WorldWideScience

Sample records for transfer molding process

  1. Transferability of glass lens molding

    Science.gov (United States)

    Katsuki, Masahide

    2006-02-01

    Sphere lenses have been used for long time. But it is well known that sphere lenses theoretically have spherical aberration, coma and so on. And, aspheric lenses attract attention recently. Plastic lenses are molded easily with injection machines, and are relatively low cost. They are suitable for mass production. On the other hand, glass lenses have several excellent features such as high refractive index, heat resistance and so on. Many aspheric glass lenses came to be used for the latest digital camera and mobile phone camera module. It is very difficult to produce aspheric glass lenses by conventional process of curve generating and polishing. For the solution of this problem, Glass Molding Machine was developed and is spreading through the market. High precision mold is necessary to mold glass lenses with Glass Molding Machine. The mold core is ground or turned by high precision NC aspheric generator. To obtain higher transferability of the mold core, the function of the molding machine and the conditions of molding are very important. But because of high molding temperature, there are factors of thermal expansion and contraction of the mold and glass material. And it is hard to avoid the factors. In this session, I introduce following items. [1] Technology of glass molding and the machine is introduced. [2] The transferability of glass molding is analyzed with some data of glass lenses molded. [3] Compensation of molding shape error is discussed with examples.

  2. Underground processing method for radiation-contaminated material and transferring method for buffer molding material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Asano, Eiichi; Yamagata, Junji; Ninomiya, Nobuo; Kawakami, Susumu.

    1995-01-01

    A bottomed molding material (buffer molding material) is formed into a bottomed cylindrical shape by solidifying, under pressure, powders such as of bentonite into a highly dense state by a cold isotropic pressing or the like, having a hole for accepting and containing a vessel for radiation-contaminated materials. The bottomed cylindrical molding material is loaded on a transferring vessel, and transferred to a position near the site for underground disposal. The bottomed cylindrical molding material having a upwarded containing hole is buried in the cave for disposal. The container for radiation-contaminated material is loaded and contained in the containing hole of the bottomed cylindrical molding material. A next container for radiation-contaminated materials is juxtaposed thereover. Then, a bottomed cylindrical molding material having a downwarded containing hole is covered to the container for the radiation-contaminated material in a state being protruded upwardly. The radiation-contaminated material is thus closed by a buffer material of the same material at the circumference thereof. (I.N.)

  3. Verification of a three-dimensional resin transfer molding process simulation model

    Science.gov (United States)

    Fingerson, John C.; Loos, Alfred C.; Dexter, H. Benson

    1995-01-01

    Experimental evidence was obtained to complete the verification of the parameters needed for input to a three-dimensional finite element model simulating the resin flow and cure through an orthotropic fabric preform. The material characterizations completed include resin kinetics and viscosity models, as well as preform permeability and compaction models. The steady-state and advancing front permeability measurement methods are compared. The results indicate that both methods yield similar permeabilities for a plain weave, bi-axial fiberglass fabric. Also, a method to determine principal directions and permeabilities is discussed and results are shown for a multi-axial warp knit preform. The flow of resin through a blade-stiffened preform was modeled and experiments were completed to verify the results. The predicted inlet pressure was approximately 65% of the measured value. A parametric study was performed to explain differences in measured and predicted flow front advancement and inlet pressures. Furthermore, PR-500 epoxy resin/IM7 8HS carbon fabric flat panels were fabricated by the Resin Transfer Molding process. Tests were completed utilizing both perimeter injection and center-port injection as resin inlet boundary conditions. The mold was instrumented with FDEMS sensors, pressure transducers, and thermocouples to monitor the process conditions. Results include a comparison of predicted and measured inlet pressures and flow front position. For the perimeter injection case, the measured inlet pressure and flow front results compared well to the predicted results. The results of the center-port injection case showed that the predicted inlet pressure was approximately 50% of the measured inlet pressure. Also, measured flow front position data did not agree well with the predicted results. Possible reasons for error include fiber deformation at the resin inlet and a lag in FDEMS sensor wet-out due to low mold pressures.

  4. Porous media heat transfer for injection molding

    Science.gov (United States)

    Beer, Neil Reginald

    2016-05-31

    The cooling of injection molded plastic is targeted. Coolant flows into a porous medium disposed within an injection molding component via a porous medium inlet. The porous medium is thermally coupled to a mold cavity configured to receive injected liquid plastic. The porous medium beneficially allows for an increased rate of heat transfer from the injected liquid plastic to the coolant and provides additional structural support over a hollow cooling well. When the temperature of the injected liquid plastic falls below a solidifying temperature threshold, the molded component is ejected and collected.

  5. The experimental study of heat transfer around molds inside a model autoclave

    Science.gov (United States)

    Ghamlouch, Taleb; Roux, Stéphane; Lefèvre, Nicolas; Bailleul, Jean-Luc; Sobotka, Vincent

    2018-05-01

    The temperature distribution within composite parts manufactured inside autoclaves plays a key role in determining the parts quality at the end of the curing cycle. Indeed, heat transfer between the parts and the surroundings inside an autoclave is strongly coupled with the flow field around the molds and can be modeled through the convective heat transfer coefficient (HTC). The aerodynamically unsuitable geometry of the molds generates complex turbulent non-uniform flows around them accompanied with the presence of dead zones. This heterogeneity can imply non-uniform convective heat transfers leading to temperature gradients inside parts that can be prejudicial. Given this fact, the purpose of this study is to perform experimental measurements in order to describe the flow field and the convective heat transfer behavior around representative industrial molds installed inside a home-made model. A key point of our model autoclave is the ease of use of non-intrusive measuring instruments: the Particle Image Velocimetry (PIV) technique and infrared imaging camera for the study of the flow field and the heat transfer coefficient distribution around the molds respectively. The experimental measurements are then compared to computational fluid dynamics (CFD) calculations performed on the computer code ANSYS Fluent 16.0®. This investigation has revealed, as expected, a non-uniform distribution of the convective heat transfer coefficient around the molds and therefore the presence of thermal gradients which can reduce the composite parts quality during an autoclave process. A good agreement has been achieved between the experimental and the numerical results leading then to the validation of the performed numerical simulations.

  6. Resin transfer molding for advanced composite primary aircraft structures

    Science.gov (United States)

    Markus, Alan; Palmer, Ray

    1991-01-01

    Resin Transfer Molding (RTM) has been identified by Douglas Aircraft Company (DAC) and industry to be one of the promising processes being developed today which can break the cost barrier of implementing composite primary structures into a commercial aircraft production environment. The RTM process developments and scale-up plans Douglas Aircrart will be conducting under the NASA ACT contract are discussed.

  7. A coupled model on fluid flow, heat transfer and solidification in continuous casting mold

    Directory of Open Access Journals (Sweden)

    Xu-bin Zhang

    2017-11-01

    Full Text Available Fluid flow, heat transfer and solidification of steel in the mold are so complex but crucial, determining the surface quality of the continuous casting slab. In the current study, a 2D numerical model was established by Fluent software to simulate the fluid flow, heat transfer and solidification of the steel in the mold. The VOF model and k-ε model were applied to simulate the flow field of the three phases (steel, slag and air, and solidification model was used to simulate the solidification process. The phenomena at the meniscus were also explored through interfacial tension between the liquid steel and slag as well as the mold oscillation. The model included a 20 mm thick mold to clarify the heat transfer and the temperature distribution of the mold. The simulation results show that the liquid steel flows as upper backflow and lower backflow in the mold, and that a small circulation forms at the meniscus. The liquid slag flows away from the corner at the meniscus or infiltrates into the gap between the mold and the shell with the mold oscillating at the negative strip stage or at the positive strip stage. The simulated pitch and the depth of oscillation marks approximate to the theoretical pitch and measured depth on the slab.

  8. Composite fabrication via resin transfer molding technology

    Energy Technology Data Exchange (ETDEWEB)

    Jamison, G.M.; Domeier, L.A.

    1996-04-01

    The IMPReS (Integrated Modeling and Processing of Resin-based Structures) Program was funded in FY95 to consolidate, evaluate and enhance Sandia`s capabilities in the design and fabrication of composite structures. A key driver of this and related programs was the need for more agile product development processes and for model based design and fabrication tools across all of Sandia`s material technologies. A team of polymer, composite and modeling personnel was assembled to benchmark Sandia`s existing expertise in this area relative to industrial and academic programs and to initiate the tasks required to meet Sandia`s future needs. RTM (Resin Transfer Molding) was selected as the focus composite fabrication technology due to its versatility and growing use in industry. Modeling efforts focused on the prediction of composite mechanical properties and failure/damage mechanisms and also on the uncured resin flow processes typical of RTM. Appropriate molds and test composites were fabricated and model validation studies begun. This report summarizes and archives the modeling and fabrication studies carried out under IMPReS and evaluates the status of composite technology within Sandia. It should provide a complete and convenient baseline for future composite technology efforts within Sandia.

  9. Extremely environment-hard and low work function transfer-mold field emitter arrays

    Energy Technology Data Exchange (ETDEWEB)

    Nakamoto, Masayuki, E-mail: m-nakamoto@rie.shizuoka.ac.jp [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan); Moon, Jonghyun [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan)

    2013-06-15

    Extremely environment-hard and low work function field-emitter arrays (FEAs) were fabricated by a transfer-mold emitter fabrication method to produce highly reliable vacuum nanoelectronic devices able to operate stably at low voltage in highly oxidizing atmospheres. Amorphous carbon (a-C) having a work function of 3.6 eV and sp{sup 3} fraction of 85.6% prepared by plasma-enhanced chemical vapor deposition was used as the emitter material. The field-emission characteristics of the obtained transfer-mold FEAs strongly depended on their work function and morphology. The environment-hard characteristics of the transfer-mold a-C FEAs were compared with those of the transfer-mold titanium nitride FEAs and nickel FEAs. X-ray photoelectron spectroscopy was used to confirm the stable chemical states of the FEAs after oxygen radical treatment. The small amount of material oxidized (6.3%) at the surface of the a-C FEAs compared with 11.8% for the TiN-FEAs and 39.0% for Ni FEAs after oxygen radical treatment explained their almost constant work function in oxidizing atmospheres. The emission fluctuation rates of transfer-mold a-C FEAs without resistive layers under in situ radical treatment were as low as ±5.0%, compared with 5–100% for conventional FEAs with resistive layers not under highly oxidizing atmospheres. Therefore, the present environment-hard and low work function transfer-mold a-C FEAs are expected to be useful for reliable vacuum nanoelectronic devices.

  10. Functional nanostructures on injection molded plastic

    DEFF Research Database (Denmark)

    Johansson, Alicia Charlotte; Søgaard, Emil; Andersen, Nis Korsgaard

    Nanotechnology can be used to make inexpensive plastic parts with functional surfaces. The plastic parts can be molded using a standard injection molding process. The nanostructures are directly transferred from the surface of the molding tool to the surface of the molded plastic part during...

  11. ''Heat Transfer at the Mold-Metal Interface in Permanent Mold Casting of Aluminum Alloys'' Final Project Report; FINAL

    International Nuclear Information System (INIS)

    Pehlke, R. D.; Cookson, John M.; Shouwei Hao; Prasad Krishna; Bilkey, Kevin T.

