3. The roles of wetting liquid in the transfer process of single layer graphene onto arbitrary substrates.

    Science.gov (United States)

    Kim, Ju Hun; Yi, Junghwa; Jin, Hyeong Ki; Kim, Un Jeong; Park, Wanjun

    2013-11-01

    Wet transfer is crucial for most device structures of the proposed applications employing single layer graphene in order to take advantage of the unique physical, chemical, bio-chemical and electrical properties of the graphene. However, transfer methodologies that can be used to obtain continuous film without voids, wrinkles and cracks are limited although film perfectness critically depends on the relative surface tension of wetting liquids on the substrate. We report the importance of wetting liquid in the transfer process with a systematic study on the parameters governing film integrity in single layer graphene grown via chemical vapor deposition. Two different suspension liquids (in terms of polar character) are tested for adequacy of transfer onto SiO2 and hexamethyldisiloxane (HMDS). We found that the relative surface tension of the wetting liquid on the surfaces of the substrate is related to transfer quality. In addition, dimethyl sulfoxide (DMSO) is introduced as a good suspension liquid to HMDS, a mechanically flexible substrate.

  4. Two-In-One Method for Graphene Transfer: Simplified Fabrication Process for Organic Light-Emitting Diodes.

    Science.gov (United States)

    Liu, Lihui; Shang, Wenjuan; Han, Chao; Zhang, Qing; Yao, Yao; Ma, Xiaoqian; Wang, Minghao; Yu, Hongtao; Duan, Yu; Sun, Jie; Chen, Shufen; Huang, Wei

    2018-02-28

    Graphene as one of the most promising transparent electrode materials has been successfully applied in organic light-emitting diodes (OLEDs). However, traditional poly(methyl methacrylate) (PMMA) transfer method usually results in hardly removed polymeric residues on the graphene surface, which induces unwanted leakage current, poor diode behavior, and even device failure. In this work, we proposed a facile and efficient two-in-one method to obtain clean graphene and fabricate OLEDs, in which the poly(9,9-di-n-octylfluorene-alt-(1,4-phenylene-(4-sec-butylphenyl)imino)-1,4-phenylene) (TFB) layer was inserted between the graphene and PMMA film both as a protector during the graphene transfer and a hole-injection layer in OLEDs. Finally, green OLED devices were successfully fabricated on the PMMA-free graphene/TFB film, and the device luminous efficiency was increased from 64.8 to 74.5 cd/A by using the two-in-one method. Therefore, the proposed two-in-one graphene transfer method realizes a high-efficient graphene transfer and device fabrication process, which is also compatible with the roll-to-roll manufacturing. It is expected that this work can enlighten the design and fabrication of the graphene-based optoelectronic devices.

  5. Automatic detection of health changes using statistical process control techniques on measured transfer times of elderly.

    Science.gov (United States)

    Baldewijns, Greet; Luca, Stijn; Nagels, William; Vanrumste, Bart; Croonenborghs, Tom

    2015-01-01

    It has been shown that gait speed and transfer times are good measures of functional ability in elderly. However, data currently acquired by systems that measure either gait speed or transfer times in the homes of elderly people require manual reviewing by healthcare workers. This reviewing process is time-consuming. To alleviate this burden, this paper proposes the use of statistical process control methods to automatically detect both positive and negative changes in transfer times. Three SPC techniques: tabular CUSUM, standardized CUSUM and EWMA, known for their ability to detect small shifts in the data, are evaluated on simulated transfer times. This analysis shows that EWMA is the best-suited method with a detection accuracy of 82% and an average detection time of 9.64 days.

  6. Quantum theory of nonadiabatic heavy-particle transfer processes in polar media

    International Nuclear Information System (INIS)

    Kuznetsov, A.M.

    1986-01-01

    For the probability of nonadiabatic transfer of heavy particles, a calculating procedure is proposed which in the case of certain processes allows the interaction between motion of the particle undergoing transfer and motion along other degrees of freedom to be exactly accounted for. In the case of symmetric systems, explicit expressions are obtained for the free energy of activation of the transition and for the tunneling factor which allow for nonadiabaticity of motion of the particle undergoing transfer, both in the region beneath the barrier and in the region that is classically accessible

  7. Materials, process, product analysis of coal process technology. Phase I final report

    Energy Technology Data Exchange (ETDEWEB)

    Saxton, J. C.; Roig, R. W.; Loridan, A.; Leggett, N. E.; Capell, R. G.; Humpstone, C. C.; Mudry, R. N.; Ayres, E.

    1976-02-01

    The purpose of materials-process-product analysis is a systematic evaluation of alternative manufacturing processes--in this case processes for converting coal into energy and material products that can supplement or replace petroleum-based products. The methodological steps in the analysis include: Definition of functional operations that enter into coal conversion processes, and modeling of alternative, competing methods to accomplish these functions; compilation of all feasible conversion processes that can be assembled from combinations of competing methods for the functional operations; systematic, iterative evaluation of all feasible conversion processes under a variety of economic situations, environmental constraints, and projected technological advances; and aggregative assessments (economic and environmental) of various industrial development scenarios. An integral part of the present project is additional development of the existing computer model to include: A data base for coal-related materials and coal conversion processes; and an algorithmic structure that facilitates the iterative, systematic evaluations in response to exogenously specified variables, such as tax policy, environmental limitations, and changes in process technology and costs. As an analytical tool, the analysis is intended to satisfy the needs of an analyst working at the process selection level, for example, with respect to the allocation of RDandD funds to competing technologies.

  8. Impact of Self-Explanation and Analogical Comparison Support on Learning Processes, Motivation, Metacognition, and Transfer

    Science.gov (United States)

    Richey, J. Elizabeth

    Research examining analogical comparison and self-explanation has produced a robust set of findings about learning and transfer supported by each instructional technique. However, it is unclear how the types of knowledge generated through each technique differ, which has important implications for cognitive theory as well as instructional practice. I conducted a pair of experiments to directly compare the effects of instructional prompts supporting self-explanation, analogical comparison, and the study of instructional explanations across a number of fine-grained learning process, motivation, metacognition, and transfer measures. Experiment 1 explored these questions using sequence extrapolation problems, and results showed no differences between self-explanation and analogical comparison support conditions on any measure. Experiment 2 explored the same questions in a science domain. I evaluated condition effects on transfer outcomes; self-reported self-explanation, analogical comparison, and metacognitive processes; and achievement goals. I also examined relations between transfer and self-reported processes and goals. Receiving materials with analogical comparison support and reporting greater levels of analogical comparison were both associated with worse transfer performance, while reporting greater levels of self-explanation was associated with better performance. Learners' self-reports of self-explanation and analogical comparison were not related to condition assignment, suggesting that the questionnaires did not measure the same processes promoted by the intervention, or that individual differences in processing are robust even when learners are instructed to engage in self-explanation or analogical comparison.

  9. Nicotinamide-NAD sequence: redox process and related behavior, behavior and properties of intermediate and final products

    International Nuclear Information System (INIS)

    Elving, P.J.; Schmakel, C.O.; Santhanam, K.S.V.

    1976-01-01

    Illustrations of the application of analytical chemical techniques to the study of chemical phenomena are given. In particular, electrochemical techniques and methodology and, to a lesser extent, spectrophotometry were used to investigate the solution behavior, adsorption, redox processes including coupled chemical reactions, and allied aspects of biologically significant compounds and of their intermediate and final redox products, e.g., the behavior of the free radicals produced by initial one-electron processes. This approach is illustrated by the consideration of the behavior in aqueous and nonaqueous media of a sequence of compounds ranging from nicotinamide (3-carbamoylpyridine) to NAD + and NADP + ; the latter compounds function as coenzymes for the pyridinoproteins which are principal components in the Krebs citric acid cycle and in the electron transport chain in biological redox reactions. The discussion is presented under the following section headings: interpretation of electrochemical behavior; mechanistic patterns; kinetic aspects of charge-transfer and chemical reactions; correlation with theoretically calculated parameters; and, mechanisms of biological oxidation-reduction reactions. The use of pulse radiolysis, chronopotentiometric, and cyclic voltammetric methods in studies on free radical dimerization rates is reviewed in the discussion of the kinetic aspects of charge-transfer and chemical reactions. (188 references)

  10. Process techniques of charge transfer time reduction for high speed CMOS image sensors

    International Nuclear Information System (INIS)

    Cao Zhongxiang; Li Quanliang; Han Ye; Qin Qi; Feng Peng; Liu Liyuan; Wu Nanjian

    2014-01-01

    This paper proposes pixel process techniques to reduce the charge transfer time in high speed CMOS image sensors. These techniques increase the lateral conductivity of the photo-generated carriers in a pinned photodiode (PPD) and the voltage difference between the PPD and the floating diffusion (FD) node by controlling and optimizing the N doping concentration in the PPD and the threshold voltage of the reset transistor, respectively. The techniques shorten the charge transfer time from the PPD diode to the FD node effectively. The proposed process techniques do not need extra masks and do not cause harm to the fill factor. A sub array of 32 × 64 pixels was designed and implemented in the 0.18 μm CIS process with five implantation conditions splitting the N region in the PPD. The simulation and measured results demonstrate that the charge transfer time can be decreased by using the proposed techniques. Comparing the charge transfer time of the pixel with the different implantation conditions of the N region, the charge transfer time of 0.32 μs is achieved and 31% of image lag was reduced by using the proposed process techniques. (semiconductor devices)

  11. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    Science.gov (United States)

    Rozanov, V. V.; Dinter, T.; Rozanov, A. V.; Wolanin, A.; Bracher, A.; Burrows, J. P.

    2017-06-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18-40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean-atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean-atmosphere radiative transfer solver presented by Rozanov et al. [61] we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: http://www.iup.physik.uni-bremen.de.

  12. Robust Modelling of Heat and Mass Transfer in Processing of Solid Foods

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu

    The study is focused on combined heat and mass transfer during processing of solid foods such as baking and frying processes. Modelling of heat and mass transfer during baking and frying is a significant scientific challenge. During baking and frying, the food undergoes several changes...... in microstructure and other physical properties of the food matrix. The heat and water transport inside the food is coupled in a complex way, which for some food systems it is not yet fully understood. A typical example of the latter is roasting of meat in convection oven, where the mechanism of water transport...... is unclear. Establishing the robust mathematical models describing the main mechanisms reliably is of great concern. A quantitative description of the heat and mass transfer during the solid food processing, in the form of mathematical equations, implementation of the solution techniques, and the value...

  13. Radiative transfer modeling through terrestrial atmosphere and ocean accounting for inelastic processes: Software package SCIATRAN

    International Nuclear Information System (INIS)

    Rozanov, V.V.; Dinter, T.; Rozanov, A.V.; Wolanin, A.; Bracher, A.; Burrows, J.P.

    2017-01-01

    SCIATRAN is a comprehensive software package which is designed to model radiative transfer processes in the terrestrial atmosphere and ocean in the spectral range from the ultraviolet to the thermal infrared (0.18–40 μm). It accounts for multiple scattering processes, polarization, thermal emission and ocean–atmosphere coupling. The main goal of this paper is to present a recently developed version of SCIATRAN which takes into account accurately inelastic radiative processes in both the atmosphere and the ocean. In the scalar version of the coupled ocean–atmosphere radiative transfer solver presented by Rozanov et al. we have implemented the simulation of the rotational Raman scattering, vibrational Raman scattering, chlorophyll and colored dissolved organic matter fluorescence. In this paper we discuss and explain the numerical methods used in SCIATRAN to solve the scalar radiative transfer equation including trans-spectral processes, and demonstrate how some selected radiative transfer problems are solved using the SCIATRAN package. In addition we present selected comparisons of SCIATRAN simulations with those published benchmark results, independent radiative transfer models, and various measurements from satellite, ground-based, and ship-borne instruments. The extended SCIATRAN software package along with a detailed User's Guide is made available for scientists and students, who are undertaking their own research typically at universities, via the web page of the Institute of Environmental Physics (IUP), University of Bremen: (http://www.iup.physik.uni-bremen.de). - Highlights: • A new version of the software package SCIATRAN is presented. • Inelastic scattering in water and atmosphere is implemented in SCIATRAN. • Raman scattering and fluorescence can be included in radiative transfer calculations. • Comparisons to other radiative transfer models show excellent agreement. • Comparisons to observations show consistent results.

  14. Considerations on technology transfer process in nuclear power industry for developing countries

    International Nuclear Information System (INIS)

    Castro, I.P.

    2000-01-01

    Nuclear know-how cannot possibly be developed globally in developing countries, so technology transfer is the only conceivable way to make nuclear power accessible to these countries. Technology transfer process accounts for three mayor steps, namely acquisition, assimilation and diffusion, so a serious nuclear power program should comprise all of them. Substantial national efforts should be made by developing countries in financial, industrial, scientific, organizational and many other aspects in order to succeed a profitable technology transfer, but developing countries cannot make it by themselves. Finance is the biggest problem for developing world nuclear power projects. Human resource qualification is another important aspect of the nuclear power technology transfer, where technology receptor countries should prepare thousands of professionals in domestic and foreign schools. Challenge for nuclear power deployment is economical, but also social and political. Developed countries should be open to cooperate with developing countries in meeting their needs for nuclear power deployment that should be stimulated and coordinated by an international body which should serve as mediator for nuclear power technology transfer. This process must be carried out on the basis of mutual benefits, in which the developed world can exploit the fast growing market of energy in the developing world, but with the necessary condition of the previous preparation of our countries for this technology transfer. (author)

  15. Experimental investigations of laser-induced forward transfer process of organic thin films

    International Nuclear Information System (INIS)

    Thomas, Benjamin; Alloncle, Anne Patricia; Delaporte, Philippe; Sentis, Marc; Sanaur, Sebastien; Barret, Michael; Collot, Philippe

    2007-01-01

    This paper deals with transfer induced by laser of thin layers of a conducting polymer, the poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate), for applications in plastic electronics. This relatively simple technique of direct writing offers the ability to make surface micro-patterning by localized deposits of material. The study of the various mechanisms (ablation, transfer and deposit) has been carried out according to different conditions of irradiation: wavelength (from ultraviolet to infrared radiation), pulse duration (nanosecond and sub-nanosecond) and fluence. The morphology of the transferred patterns has been analyzed by optical microscopy and scanning electronic microscopy. Our objective is to understand the different mechanisms involved in the process in order to optimize it in terms of geometrical resolution while preserving the properties of the transferred material

  16. The transfer of natural Rhodamine B contamination from raw paprika fruit to capsicum oleoresin during the extraction process.

    Science.gov (United States)

    Wu, Naiying; Gao, Wei; Lian, Yunhe; Du, Jingjing; Tie, Xiaowei

    2017-12-15

    Occurrence of Rhodamine B (RhB) contamination in paprika caused by agricultural materials during the vegetation process has been reported. It may transfer during the process of active compounds extraction, and eventually exist in final products. Herein, the re-distribution of RhB during the extraction process was assessed in terms of RhB contents, as well as mass, color value and capsaicinoids yield of each process. Results revealed that natural RhB contamination at 0.55-1.11µg/kg originated from raw paprika fruit then transferred with the extraction proceeded. About 95.5% of RhB was found in red oleoresin. After separation of red oleoresin, 91.6% of RhB was remained in capsicum oleoresin, only 3.7% in paprika red. These results were consistent with total capsaicinoids recovery of each product. The RhB levels in edible capsicum oleoresin in our present study at 0.01-0.34µg/kg did not exceed the legal limits established by the European Union. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. In situ observation of plutonium transfer processes in the marine environment

    International Nuclear Information System (INIS)

    Guary, J.-C.; Fraizier, Andre

    1975-09-01

    A preliminary observation of plutonium transfer processes in the marine environment was carried out and showed that concentration of the radionuclide was lower when marine organisms stood at a higher trophic level. This observation supplemented by an investigation on contamination pathways showed that plutonium was not concentrated along the food chain and its uptake occured preferentially by direct contact of species with seawater, a process chiefly affecting producers and primary consumers. It appeared that the marine sediment was not a significant vector of plutonium transfer in burrowing species [fr

  18. Transfer of fallout radionuclides derived from Fukushima NPP accident: 1 year study on transfer of radionuclides through hydrological processes

    Science.gov (United States)

    Onda, Yuichi; Kato, Hiroaki; Patin, Jeremy; Yoshimura, Kazuya; Tsujimura, Maki; Wakahara, Taeko; Fukushima, Takehiko

    2013-04-01

    Previous experiences such as Chernobyl Nuclear Power Plant accident have confirmed that fallout radionuclides on the ground surface migrate through natural environment including soils and rivers. Therefore, in order to estimate future changes in radionuclide deposition, migration process of radionuclides in forests, soils, ground water, rivers should be monitored. However, such comprehensive studies on migration through forests, soils, ground water and rivers have not been conducted so far. Here, we present the following comprehensive investigation was conducted to confirm migration of radionuclides through natural environment including soils and rivers. 1)Study on depth distribution of radiocaesium in soils within forests, fields, and grassland 2)Confirmation of radionuclide distribution and investigation on migration in forests 3)Study on radionuclide migration due to soil erosion under different land use 4)Measurement of radionuclides entrained from natural environment including forests and soils 5)Investigation on radionuclide migration through soil water, ground water, stream water, spring water under different land use 6)Study on paddy-to-river transfer of radionuclides through suspended sediments 7)Study on river-to-ocean transfer of radionuclides via suspended sediments 8)Confirmation of radionuclide deposition in ponds and reservoirs

  19. Thin film silicon solar cells: advanced processing and characterization - Final report

    Energy Technology Data Exchange (ETDEWEB)

    Ballif, Ch.

    2008-04-15

    This final report elaborated for the Swiss Federal Office of Energy (SFOE) takes a look at the results of a project carried out at the photovoltaics laboratory at the University of Neuchatel in Switzerland. The project aimed to demonstrate the production of high-efficiency thin-film silicon devices on flexible substrates using low cost processes. New ways of improving processing and characterisation are examined. The process and manufacturing know-how necessary to provide support for industrial partners within the framework of further projects is discussed. The authors state that the efficiency of most devices was significantly improved, both on glass substrates and on flexible plastic foils. The process reproducibility was also improved and the interactions between the different layers in the device are now said to be better understood. The report presents the results obtained and discusses substrate materials, transparent conductors, defect analyses and new characterisation tools. Finally, the laboratory infrastructure is described.

  20. Knowledge transfer process of Brazilian multinationals: comparing acquired subsidiaries to the greenfield ones

    Directory of Open Access Journals (Sweden)

    Natacha Bertoia Silva

    2012-07-01

    Full Text Available The main purpose of this study was to explore the knowledge transfer process between the subsidiaries and the headquarter of Brazilian multinationals, and to identify the most used mechanisms for transferring knowledge. This paper also aims to point out existing barriers in this process, comparing acquired subsidiaries to the greenfield ones. International studies have shown differences in the process of knowledge transfer due to the origin of foreign units (entry mode. We surveyed in 2006 and 2007 a sample of 66 Brazilian subsidiaries of multinationals with overseas activities. As a result, the knowledge transfer from the headquarter to the subsidiary has occurred through meetings with top executives and the reception of Brazilian executives in both types of units. The barriers to knowledge transfer are bland, being clearer in acquired subsidiaries. Cultural resistance is the most prominent. When we focus on the acquired units, the hierarchical structure is seen as a barrier, probably reflecting the centralized attitude by the headquarters. At the same time, the lack of incentives for sharing knowledge is more evident in greenfield units. Also, the syndrome of not invented here is a perceived barrier by acquired units.

  1. Analysis of prompt supercritical process with heat transfer and temperature feedback

    Institute of Scientific and Technical Information of China (English)

    ZHU BO; ZHU Qian; CHEN Zhiyun

    2009-01-01

    The prompt supercritical process of a nuclear reactor with temperature feedback and initial power as well as heat transfer with a big step reactivity (ρ0>β) is analyzed in this paper.Considering the effect of heat transfer on temperature of the reactor,a new model is set up.For any initial power,the variations of output power and reactivity with time are obtained by numerical method.The effects of the big inserted step reactivity and initial power on the prompt supercritical process are analyzed and discussed.It was found that the effect of heat transfer on the output power and reactivity can be neglected under any initial power,and the output power obtained by the adiabatic model is basically in accordance with that by the model of this paper,and the analytical solution can be adopted.The results provide a theoretical base for safety analysis and operation management of a power reactor.

  2. A simulation framework for mapping risks in clinical processes: the case of in-patient transfers.

    Science.gov (United States)

    Dunn, Adam G; Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne

    2011-05-01

    To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols.

  3. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa; Kick, Benjamin; Grö tzinger, Stefan W.; Burger, Christian; Karan, Ram; Weuster-Botz, Dirk; Eppinger, Jö rg; Arold, Stefan T.

    2018-01-01

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer

  4. Hadronic processes with large transfer momenta and quark counting rules in multiparticle dual amplitude

    International Nuclear Information System (INIS)

    Akkelin, S.V.; Kobylinskij, N.A.; Martynov, E.S.

    1989-01-01

    A dual N-particle amplitude satisfying the quark counting rules for the processes with large transfer momenta is constructed. The multiparticle channels are shown to give an essential contribution to the amplitude decreasing power in a hard kinematic limit. 19 refs.; 9 figs

  5. Radioactive fallout in France after the second Chinese nuclear explosion: atmospheric transfer processes

    International Nuclear Information System (INIS)

    Doury, A.; Bourgeon, P.

    1966-05-01

    The products released into the atmosphere by the second Chinese nuclear explosion were detected and measured in France during the months of May, June and July 1965. The main results are presented here and discussed. They are considered in particular in the light of the meteorological conditions as a function of the most recent hypotheses concerning transfer processes. (authors) [fr

  6. On conservation of the baryon chirality in the processes with large momentum transfer

    International Nuclear Information System (INIS)

    Ioffe, B.L.

    1976-01-01

    The hypothesis of the baryon chirality conservation in the processes with large momentum transfer is suggested and some arguments in its favour are made. Experimental implicatiosns of this assumption for weak and electromagnetic form factors of transitions in the baryon octet and of transitions N → Δ, N → Σsup(*) are considered

  7. Automatic system of production, transfer and processing of coin targets for the production of metallic radioisotopes

    Science.gov (United States)

    Pellicioli, M.; Ouadi, A.; Marchand, P.; Foehrenbacher, T.; Schuler, J.; Dick-Schuler, N.; Brasse, D.

    2017-05-01

    The work presented in this paper gathers three main technical developments aiming at 1) optimizing nuclide production by the mean of solid targets 2) automatically transferring coin targets from vault to hotcell without human intervention 3) processing target dilution and purification in hotcell automatically. This system has been installed on a ACSI TR24 cyclotron in Strasbourg France.

  8. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions (updated 1993)

    International Nuclear Information System (INIS)

    Tawara, H.

    1993-04-01

    Following our previous compilations [IPPJ-AM-45 (1986), NIFS-DATA-7 (1990)], bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1980-1992 are included. For easy finding references for particular combination of collision partners, a simple list is also provided. (author) 1542 refs

  9. The stokes number approach to support scale-up and technology transfer of a mixing process

    NARCIS (Netherlands)

    Willemsz, T.A.; Hooijmaijers, R.; Rubingh, C.M.; Frijlink, H.W.; Vromans, H.; Voort Maarschalk, K. van der

    2012-01-01

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for

  10. The Stokes number approach to support scale-up and technology transfer of a mixing process

    NARCIS (Netherlands)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for

  11. Mass-transfer in extraction and reextraction as a single-stage process

    International Nuclear Information System (INIS)

    Rodriguez del Cerro, M.; Trilleros, J.A.; Otero de la Gandara, J.L.

    1987-01-01

    The rate of mass transfer between water and naftenic acid and threebutilphosphate in kerosen are studied in the two possibilities to or from water. The two insoluble phases are brought in to intimate contact with dispersed phase droplets, in a single-stage process. The evolution of the equilibrium distribution of solute is taken in consideration. (author)

  12. Estimating the transmission potential of supercritical processes based on the final size distribution of minor outbreaks.

    Science.gov (United States)

    Nishiura, Hiroshi; Yan, Ping; Sleeman, Candace K; Mode, Charles J

    2012-02-07

    Use of the final size distribution of minor outbreaks for the estimation of the reproduction numbers of supercritical epidemic processes has yet to be considered. We used a branching process model to derive the final size distribution of minor outbreaks, assuming a reproduction number above unity, and applying the method to final size data for pneumonic plague. Pneumonic plague is a rare disease with only one documented major epidemic in a spatially limited setting. Because the final size distribution of a minor outbreak needs to be normalized by the probability of extinction, we assume that the dispersion parameter (k) of the negative-binomial offspring distribution is known, and examine the sensitivity of the reproduction number to variation in dispersion. Assuming a geometric offspring distribution with k=1, the reproduction number was estimated at 1.16 (95% confidence interval: 0.97-1.38). When less dispersed with k=2, the maximum likelihood estimate of the reproduction number was 1.14. These estimates agreed with those published from transmission network analysis, indicating that the human-to-human transmission potential of the pneumonic plague is not very high. Given only minor outbreaks, transmission potential is not sufficiently assessed by directly counting the number of offspring. Since the absence of a major epidemic does not guarantee a subcritical process, the proposed method allows us to conservatively regard epidemic data from minor outbreaks as supercritical, and yield estimates of threshold values above unity. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  13. Development of Molten-Salt Heat Transfer Fluid Technology for Parabolic Trough Solar Power Plants - Public Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Grogan, Dylan C. P.

    2013-08-15

    Executive Summary This Final Report for the "Development of Molten-Salt Heat Transfer Fluid (HTF) Technology for Parabolic Trough Solar Power Plants” describes the overall project accomplishments, results and conclusions. Phase 1 analyzed the feasibility, cost and performance of a parabolic trough solar power plant with a molten salt heat transfer fluid (HTF); researched and/or developed feasible component options, detailed cost estimates and workable operating procedures; and developed hourly performance models. As a result, a molten salt plant with 6 hours of storage was shown to reduce Thermal Energy Storage (TES) cost by 43.2%, solar field cost by 14.8%, and levelized cost of energy (LCOE) by 9.8% - 14.5% relative to a similar state-of-the-art baseline plant. The LCOE savings range met the project’s Go/No Go criteria of 10% LCOE reduction. Another primary focus of Phase 1 and 2 was risk mitigation. The large risk areas associated with a molten salt parabolic trough plant were addressed in both Phases, such as; HTF freeze prevention and recovery, collector components and piping connections, and complex component interactions. Phase 2 analyzed in more detail the technical and economic feasibility of a 140 MWe,gross molten-salt CSP plant with 6 hours of TES. Phase 2 accomplishments included developing technical solutions to the above mentioned risk areas, such as freeze protection/recovery, corrosion effects of applicable molten salts, collector design improvements for molten salt, and developing plant operating strategies for maximized plant performance and freeze risk mitigation. Phase 2 accomplishments also included developing and thoroughly analyzing a molten salt, Parabolic Trough power plant performance model, in order to achieve the project cost and performance targets. The plant performance model and an extensive basic Engineering, Procurement, and Construction (EPC) quote were used to calculate a real levelized cost of energy (LCOE) of 11.50

  14. Multi-scale graphene patterns on arbitrary substrates via laser-assisted transfer-printing process

    KAUST Repository

    Park, J. B.

    2012-01-01

    A laser-assisted transfer-printing process is developed for multi-scale graphene patterns on arbitrary substrates using femtosecond laser scanning on a graphene/metal substrate and transfer techniques without using multi-step patterning processes. The short pulse nature of a femtosecond laser on a graphene/copper sheet enables fabrication of high-resolution graphene patterns. Thanks to the scale up, fast, direct writing, multi-scale with high resolution, and reliable process characteristics, it can be an alternative pathway to the multi-step photolithography methods for printing arbitrary graphene patterns on desired substrates. We also demonstrate transparent strain devices without expensive photomasks and multi-step patterning process. © 2012 American Institute of Physics.

  15. Transfer of Training between Music and Speech: Common Processing, Attention, and Memory

    OpenAIRE

    Besson, Mireille; Chobert, Julie; Marie, Céline

    2011-01-01

    After a brief historical perspective of the relationship between language and music, we review our work on transfer of training from music to speech that aimed at testing the general hypothesis that musicians should be more sensitive than non-musicians to speech sounds. In light of recent results in the literature, we argue that when long-term experience in one domain influences acoustic processing in the other domain, results can be interpreted as common acoustic processing. But when long-te...

  16. High-energy, large-momentum-transfer processes: Ladder diagrams in φ3 theory. Pt. 1

    International Nuclear Information System (INIS)

    Osland, P.; Wu, T.T.; Harvard Univ., Cambridge, MA

    1987-01-01

    Relativistic quantum field theories may give us useful guidance to understanding high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, we study the ladder diagrams in φ 3 theory. In this paper, some of the necessary techniques are developed and applied to the simplest cases of the fourth- and sixth-order ladder diagrams. (orig.)

  17. Mass transfer of SCWO processes: Molecular diffusion and mass transfer coefficients of inorganic nitrate species in sub- and supercritical water

    Energy Technology Data Exchange (ETDEWEB)

    Goemans, M.G.E.; Gloyna, E.F. [Univ. of Texas, Austin, TX (United States). Dept. of Civil Engineering; Buelow, S.J. [Los Alamos National Lab., NM (United States)

    1996-04-01

    Molecular diffusion coefficients of lithium-, sodium-, potassium-, cesium-, calcium-, and strontium nitrate in subcritical water were determined by analysis of Taylor dispersion profiles. Pressures ranged from 300 to 500 bar at temperatures ranging from 25{degrees}C to 300{degrees}C. The reported diffusion values were determined at infinite dilution. Molecular diffusion coefficients were 10 to 20 times faster in near-critical subcritical water than in water at ambient temperature and pressure (ATP). These findings implied that the diffusion rates were more liquid like than they were gas like, hence experimental results were correlated with diffusion models for liquids. The subcritical diffusion data presented in this work, and supercritical diffusion results published elsewhere were correlated with hydrodynamic diffusion equations. Both the Wilke-Chang correlation and the Stokes-Einstein equation yielded predictions within 10% of the experimental results if the structure of the diffusing species could be estimated. The effect of the increased diffusion rates on mass transfer rates in supercritical water oxidation applications was quantified, with emphasis on heterogeneous oxidation processes. This study and results published elsewhere showed that diffusion limited conditions are much more likely to be encountered in SCWO processes than commonly acknowledged.

  18. A role of proton transfer in peroxidase-catalyzed process elucidated by substrates docking calculations

    Directory of Open Access Journals (Sweden)

    Ziemys Arturas

    2001-08-01

    Full Text Available Abstract Background Previous kinetic investigations of fungal-peroxidase catalyzed oxidation of N-aryl hydroxamic acids (AHAs and N-aryl-N-hydroxy urethanes (AHUs revealed that the rate of reaction was independent of the formal redox potential of substrates. Moreover, the oxidation rate was 3–5 orders of magnitude less than for oxidation of physiological phenol substrates, though the redox potential was similar. Results To explain the unexpectedly low reactivity of AHAs and AHUs we made ab initio calculations of the molecular structure of the substrates following in silico docking in the active center of the enzyme. Conclusions AHAs and AHUs were docked at the distal side of heme in the sites formed by hydrophobic amino acid residues that retarded a proton transfer and finally the oxidation rate. The analogous phenol substrates were docked at different sites permitting fast proton transfer in the relay of distal His and water that helped fast substrate oxidation.

  19. Carbon nanoparticle stabilised liquid|liquid micro-interfaces for electrochemically driven ion-transfer processes

    International Nuclear Information System (INIS)

    MacDonald, Stuart M.; Fletcher, Paul D.I.; Cui Zhenggang; Opallo, Marcin; Chen Jingyuan; Marken, Frank

    2007-01-01

    Stabilised liquid|liquid interfaces between an organic 4-(3-phenylpropyl)-pyridine (PPP) phase and an aqueous electrolyte phase are obtained in the presence of suitable nanoparticles. The use of nanoparticulate stabilisers (ca. 30 nm diameter laponite or 9-18 nm diameter carbon) in 'Pickering' emulsion systems allows stable organic microdroplets to be formed and these are readily deposited onto conventional tin-doped indium oxide (ITO) electrodes. In contrast to the electrically insulating laponite nanoparticles, conducting carbon nanoparticles are shown to effectively catalyse the simultaneous electron transfer and ion transfer process at triple phase boundary junctions. Anion transfer processes between the aqueous and organic phase are driven electrochemically at the extensive triple phase junction carbon nanoparticle|4-(3-phenylpropyl)-pyridine|aqueous electrolyte. The organic phase consists of a redox active reagent 5,10,15,20-tetraphenyl-21H,23H-porphinato manganese(III) (MnTPP + ), 5,10,15,20-tetraphenyl-21H,23H-porphinato iron(III) (FeTPP + ), or proto-porphyrinato-IX iron(III) (hemin) dissolved in 4-(3-phenylpropyl)-pyridine (PPP). The composition of the aqueous electrolyte phase determines the reversible potential for the Nernstian anion transfer process. The methodology is shown to be versatile and, in future, could be applied more generally in liquid|liquid electroanalysis

  20. Rapid tooling for functional prototyping of metal mold processes. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.; Gray, W.H.

    1997-12-01

    The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that would coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.

  1. Study of the transfer efficiency of alloyed elements in fluxes during submerged arc welding process

    International Nuclear Information System (INIS)

    Quintana, R.; Cruz, A.; Perdomo, L.; Castellanos, G.; Garcia, L. L.; Formoso, A.; Cores, A.

    2003-01-01

    It is assessed the transfer of chromium, manganese and carbon of different agglomerate fluxes constituted by 18.75% of alloyed load and 81.25% of matrix during the SAW process (submerge Arc Welding). A vitreous basic matrix corresponding to the system SiO 2 -Al 2 O 3 -(CaO+MgO) was obtained from minerals by fusion in the electric arc furnace. The current proportions of the alloyed load components (FeCr, FeMn and graphite) were carried out using a McLean Anderson experiment design. The corresponding fluxes to each experimental point were obtained by granulation with liquid glass;afterwards, their transfer coefficient for a given regimen of welding was determined. The transfer coefficients were calculated by means of a formula based on the laws of mass conservation and of distribution. (Author) 17 refs

  2. Laboratory modelling of the transfer processes between the ocean and atmosphere in the boundary layers

    Directory of Open Access Journals (Sweden)

    Sergeev Daniil

    2017-01-01

    Full Text Available The processes of momentum and heat transfer between ocean and atmosphere in the boundary layer were investigated within laboratory modeling for a wide range of wind speed and surface wave including hurricane conditions. Experiments were carried out on the Wind-Wave Flume of the Large Thermostratified Tank of IAP RAS. A special net located under the surface at different depths allows to vary parameters of surface waves independently on wind parameters. Theory of self-similarity of air flow parameters in the flume was used to calculate values aerodynamic and heat transfer coefficients from the measured velocity and temperature profiles by Pito and hotfilm gauges respectively. Simultaneous measurements of surface elevation with system wire allow to obtain spectra and integral parameters of waves. It was demonstrated that in contrast to the drag coefficient, heat transfer coefficient is virtually independent of wind speed and wave parameters to the moment of the beginning of spray generation and then increases rapidly.

  3. Experimental data processing technique for nonstationary heat transfer on fuel rod simulators

    International Nuclear Information System (INIS)

    Nikonov, S.P.; Nikonov, A.P.; Belyukin, V.A.

    1982-01-01

    Non-stationary heat-transfer data processing is considered in connection with experimental studies of the emergency cooling whereat fuel rod imitators both with direct and indirect shell heating were used. The objective of data processing was obtaining the temperature distribution within the imitator, the heat flux removed by the coolant and the shell-coolant heat-transfer coefficient. The special attention was paid to the temperature distribution calculation at the data processing during the reflooding experiments. In this case two factors are assumed to be known: the time dependency of temperature variation at a certain point within the imitator cross-section and the heat flux at some point of the same cross-section. The initial data preparation for calculations, employing the procedure of smoothing by cubic spline functions, is considered as well, with application of an algorithm reported in the literature, which is efficient for the given functional dependency wherein the deviation in each point is known [ru

  4. Acyl transfer from membrane lipids to peptides is a generic process.

    Science.gov (United States)

    Dods, Robert H; Bechinger, Burkhard; Mosely, Jackie A; Sanderson, John M

    2013-11-15

    The generality of acyl transfer from phospholipids to membrane-active peptides has been probed using liquid chromatography-mass spectrometry analysis of peptide-lipid mixtures. The peptides examined include melittin, magainin II, PGLa, LAK1, LAK3 and penetratin. Peptides were added to liposomes with membrane lipid compositions ranging from pure phosphatidylcholine (PC) to mixtures of PC with phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol. Experiments were typically conducted at pH7.4 at modest salt concentrations (90 mM NaCl). In favorable cases, lipidated peptides were further characterized by tandem mass spectrometry methods to determine the sites of acylation. Melittin and magainin II were the most reactive peptides, with significant acyl transfer detected under all conditions and membrane compositions. Both peptides were lipidated at the N-terminus by transfer from PC, phosphatidylethanolamine, phosphatidylserine or phosphatidylglycerol, as well as at internal sites: lysine for melittin; serine and lysine for magainin II. Acyl transfer could be detected within 3h of melittin addition to negatively charged membranes. The other peptides were less reactive, but for each peptide, acylation was found to occur in at least one of the conditions examined. The data demonstrate that acyl transfer is a generic process for peptides bound to membranes composed of diacylglycerophospholipids. Phospholipid membranes cannot therefore be considered as chemically inert toward peptides and by extension proteins. © 2013. Published by Elsevier Ltd. All rights reserved.

  5. Consultant-Client Relationship and Knowledge Transfer in Small- and Medium-Sized Enterprises Change Processes.

    Science.gov (United States)

    Martinez, Luis F; Ferreira, Aristides I; Can, Amina B

    2016-04-01

    Based on Szulanski's knowledge transfer model, this study examined how the communicational, motivational, and sharing of understanding variables influenced knowledge transfer and change processes in small- and medium-sized enterprises, particularly under projects developed by funded programs. The sample comprised 144 entrepreneurs, mostly male (65.3%) and mostly ages 35 to 45 years (40.3%), who filled an online questionnaire measuring the variables of "sharing of understanding," "motivation," "communication encoding competencies," "source credibility," "knowledge transfer," and "organizational change." Data were collected between 2011 and 2012 and measured the relationship between clients and consultants working in a Portuguese small- and medium-sized enterprise-oriented action learning program. To test the hypotheses, structural equation modeling was conducted to identify the antecedents of sharing of understanding, motivational, and communicational variables, which were positively correlated with the knowledge transfer between consultants and clients. This transfer was also positively correlated with organizational change. Overall, the study provides important considerations for practitioners and academicians and establishes new avenues for future studies concerning the issues of consultant-client relationship and the efficacy of Government-funded programs designed to improve performance of small- and medium-sized enterprises. © The Author(s) 2016.

  6. Development of an advanced continuous mild gasification process for the production of coproducts. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Merriam, N.W.; Jha, M.C.

    1991-11-01

    This report is a final brief summary of development of a mild-gasification and char conversion process. Morgantown Energy Technology Center developed a concept called mild gasification. In this concept, devolatilization of coal under nonoxidizing and relatively mild temperature and pressure conditions can yield three marketable products: (1) a high-heating-value gas, (2) a high-aromatic coal liquid, and (3) a high-carbon char. The objective of this program is to develop an advanced, continuous, mild-gasification process to produce products that will make the concept economically and environmentally viable. (VC)

  7. Deriving evaluation indicators for knowledge transfer and dialogue processes in the context of climate research

    Science.gov (United States)

    Treffeisen, Renate; Grosfeld, Klaus; Kuhlmann, Franziska

    2017-12-01

    Knowledge transfer and dialogue processes in the field of climate science have captured intensive attention in recent years as being an important part of research activities. Therefore, the demand and pressure to develop a set of indicators for the evaluation of different activities in this field have increased, too. Research institutes are being asked more and more to build up structures in order to map these activities and, thus, are obliged to demonstrate the success of these efforts. This paper aims to serve as an input to stimulate further reflection on the field of evaluation of knowledge transfer and dialogue processes in the context of climate sciences. The work performed in this paper is embedded in the efforts of the German Helmholtz Association in the research field of earth and environment and is driven by the need to apply suitable indicators for knowledge transfer and dialogue processes in climate research center evaluations. We carry out a comparative analysis of three long-term activities and derive a set of indicators for measuring their output and outcome by balancing the wide diversity and range of activity contents as well as the different tools to realize them. The case examples are based on activities which are part of the regional Helmholtz Climate Initiative Regional Climate Change (REKLIM) and the Climate Office for Polar Regions and Sea Level Rise at the Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research. Both institutional units have been working on a wide range of different knowledge transfer and dialogue processes since 2008/2009. We demonstrate that indicators for the evaluation must be based on the unique objectives of the individual activities and the framework they are embedded in (e.g., research foci which provide the background for the performed knowledge transfer and dialogue processes) but can partly be classified in a principle two-dimensional scheme. This scheme might serve as a usable basis for climate

  8. Modeling of heat and mass transfer processes during core melt discharge from a reactor pressure vessel

    Energy Technology Data Exchange (ETDEWEB)

    Dinh, T.N.; Bui, V.A.; Nourgaliev, R.R. [Royal Institute of Technology, Stockholm (Sweden)] [and others

    1995-09-01

    The objective of the paper is to study heat and mass transfer processes related to core melt discharge from a reactor vessel is a severe light water reactor accident. The phenomenology of the issue includes (1) melt convection in and heat transfer from the melt pool in contact with the vessel lower head wall; (2) fluid dynamics and heat transfer of the melt flow in the growing discharge hole; and (3) multi-dimensional heat conduction in the ablating lower head wall. A program of model development, validation and application is underway (i) to analyse the dominant physical mechanisms determining characteristics of the lower head ablation process; (ii) to develop and validate efficient analytic/computational methods for estimating heat and mass transfer under phase-change conditions in irregular moving-boundary domains; and (iii) to investigate numerically the melt discharge phenomena in a reactor-scale situation, and, in particular, the sensitivity of the melt discharge transient to structural differences and various in-vessel melt progression scenarios. The paper presents recent results of the analysis and model development work supporting the simulant melt-structure interaction experiments.

  9. Comparison of experimental methods for determination of the volumetric mass transfer coefficient in fermentation processes

    Energy Technology Data Exchange (ETDEWEB)

    Tobajas, M.; Garcia-Calvo, E. [Dept. de Ingenieria Quimica, Univ. de Alcala, Alcala de Henares (Spain)

    2000-05-01

    Mass transfer in bioreactors has been examined. In the present work, dynamic methods are used for the determination of K{sub L}a values for water, model media and a fermentation broth (Candida utilis) in an airlift reactor. The conventional dynamic method is applied at the end of the microbial process in order to avoid an alteration in the metabolism of the microorganisms. New dynamic methods are used to determine K{sub L}a in an airlift reactor during the microbial growth of Candida utilis on glucose. One of the methods is based on the continuous measurement of carbon dioxide production while the other method is based on the relationship between the oxygen transfer and biomass growth rates. These methods of determining K{sub L}a does not interfere with the microorganisms action. A theoretical mass transfer model has been used for K{sub L}a estimation for the systems described above. Some differences between calculated and measured values are found for fermentation processes due to the model is developed for two-phase air-water systems. Nevertheless, the average deviation between the predicted values and those obtained from the relationship between oxygen transfer and biomass production rates are lower than 25% in any case. (orig.)

  10. Study on transfer-free graphene synthesis process utilizing spontaneous agglomeration of catalytic Ni and Co metals

    International Nuclear Information System (INIS)

    Miyoshi, Makoto; Mizuno, Masaya; Banno, Kazuya; Kubo, Toshiharu; Egawa, Takashi; Soga, Tetsuo

    2015-01-01

    Transfer-free graphene synthesis process utilizing metal agglomeration phenomena was investigated by using carbon films deposited on Ni or Co catalyst metals on SiO 2 /Si substrates. As a result of metal agglomeration at high temperatures, multilayer graphene films appeared to be formed directly on SiO 2 films. The microscopic Raman mapping study revealed that graphene films were preferentially synthesized around areas where metal films disappeared at an early stage of agglomeration, and that they finally covered almost the whole surface. It was also found that the synthesized graphene films tended to have better structural qualities and lower layer numbers with the increase in the starting metal thicknesses regardless of the kinds of catalyst metals. Raman study also showed that they had good two-dimensional uniformity in the structural quality. (paper)

  11. Transfer after process-based object-location memory training in healthy older adults.

    Science.gov (United States)

    Zimmermann, Kathrin; von Bastian, Claudia C; Röcke, Christina; Martin, Mike; Eschen, Anne

    2016-11-01

    A substantial part of age-related episodic memory decline has been attributed to the decreasing ability of older adults to encode and retrieve associations among simultaneously processed information units from long-term memory. In addition, this ability seems to share unique variance with reasoning. In this study, we therefore examined whether process-based training of the ability to learn and remember associations has the potential to induce transfer effects to untrained episodic memory and reasoning tasks in healthy older adults (60-75 years). For this purpose, the experimental group (n = 36) completed 30 sessions of process-based object-location memory training, while the active control group (n = 31) practiced visual perception on the same material. Near (spatial episodic memory), intermediate (verbal episodic memory), and far transfer effects (reasoning) were each assessed with multiple tasks at four measurements (before, midway through, immediately after, and 4 months after training). Linear mixed-effects models revealed transfer effects on spatial episodic memory and reasoning that were still observed 4 months after training. These results provide first empirical evidence that process-based training can enhance healthy older adults' associative memory performance and positively affect untrained episodic memory and reasoning abilities. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  12. A Structured Transfer of Care Process Reduces Perioperative Complications in Cardiac Surgery Patients.

    Science.gov (United States)

    Hall, Michael; Robertson, Jamie; Merkel, Matthias; Aziz, Michael; Hutchens, Michael

    2017-08-01

    Serious complications are common during the intensive care of postoperative cardiac surgery patients. Some of these complications may be influenced by communication during the process of handover of care from the operating room to the intensive care unit (ICU) team. A structured transfer of care process may reduce the rate of communication errors and perioperative complications. We hypothesized that a collaborative, comprehensive, structured handover of care from the intraoperative team to the ICU team would reduce a specific set of postoperative complications. We tested this hypothesis by developing and introducing a comprehensive multidisciplinary transfer of care process. We measured patient outcomes before and after the intervention using a linkage between 2 care databases: an Anesthesia Information Management System and a critical care complication registry database. There were 1127 total postoperative cardiac surgery admissions during the study period, 550 before and 577 after the intervention. There was no statistical difference between overall complications before and after the intervention (P = .154). However, there was a statistically significant reduction in preventable complications after the intervention (P = .023). The main finding of this investigation is that the introduction of a collaborative, comprehensive transfer of care process from the operating room to the ICU was associated with patients suffering fewer preventable complications.

  13. M-momentum transfer between gravitons, membranes, and fivebranes as perturbative gauge theory processes

    International Nuclear Information System (INIS)

    Keski-Vakkuri, E.; Kraus, P.

    1998-01-01

    Polchinski and Pouliot have shown that M-momentum transfer between membranes in supergravity can be understood as a non-perturbative instanton effect in gauge theory. Here we consider a dual process: electric flux transmission between D-branes. We show that this process can be described in perturbation theory as virtual string pair creation, and is closely related to Schwinger's treatment of the pair creation of charged particles in a uniform electric field. Through the application of dualities, our perturbative calculation gives results for various non-perturbative amplitudes, including M-momentum transfer between gravitons, membranes and longitudinal fivebranes. Thus perturbation theory plus dualities are sufficient to demonstrate agreement between supergravity and gauge theory for a number of M-momentum transferring processes. A variety of other processes where branes are transmitted between branes, e.g. (p,q)-string transmission in IIB theory, can also be studied. We discuss the implications of our results for proving the eleven-dimensional Lorentz invariance of matrix theory. (orig.)

  14. Final Report For The Erosion And Corrosion Analysis Of Waste Transfer Primary Pipeline Sections From 241-SY Tank Farm

    International Nuclear Information System (INIS)

    Page, J. S.; Wyrwas, R. B.; Cooke, G. A.

    2012-01-01

    Three sections of primary transfer pipeline removed from the 241-SY Tank Farm in Hanford's 200 West area, labeled as SN-285, SN-286, and SN-278, were analyzed for the presence and amount of corrosion and erosion on the inside surface of the transfer pipe. All three sections of pipe, ranging in length between 6 and 8 in., were received at the 222-S Laboratory still in the pipe-in-pipe assembly. The annular spaces were filled with urethane foam injected into the pipes for as low as reasonably achievable (ALARA) purposes. The 3-in. primary transfer pipes were first separated from the outer encasement, 6-in. pipes. The pipes were cut into small sections, or coupons, based upon the results of a non-destructive pipe wall thickness measurement which used an ultrasonic transducer. Following removal of the foam, the coupons were subjected to a series of analytical methods utilizing both optical microscopy and scanning electron microscopy to obtain erosion and corrosion information. The ultrasonic transducer analysis of the SN-285 primary pipe did not show any thinned locations in the pipe wall which were outside the expected range for the 3-in. schedule 40 pipe of 216 mils. A coupon was cut from the thinnest area on the pipe, and analysis of the inside surface, which was in contact with the tank waste, revealed a continuous layer of corrosion ∼ 100 11m (4 mils) thick under a semi-continuous layer of tank waste residue ∼ 20 11m (1 mil) thick. This residue layer was composed of an amorphous phase rich in chromium, magnesium, calcium, and chlorine. Small pits were detected throughout the inside pipe surface with depths up to ∼ 50 11m (2 mils). Similarly, the SN-286 primary pipe did not show, by the ultrasonic transducer measurements, any thinned locations in the pipe wall which were outside the expected range for this pipe. Analysis of the coupon cut from the pipe section showed the presence of a tank waste layer containing sodium aluminate and phases rich in iron

  15. Macroscopic lattice Boltzmann model for heat and moisture transfer process with phase transformation in unsaturated porous media during freezing process

    Directory of Open Access Journals (Sweden)

    Song Wenyu

    2017-06-01

    Full Text Available In the current study, a macroscopic lattice Boltzmann model for simulating the heat and moisture transport phenomenon in unsaturated porous media during the freezing process was proposed. The proposed model adopted percolation threshold to reproduce the extra resistance in frozen fringe during the freezing process. The freezing process in Kanagawa sandy loam soil was demonstrated by the proposed model. The numerical result showed good agreement with the experimental result. The proposed model also offered higher computational efficiency and better agreement with the experimental result than the existing numerical models. Lattice Boltzmann method is suitable for simulating complex heat and mass transfer process in porous media at macroscopic scale under proper dimensionless criterion, which makes it a potentially powerful tool for engineering application.

  16. Electron capture and transfer-ionization processes in {sup 4}He{sup 2+}+Ar collision at 12.5 keV amu{sup -1}

    Energy Technology Data Exchange (ETDEWEB)

    Moretto-Capelle, P.; Bordenave-Montesquieu, D.; Bordenave-Montesquieu, A.; Benhenni, M. [Laboratoire Collisions, Agregats, Reactivite, IRSAMC, UMR 5589 CNRS and Universite Paul Sabatier, 31062 Toulouse Cedex (France)

    1998-05-14

    Electron emission in the {sup 4}He{sup 2+}+Ar collisional system has been investigated at 35 deg. and 12.5 keV amu{sup -1} collision velocity, in coincidence with the recoil target ion charges. Direct single ionization is found to be negligible with respect to single-electron capture. Contributions of transfer-ionization processes are stressed in the production of Ar{sup 2+} to Ar{sup 4+} ions; those of direct ionization, double excitation of the target and double capture into autoionization states of helium are instead found to be much less probable. Among the two-electron processes which explain the formation of Ar{sup 2+} ions, the double capture into autoionizing states of helium remains unimportant with respect to a pure transfer ionization process (one captured electron plus one ionized electron). The measured predominant production of Ar{sup 3+} ions illustrates the role played by three-electron processes, mainly a two-electron transfer accompanied by a single-target ionization. Finally, the formation of Ar{sup 4+} ions is connected with more complex transfer ionization processes. A qualitative analysis of these results is made within the quasimolecular approach. (author). Letter-to-the-editor.

  17. Construction of Vibronic Diabatic Hamiltonian for Excited-State Electron and Energy Transfer Processes.

    Science.gov (United States)

    Xie, Yu; Jiang, Shengshi; Zheng, Jie; Lan, Zhenggang

    2017-12-21

    Photoinduced excited-state electron and energy transfer processes are crucial in biological photoharvesting systems and organic photovoltaic devices. We discuss the construction of a diabatic vibronic Hamiltonian for the proper treatment of these processes involving the projection approach acting on both electronic wave functions and vibrational modes. In the electronic part, the wave function projection approach is used to construct the diabatic Hamiltonian in which both local excited states and charge-transfer states are included on the same footing. For the vibrational degrees of freedom, the vibronic couplings in the diabatic Hamiltonian are obtained in the basis of the pseudonormal modes localized on each monomer site by applying delocalized-to-localized mode projection. This systematic approach allows us to construct the vibronic diabatic Hamiltonian in molecular aggregates.

  18. The process of knowledge transference: a matter concerning of teaching of psychiatric nursing

    Directory of Open Access Journals (Sweden)

    Laís de Mello Santos

    2017-06-01

    Full Text Available Abstract Objectives: To identify the strategies used by teachers to share the contents of Psychiatric Nursing and Mental Health; to describe the stages of knowledge sharing in light of the knowledge transfer process. Method: Qualitative, descriptive-exploratory research of the case study type, carried out with six teachers and 23 students, data production was by semi-structured interview and focus group. For the data analysis, the SECI knowledge conversion model was used: socialization, externalization, combination and internalization. Results: Teachers made socialization and externalization, but did not make clear the assessment and teaching-learning strategies. The combination was completed, but the internalization was unfinished, despite suggesting an attempt to reach it. Conclusion: The feasibility and applicability of the knowledge transfer process to the teaching of Psychiatric Nursing were confirmed.

  19. Calculations of the electromechanical transfer processes using implicit methods of numerical integration

    Energy Technology Data Exchange (ETDEWEB)

    Pogosyan, T A

    1983-01-01

    The article is dedicated to the solution of systems of differential equations which describe the transfer processes in an electric power system (EES) by implicit methods of numerical integration. The distinguishing feature of the implicit methods (Euler's reverse method and the trapeze method) is their absolute stability and, consequently, the relatively small accumulation of errors in each step of integration. Therefore, they are found to be very convenient for solving problems of electric power engineering, when the transfer processes are described by a rigid system of differential equations. The rigidity is associated with the range of values of the time constants considered. The advantage of the implicit methods over explicit are shown in a specific example (calculation of the dynamic stability of the simplest electric power system), along with the field of use of the implicit methods and the expedience of their use in power engineering problems.

  20. Final audit report of remedial action construction at the UMTRA Project, Grand Junction, Colorado, processing site

    International Nuclear Information System (INIS)

    1995-02-01

    This final audit report (FAR) for remedial action at the Grand Junction, Colorado, Uranium Mill Tailings Remedial Action (UMTRA) Project processing site consists of a summary of the radiological surveillances/ audits, the quality assurance (QA) in-process surveillances, and the QA final close-out inspection performed by the US Department of Energy (DOE) and Technical Assistance Contractor (TAC). The FAR also summarizes other surveillances performed by the US Nuclear Regulatory Commission (NRC). To summarize, a total of one finding and 127 observations were noted during DOE/TAC audit and surveillance activities. The NRC noted general site-related observations during the OSCRs. Follow-up to responses required from MK-Ferguson for the DOE/TAC finding and observations indicated that all issues related to the Grand Junction processing site were resolved and closed out to the DOE's satisfaction. The NRC OSCRs resulted in no issues related to the Grand Junction processing site requiring a response from MK-Ferguson

  1. A simulation framework for mapping risks in clinical processes: the case of in-patient transfers

    Science.gov (United States)

    Ong, Mei-Sing; Westbrook, Johanna I; Magrabi, Farah; Coiera, Enrico; Wobcke, Wayne

    2011-01-01

    Objective To model how individual violations in routine clinical processes cumulatively contribute to the risk of adverse events in hospital using an agent-based simulation framework. Design An agent-based simulation was designed to model the cascade of common violations that contribute to the risk of adverse events in routine clinical processes. Clinicians and the information systems that support them were represented as a group of interacting agents using data from direct observations. The model was calibrated using data from 101 patient transfers observed in a hospital and results were validated for one of two scenarios (a misidentification scenario and an infection control scenario). Repeated simulations using the calibrated model were undertaken to create a distribution of possible process outcomes. The likelihood of end-of-chain risk is the main outcome measure, reported for each of the two scenarios. Results The simulations demonstrate end-of-chain risks of 8% and 24% for the misidentification and infection control scenarios, respectively. Over 95% of the simulations in both scenarios are unique, indicating that the in-patient transfer process diverges from prescribed work practices in a variety of ways. Conclusions The simulation allowed us to model the risk of adverse events in a clinical process, by generating the variety of possible work subject to violations, a novel prospective risk analysis method. The in-patient transfer process has a high proportion of unique trajectories, implying that risk mitigation may benefit from focusing on reducing complexity rather than augmenting the process with further rule-based protocols. PMID:21486883

  2. Equipment characterization to mitigate risks during transfers of cell culture manufacturing processes.

    Science.gov (United States)

    Sieblist, Christian; Jenzsch, Marco; Pohlscheidt, Michael

    2016-08-01

    The production of monoclonal antibodies by mammalian cell culture in bioreactors up to 25,000 L is state of the art technology in the biotech industry. During the lifecycle of a product, several scale up activities and technology transfers are typically executed to enable the supply chain strategy of a global pharmaceutical company. Given the sensitivity of mammalian cells to physicochemical culture conditions, process and equipment knowledge are critical to avoid impacts on timelines, product quantity and quality. Especially, the fluid dynamics of large scale bioreactors versus small scale models need to be described, and similarity demonstrated, in light of the Quality by Design approach promoted by the FDA. This approach comprises an associated design space which is established during process characterization and validation in bench scale bioreactors. Therefore the establishment of predictive models and simulation tools for major operating conditions of stirred vessels (mixing, mass transfer, and shear force.), based on fundamental engineering principles, have experienced a renaissance in the recent years. This work illustrates the systematic characterization of a large variety of bioreactor designs deployed in a global manufacturing network ranging from small bench scale equipment to large scale production equipment (25,000 L). Several traditional methods to determine power input, mixing, mass transfer and shear force have been used to create a data base and identify differences for various impeller types and configurations in operating ranges typically applied in cell culture processes at manufacturing scale. In addition, extrapolation of different empirical models, e.g. Cooke et al. (Paper presented at the proceedings of the 2nd international conference of bioreactor fluid dynamics, Cranfield, UK, 1988), have been assessed for their validity in these operational ranges. Results for selected designs are shown and serve as examples of structured

  3. Mathematical Model for Fluid Flow and Heat Transfer Processes in Plate Exchanger

    Directory of Open Access Journals (Sweden)

    Cvete B. Dimitrieska

    2015-11-01

    Full Text Available Within the analytical solution of the system of equations which solve fluid flow and heat transfer processes, the elliptical and parabolic differential equations based on initial and boundary conditions is usually unfamiliar in a closed form. Numerical solution of equation system is necessarily obtained by discretization of equations. When system of equations relate to estimation of two dimensional stationary problems, the applicable method for estimation in basic two – dimensional form is recommended.

  4. Preclinical evaluation of a Haemophilus influenzae type b conjugate vaccine process intended for technology transfer.

    Science.gov (United States)

    Hamidi, Ahd; Verdijk, Pauline; Kreeftenberg, Hans

    2014-01-01

    Introduction of Haemophilus influenzae type b (Hib) vaccine in low- and middle-income countries has been limited by cost and availability of Hib conjugate vaccines for a long time. It was previously recognized by the Institute for Translational Vaccinology (Intravacc, originating from the former Vaccinology Unit of the National Institute of Public Health [RIVM] and the Netherlands Vaccine Institute [NVI]) that local production of a Hib conjugate vaccine would increase the affordability and sustainability of the vaccine and thereby help to speed up Hib introduction in these countries. A new affordable and a non-infringing production process for a Hib conjugate vaccine was developed, including relevant quality control tests, and the technology was transferred to a number of vaccine manufacturers in India, Indonesia, and China. As part of the Hib technology transfer project managed by Intravacc, a preclinical toxicity study was conducted in the Netherlands to test the safety and immunogenicity of this new Hib conjugate vaccine. The data generated by this study were used by the technology transfer partners to accelerate the clinical development of the new Hib conjugate vaccine. A repeated dose toxicity and local tolerance study in rats was performed to assess the reactogenicity and immunogenicity of a new Hib conjugate vaccine compared to a licensed vaccine. The results showed that the vaccine was well tolerated and immunogenic in rats, no major differences in both safety and immunogenicity in rats were found between the vaccine produced according to the production process developed by Intravacc and the licensed one. Rats may be useful to verify the immunogenicity of Hib conjugate vaccines and for preclinical evaluation. In general, nonclinical evaluation of the new Hib conjugate vaccine, including this proof of concept (safety and immunogenicity study in rats), made it possible for technology transfer partners, having implemented the original process with no changes

  5. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions. Updated 1997

    International Nuclear Information System (INIS)

    Tawara, H.

    1997-04-01

    Following our previous compilations (IPPJ-AM-45 (1986), NIFS-DATA-7 (1990), NIFS-DATA-20 (1993)), bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1954-1996 are listed in the order of the publication year. For easy finding of the references for a combination of collision partners, a simple list is provided. (author)

  6. Local description of the energy transfer process in a packed bed heat exchanger

    International Nuclear Information System (INIS)

    Costa, M.L.M.; Sampaio, R.; Gama, R.M.S. da.

    1990-01-01

    The energy transfer process in a packed-bed heat exchanger, in counter0flow arrangement is considered. The phenomenon is described through a Continuum Theory of Mixtures approach, in which fluid and solid (porous matrix) are regarded as continuous constituents possessing, each one, its own temperature and velocity fields. The heat 'exchangers consists of two channels, separated by an impermeable wall without thermal resistence, in which there exists a saturated flow. Some particular cases are simulated. (author)

  7. Bibliography on electron transfer processes in ion-ion/atom/molecule collisions, updated 1990

    International Nuclear Information System (INIS)

    Tawara, H.

    1990-08-01

    Following a previous compilation, new bibliographic information on experimental and theoretical studies on electron transfer processes in ion-ion/atom/molecule collisions is up-dated. The references published through 1989 are surveyed. For easy finding references for particular combination of collision partners, a simple list is also provided. Furthermore, for convenience, a copy of the previous compilation (IPPJ-AM-45 (1986)) is included. (author) 1363 refs

  8. Regulation of electron transfer processes affects phototrophic mat structure and activity

    OpenAIRE

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located ne...

  9. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Science.gov (United States)

    Ha, Phuc T.; Renslow, Ryan S.; Atci, Erhan; Reardon, Patrick N.; Lindemann, Stephen R.; Fredrickson, James K.; Call, Douglas R.; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  10. Regulation of electron transfer processes affects phototrophic mat structure and activity

    Directory of Open Access Journals (Sweden)

    Haluk eBeyenal

    2015-09-01

    Full Text Available Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA. We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl (cathodic mat system and +300 mVAg/AgCl (anodic mat system and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both anodic and cathodic mat systems. Interestingly, the cathodic mats generated the highest reducing current at the same time points that the anodic mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the cathodic mats than in the anodic mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the cathodic mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that

  11. Regulation of electron transfer processes affects phototrophic mat structure and activity.

    Science.gov (United States)

    Ha, Phuc T; Renslow, Ryan S; Atci, Erhan; Reardon, Patrick N; Lindemann, Stephen R; Fredrickson, James K; Call, Douglas R; Beyenal, Haluk

    2015-01-01

    Phototrophic microbial mats are among the most diverse ecosystems in nature. These systems undergo daily cycles in redox potential caused by variations in light energy input and metabolic interactions among the microbial species. In this work, solid electrodes with controlled potentials were placed under mats to study the electron transfer processes between the electrode and the microbial mat. The phototrophic microbial mat was harvested from Hot Lake, a hypersaline, epsomitic lake located near Oroville (Washington, USA). We operated two reactors: graphite electrodes were polarized at potentials of -700 mVAg/AgCl [cathodic (CAT) mat system] and +300 mVAg/AgCl [anodic (AN) mat system] and the electron transfer rates between the electrode and mat were monitored. We observed a diel cycle of electron transfer rates for both AN and CAT mat systems. Interestingly, the CAT mats generated the highest reducing current at the same time points that the AN mats showed the highest oxidizing current. To characterize the physicochemical factors influencing electron transfer processes, we measured depth profiles of dissolved oxygen (DO) and sulfide in the mats using microelectrodes. We further demonstrated that the mat-to-electrode and electrode-to-mat electron transfer rates were light- and temperature-dependent. Using nuclear magnetic resonance (NMR) imaging, we determined that the electrode potential regulated the diffusivity and porosity of the microbial mats. Both porosity and diffusivity were higher in the CAT mats than in the AN mats. We also used NMR spectroscopy for high-resolution quantitative metabolite analysis and found that the CAT mats had significantly higher concentrations of osmoprotectants such as betaine and trehalose. Subsequently, we performed amplicon sequencing across the V4 region of the 16S rRNA gene of incubated mats to understand the impact of electrode potential on microbial community structure. These data suggested that variation in the

  12. Industrial process gamma tomography. Final report of a coordinated research project 2003-2007

    International Nuclear Information System (INIS)

    2008-05-01

    Gamma computed tomography (CT) is complementary to radiotracer and gamma sealed source techniques largely used for analyzing industrial process units. Relevant target areas for gamma CT applications are generally known. Although the methodology is generic and applicable across broad industrial specimen and facilities, a number of specific items have been identified as the most appropriate target beneficiaries of these applications: distillation columns; packed beds; risers; fluidized beds and other multiphase processing units. These industrial process units present significant technical challenges to CT investigations in terms of the complexity of the multiphase flows that occur in them. In order to address these needs, the IAEA implemented a Coordinated Research Project (CRP) on Industrial Process Gamma Tomography with the overall objective of testing and validating CT techniques for diagnosing industrial multiphase processes. CT laboratories from Argentina, Brazil, Czech Republic, France, Republic of Korea, Malaysia, Norway, Poland, United Kingdom and the United States of America have participated. The specific objectives of the CRP were assessment of the tomographic methods, evaluation of them for investigation of multiphase engineering processes, and design of prototypes of simple CT systems for industrial processing, which can be transferred to other developing countries. The CRP has generated an active network, which also included other groups engaged in the CT field. The round robin test has played an important role in validation of techniques and software. This TECDOC is prepared based on the findings and achievements of the CRP. It is a comprehensive technical report containing valuable information, not readily available in any single publication elsewhere. The participants' reports and software developed by them are compiled in a CD-ROM and attached to the back cover. The guidelines and software packages described in this report can be used as an

  13. Trade liberalization, the Mercosur integration process and the agriculture-industry transfers: a general equilibrium analysis

    Directory of Open Access Journals (Sweden)

    Joaquim Bento de Souza Ferreira Filho

    1999-12-01

    Full Text Available This paper deals with the effects of trade liberalization and Mercosur integration process upon the Brazilian economy, with emphasis on the agricultural and agroindustrial production sectors, under the hypothesis that those phenomena could be another step in the rural-urban transfer process in Brazil. The analysis is conducted through an applied general equilibrium model. Results suggest that trade liberalization would hardly generate a widespread process of rural-urban transfers, although Brazilian agriculture shows up as a loser in the process. Notwithstanding that fact, there are transfers inside the agricultural sectors, where, besides the losses in the value added of the grain production sectors, there would be gains for the livestock and for the ''other crops" sectors. The agroindustry, in contrast, seems to gain both in Brazil and Argentina. Model results suggest yet that the Brazilian society would be benefitted as a whole by the integration, despite the losses in the agricultural sector.Este artigo analisa os efeitos do processo de liberalização comercial e de constituição do Mercosul sobre a economia brasileira, com ênfase nos setores produtivos da agricultura e da agroindústria, sob a hipótese de que aqueles fenômenos seriam mais uma etapa no processo de transferências rurais-urbanas no Brasil. Para tanto, a análise é conduzida através do uso de um modelo de equilíbrio geral aplicado. Os resultados sugerem que a integração comercial não irá gerar um processo amplo de transferências rurais-urbanas no Brasil, embora a agricultura brasileira apareça, no agregado, como o setor perdedor na integração, em benefício da agricultura argentina. Há, entretanto, transferências dentro dos setores da agropecuária brasileira, onde, ao lado das perdas no valor adicionado do setor produtor de grãos, haveria ganhos para a pecuária e para o setor ''outras culturas". A agroindústria, em contraste, parece ganhar tanto no Brasil

  14. Oxygen and carbon transfer during solidification of semiconductor grade silicon in different processes

    Science.gov (United States)

    Ribeyron, P. J.; Durand, F.

    2000-03-01

    A model is established for comparing the solute distribution resulting from four solidification processes currently applied to semiconductor grade silicon: Czochralski pulling (CZ), floating zone (FZ), 1D solidification and electromagnetic continuous pulling (EMCP). This model takes into account solid-liquid interface exchange, evaporation to or contamination by the gas phase, container dissolution, during steady-state solidification, and in the preliminary preparation of the melt. For simplicity, the transfers are treated in the crude approximation of perfectly mixed liquid and boundary layers. As a consequence, only the axial ( z) distribution can be represented. Published data on oxygen and carbon transfer give a set of acceptable values for the thickness of the boundary layers. In the FZ and EMCP processes, oxygen evaporation can change the asymptotic behaviour of the reference Pfann law. In CZ and in 1D-solidification, a large variety of solute profile curves can be obtained, because they are very sensitive to the balance between crucible dissolution and evaporation. The CZ process clearly brings supplementary degrees of freedom via the geometry of the crucible, important for the dissolution phenomena, and via the rotation rate of the crystal and of the crucible, important for acting on transfer kinetics.

  15. Mass Transfer Coefficientin Stirred Tank for p -Cresol Extraction Process from Coal Tar

    International Nuclear Information System (INIS)

    Fardhyanti, D S; Tyaningsih, D S; Afifah, S N

    2017-01-01

    Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such as p -cresol (11% v/v). It is widely used as a disinfectant. Extractionof p -Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p -Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted in the baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p -Cresol extraction increasesthe yield of p -Cresol and the mass transfer coefficient. The highest yield of p -Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10 -6 kg/m 2 s. (paper)

  16. Mass Transfer Coefficientin Stirred Tank for p-Cresol Extraction Process from Coal Tar

    Science.gov (United States)

    Fardhyanti, D. S.; Tyaningsih, D. S.; Afifah, S. N.

    2017-04-01

    Indonesia is a country that has a lot of coal resources. The Indonesian coal has a low caloric value. Pyrolysis is one of the process to increase the caloric value. One of the by-product of the pyrolysis process is coal tar. It contains a lot of aliphatic or aromatic compounds such asp-cresol (11% v/v). It is widely used as a disinfectant. Extractionof p-Cresol increases the economic value of waste of coal. The aim of this research isto study about mass tranfer coefficient in the baffled stirred tank for p-Cresolextraction from coal tar. Mass transfer coefficient is useful for design and scale up of industrial equipment. Extraction is conducted inthe baffled stirred tank equipped with a four-bladed axial impeller placed vertically in the vessel. Sample for each time processing (5, 10, 15, 20, 25 and 30minutes) was poured into a separating funnel, settled for an hour and separated into two phases. Then the two phases were weighed. The extract phases and raffinate phases were analyzed by Spectronic UV-Vis. The result showed that mixing speed of p-Cresol extraction increasesthe yield of p-Cresol and the mass transfer coefficient. The highest yield of p-Cresol is 49.32% and the highest mass transfer coefficient is 4.757 x 10-6kg/m2s.

  17. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu; Adhikari, Aniruddha; Parida, Manas R.; Aly, Shawkat Mohammede; Bakr, Osman; Mohammed, Omar F.

    2017-01-01

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex

  18. HLW Feed Delivery AZ101 Batch Transfer to the Private Contractor Transfer and Mixing Process Improvements [Initial Release at Rev 2

    Energy Technology Data Exchange (ETDEWEB)

    DUNCAN, G.P.

    2000-02-28

    The primary purpose of this business case is to provide Operations and Maintenance with a detailed transfer process review for the first High Level Waste (HLW) feed delivery to the Privatization Contractor (PC), AZ-101 batch transfer to PC. The Team was chartered to identify improvements that could be implemented in the field. A significant penalty can be invoked for not providing the quality, quantity, or timely delivery of HLW feed to the PC.