    2001-01-01

    This project on heat transfer coefficients in metal permanent mold casting has been conducted in three areas. They are the theoretical study at the University of Michigan, the experimental investigation of squeeze casting at CMI-Tech Center (Now Hayes-Lemmerz Technical Center) and the experimental investigation of low pressure permanent mold casting at Amcast Automotive

  12. Effecting aging time of epoxy molding compound to molding process for integrated circuit packaging

    Science.gov (United States)

    Tachapitunsuk, Jirayu; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about effecting aging time of epoxy molding compound (EMC) that effect to reliability performance of integrated circuit (IC) package in molding process. Molding process is so important of IC packaging process for protecting IC chip (or die) from temperature and humidity environment using encapsulated EMC. For general molding process, EMC are stored in the frozen at 5°C and left at room temperature at 25 °C for aging time on self before molding of die onto lead frame is 24 hours. The aging time effect to reliability performance of IC package due to different temperature and humidity inside the package. In experiment, aging time of EMC were varied from 0 to 24 hours for molding process of SOIC-8L packages. For analysis, these packages were tested by x-ray and scanning acoustic microscope to analyze properties of EMC with an aging time and also analyzed delamination, internal void, and wire sweep inside the packages with different aging time. The results revealed that different aging time of EMC effect to properties and reliability performance of molding process.

  13. A Study of the Heat Transfer Behavior of Mold Fluxes with Different Amounts of Al2O3

    Directory of Open Access Journals (Sweden)

    Lejun Zhou

    2016-06-01

    Full Text Available The element Al in molten aluminum containing steel reacts with the liquid mold flux and thus be transferred into the mold flux during the continuous casting process. Additionally, the increase in alumina in a mold flux changes its performance significantly. Thus, in this paper, the heat transfer properties of mold fluxes with the Al2O3 content ranging from 7 to 40 wt. % were studied with the Infrared Emitter Technique (IET. Results found that heat flux at the final steady state decreased from 423 kW·m−2 to 372 kW·m−2 with the increase in Al2O3 content from 7% to 30%, but it increased to 383 kW·m−2 when the Al2O3 content was further increased to 40%. Both crystalline layer thickness and crystalline fraction first increased, then decreased with the further addition of A2O3 content. Moreover, it indicated that the heat transfer process inside the mold was dominated by both a crystallization of mold flux and the resulting interfacial thermal resistance. Further, the Rint increased from 9.2 × 10−4 m2·kW−1 to 11.0 × 10−4 m2·kW−1 and then to 16.0 × 10−4 m2·kW−1 when the addition of Al2O3 content increased from 7% to 20% and then to 30%, respectively; however, it decreased to 13.6 × 10−4 m2·kW−1 when the Al2O3 content reached 40%.

  14. Vial freeze-drying, part 1: new insights into heat transfer characteristics of tubing and molded vials.

    Science.gov (United States)

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-03-01

    In order to optimize a freeze-drying cycle, information regarding the heat transfer characteristics of the container system is imperative. Two most recently developed tubing (TopLyo™) and molded (EasyLyo™) vial designs were compared with a standard serum tubing and molded vial, a polymer vial (TopPac™), and an amber molded EasyLyo™. In addition, the impact of methodology on the determination of reliable vial heat transfer coefficient (K(v) ) data is examined in detail. All K(v) s were gravimetrically determined by sublimation tests with pure water at 50, 100, 200, and 400 mTorr. In contrast to the traditional assumption that molded vials exhibit inefficient heat transfer characteristics, these vials showed a very similar performance compared with their serum tubing counterparts in the relevant pressure range for freeze-drying. At 100 mTorr, the TopLyo™ center vials show only 4% higher K(v) values than the EasyLyo™ center vials. All glass vials outmatch the polymer vial in terms of heat transfer, up to 30% elevated heat transfer for the TopLyo™ center vials at 400 mTorr. Sublimation tests have demonstrated to be a valuable tool to investigate the heat transfer characteristics of vials, but results are dependent on methodology. New developments in molded vial manufacturing lead to improved heat transfer performance. Copyright © 2011 Wiley Periodicals, Inc.

  15. Processing and Properties of Vacuum Assisted Resin Transfer Molded Phenylethynyl Terminated Imide Composites

    Science.gov (United States)

    Cano, Roberto J.; Ghose, Sayata; Watson, Kent A.; Chunchu, Prasad B.; Jensen, Brian J.; Connell, John W.

    2012-01-01

    Polyimide composites are very attractive for applications that require a high strength to weight ratio and thermal stability. Recent work at NASA Langley Research Center (LaRC) has concentrated on developing new polyimide resin systems that can be processed without the use of an autoclave for advanced aerospace applications. Due to their low melt viscosities and long melt stability, certain phenylethynyl terminated imides (PETI) can be processed into composites using high temperature vacuum assisted resin transfer molding (HT-VARTM). VARTM has shown the potential to reduce the manufacturing cost of composite structures. In the current study, two PETI resins, LARC(Trademark) PETI-330 and LARC(Trademark) PETI-9, were infused into carbon fiber preforms at 260 C and cured at temperatures up to 371 C. Photomicrographs of polished cross sections were taken and void contents, determined by acid digestion, were below 4.5%. Mechanical properties including short block compression (SBC), compression after impact (CAI), and open hole compression (OHC) were determined at room temperature, 177 C, and 288 C. Both PETI-9 and PETI-330 composites demonstrated very good retention of mechanical properties at elevated temperatures. SBC and OHC properties after aging for 1000 hours at temperatures up to 288 C were also determined.

  16. Process for molding improved polyethylene

    International Nuclear Information System (INIS)

    Kanai, Masanori; Aine, Norio; Nakada, Shinsaku.

    1962-01-01

    Various configurations in size and shape of polyethylene are molded by: (a) irradiating powders of polyethylene with ionizing radiations in the presence of oxygen to the extent of producing substantially no cross-linking among the molecules of polyethylene, and thereafter (b) molding the thus irradiated powders of polyethylene at 100-250 0 C to cross-link the molding. In this process, a uniform and desirable degree of cross-linking and any desirable configuration are provided for the polyethylene molding. Any extruder and any molding machine producing heat can be employed in this process. In embodiments, the radiation dose units may preferably be 1x10 6 to 1.5x10 7 roentgen. The ionizing radiations may be X-rays, gamma-rays or electron beams, but preferably gamma-rays. The preheating prior to molding may be effected in vacuum, in inert gas, or in oxygen at 100-250 0 C, but preferably in oxygen at 100 0 C. In an example, a polyethylene powder of 100 mesh was irradiated with gamma-rays from a Co-60 source with a dose of 3.1x10 6 r at a dose rate of 5.5x10 4 r/hr in air, then preheated in air at 80 0 C for 1 hr, and finally extruded to form a rod of 5 mm phi at 200 0 C. max. The degree of product cross-linking was 0% after irradiation in step (a), and 38% after heating in step (b). (Iwakiri, K.)

  17. Polyimide Composites Properties of RTM370 Fabricated by Vacuum Assisted Resins Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, Jim M.; Mintz, Eric A.

    2011-01-01

    RTM370 imide resin based on 2,3,3 ,4 -biphenyl dianhydride ( a-BPDA), 3,4 -oxydianinline (3,4 -ODA) with 4-phenylethynylphthalic (PEPA) endcap has shown to exhibit high Tg (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been fabricated into composites with T650-35 carbon fabrics by resin transfer molding (RTM) successfully. RTM370 composites exhibit excellent mechanical properties up to 327 C (620 F), and outstanding property retention after aging at 288 C (550 F) for 1000 hrs. In this presentation, RTM 370 composites will be fabricated by vacuum assisted resins transfer molding (VARTM), using vacuum bags without mold. The mechanical properties of RTM370 composites fabricated by VARTM will be compared to those of RTM370 made by RTM.

  18. Forming of complex-shaped composite tubes using optimized bladder-assisted resin transfer molding

    Science.gov (United States)

    Schillfahrt, Christian; Fauster, Ewald; Schledjewski, Ralf

    2018-05-01

    This work addresses the manufacturing of tubular composite structures by means of bladder-assisted resin transfer molding using elastomeric bladders. In order to achieve successful processing of such parts, knowledge of the compaction and impregnation behavior of the textile preform is vital. Hence, efficient analytical models that describe the influencing parameters of the preform compaction and filling stage were developed and verified through practical experiments. A process window describing optimal and critical operating conditions during the injection stage was created by evaluating the impact of the relevant process pressures on filling time. Finally, a cascaded injection procedure was investigated that particularly facilitates the manufacturing of long composite tubes.

  19. Rapid control of mold temperature during injection molding process

    Energy Technology Data Exchange (ETDEWEB)

    Liparoti, Sara; Titomanlio, Giuseppe [Department of Industrial Engineering, University of Salerno Via Giovanni Paolo II, 132, 84084 Fisciano (Italy); Hunag, Tsang Min; Cakmak, Mukerrem [Department of Polymer Engineering, The University of Akron, Akron, OH 44325 (United States); Sorrentino, Andrea [Institute for Polymers, Composite and Biomaterials (IPCB) - CNR, P. Enrico Fermi 1, 80055 Portici (Italy)

    2015-05-22

    The control of mold surface temperature is an important factor that determines surface morphology and its dimension in thickness direction. It can also affect the frozen molecular orientation and the mold surface replicability in injection molded products. In this work, thin thermally active films were used to quickly control the mold surface temperature. In particular, an active high electrical conductivity carbon black loaded polyimide composites sandwiched between two insulating thin polymeric layers was used to condition the mold surface. By controlling the heating time, it was possible to control precisely the temporal variation of the mold temperature surface during the entire cycle. The surface heating rate was about 40°C/s and upon contact with the polymer the surface temperature decreased back to 40°C within about 5 s; the overall cycle time increased only slightly. The effect on cross section sample morphology of samples of iPP were analyzed and discussed on the basis of the recorded temperature evolution.

  20. Process and part filling control in micro injection molding

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Schoth, Andreas

    2008-01-01

    The influence of process parameters on μ-injection molding (μIM) and on μ-injection molded parts has been investigated using Design of Experiments. A mold with a sensor applied at injection location was used to monitor actual injection pressure and to determine the cavity filling time. Flow markers...... position was measured on the polymer μ-parts to evaluate filling behavior of the polymer melt flowing through μ-features. Experimental results obtained under different processing conditions were evaluated to correlate the process parameter levels influence on the selected responses. Results showed...... that the injection speed in one of the most influencing process parameters on the μIM process and on the μ-parts filling....

  1. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    Science.gov (United States)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-02-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  2. The reflectivity, wettability and scratch durability of microsurface features molded in the injection molding process using a dynamic tool tempering system

    International Nuclear Information System (INIS)

    Kuhn, Sascha; Burr, August; Kübler, Michael; Deckert, Matthias; Bleesen, Christoph

    2011-01-01

    In this paper the replication qualities of periodically and randomly arranged micro-features molded in the injection molding process and their effects on surface properties are studied. The features are molded in PC, PMMA and PP at different mold wall temperatures in order to point out the necessity and profitability of a variotherm mold wall temperature control system. A one-dimensional heat conduction model is proposed to predict the cycle times of the variotherm injection molding processes. With regard to these processes, the molding results are compared to the molded surface feature heights using an atomic force microscope. In addition, the effects of the molded surface features on macroscopic surfaces are characterized in terms of light reflection using a spectrometer and in terms of water wettability by measuring the static contact angle. Furthermore, due to the sensitivity of the surface features on the molded parts, their durability is compared in a scratch test with a diamond tip. This leads to successful implementation in applications in which the optical appearance, in terms of gloss and reflection, and the water repellence, in terms of drag flow and adhesion, are of importance.