  19. How does sustainability certification affect the design process? Mapping final design projects at an architectural office

    DEFF Research Database (Denmark)

    Landgren, Mathilde; Jensen, Lotte Bjerregaard

    2017-01-01

    process and informing the industry of them. This has led to optimised design processes such as Integrated Energy Design, in which many decisions related to energy consumption and indoor climate are made in the early design stages. The current tendency is to use an expanded notion of sustainability......, derived from the sustainability certification system itself, and to apply it even in the early design process. This perspective emphasises all phases of the life cycle of a building. The goal of the present study was to map how a Danish architectural office approached sustainability in the projects......The context of the study is the very strict regulation of energy consumption for operating buildings in Denmark. It is difficult to meet the requirements by system optimisation in the final design phase, so recent research has focused on ways of meeting the target by adapting the whole design...

  20. ELECTRIC FACTORS INFLUENCING THE COMPLEX EROSION PROCESSING BY INTRODUCING THE ELECTROLYTE THROUGH THE TRANSFER OBJECT

    Directory of Open Access Journals (Sweden)

    Alin Nioata

    2014-05-01

    Full Text Available The electric and electrochemical complex erosion processing is influenced by a great number of factors acting in tight interdependence and mutually influencing one another for achieving the stability of the processing process and achieving the final technological characteristics.The values taking part in developing the fundamental phenomena of the mechanism of complex erosion prevailing and contributes to the definition of technological characteristics, are factors.The paper presents the U potential difference and electric strength I as determining factors of the complex erosion process as well as other factors deriving from them: the current density, the power of the supply source.

  1. Heat transfer in condensation and evaporation. Application to industrial and environmental processes

    Energy Technology Data Exchange (ETDEWEB)

    Marvillet, C [CEA/Grenoble, Dept. de Thermohydraulique et de Physique (DRN-GRETh), 38 (France); Vidil, R [CEA/Saclay, Direction des Technologies Avancees (DTA), 38 - Grenoble (France)

    1999-07-01

    Eurotherm Seminar number 62 objective is to provide a European forum for the presentation and the discussion of recent researches on heat transfer in condensation and evaporation and recent developments relevant to evaporators, condensers technology for: industrial processes; air conditioning and refrigeration processes; environmental processes; food industry processes; cooling processes of electronic or mechanical devices. The following topics are to be addressed: fundamentals of phase with pure fluids and mixtures; enhanced surfaces for improved tubular or plate heat exchangers; advanced methods and software for condenser and evaporator simulation and design; innovative design and concept of heat exchangers. This 2-days Seminar will be interest to a large group of researches and engineers from universities, research centres and industry. (authors)

  2. Charge Transfer Processes in Collisions of Si4+ Ions with He Atoms at Intermediate Energies

    Science.gov (United States)

    Suzuki, R.; Watanabe, A.; Sato, H.; Gu, J. P.; Hirsch, G.; Buenker, R. J.; Kimura, M.; Stancil, P. C.

    Charge transfer in collisions of Si4+ ions with He atoms below 100 keV/u is studied by using a molecular orbital representation within both the semiclassical and quantal representations. Single transfer reaction Si4++He →Si3++He+ has been studied by a number of theoretical investigations. In addition to the reaction (1), the first semiclassical MOCC calculations are performed for the double transfer channel Si4++HE→Si2++He2+ Nine molecular states that connect both with single and double electron transfer processes are considered in the present model. Electronic states and corresponding couplings are determined by the multireference single- and double- excitation configuration interaction method. The present cross sections tie well with the earlier calculations of Stancil et al., Phys. Rev. A 55, 1064 (1997) at lower energies, but show a rather different magnitude from those of Bacchus-Montabonel and Ceyzeriat, Phys. Rev. A 58, 1162 (1998). The present rate constant is found to be significantly different from the experimental finding of Fang and Kwong, Phys. Rev. A 59, 342 (1996) at 4,600 K, and hence does not support the experiment.

  3. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil

    2018-03-07

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative film boiling on horizontal tubes, but working at low pressures of 0.93–3.60 kPa as well as seawater salinity of 15,000–90,000 mg/l or ppm. Owing to a dearth of literature on film-boiling at these conditions, the chapter is motivated by the importance of evaporative film-boiling in the process industries. It is observed that in addition to the above-mentioned parameters, evaporative heat transfer of seawater is affected by the emergence of micro-bubbles within the thin film layer, particularly when the liquid saturation temperatures drop below 25°C (3.1 kPa). Such micro-bubbles are generated near to the tube wall surfaces, and they enhanced the heat transfer by two or more folds when compared with the predictions of conventional evaporative film-boiling. The appearance of micro-bubbles is attributed to the rapid increase in the specific volume of vapour, i.e. dv/dT, at low saturation temperature conditions. A new correlation is thus proposed in this chapter and it shows good agreement to the measured data with an experimental uncertainty less than ±8%.

  4. Elaboration of metallic and composite fillings by plasma transferred arc. Process analysis and tribological study

    International Nuclear Information System (INIS)

    Rochette, Philippe

    1987-01-01

    The experimental part of this research thesis addresses the parametric study of two surface filling processes (by plasma transferred arc, and by plasma arc projection followed by a coating remelting by electron beam), the elaboration by plasma transferred arc and the metallurgical characterization of fillings of nickel base alloys and composite materials made of tungsten carbides dispersed in a nickel matrix, and the characterization of fretting wear of the so-elaborated fillings in aqueous environment. The results show that the plasma transferred arc filling technique allows coating quality and microstructure to be controlled by adjusting the mass energy of the transferred arc. Besides, this technique results in a very good control of nickel alloy coatings. The various studied composites show that it is better to use a matrix with very few alloying elements or pre-coated carbides in order to avoid any cracking phenomenon. The content of dispersed carbides must not be greater than 60 per cent in weight. The best wear behaviour is obtained with polyhedral tungsten carbides dispersed within a low alloyed nickel matrix [fr

  5. Final Report Collaborative Project. Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [National Center for Atmospheric Research, Boulder, CO (United States); Dennis, John [National Center for Atmospheric Research, Boulder, CO (United States); MacCready, Parker [Univ. of Washington, Seattle, WA (United States); Whitney, Michael [Univ. of Connecticut

    2015-11-20

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation. The main computational objectives were: 1. To develop computationally efficient, but physically based, parameterizations of estuary and continental shelf mixing processes for use in an Earth System Model (CESM). 2. To develop a two-way nested regional modeling framework in order to dynamically downscale the climate response of particular coastal ocean regions and to upscale the impact of the regional coastal processes to the global climate in an Earth System Model (CESM). 3. To develop computational infrastructure to enhance the efficiency of data transfer between specific sources and destinations, i.e., a point-to-point communication capability, (used in objective 1) within POP, the ocean component of CESM.

  6. Geoelectrical Measurement of Multi-Scale Mass Transfer Parameters Final Report to the Subsurface Biogeochemical Research Program

    Energy Technology Data Exchange (ETDEWEB)

    Day-Lewis, Frederick; Singha, Kamini; Haggerty, Roy; Johnson, Timothy; Binley, Andrew; Lane, John

    2014-03-10

    . In this project, we sought to capitalize on the geophysical signatures of mass transfer. Previous numerical modeling and pilot-scale field experiments suggested that mass transfer produces a geoelectrical signature—a hysteretic relation between sampled (mobile-domain) fluid conductivity and bulk (mobile + immobile) conductivity—over a range of scales relevant to aquifer remediation. In this work, we investigated the geoelectrical signature of mass transfer during tracer transport in a series of controlled experiments to determine the operation of controlling parameters, and also investigated the use of complex-resistivity (CR) as a means of quantifying mass transfer parameters in situ without tracer experiments. In an add-on component to our grant, we additionally considered nuclear magnetic resonance (NMR) to help parse mobile from immobile porosities. Our study objectives were to: 1. Develop and demonstrate geophysical approaches to measure mass-transfer parameters spatially and over a range of scales, including the combination of electrical resistivity monitoring, tracer tests, complex resistivity, nuclear magnetic resonance, and materials characterization; and 2. Provide mass-transfer estimates for improved understanding of contaminant fate and transport at DOE sites, such as uranium transport at the Hanford 300 Area. To achieve our objectives, we implemented a 3-part research plan involving (1) development of computer codes and techniques to estimate mass-transfer parameters from time-lapse electrical data; (2) bench-scale experiments on synthetic materials and materials from cores from the Hanford 300 Area; and (3) field demonstration experiments at the DOE’s Hanford 300 Area.

  7. Final Technical Report - Advanced Optical Sensors to Minimize Energy Consumption in Polymer Extrusion Processes

    Energy Technology Data Exchange (ETDEWEB)

    Susan J. Foulk

    2012-07-24

    Project Objective: The objectives of this study are to develop an accurate and stable on-line sensor system to monitor color and composition on-line in polymer melts, to develop a scheme for using the output to control extruders to eliminate the energy, material and operational costs of off-specification product, and to combine or eliminate some extrusion processes. Background: Polymer extrusion processes are difficult to control because the quality achieved in the final product is complexly affected by the properties of the extruder screw, speed of extrusion, temperature, polymer composition, strength and dispersion properties of additives, and feeder system properties. Extruder systems are engineered to be highly reproducible so that when the correct settings to produce a particular product are found, that product can be reliably produced time after time. However market conditions often require changes in the final product, different products or grades may be processed in the same equipment, and feed materials vary from lot to lot. All of these changes require empirical adjustment of extruder settings to produce a product meeting specifications. Optical sensor systems that can continuously monitor the composition and color of the extruded polymer could detect process upsets, drift, blending oscillations, and changes in dispersion of additives. Development of an effective control algorithm using the output of the monitor would enable rapid corrections for changes in materials and operating conditions, thereby eliminating most of the scrap and recycle of current processing. This information could be used to identify extruder systems issues, diagnose problem sources, and suggest corrective actions in real-time to help keep extruder system settings within the optimum control region. Using these advanced optical sensor systems would give extruder operators real-time feedback from their process. They could reduce the amount of off-spec product produced and

  8. System Model of Heat and Mass Transfer Process for Mobile Solvent Vapor Phase Drying Equipment

    Directory of Open Access Journals (Sweden)

    Shiwei Zhang

    2014-01-01

    Full Text Available The solvent vapor phase drying process is one of the most important processes during the production and maintenance for large oil-immersed power transformer. In this paper, the working principle, system composition, and technological process of mobile solvent vapor phase drying (MVPD equipment for transformer are introduced in detail. On the basis of necessary simplification and assumption for MVPD equipment and process, a heat and mass transfer mathematical model including 40 mathematical equations is established, which represents completely thermodynamics laws of phase change and transport process of solvent, water, and air in MVPD technological processes and describes in detail the quantitative relationship among important physical quantities such as temperature, pressure, and flux in key equipment units and process. Taking a practical field drying process of 500 KV/750 MVA power transformer as an example, the simulation calculation of a complete technological process is carried out by programming with MATLAB software and some relation curves of key process parameters changing with time are obtained such as body temperature, tank pressure, and water yield. The change trend of theoretical simulation results is very consistent with the actual production record data which verifies the correctness of mathematical model established.

  9. Spectroscopic studies of the energy transfer processes important to obtain holmium laser action in the Er:Tm:Ho:YLF

    International Nuclear Information System (INIS)

    Tarelho, Luiz Vicente Gomes

    1995-01-01

    There are several processes of energy transfer between Er, Tm and Ho ions in YLF crystal that could be evaluated using the Foerster-Dexter method. Energy transfer processes, important to understand Holmium laser action, were studied, specially involving the energy transfer between the first excited states of Er and Tm donors and Ho acceptor. The back-transfer processes were evaluated too in order to minimize the system losses. Another important process to understand Ho laser action in the host is the energy diffusion mechanism between donor ions due to excitation migration processes which take place before the energy transfer to Ho. The proposed model of energy transfer was developed to include the diffusion mechanism between donors in the absence and presence of the acceptors. The energy transfer probability was evaluated including the back-transfer processes besides the diffusion assistance. A laser medium model based on the fundamental spectroscopic parameters was used in order to determine the ideal donor acceptor concentrations in order to maximize the laser action of Ho at 2,1 μm. (author)

  10. A Qualitative Study of Multidisciplinary Providers' Experiences With the Transfer Process for Injured Children and Ideas for Improvement.

    Science.gov (United States)

    Gawel, Marcie; Emerson, Beth; Giuliano, John S; Rosenberg, Alana; Minges, Karl E; Feder, Shelli; Violano, Pina; Morrell, Patricia; Petersen, Judy; Christison-Lagay, Emily; Auerbach, Marc

    2018-02-01

    Most injured children initially present to a community hospital, and many will require transfer to a regional pediatric trauma center. The purpose of this study was 1) to explore multidisciplinary providers' experiences with the process of transferring injured children and 2) to describe proposed ideas for process improvement. This qualitative study involved 26 semistructured interviews. Subjects were recruited from 6 community hospital emergency departments and the trauma and transport teams of a level I pediatric trauma center in New Haven, Conn. Participants (n = 34) included interprofessional providers from sending facilities, transport teams, and receiving facilities. Using the constant comparative method, a multidisciplinary team coded transcripts and collectively refined codes to generate recurrent themes across interviews until theoretical saturation was achieved. Participants reported that the transfer process for injured children is complex, stressful, and necessitates collaboration. The transfer process was perceived to involve numerous interrelated components, including professions, disciplines, and institutions. The 5 themes identified as areas to improve this transfer process included 1) Creation of a unified standard operating procedure that crosses institutions/teams, 2) Enhancing 'shared sense making' of all providers, 3) Improving provider confidence, expertise, and skills in caring for pediatric trauma transfer cases, 4) Addressing organization and environmental factors that may impede/delay transfer, and 5) Fostering institutional and personal relationships. Efforts to improve the transfer process for injured children should be guided by the experiences of and input from multidisciplinary frontline emergency providers.

  11. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Science.gov (United States)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-08-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  12. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    Energy Technology Data Exchange (ETDEWEB)

    Getoff, Nikola, E-mail: nikola.getoff@univie.ac.a [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Hartmann, Johannes [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Schittl, Heike [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria); Gerschpacher, Marion [Department of Gynecologic Endocrinology and Reproduction, Medical University of Vienna, A-1090 Vienna (Austria); Quint, Ruth Maria [Section of Radiation Biology, Faculty of Life Sciences, University of Vienna, A-1090 Vienna (Austria)

    2011-08-15

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light ({lambda}=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  13. Photo-induced regeneration of hormones by electron transfer processes: Potential biological and medical consequences

    International Nuclear Information System (INIS)

    Getoff, Nikola; Hartmann, Johannes; Schittl, Heike; Gerschpacher, Marion; Quint, Ruth Maria

    2011-01-01

    Based on the previous results concerning electron transfer processes in biological substances, it was of interest to investigate if hormone transients resulting by e.g. electron emission can be regenerated. The presented results prove for the first time that the hormone transients originating by the electron emission process can be successfully regenerated by the transfer of electrons from a potent electron donor, such as vitamin C (VitC). Investigations were performed using progesterone (PRG), testosterone (TES) and estrone (E1) as representatives of hormones. By irradiation with monochromatic UV light (λ=254 nm) in a media of 40% water and 60% ethanol, the degradation as well as the regeneration of the hormones was studied with each hormone individually and in the mixture with VitC as a function of the absorbed UV dose, using HPLC. Calculated from the obtained initial yields, the determined regeneration of PRG amounted to 52.7%, for TES to 58.6% and for E1 to 90.9%. The consumption of VitC was determined in the same way. The reported results concerning the regeneration of hormones by the transfer of electrons from an electron donor offer a new, promising method for the therapy with hormones. As a consequence of the regeneration of hormones, a decreased formation of carcinogenic metabolites is expected.

  14. A reliable technique for transfer of radioactivity filled vial from transport container to the processing station

    International Nuclear Information System (INIS)

    Kothalkar, Chetan; Dey, A.C.

    2005-01-01

    In Technetium Column Generator Production Facility (TCGPF project) of BRIT, a facility for unloading vial containing radioactive liquid sodium molybdate- 99 Mo solution from the transport cask into the processing station and unsealing the vial to transfer the liquid to a storage bottle has been developed. This is specifically conceptualized for safe handling of radioactivity and minimizing the radiation dose exposure to the personnel working at the time of transferring the radioactivity from the transport cask to a place for further processing. The facility, designed to handle around 1850 GBq activity, has two cells enclosed in 102mm thick lead wall and connected by a gravity actuated trolley conveyor. The first cell handles the transport cask carrying the vial-containing radioactivity, which houses two types of vial lifting gadgets assisted by manually operatable tongs. Gadgets use compressed air. In an experiment, it is found that the HDPE vial lifting gadget using suction cup continue to function up to 30-40 minutes after power failure. The experience shows that gadget using 3-point radial gripper to lift the glass vial will remain in grab position, even if the compressed air supply stops. In this facility the dose receivable, while handling radioactivity by the operator, is likely to be negligibly small (approx. 3.15 x 10 -4 mSv per year at the rate four glass vials/week and 2.25 x 10 -4 mSv per year considering at the rate 1 vial/week for HOPE vial transfer). (author)

  15. Electrokinetic demonstration at Sandia National Laboratories: Use of transference numbers for site characterization and process evaluation

    International Nuclear Information System (INIS)

    Lindgren, E.R.; Mattson, E.D.

    1997-01-01

    Electrokinetic remediation is generally an in situ method using direct current electric potentials to move ionic contaminants and/or water to collection electrodes. The method has been extensively studied for application in saturated clayey soils. Over the past few years, an electrokinetic extraction method specific for sandy, unsaturated soils has been developed and patented by Sandia National Laboratories. A RCRA RD ampersand D permitted demonstration of this technology for the in situ removal of chromate contamination from unsaturated soils in a former chromic acid disposal pit was operated during the summer and fall of 1996. This large scale field test represents the first use of electrokinetics for the removal of heavy metal contamination from unsaturated soils in the United States and is part of the US EPA Superfund Innovative Technology Evaluation (SITE) Program. Guidelines for characterizing a site for electrokinetic remediation are lacking, especially for applications in unsaturated soil. The transference number of an ion is the fraction of the current carried by that ion in an electric field and represents the best measure of contaminant removal efficiency in most electrokinetic remediation processes. In this paper we compare the transference number of chromate initially present in the contaminated unsaturated soil, with the transference number in the electrokinetic process effluent to demonstrate the utility of evaluating this parameter

  16. Deep-inelastic multinucleon transfer processes in the 16O+27Al reaction

    Science.gov (United States)

    Roy, B. J.; Sawant, Y.; Patwari, P.; Santra, S.; Pal, A.; Kundu, A.; Chattopadhyay, D.; Jha, V.; Pandit, S. K.; Parkar, V. V.; Ramachandran, K.; Mahata, K.; Nayak, B. K.; Saxena, A.; Kailas, S.; Nag, T. N.; Sahoo, R. N.; Singh, P. P.; Sekizawa, K.

    2018-03-01

    The reaction mechanism of deep-inelastic multinucleon transfer processes in the 16O+27Al reaction at an incident 16O energy (Elab=134 MeV) substantially above the Coulomb barrier has been studied both experimentally and theoretically. Elastic-scattering angular distribution, total kinetic energy loss spectra, and angular distributions for various transfer channels have been measured. The Q -value- and angle-integrated isotope production cross sections have been deduced. To obtain deeper insight into the underlying reaction mechanism, we have carried out a detailed analysis based on the time-dependent Hartree-Fock (TDHF) theory. A recently developed method, TDHF+GEMINI, has been applied to evaluate production cross sections for secondary products. From a comparison between the experimental and theoretical cross sections, we find that the theory qualitatively reproduces the experimental data. Significant effects of secondary light-particle emissions are demonstrated. Possible interplay among fusion-fission, deep-inelastic, multinucleon transfer, and particle evaporation processes is discussed.

  17. The transfer of learning process: From an elementary science methods course to classroom instruction

    Science.gov (United States)

    Carter, Nina Leann

    The purpose of this qualitative multiple-case study was to explore the transfer of learning process in student teachers. This was carried out by focusing on information learned from an elementary science methods and how it was transferred into classroom instruction during student teaching. Participants were a purposeful sampling of twelve elementary education student teachers attending a public university in north Mississippi. Factors that impacted the transfer of learning during lesson planning and implementation were sought. The process of planning and implementing a ten-day science instructional unit during student teaching was examined through lesson plan documentation, in-depth individual interviews, and two focus group interviews. Narratives were created to describe the participants' experiences as well as how they plan for instruction and consider science pedagogical content knowledge (PCK). Categories and themes were then used to build explanations applying to the research questions. The themes identified were Understanding of Science PCK, Minimalism, Consistency in the Teacher Education Program, and Emphasis on Science Content. The data suggested that the participants lack in their understanding of science PCK, took a minimalistic approach to incorporating science into their ten-day instructional units, experienced inconsistencies in the teacher education program, and encountered a lack of emphasis on science content in their field experience placements. The themes assisted in recognizing areas in the elementary science methods courses, student teaching field placements, and university supervision in need of modification.

  18. Vibrational inelastic and charge transfer processes in H++H2 system: An ab initio study

    Science.gov (United States)

    Amaran, Saieswari; Kumar, Sanjay

    2007-12-01

    State-resolved differential cross sections, total and integral cross sections, average vibrational energy transfer, and the relative probabilities are computed for the H++H2 system using the newly obtained ab initio potential energy surfaces at the full CI/cc-pVQZ level of accuracy which allow for both the direct vibrational inelastic and the charge transfer processes. The quantum dynamics is treated within the vibrational close-coupling infinite-order-sudden approximation approach using the two ab initio quasidiabatic potential energy surfaces. The computed collision attributes for both the processes are compared with the available state-to-state scattering experiments at Ec.m.=20eV. The results are in overall good agreement with most of the observed scattering features such as rainbow positions, integral cross sections, and relative vibrational energy transfers. A comparison with the earlier theoretical study carried out on the semiempirical surfaces (diatomics in molecules) is also made to illustrate the reliability of the potential energy surfaces used in the present work.

  19. Influence of fractal substructures of the percolating cluster on transferring processes in macroscopically disordered environments

    Science.gov (United States)

    Kolesnikov, B. P.

    2017-11-01

    The presented work belongs to the issue of searching for the effective kinetic properties of macroscopically disordered environments (MDE). These properties characterize MDE in general on the sizes which significantly exceed the sizes of macro inhomogeneity. The structure of MDE is considered as a complex of interpenetrating percolating and finite clusters consolidated from homonymous components, topological characteristics of which influence on the properties of the whole environment. The influence of percolating clusters’ fractal substructures (backbone, skeleton of backbone, red bonds) on the transfer processes during crossover (a structure transition from fractal to homogeneous condition) is investigated based on the offered mathematical approach for finding the effective conductivity of MDEs and on the percolating cluster model. The nature of the change of the critical conductivity index t during crossover from the characteristic value for the area close to percolation threshold to the value corresponded to homogeneous condition is demonstrated. The offered model describes the transfer processes in MDE with the finite conductivity relation of «conductive» and «low conductive» phases above and below percolation threshold and in smearing area (an analogue of a blur area of the second-order phase transfer).

  20. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 2 - model validation

    Science.gov (United States)

    Zhang, Yaning; Xu, Fei; Li, Bingxi; Kim, Yong-Song; Zhao, Wenke; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    This study aims to validate the three-phase heat and mass transfer model developed in the first part (Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development). Experimental results from studies and experiments were used for the validation. The results showed that the correlation coefficients for the simulated and experimental water contents at different soil depths were between 0.83 and 0.92. The correlation coefficients for the simulated and experimental liquid water contents at different soil temperatures were between 0.95 and 0.99. With these high accuracies, the developed model can be well used to predict the water contents at different soil depths and temperatures.

  1. High-energy, large-momentum-transfer processes: Ladder diagrams in var-phi 3 theory

    International Nuclear Information System (INIS)

    Newton, C.L.J.

    1990-01-01

    Relativistic quantum field theories may help one to understand high-energy, large-momentum-transfer processes, where the center-of-mass energy is much larger than the transverse momentum transfers, which are in turn much larger than the masses of the participating particles. With this possibility in mind, the author studies ladder diagrams in var-phi 3 theory. He shows that in the limit s much-gt |t| much-gt m 2 , the scattering amplitude for the N-rung ladder diagram takes the form s -1 |t| -N+1 times a homogeneous polynomial of degree 2N - 2 and ln s and ln |t|. This polynomial takes different forms depending on the relation of ln |t| to ln s. More precisely, the asymptotic formula for the N-rung ladder diagram has points of non-analytically when ln |t| = γ ln s for γ = 1/2, 1/3, hor-ellipsis, 1/N-2

  2. Radiative heat transfer analysis in pure water heater used for semiconductor processing

    International Nuclear Information System (INIS)

    Liu, L.H.; Kudo, K.; Mochida, A.; Ogawa, T.; Kadotani, K.

    2004-01-01

    A simplified one-dimensional model is presented to analyze the non-gray radiative transfer in pure water heater used in the rinsing processes within semiconductor production lines, and the ray-tracing method is extended to simulate the radiative heat transfer. To examine the accuracy of the simplified model, the distribution of radiation absorption is determined by the ray-tracing method based the simplified model and compared with the data obtained by three-dimensional non-gray model in combination with Monte Carlo method in reference, and the effects of the water thickness on the radiation absorption are analyzed. The results show that the simplified model has a good accuracy in solving the radiation absorption in the pure water heater. The radiation absorption increases with the water thickness, but when the water thickness is greater than 50 mm, the radiation absorption increases very slowly with the water thickness

  3. Influence of relaxation processes in polymers on energy transfer by triplet levels

    International Nuclear Information System (INIS)

    Ibraev, N.Kh.; Zhunusbekov, A.M.

    1996-01-01

    Temperature influence on triplet-triplet (T-T) energy transfer between molecules of eosin and 3,4-benzopyrene is studied. Polyvenylbuteryl films have been used in capacity of polymer matrix. Calculation has being carried out on spectral-kinetic unit. It is revealed, that 3,4-benzopyrene triplets have been formed in polymer matrix after end of T-T energy transfer. These triplets join in a reaction of mixed triplet-triplet annihilation with non-blow out triplets of eosin and its sensitize slowed fluorescence (SF) of donor. This explains non-exponent character of eosin's dumping kinetics. Non-linear dependence of SF output ration to eosin phosphorescence output under presence of 3,4-benzopyrene molecules in film indicates on process of mixed annihilation. Fractal character of SF donor and acceptor has been evidenced about microscopical distribution of phosphor in polymer. 13 refs., 5 figs

  4. Controlling electron transfer processes on insulating surfaces with the non-contact atomic force microscope.

    Science.gov (United States)

    Trevethan, Thomas; Shluger, Alexander

    2009-07-01

    We present the results of theoretical modelling that predicts how a process of transfer of single electrons between two defects on an insulating surface can be induced using a scanning force microscope tip. A model but realistic system is employed which consists of a neutral oxygen vacancy and a noble metal (Pt or Pd) adatom on the MgO(001) surface. We show that the ionization potential of the vacancy and the electron affinity of the metal adatom can be significantly modified by the electric field produced by an ionic tip apex at close approach to the surface. The relative energies of the two states are also a function of the separation of the two defects. Therefore the transfer of an electron from the vacancy to the metal adatom can be induced either by the field effect of the tip or by manipulating the position of the metal adatom on the surface.

  5. [Modeling of processes of heat transfer in whole-body hyperthermia].

    Science.gov (United States)

    Kinsht, D N

    2006-01-01

    The method of whole-body hyperthermia in which the body temperature for a short time reaches values up to 43-44 degrees C holds currently much promise. However, at body temperatures above 42 degrees C, the risks associated with the hemodynamic instability and the appearance of arrhythmia in the patient increase. A model of heat transfer has been created to increase the efficiency and safety of the immersion-convectional method of whole-body hyperthermia. This model takes into account changes in the skin blood flow and the dynamics of pulse rate depending on body temperature. The model of heat transfer adequately reflects processes of heating of the organism and can form a basis for the calculation of distribution of heat inside the organism.

  6. Luminescence properties and energy transfer processes in YAG:Yb,Er single crystalline films

    International Nuclear Information System (INIS)

    Zorenko, Yu.; Gorbenko, V.; Savchyn, V.; Batentschuk, M.; Osvet, A.; Brabec, C.

    2013-01-01

    The paper is dedicated to the study of the optical properties of YAG:Yb,Er single-crystalline films (SCF) grown by liquid phase epitaxy. The absorption, cathodoluminescence and time-resolved photoluminescence spectra and photoluminescence decay curves were measured for the SCFs with different doping levels of Er 3+ (from 0.6 to 4.2 at.%) and Yb 3+ (from 0.1 to 0.6 at.%). The spectra, excited by synchrotron radiation in the fundamental absorption range of the YAG and in the intraionic absorption bands of both dopants, reveal energy transfer from the YAG host to the Er 3+ and Yb 3+ ions and between these ions. -- Highlights: •Growth of YAG:Yb,Er single crystalline films by LPE method. •Peculiarities of luminescence of YAG:Yb,Er films with different Er–Yb content. •Yb–Er energy transfer processes in YAG hosts

  7. Automated processing of whole blood units: operational value and in vitro quality of final blood components.

    Science.gov (United States)

    Jurado, Marisa; Algora, Manuel; Garcia-Sanchez, Félix; Vico, Santiago; Rodriguez, Eva; Perez, Sonia; Barbolla, Luz

    2012-01-01

    The Community Transfusion Centre in Madrid currently processes whole blood using a conventional procedure (Compomat, Fresenius) followed by automated processing of buffy coats with the OrbiSac system (CaridianBCT). The Atreus 3C system (CaridianBCT) automates the production of red blood cells, plasma and an interim platelet unit from a whole blood unit. Interim platelet unit are pooled to produce a transfusable platelet unit. In this study the Atreus 3C system was evaluated and compared to the routine method with regards to product quality and operational value. Over a 5-week period 810 whole blood units were processed using the Atreus 3C system. The attributes of the automated process were compared to those of the routine method by assessing productivity, space, equipment and staffing requirements. The data obtained were evaluated in order to estimate the impact of implementing the Atreus 3C system in the routine setting of the blood centre. Yield and in vitro quality of the final blood components processed with the two systems were evaluated and compared. The Atreus 3C system enabled higher throughput while requiring less space and employee time by decreasing the amount of equipment and processing time per unit of whole blood processed. Whole blood units processed on the Atreus 3C system gave a higher platelet yield, a similar amount of red blood cells and a smaller volume of plasma. These results support the conclusion that the Atreus 3C system produces blood components meeting quality requirements while providing a high operational efficiency. Implementation of the Atreus 3C system could result in a large organisational improvement.

  8. Analysis of reforming process of large distorted ring in final enlarging forging

    International Nuclear Information System (INIS)

    Miyazawa, Takeshi; Murai, Etsuo

    2002-01-01

    In the construction of reactors or pressure vessels for oil chemical plants and nuclear power stations, mono block open-die forging rings are often utilized. Generally, a large forged ring is manufactured by means of enlarging forging with reductions of the wall thickness. During the enlarging process the circular ring is often distorted and becomes an ellipse in shape. However the shape control of the ring is a complicated work. This phenomenon makes the matter still worse in forging of larger rings. In order to make precision forging of large rings, we have developed the forging method using a v-shape anvil. The v-shape anvil is geometrically adjusted to fit the distorted ring in the final circle and reform automatically the shape of the ring during enlarging forging. This paper has analyzed the reforming process of distorted ring by computer program based on F.E.M. and examined the effect on the precision of ring forging. (author)

  9. U.S. Department of Energy integrated manufacturing & processing predoctoral fellowships. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Petrochenkov, Margaret

    2003-03-31

    The objective of this program was threefold: to create a pool of PhDs trained in the integrated approach to manufacturing and processing, to promote academic interest in the field, and to attract talented professionals to this challenging area of engineering. It was anticipated that the program would result in the creation of new manufacturing methods that would contribute to improved energy efficiency, to better utilization of scarce resources, and to less degradation of the environment. Emphasis in the competition was on integrated systems of manufacturing and the integration of product design with manufacturing processes. Research addressed such related areas as aspects of unit operations, tooling and equipment, intelligent sensors, and manufacturing systems as they related to product design. This is the final report to close out the contract.

  10. The mechanism of three-body process of energy transfer from excited xenon atoms to molecules

    International Nuclear Information System (INIS)

    Wojciechowski, K.; Forys, M.

    1999-01-01

    The mechanism of energy transfer from Xe(6 s[3/2] 1 ) resonance state (E=8.44 eV) and higher excited Xe(6p, 6p', 6 d) atoms produced in pulse radiolysis to molecules have been discussed. The analysis of the kinetic data for these processes shows that in the sensitized photolysis and radiolysis of Xe-M mixtures the excited atoms decay in 'ordinary' two-body reaction: Xe(6s[3/2] 1 0 )+M→products (r.1) and in fast 'accelerated' third order process: Xe(6s[3/2] 1 0 )+M+Xe→products (r.2) The discussion shows that three-body process occurs via reactions: Xe(6s[3/2] 1 0 )+Xe k w ↔ k d Xe 2 ** (r.2a) Xe 2 **+M k q →[Xe 2 M]*→products (r.2b) It was shown that this mechanism concerns also higher excited Xe atoms and can explain a similar process in He-M mixtures and suggests that it is a general mechanism of energy transfer in all irradiated rare gas-molecule systems

  11. Molecular-Level Processes Governing the Interaction of Contaminants with Iron and Manganese Oxides - Final Report; FINAL

    International Nuclear Information System (INIS)

    Brown, G. E. Jr.; Chambers, S. A.

    1999-01-01

    Many of the inorganic and organic contaminants present in sediments at DOE sites can be altered or destroyed by reduction and oxidation (redox) reactions occurring at mineral surfaces. A fundamental understanding of such redox processes provided by molecular-level studies on structurally and compositionally well-defined mineral surfaces will lead to: (i) improved models of contaminant fate and transport in geochemical systems, and (ii) optimized manipulation of these processes for remediation purposes. To contribute to this understanding, we will study, both experimentally and theoretically, redox processes involving three important contaminants - chromate ion, carbon tetrachloride, and trichloroethene TCE, on the following iron and manganese oxides - hematite, magnetite, maghemite, and pyrolusite. These oxides and their hydroxylated analogs commonly occur as coatings on minerals or as interfaces in the subsurface environment. Single-crystal surfaces of these oxides will be synthesized in carefully controlled fashion by molecular beam epitaxy. These surfaces, as well as high surface are powdered samples of these oxides, will be used in spectroscopic and kinetic experiments in both aqueous and gas phases. Our goal is to identify products and to determine the kinetics and mechanisms of surface-catalyzed redox reaction of Cr(VI) and CR(III), and the reductive dechlorination of carbon tetrachloride and TCE. The combination of theory and experiment will provide the base information needed to scale from the molecular level to the microscopic grain level minerals

  12. Special study for the manual transfer of process samples from CPP [Chemical Processing Plant] 601 to RAL [Remote Analytical Laboratory

    International Nuclear Information System (INIS)

    Marts, D.J.

    1987-05-01

    A study of alternate methods to manually transport radioactive samples from their glove boxes to the Remote Analytical Laboratory (RAL) was conducted at the Idaho National Engineering Laboratory. The study was performed to mitigate the effects of a potential loss of sampling capabilities that could take place if a malfunction in the Pneumatic Transfer System (PTS) occurred. Samples are required to be taken from the cell glove boxes and analyzed at the RAL regardless of the operational status of the PTS. This paper documents the conclusions of the study and how a decision was reached that determined the best handling scenarios for manually transporting 15 mL vials of liquid process samples from the K, W, U, WG, or WH cell glove boxes in the Chemical Processing Plant (CPP) 601 to the RAL. This study of methods to manually remove the samples from the glove boxes, package them for safe shipment, transport them by the safest route, receive them at the RAL, and safely unload them was conducted by EG and G Idaho, Inc., for Westinghouse Idaho Nuclear Company as part of the Glove Box Sampling and Transfer System Project for the Fuel Processing Facilities Upgrade, Task 10, Subtask 2. The study focused on the safest and most reliable scenarios that could be implemented using existing equipment. Hardware modifications and new hardware proposals were identified, and their impact on the handling scenario has been evaluated. A conclusion was reached that by utilizing the existing facility hardware, these samples can be safely transported manually from the sample stations in CPP 601 to the RAL, and that additional hardware could facilitate the transportation process even further

  13. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    Energy Technology Data Exchange (ETDEWEB)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun [Korea Atomic Energy Research Institute, Taejon (Korea, Republic of)

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N{sub 2} and H{sub 2}-D{sub 2} distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N{sub 2} distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H{sub 2}, HD, D{sub 2}, HT, DT, T{sub 2}) distillation column showed good performance after comparison with the result of a JAERI code, and a H{sub 2}-D{sub 2} distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H{sub 2}-D{sub 2} distillation process was suggested. A feasibility on modification of H{sub 2}-D{sub 2} distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author).