  3. The effect of mold surface topography on plastic parat in-process shrinkage in injection molding

    DEFF Research Database (Denmark)

    Arlø, Uffe Rolf; Hansen, Hans Nørgaard; Kjær, Erik Michael

    2003-01-01

    An experimental study of the effect of mold surface roughness on in-process in-flow linear part shrinkage in injection molding has been carried out. The investigation is based on an experimental two-cavity tool, where the cavities have different surface topographies, but are otherwise identical....... The study has been carried out for typical commercial polystyrene and polypropylene grades. The relationship between mold surface topography and linear shrinkage has been investigated with an experimental two-cavity mold producing simple rectangular parts with the nominal dimensions 1 x 25 x 50 mm (see...... figure 1). The cavities have different surface topographies on one side, but are otherwise identical (see discussion of other contribution factors)....

  4. Modeling and flow analysis of pure nylon polymer for injection molding process

    International Nuclear Information System (INIS)

    Nuruzzaman, D M; Kusaseh, N; Basri, S; Hamedon, Z; Oumer, A N

    2016-01-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured. (paper)

  5. Modeling and flow analysis of pure nylon polymer for injection molding process

    Science.gov (United States)

    Nuruzzaman, D. M.; Kusaseh, N.; Basri, S.; Oumer, A. N.; Hamedon, Z.

    2016-02-01

    In the production of complex plastic parts, injection molding is one of the most popular industrial processes. This paper addresses the modeling and analysis of the flow process of the nylon (polyamide) polymer for injection molding process. To determine the best molding conditions, a series of simulations are carried out using Autodesk Moldflow Insight software and the processing parameters are adjusted. This mold filling commercial software simulates the cavity filling pattern along with temperature and pressure distributions in the mold cavity. In the modeling, during the plastics flow inside the mold cavity, different flow parameters such as fill time, pressure, temperature, shear rate and warp at different locations in the cavity are analyzed. Overall, this Moldflow is able to perform a relatively sophisticated analysis of the flow process of pure nylon. Thus the prediction of the filling of a mold cavity is very important and it becomes useful before a nylon plastic part to be manufactured.

  6. Gate Design in Injection Molding of Microfluidic Components Using Process Simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2016-01-01

    Just as in conventional injection molding of plastics, process simulationsare an effective and interesting tool in the area of microinjection molding. They can be applied in order to optimize and assist the design of the microplastic part, the mold, and the actual process. Available simulation...... software is however actually made for macroscopic injection molding. By means of the correct implementation and careful modeling strategy though, it can also be applied to microplastic parts, as it is shown in the present work. Process simulations were applied to two microfluidic devices (amicrofluidic...

  7. Au-pattern fabrication on a cellulose film using a polyurethane acrylate mold

    International Nuclear Information System (INIS)

    Han, Kwangjoon; Kang, Kwang-Sun; Kim, Jaehwan

    2009-01-01

    This paper deals with a gold micro-patterning process on a cellulose film using a polyurethane acrylate (PUA) mold. Recently, cellulose electro-active paper (EAPap) has been found to be a smart material that can be used for biodegradable sensors, actuators and MEMS devices. However, the hydrophilic and flexible characteristics of cellulose EAPap are major drawbacks for applying a conventional lithography process to fabricate MEMS devices. To overcome these drawbacks, an unconventional lithography process, the so-called micro-transfer printing technique based on a PUA mold, was employed. A master pattern for the PUA mold was fabricated using the conventional photolithography process with an SU-8 photoresist, and the replica of the master pattern was fabricated using PUA. Gold was deposited onto the PUA mold, and a mercaptopropyltrimethoxysilane (MPTMS) self-assembly monolayer was made on the gold surface to securely transfer the gold layer onto the cellulose film. The effect of MPTMS was investigated. Further investigation of the factors to optimize the repeated stamping process will lead to a practical, reusable mold

  8. Demonstration of pharmaceutical tablet coating process by injection molding technology.

    Science.gov (United States)

    Puri, Vibha; Brancazio, David; Harinath, Eranda; Martinez, Alexander R; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Braatz, Richard D; Myerson, Allan S; Trout, Bernhardt L

    2018-01-15

    We demonstrate the coating of tablets using an injection molding (IM) process that has advantage of being solvent free and can provide precision coat features. The selected core tablets comprising 10% w/w griseofulvin were prepared by an integrated hot melt extrusion-injection molding (HME-IM) process. Coating trials were conducted on a vertical injection mold machine. Polyethylene glycol and polyethylene oxide based hot melt extruded coat compositions were used. Tablet coating process feasibility was successfully demonstrated using different coating mold designs (with both overlapping and non-overlapping coatings at the weld) and coat thicknesses of 150 and 300 μm. The resultant coated tablets had acceptable appearance, seal at the weld, and immediate drug release profile (with an acceptable lag time). Since IM is a continuous process, this study opens opportunities to develop HME-IM continuous processes for transforming powder to coated tablets. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. A new instrument for statistical process control of thermoset molding

    International Nuclear Information System (INIS)

    Day, D.R.; Lee, H.L.; Shepard, D.D.; Sheppard, N.F.

    1991-01-01

    The recent development of a rugged ceramic mold mounted dielectric sensor and high speed dielectric instrumentation now enables monitoring and statistical process control of production molding over thousands of runs. In this work special instrumentation and software (ICAM-1000) was utilized that automatically extracts critical point during the molding process including flow point, viscosity minimum gel inflection, and reaction endpoint. In addition, other sensors were incorporated to measure temperature and pressure. The critical point as well as temperature and pressure were then recorded during normal production and then plotted in the form of statistical process control (SPC) charts. Experiments have been carried out in RIM, SMC, and RTM type molding operations. The influence of temperature, pressure chemistry, and other variables has been investigated. In this paper examples of both RIM and SMC are discussed

  10. Heat Transfer Coefficient at Cast-Mold Interface During Centrifugal Casting: Calculation of Air Gap

    Science.gov (United States)

    Bohacek, Jan; Kharicha, Abdellah; Ludwig, Andreas; Wu, Menghuai; Karimi-Sibaki, Ebrahim

    2018-06-01

    During centrifugal casting, the thermal resistance at the cast-mold interface represents a main blockage mechanism for heat transfer. In addition to the refractory coating, an air gap begins to form due to the shrinkage of the casting and the mold expansion, under the continuous influence of strong centrifugal forces. Here, the heat transfer coefficient at the cast-mold interface h has been determined from calculations of the air gap thickness d a based on a plane stress model taking into account thermoelastic stresses, centrifugal forces, plastic deformations, and a temperature-dependent Young's modulus. The numerical approach proposed here is rather novel and tries to offer an alternative to the empirical formulas usually used in numerical simulations for a description of a time-dependent heat transfer coefficient h. Several numerical tests were performed for different coating thicknesses d C, rotation rates Ω, and temperatures of solidus T sol. Results demonstrated that the scenario at the interface is unique for each set of parameters, hindering the possibility of employing empirical formulas without a preceding experiment being performed. Initial values of h are simply equivalent to the ratio of the coating thermal conductivity and its thickness ( 1000 Wm-2 K-1). Later, when the air gap is formed, h drops exponentially to values at least one order of magnitude smaller ( 100 Wm-2 K-1).

  11. Development of the computer-aided process planning (CAPP system for polymer injection molds manufacturing

    Directory of Open Access Journals (Sweden)

    J. Tepić

    2011-10-01

    Full Text Available Beginning of production and selling of polymer products largely depends on mold manufacturing. The costs of mold manufacturing have significant share in the final price of a product. The best way to improve and rationalize polymer injection molds production process is by doing mold design automation and manufacturing process planning automation. This paper reviews development of a dedicated process planning system for manufacturing of the mold for injection molding, which integrates computer-aided design (CAD, computer-aided process planning (CAPP and computer-aided manufacturing (CAM technologies.

  12. Surface Replication of Molded Products with Microneedle Features in Injection Molding

    Science.gov (United States)

    Uchiumi, Kazuyasu; Takayama, Tetsuo; Ito, Hiroshi; Inou, Akinori

    Micro-molding of microneedle features was conducted using several injection-molding techniques. Injection compression molding and injection molding were performed with supercritical carbon dioxide fluid and with or without vacuum processing inside the mold cavity. Effects of process parameters on processability and surface replication of the molded parts were evaluated. The height replication ratio for microneedles was improved using injection compression molding. At a shorter compression stroke, the needle height was improved, and the influence of compression delay time was also small. Moreover, the effects of vacuum processing inside the mold cavity under the filling process were slight. The height replication ratio for microneedles showed the highest values using injection molding using supercritical carbon dioxide fluid with vacuum inside the mold cavity.

  13. Simulation of Injection Molding Process Including Mold Filling and Compound Curing

    Directory of Open Access Journals (Sweden)

    Mohamad Reza Erfanian

    2012-12-01

    Full Text Available The present work reports and discusses the results of a 3D simulation of the injection molding process of a rubber compound that includes the mold flling stage and  material curing, using the computer code is developed in “UDF” part of the Fluent 6.3 CAE software. The data obtained from a rheometer (MDR 2000 is used to characterize the rubber material in order to fnd the cure model parameters which exist in curing model. Because of non-newtonian behavior of rubber, in this work the non-newtonian model for viscosity was used and viscosity parameters were computed by mean of viscometry test by RPA. After calculation of the physical and curing properties, vulcanization process was simulated for a complex rubber article with non-uniform thickness by solving the continuity, momentum, energy and curing process equations. Predicted flling and curing time in a complex and 3D rubber part is compared with experimentally measured data which confrmed  the accuracy and applicability of the method.

  14. Resin Flow in Fiber Preformed by Vacuum Assisted Resin Transfer Molding with Flexible Tools

    Directory of Open Access Journals (Sweden)

    M.M. Shokrieh

    2008-12-01

    Full Text Available Vacuum assisted resin transfer molding, as a sub-branch of RTM is a method of manufacturing composite specimens. Considering the industrial development of this method, different modified techniques are designed to improve its performance. Among these techniques, using a half flexible mold is regarded as an important method. In this work, dominant equations of resin flow through the mold in polar coordinates are solved analytically. Based on this approach, closed-form solutions have been presented for different parameters such as thickness variation of preformed fiber, resin pressure, resin velocity and fiber volume fraction as functions of two variables, namely, time and the distance from injection port. After verification of the approach employed in this work, the results are presented. Important parameters influencing the quality and the rate production are studied in detail.

  15. Composite Properties of RTM370 Polyimide Fabricated by Vacuum Assisted Resin Transfer Molding (VARTM)

    Science.gov (United States)

    Chuang, Kathy C.; Criss, James M.; Mintz, Eric A.; Shonkwiler, Brian; McCorkle, Linda S.

    2011-01-01

    RTM370 imide resin based on 2,3,3?,4?-biphenyl dianhydride (a-BPDA), 3,4'-oxydianinline (3,4'-ODA) with the 4-phenylethynylphthalic (PEPA) endcap has been shown to exhibit a high cured T(sub g) (370 C) and low melt viscosity (10-30 poise) at 280 C with a pot-life of 1-2 h. Previously, RTM370 resin has been successfully fabricated into composites reinforced with T650-35 carbon fabrics by resin transfer molding (RTM). RTM370 composites exhibit excellent mechanical properties up to 327?C (620?F), and outstanding property retention after aging at 288?C (550?F) for 1000 h. In this work, RTM370 composites were fabricated by vacuum assisted resin transfer molding (VARTM), using vacuum bags on a steel plate. The mechanical properties of RTM370 composites fabricated by VARTM are compared to those prepared by RTM.