  14. Change of roles and attitudes in the Swedish localisation process for a final repository

    International Nuclear Information System (INIS)

    Hedberg, Bjoern

    2001-01-01

    Since the early research activities in the mid seventies related to a final repository for spent nuclear fuel and other radioactive wastes, much has changed in a direction that allows a more open and transparent decision-making process. Important changes have been noted in the legal framework - including EIA and financing - and in the roles of the Swedish authorities, local politicians, NGO's, and media. Trust and credibility is of course crucial for all actors in the decision-making process, but the ways to gain trust is different depending on which role to play in the process. A higher degree of trust in the different actors, and in the process itself, could be gained from a better distinction between facts and value judgements, but also if the roles of different actors are better clarified. To understand the roles of the different actors, it is important to define each actor's 'arena' in terms of responsibilities, goals, standpoints etc. in several dimensions. These dimensions could for example be geographic or the base for decisions (scientific - political)

  15. Change of roles and attitudes in the Swedish localisation process for a final repository

    Energy Technology Data Exchange (ETDEWEB)

    Hedberg, Bjoern [Swedish Radiation Protection Inst., Stockholm (Sweden)

    2001-07-01

    Since the early research activities in the mid seventies related to a final repository for spent nuclear fuel and other radioactive wastes, much has changed in a direction that allows a more open and transparent decision-making process. Important changes have been noted in the legal framework - including EIA and financing - and in the roles of the Swedish authorities, local politicians, NGO's, and media. Trust and credibility is of course crucial for all actors in the decision-making process, but the ways to gain trust is different depending on which role to play in the process. A higher degree of trust in the different actors, and in the process itself, could be gained from a better distinction between facts and value judgements, but also if the roles of different actors are better clarified. To understand the roles of the different actors, it is important to define each actor's 'arena' in terms of responsibilities, goals, standpoints etc. in several dimensions. These dimensions could for example be geographic or the base for decisions (scientific - political)

  16. Development on the cryogenic hydrogen isotopes distillation process technology for tritium removal (Final report)

    International Nuclear Information System (INIS)

    Sung, Ki Woung; Kim, Yong Ik; Na, Jeong Won; Ku, Jae Hyu; Kim, Kwang Rak; Jeong, Yong Won; Lee, Han Soo; Cho, Young Hyun; Ahn, Do Hee; Baek, Seung Woo; Kang, Hee Seok; Kim, You Sun

    1995-12-01

    While tritium exposure to the site-workers in Wolsung NPP is up to about 40% of the total personnel exposure, Ministry of Science and Technology has asked tritium removal facility for requirement of post heavy-water reactor construction. For the purpose of essential removal of tritium from the Wolsung heavy-water reactor system, a preliminary study on the cryogenic Ar-N 2 and H 2 -D 2 distillation process for development of liquid-phase catalytic exchange cryogenic hydrogen distillation process technology. The Ar-N 2 distillation column showed good performance with approximately 97% of final Ar concentration, and a computer simulation code was modified using these data. A simulation code developed for cryogenic hydrogen isotopes (H 2 , HD, D 2 , HT, DT, T 2 ) distillation column showed good performance after comparison with the result of a JAERI code, and a H 2 -D 2 distillation column was made. Gas chromatography for hydrogen isotopes analysis was established using a vacuum sampling loop, and a schematic diagram of H 2 -D 2 distillation process was suggested. A feasibility on modification of H 2 -D 2 distillation process control system using Laser Raman Spectroscopy was studied, and the consideration points for tritium storage system for Wolsung tritium removal facility was suggested. 31 tabs., 79 figs., 68 refs. (Author)

  17. Formulation and validation of applied engineering equations for heat transfer processes in the food industry

    DEFF Research Database (Denmark)

    Christensen, Martin Gram

    The study is focused on convective heat transfer in the processing of solid foods, specifically with the scope to develop simple analytical calculation tools that can be incorporated into spreadsheet solutions. In areas of food engineering such as equipment manufacture the use of predictive...... calculations, modelling activities and simulations for improved design is employed to a high degree. In food manufacture the use process calculations are seldom applied. Even though, the calculation of thermal processes is not a challenging task in academia; this is not the case for food manufacture. However......; the calculations need fundamental validation and a generality that ensures a wide application, thus also the development of simplified approximations and engineering equations have to be conducted in academia. The focus group for the utilization of the presented work is; food manufacture, authorities ensuring food...

  18. Characterization of the interfacial heat transfer coefficient for hot stamping processes

    Science.gov (United States)

    Luan, Xi; Liu, Xiaochuan; Fang, Haomiao; Ji, Kang; El Fakir, Omer; Wang, LiLiang

    2016-08-01

    In hot stamping processes, the interfacial heat transfer coefficient (IHTC) between the forming tools and hot blank is an essential parameter which determines the quenching rate of the process and hence the resulting material microstructure. The present work focuses on the characterization of the IHTC between an aluminium alloy 7075-T6 blank and two different die materials, cast iron (G3500) and H13 die steel, at various contact pressures. It was found that the IHTC between AA7075 and cast iron had values 78.6% higher than that obtained between AA7075 and H13 die steel. Die materials and contact pressures had pronounced effects on the IHTC, suggesting that the IHTC can be used to guide the selection of stamping tool materials and the precise control of processing parameters.

  19. Coupled sulfur isotopic and chemical mass transfer modeling: Approach and application to dynamic hydrothermal processes

    International Nuclear Information System (INIS)

    Janecky, D.R.

    1988-01-01

    A computational modeling code (EQPSreverse arrowS) has been developed to examine sulfur isotopic distribution pathways coupled with calculations of chemical mass transfer pathways. A post processor approach to EQ6 calculations was chosen so that a variety of isotopic pathways could be examined for each reaction pathway. Two types of major bounding conditions were implemented: (1) equilibrium isotopic exchange between sulfate and sulfide species or exchange only accompanying chemical reduction and oxidation events, and (2) existence or lack of isotopic exchange between solution species and precipitated minerals, parallel to the open and closed chemical system formulations of chemical mass transfer modeling codes. All of the chemical data necessary to explicitly calculate isotopic distribution pathways is generated by most mass transfer modeling codes and can be input to the EQPS code. Routines are built in to directly handle EQ6 tabular files. Chemical reaction models of seafloor hydrothermal vent processes and accompanying sulfur isotopic distribution pathways illustrate the capabilities of coupling EQPSreverse arrowS with EQ6 calculations, including the extent of differences that can exist due to the isotopic bounding condition assumptions described above. 11 refs., 2 figs

  20. Investigation of collisional excitation-transfer processes in a plasma by laser perturbation method

    International Nuclear Information System (INIS)

    Sakurai, Takeki

    1983-01-01

    The theoretical background and the experimental method of the laser perturbation method applied to the study of collisional excitation transfer process in plasma are explained. The atomic density at some specified level can be evaluated theoretically. By using the theoretical results and the experimentally obtained data, the total attenuation probability, the collisional transfer probability and natural emission probability were estimated. For the experiments, continuous wave laser (cw) and pulse laser are employed. It is possible by using pulse dye laser to observe the attenuation curve directly, and to bring in resonance to any atomic spectra. At the beginning, the experimental studies were made on He-Ne discharge. The pulse dye laser has been used for the excitation of alkali atoms. The first application of pulse laser to the study of plasma physics was the study on He. The cross section of disalignment has also been studied by the laser perturbation. The alignment of atoms, step and cascade transfer, the confinement of radiation and optogalvanic effect are discussed in this paper. (Kato, T.)

  1. Mass transfer processes and field-scale transport of organic solutes

    International Nuclear Information System (INIS)

    Brusseau, M.L.

    1990-01-01

    The influence of mass transfer processes, such as sorption/desorption and mass transfer between immiscible liquids and water, on the transport of organic solutes is discussed. Rate-limited sorption of organic solutes caused by a diffusion-constrained mechanism is shown to be significant under laboratory conditions. The significance of the impact of nonequilibrium sorption on field-scale transport is scale dependent. The impact of organic liquids on mass transfer and transport of organic solutes depends upon the nature of the solute and the nature and form of the organic liquid. For example, while retardation of nonionic solutes is decreased in mixed-solvent systems, (i.e. systems comprised of water and a miscible organic liquid or an immiscible liquid present in concentrations below phase separation), the retardation of organic acids may, in some cases, increase with addition of a cosolvent. While the presence of an immiscible liquid existing as a mobile phase will reduce retention of organic solutes, the presence of residual saturation of an immiscible liquid can significantly increase retention. A model is presented that incorporates the effects of retention resulting from residual saturation, as well as nonequilibrium sorption, on the transport of organic solutes. (Author) (70 refs., 3 figs.)

  2. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    Energy Technology Data Exchange (ETDEWEB)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L. [and others

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL.

  3. Cesium removal demonstration utilizing crystalline silicotitanate sorbent for processing Melton Valley Storage Tank supernate: Final report

    International Nuclear Information System (INIS)

    Walker, J.F. Jr.; Taylor, P.A.; Cummins, R.L.

    1998-03-01

    This report provides details of the Cesium Removal Demonstration (CsRD), which was conducted at Oak Ridge National Laboratory (ORNL) on radioactive waste from the Melton Valley Storage Tanks. The CsRD was the first large-scale use of state-of-the-art sorbents being developed by private industry for the selective removal of cesium and other radionuclides from liquid wastes stored across the DOE complex. The crystalline silicotitanate sorbent used in the demonstration was chosen because of its effectiveness in laboratory tests using bench-scale columns. The demonstration showed that the cesium could be removed from the supernate and concentrated on a small-volume, solid waste form that would meet the waste acceptance criteria for the Nevada Test Site. During this project, the CsRD system processed > 115,000 L (30,000 gal) of radioactive supernate with minimal operational problems. Sluicing, drying, and remote transportation of the sorbent, which could not be done on a bench scale, were successfully demonstrated. The system was then decontaminated to the extent that it could be contact maintained with the use of localized shielding only. By utilizing a modular, transportable design and placement within existing facilities, the system can be transferred to different sites for reuse. The initial unit has now been removed from the process building and is presently being reinstalled for use in baseline operations at ORNL

  4. Exact and conceptual repetition dissociate conceptual memory tests: problems for transfer appropriate processing theory.

    Science.gov (United States)

    McDermott, K B; Roediger, H L

    1996-03-01

    Three experiments examined whether a conceptual implicit memory test (specifically, category instance generation) would exhibit repetition effects similar to those found in free recall. The transfer appropriate processing account of dissociations among memory tests led us to predict that the tests would show parallel effects; this prediction was based upon the theory's assumption that conceptual tests will behave similarly as a function of various independent variables. In Experiment 1, conceptual repetition (i.e., following a target word [e.g., puzzles] with an associate [e.g., jigsaw]) did not enhance priming on the instance generation test relative to the condition of simply presenting the target word once, although this manipulation did affect free recall. In Experiment 2, conceptual repetition was achieved by following a picture with its corresponding word (or vice versa). In this case, there was an effect of conceptual repetition on free recall but no reliable effect on category instance generation or category cued recall. In addition, we obtained a picture superiority effect in free recall but not in category instance generation. In the third experiment, when the same study sequence was used as in Experiment 1, but with instructions that encouraged relational processing, priming on the category instance generation task was enhanced by conceptual repetition. Results demonstrate that conceptual memory tests can be dissociated and present problems for Roediger's (1990) transfer appropriate processing account of dissociations between explicit and implicit tests.

  5. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna

    2018-05-17

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  6. Efficient Long - Range Electron Transfer Processes in Polyfluorene – Perylene Diimide Blends

    KAUST Repository

    Isakova, Anna; Karuthedath, Safakath; Arnold, Thomas; Howse, Jonathan; Topham, Paul D.; Toolan, Daniel Thomas William; Laquai, Fré dé ric; Lü er, Larry

    2018-01-01

    In bulk heterojunction donor-acceptor (D-A) blends, high photovoltaic yields require charge carrier separation to outcompete geminate recombination. Recently, evidence for long-range electron transfer mechanisms has been presented, avoiding strongly-bound interfacial charge transfer (CT) states. However, due to the lack of specific optical probes at the D-A interface, a detailed quantification of the long-range processes has not been feasible, until now. Here, we present a transient absorption study of long-range processes in a unique phase consisting of perylene diimide (PDI) crystals intercalated with polyfluorene (PFO), as widely used non-fullerene electron acceptor and donor, respectively. The intercalated PDI:PFO phase possesses specific well-separated spectral features for the excited states at the D-A interface. By use of femtosecond spectroscopy we reveal the excitation dynamics in this blend. PDI excitons undergo a clear symmetry-breaking charge separation in the PDI bulk, which occurs within several hundred femtoseconds, thus outcompeting excimer formation, known to limit charge separation yields when PDI is used as an acceptor. In contrast, PFO excitons are dissociated with very high yields in a one-step long-range process, enabled by large delocalization of the PFO exciton wavefunction. Moreover, both scenarios circumvent the formation of strongly-bound interfacial CT states and enable a targeted interfacial design for bulk heterojunction blends with near unity charge separation yields.

  7. Designing Training for Temporal and Adaptive Transfer: A Comparative Evaluation of Three Training Methods for Process Control Tasks

    Science.gov (United States)

    Kluge, Annette; Sauer, Juergen; Burkolter, Dina; Ritzmann, Sandrina

    2010-01-01

    Training in process control environments requires operators to be prepared for temporal and adaptive transfer of skill. Three training methods were compared with regard to their effectiveness in supporting transfer: Drill & Practice (D&P), Error Training (ET), and procedure-based and error heuristics training (PHT). Communication…

  8. Thermal Analysis of the Divertor Primary Heat Transfer System Piping During the Gas Baking Process

    International Nuclear Information System (INIS)

    Yoder, Graydon L. Jr.; Harvey, Karen; Ferrada, Juan J.

    2011-01-01

    A preliminary analysis has been performed examining the temperature distribution in the Divertor Primary Heat Transfer System (PHTS) piping and the divertor itself during the gas baking process. During gas baking, it is required that the divertor reach a temperature of 350 C. Thermal losses in the piping and from the divertor itself require that the gas supply temperature be maintained above that temperature in order to ensure that all of the divertor components reach the required temperature. The analysis described in this report was conducted in order to estimate the required supply temperature from the gas heater.

  9. Information transfer with rate-modulated Poisson processes: a simple model for nonstationary stochastic resonance.

    Science.gov (United States)

    Goychuk, I

    2001-08-01

    Stochastic resonance in a simple model of information transfer is studied for sensory neurons and ensembles of ion channels. An exact expression for the information gain is obtained for the Poisson process with the signal-modulated spiking rate. This result allows one to generalize the conventional stochastic resonance (SR) problem (with periodic input signal) to the arbitrary signals of finite duration (nonstationary SR). Moreover, in the case of a periodic signal, the rate of information gain is compared with the conventional signal-to-noise ratio. The paper establishes the general nonequivalence between both measures notwithstanding their apparent similarity in the limit of weak signals.

  10. Ab initio study of H + + H 2 collisions: Elastic/inelastic and charge transfer processes

    Science.gov (United States)

    Saieswari, A.; Kumar, Sanjay

    2007-12-01

    An ab initio full configuration interaction study has been undertaken to obtain the global potential energy surfaces for the ground and the first excited electronic state of the H + + H 2 system employing Dunning's cc-pVQZ basis set. Using the ab initio approach the corresponding quasi-diabatic potential energy surfaces and coupling potentials have been obtained. A time-independent quantum mechanical study has been also undertaken for both the inelastic and charge transfer processes at the experimental collision energy Ec.m. = 20.0 eV and the preliminary results show better agreement with the experimental data as compared to the earlier available theoretical studies.

  11. PROCESSES OF HEAT-MASS-TRANSFER IN APPARATUS OF SOLAR ABSORBING REFRIGERATION SYSTEMS

    Directory of Open Access Journals (Sweden)

    Doroshenko A.V.

    2014-12-01

    Full Text Available Ideology of development of the solar refrigeration systems and systems of air-conditioning, based on the use of absorbing cycle and solar energy for the regeneration of absorbent solution, is presented in the article. The processes of joint heat-mass-transfer are considered in the direct and indirect types of evaporated coolers taking into account the phenomenon of re-condensation of aquatic steams at the low temperature evaporated cooling of environments. The pre-liminary analysis of possibilities of the solar systems is executed as it applies in relation to the tasks of cooling of envi-ronments and air-conditioning systems.

  12. Modelling of the processes of heat and mass transfer in adiabatic steam and drop flows

    International Nuclear Information System (INIS)

    Andrizhievskij, A.A.; Mikhalevich, A.A.; Nesterenko, V.B.; Trifonov, A.G.

    1983-01-01

    The mathematical models for investigating the local and integral characteristics of heat and mass transfer processes during simultaneous motion of adiabatic steam and drop flow and a flux of impurity particles are given. The mathematical model is constrUcted on the basis of one-dimensional stationary eqUations of conservation of mass, thermal energy and momentum of liquid and vapor phases. Dispersion composition of condensed moisture is described by the Nukiyama-Tanasava distribution function formed taking into account the Veber number critical value. Equations of motion and mass balance conservation for impurity particles are included into the mathematical model. These equations are considered as additional inactive phase

  13. Technology transfer: the key to fusion commercialization

    International Nuclear Information System (INIS)

    Burnett, S.C.

    1981-01-01

    The paper brings to light some of the reasons why technology transfer is difficult in fusion, examines some of the impediments to the process, and finally looks at a successful example of technology transfer. The paper considers some subjective features of fusion - one might call them the sociology of fusion - that are none the less real and that serve as impediments to technology transfer

  14. Surface and subsurface cleanup protocol for radionuclides, Gunnison, Colorado, UMTRA project processing site: Final

    International Nuclear Information System (INIS)

    1994-01-01

    Thorium 230 (Th-230) at the Gunnison, Colorado processing site will require remediation, however, a seasonally fluctuating groundwater table at the site significantly complicates conventional remedial action with respect to cleanup. Therefore, to effectively remediate the site with respect to Radium 226 (Ra-226) and Th-230, the following supplemental standard is proposed: In situ Ra-26 will be remediated to the EPA soil cleanup standards independent of groundwater considerations. In situ Th-230 concentrations will be remediated in the region above the encountered water table so the 1000-year projected Ra-226 concentration complies with the EPA soil cleanup concentration limits. If elevated Th-230 persists to the water table, an additional foot of excavation will be performed and the grid will be backfilled. Excavated grids will be backfilled to the final remedial action grade with clean cobbly soil. Final grid verification that is required below the water table will be performed by extracting and analyzing a single bulk soil sample with the bucket of a backhoe. Modeled surface radon flux values will be estimated and documented. A recommendation will be made that land records should be annotated to identify the presence of residual Th-230

  15. Investigation of Pore Scale Processes That Affect Soil Vapor Extraction. Final Technical Report EMSP 70045

    International Nuclear Information System (INIS)

    Valocchi, Albert J.; Werth, Charles W.; Webb, Andrew W.

    2004-01-01

    Dense nonaqueous phase liquid (DNAPL) contamination in the vadose zone is a significant problem at Department of Energy sites. Soil vapor extraction (SVE) is commonly used to remediate DNAPLs from the vadose zone. In most cases, a period of high recovery has been followed by a sustained period of low recovery. This behavior has been attributed to multiple processes including slow interphase mass transfer, retarded vapor phase transport, and diffusion from unswept zones of low permeability. This research project used a combination of laboratory experimentation and mathematical modeling to determine how these various processes interact to limit the removal of DNAPL components in heterogeneous porous media during SVE. Our results were applied to scenarios typical of the carbon tetrachloride spill zone at the Hanford Site. Our results indicate that: (a) the initial distribution of the spilled DNAPL (i.e., the spill-zone architecture) has a major influence upon the performance of any subsequent SVE operations; (b) while the pattern of higher and lower conductivity soil zones has an important impact upon spill zone architecture, soil moisture distribution plays an even larger role when there are large quantities of co-disposed waste-water (as in the Hanford scenario); (c) depending upon soil moisture dynamics, liquid DNAPL that is trapped by surrounding water is extremely difficult to remove by SVE; (d) natural barometric pumping can remove a large amount of the initial DNAPL mass for spills occurring close to the land surface, and hence the initial spilled inventory will be over-estimated if this process is neglected

  16. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    International Nuclear Information System (INIS)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County

  17. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county's future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  18. Final report on the public involvement process phase 1, Monitored Retrievable Storage Facility Feasibility Study

    Energy Technology Data Exchange (ETDEWEB)

    Moore, L.; Shanteau, C.

    1992-12-01

    This report summarizes the pubic involvement component of Phase 1 of the Monitored Retrievable Storage Facility (NM) Feasibility Study in San Juan County, Utah. Part of this summary includes background information on the federal effort to locate a voluntary site for temporary storage of nuclear waste, how San Juan County came to be involved, and a profile of the county. The heart of the report, however, summarizes the activities within the public involvement process, and the issues raised in those various forums. The authors have made every effort to reflect accurately and thoroughly all the concerns and suggestions expressed to us during the five month process. We hope that this report itself is a successful model of partnership with the citizens of the county -- the same kind of partnership the county is seeking to develop with its constituents. Finally, this report offers some suggestions to both county officials and residents alike. These suggestions concern how decision-making about the county`s future can be done by a partnership of informed citizens and listening decision-makers. In the Appendix are materials relating to the public involvement process in San Juan County.

  19. Building more powerful less expensive supercomputers using Processing-In-Memory (PIM) LDRD final report.

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Richard C.

    2009-09-01

    This report details the accomplishments of the 'Building More Powerful Less Expensive Supercomputers Using Processing-In-Memory (PIM)' LDRD ('PIM LDRD', number 105809) for FY07-FY09. Latency dominates all levels of supercomputer design. Within a node, increasing memory latency, relative to processor cycle time, limits CPU performance. Between nodes, the same increase in relative latency impacts scalability. Processing-In-Memory (PIM) is an architecture that directly addresses this problem using enhanced chip fabrication technology and machine organization. PIMs combine high-speed logic and dense, low-latency, high-bandwidth DRAM, and lightweight threads that tolerate latency by performing useful work during memory transactions. This work examines the potential of PIM-based architectures to support mission critical Sandia applications and an emerging class of more data intensive informatics applications. This work has resulted in a stronger architecture/implementation collaboration between 1400 and 1700. Additionally, key technology components have impacted vendor roadmaps, and we are in the process of pursuing these new collaborations. This work has the potential to impact future supercomputer design and construction, reducing power and increasing performance. This final report is organized as follow: this summary chapter discusses the impact of the project (Section 1), provides an enumeration of publications and other public discussion of the work (Section 1), and concludes with a discussion of future work and impact from the project (Section 1). The appendix contains reprints of the refereed publications resulting from this work.

  20. The production of fuels and chemicals from food processing wastes & cellulosics. Final research report

    Energy Technology Data Exchange (ETDEWEB)

    Dale, M.C.; Okos, M.; Burgos, N. [and others

    1997-06-15

    High strength food wastes of about 15-20 billion pounds solids are produced annually by US food producers. Low strength food wastes of 5-10 billion pounds/yr. are produced. Estimates of the various components of these waste streams are shown in Table 1. Waste paper/lignocellulosic crops could produce 2 to 5 billion gallons of ethanol per year or other valuable chemicals. Current oil imports cost the US about $60 billion dollars/yr. in out-going balance of trade costs. Many organic chemicals that are currently derived from petroleum can be produced through fermentation processes. Petroleum based processes have been preferred over biotechnology processes because they were typically cheaper, easier, and more efficient. The technologies developed during the course of this project are designed to allow fermentation based chemicals and fuels to compete favorably with petroleum based chemicals. Our goals in this project have been to: (1) develop continuous fermentation processes as compared to batch operations; (2) combine separation of the product with the fermentation, thus accomplishing the twin goals of achieving a purified product from a fermentation broth and speeding the conversion of substrate to product in the fermentation broth; (3) utilize food or cellulosic waste streams which pose a current cost or disposal problem as compared to high cost grains or sugar substrates; (4) develop low energy recovery methods for fermentation products; and finally (5) demonstrate successful lab scale technologies on a pilot/production scale and try to commercialize the processes. The scale of the wastes force consideration of {open_quotes}bulk commodity{close_quotes} type products if a high fraction of the wastes are to be utilized.

  1. Permanent certification program for health information technology; revisions to ONC-Approved Accreditor processes. Final rule.

    Science.gov (United States)

    2011-11-25

    Under the authority granted to the National Coordinator for Health Information Technology by section 3001(c)(5) of the Public Health Service Act (PHSA) as added by the Health Information Technology for Economic and Clinical Health (HITECH) Act, this final rule establishes a process for addressing instances where the ONC-Approved Accreditor (ONC-AA) engages in improper conduct or does not perform its responsibilities under the permanent certification program. This rule also addresses the status of ONC-Authorized Certification Bodies (ONC-ACBs) in instances where there may be a change in the accreditation organization serving as the ONC-AA and clarifies the responsibilities of the new ONC-AA.

  2. Assessing middle school students` understanding of science relationships and processes: Year 2 - instrument validation. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Schau, C.; Mattern, N.; Weber, R.; Minnick, K.

    1997-01-01

    Our overall purpose for this multi-year project was to develop an alternative assessment format measuring rural middle school students understanding of science concepts and processes and the interrelationships among them. This kind of understanding is called structural knowledge. We had 3 major interrelated goals: (1) Synthesize the existing literature and critically evaluate the actual and potential use of measures of structural knowledge in science education. (2) Develop a structural knowledge alternative assessment format. (3) Examine the validity of our structural knowledge format. We accomplished the first two goals during year 1. The structural knowledge assessment we identified and developed further was a select-and-fill-in concept map format. The goal for our year 2 work was to begin to validate this assessment approach. This final report summarizes our year 2 work.

  3. New process modeling[sic], design, and control strategies for energy efficiency, high product quality, and improved productivity in the process industries. Final project report; FINAL

    International Nuclear Information System (INIS)

    Ray, W. Harmon

    2002-01-01

    This project was concerned with the development of process design and control strategies for improving energy efficiency, product quality, and productivity in the process industries. In particular, (i) the resilient design and control of chemical reactors, and (ii) the operation of complex processing systems, was investigated. Specific topics studied included new process modeling procedures, nonlinear controller designs, and control strategies for multiunit integrated processes. Both fundamental and immediately applicable results were obtained. The new design and operation results from this project were incorporated into computer-aided design software and disseminated to industry. The principles and design procedures have found their way into industrial practice

  4. Detailed Modeling and Irreversible Transfer Process Analysis of a Multi-Element Thermoelectric Generator System

    Science.gov (United States)

    Xiao, Heng; Gou, Xiaolong; Yang, Suwen

    2011-05-01

    Thermoelectric (TE) power generation technology, due to its several advantages, is becoming a noteworthy research direction. Many researchers conduct their performance analysis and optimization of TE devices and related applications based on the generalized thermoelectric energy balance equations. These generalized TE equations involve the internal irreversibility of Joule heating inside the thermoelectric device and heat leakage through the thermoelectric couple leg. However, it is assumed that the thermoelectric generator (TEG) is thermally isolated from the surroundings except for the heat flows at the cold and hot junctions. Since the thermoelectric generator is a multi-element device in practice, being composed of many fundamental TE couple legs, the effect of heat transfer between the TE couple leg and the ambient environment is not negligible. In this paper, based on basic theories of thermoelectric power generation and thermal science, detailed modeling of a thermoelectric generator taking account of the phenomenon of energy loss from the TE couple leg is reported. The revised generalized thermoelectric energy balance equations considering the effect of heat transfer between the TE couple leg and the ambient environment have been derived. Furthermore, characteristics of a multi-element thermoelectric generator with irreversibility have been investigated on the basis of the new derived TE equations. In the present investigation, second-law-based thermodynamic analysis (exergy analysis) has been applied to the irreversible heat transfer process in particular. It is found that the existence of the irreversible heat convection process causes a large loss of heat exergy in the TEG system, and using thermoelectric generators for low-grade waste heat recovery has promising potential. The results of irreversibility analysis, especially irreversible effects on generator system performance, based on the system model established in detail have guiding significance for

  5. Heat transfer and solidification processes of alloy melt with undercooling: I. Experimental results

    International Nuclear Information System (INIS)

    Yoshioka, Hideaki; Tada, Yukio; Kunimine, Kanji; Furuichi, Taira; Hayashi, Yujiro

    2006-01-01

    The solidification process of Pb-Sn and Bi-Sn alloy melts is discussed to obtain a basic understanding of the essential phenomena of solidification with undercooling. First, from macroscopic observations, it is shown that the solidification process consists of the following three stages: (1) free growth with recalescence dissipation of thermal undercooling (2) expansion of crystals with the relaxation of constitutional undercooling or with the recovering process of interrupted quasi-steady heat conduction, and (3) equilibrium solidification. The specific features of free growth under non-uniform undercooling are also shown by comparison with the Lipton, Glicksman, and Kurz model. Next, from microscopic observations, the distribution of the solute concentration and the change of crystal morphology in the solidified materials were investigated quantitatively using scanning electron microscopy and energy-dispersive spectroscopy. Finally, the solidification path during the above three fundamental processes is dynamically represented on phase diagrams

  6. A Mechanistic Study of the Influence of Proton Transfer Processes on the Behavior of Thiol/Disulfide Redox Couples

    National Research Council Canada - National Science Library

    Shouji, Eiichi

    1998-01-01

    .... In order to elucidate the influence of proton transfers on these redox processes, special attention has been paid to the influence of various bases, including triethylamine, pyridine, 3-chloro...

  7. Three phase heat and mass transfer model for unsaturated soil freezing process: Part 1 - model development

    Science.gov (United States)

    Xu, Fei; Zhang, Yaning; Jin, Guangri; Li, Bingxi; Kim, Yong-Song; Xie, Gongnan; Fu, Zhongbin

    2018-04-01

    A three-phase model capable of predicting the heat transfer and moisture migration for soil freezing process was developed based on the Shen-Chen model and the mechanisms of heat and mass transfer in unsaturated soil freezing. The pre-melted film was taken into consideration, and the relationship between film thickness and soil temperature was used to calculate the liquid water fraction in both frozen zone and freezing fringe. The force that causes the moisture migration was calculated by the sum of several interactive forces and the suction in the pre-melted film was regarded as an interactive force between ice and water. Two kinds of resistance were regarded as a kind of body force related to the water films between the ice grains and soil grains, and a block force instead of gravity was introduced to keep balance with gravity before soil freezing. Lattice Boltzmann method was used in the simulation, and the input variables for the simulation included the size of computational domain, obstacle fraction, liquid water fraction, air fraction and soil porosity. The model is capable of predicting the water content distribution along soil depth and variations in water content and temperature during soil freezing process.

  8. Understanding knowledge transfer in an ergonomics intervention at a poultry processing plant.

    Science.gov (United States)

    Antle, David M; MacKinnon, Scott N; Molgaard, John; Vézina, Nicole; Parent, Robert; Bornstein, Stephen; Leclerc, Louise

    2011-01-01

    This case study reviews the knowledge transfer (KT) process of implementing a knife sharpening and steeling program into a poultry processing plant via a participatory ergonomics intervention. This ergonomics intervention required stakeholder participation at the company level to move a 'train-the-trainer' program, developed in Québec, Canada, into action on the plant's deboning line. Communications and exchanges with key stakeholders, as well as changes in steeling and production behaviours were recorded. The intervention was assumed to be at least partially successful because positive changes in work operations occurred. Ergonomic-related changes such as those documented have been cited in the academic literature as beneficial to worker health. However, several components cited in literature that are associated with a successful participatory ergonomics intervention were not attained during the project. A Dynamic Knowledge Transfer Model was used to identify KT issues that impacted on the success of train-the-trainer program. A debriefing analysis reveals that a failure to consider key participatory ergonomics factors necessary for success were related to capacity deficits in the knowledge dissemination strategy.

  9. The Stokes number approach to support scale-up and technology transfer of a mixing process.

    Science.gov (United States)

    Willemsz, Tofan A; Hooijmaijers, Ricardo; Rubingh, Carina M; Frijlink, Henderik W; Vromans, Herman; van der Voort Maarschalk, Kees

    2012-09-01

    Transferring processes between different scales and types of mixers is a common operation in industry. Challenges within this operation include the existence of considerable differences in blending conditions between mixer scales and types. Obtaining the correct blending conditions is crucial for the ability to break up agglomerates in order to achieve the desired blend uniformity. Agglomerate break up is often an abrasion process. In this study, the abrasion rate potential of agglomerates is described by the Stokes abrasion (St(Abr)) number of the system. The St(Abr) number equals the ratio between the kinetic energy density of the moving powder bed and the work of fracture of the agglomerate. In this study, the St(Abr) approach demonstrates to be a useful tool to predict the abrasion of agglomerates during blending when technology is transferred between mixer scales/types. Applying the St(Abr) approach revealed a transition point between parameters that determined agglomerate abrasion. This study gave evidence that (1) below this transition point, agglomerate abrasion is determined by a combination of impeller effects and by the kinetic energy density of the powder blend, whereas (2) above this transition point, agglomerate abrasion is mainly determined by the kinetic energy density of the powder blend.

  10. The Transfer of Cognitive Speed of Processing Training to Older Adults' Driving Mobility Across 5 Years.

    Science.gov (United States)

    Ross, Lesley A; Edwards, Jerri D; O'Connor, Melissa L; Ball, Karlene K; Wadley, Virginia G; Vance, David E

    2016-01-01

    Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults' self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. © The Author 2015. Published by Oxford University Press on behalf of The Gerontological Society of America. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. The Transfer of Cognitive Speed of Processing Training to Older Adults’ Driving Mobility Across 5 Years

    Science.gov (United States)

    Edwards, Jerri D.; O’Connor, Melissa L.; Ball, Karlene K.; Wadley, Virginia G.; Vance, David E.

    2016-01-01

    Objectives. Multilevel models assessed the effects of cognitive speed of processing training (SPT) on older adults’ self-reported driving using intention-to-treat (ITT, randomization to training or control conditions) and dosage (treatment-received via number of training sessions) analyses across 5 years. Method. Participants randomized to SPT (n = 598) were compared with those randomized to either the no-contact control (n = 598) or memory training, which served as an active control (n = 610). Driving mobility (frequency, exposure, and space) was assessed over time. Results. No significant effects were found within the ITT analyses. However, number of SPT sessions did affect driving mobility outcomes. In the full sample (N = 1,806), higher SPT doses were associated with maintained driving frequency as compared with both control groups, but no effects were found for driving exposure or space. Subsample analyses (n = 315) revealed that persons at-risk for mobility declines (i.e., poor initial processing speed) who received additional booster SPT sessions reported greater maintenance of both driving frequency and exposure over time as compared with the no-contact and active control groups. Discussion. These results and prior research indicate that cognitive SPT transfers to prolonged driving mobility among older adults. Future research should investigate the mechanisms behind transfer effects to real-world activities, such as driving. PMID:25878053

  12. Process-level model evaluation: a snow and heat transfer metric

    Science.gov (United States)

    Slater, Andrew G.; Lawrence, David M.; Koven, Charles D.

    2017-04-01

    Land models require evaluation in order to understand results and guide future development. Examining functional relationships between model variables can provide insight into the ability of models to capture fundamental processes and aid in minimizing uncertainties or deficiencies in model forcing. This study quantifies the proficiency of land models to appropriately transfer heat from the soil through a snowpack to the atmosphere during the cooling season (Northern Hemisphere: October-March). Using the basic physics of heat diffusion, we investigate the relationship between seasonal amplitudes of soil versus air temperatures due to insulation from seasonal snow. Observations demonstrate the anticipated exponential relationship of attenuated soil temperature amplitude with increasing snow depth and indicate that the marginal influence of snow insulation diminishes beyond an effective snow depth of about 50 cm. A snow and heat transfer metric (SHTM) is developed to quantify model skill compared to observations. Land models within the CMIP5 experiment vary widely in SHTM scores, and deficiencies can often be traced to model structural weaknesses. The SHTM value for individual models is stable over 150 years of climate, 1850-2005, indicating that the metric is insensitive to climate forcing and can be used to evaluate each model's representation of the insulation process.

  13. Ultrafast spin exchange-coupling torque via photo-excited charge-transfer processes

    Science.gov (United States)

    Ma, X.; Fang, F.; Li, Q.; Zhu, J.; Yang, Y.; Wu, Y. Z.; Zhao, H. B.; Lüpke, G.

    2015-10-01

    Optical control of spin is of central importance in the research of ultrafast spintronic devices utilizing spin dynamics at short time scales. Recently developed optical approaches such as ultrafast demagnetization, spin-transfer and spin-orbit torques open new pathways to manipulate spin through its interaction with photon, orbit, charge or phonon. However, these processes are limited by either the long thermal recovery time or the low-temperature requirement. Here we experimentally demonstrate ultrafast coherent spin precession via optical charge-transfer processes in the exchange-coupled Fe/CoO system at room temperature. The efficiency of spin precession excitation is significantly higher and the recovery time of the exchange-coupling torque is much shorter than for the demagnetization procedure, which is desirable for fast switching. The exchange coupling is a key issue in spin valves and tunnelling junctions, and hence our findings will help promote the development of exchange-coupled device concepts for ultrafast coherent spin manipulation.

  14. Laboratory Testing of the Boundary Layer Momentum Transfer Rotational Filter Systems, NETL-Innovatech, Inc., CRADA 98-F026, Final Report; FINAL

    International Nuclear Information System (INIS)

    National Energy Technology Laboratory

    2000-01-01

    A patented dynamic mechanical filter developed by InnovaTech was previously shown to remove fine particulate matter from industrial process gas streams at ambient temperatures and pressures. An all-metal, high-temperature version of this novel media-less filter was fabricated under this Cooperative Research and Development Agreement (CRADA) with DOE/NETL-Morgantown for hot gas testing of the device. The technology is entirely different in both concept and design from conventional vortex separators, cyclones, or porous media filters. This new filtration concept is capable of separating heavy loading of fine particles without blinding, fouling or bridging, and would require minimal operational costs over its anticipated multi-year service life. The all-metal filter design eliminates thermal stress cracking and premature failure prevalent in conventional porous ceramic filters. In contrast, conventional porous media filters (i.e., ceramic cross-flow or candles) easily foul, require periodic cleaning (typically backpulsing), frequent replacement and subsequent disposal

  15. The Transfer of Core-Based Hazardous Production Processes to the Export Processing Zones of the Periphery: The Maquiladora Centers of Northern Mexico

    Directory of Open Access Journals (Sweden)

    R. Scott Frey

    2015-08-01

    Full Text Available Transnational corporations appropriate 'carrying capacity" for the core by transferring the core's hazardous products, production processes, and wastes to the peripheral countries of the world-system. An increasingly important form of this reproduction process is the transfer of core-based hazardous industries to export processing zones (EPZs locatedin a number of peripheral countries in Africa, Asia, and Latin America and the Caribbean. A specific case is examined in this paper: the transfer of hazardous industries to the maquiladora centers located on the Mexican side of the Mexico-U.S. border. Maquiladoras provide an excellent case for examining what is known about the causes, adverse consequences, and political responses associated with the transfer of core-based hazardous production processes to the EPZs of the periphery.

  16. A hazard and probabilistic safety analysis of a high-level waste transfer process

    International Nuclear Information System (INIS)

    Bott, T.F.; Sasser, M.K.

    1996-01-01

    This paper describes a safety analysis of a transfer process for high-level radioactive and toxic waste. The analysis began with a hazard assessment that used elements of What If, Checklist, Failure Modes and Effects Analysis, and Hazards and Operability Study (HAZOP) techniques to identify and rough-in accident sequences. Based on this preliminary analysis, the most significant accident sequences were developed further using event trees. Quantitative frequency estimates for the accident sequences were based on operational data taken from the historical record of the site where the process is performed. Several modeling challenges were encountered in the course of the study. These included linked initiating and accident progression events, fire propagation modeling, accounting for administrative control violations, and handling mission-phase effects

  17. An Examination of Mediators of the Transfer of Cognitive Speed of Processing Training to Everyday Functional Performance

    OpenAIRE

    Edwards, Jerri D.; Ruva, Christine L.; O’Brien, Jennifer L.; Haley, Christine B.; Lister, Jennifer J.

    2012-01-01

    The purpose of these analyses was to examine mediators of the transfer of cognitive speed of processing training to improved everyday functional performance (Edwards, Wadley, Vance, Roenker, & Ball, 2005). Cognitive speed of processing and visual attention (as measured by the Useful Field of View Test; UFOV) were examined as mediators of training transfer. Secondary data analyses were conducted from the Staying Keen in Later Life (SKILL) study, a randomized cohort study including 126 communit...

  18. Final Regulatory Determination for Special Wastes From Mineral Processing (Mining Waste Exclusion) - Federal Register Notice, June 13, 1991

    Science.gov (United States)

    This action presents the Agency's final regulatory determination required by section 3001(b)(3)(C) of the Resource Conservation and Recovery Act (RCRA) for 20 special wastes from the processing of ores and minerals.

  19. Which processes dominate the uncertainties in the modelling of the transfer of radionuclides in lake ecosystems

    International Nuclear Information System (INIS)

    Sundblad, B.

    1991-01-01

    There are several processes governing the transfer of radionuclides in the aquatic environment. These processes are usually lumped together into specific parameters describing those processes, such as distribution coefficients and bioaccumulation factors. One can conclude from the B3 scenario that the differences in results were explained more by difference in the selection of parameter values than they were by differences in assumed lake type or model structure. The parameters contributing most to the uncertainty in model predictions were the distribution coefficient between water and sediment and the fish bioaccumulation factor. In a site specific assessment it may be possible to limit the level of consideration necessary for each process according to lake type, the chemical and physical characteristics of the radionuclides released. In the B5 scenario it was found that no new processes were identified in spite of the site specific data given. However most users changed their model according to the new information given. The A5 scenario showed that the predictions were in fairly good agreement with the observed values. Other results from this study are the importance of including resuspension, chemical form. Predictions of concentration of cesium in fish were performed by applying a constant bioaccumulation factor approach or a dynamic modelling approach. It showed that it was necessary to apply the dynamic modelling to be able to calculate the initial concentration in fish. This was also discussed in Scenario B3 and thus has been verified in Scenario A5. (3 refs., 10 figs.)

  20. Membrane/distillation hybrid process research and development. Final report, phase II

    Energy Technology Data Exchange (ETDEWEB)

    Mazanec, T.J.

    1997-07-01

    This report covers work conducted under the grant awarded to BP by DOE in late 1991 entitled {open_quotes}Membrane/Distillation Hybrid Process Research and Development.{close_quotes} The program was directed towards development and commercialization of the BP process for separation of vapor phase olefins from non-olefins via facilitated transport using an aqueous facilitator. The program has come to a very successful conclusion, with formation of a partnership between BP and Stone and Webster Engineering Corporation (SWEC) to market and commercialize the technology. The focus of this report is the final portion of the program, during which engineering re-design, facilitator optimization, economic analysis, and marketing have been the primary activities. At the end of Phase II BP was looking to partner with an engineering firm to advance the selective olefin recovery (SOR) technology from the lab/demo stage to full commercialization. In August 1995 BP and SWEC reached an agreement to advance the technology by completing additional Phase III work with DOE and beginning marketing activities.

  1. Advanced Analog Signal Processing for Fuzing Final Report CRADA No. TC-1306-96

    Energy Technology Data Exchange (ETDEWEB)

    Fu, C. Y. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Spencer, D. [Raymond Engineering, Middletown, CT (United States)

    2018-01-24

    The purpose of this CRADA between LLNL and Kaman Aerospace/Raymond Engineering Operations (Raymond) was to demonstrate the feasibility of using Analog/Digital Neural Network (ANN) Technology for advanced signal processing, fuzing, and other applications. This cooperation sought to Ieverage the expertise and capabilities of both parties--Raymond to develop the signature recognition hardware system, using Raymond’s extensive experience in the area of system development plus Raymond’s knowledge of military applications, and LLNL to apply ANN and related technologies to an area of significant interest to the United States government. This CRADA effort was anticipated to be a three-year project consisting of three phases: Phase I, Proof-of-Principle Demonstration; Phase II, Proof-of-Design, involving the development of a form-factored integrated sensor and ANN technology processo~ and Phase III, Final Design and Release of the integrated sensor and ANN fabrication process: Under Phase I, to be conducted during calendar year 1996, Raymond was to deliver to LLNL an architecture (design) for an ANN chip. LLNL was to translate the design into a stepper mask and to produce and test a prototype chip from the Raymond design.

  2. Black hole evaporation in a heat bath as a nonequilibrium process and its final fate

    International Nuclear Information System (INIS)

    Saida, Hiromi

    2007-01-01

    We consider a black hole in a heat bath, and the whole system which consists of the black hole and the heat bath is isolated from outside environments. When the black hole evaporates, the Hawking radiation causes an energy flow from the black hole to the heat bath. Therefore, since no energy flow arises in an equilibrium state, the thermodynamic state of the whole system is not in equilibrium. That is, in a region around the black hole, the matter field of Hawking radiation and that of heat bath should be in a nonequilibrium state due to the energy flow. Using a simple model which reflects the nonequilibrium nature of energy flow, we find the nonequilibrium effect on a black hole evaporation as follows: if the nonequilibrium region around a black hole is not so large, the evaporation time scale of a black hole in a heat bath becomes longer than that in an empty space (a situation without heat bath), because of the incoming energy flow from the heat bath to the black hole. However, if the nonequilibrium region around a black hole is sufficiently large, the evaporation time scale in a heat bath becomes shorter than that in an empty space, because a nonequilibrium effect of the temperature difference between the black hole and heat bath appears as a strong energy extraction from the black hole by the heat bath. Further, a specific nonequilibrium phenomenon is found: a quasi-equilibrium evaporation stage under the nonequilibrium effect proceeds abruptly to a quantum evaporation stage at a semi-classical level (at black hole radius R g > Planck length) within a very short time scale with a strong burst of energy. (Contrarily, when the nonequilibrium effect is not taken into account, a quasi-equilibrium stage proceeds smoothly to a quantum stage at R g < Planck length without so strong an energy burst.) That is, the nonequilibrium effect of energy flow tends to make a black hole evaporation process more dynamical and to accelerate that process. Finally, on the final fate

  3. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    Energy Technology Data Exchange (ETDEWEB)

    Dixon, David Adams [The University of Alabama

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  4. Transfer, loss and physical processing of water in hit-and-run collisions of planetary embryos

    Science.gov (United States)

    Burger, C.; Maindl, T. I.; Schäfer, C. M.

    2018-01-01

    Collisions between large, similar-sized bodies are believed to shape the final characteristics and composition of terrestrial planets. Their inventories of volatiles such as water are either delivered or at least significantly modified by such events. Besides the transition from accretion to erosion with increasing impact velocity, similar-sized collisions can also result in hit-and-run outcomes for sufficiently oblique impact angles and large enough projectile-to-target mass ratios. We study volatile transfer and loss focusing on hit-and-run encounters by means of smooth particle hydrodynamics simulations, including all main parameters: impact velocity, impact angle, mass ratio and also the total colliding mass. We find a broad range of overall water losses, up to 75% in the most energetic hit-and-run events, and confirm the much more severe consequences for the smaller body also for stripping of volatile layers. Transfer of water between projectile and target inventories is found to be mostly rather inefficient, and final water contents are dominated by pre-collision inventories reduced by impact losses, for similar pre-collision water mass fractions. Comparison with our numerical results shows that current collision outcome models are not accurate enough to reliably predict these composition changes in hit-and-run events. To also account for non-mechanical losses, we estimate the amount of collisionally vaporized water over a broad range of masses and find that these contributions are particularly important in collisions of ˜ Mars-sized bodies, with sufficiently high impact energies, but still relatively low gravity. Our results clearly indicate that the cumulative effect of several (hit-and-run) collisions can efficiently strip protoplanets of their volatile layers, especially the smaller body, as it might be common, e.g., for Earth-mass planets in systems with Super-Earths. An accurate model for stripping of volatiles that can be included in future planet

  5. Interface charge transfer process in ZnO:Mn/ZnS nanocomposites

    Energy Technology Data Exchange (ETDEWEB)

    Stefan, M.; Toloman, D., E-mail: dana.toloman@itim-cj.ro; Popa, A. [National Institute for R & D of Isotopic and Molecular Technology (Romania); Mesaros, A. [Technical University of Cluj-Napoca, Superconductivity, Spintronics and Surface Science Center – C4S (Romania); Vasile, O. R. [University “Politehnica” from Bucharest, Faculty of Applied Chemistry and Material Science (Romania); Leostean, C.; Pana, O. [National Institute for R & D of Isotopic and Molecular Technology (Romania)

    2016-03-15

    ZnO:Mn/ZnS nanocomposites were prepared by seed-mediated growth of ZnS QDs onto the preformed ZnO:Mn nanoparticles. The formation of the nanocomposite structure has been evidenced by XRD, HRTEM, and XPS. The architecture of the nanocomposite with outer ZnS QDs around ZnO:Mn cores is sustained by the sulfur and oxygen depth profiles resulted from XPS. When the two components are brought together, the band gap of ZnS component decreases while that of ZnO:Mn increases. It is the result of interface charge transfer from ZnO:Mn to ZnS QDs. Here ZnO:Mn valence states are extended through the interface into unoccupied gap states of ZnS. The energy band setup is modified from a type II into a type I band alignment. The process is accompanied by enhancement of composite UV emission of PL spectra as compared to its counterparts. The charge transfer from valence band also determines the increase of the core-polarization effect of sshell electrons at Mn{sup 2+} nucleus, thus determining the increase of the hyperfine field through the reduction of the covalency degree of Zn(Mn)–O bonds. The quantum confinement in ZnS QDs promotes the ferromagnetic coupling of singly occupied states due to Zn vacancies determining a superparamagnetic behavior of the ensemble. When the nanocomposites are formed, due to interface charge transfer effects, an increased number of filled cation vacancies in ZnS QDs develop, thus disrupting the pre-existing ferromagnetic coupling between spins resulting in a significant reduction of the overall saturation magnetization. The possibility to modulate nanocomposite properties by controlling the interface interactions may be foreseen in these types of materials.

  6. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    International Nuclear Information System (INIS)

    Park, Sang Kyoo; Yang, Hei Cheon

    2017-01-01

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  7. Large-scale membrane transfer process: its application to single-crystal-silicon continuous membrane deformable mirror

    International Nuclear Information System (INIS)

    Wu, Tong; Sasaki, Takashi; Hane, Kazuhiro; Akiyama, Masayuki

    2013-01-01

    This paper describes a large-scale membrane transfer process developed for the construction of large-scale membrane devices via the transfer of continuous single-crystal-silicon membranes from one substrate to another. This technique is applied for fabricating a large stroke deformable mirror. A bimorph spring array is used to generate a large air gap between the mirror membrane and the electrode. A 1.9 mm × 1.9 mm × 2 µm single-crystal-silicon membrane is successfully transferred to the electrode substrate by Au–Si eutectic bonding and the subsequent all-dry release process. This process provides an effective approach for transferring a free-standing large continuous single-crystal-silicon to a flexible suspension spring array with a large air gap. (paper)

  8. Comparison Study on Empirical Correlation for Mass Transfer Coefficient with Gas Hold-up and Input Power of Aeration Process

    Energy Technology Data Exchange (ETDEWEB)

    Park, Sang Kyoo; Yang, Hei Cheon [Chonnam Nat’l Univ., Gwangju (Korea, Republic of)

    2017-06-15

    As stricter environmental regulation have led to an increase in the water treatment cost, it is necessary to quantitatively study the input power of the aeration process to improve the energy efficiency of the water treatment processes. The objective of this study is to propose the empirical correlations for the mass transfer coefficient with the gas hold-up and input power in order to investigate the mass transfer characteristics of the aeration process. It was found that as the input power increases, the mass transfer coefficient increases because of the decrease of gas hold-up and increase of Reynolds number, the penetration length, and dispersion of mixed flow. The correlations for the volumetric mass transfer coefficients with gas hold-up and input power were consistent with the experimental data, with the maximum deviation less than approximately ±10.0%.

  9. Technology transfer and scale-up of the Flublok recombinant hemagglutinin (HA) influenza vaccine manufacturing process.

    Science.gov (United States)

    Buckland, Barry; Boulanger, Robert; Fino, Mireli; Srivastava, Indresh; Holtz, Kathy; Khramtsov, Nikolai; McPherson, Clifton; Meghrous, Jamal; Kubera, Paul; Cox, Manon M J

    2014-09-22

    Multiple different hemagglutinin (HA) protein antigens have been reproducibly manufactured at the 650L scale by Protein Sciences Corporation (PSC) based on an insect cell culture with baculovirus infection. Significantly, these HA protein antigens were produced by the same Universal Manufacturing process as described in the biological license application (BLA) for the first recombinant influenza vaccine approved by the FDA (Flublok). The technology is uniquely designed so that a change in vaccine composition can be readily accommodated from one HA protein antigen to another one. Here we present a vaccine candidate to combat the recently emerged H7N9 virus as an example starting with the genetic sequence for the required HA, creation of the baculovirus and ending with purified protein antigen (or vaccine component) at the 10L scale accomplished within 38 days under GMP conditions. The same process performance is being achieved at the 2L, 10L, 100L, 650L and 2500L scale. An illustration is given of how the technology was transferred from the benchmark 650L scale facility to a retrofitted microbial facility at the 2500L scale within 100 days which includes the time for facility engineering changes. The successful development, technology transfer and scale-up of the Flublok process has major implications for being ready to make vaccine rapidly on a worldwide scale as a defense against pandemic influenza. The technology described does not have the same vulnerability to mutations in the egg adapted strain, and resulting loss in vaccine efficacy, faced by egg based manufacture. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Bane of Hydrogen-Bond Formation on the Photoinduced Charge-Transfer Process in Donor–Acceptor Systems

    KAUST Repository

    Alsam, Amani Abdu

    2017-03-14

    Controlling the ultrafast dynamical process of photoinduced charge transfer at donor acceptor interfaces remains a major challenge for physical chemistry and solar cell communities. The process is complicated by the involvement of other complex dynamical processes, including hydrogen bond formation, energy transfer, and solvation dynamics occurring on similar time scales. In this study, we explore the remarkable impact of hydrogen-bond formation on the interfacial charge transfer between a negatively charged electron donating anionic porphyrin and a positively charged electron accepting pi-conjugated polymer, as a model system in solvents with different polarities and capabilities for hydiogen bonding using femtosecond transient absorption spectroscopy. Unlike the conventional understanding of the key role of hydrogen bonding in promoting the charge-transfer process, our steadystate and time-resolved results reveal that the intervening hydrogen-bonding environment and, consequently, the probable longer spacing between the donor and acceptor molecules significantly hinders the charge-transfer process between them. These results show that site-specific hydrogen bonding and geometric considerations between donor and acceptor can be exploited to control both the charge-transfer dynamics and its efficiency not only at donor acceptor interfaces but also in complex biological systems.

  11. Combination processes for food irradiation. Proceedings of the final research co-ordination meeting

    International Nuclear Information System (INIS)

    1998-01-01

    There is an increasing consumer demand for food that is safe, minimally processed, visually attractive, full flavoured, nutritious, and convenient to prepare and serve, that has fewer preservatives, and that is available throughout the year at an affordable cost. Consumer concern and regulatory restrictions on the use of preservatives and pesticides in food are adversely affecting international trade in many food products. As a result, minimally processed, chilled foods and ready to eat foods are increasingly being marketed to satisfy consumer demand in both developed and developing countries. However, such foods could introduce new microbiological risks to the population, especially to those who are immunocompromised or generally at risk (children, pregnant women, the elderly, etc.). In view of these factors, a 5 year Co-ordinated Research Programme (CRP) on Irradiation in Combination with Other Processes for Improving Food Quality was initiated in 1991 by the Food and Agriculture Organization of the United Nations and the International Atomic Energy Agency through their Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture. The objectives of this CRP were to evaluate: 1) Combination treatment involving irradiation in order to extend the self-life of meat, seafood, fruits and vegetables at refrigeration temperatures and under ambient conditions; 2) Combination treatment involving irradiation in order to ensure the microbiological safety of foods, both individual and composite, including prepared meals; 3) Shelf-life extension of chilled, prepared meals and the development of shelf stable food and food components through combination treatment involving irradiation; 4) Energy requirements of combination processes involving irradiation in comparison to other food processes. Scientists from 14 countries participated in the CRP by carrying out the work under Research Contracts and Agreements with the Joint FAO/IAEA Division. The first Research Co

  12. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-07-31

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water (≤ 0.1 % by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m2s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  13. 8. Innovative Technologies: Two-Phase Heat Transfer in Water-Based Nanofluids for Nuclear Applications. Final Report

    International Nuclear Information System (INIS)

    Buongiorno, Jacopo; Hu, Lin-wen

    2009-01-01

    Nanofluids are colloidal dispersions of nanoparticles in water. Many studies have reported very significant enhancement (up to 200%) of the Critical Heat Flux (CHF) in pool boiling of nanofluids (You et al. 2003, Vassallo et al. 2004, Bang and Chang 2005, Kim et al. 2006, Kim et al. 2007). These observations have generated considerable interest in nanofluids as potential coolants for more compact and efficient thermal management systems. Potential Light Water Reactor applications include the primary coolant, safety systems and severe accident management strategies, as reported in other papers (Buongiorno et al. 2008 and 2009). However, the situation of interest in reactor applications is often flow boiling, for which no nanofluid data have been reported so far. In this project we investigated the potential of nanofluids to enhance CHF in flow boiling. Subcooled flow boiling heat transfer and CHF experiments were performed with low concentrations of alumina, zinc oxide, and diamond nanoparticles in water ((le) 0.1% by volume) at atmospheric pressure. It was found that for comparable test conditions the values of the nanofluid and water heat transfer coefficient (HTC) are similar (within ±20%). The HTC increased with mass flux and heat flux for water and nanofluids alike, as expected in flow boiling. The CHF tests were conducted at 0.1 MPa and at three different mass fluxes (1500, 2000, 2500 kg/m 2 s) under subcooled conditions. The maximum CHF enhancement was 53%, 53% and 38% for alumina, zinc oxide and diamond, respectively, always obtained at the highest mass flux. A post-mortem analysis of the boiling surface reveals that its morphology is altered by deposition of the particles during nanofluids boiling. A confocal-microscopy-based examination of the test section revealed that nanoparticles deposition not only changes the number of micro-cavities on the surface, but also the surface wettability. A simple model was used to estimate the ensuing nucleation site

  14. Strategies to reduce mass and photons transfer limitations in heterogeneous photocatalytic processes: Hexavalent chromium reduction studies.

    Science.gov (United States)

    Marinho, Belisa A; Cristóvão, Raquel O; Djellabi, Ridha; Caseiro, Ana; Miranda, Sandra M; Loureiro, José M; Boaventura, Rui A R; Dias, Madalena M; Lopes, José Carlos B; Vilar, Vítor J P

    2018-07-01

    The current work presents different approaches to overcome mass and photon transfer limitations in heterogeneous photocatalytic processes applied to the reduction of hexavalent chromium to its trivalent form in the presence of a sacrificial agent. Two reactor designs were tested, a monolithic tubular photoreactor (MTP) and a micro-meso-structured photoreactor (NETmix), both presenting a high catalyst surface area per reaction liquid volume. In order to reduce photon transfer limitations, the tubular photoreactor was packed with transparent cellulose acetate monolithic structures (CAM) coated with the catalyst by a dip-coating method. For the NETmix reactor, a thin film of photocatalyst was uniformly deposited on the front glass slab (GS) or on the network of channels and chambers imprinted in the back stainless steel slab (SSS) using a spray system. The reaction rate for the NETmix photoreactor was evaluated for two illumination sources, solar light or UVA-LEDs, using the NETmix with the front glass slab or/and back stainless steel slab coated with TiO 2 -P25. The reusability of the photocatalytic films on the NETmix walls was also evaluated for three consecutive cycles using fresh Cr(VI) solutions. The catalyst reactivity in combination with the NETmix-SSS photoreactor is almost 70 times superior to one obtained with the MTP. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. Oil and gas property transfers: Analyzing the environmental risk through the environmental site assessment process

    International Nuclear Information System (INIS)

    Bratberg, D.; Hocker, S.

    1994-01-01

    The Superfund Act made anyone buying contaminated real estate liable for cleanup costs whether they know about the contamination or contributed to the contamination. In 1986, SARA amended the Superfund Act to include a provision known as the ''Innocent Landowner Defense.'' This provision created a defense for purchasers of contaminated property who did not contribute to the contamination and had no reason to believe that the property was contaminated at the time of the real estate transfer. SARA allows the purchasers and lenders to perform an environmental assessment using ''due diligence'' to identify contamination problems existing at a site. Since the passing of SARA, the environmental site assessment (ESA) process has become commonplace during the transfer of commercial real estate. Since the introduction of SARA, many professional associations, governmental agencies, and proposed federal legislation have struggled to produce a standard for conducting Phase 1 ESAs. Only recently has a standard been produced. Until recently, the domestic oil and gas industry has been relatively unconcerned about the Superfund liability issues. This approach was created by Congress's decision in 1980 to temporarily exempt the majority of oil and gas exploration and production wastes from federal hazardous waste rulings. However, new stringent rules governing oil and gas waste management practices are being considered by federal and state regulatory agencies. Based upon this knowledge and the awakening of public awareness, the use of ESAs for oil and gas transactions is increasing

  16. Charge transfer processes in hybrid solar cells composed of amorphous silicon and organic materials

    Energy Technology Data Exchange (ETDEWEB)

    Schaefer, Sebastian; Neher, Dieter [Universitaet Potsdam, Inst. Physik u. Astronomie, Karl-Liebknecht-Strasse 24/25, 14467 Potsdam-Golm (Germany); Schulze, Tim; Korte, Lars [Helmholtz Zentrum Berlin, Inst. fuer Silizium Photovoltaik, Kekulestrasse 5, 12489 Berlin (Germany)

    2011-07-01

    The efficiency of hybrid solar cells composed of organic materials and amorphous hydrogenated silicon (a-Si:H) strongly depends upon the efficiency of charge transfer processes at the inorganic-organic interface. We investigated the performance of devices comprising an ITO/a-Si:H(n-type)/a-Si:H(intrinsic)/organic/metal multilayer structure and using two different organic components: zinc phthalocyanine (ZnPc) and poly(3-hexylthiophene) (P3HT). The results show higher power conversion- and quantum efficiencies for the P3HT based cells, compared to ZnPc. This can be explained by larger energy-level offset at the interface between the organic layer and a-Si:H, which facilitates hole transfer from occupied states in the valence band tail to the HOMO of the organic material and additionally promotes exciton splitting. The performance of the a-Si:H/P3HT cells can be further improved by treatment of the amorphous silicon surface with hydrofluoric acid (HF) and p-type doping of P3HT with F4TCNQ. The improved cells reached maximum power conversion efficiencies of 1%.

  17. On Entropy Generation and the Effect of Heat and Mass Transfer Coupling in a Distillation Process

    Science.gov (United States)

    Burgos-Madrigal, Paulina; Mendoza, Diego F.; López de Haro, Mariano

    2018-01-01

    The entropy production rates as obtained from the exergy analysis, entropy balance and the nonequilibrium thermodynamics approach are compared for two distillation columns. The first case is a depropanizer column involving a mixture of ethane, propane, n-butane and n-pentane. The other is a weighed sample of Mexican crude oil distilled with a pilot scale fractionating column. The composition, temperature and flow profiles, for a given duty and operating conditions in each column, are obtained with the Aspen Plus V8.4 software by using the RateFrac model with a rate-based nonequilibrium column. For the depropanizer column the highest entropy production rate is found in the central trays where most of the mass transfer occurs, while in the second column the highest values correspond to the first three stages (where the vapor mixture is in contact with the cold liquid reflux), and to the last three stages (where the highest temperatures take place). The importance of the explicit inclusion of thermal diffusion in these processes is evaluated. In the depropanizer column, the effect of the coupling between heat and mass transfer is found to be negligible, while for the fractionating column it becomes appreciable.

  18. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    Energy Technology Data Exchange (ETDEWEB)

    Rastogi, N.K. [Department of Food Engineering, Central Food Technological Research Institute, Mysore 570 020 (India)]. E-mail: nkrastogi@cftri.com

    2005-08-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity.

  19. Impact of gamma-irradiation on some mass transfer driven operations in food processing

    International Nuclear Information System (INIS)

    Rastogi, N.K.

    2005-01-01

    The effect of gamma-irradiation pretreatment on some mass transfer driven operations such as dehydration, osmotic dehydration and rehydration, commonly used in food processing, was studied. Applied irradiation up to 12.0 kGy resulted in decrease in hardness of the samples, as indicated by texture analysis. The effective diffusion coefficients of water and solute determined for dehydration, osmotic dehydration as well as for rehydration using a Fickian diffusion model. The effective diffusion coefficients for water (in case of osmotic dehydration and dehydration) and solid diffusion (in case of osmotic dehydration) were found to increase exponentially with doses of gamma-irradiation (G) according to an equation of the form D=A exp(-B/G), where A and B are constants. Microstructures of irradiated-carrot samples revealed that the exposure of carrot to gamma irradiation resulted in the breakage of cell wall structure, thereby causing softening of irradiated samples and facilitating mass transfer during dehydration and osmotic dehydration. The rehydration characteristics showed that gamma-irradiated sample did not absorb as much water as control, probably due to loss of cell integrity

  20. Study on heat transfer process during leaks of high pressure argon through a realistic crack

    International Nuclear Information System (INIS)

    Ai, Gang; Liu, Yinghua; Wah Ng, Heong

    2016-01-01

    This paper proposes a method for simulating the heat transfer process of high pressure argon gas leaking through a narrow crack which causes the Joule-Thomson cooling effect (JT cooling effect). A once-through (decoupled) model was developed to firstly calculate the gas pressure drop at different crack depth, followed by the temperature drop. A MATLAB code was also developed to iteratively calculate the properties of leaking gas in a crack which was fitted as formula as boundary conditions in heat transfer simulation in COMSOL program. The simulated lowest temperature of the test plate in the vicinity of the crack is 13.8 C after decreasing from the temperature of 30 C with initial argon gas pressure of 91 bar. An experiment test rig designed and tested under the same conditions showed a good agreement between the simulation and experiment at the obtained lowest temperature in the test plate. The method is useful for predicting the lowest temperature in the vicinity of the crack caused by the JT cooling effect. (authors)

  1. Melanosomes are transferred from melanocytes to keratinocytes through the processes of packaging, release, uptake, and dispersion.

    Science.gov (United States)

    Ando, Hideya; Niki, Yoko; Ito, Masaaki; Akiyama, Kaoru; Matsui, Mary S; Yarosh, Daniel B; Ichihashi, Masamitsu

    2012-04-01

    Recent studies have described the role of shedding vesicles as physiological conveyers of intracellular components between neighboring cells. Here we report that melanosomes are one example of shedding vesicle cargo, but are processed by a previously unreported mechanism. Pigment globules were observed to be connected to the filopodia of melanocyte dendrites, which have previously been shown to be conduits for melanosomes. Pigment globules containing multiple melanosomes were released from various areas of the dendrites of normal human melanocytes derived from darkly pigmented skin. The globules were then captured by the microvilli of normal human keratinocytes, also derived from darkly pigmented skin, which incorporated them in a protease-activated receptor-2 (PAR-2)-dependent manner. After the pigment globules were ingested by the keratinocytes, the membrane that surrounded each melanosome cluster was gradually degraded, and the individual melanosomes then spread into the cytosol and were distributed primarily in the perinuclear area of each keratinocyte. These results suggest a melanosome transfer pathway wherein melanosomes are transferred from melanocytes to keratinocytes via the shedding vesicle system. This packaging system generates pigment globules containing multiple melanosomes in a unique manner.

  2. Organizational Factors that Affect the University-Industry Technology Transfer Processes of a Private University

    Directory of Open Access Journals (Sweden)

    Lisiane Closs

    2012-02-01

    Full Text Available This case study researched organizational factors that affect the university-industry technology transfer (UITT processes of a private university, chosen by its success and uniqueness in the Brazilian context. Stood out as factors: innovation among pillars of management; valuing of research and intellectual property; qualified students, teachers and managers; multidisciplinary research groups; stability of governing body; performance of the TTO, Technology Management Agency and Technology Park. Difficulties highlighted were: reconciliation of time between activities of professors-researchers, bureaucracy and centralization of administrative and legal support; valuation of research results; approach and negotiation with companies. Among suggestions are: granting greater independence to the structures in charge of UITT and making them self-sustainable; training agents in technology marketing, sale, and negotiation skills.

  3. Roles of multi-step transfer in fusion process induced by heavy-ion reactions

    International Nuclear Information System (INIS)

    Imanishi, B.; Oertzen, W. von.

    1993-06-01

    In nucleus-nucleus collisions of the systems, 12 C+ 13 C and 13 C+ 16 O- 12 C+ 17 O, the effects of the multi-step transfers and inelastic excitations on the fusion cross sections are investigated in the framework of the coupled-reaction-channel (CRC) method. Strong CRC effects of the multi-step processes are observed. Namely, the valence neutron in 13 C or 17 O plays an important role in the enhancement of the fusion. The potential barrier is effectively lowered with the formation of the covalent molecule of the configuration, 12 C+n+ 12 C or 12 C+n+ 16 O. In the analyses of the system 12 C+ 13 C, however, it is still required to introduce core-core optical potential of lower barrier height in the state of the positive total parity. This could be due to the neck formation with the nucleons contained in two core nuclei. (author)

  4. Heat and mass transfer in semiconductor melts during single-crystal growth processes

    Science.gov (United States)

    Kakimoto, Koichi

    1995-03-01

    The quality of large semiconductor crystals grown from melts is significantly affected by the heat and mass transfer in the melts. The current understanding of the phenomena, especially melt convection, is reviewed starting from the results of visualization using model fluids or silicon melt, and continuing to the detailed numerical calculations needed for quantitative modeling of processing with solidification. The characteristics of silicon flows are also reviewed by focusing on the Coriolis force in the rotating melt. Descriptions of flow instabilities are included that show the level of understanding of melt convection with a low Prandtl number. Based on hydrodynamics, the origin of the silicon flow structure is reviewed, and it is discussed whether silicon flow is completely turbulent or has an ordered structure. The phase transition from axisymmetric to nonaxisymmetric flow is discussed using different geometries. Additionally, surface-tension-driven flow is reviewed for Czochralski crystal growth systems.

  5. Desulfurization of organic sulfur from lignite by an electron transfer process

    Energy Technology Data Exchange (ETDEWEB)

    Demirbas, A. [Selcuk University, Konya (Turkey). Dept. for Chemical Engineering

    2006-10-15

    This study is an attempt to desulfurize organic sulfur from lignite samples with ferrocyanide ion as the electron transferring agent. Effect of temperature, particle size and concentration of ferrocyanide ion on desulfurization from the lignite samples has been investigated. The desulfurization process has been found to be continuous and gradually increases with increase of temperature from 298 to 368 K. The particle size has no significant impact on sulfur removal from the lignite samples. Particle size has no profound impact on the amount of sulfur removal. The desulfurization reaction has been found to be dependent on the concentration of potassium ferrocyanide. Gradual increase in the concentration of potassium ferrocyanide raised the magnitude of desulfurization, but at a higher concentration, the variation is not significant.