  16. Control of food-borne molds by combination of heat and radiation

    International Nuclear Information System (INIS)

    Padwal-Desai, S.R.; Bongirwar, D.R.

    1979-01-01

    After enumerating the fungi responsible for food spoilage, work done on the factors influencing growth of fungi in stored foods is reviewed and the methods using heat, radiation or chemicals for control of food-borne molds are briefly surveyed. Work on combination process employing heat treatment and radiation treatment is reviewed in detail. The review covers the following aspects: (1) theory and engineering aspects of combination process of heat and radiation including modes of heat transfer, radiation physics, radiation sources, heat radiation effect and calculation of energy balance of the process, (2) biological effects of heat, radiation and heat-radiation combination treatments on mold growth with special reference to DNA and (3) application of the process for mold control in cereal products, nuts and raisins and fruits. Heat treatment and radiation treatment have been found to complement each other and when given in proper sequence show synergism. Design requirements of radiation sources and heat transfer equipment are also surveyed. (M.G.B.)

  17. Development of integrated control system for smart factory in the injection molding process

    Science.gov (United States)

    Chung, M. J.; Kim, C. Y.

    2018-03-01

    In this study, we proposed integrated control system for automation of injection molding process required for construction of smart factory. The injection molding process consists of heating, tool close, injection, cooling, tool open, and take-out. Take-out robot controller, image processing module, and process data acquisition interface module are developed and assembled to integrated control system. By adoption of integrated control system, the injection molding process can be simplified and the cost for construction of smart factory can be inexpensive.

  18. Optimization of injection molding process parameters for a plastic cell phone housing component

    Science.gov (United States)

    Rajalingam, Sokkalingam; Vasant, Pandian; Khe, Cheng Seong; Merican, Zulkifli; Oo, Zeya

    2016-11-01

    To produce thin-walled plastic items, injection molding process is one of the most widely used application tools. However, to set optimal process parameters is difficult as it may cause to produce faulty items on injected mold like shrinkage. This study aims at to determine such an optimum injection molding process parameters which can reduce the fault of shrinkage on a plastic cell phone cover items. Currently used setting of machines process produced shrinkage and mis-specified length and with dimensions below the limit. Thus, for identification of optimum process parameters, maintaining closer targeted length and width setting magnitudes with minimal variations, more experiments are needed. The mold temperature, injection pressure and screw rotation speed are used as process parameters in this research. For optimal molding process parameters the Response Surface Methods (RSM) is applied. The major contributing factors influencing the responses were identified from analysis of variance (ANOVA) technique. Through verification runs it was found that the shrinkage defect can be minimized with the optimal setting found by RSM.

  19. Microcellular injection molding process for producing lightweight thermoplastic polyurethane with customizable properties

    Science.gov (United States)

    Ellingham, Thomas; Kharbas, Hrishikesh; Manitiu, Mihai; Scholz, Guenter; Turng, Lih-Sheng

    2018-03-01

    A three-stage molding process involving microcellular injection molding with core retraction and an "out-of-mold" expansion was developed to manufacture thermoplastic polyurethane into lightweight foams of varying local densities, microstructures, and mechanical properties in the same microcellular injection molded part. Two stages of cavity expansion through sequential core retractions and a third expansion in a separate mold at an elevated temperature were carried out. The densities varied from 0.25 to 0.42 g/cm3 (77% to 62% weight reduction). The mechanical properties varied as well. Cyclic compressive strengths and hysteresis loss ratios, together with the microstructures, were characterized and reported.

  20. Nanostructuring steel for injection molding tools

    International Nuclear Information System (INIS)

    Al-Azawi, A; Smistrup, K; Kristensen, A

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro- and nanostructuring the surface of the steel molds. We investigate the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica has been produced by injection molding with good structure transfer fidelity. Thus we have demonstrated that by utilizing well-established fabrication techniques, nanostructured steel shims that are used in injection molding, a technique that allows low cost mass fabrication of plastic items, are produced. (paper)

  1. Mold Heating and Cooling Pump Package Operator Interface Controls Upgrade

    Energy Technology Data Exchange (ETDEWEB)

    Josh A. Salmond

    2009-08-07

    The modernization of the Mold Heating and Cooling Pump Package Operator Interface (MHC PP OI) consisted of upgrading the antiquated single board computer with a proprietary operating system to off-the-shelf hardware and off-the-shelf software with customizable software options. The pump package is the machine interface between a central heating and cooling system that pumps heat transfer fluid through an injection or compression mold base on a local plastic molding machine. The operator interface provides the intelligent means of controlling this pumping process. Strict temperature control of a mold allows the production of high quality parts with tight tolerances and low residual stresses. The products fabricated are used on multiple programs.

  2. Gate design in injection molding of microfluidic components using process simulations

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    to moulding process window, polymer flow, and part quality. This finally led to an optimization of the design and the realization as actual steel mold. Additionally, the simulation results were critically discussed and possible improvements and limitations of the gained results and the deployed software......Process simulations are an effective design and optimization tool in conventional as well as micro injection molding (μIM). They can be applied to optimize and assist the design of the micro part, the mold, the micro cavity and the μIM process. Available simulation software is however developed...... for macroscopic plastic parts. By using the correct implementation and careful modelling though, it can also be applied to micro parts. In the present work, process simulations were applied to a microfluidic distributor and a microfluidic mixer of which features were in the 100 μm dimensional range. The meshing...

  3. Development and Application of an Acoustic Waveguide Technology to in-Process Cure and in-Service Dynamic Response Monitoring of Liquid Molded Composite Armor Smart Structures

    National Research Council Canada - National Science Library

    Li, Yan

    1997-01-01

    ...) structural dynamic responses and damages after the part is placed in service. The sensor has a low profile and is embedded in the composites manufactured through processes such as Resin Transfer Molding (RTM...

  4. PETIs as High-Temperature Resin-Transfer-Molding Materials

    Science.gov (United States)

    Connell, John N.; Smith, Joseph G., Jr.; Hergenrother, Paul M.

    2005-01-01

    Compositions of, and processes for fabricating, high-temperature composite materials from phenylethynyl-terminated imide (PETI) oligomers by resin-transfer molding (RTM) and resin infusion have been developed. Composites having a combination of excellent mechanical properties and long-term high-temperature stability have been readily fabricated. These materials are particularly useful for the fabrication of high-temperature structures for jet-engine components, structural components on highspeed aircraft, spacecraft, and missiles. Phenylethynyl-terminated amide acid oligomers that are precursors of PETI oligomers are easily made through the reaction of a mixture of aromatic diamines with aromatic dianhydrides at high stoichiometric offsets and 4-phenylethynylphthalic anhydride (PEPA) as an end-capper in a polar solvent such as N-methylpyrrolidinone (NMP). These oligomers are subsequently cyclodehydrated -- for example, by heating the solution in the presence of toluene to remove the water by azeotropic distillation to form low-molecular-weight imide oligomers. More precisely, what is obtained is a mixture of PETI oligomeric species, spanning a range of molecular weights, that exhibits a stable melt viscosity of less than approximately 60 poise (and generally less than 10 poise) at a temperature below 300 deg C. After curing of the oligomers at a temperature of 371 deg C, the resulting polymer can have a glass-transition temperature (Tg) as high as 375 C, the exact value depending on the compositions.

  5. Experimental Investigation of Comparative Process Capabilities of Metal and Ceramic Injection Molding for Precision Applications

    DEFF Research Database (Denmark)

    Islam, Aminul; Giannekas, Nikolaos; Marhöfer, David Maximilian

    2016-01-01

    and discussion presented in the paper will be useful for thorough understanding of the MIM and CIM processes and to select the right material and process for the right application or even to combine metal and ceramic materials by molding to produce metal–ceramic hybrid components.......The purpose of this paper is to make a comparative study on the process capabilities of the two branches of the powder injection molding (PIM) process—metal injection molding (MIM) and ceramic injection molding (CIM), for high-end precision applications. The state-of-the-art literature does...

  6. Characteristics and infl uence factors of mold fi lling process in permanent mold with a slot gating system

    Directory of Open Access Journals (Sweden)

    Chen Changjun

    2009-11-01

    Full Text Available The main problems caused by improper gating are entrained aluminum oxide fi lms and entrapped gas. In this study, the slot gating system is employed to improve mold fi lling behavior and therefore, to improve the quality of aluminum castings produced in permanent molds. An equipment as well as operation procedures for real-time X-ray radiography of molten aluminum fl owing into permanent molds have been developed. Graphite molds transparent to X-rays are utilized which make it possible to observe the fl ow pattern through a number of vertically oriented gating systems. The investigation discovers that there are many infl uencing factors on the mold fi lling process. This paper focuses its research on some of the factors, such as the dimensions of the vertical riser and slot thickness, as well as roughness of the coating layer. The results indicate that molten metal can smoothly fi ll into casting cavity with a proper slot gating system. A bigger vertical riser, proper slot thickness and rougher coating can provide not only a better mold fi lling pattern, but also hot melt into the top of the cavity. A proper temperature gradient is obtainable, higher at the bottom and lower at the top of the casting cavity, which is in favor of feeding during casting solidifi cation.

  7. Intelligent methods for the process parameter determination of plastic injection molding

    Science.gov (United States)

    Gao, Huang; Zhang, Yun; Zhou, Xundao; Li, Dequn

    2018-03-01

    Injection molding is one of the most widely used material processing methods in producing plastic products with complex geometries and high precision. The determination of process parameters is important in obtaining qualified products and maintaining product quality. This article reviews the recent studies and developments of the intelligent methods applied in the process parameter determination of injection molding. These intelligent methods are classified into three categories: Case-based reasoning methods, expert system- based methods, and data fitting and optimization methods. A framework of process parameter determination is proposed after comprehensive discussions. Finally, the conclusions and future research topics are discussed.

  8. Indirect three-dimensional printing of synthetic polymer scaffold based on thermal molding process

    International Nuclear Information System (INIS)

    Park, Jeong Hun; Jung, Jin Woo; Cho, Dong-Woo; Kang, Hyun-Wook

    2014-01-01

    One of the major issues in tissue engineering has been the development of three-dimensional (3D) scaffolds, which serve as a structural template for cell growth and extracellular matrix formation. In scaffold-based tissue engineering, 3D printing (3DP) technology has been successfully applied for the fabrication of complex 3D scaffolds by using both direct and indirect techniques. In principle, direct 3DP techniques rely on the straightforward utilization of the final scaffold materials during the actual scaffold fabrication process. In contrast, indirect 3DP techniques use a negative mold based on a scaffold design, to which the desired biomaterial is cast and then sacrificed to obtain the final scaffold. Such indirect 3DP techniques generally impose a solvent-based process for scaffold fabrication, resulting in a considerable increase in the fabrication time and poor mechanical properties. In addition, the internal architecture of the resulting scaffold is affected by the properties of the biomaterial solution. In this study, we propose an advanced indirect 3DP technique using projection-based micro-stereolithography and an injection molding system (IMS) in order to address these challenges. The scaffold was fabricated by a thermal molding process using IMS to overcome the limitation of the solvent-based molding process in indirect 3DP techniques. The results indicate that the thermal molding process using an IMS has achieved a substantial reduction in scaffold fabrication time and has also provided the scaffold with higher mechanical modulus and strength. In addition, cell adhesion and proliferation studies have indicated no significant difference in cell activity between the scaffolds prepared by solvent-based and thermal molding processes. (paper)

  9. Validation of precision powder injection molding process simulations using a spiral test geometry

    DEFF Research Database (Denmark)

    Marhöfer, Maximilian; Müller, Tobias; Tosello, Guido

    2015-01-01

    Like in many other areas of engineering, process simulations find application in precision injection molding to assist and optimize the quality and design of precise products and the molding process. Injection molding comprises mainly the manufacturing of plastic components. However, the variant ....... The necessary data and the implementation procedure of the new material models are outlined. In order to validate the simulation studies and evaluate their accuracy, the simulation results are compared with experiments performed using a spiral test geometry...... for powder injection molding. This characterization includes measurements of rheological, thermal, and pvT behavior of the powder-binder-mixes. The acquired material data was used to generate new material models for the database of the commercially available Autodesk Moldflow® simulation software...

  10. Performance of molded plastic scintillators

    International Nuclear Information System (INIS)

    Gen, N.S.; Leman, V.E.; Solomonov, V.M.

    1989-01-01

    The performance of molded plastic scintillators is studied. The plastic scintillators studied were formed by transfer molding and intrusion from a scintillation composition consisting of polystyrene and a standard system of luminescent additives: 2 mass % of paraterphenyl + 0.06 mass % 1,4-di-/2-[5-phenyloxazoyly]/benzene and a plasticizer. The combined effect of mechanical load and temperature was studied. The effect of radiation on molded plastic scintillators was studied using gamma radiation from a 60 Co source. The studies show that the main operating characteristics of molded plastic scintillators are on a par with those of polymerized plastic scintillators. At the same time, molded plastic scintillators are superior in thermal stability at temperatures below the glass transition temperature and with respect to their working temperature range

  11. Evaluation by nanoindentation of technological products manufactured by pulse injection molding process

    Directory of Open Access Journals (Sweden)

    Natova Margarita

    2018-01-01

    Full Text Available During conventional polymer injection molding, flow- and weld lines can arise at the molded parts caused by disturbed polymer melt flow when it crosses different parts of the equipment. Such processed plastic goods have discrete zones of inhomogeneities of very small dimensions. In order to stabilize the melt flow and to equalize dimensions of such defective products, an approach for pulse injection molding is applied during production of polymer packagings. Testing methods used for evaluation of macromechanical performance of processed polymer products are not readily applicable to estimate the changes in visual surface obtained during pulse injecting. To overcome this testing inconvenience the performance of processed packagings is evaluated by nanoindentation. Using this method, a quantitative assessment of the polymer properties is obtained from different parts of technological products.

  12. Molding apparatus. [for thermosetting plastic compositions

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    Apparatus for compression molding of thermosetting plastics compositions including interfitting hollow male and female components is reported. The components are adapted to be compressed to form a rocket nozzle in a cavity. A thermal jacket is provided exteriorly adjacent to the female component for circulating a thermal transfer fluid to effect curing of a thermosetting plastics material being molded. Each of the male and female components is provided with suitable inlets and outlets for circulating a thermal transfer fluid.

  13. LCI Databases Sensitivity Analysis of the Environmental Impact of the Injection Molding Process

    Directory of Open Access Journals (Sweden)

    Ana Elduque

    2015-03-01

    Full Text Available During the last decades, society’s concern for the environment has increased. Specific tools like the Life Cycle Assessment (LCA, and software and databases to apply this method have been developed to calculate the environmental burden of products or processes. Calculating the environmental impact of plastic products is relevant as the global plastics production rose to 288 million tons in 2012. Among the different ways of processing plastics, the injection molding process is one of the most used in the industry worldwide. In this paper, a sensitivity analysis of the environmental impact of the injection molding process has been carried out. In order to perform this study, the EcoInvent database inventory for injection molding, and the data from which this database is created, have been studied. Generally, when an LCA of a product is carried out, databases such as EcoInvent, where materials, processes and transports are characterized providing average values, are used to quantify the environmental impact. This approach can be good enough in some cases but in order to assess a specific production process, like injection molding, a further level of detail is needed. This study shows how the final results of environmental impact differ for injection molding when using the PVC’s, PP’s or PET’s data. This aspect suggests the necessity of studying, in a more precise way, this process, to correctly evaluate its environmental burden. This also allows us to identify priority areas and thereby actions to develop a more sustainable way of manufacturing plastics.

  14. Modeling of ultrasonic wave propagation in composite materials obtained by the resin transfer molding process; Modelisation de la propagation ultrasonore dans les materiaux composites obtenus par le procede de fabrication RTM (Resin Transfer Molding)

    Energy Technology Data Exchange (ETDEWEB)

    Lonne, S.

    2003-11-01

    The Resin Transfer Molding process for manufacturing composite materials is used to produce parts of complex shape. During the ultrasonic examination of such parts, attenuation is measured to characterize possible porosity content (a potential defect in this material). However, strong variation of attenuation is observed including on sound plates. The present study aims at explaining this by developing a model for ultrasonic propagation and attenuation in such parts which complex microstructure exhibits a multiple-scale aspect. An original model has been developed to predict attenuation at the elementary scale of an unidirectional layer of carbon fibers in an epoxy matrix. It couples multiple scattering by fibers and viscoelastic losses phenomena. It has been experimentally validated and applies to arbitrary two-phase fiber reinforced composites whatever the fiber volume fraction. At the upper scale of a ply made of several elementary layers of various orientations, the anisotropic behavior of ultrasonic waves and their attenuation are obtained by a homogenization procedure. An actual plate is made of several plies separated by pure resin layers. Plies and layers thicknesses are highly variable. A statistical study has been conducted to evaluate the influence of these geometrical variations on the ultrasonic transmission predicted by a model derived from Thomson-Haskell formalism. Ultrasonic attenuation variability practically observed is quantitatively reproduced and explained as resulting from the geometrical irregularity of the microstructure. (author)

  15. Fabrication and Evaluation of Graphite Fiber-Reinforced Polyimide Composite Tube Forms Using Modified Resin Transfer Molding

    Science.gov (United States)

    Exum, Daniel B.; Ilias, S.; Avva, V. S.; Sadler, Bob

    1997-01-01

    The techniques necessary for the fabrication of a complex three-dimensional tubular form using a PMR-type resin have been developed to allow for the construction of several tubes with good physical and mechanical properties. Employing established resin transfer molding practices, the relatively non-hazardous AMB-21 in acetone formulation was used to successfully impregnate four layers of AS4 braided graphite fiber preform previously loaded around an aluminum cylindrical core in an enclosed mold cavity. Using heat and vacuum, the solvent was evaporated to form a prepreg followed by a partial imidization and removal of condensation products. The aluminum core was replaced by a silicone rubber bladder and the cure cycle continued to the final stage of 550 F with a bladder internal pressure of 200 lbs/sq in while simultaneously applying a strong vacuum to the prepreg for removal of any additional imidization products. A combination of several modifications to the standard resin transfer molding methodology enabled the mold to 'breathe', allowing the imidization products a pathway for escape. AMB-21 resin was chosen because of the carcinogenic nature of the primary commercial polyimide PMR-15. The AMB-21 resin was formulated using commercially available monomers or monomer precursors and dissolved in a mixture of methyl alcohol and acetone. The viscosity of the resulting monomer solution was checked by use of a Brookfield rheometer and adjusted by adding acetone to an easily pumpable viscosity of about 600 cP. In addition, several types of chromatographic and thermal analyses were of the braids, and excess handling of the preforms broke some of the microscopic fibers, needlessly decreasing the strength of the finished part. In addition, three dimensional braided preforms with fibers along the length of the tube will be significantly stronger in tension than the braided preforms used in this study.

  16. Enhanced Injection Molding Simulation of Advanced Injection Molds

    Directory of Open Access Journals (Sweden)

    Béla Zink

    2017-02-01

    Full Text Available The most time-consuming phase of the injection molding cycle is cooling. Cooling efficiency can be enhanced with the application of conformal cooling systems or high thermal conductivity copper molds. The conformal cooling channels are placed along the geometry of the injection-molded product, and thus they can extract more heat and heat removal is more uniform than in the case of conventional cooling systems. In the case of copper mold inserts, cooling channels are made by drilling and heat removal is facilitated by the high thermal conductivity coefficient of copper, which is several times that of steel. Designing optimal cooling systems is a complex process; a proper design requires injection molding simulations, but the accuracy of calculations depends on how precise the input parameters and boundary conditions are. In this study, three cooling circuit designs and three mold materials (Ampcoloy 940, 1.2311 (P20 steel, and MS1 steel were used and compared using numerical methods. The effect of different mold designs and materials on cooling efficiency were examined using calculated and measured results. The simulation model was adjusted to the measurement results by considering the joint gap between the mold inserts.

  17. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    International Nuclear Information System (INIS)

    Kevin Jerome Sutherland

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ((mu)TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods

  18. The Development of Layered Photonic Band Gap Structures Using a Micro-Transfer Molding Technique

    Energy Technology Data Exchange (ETDEWEB)

    Sutherland, Kevin Jerome [Iowa State Univ., Ames, IA (United States)

    2001-01-01

    Photonic band gap (PBG) crystals are periodic dielectric structures that manipulate electromagnetic radiation in a manner similar to semiconductor devices manipulating electrons. Whereas a semiconductor material exhibits an electronic band gap in which electrons cannot exist, similarly, a photonic crystal containing a photonic band gap does not allow the propagation of specific frequencies of electromagnetic radiation. This phenomenon results from the destructive Bragg diffraction interference that a wave propagating at a specific frequency will experience because of the periodic change in dielectric permitivity. This gives rise to a variety of optical applications for improving the efficiency and effectiveness of opto-electronic devices. These applications are reviewed later. Several methods are currently used to fabricate photonic crystals, which are also discussed in detail. This research involves a layer-by-layer micro-transfer molding ({mu}TM) and stacking method to create three-dimensional FCC structures of epoxy or titania. The structures, once reduced significantly in size can be infiltrated with an organic gain media and stacked on a semiconductor to improve the efficiency of an electronically pumped light-emitting diode. Photonic band gap structures have been proven to effectively create a band gap for certain frequencies of electro-magnetic radiation in the microwave and near-infrared ranges. The objective of this research project was originally two-fold: to fabricate a three dimensional (3-D) structure of a size scaled to prohibit electromagnetic propagation within the visible wavelength range, and then to characterize that structure using laser dye emission spectra. As a master mold has not yet been developed for the micro transfer molding technique in the visible range, the research was limited to scaling down the length scale as much as possible with the current available technology and characterizing these structures with other methods.

  19. A Review of Metal Injection Molding- Process, Optimization, Defects and Microwave Sintering on WC-Co Cemented Carbide

    Science.gov (United States)

    Shahbudin, S. N. A.; Othman, M. H.; Amin, Sri Yulis M.; Ibrahim, M. H. I.

    2017-08-01

    This article is about a review of optimization of metal injection molding and microwave sintering process on tungsten cemented carbide produce by metal injection molding process. In this study, the process parameters for the metal injection molding were optimized using Taguchi method. Taguchi methods have been used widely in engineering analysis to optimize the performance characteristics through the setting of design parameters. Microwave sintering is a process generally being used in powder metallurgy over the conventional method. It has typical characteristics such as accelerated heating rate, shortened processing cycle, high energy efficiency, fine and homogeneous microstructure, and enhanced mechanical performance, which is beneficial to prepare nanostructured cemented carbides in metal injection molding. Besides that, with an advanced and promising technology, metal injection molding has proven that can produce cemented carbides. Cemented tungsten carbide hard metal has been used widely in various applications due to its desirable combination of mechanical, physical, and chemical properties. Moreover, areas of study include common defects in metal injection molding and application of microwave sintering itself has been discussed in this paper.