  6. Application of adult attachment theory to group member transference and the group therapy process.

    Science.gov (United States)

    Markin, Rayna D; Marmarosh, Cheri

    2010-03-01

    Although clinical researchers have applied attachment theory to client conceptualization and treatment in individual therapy, few researchers have applied this theory to group therapy. The purpose of this article is to begin to apply theory and research on adult dyadic and group attachment styles to our understanding of group dynamics and processes in adult therapy groups. In particular, we set forth theoretical propositions on how group members' attachment styles affect relationships within the group. Specifically, this article offers some predictions on how identifying group member dyadic and group attachment styles could help leaders predict member transference within the therapy group. Implications of group member attachment for the selection and composition of a group and the different group stages are discussed. Recommendations for group clinicians and researchers are offered. PsycINFO Database Record (c) 2010 APA, all rights reserved

  7. Development of Falling Film Heat Transfer Coefficient for Industrial Chemical Processes Evaporator Design

    KAUST Repository

    Shahzad, Muhammad Wakil; Burhan, Muhammad; Ng, Kim Choon

    2018-01-01

    In falling film evaporators, the overall heat transfer coefficient is controlled by film thickness, velocity, liquid properties and the temperature differential across the film layer. This chapter presents the heat transfer behaviour for evaporative

  8. Direct observation of the ultrafast electron transfer process in a polymer/fullerene blend

    NARCIS (Netherlands)

    Cerullo, G.; Lanzani, G.; Silvestri, S. De; Brabec, Ch.J.; Zerza, G.; Sariciftci, N.S.; Hummelen, J.C.

    2000-01-01

    Photoinduced electron transfer in organic molecules is an extensively investigated topic both because of fundamental interest in the photophysics and for applications to artificial photosynthesis. Highly efficient ultrafast electron transfer from photoexcited conjugated polymers to C60 has been

  9. Dropwise condensation heat transfer process optimisation on superhydrophobic surfaces using a multi-disciplinary approach

    International Nuclear Information System (INIS)

    Khatir, Z.; Kubiak, K.J.; Jimack, P.K.; Mathia, T.G.

    2016-01-01

    Highlights: • Droplets jumping phenomenon can enhance condensate evacuation from the surface. • Droplets jumping velocity depends on droplets radius and surface static contact angle. • Optimum conditions are for droplets with radius 35–40 μm and contact angle near 160°. • Jumping phenomenon occurs only when static contact angle is above 140°. • The optimal functional surface design maximises jumping velocity and heat flux. - Abstract: Dropwise condensation has superior heat transfer efficiency than filmwise condensation; however condensate evacuation from the surface still remains a significant technological challenge. The process of droplets jumping, against adhesive forces, from a solid surface upon coalescence has been studied using both experimental and Computational Fluid Dynamics (CFD) analysis. Both Lattice Boltzmann (LBM) and Volume of Fluid (VOF) methods have been used to evaluate different kinematic conditions of coalescence inducing a jump velocity. In this paper, an optimisation framework for superhydrophobic surface designs is presented which uses experimentally verified high fidelity CFD analyses to identify optimal combinations of design features which maximise desirable characteristics such as the vertical velocity of the merged jumping droplet from the surface and energy efficiency. A Radial Basis Function (RBF)-based surrogate modelling approach using Design of Experiment (DOE) technique was used to establish near-optimal initial process parameters around which to focus the study. This multidisciplinary approach allows us to evaluate the jumping phenomenon for superhydrophobic surfaces for which several input parameters may be varied, so as to improve the heat transfer exchange rate on the surface during condensation. Reliable conditions were found to occur for droplets within initial radius range of r = 20–40 μm and static contact angle θ_s ∼ 160°. Moreover, the jumping phenomenon was observed for droplets with initial

  10. Medical Examination of Aliens--Revisions to Medical Screening Process. Final rule.

    Science.gov (United States)

    2016-01-26

    The Centers for Disease Control and Prevention (CDC), within the Department of Health and Human Services (HHS), is issuing this final rule (FR) to amend its regulations governing medical examinations that aliens must undergo before they may be admitted to the United States. Based on public comment received, HHS/CDC did not make changes from the NPRM published on June 23, 2015. Accordingly, this FR will: Revise the definition of communicable disease of public health significance by removing chancroid, granuloma inguinale, and lymphogranuloma venereum as inadmissible health-related conditions for aliens seeking admission to the United States; update the notification of the health-related grounds of inadmissibility to include proof of vaccinations to align with existing requirements established by the Immigration and Nationality Act (INA); revise the definitions and evaluation criteria for mental disorders, drug abuse and drug addiction; clarify and revise the evaluation requirements for tuberculosis; clarify and revise the process for the HHS/CDC-appointed medical review board that convenes to reexamine the determination of a Class A medical condition based on an appeal; and update the titles and designations of federal agencies within the text of the regulation.

  11. Wet and dry deposition and resuspension of AFCT/TFCT fuel processing radionuclides. Final report

    International Nuclear Information System (INIS)

    Slinn, W.G.N.; Katen, P.C.; Wolf, M.A.; Loveland, W.D.; Radke, L.F.; Miller, E.L.; Ghannam, L.J.; Reynolds, B.W.; Vickers, D.

    1979-09-01

    After short summary and introductory chapters, Chapter IV contains a critical analysis of available parameterizations for resuspension and for wet and dry removal processes and recommends interim parameterizations for use in radiation dose calculations. Chapter V describes methods and experimental results from field studies of in-cloud vs below-cloud scavenging, precipitation efficiency, and modifications of aerosols by clouds. In Chapter VI are contained descriptions of methods and results from four different approaches to the problem of measuring the dry deposition velocities of submicron aerosol particles depositing on vegetation. Chapter VII describes experimental results from a study of resuspension and weathering of tracer aerosol particles deposited on soil, grass and gravel; typical resuspension rates were found to be of the order of 10 -8 s -1 and it is recommended that the concept of weathering be reassessed. In Chapter VIII, National Weather Service data are used to obtain Lagrangian statistics for use in a regional-scale study of wet and dry removal. Chapter IX develops new concepts in reservoir models for application at regional to global scales. In the final chapter are some comments about the results found in this study and recommendations for future research

  12. Effects of physical parameters on the heat and mass transfer characteristics in freeze-drying processes of fruits and vegetables

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Yuming; Liu, Lijuan; Liang, Li [Shanxi Agricultural Univ. (China). Coll. of Engineering and Technology], E-mail: guoyuming99@sina.com

    2008-07-01

    Studying the effects mechanism of material physical parameters on the heat and mass transfer characteristics, the process parameters and energy consumption during freeze-drying process is of importance in improving the vacuum freeze-drying process with low energy consumption. In this paper, the sliced and mashed carrots of one variety were selected to perform the vacuum freeze-drying experiments. First, the variation laws of surface temperatures and sublimation front temperatures of the two shapes samples during the freeze-drying processes were analyzed, and it was verified that the process of sliced carrots is controlled by mass transfer, while that of the mashed ones is heat-transfer control. Second, the variations of water loss rate, energy consumption and temperature of the two shapes samples under the appropriate heating plate temperature and the different drying chamber pressure were analyzed. In addition, the effects of thermal conductivity and thermal diffusivity on freeze-drying time and process parameters were discussed by utilizing the theory of heat and mass transfer. In conclusion, under the heat transfer condition, the temperature of the heating plate should be as high as possible within the permitted range, and the drying chamber pressure should be set at optimal level. While under the mass transport-limited condition, the pressure level need to be altered in short time. (author)

  13. Lifelong Transfer Learning for Heterogeneous Teams of Agents in Sequential Decision Processes

    Science.gov (United States)

    2016-06-01

    computational complexity and exhibits sublinear regret , thus providing strong theoretical guarantees [Bou Ammar et al., 2015b] (see Appendix C for details...transferred knowledge, providing a potential mechanism for predicting the effectiveness of transfer learning (and thereby avoiding negative transfer). One...learning from demonstration. We theoretically and empirically analyze the performance of the proposed method and derive, for the first time, regret

  14. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology.

    Science.gov (United States)

    Koutinas, Michalis; Kiparissides, Alexandros; Pistikopoulos, Efstratios N; Mantalaris, Athanasios

    2012-01-01

    The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  15. Security Transition Program Office (STPO), technology transfer of the STPO process, tools, and techniques

    Energy Technology Data Exchange (ETDEWEB)

    Hauth, J.T.; Forslund, C.R.J.; Underwood, J.A.

    1994-09-01

    In 1990, with the transition from a defense mission to environmental restoration, the U.S. Department of Energy`s (DOE`s) Hanford Site began a significant effort to diagnose, redesign, and implement new safeguards and security (SAS) processes. In 1992 the Security Transition Program Office (STPO) was formed to address the sweeping changes that were being identified. Comprised of SAS and other contractor staff with extensive experience and supported by staff experienced in organizational analysis and work process redesign, STPO undertook a series of tasks designed to make fundamental changes to SAS processes throughout the Hanford Site. The goal of STPO is to align the SAS work and organization with the new Site mission. This report describes the key strategy, tools, methods, and techniques used by STPO to change SAS processes at Hanford. A particular focus of this review is transferring STPO`s experience to other DOE sites and federal agency efforts: that is, to extract, analyze, and provide a critical review of the approach, tools, and techniques used by STPO that will be useful to other DOE sites and national laboratories in transitioning from a defense production mode to environmental restoration and other missions. In particular, what lessons does STPO provide as a pilot study or model for implementing change in other transition activities throughout the DOE complex? More broadly, what theoretical and practical contributions do DOE transition efforts, such as STPO, provide to federal agency streamlining efforts and attempts to {open_quotes}reinvent{close_quotes} government enterprises in the public sector? The approach used by STPO should provide valuable information to those examining their own processes in light of new mission requirements.

  16. Food processing: The use of non-fouling food grade heat transfer fluids

    International Nuclear Information System (INIS)

    Wright, Christopher Ian; Bembridge, Thomas; Picot, Eole; Premel, Julien

    2015-01-01

    It is reported that there are some 4000 companies operating high temperature thermal fluid systems in the UK and Ireland. This excludes steam or water based systems. The heat transfer fluids (HTFs) used in food processing are highly refined mineral HTFs that are non-toxic, non-irritating and lack an odour. If an HTF has been certified for use in food processing it carries an HT-1 certificate. HTFs suitable for use in food processing are commonly referred to as ‘non-fouling’ which means as they thermally degrade they produce small carbon particles that are suspended in the HTF. Moreover, the carbon formations are less sticky and this reduces the extent of adhesion to the internal surfaces of an HTF system. The current paper analysed the test reports from 1223 HTF systems and showed that, on average, the carbon residue for food grade HTF was lower than non-food grade HTF. This clearly demonstrates what the non-fouling nature of a food grade HTF. This paper then explored the regulatory, legal and environmental landscape for food grade HTFs. In this area of manufacturing, it is critical that the HTFs used are suitable for incidental contact with food. Other measures put consumer safety at the heart of all operations (i.e., internal company procedures such as hazard analysis and critical control points [HACCP]) and that food is safe for consumer consumption (e.g., external controls such as auditing manufacturers to ensure good quality and distribution practice). The authors introduce the idea that safety could be further enhanced through independent HTF sampling and chemical analysis of HTFs to ensure they are food grade and should be done without any interruption to a manufacturer's production. - Highlights: • Food grade heat transfer fluid (HTF) is colourless, non-toxic and non-irritating. • This HTF is non-fouling and less carbon forms. • Such HTFs can be safely used in food processing if they are HT-1 certified. • A number of controls (e.g., HACCP

  17. Uncertainty and sensitivity analysis: Mathematical model of coupled heat and mass transfer for a contact baking process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Gernaey, Krist; Adler-Nissen, Jens

    2012-01-01

    to uncertainty in the model predictions. The aim of the current paper is to address this uncertainty challenge in the modelling of food production processes using a combination of uncertainty and sensitivity analysis, where the uncertainty analysis and global sensitivity analysis were applied to a heat and mass......Similar to other processes, the modelling of heat and mass transfer during food processing involves uncertainty in the values of input parameters (heat and mass transfer coefficients, evaporation rate parameters, thermo-physical properties, initial and boundary conditions) which leads...

  18. Final Technical Report for the Energy Frontier Research Center Understanding Charge Separation and Transfer at Interfaces in Energy Materials (EFRC:CST)

    Energy Technology Data Exchange (ETDEWEB)

    Vanden Bout, David A. [Univ. of Texas, Austin, TX (United States)

    2015-09-14

    Our EFRC was founded with the vision of creating a broadly collaborative and synergistic program that would lead to major breakthroughs in the molecular-level understanding of the critical interfacial charge separation and charge transfer (CST) processes that underpin the function of candidate materials for organic photovoltaic (OPV) and electrical-energy-storage (EES) applications. Research in these energy contexts shares an imposing challenge: How can we understand charge separation and transfer mechanisms in the presence of immense materials complexity that spans multiple length scales? To address this challenge, our 50-member Center undertook a total of 28 coordinated research projects aimed at unraveling the CST mechanisms that occur at interfaces in these nanostructured materials. This rigorous multi-year study of CST interfaces has greatly illuminated our understanding of early-timescale processes (e.g., exciton generation and dissociation dynamics at OPV heterojunctions; control of Li+-ion charging kinetics by surface chemistry) occurring in the immediate vicinity of interfaces. Program outcomes included: training of 72 graduate student and postdoctoral energy researchers at 5 institutions and spanning 7 academic disciplines in science and engineering; publication of 94 peer-reviewed journal articles; and dissemination of research outcomes via 340 conference, poster and other presentations. Major scientific outcomes included: implementation of a hierarchical strategy for understanding the electronic communication mechanisms and ultimate fate of charge carriers in bulk heterojunction OPV materials; systematic investigation of ion-coupled electron transfer processes in model Li-ion battery electrode/electrolyte systems; and the development and implementation of 14 unique technologies and instrumentation capabilities to aid in probing sub-ensemble charge separation and transfer mechanisms.

  19. Transfer-Appropriate Processing in Recognition Memory: Perceptual and Conceptual Effects on Recognition Memory Depend on Task Demands

    Science.gov (United States)

    Parks, Colleen M.

    2013-01-01

    Research examining the importance of surface-level information to familiarity in recognition memory tasks is mixed: Sometimes it affects recognition and sometimes it does not. One potential explanation of the inconsistent findings comes from the ideas of dual process theory of recognition and the transfer-appropriate processing framework, which…

  20. 40 CFR 74.48 - Transfer of allowances from the replacement of thermal energy-process sources. [Reserved

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Transfer of allowances from the replacement of thermal energy-process sources. [Reserved] 74.48 Section 74.48 Protection of Environment... energy—process sources. [Reserved] ...

  1. Development and evaluation of the process for final placement application: a review of the new student led allocation system

    OpenAIRE

    Mason, Rachael; Brackenbury, Debra; Broady, Sophie

    2016-01-01

    Background A process to facilitate nursing students to have more ownership of their final placement was introduced for this academic year by inviting them to apply for a specific placement they felt most appropriate. Whilst there has been significant research into preparing students for practice (Woods et al, 2015) and to explore the transition from student to graduate nurse (Kumaran and Carney, 2014), there is little to explore the effect of gaining preference for their final placement or...

  2. Highly efficient polymer solar cells with printed photoactive layer: rational process transfer from spin-coating

    KAUST Repository

    Zhao, Kui

    2016-09-05

    Scalable and continuous roll-to-roll manufacturing is at the heart of the promise of low-cost and high throughput manufacturing of solution-processed photovoltaics. Yet, to date the vast majority of champion organic solar cells reported in the literature rely on spin-coating of the photoactive bulk heterojunction (BHJ) layer, with the performance of printed solar cells lagging behind in most instances. Here, we investigate the performance gap between polymer solar cells prepared by spin-coating and blade-coating the BHJ layer for the important class of modern polymers exhibiting no long range crystalline order. We find that thickness parity does not always yield performance parity even when using identical formulations. Significant differences in the drying kinetics between the processes are found to be responsible for BHJ nanomorphology differences. We propose an approach which benchmarks the film drying kinetics and associated BHJ nanomorphology development against those of the champion laboratory devices prepared by spin-coating the BHJ layer by adjusting the process temperature. If the optimization requires the solution concentration to be changed, then it is crucial to maintain the additive-to-solute volume ratio. Emulating the drying kinetics of spin-coating is also shown to help achieve morphological and performance parities. We put this approach to the test and demonstrate printed PTB7:PC71BM polymer solar cells with efficiency of 9% and 6.5% PCEs on glass and flexible PET substrates, respectively. We further demonstrate performance parity for two other popular donor polymer systems exhibiting rigid backbones and absence of a long range crystalline order, achieving a PCE of 9.7%, the highest efficiency reported to date for a blade coated organic solar cell. The rational process transfer illustrated in this study should help the broader and successful adoption of scalable printing methods for these material systems.

  3. Deposição por plasma com arco transferido Hardfacing by plasma transfer arc process

    Directory of Open Access Journals (Sweden)

    Víctor Vergara Díaz

    2010-03-01

    Full Text Available Em virtude do Processo de Soldagem Plasma com Alimentação de Pó ter similaridades com o Processo de Soldagem Plasma com Alimentação de Arame, foi realizado um estudo comparativo entre ambos os processos utilizando-se a liga a base de cobalto comercialmente conhecida como Stellite 6, como material de adição na forma de pó e arame. A pesquisa foi realizada com a expectativa de ser aplicada nas operações de revestimentos de superfícies, em especial em pás de turbinas hidráulicas desgastadas por cavitação. A seleção do material de adição a ser empregado depende da natureza do mecanismo de desgaste encontrado. No Labsolda, a liga Stellite 6 vem sendo uma das mais utilizadas, por apresentar uma excelente resistência ao desgaste erosivo por cavitação. Foi avaliada a influência da vazão de gás de plasma a partir dos valores de diluição, dimensões do cordão, dureza e microestrutura. O Processo de Soldagem Plasma com Alimentação de Pó foi o que produziu o melhor acabamento superficial, menor diluição, melhor molhamento e maior largura. Com isto abre-se uma nova perspectiva para revestimentos metálicos e neste contexto se insere a recuperação por soldagem de partes erodidas de turbinas hidráulicas.The Plasma powder transferred arc welding process, which uses feed stock in the powder form, has similarities with Plasma wire transferred arc welding. This work describes a comparative study of the two processes using a Cobalt-based alloy commercially known as Stellite 6. This Co-based alloy is recognized for its superior cavitation erosion resistance. The aim of this work is to investigate the potential of PTA coatings for the protection and refurbishiment hydraulic turbine blades. Coatings were evaluated for the influence of Plasma gas flow rate on coating dilution, geometry, hardness and microstructure. Coatings processed with the atomized Stellite 6 powder feestock showed a superior surface quality, lower dilution

  4. The chemical evolution of a travertine-depositing stream: Geochemical processes and mass transfer reactions

    Science.gov (United States)

    Lorah, Michelle M.; Herman, Janet S.

    1988-01-01

    This field study focuses on quantitatively defining the chemical changes occurring in Falling Spring Creek, a travertine-depositing stream located in Alleghany County, Virginia. The processes of CO2outgassing and calcite precipitation or dissolution control the chemical evolution of the stream. The observed chemical composition of the water was used with the computerized geochemical model WATEQF to calculate aqueous speciation, saturation indices, and CO2 partial pressure values. Mass balance calculations were performed to obtain mass transfers of CO2 and calcite. Reaction times, estimated from stream discharge, were used with the mass transfer results to calculate rates of CO2, outgassing and calcite precipitation between consecutive sampling points. The stream, which is fed by a carbonate spring, is supersaturated with respect to CO2 along the entire 5.2-km flow path. Outgassing of CO2 drives the solution to high degrees of supersaturation with respect to calcite. Metabolic uptake of CO2 by photosynthetic plants is insignificant, because the high supply rate of dissolved carbon dioxide and the extreme agitation of the stream at waterfalls and rapids causes a much greater amount of inorganic CO2 outgassing to occur. Calcite precipitation is kinetically inhibited until near the crest of a 20-m vertical waterfall. Calcite precipitation rates then reach a maximum at the waterfall where greater water turbulence allows the most rapid escape of CO2. Physical evidence for calcite precipitation exists in the travertine deposits which are first observed immediately above the waterfall and extend for at least 1.0 km below the falls. Net calcite precipitation occurs at all times of the year but is greatest during low-flow conditions in the summer and early fall.

  5. Determination of wafer center position during the transfer process by using the beam-breaking method

    International Nuclear Information System (INIS)

    Chen, Yi-Cheng; Wang, Zhi-Gen; Huang, Bo-Kai

    2014-01-01

    A wafer on a robot blade may slip due to inertia sliding during the acceleration or deceleration process. This study presents the implementation and experimental verification of a novel real-time wafer positioning system to be used during the transfer process. A system-integration computer program involving a human–machine interface (HMI) was also developed, exhibiting the following functions: (a) moving direction judgment; (b) notch-passing judgment; (c) indicating the sensor by which the notch passes; and (d) computing the wafer center in real time. The position of the wafer center is calculated based on the time-sequence of the beam-breaking signals from two optical sensors, and the geometric relations among the sensing points of the robot blade and wafer. When using eight-inch wafers, the experimental results indicated the capabilities of the proposed positioning system under various conditions, including distinct parameters regarding the moving direction, wafer displacement and notch-passing sensors. The accuracy and precision (repeatability) of the measurement in various conditions were calculated and discussed. Furthermore, the experimental results demonstrate that, after combining the novel wafer positioning system and HMI program, the proposed method can be used to compute the position of the wafer center in real time in various conditions. (paper)

  6. Development of systems of analysis in industrial processes with XRF. A technology transfer alternative

    International Nuclear Information System (INIS)

    Galvez, Juan; Poblete, Victor

    1999-01-01

    The FRX Laboratory's experience in developing a unit of analysis by excitation with a radioisotope source is described, with a discussion of its advantages, limitations, types of existing units in the market, use, values and state-of-the-art. The evolution of mining and metallurgical processes has led to the development of new technologies that provide quick and precise control of control and analysis operations, avoiding loss of raw material, chemical reagents, waste of materials and time, to obtain a better quality and purer product. The system developed by the FRX Laboratory is relatively low cost compared to other equipment that is available in the market, and it focuses on single element analysis in hydrometallurgical processes. This system uses a NaI (T1) detector with a beryllium window, related electronics, monitor and printer, which controls the operation automatically using an adequate program for taking samples, measuring, analysis, printing results, changing samples, etc. The sampling is continuous, so it does not have to be taken or prepared chemically. This system can extrapolate to other more complex ones, using new kinds of detectors with higher resolution, more modern electronics, and new multichannel cards. The development of this kind of equipment in Chile means that dependence on foreign technology can be avoided by replacing expensive imported equipment, creating our own technology and transferring it to the domestic market, and even generating income by exporting these units and opening new development prospects (au)

  7. Mineralization and Transfer Processes of 14C-labeled Pesticides in Outdoor Lysimeters

    International Nuclear Information System (INIS)

    Grundmann, Sabine; Doerfler, Ulrike; Ruth, Bernhard; Loos, Christine; Wagner, Tobias; Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner

    2008-01-01

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of 14 C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between 14 C-emissions from soil surfaces and 14 C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of 14 C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide 14 C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules

  8. Imaging the Ultrafast Photoelectron Transfer Process in Alizarin-TiO2

    Directory of Open Access Journals (Sweden)

    Tatiana Gomez

    2015-07-01

    Full Text Available In this work, we adopt a quantum mechanical approach based on time-dependent density functional theory (TDDFT to study the optical and electronic properties of alizarin supported on TiO2 nano-crystallites, as a prototypical dye-sensitized solar cell. To ensure proper alignment of the donor (alizarin and acceptor (TiO2 nano-crystallite levels, static optical excitation spectra are simulated using time-dependent density functional theory in response. The ultrafast photoelectron transfer from the dye to the cluster is simulated using an explicitly time-dependent, one-electron TDDFT ansatz. The model considers the δ-pulse excitation of a single active electron localized in the dye to the complete set of energetically accessible, delocalized molecular orbitals of the dye/nano-crystallite complex. A set of quantum mechanical tools derived from the transition electronic flux density is introduced to visualize and analyze the process in real time. The evolution of the created wave packet subject to absorbing boundary conditions at the borders of the cluster reveal that, while the electrons of the aromatic rings of alizarin are heavily involved in an ultrafast charge redistribution between the carbonyl groups of the dye molecule, they do not contribute positively to the electron injection and, overall, they delay the process.

  9. Modeling of Heat Transfer and Fluid Flow in the Laser Multilayered Cladding Process

    Science.gov (United States)

    Kong, Fanrong; Kovacevic, Radovan

    2010-12-01

    The current work examines the heat-and-mass transfer process in the laser multilayered cladding of H13 tool steel powder by numerical modeling and experimental validation. A multiphase transient model is developed to investigate the evolution of the temperature field and flow velocity of the liquid phase in the molten pool. The solid region of the substrate and solidified clad, the liquid region of the melted clad material, and the gas region of the surrounding air are included. In this model, a level-set method is used to track the free surface motion of the molten pool with the powder material feeding and scanning of the laser beam. An enthalpy-porosity approach is applied to deal with the solidification and melting that occurs in the cladding process. Moreover, the laser heat input and heat losses from the forced convection and heat radiation that occurs on the top surface of the deposited layer are incorporated into the source term of the governing equations. The effects of the laser power, scanning speed, and powder-feed rate on the dilution and height of the multilayered clad are investigated based on the numerical model and experimental measurements. The results show that an increase of the laser power and powder feed rate, or a reduction of the scanning speed, can increase the clad height and directly influence the remelted depth of each layer of deposition. The numerical results have a qualitative agreement with the experimental measurements.

  10. Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites

    Science.gov (United States)

    Cano, Roberto J.; Ghose, Sayata; Watson, Kent A.; Chunchu, Prasad B.; Jensen, Brian J.; Connell, John W.

    2012-01-01

    Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.

  11. Final Report on the Audit of the Administration of the Contract Closeout Process at the Defense Contract Management Region, Dallas

    Science.gov (United States)

    1990-09-18

    This is our final report on the Audit of the Administration of the Contract Closeout Process at the Defense Contract Management Region, Dallas (DCMR... audit was made from January to October 1989. The objectives of the audit were to determine the timeliness of the contract closeout process, the validity...As part of the audit , we also evaluated internal controls over the contract closeout process. As of December 31, 1988, the Contract Administration

  12. Fabrication of highly crystalline oxide thin films on plastics: Sol–gel transfer technique involving high temperature process

    Directory of Open Access Journals (Sweden)

    Hiromitsu Kozuka

    2016-09-01

    Full Text Available Si(100 substrates were coated with a polyimide (PI–polyvinylpyrrolidone (PVP mixture film, and an alkoxide-derived TiO2 gel film was deposited on it by spin-coating. The gel films were fired under various conditions with final annealing at 600–1000 °C. The PI–PVP layer was completely decomposed at such high temperatures while the TiO2 films survived on Si(100 substrates without any damages. When the final annealing temperature was raised, the crystalline phase changed from anatase to rutile, and the crystallite size and the refractive index of the films tended to increase. The TiO2 films thus fired on Si(100 substrates were transferred to polycarbonate (PC substrates by melting the surface of the plastic substrate either in a near-infrared image furnace or on a hot plate under a load. Cycles of deposition and firing were found to be effective in achieving successful transfer even for the films finally annealed at 1000 °C. X-ray photoelectron spectroscopic analyses on the film/Si(100 interface suggested that the residual carbon or carbides at the interface could be a possible factor, but not a necessary and decisive factor that allows the film transfer.

  13. Applied research and evaluation of process concepts for liquefaction and gasification of western coals. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wiser, W. H.

    1980-09-01

    Fourteen sections, including five subsections, of the final report covering work done between June 1, 1975 to July 31, 1980 on research programs in coal gasification and liquefaction have been entered individually into EDB and ERA. (LTN)

  14. X-ray spectroscopy studies of nonradiative energy transfer processes in luminescent lanthanide materials

    Science.gov (United States)

    Pacold, Joseph I.

    Luminescent materials play important roles in energy sciences, through solid state lighting and possible applications in solar energy utilization, and in biomedical research and applications, such as in immunoassays and fluorescence microscopy. The initial excitation of a luminescent material leads to a sequence of transitions between excited states, ideally ending with the emission of one or more optical-wavelength photons. It is essential to understand the microscopic physics of this excited state cascade in order to rationally design materials with high quantum efficiencies or with other fine-tuning of materials response. While optical-wavelength spectroscopies have unraveled many details of the energy transfer pathways in luminescent materials, significant questions remain open for many lanthanide-based luminescent materials. For organometallic dyes in particular, quantum yields remain limited in comparison with inorganic phosphors. This dissertation reports on a research program of synchrotron x-ray studies of the excited state electronic structure and energy-relaxation cascade in trivalent lanthanide phosphors and dyes. To this end, one of the primary results presented here is the first time-resolved x-ray absorption near edge spectroscopy studies of the transient 4f excited states in lanthanide-activated luminescent dyes and phosphors. This is a new application of time-resolved x-ray absorption spectroscopy that makes it possible to directly observe and, to some extent, quantify intramolecular nonradiative energy transfer processes. We find a transient increase in 4f spectral weight associated with an excited state confined to the 4f shell of trivalent Eu. This result implies that it is necessary to revise the current theoretical understanding of 4f excitation in trivalent lanthanide activators: either transient 4f-5d mixing effects are much stronger than previously considered, or else the lanthanide 4f excited state has an unexpectedly large contribution

  15. Heat transfer fouling characteristics of microfiltered thin stillage from the dry grind process.

    Science.gov (United States)

    Arora, Amit; Dien, Bruce S; Belyea, Ronald L; Singh, Vijay; Tumbleson, M E; Rausch, Kent D

    2010-08-01

    We investigated effects of microfiltration (MF) on heat transfer fouling tendencies of thin stillage. A stainless steel MF membrane (0.1 micron pore size) was used to remove solids from thin stillage. At filtration conditions of 690kPa, the MF process effectively recovered total solids from thin stillage. Thin stillage was concentrated from 7.0% to 22.4% solids with average permeate flux rates of 180+/-30 L/m(2)/h at 75 degrees C. In retentate streams, protein and fat contents were increased from 23.5 and 16.7% db to 27.6 and 31.1% db, respectively, and ash content was reduced from 10.5% to 3.8% db. Removal of solids, protein and fat generated a microfiltration permeate (MFP) that was used as an input stream to the fouling probe system; MFP fouling tendencies were measured. An annular fouling probe was used to measure fouling tendencies of thin stillage from a commercial dry grind facility. When comparing diluted thin stillage (DTS) stream and MFP, a reduction in solids concentration was not the only reason of fouling decrement. Selective removal of protein and fat played an important role in mitigating the fouling. At t=10h, mean fouling rates of MFP were an order of magnitude lower when compared to thin stillage and diluted streams. When maximum probe temperature (200 degrees C) was reached, mean fouling rates for thin stillage, DTS and MFP were 7.1x10(-4), 4.2x10(-4) and 2.6x10(-4) m(2) degrees C/kW/min, respectively. In DTS and MFP, the induction period was prolonged by factors of 4.3 and 9.5, respectively, compared to the induction period for thin stillage fouling. Mean fouling rates were decreased by factors of 2.3 and 23.4 for DTS and MFP, respectively. Fouling of MFP took twice the time to reach a probe temperature of 200 degrees C than did thin stillage (22 h vs 10 h, respectively). A reduction in heat transfer fouling could be achieved by altering process stream composition using microfiltration. Copyright 2010 Elsevier Ltd. All rights reserved.

  16. Convective heat transfer behavior of the product slurry of the nitrate to ammonia and ceramic (NAC) process

    International Nuclear Information System (INIS)

    Muguercia, I.; Yang, G.; Ebadian, M.A.

    1995-01-01

    The Nitrate to Ammonia and Ceramic (NAC) process is an innovative technology for immobilizing liquid form low level radioactive waste (LLW). An experimental study has been conducted to measure the heat transfer properties of the NAC product slurry. The results indicate that the heat transfer coefficient for both concentration slurries is much higher than that of pure water, which may be due to the higher conductivity of the gibbsite powder. For the 20% concentration slurry, the heat transfer coefficient increased as the generalized Reynolds number and slurry temperature increased. The heat transfer coefficient of 40% is a function of the Reynolds number only. The test results also indicate that the thermal entrance region can be observed only when the generalized Reynolds number is smaller than 1,000. The correlation equation is also developed based on the experimental data in this paper

  17. QM/MM MD and Free Energy Simulation Study of Methyl Transfer Processes Catalyzed by PKMTs and PRMTs.

    Science.gov (United States)

    Chu, Yuzhuo; Guo, Hong

    2015-09-01

    Methyl transfer processes catalyzed by protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs) control important biological events including transcriptional regulation and cell signaling. One important property of these enzymes is that different PKMTs and PRMTs catalyze the formation of different methylated product (product specificity). These different methylation states lead to different biological outcomes. Here, we review the results of quantum mechanics/molecular mechanics molecular dynamics and free energy simulations that have been performed to study the reaction mechanism of PKMTs and PRMTs and the mechanism underlying the product specificity of the methyl transfer processes.

  18. Dynamics of heat, mass and momentum transfer in an inductively coupled plasma. Final report, August 2, 1982-November 30, 1983

    International Nuclear Information System (INIS)

    Barnes, R.M.

    1984-01-01

    In the present research special attention has been given to the development of sophisticated mathematical models for the calculation of the flow and temperature fields in the induction torch under different operating conditions. The model originated by Boulos is particularly valuable since it is the only one which gives detailed information about the flow field as well as the temperature field in the plasma discharge through the solution of the two-dimensional flow and energy equations simultaneously with the one-dimensional electric and magnetic field equations. This model has been extended and refined substantially during the current research investigation, and its improvement and application to more complex practical conditions such as turbulent flow conditions and non-equilibrium processes is to be undertaken in new research

  19. Reaching for the cloud: on the lessons learned from grid computing technology transfer process to the biomedical community.

    Science.gov (United States)

    Mohammed, Yassene; Dickmann, Frank; Sax, Ulrich; von Voigt, Gabriele; Smith, Matthew; Rienhoff, Otto

    2010-01-01

    Natural scientists such as physicists pioneered the sharing of computing resources, which led to the creation of the Grid. The inter domain transfer process of this technology has hitherto been an intuitive process without in depth analysis. Some difficulties facing the life science community in this transfer can be understood using the Bozeman's "Effectiveness Model of Technology Transfer". Bozeman's and classical technology transfer approaches deal with technologies which have achieved certain stability. Grid and Cloud solutions are technologies, which are still in flux. We show how Grid computing creates new difficulties in the transfer process that are not considered in Bozeman's model. We show why the success of healthgrids should be measured by the qualified scientific human capital and the opportunities created, and not primarily by the market impact. We conclude with recommendations that can help improve the adoption of Grid and Cloud solutions into the biomedical community. These results give a more concise explanation of the difficulties many life science IT projects are facing in the late funding periods, and show leveraging steps that can help overcoming the "vale of tears".

  20. Characterization of explosives processing waste decomposition due to composting. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Griest, W.H.; Stewart, A.J.; Ho, C.H.; Tyndall, R.L.; Vass, A.A.; Caton, J.E.; Caldwell, W.M.

    1994-09-01

    The objective of this work was to provide data and methodology assisting the transfer and acceptance of composting technology for the remediation of explosives-contaminated soils and sediments. Issues and activities addressed included: (a) chemical and toxicological characterization of compost samples from new field composting experiments, and the environmental availability of composting efficiency by isolation of bacterial consortia and natural surfactants from highly efficient composts, and (c) improved assessment of compost product suitability for land application.

  1. A numerical analysis of heat and mass transfer during the steam reforming process of ethane

    Science.gov (United States)

    Tomiczek, Marcin; Kaczmarczyk, Robert; Mozdzierz, Marcin; Brus, Grzegorz

    2017-11-01

    This paper presents a numerical analysis of heat and mass transfer during the steam reforming of ethane. From a chemical point of view, the reforming process of heavy hydrocarbons, such as ethane, is complex. One of the main issue is a set of undesired chemical reactions that causes the deposition of solid carbon and consequently blocks the catalytic property of a reactor. In the literature a carbon deposition regime is selected by thermodynamical analysis to design safe operation conditions. In the case of Computational Fluid Dynamic (CFD, hereafter) models each control volume should be investigated to determinate if carbon deposition is thermodynamically favourable. In this paper the authors combine equilibrium and kinetics analysis to simulate the steam reforming of methane-ethane rich fuel. The results of the computations were juxtaposed with experimental data for methane steam reforming, and good agreement was found. An analysis based on the kinetics of reactions was conducted to predict the influence of temperature drop and non-equilibrium composition on solid carbon deposition. It was found that strong non-uniform temperature distribution in the reactor causes conditions favourable for carbon deposition at the inlet of the reformer. It was shown that equilibrium calculations, often used in the literature, are insufficient.

  2. Processes governing the transfer of radionuclides into crops following the Chernobyl accident

    International Nuclear Information System (INIS)

    Grebenshchikova, N.V.; Firsakova, S.K.; Timofeyev, S.F.; Novik, A.A.; Palekshanova, G.I.