  20. Mechanical characterization and structural analysis of recycled fiber-reinforced-polymer resin-transfer-molded beams

    Science.gov (United States)

    Tan, Eugene Wie Loon

    1999-09-01

    The present investigation was focussed on the mechanical characterization and structural analysis of resin-transfer-molded beams containing recycled fiber-reinforced polymers. The beams were structurally reinforced with continuous unidirectional glass fibers. The reinforcing filler materials consisted entirely of recycled fiber-reinforced polymer wastes (trim and overspray). The principal resin was a 100-percent dicyclo-pentadiene unsaturated polyester specially formulated with very low viscosity for resin transfer molding. Variations of the resin transfer molding technique were employed to produce specimens for material characterization. The basic materials that constituted the structural beams, continuous-glass-fiber-reinforced, recycled-trim-filled and recycled-overspray-filled unsaturated polyesters, were fully characterized in axial and transverse compression and tension, and inplane and interlaminar shear, to ascertain their strengths, ultimate strains, elastic moduli and Poisson's ratios. Experimentally determined mechanical properties of the recycled-trim-filled and recycled-overspray-filled materials from the present investigation were superior to those of unsaturated polyester polymer concretes and Portland cement concretes. Mechanical testing and finite element analyses of flexure (1 x 1 x 20 in) and beam (2 x 4 x 40 in) specimens were conducted. These structurally-reinforced specimens were tested and analyzed in four-point, third-point flexure to determine their ultimate loads, maximum fiber stresses and mid-span deflections. The experimentally determined load capacities of these specimens were compared to those of equivalent steel-reinforced Portland cement concrete beams computed using reinforced concrete theory. Mechanics of materials beam theory was utilized to predict the ultimate loads and mid-span deflections of the flexure and beam specimens. However, these predictions proved to be severely inadequate. Finite element (fracture propagation

  1. Microlens fabrication by replica molding of frozen laser-printed droplets

    Science.gov (United States)

    Surdo, Salvatore; Diaspro, Alberto; Duocastella, Martí

    2017-10-01

    In this work, we synergistically combine laser-induced forward transfer (LIFT) and replica molding for the fabrication of microlenses with control of their geometry and size independent of the material or substrate used. Our approach is based on a multistep process in which liquid microdroplets of an aqueous solution are first printed on a substrate by LIFT. Following a freezing step, the microdroplets are used as a master to fabricate a polydimethylsiloxane (PDMS) mold. A subsequent replica molding step enables the creation of microlenses and microlens arrays on arbitrary selected substrates and by using different curable polymers. Thus, our method combines the rapid fabrication capabilities of LIFT and the perfectively smooth surface quality of the generated microdroplets, with the advantages of replica molding in terms of parallelization and materials flexibility. We demonstrate our strategy by generating microlenses of different photocurable polymers and by characterizing their optical and morphological properties.

  2. Dimensional accuracy optimization of the micro-plastic injection molding process using the Taguchi design method

    Directory of Open Access Journals (Sweden)

    Chil-Chyuan KUO KUO

    2015-06-01

    Full Text Available Plastic injection molding is an important field in manufacturing industry because there are many plastic products that produced by injection molding. However, the time and cost required for producing a precision mold are the most troublesome problems that limit the application at the development stage of a new product in precision machinery industry. This study presents an approach of manufacturing a hard mold with microfeatures for micro-plastic injection molding. This study also focuses on Taguchi design method for investigating the effect of injection parameters on the dimensional accuracy of Fresnel lens during plastic injection molding. It was found that the dominant factor affecting the microgroove depth of Fresnel lens is packing pressure. The optimum processing parameters are packing pressure of 80 MPa, melt temperature of 240 °C, mold temperature of 90 °C and injection speed of 50 m/s. The dimensional accuracy of Fresnel lens can be controlled within ±3 µm using the optimum level of process parameters through the confirmation test. The research results of this study have industrial application values because electro-optical industries are able to significantly reduce a new optical element development cycle time.DOI: http://dx.doi.org/10.5755/j01.ms.21.2.5864

  3. Warpage of QFN Package in Post Mold Cure Process of integrated circuit packaging

    Science.gov (United States)

    Sriwithoon, Nattha; Ugsornrat, Kessararat; Srisuwitthanon, Warayoot; Thonglor, Panakamon

    2017-09-01

    This research studied about warpage of QFN package in post mold cure process of integrated circuit (IC) packages using pre-plated (PPF) leadframe. For IC package, epoxy molding compound (EMC) are molded by cross linking of compound stiffness but incomplete crosslinked network and leading the fully cured thermoset by post mold cure (PMC) process. The cure temperature of PMC can change microstructure of EMC in term of stress inside the package and effect to warpage of the package due to coefficient of thermal expansion (CTE) between EMC and leadframe. In experiment, cure temperatures were varied to check the effect of internal stress due to different cure temperature after completed post mold cure for TDFN 2×3 8L. The cure temperature were varied with 180 °C, 170 °C, 160 °C, and 150°C with cure time 4 and 6 hours, respectively. For analysis, the TDFN 2×3 8L packages were analyzed the warpage by thickness gauge and scanning acoustic microscope (SAM) after take the test samples out from the oven cure. The results confirmed that effect of different CTE between EMC and leadframe due to different cure temperature resulting to warpage of the TDFN 2×3 8L packages.

  4. Process control and product evaluation in micro molding using a screwless/two-plunger injection unit

    DEFF Research Database (Denmark)

    Tosello, Guido; Hansen, Hans Nørgaard; Dormann, B.

    2010-01-01

    A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ-injection......A newly developed μ-injection molding machine equipped with a screwless/two-plunger injection unit has been employed to mould miniaturized dog-bone shaped specimens on polyoxymethylene and its process capability and robustness have been analyzed. The influence of process parameters on μ......-injection molding was investigated using the Design of Experiments technique. Injection pressure and piston stroke speed as well as part weight and dimensions were considered as quality factors over a wide range of process parameters. Experimental results obtained under different processing conditions were...

  5. Measurement and modeling of interface heat transfer coefficients

    International Nuclear Information System (INIS)

    Rollett, A.D.; Lewis, H.D.; Dunn, P.S.

    1985-01-01

    The results of preliminary work on the modeling and measurement of the heat transfer coefficients of metal/mold interfaces is reported. The system investigated is the casting of uranium in graphite molds. The motivation for the work is primarily to improve the accuracy of process modeling of prototype mold designs at the Los Alamos Foundry. The evolution in design of a suitable mold for unidirectional solidification is described, illustrating the value of simulating mold designs prior to use. Experiment indicated a heat transfer coefficient of 2 kW/m 2 /K both with and without superheat. It was possible to distinguish between solidification due to the mold and that due to radiative heat loss. This permitted an experimental estimate of the emissivity, epsilon = 0.2, of the solidified metal

  6. Thermo-mechanical simulation of liquid-supported stretch blow molding

    International Nuclear Information System (INIS)

    Zimmer, J.; Stommel, M.

    2015-01-01

    Stretch blow molding is the well-established plastics forming method to produce Polyehtylene therephtalate (PET) bottles. An injection molded preform is heated up above the PET glass transition temperature (Tg∼85°C) and subsequently inflated by pressurized air into a closed cavity. In the follow-up filling process, the resulting bottle is filled with the final product. A recently developed modification of the process combines the blowing and filling stages by directly using the final liquid product to inflate the preform. In a previously published paper, a mechanical simulation and successful evaluation of this liquid-driven stretch blow molding process was presented. In this way, a realistic process parameter dependent simulation of the preform deformation throughout the forming process was enabled, whereas the preform temperature evolution during forming was neglected. However, the formability of the preform is highly reduced when the temperature sinks below Tg during forming. Experimental investigations show temperature-induced failure cases due to the fast heat transfer between hot preform and cold liquid. Therefore, in this paper, a process dependent simulation of the temperature evolution during processing to avoid preform failure is presented. For this purpose, the previously developed mechanical model is used to extract the time dependent thickness evolution. This information serves as input for the heat transfer simulation. The required material parameters are calibrated from preform cooling experiments recorded with an infrared-camera. Furthermore, the high deformation ratios during processing lead to strain induced crystallization. This exothermal reaction is included into the simulation by extracting data from preform measurements at different stages of deformation via Differential Scanning Calorimetry (DSC). Finally, the thermal simulation model is evaluated by free forming experiments, recorded by a high-speed infrared camera

  7. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    International Nuclear Information System (INIS)

    Tu, K T; Chung, C K

    2016-01-01

    An integrated technology of CO 2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO 2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO 2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO 2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold. (paper)

  8. Rapid prototyping of biodegradable microneedle arrays by integrating CO2 laser processing and polymer molding

    Science.gov (United States)

    Tu, K. T.; Chung, C. K.

    2016-06-01

    An integrated technology of CO2 laser processing and polymer molding has been demonstrated for the rapid prototyping of biodegradable poly-lactic-co-glycolic acid (PLGA) microneedle arrays. Rapid and low-cost CO2 laser processing was used for the fabrication of a high-aspect-ratio microneedle master mold instead of conventional time-consuming and expensive photolithography and etching processes. It is crucial to use flexible polydimethylsiloxane (PDMS) to detach PLGA. However, the direct CO2 laser-ablated PDMS could generate poor surfaces with bulges, scorches, re-solidification and shrinkage. Here, we have combined the polymethyl methacrylate (PMMA) ablation and two-step PDMS casting process to form a PDMS female microneedle mold to eliminate the problem of direct ablation. A self-assembled monolayer polyethylene glycol was coated to prevent stiction between the two PDMS layers during the peeling-off step in the PDMS-to-PDMS replication. Then the PLGA microneedle array was successfully released by bending the second-cast PDMS mold with flexibility and hydrophobic property. The depth of the polymer microneedles can range from hundreds of micrometers to millimeters. It is linked to the PMMA pattern profile and can be adjusted by CO2 laser power and scanning speed. The proposed integration process is maskless, simple and low-cost for rapid prototyping with a reusable mold.

  9. Effect of pressure on heat transfer coefficient at the metal/mold interface of A356 aluminum alloy

    DEFF Research Database (Denmark)

    Fardi Ilkhchy, A.; Jabbari, Masoud; Davami, P.

    2012-01-01

    The aim of this paper is to correlate interfacial heat transfer coefficient (IHTC) to applied external pressure, in which IHTC at the interface between A356 aluminum alloy and metallic mold during the solidification of casting under different pressures were obtained using the inverse heat...... conduction problem (IHCP) method. The method covers the expedient of comparing theoretical and experimental thermal histories. Temperature profiles obtained from thermocouples were used in a finite difference heat flow program to estimate the transient heat transfer coefficients. The new simple formula...... was presented for correlation between external pressure and heat transfer coefficient. Acceptable agreement with data in literature shows the accuracy of the proposed formula....

  10. Fabrication of Polydimethylsiloxane Microlenses Utilizing Hydrogel Shrinkage and a Single Molding Step

    Directory of Open Access Journals (Sweden)

    Bader Aldalali

    2014-05-01

    Full Text Available We report on polydimethlysiloxane (PDMS microlenses and microlens arrays on flat and curved substrates fabricated via a relatively simple process combining liquid-phase photopolymerization and a single molding step. The mold for the formation of the PDMS lenses is fabricated by photopolymerizing a polyacrylamide (PAAm pre-hydrogel. The shrinkage of PAAm after its polymerization forms concave lenses. The lenses are then transferred to PDMS by a single step molding to form PDMS microlens array on a flat substrate. The PAAm concave lenses are also transferred to PDMS and another flexible polymer, Solaris, to realize artificial compound eyes. The resultant microlenses and microlens arrays possess good uniformity and optical properties. The focal length of the lenses is inversely proportional to the shrinkage time. The microlens mold can also be rehydrated to change the focal length of the ultimate PDMS microlenses. The spherical aberration is 2.85 μm and the surface roughness is on the order of 204 nm. The microlenses can resolve 10.10 line pairs per mm (lp/mm and have an f-number range between f/2.9 and f/56.5. For the compound eye, the field of view is 113°.

  11. Development of Metal Plate with Internal Structure Utilizing the Metal Injection Molding (MIM Process

    Directory of Open Access Journals (Sweden)

    Kwangho Shin

    2013-12-01

    Full Text Available In this study, we focus on making a double-sided metal plate with an internal structure, such as honeycomb. The stainless steel powder was used in the metal injection molding (MIM process. The preliminary studies were carried out for the measurement of the viscosity of the stainless steel feedstock and for the prediction of the filling behavior through Computer Aided Engineering (CAE simulation. PE (high density polyethylene (HDPE and low density polyethylene (LDPE and polypropylene (PP resins were used to make the sacrificed insert with a honeycomb structure using a plastic injection molding process. Additionally, these sacrificed insert parts were inserted in the metal injection mold, and the metal injection molding process was carried out to build a green part with rectangular shape. Subsequently, debinding and sintering processes were adopted to remove the sacrificed polymer insert. The insert had a suitable rigidity that was able to endure the filling pressure. The core shift analysis was conducted to predict the deformation of the insert part. The 17-4PH feedstock with a low melting temperature was applied. The glass transition temperature of the sacrificed polymer insert would be of a high grade, and this insert should be maintained during the MIM process. Through these processes, a square metal plate with a honeycomb structure was made.

  12. Experimental Investigation into Suitable Process Conditions for Plastic Injection Molding of Thin-Sheet Parts

    Directory of Open Access Journals (Sweden)

    Dyi-Cheng Chen

    2014-04-01

    Full Text Available This study performs an experimental investigation into the effects of the process parameters on the surface quality of injection molded thin-sheet thermoplastic components. The investigations focus specifically on the shape, number and position of the mold gates, the injection pressure and the injection rate. It can be seen that the gravity force entering point improved filling of the cavity for the same forming time and injection pressure. Moreover, it shows the same injection pressure and packing time, the taper-shape gate yields a better surface appearance than the sheet-shape gate. The experimental results provide a useful source of reference in suitable the process conditions for the injection molding of thin-sheet plastic components.

  13. Numerical study on fabricating rectangle microchannel in microfluidic chips by glass molding process

    Science.gov (United States)

    Wang, Tao; Chen, Jing; Zhou, Tianfeng

    2017-09-01

    This paper studied the glass molding process (GMP) for fabricating a typical microstructure of glass microfluidic chips, i. e., rectangle microchannel, on soda-lime glass by finite element method. More than 100 models were established on the platform of Abaqus/Standard. The influence of parameters, i. e., temperature, aspect ratio, side wall angle and friction coefficient on deformation were studied, and the predicted morphology of the molded microchannel were presented as well. The research could provide fundamental experience for optimizing GMP process in the future.

  14. Effect of process parameters on the dryness of molded pulp products

    DEFF Research Database (Denmark)

    Didone, Mattia; Tosello, Guido

    2016-01-01

    Molded pulp products are made from cellulose fibers dispersed in water then formed, drained and dried. As in the conventional papermaking process, the most energ yintensive operation (including time) is drying. To gain a better understanding of the process parameters involved and to investigate...

  15. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    International Nuclear Information System (INIS)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-01-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS registered . Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project ''APT P ACK'' (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging)

  16. Simulation of the Two Stages Stretch-Blow Molding Process: Infrared Heating and Blowing Modeling

    Science.gov (United States)

    Bordival, M.; Schmidt, F. M.; Le Maoult, Y.; Velay, V.

    2007-05-01

    In the Stretch-Blow Molding (SBM) process, the temperature distribution of the reheated perform affects drastically the blowing kinematic, the bottle thickness distribution, as well as the orientation induced by stretching. Consequently, mechanical and optical properties of the final bottle are closely related to heating conditions. In order to predict the 3D temperature distribution of a rotating preform, numerical software using control-volume method has been developed. Since PET behaves like a semi-transparent medium, the radiative flux absorption was computed using Beer Lambert law. In a second step, 2D axi-symmetric simulations of the SBM have been developed using the finite element package ABAQUS®. Temperature profiles through the preform wall thickness and along its length were computed and applied as initial condition. Air pressure inside the preform was not considered as an input variable, but was automatically computed using a thermodynamic model. The heat transfer coefficient applied between the mold and the polymer was also measured. Finally, the G'sell law was used for modeling PET behavior. For both heating and blowing stage simulations, a good agreement has been observed with experimental measurements. This work is part of the European project "APT_PACK" (Advanced knowledge of Polymer deformation for Tomorrow's PACKaging).

  17. Predicting shrinkage and warpage in injection molding: Towards automatized mold design

    Science.gov (United States)

    Zwicke, Florian; Behr, Marek; Elgeti, Stefanie

    2017-10-01

    It is an inevitable part of any plastics molding process that the material undergoes some shrinkage during solidification. Mainly due to unavoidable inhomogeneities in the cooling process, the overall shrinkage cannot be assumed as homogeneous in all volumetric directions. The direct consequence is warpage. The accurate prediction of such shrinkage and warpage effects has been the subject of a considerable amount of research, but it is important to note that this behavior depends greatly on the type of material that is used as well as the process details. Without limiting ourselves to any specific properties of certain materials or process designs, we aim to develop a method for the automatized design of a mold cavity that will produce correctly shaped moldings after solidification. Essentially, this can be stated as a shape optimization problem, where the cavity shape is optimized to fulfill some objective function that measures defects in the molding shape. In order to be able to develop and evaluate such a method, we first require simulation methods for the diffierent steps involved in the injection molding process that can represent the phenomena responsible for shrinkage and warpage ina sufficiently accurate manner. As a starting point, we consider the solidification of purely amorphous materials. In this case, the material slowly transitions from fluid-like to solid-like behavior as it cools down. This behavior is modeled using adjusted viscoelastic material models. Once the material has passed a certain temperature threshold during cooling, any viscous effects are neglected and the behavior is assumed to be fully elastic. Non-linear elastic laws are used to predict shrinkage and warpage that occur after this point. We will present the current state of these simulation methods and show some first approaches towards optimizing the mold cavity shape based on these methods.

  18. High-rate production of micro- and nanostructured surfaces: Injection molding and novel process for metal tooling manufacturing

    Science.gov (United States)

    De Jesus Vega, Marisely

    Devices containing micro and nanostructured surfaces are developing and constantly finding new applications, especially for medical diagnostics, point-of-care applications, and microneedles. They are also employed in the functionalization of surfaces for superhydrophobicity, drag reduction, or reversible adhesion by mimicking bio-inspired surfaces. This research provides a thorough investigation on the effects of different polymeric materials and processing conditions on the replication of micro and nanostructured surfaces via injection molding. In addition, this dissertation also presents a novel approach for the production of durable microstructured metal tooling to be used for the production of surfaces with microchannels via injection molding. Materials such as thermoplastic vulcanizates are substituting regular thermoplastic materials and vulcanized elastomers in many applications due to their outstanding properties and ease of processability. These material properties broaden the scope of applications for microstructured surfaces. However, there is a need for understanding how these materials behave in microinjection molding since thermoplastic elastomers' behavior during injection molding have been shown to differ from that of the widely understood behavior of thermoplastics. Replication of microstructured surfaces using thermoplastic vulcanizates (TPV) was studied in the first part of this thesis. TPVs with different hardness's were molded using microinjection molding with various processing conditions and the replication and surface details of 20 microm pillars (aspect ratio of 1:1) were characterized. In the second part of this research liquid silicone rubber (LSR) was studied as a material for the production of micro and nanostructured surfaces. LSR is a silicone based material such as polydimethylsiloxane (PDMS), which is widely used for research and development of micro and nanostructured devices, and thus provides all the benefits of PDMS but can be

  19. Simulation of the Vacuum Assisted Resin Transfer Molding (VARTM) process and the development of light-weight composite bridging

    Science.gov (United States)

    Robinson, Marc J.

    A continued desire for increased mobility in the aftermath of natural disasters, or on the battlefield, has lead to the need for improved light-weight bridging solutions. This research investigates the development of a carbon/epoxy composite bridging system to meet the needs for light-weight bridging. The research focuses on two main topics. The first topic is that of processing composite structures and the second is the design and testing of these structures. In recent years the Vacuum Assisted Resin Transfer Molding (VARTM) process has become recognized as a low-cost manufacturing alternative for large Fiber Reinforced Polymer (FRP) composite structures for civil, military, and aerospace applications. The success of the VARTM process (complete wet-out) is very sensitive to the resin injection strategy used and the proper placement of flow distribution materials and inlet and vacuum ports. Predicting the flow front pattern, the time required for infusing a part with resin, and the time required to bleed excess resin at the end of filling, is critical to ensure that the part will become completely impregnated and desired fiber volume fractions achieved prior to the resin gelling (initiation of cure). In order to eliminate costly trial and error experiments to determine the optimal infusion strategy, this research presents a simulation model which considers in-plane flow as well as flow through the thickness of the preform. In addition to resin filling, the current model is able to simulate the bleeding of resin at the end of filling to predict the required bleeding time to reach desired fiber volume fractions for the final part. In addition to processing, the second portion of the dissertation investigates the design and testing of composite bridge deck sections which also serve as short-span bridging for gaps up to 4 m in length. The research focuses on the design of a light-weight core material for bridge decking as well as proof loading of short-span bridge

  20. Mathematical modeling of the in-mold coating process for injection-molded thermoplastic parts

    Science.gov (United States)

    Chen, Xu

    In-Mold Coating (IMC) has been successfully used for many years for exterior body panels made from compression molded Sheet Molding Compound (SMC). The coating material is a single component reactive fluid, designed to improve the surface quality of SMC moldings in terms of functional and cosmetic properties. When injected onto a cured SMC part, IMC cures and bonds to provide a pain-like surface. Because of its distinct advantages, IMC is being considered for application to injection molded thermoplastic parts. For a successful in mold coating operation, there are two key issues related to the flow of the coating. First, the injection nozzle should be located such that the thermoplastic substrate is totally covered and the potential for air trapping is minimized. The selected location should be cosmetically acceptable since it most likely will leave a mark on the coated surface. The nozzle location also needs to be accessible for easy of maintenance. Secondly, the hydraulic force generated by the coating injection pressure should not exceed the available clamping tonnage. If the clamping force is exceeded, coating leakage will occur. In this study, mathematical models for IMC flow on the compressible thermoplastic substrate have been developed. Finite Difference Method (FDM) is first used to solve the 1 dimensional (1D) IMC flow problem. In order to investigate the application of Control Volume based Finite Element Method (CV/FEM) to more complicated two dimensional IMC flow, that method is first evaluated by solving the 1D IMC flow problem. An analytical solution, which can be obtained when a linear relationship between the coating thickness and coating injection pressure is assumed, is used to verify the numerical results. The mathematical models for the 2 dimensional (2D) IMC flow are based on the generalized Hele-Shaw approximation. It has been found experimentally that the power law viscosity model adequately predicts the rheological behavior of the coating

  1. Deformation analysis considering thermal expansion of injection mold

    International Nuclear Information System (INIS)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok

    2015-01-01

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations

  2. Deformation analysis considering thermal expansion of injection mold

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jun Hyung; Yi, Dae Eun; Jang, Jeong Hui; Lee, Min Seok [Samsung Electronics Co., LTD., Seoul (Korea, Republic of)

    2015-09-15

    In the design of injection molds, the temperature distribution and deformation of the mold is one of the most important parameters that affect the flow characteristics, flash generation, and surface appearance, etc. Plastic injection analyses have been carried out to predict the temperature distribution of the mold and the pressure distribution on the cavity surface. As the input loads, we transfer the temperature and pressure results to the structural analysis. We compare the structural analysis results with the thermal expansion effect using the actual flash and step size of a smartphone cover part. To reduce the flash problem, we proposed a new mold design, and verified the results by performing simulations.