    1991-01-01

    Given that the Chernobyl accident contaminated large areas of Byelorussia, we studied the processes governing - and the quantitative features of - radionuclide accumulation in meadow herbage and staple agricultural crops grown by farms in the Gomel Region. The fields are situated on soddy-podzolic sandy and sandy-loam soils where radiocaesium contamination varied between 15 and 80 Ci/km 2 . The quantitative features detected in radionuclide accumulation levels in crops (depending on soil composition and plant biological properties) confirmed the previously established basic mechanisms governing the transfer of radionuclides from soil to plants. Proportionality coefficients were determined for prediction purposes, and in 1987 these were (expressed in units of 10 -9 Ci/kg per Ci/km 2 ) 0.24 for grains of winter rye, 0.19 for barley and 0.65 for oats, 0.16 for potato tubers, 0.10 for beetroot and 0.23 for silage maize. These values were a factor of 4-5 lower in 1989. Depending on meadow type and soil properties, contamination levels in meadow herbage differed by up to two orders of magnitude. When the contaminated turf was reploughed or disc-harrowed and lime and potassium phosphate fertilizers added, contamination levels in the cultivated herbage fell by a factor of 4-7. (author)

  3. Modeling of heat transfer in a vascular tissue-like medium during an interstitial hyperthermia process.

    Science.gov (United States)

    Hassanpour, Saeid; Saboonchi, Ahmad

    2016-12-01

    This paper aims to evaluate the role of small vessels in heat transfer mechanisms of a tissue-like medium during local intensive heating processes, for example, an interstitial hyperthermia treatment. To this purpose, a cylindrical tissue with two co- and counter-current vascular networks and a central heat source is introduced. Next, the energy equations of tissue, supply fluid (arterial blood), and return fluid (venous blood) are derived using porous media approach. Then, a 2D computer code is developed to predict the temperature of blood (fluid phase) and tissue (solid phase) by conventional volume averaging method and a more realistic solution method. In latter method, despite the volume averaging the blood of interconnect capillaries is separated from the arterial and venous blood phases. It is found that in addition to blood perfusion rate, the arrangement of vascular network has considerable effects on the pattern and amount of the achieved temperature. In contrast to counter-current network, the co-current network of vessels leads to considerable asymmetric pattern of temperature contours and relocation of heat affected zone along the blood flow direction. However this relocation can be prevented by changing the site of hyperthermia heat source. The results show that the cooling effect of co-current blood vessels during of interstitial heating is more efficient. Despite much anatomical dissimilarities, these findings can be useful in designing of protocols for hyperthermia cancer treatment of living tissue. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. A two-stage biological gas to liquid transfer process to convert carbon dioxide into bioplastic

    KAUST Repository

    Al Rowaihi, Israa

    2018-03-06

    The fermentation of carbon dioxide (CO2) with hydrogen (H2) uses available low-cost gases to synthesis acetic acid. Here, we present a two-stage biological process that allows the gas to liquid transfer (Bio-GTL) of CO2 into the biopolymer polyhydroxybutyrate (PHB). Using the same medium in both stages, first, acetic acid is produced (3.2 g L−1) by Acetobacterium woodii from 5.2 L gas-mixture of CO2:H2 (15:85 v/v) under elevated pressure (≥2.0 bar) to increase H2-solubility in water. Second, acetic acid is converted to PHB (3 g L−1 acetate into 0.5 g L−1 PHB) by Ralstonia eutropha H16. The efficiencies and space-time yields were evaluated, and our data show the conversion of CO2 into PHB with a 33.3% microbial cell content (percentage of the ratio of PHB concentration to cell concentration) after 217 h. Collectively, our results provide a resourceful platform for future optimization and commercialization of a Bio-GTL for PHB production.

  5. Effects of surface tension and viscosity on the forming and transferring process of microscale droplets

    Science.gov (United States)

    Chen, Shulei; Liu, Kun; Liu, Cunbin; Wang, Dongyang; Ba, Dechun; Xie, Yuanhua; Du, Guangyu; Ba, Yaoshuai; Lin, Qiao

    2016-12-01

    Surface tension and viscosity act as important roles on the fluid flow in microchannel channels. In order to understand the influencing mechanism, three dimensional numerical simulations as well as experimental investigations were carried out on the slug formation and transfer in a rectangle T-junction microchannel. The simulation showed that the increasing Capillary number (Ca) resulted in the decreasing slug volume. Due to the existence of film thickness and corner flow, the characteristic length of slug was not the same trend completely. The results also showed that the pressure of junction point fluctuated periodically in the process of slug formation, which can reflect the slug formation period and the effect of the various conditions on pressure change. Two other pressure monitoring points were located in vertical channel and main channel and they monitored the pressure of two phase flow respectively. The increasing surface tension resulted in an increasing of total pressure, the interface pressure drop of two phases and the period of slug formation. The frequency of slug formation and two phases total pressure increased with the viscosity of continuous phase.

  6. Electron pumping of the ground state of 21Ne. Transfers and multiple diffusion processes

    International Nuclear Information System (INIS)

    Stoeckel, F.; Lombardi, M.

    1978-01-01

    The electron-pumping process of the ground state of 21 Ne has been studied. It is demonstrated how in a neon cell at a pressure of 10 -4 to 10 -2 torr, a high frequency discharge can create a nuclear spin alignment in the fundamental level (I=3/2) when the excited levels are themselves aligned. The nuclear alignment is observed by monitoring the change of the linear polarization of several optical transitions during the magnetic resonance of the fundamental level. Various transfers of the alignments are investigated and a detailed study of the influence of the multiple diffusion is carried out. The multiple diffusion produces a depolarization and a relaxation of the nuclear spin. A theoretical calculation has been made for a two-level system with a J=1 radiative level and a J=0 ground state. Experimentally a relaxation time of the nuclear alignment varying from 37 ms to 240 ms is observed when the neon pressure decreases from 10 -2 to 10 -4 torr [fr

  7. The unfolding effects of transfer functions and processing of the pulse height distributions

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2010-01-01

    Full Text Available This paper deals with the improvements of the linear artificial neural network unfolding approach aimed at accurately determining the incident neutron spectrum. The effects of the transfer functions and pre-processing of the simulated pulse height distributions from liquid scintillation detectors on the artificial neural networks performance have been studied. A better energy resolution and higher reliability of the linear artificial neural network technique have been achieved after implementation of the results of this study. The optimized structure of the network was used to unfold both monoenergetic and continuous neutron energy spectra, such as the spectra of 252Cf and 241Am-Be sources, traditionally used in the nuclear safeguards experiments. We have demonstrated that the artificial neural network energy resolution of 0.1 MeV is comparable with the one obtained by the reference maximum likelihood expectation-maximization method which was implemented by using the one step late algorithm. Although the maximum likelihood algorithm provides the unfolded results of higher accuracy, especially for continuous neutron sources, the artificial neural network approach with the improved performances is more suitable for fast and robust determination of the neutron spectra with sufficient accuracy.

  8. Calculation code of mass and heat transfer in a pulsed column for Purex process

    International Nuclear Information System (INIS)

    Tsukada, Takeshi; Takahashi, Keiki

    1993-01-01

    A calculation code for extraction behavior analysis in a pulsed column employed at an extraction process of a reprocessing plant was developed. This code was also combined with our previously developed calculation code for axial temperature profiles in a pulsed column. The one-dimensional dispersion model was employed for both of the extraction behavior analysis and the axial temperature profile analysis. The reported values of the fluid characteristics coefficient, the transfer coefficient and the diffusivities in the pulsed column were used. The calculated concentration profiles of HNO 3 , U and Pu for the steady state have a good agreement with the reported experimental results. The concentration and temperature profiles were calculated under the operation conditions which induce the abnormal U extraction behavior, i.e. U extraction zone is moved to the bottom of the column. Thought there is slight difference between calculated and experimental value, it is appeared that our developed code can be applied to the simulation under the normal operation condition and the relatively slowly transient condition. Pu accumulation phenomena was analyzed with this code and the accumulation tendency is similar to the reported analysis results. (author)

  9. Parameter identification of process simulation models as a means for knowledge acquisition and technology transfer

    Science.gov (United States)

    Batzias, Dimitris F.; Ifanti, Konstantina

    2012-12-01

    Process simulation models are usually empirical, therefore there is an inherent difficulty in serving as carriers for knowledge acquisition and technology transfer, since their parameters have no physical meaning to facilitate verification of the dependence on the production conditions; in such a case, a 'black box' regression model or a neural network might be used to simply connect input-output characteristics. In several cases, scientific/mechanismic models may be proved valid, in which case parameter identification is required to find out the independent/explanatory variables and parameters, which each parameter depends on. This is a difficult task, since the phenomenological level at which each parameter is defined is different. In this paper, we have developed a methodological framework under the form of an algorithmic procedure to solve this problem. The main parts of this procedure are: (i) stratification of relevant knowledge in discrete layers immediately adjacent to the layer that the initial model under investigation belongs to, (ii) design of the ontology corresponding to these layers, (iii) elimination of the less relevant parts of the ontology by thinning, (iv) retrieval of the stronger interrelations between the remaining nodes within the revised ontological network, and (v) parameter identification taking into account the most influential interrelations revealed in (iv). The functionality of this methodology is demonstrated by quoting two representative case examples on wastewater treatment.

  10. Simulation of the Vacuum Assisted Resin Transfer Molding (VARTM) process and the development of light-weight composite bridging

    Science.gov (United States)

    Robinson, Marc J.

    A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge

  11. An integrative approach to knowledge transfer and integration: Spanning boundaries through objects, people and processes

    NARCIS (Netherlands)

    Duijn, M.; Rijnveld, M.

    2008-01-01

    Knowledge transfer and integration is the main challenge in many knowledge management projects. This challenge follows from the observation that it is difficult to determine how and what knowledge may transfer from one person to another, from one team to another and from one network or organization

  12. Manufacturing process applications team (MATEAM). [technology transfer in the areas of machine tools and robots

    Science.gov (United States)

    1979-01-01

    The transfer of NASA technology to the industrial sector is reported. Presentations to the machine tool and robot industries and direct technology transfers of the Adams Manipulator arm, a-c motor control, and the bolt tension monitor are discussed. A listing of proposed RTOP programs with strong potential is included. A detailed description of the rotor technology available to industry is given.

  13. Discretisation of the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements

    Directory of Open Access Journals (Sweden)

    E. D. Resende

    2007-09-01

    Full Text Available The freezing process is considered as a propagation problem and mathematically classified as an "initial value problem." The mathematical formulation involves a complex situation of heat transfer with simultaneous changes of phase and abrupt variation in thermal properties. The objective of the present work is to solve the non-linear heat transfer equation for food freezing processes using orthogonal collocation on finite elements. This technique has not yet been applied to freezing processes and represents an alternative numerical approach in this area. The results obtained confirmed the good capability of the numerical method, which allows the simulation of the freezing process in approximately one minute of computer time, qualifying its application in a mathematical optimising procedure. The influence of the latent heat released during the crystallisation phenomena was identified by the significant increase in heat load in the early stages of the freezing process.

  14. Investigation of interfacial heat transfer mechanism for 7075-T6 aluminum alloy in HFQ hot forming process

    International Nuclear Information System (INIS)

    Ying, Liang; Gao, Tianhan; Dai, Minghua; Hu, Ping

    2017-01-01

    Highlights: • The transient IHTC between 7075 alloy and die in HFQ process is investigated. • The accuracy of IHTC calculated by Beck and heat balance method is compared. • The relationship between IHTC and process parameter of 7075 alloy is studied. • The transient IHTC law is verified by U-type HFQ forming experiment. - Abstract: The IHTC (Interfacial-Heat-Transfer-Coefficient) between aluminum alloy and die during HFQ (Heat-Forming-Quenching) process is an important thermal parameter to reflect the heat transfer efficiency. In the present work, the instantaneous heat transfer law for high strength 7075-T6 alloy during HFQ process based on cylindrical-die model was investigated. The accuracy of IHTC calculated by Beck’s non-linear estimation method (Beck’s method) and heat balance method (HBM) were compared, and instantaneous IHTC of 7075-T6 alloy was acquired in experiment and analyzed in consideration of different contact pressure, surface roughness and lubricate conditions. Furthermore, the obtained IHTC was applied to the simulation process of typical U-type experimental model in order to validate the universality of heat transfer law. The result shows that the average IHTC goes near to 3300 W/m"2·K when pressure is above 80 MPa; Surface roughness can also affect the IHTC in HFQ process, but the effect mechanism is different from the boron steel in hot stamping process. The average IHTC decreases sharply when surface roughness increases in the range of 0.570–0.836 μm, the value is from 3453 W/m"2·K to 2001 W/m"2·K under 80 MPa. Furthermore, surface lubrication can promote heat transfer efficiency and increase IHTC value when contact pressure is relatively high.

  15. 3.1.1.2 Feed Processing and Handling DL2 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Elliott, Douglas C.; Magnuson, Jon K.; Wend, Christopher F.

    2006-09-30

    This milestone report is the deliverable for our Feed Processing and Handling project. It includes results of wet biomass feedstock analysis, slurry pumping information, fungal processing to produce a lignin-rich biorefinery residue and two subcontracted efforts to quantify the amount of wet biomass feedstocks currently available within the corn processing and paper processing industries.

  16. Assessment of energy requirements in proven and new copper processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Pitt, C.H.; Wadsworth, M.E.

    1980-12-31

    Energy requirements are presented for thirteen pyrometallurgical and eight hydrometallurgical processes for the production of copper. Front end processing, mining, mineral processing, gas cleaning, and acid plant as well as mass balances are included. Conventional reverberatory smelting is used as a basis for comparison. Recommendations for needed process research in copper production are presented.

  17. Mineralization and Transfer Processes of {sup 14}C-labeled Pesticides in Outdoor Lysimeters

    Energy Technology Data Exchange (ETDEWEB)

    Grundmann, Sabine; Doerfler, Ulrike, E-mail: doerfler@gsf.de; Ruth, Bernhard; Loos, Christine [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany); Wagner, Tobias [GSF - National Research Center for Environment and Health, Institute of Biochemical Plant Pathology (Germany); Karl, Heidrun; Munch, Jean Charles; Schroll, Reiner [GSF - National Research Center for Environment and Health, Institute of Soil Ecology (Germany)

    2008-04-15

    A recently designed two-chamber-lysimeter-test-system allows the detailed investigation of degradation, transport and transfer processes of {sup 14}C-labeled substances in soil-plant-atmosphere-systems under outdoor conditions. With this test system it is feasible to distinguish between {sup 14}C-emissions from soil surfaces and {sup 14}C-emissions from plant surfaces in soil monoliths under real environmental conditions. Special soil humidity sensors allow the measurement of soil water content near to the soil surface, in 1 and 5 cm depth. The behavior of organic chemicals can be followed for a whole vegetation period and a mass balance for the applied chemical can be established. Some selected results of the herbicides isoproturon and glyphosate - using the two-chamber-lysimeter-test-system - are presented to demonstrate its applicability for the identification and quantification of the processes that govern pesticide behavior in soil-plant-systems. Mineralization of {sup 14}C-isoproturon was very different in four different soils; the mineralization capacity of the soils ranged from 2 to 60%. Leaching of isoproturon in general was very low, but depending on the soil type and environmental conditions isoproturon and its metabolites could be leached via preferential flow, especially shortly after application. For the herbicide {sup 14}C-glyphosate no accumulation of residues in the soil and no leaching of the residues to deeper soil layers could be observed after three applications. Glyphosate was rapidly degraded to AMPA in the soil. Glyphosate and AMPA were accumulated in soy bean nodules.

  18. Verification of a three-dimensional resin transfer molding process simulation model

    Science.gov (United States)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  19. Image Processing for Bioluminescence Resonance Energy Transfer Measurement—BRET-Analyzer

    Directory of Open Access Journals (Sweden)

    Yan Chastagnier

    2018-01-01

    Full Text Available A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji—BRET-Analyzer—allowing a systematic analysis, from image processing to ratio quantification. We share this open source solution and a step-by-step tutorial at https://github.com/ychastagnier/BRET-Analyzer. This toolset proposes (1 image background subtraction, (2 image alignment over time, (3 a composite thresholding method of the image used as the denominator of the ratio to refine the precise limits of the sample, (4 pixel by pixel division of the images and efficient distribution of the ratio intensity on a pseudocolor scale, and (5 quantification of the ratio mean intensity and standard variation among pixels in chosen areas. In addition to systematize the analysis process, we show that the BRET-Analyzer allows proper reconstitution and quantification of the ratiometric image in time and space, even from heterogeneous subcellular volumes. Indeed, analyzing twice the same images, we demonstrate that compared to standard analysis BRET-Analyzer precisely define the luminescent specimen limits, enlightening proficient strengths from small and big ensembles over time. For example, we followed and quantified, in live, scaffold proteins interaction dynamics in neuronal sub-cellular compartments including dendritic spines, for half an hour. In conclusion, BRET-Analyzer provides a complete, versatile and efficient toolset for automated reproducible and meaningful image ratio analysis.

  20. Continuum simulation of heat transfer and solidification behavior of AlSi10Mg in Direct Metal Laser Sintering Process

    Science.gov (United States)

    Ojha, Akash; Samantaray, Mihir; Nath Thatoi, Dhirendra; Sahoo, Seshadev

    2018-03-01

    Direct Metal Laser Sintering (DMLS) process is a laser based additive manufacturing process, which built complex structures from powder materials. Using high intensity laser beam, the process melts and fuse the powder particles makes dense structures. In this process, the laser beam in terms of heat flux strikes the powder bed and instantaneously melts and joins the powder particles. The partial solidification and temperature distribution on the powder bed endows a high cooling rate and rapid solidification which affects the microstructure of the build part. During the interaction of the laser beam with the powder bed, multiple modes of heat transfer takes place in this process, that make the process very complex. In the present research, a comprehensive heat transfer and solidification model of AlSi10Mg in direct metal laser sintering process has been developed on ANSYS 17.1.0 platform. The model helps to understand the flow phenomena, temperature distribution and densification mechanism on the powder bed. The numerical model takes into account the flow, heat transfer and solidification phenomena. Simulations were carried out for sintering of AlSi10Mg powders in the powder bed having dimension 3 mm × 1 mm × 0.08 mm. The solidification phenomena are incorporated by using enthalpy-porosity approach. The simulation results give the fundamental understanding of the densification of powder particles in DMLS process.

  1. Study on the mass transfer of oxygen in an electrolytic reduction process of ACP

    International Nuclear Information System (INIS)

    Park, Byung Heung; Park, Sung Bin; Seo, Chung Seok; Park, Seong Won

    2005-01-01

    The Advanced Spent Fuel Conditioning Process (ACP) is a molten-salt-based back-end fuel cycle technology developed at KAERI. The target fuel type for the process is the oxide fuel unloaded from PWRs which are the main prototype reactor commercially operating in Korea. The volume and the radiotoxicity of the spent fuel decrease to quarters of the initial volume and radiotoxicity after being reduced to metal forms and removing some elements into a molten salt. The reduction of the two properties improves the convenience in managing the spent fuels and makes it possible for disposal sites to be made the best use of. Metallization of the spent oxide fuels is accomplished in an electrolytic reduction cell where a molten LiCl is adopted as an electric medium and Li 2 O is added to increase the activity of the oxygen ion in the system. A porous magnesia filter, a SUS solid conductor, and the metal oxides to be reduced constitute a cathode and anodes are made of platinum. The only cation in the liquid phase is lithium at the first stage and the ion diffuses through the pores of the magnesia filter and then receives electrons to become a metal. The reduced lithium metal snatches oxygen from the metal oxides in the filter and transforms into lithium oxide which diffuses back to the molten salt phase leaving the reduced metal at the inside of the filter. The lithium oxide is dissociated to lithium and oxygen ions once it dissolves in the molten salt if the concentration is within the solubility limit. Hence the actual diffusing element is oxygen in an ionic state rather than the lithium oxide since there is no concentration gradient for the lithium ion to move on - the lithium ion is the main cation in the system though some alkali and alkaline-earth metals dissolve in the molten salt phase to be cations. The analysis of the mass transfer of oxygen in the electrolytic reduction process is, thus, of importance for the metallization process to be completely interpreted

  2. High linear energy transfer degradation studies simulating alpha radiolysis of TRU solvent extraction processes

    Energy Technology Data Exchange (ETDEWEB)

    Pearson, Jeremy [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States); Miller, George [Department of Chemistry- University of California Irvine, 2046D PS II, Irvine, CA, 92697 (United States); Nilsson, Mikael [Department of Chemical Engineering and Materials Science - University of California Irvine, 916 Engineering Tower, Irvine, CA, 92697 (United States)

    2013-07-01

    Treatment of used nuclear fuel through solvent extraction separation processes is hindered by radiolytic damage from radioactive isotopes present in used fuel. The nature of the damage caused by the radiation may depend on the radiation type, whether it be low linear energy transfer (LET) such as gamma radiation or high LET such as alpha radiation. Used nuclear fuel contains beta/gamma emitting isotopes but also a significant amount of transuranics which are generally alpha emitters. Studying the respective effects on matter of both of these types of radiation will allow for accurate prediction and modeling of process performance losses with respect to dose. Current studies show that alpha radiation has milder effects than that of gamma. This is important to know because it will mean that solvent extraction solutions exposed to alpha radiation may last longer than expected and need less repair and replacement. These models are important for creating robust, predictable, and economical processes that have strong potential for mainstream adoption on the commercial level. The effects of gamma radiation on solvent extraction ligands have been more extensively studied than the effects of alpha radiation. This is due to the inherent difficulty in producing a sufficient and confluent dose of alpha particles within a sample without leaving the sample contaminated with long lived radioactive isotopes. Helium ion beam and radioactive isotope sources have been studied in the literature. We have developed a method for studying the effects of high LET radiation in situ via {sup 10}B activation and the high LET particles that result from the {sup 10}B(n,a){sup 7}Li reaction which follows. Our model for dose involves solving a partial differential equation representing absorption by 10B of an isentropic field of neutrons penetrating a sample. This method has been applied to organic solutions of TBP and CMPO, two ligands common in TRU solvent extraction treatment processes. Rates

  3. Shielding computations for solution transfer lines from Analytical Lab to process cells of Demonstration Fast Reactor Plant (DFRP)

    International Nuclear Information System (INIS)

    Baskar, S.; Jose, M.T.; Baskaran, R.; Venkatraman, B.

    2018-01-01

    The diluted virgin solutions (both aqueous and organic) and aqueous analytical waste generated from experimental analysis of process solutions, pertaining to Fast Breeder Test Reactor (FBTR) and Prototype Fast Breeder Reactor (PFBR), in glove boxes of active analytical Laboratory (AAL) are pumped back to the process cells through a pipe in pipe arrangement. There are 6 transfer lines (Length 15-32 m), 2 for each type of transfer. The transfer lines passes through the area inside the AAL and also the operating area. Hence it is required to compute the necessary radial shielding requirement around the lines to limit the dose rates in both the areas to the permissible values as per the regulatory requirement

  4. Organic light-emitting diodes for lighting: High color quality by controlling energy transfer processes in host-guest-systems

    Science.gov (United States)

    Weichsel, Caroline; Reineke, Sebastian; Furno, Mauro; Lüssem, Björn; Leo, Karl

    2012-02-01

    Exciton generation and transfer processes in a multilayer organic light-emitting diode (OLED) are studied in order to realize OLEDs with warm white color coordinates and high color-rendering index (CRI). We investigate a host-guest-system containing four phosphorescent emitters and two matrix materials with different transport properties. We show, by time-resolved spectroscopy, that an energy back-transfer from the blue emitter to the matrix materials occurs, which can be used to transport excitons to the other emitter molecules. Furthermore, we investigate the excitonic and electronic transfer processes by designing suitable emission layer stacks. As a result, we obtain an OLED with Commission Internationale de lÉclairage (CIE) coordinates of (0.444;0.409), a CRI of 82, and a spectrum independent of the applied current. The OLED shows an external quantum efficiency of 10% and a luminous efficacy of 17.4 lm/W at 1000 cd/m2.

  5. BIOPROCESS SYSTEMS ENGINEERING: TRANSFERRING TRADITIONAL PROCESS ENGINEERING PRINCIPLES TO INDUSTRIAL BIOTECHNOLOGY

    Directory of Open Access Journals (Sweden)

    Michalis Koutinas

    2012-10-01

    Full Text Available The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control and optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  6. Bioprocess systems engineering: transferring traditional process engineering principles to industrial biotechnology

    Directory of Open Access Journals (Sweden)

    Michalis Koutinas

    2012-10-01

    Full Text Available The complexity of the regulatory network and the interactions that occur in the intracellular environment of microorganisms highlight the importance in developing tractable mechanistic models of cellular functions and systematic approaches for modelling biological systems. To this end, the existing process systems engineering approaches can serve as a vehicle for understanding, integrating and designing biological systems and processes. Here, we review the application of a holistic approach for the development of mathematical models of biological systems, from the initial conception of the model to its final application in model-based control & optimisation. We also discuss the use of mechanistic models that account for gene regulation, in an attempt to advance the empirical expressions traditionally used to describe micro-organism growth kinetics, and we highlight current and future challenges in mathematical biology. The modelling research framework discussed herein could prove beneficial for the design of optimal bioprocesses, employing rational and feasible approaches towards the efficient production of chemicals and pharmaceuticals.

  7. Using dual-process theory and analogical transfer to explain facilitation on a hypothetico-deductive reasoning task.

    Science.gov (United States)

    Koenig, Cynthia S; Platt, Richard D; Griggs, Richard A

    2007-07-01

    Using the analogical transfer paradigm, the present study investigated the competing explanations of Girotto and Legrenzi (Psychological Research 51: 129-135, 1993) and Griggs, Platt, Newstead, and Jackson (Thinking and Reasoning 4: 1-14, 1998) for facilitation on the SARS version of the THOG problem, a hypothetico-deductive reasoning task. Girotto and Legrenzi argue that facilitation is based on logical analysis of the task [System 2 reasoning in Evans's (Trends in Cognitive Sciences 7: 454-459, 2003) dual-process account of reasoning] while Griggs et al. maintain that facilitation is due to an attentional heuristic produced by the wording of the problem (System 1 reasoning). If Girotto and Legrenzi are correct, then System 2 reasoning, which is volitional and responsible for deductive reasoning, should be elicited, and participants should comprehend the solution principle of the THOG task and exhibit analogical transfer. However, if Griggs et al. are correct, then System 1 reasoning, which is responsible for heuristic problem solving strategies such as an attentional heuristic, should occur, and participants should not abstract the solution principle and transfer should not occur. Significant facilitation (68 and 82% correct) was only observed for the two SARS source problems, but significant analogical transfer did not occur. This lack of transfer suggests that System 1 reasoning was responsible for the facilitation observed in the SARS problem, supporting Griggs et al.'s attentional heuristic explanation. The present results also underscore the explanatory value of using analogical transfer rather than facilitation as the criterion for problem understanding.

  8. Quantum molecular dynamics study on energy transfer to the secondary electron in surface collision process of an ion

    International Nuclear Information System (INIS)

    Shibahara, M; Satake, S; Taniguchi, J

    2008-01-01

    In the present study the quantum molecular dynamics method was applied to an energy transfer problem to an electron during ionic surface collision process in order to elucidate how energy of ionic collision transfers to the emitted electrons. Effects of various physical parameters, such as the collision velocity and interaction strength between the observed electron and the classical particles on the energy transfer to the electron were investigated by the quantum molecular dynamics method when the potassium ion was collided with the surface so as to elucidate the energy path to the electron and the predominant factor of energy transfer to the electron. Effects of potential energy between the ion and the electron and that between the surface molecule and the electron on the electronic energy transfer were shown in the present paper. The energy transfer to the observed secondary electron through the potential energy term between the ion and the electron was much dependent on the ion collision energy although the energy increase to the observed secondary electron was not monotonous through the potential energy between the ion and surface molecules with the change of the ion collision energy

  9. Systematic Process Synthesis and Design Methods for Cost Effective Waste Minimization. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W.

    1998-02-14

    This report focuses on research done over the past four years under the grant with the above title. In addition, the report also includes a brief summary of work done before 1994 under grant DOE-DE-FG02-85ER13396. Finally, a complete list of publications that acknowledge support from this grant is listed at the end.

  10. Systematic Process Synthesis and Design Methods for Cost Effective Waste Minimization. Final report

    International Nuclear Information System (INIS)

    Biegler, L.T.; Grossmann, I.E.; Westerberg, A.W.

    1998-01-01

    This report focuses on research done over the past four years under the grant with the above title. In addition, the report also includes a brief summary of work done before 1994 under grant DOE-DE-FG02-85ER13396. Finally, a complete list of publications that acknowledge support from this grant is listed at the end

  11. Drying process optimization for an API solvate using heat transfer model of an agitated filter dryer.

    Science.gov (United States)

    Nere, Nandkishor K; Allen, Kimberley C; Marek, James C; Bordawekar, Shailendra V

    2012-10-01

    Drying an early stage active pharmaceutical ingredient candidate required excessively long cycle times in a pilot plant agitated filter dryer. The key to faster drying is to ensure sufficient heat transfer and minimize mass transfer limitations. Designing the right mixing protocol is of utmost importance to achieve efficient heat transfer. To this order, a composite model was developed for the removal of bound solvent that incorporates models for heat transfer and desolvation kinetics. The proposed heat transfer model differs from previously reported models in two respects: it accounts for the effects of a gas gap between the vessel wall and solids on the overall heat transfer coefficient, and headspace pressure on the mean free path length of the inert gas and thereby on the heat transfer between the vessel wall and the first layer of solids. A computational methodology was developed incorporating the effects of mixing and headspace pressure to simulate the drying profile using a modified model framework within the Dynochem software. A dryer operational protocol was designed based on the desolvation kinetics, thermal stability studies of wet and dry cake, and the understanding gained through model simulations, resulting in a multifold reduction in drying time. Copyright © 2012 Wiley-Liss, Inc.

  12. Defining the eHealth Information Niche in the Family Physician/Patient Examination and Knowledge Transfer Process

    Science.gov (United States)

    Ellington, Virginia Beth Elder

    2012-01-01

    This research study was undertaken to gain a richer understanding of the use of patient-introduced online health information during the physician/patient examination and knowledge transfer process. Utilizing qualitative data obtained from ten family physician interviews and workflow modeling using activity diagrams and task structure charts, this…

  13. 40 CFR 60.254 - Standards for coal processing and conveying equipment, coal storage systems, transfer and loading...

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false Standards for coal processing and conveying equipment, coal storage systems, transfer and loading systems, and open storage piles. 60.254... (CONTINUED) STANDARDS OF PERFORMANCE FOR NEW STATIONARY SOURCES Standards of Performance for Coal Preparation...

  14. A Novel Slurry-Based Biomass Reforming Process Final Technical Report

    Energy Technology Data Exchange (ETDEWEB)

    Emerson, Sean C. [United Technologies Research Center, East Hartford, CT (United States); Davis, Timothy D. [United Technologies Research Center, East Hartford, CT (United States); Peles, A. [United Technologies Research Center, East Hartford, CT (United States); She, Ying [United Technologies Research Center, East Hartford, CT (United States); Sheffel, Joshua [United Technologies Research Center, East Hartford, CT (United States); Willigan, Rhonda R. [United Technologies Research Center, East Hartford, CT (United States); Vanderspurt, Thomas H. [United Technologies Research Center, East Hartford, CT (United States); Zhu, Tianli [United Technologies Research Center, East Hartford, CT (United States)

    2011-09-30

    This project was focused on developing a catalytic means of producing H2 from raw, ground biomass, such as fast growing poplar trees, willow trees, or switch grass. The use of a renewable, biomass feedstock with minimal processing can enable a carbon neutral means of producing H2 in that the carbon dioxide produced from the process can be used in the environment to produce additional biomass. For economically viable production of H2, the biomass is hydrolyzed and then reformed without any additional purification steps. Any unreacted biomass and other byproduct streams are burned to provide process energy. Thus, the development of a catalyst that can operate in the demanding corrosive environment and presence of potential poisons is vital to this approach. The concept for this project is shown in Figure 1. The initial feed is assumed to be a >5 wt% slurry of ground wood in dilute base, such as potassium carbonate (K2CO3). Base hydrolysis and reforming of the wood is carried out at high but sub-critical pressures and temperatures in the presence of a solid catalyst. A Pd alloy membrane allows the continuous removal of pure , while the retentate, including methane is used as fuel in the plant. The project showed that it is possible to economically produce H2 from woody biomass in a carbon neutral manner. Technoeconomic analyses using HYSYS and the DOE's H2A tool [1] were used to design a 2000 ton day-1 (dry basis) biomass to hydrogen plant with an efficiency of 46% to 56%, depending on the mode of operation and economic assumptions, exceeding the DOE 2012 target of 43%. The cost of producing the hydrogen from such a plant would be in the range of $1/kg H2 to $2/kg H2. By using raw biomass as a feedstock, the cost of producing hydrogen at large biomass consumption rates is more cost effective than steam reforming of hydrocarbons or biomass gasification and can achieve the overall cost goals of the DOE Fuel Cell Technologies Program. The complete conversion of wood

  15. Charge-Transfer Processes in Warm Dense Matter: Selective Spectral Filtering for Laser-Accelerated Ion Beams

    Science.gov (United States)

    Braenzel, J.; Barriga-Carrasco, M. D.; Morales, R.; Schnürer, M.

    2018-05-01

    We investigate, both experimentally and theoretically, how the spectral distribution of laser accelerated carbon ions can be filtered by charge exchange processes in a double foil target setup. Carbon ions at multiple charge states with an initially wide kinetic energy spectrum, from 0.1 to 18 MeV, were detected with a remarkably narrow spectral bandwidth after they had passed through an ultrathin and partially ionized foil. With our theoretical calculations, we demonstrate that this process is a consequence of the evolution of the carbon ion charge states in the second foil. We calculated the resulting spectral distribution separately for each ion species by solving the rate equations for electron loss and capture processes within a collisional radiative model. We determine how the efficiency of charge transfer processes can be manipulated by controlling the ionization degree of the transfer matter.

  16. Heat transfer

    International Nuclear Information System (INIS)

    Saad, M.A.

    1985-01-01

    Heat transfer takes place between material systems as a result of a temperature difference. The transmission process involves energy conversions governed by the first and second laws of thermodynamics. The heat transfer proceeds from a high-temperature region to a low-temperature region, and because of the finite thermal potential, there is an increase in entropy. Thermodynamics, however, is concerned with equilibrium states, which includes thermal equilibrium, irrespective of the time necessary to attain these equilibrium states. But heat transfer is a result of thermal nonequilibrium conditions, therefore, the laws of thermodynamics alone cannot describe completely the heat transfer process. In practice, most engineering problems are concerned with the rate of heat transfer rather than the quantity of heat being transferred. Resort then is directed to the particular laws governing the transfer of heat. There are three distinct modes of heat transfer: conduction, convection, and radiation. Although these modes are discussed separately, all three types may occur simultaneously

  17. Primary processes in radiation chemistry. LET (Linear Energy Transfer) effect in water radiolysis

    International Nuclear Information System (INIS)

    Trupin-Wasselin, V.

    2000-01-01

    The effect of ionizing radiations on aqueous solutions leads to water ionization and then to the formation of radical species and molecular products (e - aq , H . , OH . , H 2 O 2 , H 2 ). It has been shown that the stopping power, characterized by the LET value (Linear Energy Transfer) becomes different when the nature of the ionizing radiations is different. Few data are nowadays available for high LET radiations such as protons and high energy heavy ions. These particles have been used to better understand the primary processes in radiation chemistry. The yield of a chemical dosimeter (the Fricke dosimeter) and those of the hydrogen peroxide have been determined for different LET. The effect of the dose rate on the Fricke dosimeter yield and on the H 2 O 2 yield has been studied too. When the dose rate increases, an increase of the molecular products yield is observed. At very high dose rate, this yield decreases on account of the attack of the molecular products by radicals. The H 2 O 2 yield in alkaline medium decreases when the pH reaches 12. This decrease can be explained by a slowing down of the H 2 O 2 formation velocity in alkaline medium. Superoxide radical has also been studied in this work. A new detection method: the time-resolved chemiluminescence has been perfected for this radical. This technique is more sensitive than the absorption spectroscopy. Experiments with heavy ions have allowed to determine the O 2 .- yield directly in the irradiation cell. The experimental results have been compared with those obtained with a Monte Carlo simulation code. (O.M.)

  18. Dielectronic recombination and resonant transfer excitation processes for helium-like krypton

    Institute of Scientific and Technical Information of China (English)

    Hu Xiao-Li; Qu Yi-Zhi; Zhang Song-Bin; Zhang Yu

    2012-01-01

    The relativistic configuration interaction method is employed to calculate the dielectronic recombination (DR) cross sections of helium-like krypton via the 1s21nl' (n =2,3,...,15) resonances.Then,the resonant transfer excitation (RTE) processes of Kr34+ colliding with H,He,H2,and CHx (x =0-4) targets are investigated under the impulse approximation.The needed Compton profiles of targets are obtained from the Hartree-Fock wave functions.The RTE cross sections are strongly dependent on DR resonant energies and strengths,and the electron momentum distributions of the target.For H2 and H targets,the ratio of their RTE cross sections changes from 1.85 for the 1s2121' to 1.88 for other resonances,which demonstrates the weak molecular effects on the Compton profiles of H2.For CHx (x =0-4) targets,the main contribution to the RTE cross section comes from the carbon atom since carbon carries 6 electrons;as the number of hydrogen increases in CHx,the RTE cross section almost increases by the same value,displaying the strong separate atom character for the hydrogen.However,further comparison of the individual orbital contributions of C(2p,2s,ls) and CH4(1t2,2a1,1a1) to the RTE cross sections shows that the molecular effects induce differences of about 25.1%,19.9%,and 0.2% between 2p-1t2,2s-2a1,and 1s-1a1 orbitals,respectively.

  19. Solution-processed, molecular photovoltaics that exploit hole transfer from non-fullerene, n-type materials

    KAUST Repository

    Douglas, Jessica D.

    2014-05-12

    Solution-processed organic photovoltaic devices containing p-type and non-fullerene n-type small molecules obtain power conversion efficiencies as high as 2.4%. The optoelectronic properties of the n-type material BT(TTI-n12)2 allow these devices to display high open-circuit voltages (>0.85 V) and generate significant charge carriers through hole transfer in addition to the electron-transfer pathway, which is common in fullerene-based devices. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Scaling analysis of the coupled heat transfer process in the high-temperature gas-cooled reactor core

    International Nuclear Information System (INIS)

    Conklin, J.C.

    1986-08-01

    The differential equations representing the coupled heat transfer from the solid nuclear core components to the helium in the coolant channels are scaled in terms of representative quantities. This scaling process identifies the relative importance of the various terms of the coupled differential equations. The relative importance of these terms is then used to simplify the numerical solution of the coupled heat transfer for two bounding cases of full-power operation and depressurization from full-system operating pressure for the Fort St. Vrain High-Temperature Gas-Cooled Reactor. This analysis rigorously justifies the simplified system of equations used in the nuclear safety analysis effort at Oak Ridge National Laboratory

  1. HTGR process heat program design and analysis. Final report, FY-79

    International Nuclear Information System (INIS)

    1979-12-01

    This report summarizes the results of concept design studies at General Atomic Company during FY-79 for an 842-MW(t) Very High Temperature Reactor (VHTR) utilizing an intermediate helium heat transfer loop to provide thermal energy for the production of hydrogen or reducing gas (H 2 + CO) by steam-reforming of a light hydrocarbon. Basic carbon sources may be coal, residual oil, or oil shale. The report summarizes conceptual design tasks conducted on the prestressed concrete reactor vessel, thermal barrier, intermediate heat exchanger, reformer, and steam generator. The substantial completion of first generation programming for a performance/optimization code and the preparation of a topical safety report and other safety evaluation studies are reported. The completion of balance of plant criteria specifications and a balance of plant cost estimate is also reported

  2. Identifying the key processes for technology transfer through spin-offs in academic institutions : a case study in Flanders and The Netherlands

    OpenAIRE

    Meysman, Jasmine; Cleyn, De, Sven H.; Braet, Johan

    2017-01-01

    Abstract: The position and role of technology transfer offices within universities and academic institutions have changed under influence of todays society, with diminishing government subsidies and technology transfer related policies having their impact on the technology transfer processes. In order to find out what the effect of this impact is, we performed a multiple-case study on six technology transfer offices in Flanders and The Netherlands. As a result of the study, we identified two ...

  3. Birthplace in Australia: Processes and interactions during the intrapartum transfer of women from planned homebirth to hospital.

    Science.gov (United States)

    Fox, Deborah; Sheehan, Athena; Homer, Caroline

    2018-02-01

    the aim of the study was to explore the views and experiences of women, midwives and obstetricians on the intrapartum transfer of women from planned homebirth to hospital in Australia. a Constructivist Grounded Theory approach was taken, to conceptualise the social interactions and processes grounded in the data. urban and regional areas in four states of south-eastern Australia. semi-structured qualitative interviews were conducted with 36 women, midwives and obstetricians who had experienced an intrapartum homebirth transfer within three years prior to the interview. Interviews were audio recorded and transcribed verbatim. women who were transferred to hospital from a planned homebirth made physical and psychological journeys out of their comfort zone, as they faced the uncertainty of changing expectations for their birth. The trusting relationship between a woman and her homebirth midwife was crucial to women's sense of safety and well-being in hospital. Midwives and obstetricians, when congregating in the hospital birthing rooms of transferred women, also felt out of their comfort zones. This was due to the challenges of converging with others who possessed conflicting paradigms of safety and risk in birth that were at odds with their own, and adapting to different routines, roles and responsibilities. These differences were derived from diverse professional, social and personal influences and often manifested in stereotyping behaviours and 'us and them' dynamics. When midwife-woman partnerships were respected as an inclusive part of women's care, collaboration ensued, conflict was ameliorated, and smooth transfers could be celebrated as successes of the maternity care system. supporting woman centred care in homebirth transfers means acknowledging the social challenges of collaborating in the unique context of a transferred woman's hospital birthing room. Understanding the power of the midwife-woman partnership, and its value to the health and well-being of

  4. Process system evaluation: Consolidated letter reports. Volume 3: Formulation of final products

    International Nuclear Information System (INIS)

    Josephson, G.B.; Chapman, C.C.; Albertsen, K.H.

    1996-04-01

    Glass discharged from the low-level waste (LLW) melter may be processed into a variety of different forms for storage and disposal. The purpose of the study reported here is to identify and evaluate processing options for forming the glass

  5. Transparent parsing : Head-driven processing of verb-final structures

    NARCIS (Netherlands)

    Mulders, I.C.M.C.

    2002-01-01

    The conceptual guideline underlying this study is that the goal of processing theory should be to construct a transparent parser. A transparent parser is a parser which employs only properties and relations that are available in the grammar, without resorting to processing-specific notions. Under

  6. Process acceptance and adjustment techniques for Swiss automatic screw machine parts. Final report

    International Nuclear Information System (INIS)

    Robb, J.M.

    1976-01-01

    Product tolerance requirements for small, cylindrical, piece parts produced on swiss automatic screw machines have progressed to the reliability limits of inspection equipment. The miniature size, configuration, and tolerance requirements (plus or minus 0.0001 in.) (0.00254 mm) of these parts preclude the use of screening techniques to accept product or adjust processes during setup and production runs; therefore, existing means of product acceptance and process adjustment must be refined or new techniques must be developed. The purpose of this endeavor has been to determine benefits gained through the implementation of a process acceptance technique (PAT) to swiss automatic screw machine processes. PAT is a statistical approach developed for the purpose of accepting product and centering processes for parts produced by selected, controlled processes. Through this endeavor a determination has been made of the conditions under which PAT can benefit a controlled process and some specific types of screw machine processes upon which PAT could be applied. However, it was also determined that PAT, if used indiscriminately, may become a record keeping burden when applied to more than one dimension at a given machining operation

  7. Solvent-refined-coal (SRC) process. Volume II. Sections V-XIV. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1982-05-01

    This report documents the completion of development work on the Solvent Refined Coal Process by The Pittsburgh and Midway Coal Mining Co. The work was initiated in 1966 under Office of Coal Research, US Department of Interior, Contract No. 14-01-0001-496 and completed under US Department of Energy Contract No. DE-AC05-79ET10104. This report discusses work leading to the development of the SRC-I and SRC-II processes, construction of the Fort Lewis Pilot Plant for the successful development of these processes, and results from the operation of this pilot plant. Process design data generated on a 1 ton-per-day Process Development Unit, bench-scale units and through numerous research projects in support of the design of major demonstration plants are also discussed in summary form and fully referenced in this report.

  8. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola's supply chain expertise for medicine availability in Tanzania.

    Science.gov (United States)

    Linnander, Erika; Yuan, Christina T; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania's Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a partnership

  9. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola’s supply chain expertise for medicine availability in Tanzania

    Science.gov (United States)

    Yuan, Christina T.; Ahmed, Shirin; Cherlin, Emily; Talbert-Slagle, Kristina; Curry, Leslie A.

    2017-01-01

    Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania’s Medical Stores Department (MSD). We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1) identifying relevant knowledge to transfer, (2) translating operational solutions from Coca-Cola to MSD, and (3) maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1) leveraging the receptivity of MSD leadership, (2) engaging a boundary spanner to identify knowledge to transfer, (3) promoting local recognition of commonalities across industries, (4) engaging external technical experts to manage translation activities, (5) developing tools with visible benefits for MSD, (6) investing in local relationships, and (7) providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a

  10. Process evaluation of knowledge transfer across industries: Leveraging Coca-Cola's supply chain expertise for medicine availability in Tanzania.

    Directory of Open Access Journals (Sweden)

    Erika Linnander

    Full Text Available Persistent gaps in the availability of essential medicines have slowed the achievement of global health targets. Despite the supply chain knowledge and expertise that ministries of health might glean from other industries, limited empirical research has examined the process of knowledge transfer from other industries into global public health. We examined a partnership designed to improve the availability of medical supplies in Tanzania by transferring knowledge from The Coca-Cola system to Tanzania's Medical Stores Department (MSD. We conducted a process evaluation including in-depth interviews with 70 participants between July 2011 and May 2014, corresponding to each phase of the partnership, with focus on challenges and strategies to address them, as well as benefits perceived by partners. Partners faced challenges in (1 identifying relevant knowledge to transfer, (2 translating operational solutions from Coca-Cola to MSD, and (3 maintaining momentum between project phases. Strategies to respond to these challenges emerged through real-time problem solving and included (1 leveraging the receptivity of MSD leadership, (2 engaging a boundary spanner to identify knowledge to transfer, (3 promoting local recognition of commonalities across industries, (4 engaging external technical experts to manage translation activities, (5 developing tools with visible benefits for MSD, (6 investing in local relationships, and (7 providing time and space for the partnership model to evolve. Benefits of the partnership perceived by MSD staff included enhanced collaboration and communication, more proactive orientations in managing operations, and greater attention to performance management. Benefits perceived by Coca-Cola staff included strengthened knowledge transfer capability and enhanced job satisfaction. Linking theoretical constructs with practical experiences from the field, we highlight the challenges, emergent strategies, and perceived benefits of a

  11. The cost of ethanol production from lignocellulosic biomass -- A comparison of selected alternative processes. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Grethlein, H.E.; Dill, T.

    1993-04-30

    The purpose of this report is to compare the cost of selected alternative processes for the conversion of lignocellulosic biomass to ethanol. In turn, this information will be used by the ARS/USDA to guide the management of research and development programs in biomass conversion. The report will identify where the cost leverages are for the selected alternatives and what performance parameters need to be achieved to improve the economics. The process alternatives considered here are not exhaustive, but are selected on the basis of having a reasonable potential in improving the economics of producing ethanol from biomass. When other alternatives come under consideration, they should be evaluated by the same methodology used in this report to give fair comparisons of opportunities. A generic plant design is developed for an annual production of 25 million gallons of anhydrous ethanol using corn stover as the model substrate at $30/dry ton. Standard chemical engineering techniques are used to give first order estimates of the capital and operating costs. Following the format of the corn to ethanol plant, there are nine sections to the plant; feed preparation, pretreatment, hydrolysis, fermentation, distillation and dehydration, stillage evaporation, storage and denaturation, utilities, and enzyme production. There are three pretreatment alternatives considered: the AFEX process, the modified AFEX process (which is abbreviated as MAFEX), and the STAKETECH process. These all use enzymatic hydrolysis and so an enzyme production section is included in the plant. The STAKETECH is the only commercially available process among the alternative processes.

  12. Final Scientific Report: Bacterial Nanowires and Extracellular Electron Transfer to Heavy Metals and Radionuclides by Bacterial Isolates from DOE Field Research Centers

    International Nuclear Information System (INIS)

    Nealson, Kenneth

    2016-01-01

    This proposal involved the study of bacteria capable of transferring electrons from the bacterial cells to electron acceptors located outside the cell. These could be either insoluble minerals that were transformed into soluble products upon the addition of electrons, or they could be soluble salts like uranium or chromium, that become insoluble upon the addition of electrons. This process is called extracellular electron transport or EET, and can be done directly by cellular contact, or via conductive appendages called bacterial nanowires. In this work we examined a number of different bacteria for their ability to perform EET, and also looked at their ability to produce conductive nanowires that can be used for EET at a distance away from the EET-capable cells. In the work, new bacteria were isolated, new abilities of EET were examined, and many new methods were developed, and carefully described in the literature. These studies set the stage for future work dealing with the bioremediation of toxic metals like uranium and chromium. They also point out that EET (and conductive nanowires) are far more common that had been appreciated, and may be involved with energy transfer not only in sediments, but in symbioses between different bacteria, and in symbiosis/pathogenesis between bacteria and higher organisms.

  13. Final Scientific Report: Bacterial Nanowires and Extracellular Electron Transfer to Heavy Metals and Radionuclides by Bacterial Isolates from DOE Field Research Centers

    Energy Technology Data Exchange (ETDEWEB)

    Nealson, Kenneth [Univ. of Southern California, Los Angeles, CA (United States)

    2016-12-20

    This proposal involved the study of bacteria capable of transferring electrons from the bacterial cells to electron acceptors located outside the cell. These could be either insoluble minerals that were transformed into soluble products upon the addition of electrons, or they could be soluble salts like uranium or chromium, that become insoluble upon the addition of electrons. This process is called extracellular electron transport or EET, and can be done directly by cellular contact, or via conductive appendages called bacterial nanowires. In this work we examined a number of different bacteria for their ability to perform EET, and also looked at their ability to produce conductive nanowires that can be used for EET at a distance away from the EET-capable cells. In the work, new bacteria were isolated, new abilities of EET were examined, and many new methods were developed, and carefully described in the literature. These studies set the stage for future work dealing with the bioremediation of toxic metals like uranium and chromium. They also point out that EET (and conductive nanowires) are far more common that had been appreciated, and may be involved with energy transfer not only in sediments, but in symbioses between different bacteria, and in symbiosis/pathogenesis between bacteria and higher organisms.

  14. SUMMARY REPORT OF THE DOE DIRECT LIQUEFACTION PROCESS DEVELOPMENT CAMPAIGN OF THE LATE TWENTIETH CENTURY; FINAL

    International Nuclear Information System (INIS)

    F.P. Burke; S.D. Brandes; D.C. McCoy; R.A. Winschel; D. Gray; G. Tomlinson

    2001-01-01

    Following the petroleum price and supply disruptions of 1973, the U.S. government began a substantial program to fund the development of alternative fuels. Direct coal liquefaction was one of the potential routes to alternative fuels. The direct coal liquefaction program was funded at substantial levels through 1982, and at much lower levels thereafter. Those processes that were of most interest during this period were designed to produce primarily distillate fuels. By 1999, U.S. government funding for the development of direct coal liquefaction ended. Now that the end of this campaign has arrived, it is appropriate to summarize the process learnings derived from it. This report is a summary of the process learnings derived from the DOE direct coal liquefaction process development campaign of the late twentieth century. The report concentrates on those process development programs that were designed to produce primarily distillate fuels and were largely funded by DOE and its predecessors in response to the petroleum supply and price disruptions of the 1970s. The report is structured as chapters written by different authors on most of the major individual DOE-funded process development programs. The focus of the report is process learnings, as opposed to, say, fundamental coal liquefaction science or equipment design. As detailed in the overview (Chapter 2), DOE's direct coal liquefaction campaign made substantial progress in improving the process yields and the quality of the distillate product. Much of the progress was made after termination by 1983 of the major demonstration programs of the ''first generation'' (SRC-II, H-Coal, EDS) processes

  15. Pre-engineering assessment of Enersolve Demonstration Project. Dairy processing plant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    1985-07-15

    This study involved evaluation of a dairy processing plant to demonstrate energy conservation potential and developing a strategy to realize energy savings through retrofitting and revamping. The cheese and whey making plant of Agropur Cooperative Agro-Alimentaire located in Quebec was selected as a representative Canadian dairy processing plant. The pre-engineering assessment included a review of existing facility at the plant and plant operation, identification of plant equipment or process steps where substantial economic benefits would result from retrofitting and revamping, and estimation of budgetary cost for the subsequent engineering, procurement, construction management and monitoring of the retrofitted equipment. 3 figs., 2 tabs.

  16. Water recovery and solid waste processing for aerospace and domestic applications. Volume 1: Final report

    Science.gov (United States)

    Murray, R. W.

    1973-01-01

    A comprehensive study of advanced water recovery and solid waste processing techniques employed in both aerospace and domestic or commercial applications is reported. A systems approach was used to synthesize a prototype system design of an advanced water treatment/waste processing system. Household water use characteristics were studied and modified through the use of low water use devices and a limited amount of water reuse. This modified household system was then used as a baseline system for development of several water treatment waste processing systems employing advanced techniques. A hybrid of these systems was next developed and a preliminary design was generated to define system and hardware functions.

  17. Low Voltage Electron Beam Processing Final Report CRADA No. TC-645-93-A

    Energy Technology Data Exchange (ETDEWEB)

    Chen, H. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Wakalopulos, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2017-10-16

    This CRADA project was established to develop a small, inexpensive sealed-tube electron beam processing system having immediate applications in industrial, high speed manufacturing processes, and in the Department of Energy (DOE) waste treatment/cleanup operations. The technical work involved the development and demonstration of a compact, sealed, 50-75 kilovolt (kV) EB generator prototype, including controls and power supply. The specific goals of this project were to develop a low cost vacuum tube capable of shooting an electron beam several inches into the air, and to demonstrate that wide area materials processing is feasible by stacking the tubes to produce continuous beams. During the project, we successfully demonstrated the producibility of a low cost electron beam system and several material processing operations of interest to US industry, DOE and, since September 11, 2001, the Homeland Security.

  18. Fact Sheet - Final Air Toxics Rule for Gold Mine Ore Processing and Production

    Science.gov (United States)

    Fact sheet summarizing main points of National Emissions Standards for Hazardous Air Pollutants for gold ore processing and production facilities, the seventh largest source of mercury air emission in the United States.

  19. Development of a process for quantifying the benefits of research : final report.

    Science.gov (United States)

    2017-07-04

    MnDOT Research Services funds and administers approximately 180 transportation research projects annually at a cost of slightly more than $3 million. This project developed an easy-to-apply process for quantifying the potential benefits of research a...

  20. Electric utility engineer`s FGD manual -- Volume 1: FGD process design. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-04

    Part 1 of the Electric Utility Engineer`s Flue Gas Desulfurization (FGD) Manual emphasizes the chemical and physical processes that form the basis for design and operation of lime- and limestone-based FGD systems applied to coal- or oil-fired steam electric generating stations. The objectives of Part 1 are: to provide a description of the chemical and physical design basis for lime- and limestone-based wet FGD systems; to identify and discuss the various process design parameters and process options that must be considered in developing a specification for a new FGD system; and to provide utility engineers with process knowledge useful for operating and optimizing a lime- or limestone-based wet FGD system.

  1. Compatibility of manufacturing process fluids with R-134a and polyolester lubricant. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Cavestri, R.C.; Schooley, D.L. [Imagination Resources, Inc., Dublin, OH (United States)

    1996-07-01

    This report includes a broad list of processing fluids that are known to be used to manufacture air conditioning and refrigeration products. Sixty-four process fluids from this list were selected for compatibility studies with R-134a and ICI EMKARATE RL32H (32 ISO) polyolester lubricant. Solutions or suspensions of the process fluid residues in polyolester lubricant were heated for 14 days at 175{degrees}C (347{degrees}F) in evacuated sealed glass tubes containing only valve steel coupons. Miscibility tests were performed at 90 wt.% R-134a, 10 wt.% polyolester lubricant with process fluid residue contaminate and were scanned in 10{degrees}C (18{degrees}F) increments over a temperature range of ambient to -40{degrees}C (-40{degrees}F). Any sign of turbidity, haze formation or oil separation was considered the immiscibility point.

  2. Final Report Collaborative Project: Improving the Representation of Coastal and Estuarine Processes in Earth System Models

    Energy Technology Data Exchange (ETDEWEB)

    Bryan, Frank [Univ. of Connecticut, Storrs, CT (United States); Dennis, John [Univ. of Connecticut, Storrs, CT (United States); MacCready, Parker [Univ. of Connecticut, Storrs, CT (United States); Whitney, Michael M. [Univ. of Connecticut, Storrs, CT (United States)

    2016-09-30

    This project aimed to improve long term global climate simulations by resolving and enhancing the representation of the processes involved in the cycling of freshwater through estuaries and coastal regions. This was a collaborative multi-institution project consisting of physical oceanographers, climate model developers, and computational scientists. It specifically targeted the DOE objectives of advancing simulation and predictive capability of climate models through improvements in resolution and physical process representation.

  3. Y-12 National Security Complex Emergency Management Hazards Assessment (EMHA) Process; FINAL

    International Nuclear Information System (INIS)

    Bailiff, E.F.; Bolling, J.D.

    2001-01-01

    This document establishes requirements and standard methods for the development and maintenance of the Emergency Management Hazards Assessment (EMHA) process used by the lead and all event contractors at the Y-12 Complex for emergency planning and preparedness. The EMHA process provides the technical basis for the Y-12 emergency management program. The instructions provided in this document include methods and requirements for performing the following emergency management activities at Y-12: (1) hazards identification; (2) hazards survey, and (3) hazards assessment

  4. Mechanistic modeling of heat transfer process governing pressure tube-to-calandria tube contact and fuel channel failure

    International Nuclear Information System (INIS)

    Luxat, J.C.

    2002-01-01

    Heat transfer behaviour and phenomena associated with ballooning deformation of a pressure tube into contact with a calandria tube have been analyzed and mechanistic models have been developed to describe the heat transfer and thermal-mechanical processes. These mechanistic models are applied to analyze experiments performed in various COG funded Contact Boiling Test series. Particular attention is given in the modeling to characterization of the conditions for which fuel channel failure may occur. Mechanistic models describing the governing heat transfer and thermal-mechanical processes are presented. The technical basis for characterizing parameters of the models from the general heat transfer literature is described. The validity of the models is demonstrated by comparison with experimental data. Fuel channel integrity criteria are proposed which are based upon three necessary and sequential mechanisms: Onset of CHF and local drypatch formation at contact; sustained film boiling in the post-contact period; and creep strain to failure of the calandria tube while in sustained film boiling. (author)

  5. 3D modelling of coupled mass and heat transfer of a convection-oven roasting process

    DEFF Research Database (Denmark)

    Feyissa, Aberham Hailu; Adler-Nissen, Jens; Gernaey, Krist

    2013-01-01

    A 3D mathematical model of coupled heat and mass transfer describing oven roasting of meat has been developed from first principles. The proposed mechanism for the mass transfer of water is modified and based on a critical literature review of the effect of heat on meat. The model equations...... are based on a conservation of mass and energy, coupled through Darcy's equations of porous media - the water flow is mainly pressure-driven. The developed model together with theoretical and experimental assessments were used to explain the heat and water transport and the effect of the change...

  6. Microfabrication of biomaterials by the sub-ps laser-induced forward transfer process

    International Nuclear Information System (INIS)

    Karaiskou, A.; Zergioti, I.; Fotakis, C.; Kapsetaki, M.; Kafetzopoulos, D.

    2003-01-01

    The precise fabrication of micro-dimensioned patterns of biomaterials by the laser microprinting technique using a sub-ps UV laser is described. An ultrashort UV laser has been used to transfer the biomaterial, with low angular divergence, and deposit it onto the substrate with minimum spread and high spatial resolution. The laser-transferred features of 100 μmx100 μm size have been studied by means of scanning electron microscopy and scanning laser confocal fluorescence microscopy. The analysis of DNA and protein microarrays provides an excellent tool to expand our knowledge of genome functions

  7. Final workshop proceedings of the collaborative project ''Crystalline ROCK retention processes''

    Energy Technology Data Exchange (ETDEWEB)

    Rabung, Thomas; Garcia, David; Montoya Vanessa; Molinero, Jorge (eds.)

    2014-07-01

    The present document is the proceedings of the Final Workshop of the EURATOM FP7 Collaborative Project CROCK (Crystalline Rock Retention Processes). The key driver for initiation the CP CROCK, identified by national Waste Management Organizations, is the undesired high uncertainty and the associated conservatism with respect to the radionuclide transport in the crystalline host-rock far-field around geological disposal of high-level radioactive wastes.

  8. Demonstration project in Volgograd on transfer of know-how from the district heating sector in Denmark to Russia. Final report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-08-01

    A demonstration project on district heating know-how has been financed by the Danish Technical Assistance Programme administrated by the Danish Energy Agency. A demonstration project in Volgograd was approved, with a budget of only 200.000 DKK (180.000 Rbl). The administration of the project, from fact finding to the final report, has been very efficient in particular to other technical assistance programmes. Although the total budget is low only around 15% of the manpower has been used on administration. The transfer of specific technical experience can be summarized in the following: Installation of small decentralized heat exchanger units for preparation of hot water; Construction of low-cost decentralized heat exchanger installations for preparation of hot water; Installation of thermostatic valves; Installation of small substations for heating and hot water; Use of drain pumps for draining under constructions of district heating pipes to prevent outside corrosion; Design principles for construction and rehabilitation of concrete duct systems with internal and outside draining; Design principles for preinsulated pipes; Principles for monitoring the quality of supply in a local district heating network at the lowest costs by monitoring the critical differential pressure. (EG)

  9. Geothermal absorption refrigeration for food processing industries. Final report, December 13, 1976--November 13, 1977

    Energy Technology Data Exchange (ETDEWEB)

    Harris, R.L.; Olson, G.K.; Mah, C.S.; Bujalski, J.H.

    1977-11-01

    The first step in the economic analysis of the integration of geothermally powered absorption refrigeration into a food processing plant was an evaluation of the potential geothermal sites in the Western United States. The evaluation covered availability of raw materials, transportation, adequate geothermal source, labor, and other requirements for food processing plants. Several attractive geothermal sites were identified--Raft River, Idaho; Sespe Hot Springs, California; Vale Hot Springs, Oregon; Weisler-Crane Creek, Idaho; Cosco Hot Springs, California; and the Imperial Valley, California. The most economically attractive food processing industry was then matched to the site based on its particular energy, raw material, and transportation requirements. The more promising food processors identified were for frozen potato or vegetable products, freeze-dried products, and meat processing. For the refrigeration temperature range of +32/sup 0/F to -40/sup 0/F and geothermal temperature range of 212/sup 0/F to 300/sup 0/F, an absorption refrigeration system had to be identified, designed, and evaluated. Both the conventional ammonia/water and an organic absorption refrigeration system using monochlorodifluoromethane (R-22) as the refrigerant and dimethyl formamide (DMF) as the absorbent were studied. In general, only a 60/sup 0/F to 100/sup 0/F temperature drop would be effectively used for refrigeration leaving the remainder of the allowable temperature drop available for other use. The economic evaluation of the geothermal system installed in a food processing plant required the comparison of several principal alternatives. These alternatives were evaluated for three different food processing plants located at their optimum geothermal site: a forzen potato product processing plant located at Raft River, Idaho; a freeze-dried product plant located at Sespe Hot Springs, California; a beef slaughter operation located in the Imperial Valley of California. (JGB)

  10. Final Report: "Collaborative Project. Understanding the Chemical Processes That Affect Growth Rates of Freshly Nucleated Particles"

    Energy Technology Data Exchange (ETDEWEB)

    Smith, James N. [NCAR, Boulder, CO (United States); McMurry, Peter H. [NCAR, Boulder, CO (United States)

    2015-11-12

    This final technical report describes our research activities that have, as the ultimate goal, the development of a model that explains growth rates of freshly nucleated particles. The research activities, which combine field observations with laboratory experiments, explore the relationship between concentrations of gas-phase species that contribute to growth and the rates at which those species are taken up. We also describe measurements of the chemical composition of freshly nucleated particles in a variety of locales, as well as properties (especially hygroscopicity) that influence their effects on climate. Our measurements include a self-organized, DOE-ARM funded project at the Southern Great Plains site, the New Particle Formation Study (NPFS), which took place during spring 2013. NPFS data are available to the research community on the ARM data archive, providing a unique suite observations of trace gas and aerosols that are associated with the formation and growth of atmospheric aerosol particles.

  11. Foaming and Antifoaming and Gas Entrainment in Radioactive Waste Pretreatment and Immobilization Processes. Final Report

    International Nuclear Information System (INIS)

    Wasan, Darsh T.

    2007-01-01

    The Savannah River Site (SRS) and Hanford site are in the process of stabilizing millions of gallons of radioactive waste slurries remaining from production of nuclear materials for the Department of Energy (DOE). The Defense Waste Processing Facility (DWPF) at SRS is currently vitrifying the waste in borosilicate glass, while the facilities at the Hanford site are in the construction phase. Both processes utilize slurry-fed joule-heated melters to vitrify the waste slurries. The DWPF has experienced difficulty during operations. The cause of the operational problems has been attributed to foaming, gas entrainment and the rheological properties of the process slurries. The rheological properties of the waste slurries limit the total solids content that can be processed by the remote equipment during the pretreatment and meter feed processes. Highly viscous material can lead to air entrainment during agitation and difficulties with pump operations. Excessive foaming in waste evaporators can cause carryover of radionuclides and non-radioactive waste to the condensate system. Experimental and theoretical investigations of the surface phenomena, suspension rheology and bubble generation of interactions that lead to foaming and air entrainment problems in the DOE High Level and Low Activity Radioactive Waste separation and immobilization processes were pursued under this project. The first major task accomplished in the grant proposal involved development of a theoretical model of the phenomenon of foaming in a three-phase gas-liquid-solid slurry system. This work was presented in a recently completed Ph.D. thesis (9). The second major task involved the investigation of the inter-particle interaction and microstructure formation in a model slurry by the batch sedimentation method. Both experiments and modeling studies were carried out. The results were presented in a recently completed Ph.D. thesis. The third task involved the use of laser confocal microscopy to study

  12. St. Louis demonstration final report: refuse processing plant equipment, facilities, and environmental evaluations

    Energy Technology Data Exchange (ETDEWEB)

    Fiscus, D.E.; Gorman, P.G.; Schrag, M.P.; Shannon, L.J.

    1977-09-01

    The results are presented of processing plant evaluations of the St. Louis-Union Electric Refuse Fuel Project, including equipment and facilities as well as assessment of environmental emissions at both the processing and the power plants. Data on plant material flows and operating parameters, plant operating costs, characteristics of plant material flows, and emissions from various processing operations were obtained during a testing program encompassing 53 calendar weeks. Refuse derived fuel (RDF) is the major product (80.6% by weight) of the refuse processing plant, the other being ferrous metal scrap, a marketable by-product. Average operating costs for the entire evaluation period were $8.26/Mg ($7.49/ton). The average overall processing rate for the period was 168 Mg/8-h day (185.5 tons/8-h day) at 31.0 Mg/h (34.2 tons/h). Future plants using an air classification system of the type used at the St. Louis demonstration plant will need an emissions control device for particulates from the large de-entrainment cyclone. Also in the air exhaust from the cyclone were total counts of bacteria and viruses several times higher than those of suburban ambient air. No water effluent or noise exposure problems were encountered, although landfill leachate mixed with ground water could result in contamination, given low dilution rates.

  13. Engineering evaluation of selective ion-exchange radioactive waste processing at Susquehanna Nuclear Power Plant: Final report

    International Nuclear Information System (INIS)

    Vance, J.N.

    1989-01-01

    This final report describes the work performed of an engineering feasibility evaluation of the use and benefits of a selective ion exchange treatment process in the Susquehanna radwaste system. The evaluation addressed operability and processing capability concerns, radiological impacts of operating in the radwaste discharge mode, required hardware modifications to the radwaste and plant make-up systems, impacts on plant water quality limits and impacts on higher waste classifications. An economic analysis is also reported showing the economic benefit of the use of selective ion exchange. 1 ref., 4 figs., 13 tabs

  14. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    International Nuclear Information System (INIS)

    TOMASZEWSKI, T.A.

    2000-01-01

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management

  15. Waste Receiving and Processing (WRAP) Facility Final Safety Analysis Report (FSAR)

    Energy Technology Data Exchange (ETDEWEB)

    TOMASZEWSKI, T.A.

    2000-04-25

    The Waste Receiving and Processing Facility (WRAP), 2336W Building, on the Hanford Site is designed to receive, confirm, repackage, certify, treat, store, and ship contact-handled transuranic and low-level radioactive waste from past and present U.S. Department of Energy activities. The WRAP facility is comprised of three buildings: 2336W, the main processing facility (also referred to generically as WRAP); 2740W, an administrative support building; and 2620W, a maintenance support building. The support buildings are subject to the normal hazards associated with industrial buildings (no radiological materials are handled) and are not part of this analysis except as they are impacted by operations in the processing building, 2336W. WRAP is designed to provide safer, more efficient methods of handling the waste than currently exist on the Hanford Site and contributes to the achievement of as low as reasonably achievable goals for Hanford Site waste management.

  16. Final Technical Report - Autothermal Styrene Manufacturing Process with Net Export of Energy

    Energy Technology Data Exchange (ETDEWEB)

    Trubac, Robert , E.; Lin, Feng; Ghosh, Ruma: Greene, Marvin

    2011-11-29

    The overall objectives of the project were to: (a) develop an economically competitive processing technology for styrene monomer (SM) that would reduce process energy requirements by a minimum 25% relative to those of conventional technology while achieving a minimum 10% ROI; and (b) advance the technology towards commercial readiness. This technology is referred to as OMT (Oxymethylation of Toluene). The unique energy savings feature of the OMT technology would be replacement of the conventional benzene and ethylene feedstocks with toluene, methane in natural gas and air or oxygen, the latter of which have much lower specific energy of production values. As an oxidative technology, OMT is a net energy exporter rather than a net energy consumer like the conventional ethylbenzene/styrene (EB/SM) process. OMT plants would ultimately reduce the cost of styrene monomer which in turn will decrease the costs of polystyrene making it perhaps more cost competitive with competing polymers such as polypropylene.

  17. Priority listing of industrial processes by total energy consumption and potential for savings. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Streb, A.J.

    1977-01-01

    A survey of eight of the most energy-intensive segments of the U.S. industry is made to quantify the energy consumed in the principal process units, to identify areas in which significant improvement appear possible, and to rank the process units in terms of total energy consumption and the potential for improvement. Data on the steel, paper, aluminum, textile, cement, and glass industries, petroleum refineries, and olefins and derivative products industries were compiled to help plan the development of new energy sources and to provide targets for energy conservation activities. (MCW)

  18. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  19. Fraction transfer process in on-line comprehensive two-dimensional liquid phase separations

    Czech Academy of Sciences Publication Activity Database

    Česla, P.; Křenková, Jana

    2017-01-01

    Roč. 40, č. 1 (2017), s. 109-123 ISSN 1615-9306 R&D Projects: GA ČR(CZ) GA14-06319S Institutional support: RVO:68081715 Keywords : capillary electrophoresis * comprehensive liquid chromatography * fraction transfer * two-dimensional separations * liquid chromatography Subject RIV: CB - Analytical Chemistry, Separation OBOR OECD: Analytical chemistry Impact factor: 2.557, year: 2016

  20. Framing and interorganizational knowledge transfer: A process study of collaborative innovation in the aircraft industry

    NARCIS (Netherlands)

    van Burg, J.C.; Berends, J.J.; van Raaij, E.

    2014-01-01

    This article explains how and why organizational actors' decisions about interorganizational knowledge transfer might change over time. We find that organizational actors' framing of future innovation developments, as either an opportunity or a threat, motivates them to engage or disengage in