  3. Rapid and Low-cost Prototyping of Medical Devices Using 3D Printed Molds for Liquid Injection Molding

    Science.gov (United States)

    Chung, Philip; Heller, J. Alex; Etemadi, Mozziyar; Ottoson, Paige E.; Liu, Jonathan A.; Rand, Larry; Roy, Shuvo

    2014-01-01

    Biologically inert elastomers such as silicone are favorable materials for medical device fabrication, but forming and curing these elastomers using traditional liquid injection molding processes can be an expensive process due to tooling and equipment costs. As a result, it has traditionally been impractical to use liquid injection molding for low-cost, rapid prototyping applications. We have devised a method for rapid and low-cost production of liquid elastomer injection molded devices that utilizes fused deposition modeling 3D printers for mold design and a modified desiccator as an injection system. Low costs and rapid turnaround time in this technique lower the barrier to iteratively designing and prototyping complex elastomer devices. Furthermore, CAD models developed in this process can be later adapted for metal mold tooling design, enabling an easy transition to a traditional injection molding process. We have used this technique to manufacture intravaginal probes involving complex geometries, as well as overmolding over metal parts, using tools commonly available within an academic research laboratory. However, this technique can be easily adapted to create liquid injection molded devices for many other applications. PMID:24998993

  4. Using a micro-molding process to fabricate polymeric wavelength filters

    Science.gov (United States)

    Chuang, Wei-Ching; Lee, An-Chen; Ho, Chi-Ting

    2008-08-01

    A procedure for fabricating a high aspect ratio periodic structure on a UV polymer at submicron order using holographic interferometry and molding processes is described. First, holographic interferometry using a He-Cd (325 nm) laser was used to create the master of the periodic line structure on an i-line sub-micron positive photoresist film. A 20 nm nickel thin film was then sputtered on the photoresist. The final line pattern on a UV polymer was obtained from casting against the master mold. Finally, a SU8 polymer was spun on the polymer grating to form a planar waveguide or a channel waveguide. The measurement results show that the waveguide length could be reduced for the waveguide having gratings with a high aspect ratio.

  5. Mechanics in Composite Materials and Process

    International Nuclear Information System (INIS)

    Lee, Dae Gil

    1993-03-01

    This book includes introduction of composite materials, stress, in-plane stiffness of laminates strain rate, ply stress, failure criterion and bending, composite materials micromechanics, composite plates and micromechanics of composite materials. It also deals with process of composite materials such as autoclave vacuum bag degassing process, connection of composite materials, filament winding process, resin transfer molding, sheet molding compound and compression molding.

  6. Chemorheology of in-mold coating for compression molded SMC applications

    Science.gov (United States)

    Ko, Seunghyun; Straus, Elliott J.; Castro, Jose M.

    2015-05-01

    In-mold coating (IMC) is applied to compression molded sheet molding compound (SMC) exterior automotive or truck body panels as an environmentally friendly alternative to make the surface conductive for subsequent electrostatic painting operations. The coating is a thermosetting liquid that when injected onto the surface of the part cures and bonds to provide a smooth conductive surface. In order to optimize the IMC process, it is essential to predict the time available for flow, that is the time before the thermosetting reaction starts (inhibition time) as well as the time when the coating has enough structural integrity so that the mold can be opened without damaging the part surface (cure time). To predict both the inhibition time and the cure time, it is critical to study the chemorheology of IMC. In this paper, we study the chemorheology for a typical commercial IMC system, and show its relevance to both the flow and cure time for the IMC stage during SMC compression molding.

  7. Index change of chalcogenide materials from precision glass molding processes

    Science.gov (United States)

    Deegan, J.; Walsh, K.; Lindberg, G.; Benson, R.; Gibson, D.; Bayya, S.; Sanghera, J.; Stover, E.

    2015-05-01

    With the increase in demand for infrared optics for thermal applications and the use of glass molding of chalcogenide materials to support these higher volume optical designs, an investigation of changes to the optical properties of these materials is required. Typical precision glass molding requires specific thermal conditions for proper lens molding of any type of optical glass. With these conditions a change (reduction) of optical index occurs after molding of all oxide glass types and it is presumed that a similar behavior will happen with chalcogenide based materials. We will discuss the effects of a typical molding thermal cycle for use with commercially and newly developed chalcogenide materials and show results of index variation from nominally established material data.

  8. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process

    Directory of Open Access Journals (Sweden)

    Beatriz de Cássia Martins Salomão

    2014-01-01

    Full Text Available Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37ºC, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  9. Survey of molds, yeast and Alicyclobacillus spp. from a concentrated apple juice productive process.

    Science.gov (United States)

    de Cássia Martins Salomão, Beatriz; Muller, Chalana; do Amparo, Hudson Couto; de Aragão, Gláucia Maria Falcão

    2014-01-01

    Bacteria and molds may spoil and/or contaminate apple juice either by direct microbial action or indirectly by the uptake of metabolites as off-flavours and toxins. Some of these microorganisms and/or metabolites may remain in the food even after extensive procedures. This study aim to identify the presence of molds (including heat resistant species) and Alicyclobacillus spp., during concentrated apple juice processing. Molds were isolated at different steps and then identified by their macroscopic and microscopic characteristics after cultivation on standard media at 5, 25 and 37 °C, during 7 days. Among the 19 isolated found, 63% were identified as Penicillium with 50% belonging to the P. expansum specie. With regards to heat resistant molds, the species Neosartorya fischeri, Byssochlamys fulva and also the genus Eupenicillium sp., Talaromyces sp. and Eurotium sp. were isolated. The thermoacidophilic spore-forming bacteria were identified as A. acidoterrestris by a further investigation based on 16S rRNA sequence similarity. The large contamination found indicates the need for methods to eliminate or prevent the presence of these microorganisms in the processing plants in order to avoid both spoilage of apple juice and toxin production.

  10. Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality

    International Nuclear Information System (INIS)

    Kang, Gyung Ju; Park, Chang Hyun; Choi, Dong Hoon

    2016-01-01

    Injection molding process variables and gates of an automotive glove box were optimally determined to enhance its injection molding quality. We minimized warpage with satisfying constraints on clamp force, weldline, and profiles of filling and packing. Design variables concerning the injection molding process are temperatures of the mold and the resin, ram speeds, and packing pressures and durations; design variables concerning the gates are the shape of the center gate and locations of two side gates. To optimally determine the design variables in an efficient way, we adopted metamodel-based design optimization, sequentially using an optimal Latin hypercube design as a design of experiment, Kriging models as metamodels that replace time-consuming injection molding simulations, and a micro genetic algorithm as an optimization algorithm. In the optimization process, a commercial injection molding analysis software, MoldflowTM, was employed to evaluate the injection molding quality at design points specified. Using the proposed design approach, the warpage was found reduced by 20.5% compared to the initial warpage, while all the design constraints were satisfied, which clearly shows the validity of the proposed design approach

  11. Metamodel-based design optimization of injection molding process variables and gates of an automotive glove box for enhancing its quality

    Energy Technology Data Exchange (ETDEWEB)

    Kang, Gyung Ju [Pusan National University, Busan (Korea, Republic of); Park, Chang Hyun; Choi, Dong Hoon [Hanyang University, Seoul (Korea, Republic of)

    2016-04-15

    Injection molding process variables and gates of an automotive glove box were optimally determined to enhance its injection molding quality. We minimized warpage with satisfying constraints on clamp force, weldline, and profiles of filling and packing. Design variables concerning the injection molding process are temperatures of the mold and the resin, ram speeds, and packing pressures and durations; design variables concerning the gates are the shape of the center gate and locations of two side gates. To optimally determine the design variables in an efficient way, we adopted metamodel-based design optimization, sequentially using an optimal Latin hypercube design as a design of experiment, Kriging models as metamodels that replace time-consuming injection molding simulations, and a micro genetic algorithm as an optimization algorithm. In the optimization process, a commercial injection molding analysis software, MoldflowTM, was employed to evaluate the injection molding quality at design points specified. Using the proposed design approach, the warpage was found reduced by 20.5% compared to the initial warpage, while all the design constraints were satisfied, which clearly shows the validity of the proposed design approach.

  12. Phenolic Molding Compounds

    Science.gov (United States)

    Koizumi, Koji; Charles, Ted; de Keyser, Hendrik

    Phenolic Molding Compounds continue to exhibit well balanced properties such as heat resistance, chemical resistance, dimensional stability, and creep resistance. They are widely applied in electrical, appliance, small engine, commutator, and automotive applications. As the focus of the automotive industry is weight reduction for greater fuel efficiency, phenolic molding compounds become appealing alternatives to metals. Current market volumes and trends, formulation components and its impact on properties, and a review of common manufacturing methods are presented. Molding processes as well as unique advanced techniques such as high temperature molding, live sprue, and injection/compression technique provide additional benefits in improving the performance characterisitics of phenolic molding compounds. Of special interest are descriptions of some of the latest innovations in automotive components, such as the phenolic intake manifold and valve block for dual clutch transmissions. The chapter also characterizes the most recent developments in new materials, including long glass phenolic molding compounds and carbon fiber reinforced phenolic molding compounds exhibiting a 10-20-fold increase in Charpy impact strength when compared to short fiber filled materials. The role of fatigue testing and fatigue fracture behavior presents some insight into long-term reliability and durability of glass-filled phenolic molding compounds. A section on new technology outlines the important factors to consider in modeling phenolic parts by finite element analysis and flow simulation.

  13. Effect of Junction Temperature Swing Durations on a Lifetime of a Transfer Molded IGBT Module

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jorgensen, Soren

    2016-01-01

    results under 6 different conditions and it may improve a lifetime model for lifetime prediction of IGBT modules under various mission profiles of converters. The power cycling tests are performed by an advanced power cycling test setup which enables tested modules to be operated under more realistic......In this paper, the effect of junction temperature swing duration on the lifetime of a transfer molded Intelligent Power IGBT Module is studied and a relevant lifetime factor is modeled. A temperature swing duration dependent lifetime factor is defined based on 38 accelerated power cycling test...

  14. Simulative design and process optimization of the two-stage stretch-blow molding process

    Energy Technology Data Exchange (ETDEWEB)

    Hopmann, Ch.; Rasche, S.; Windeck, C. [Institute of Plastics Processing at RWTH Aachen University (IKV) Pontstraße 49, 52062 Aachen (Germany)

    2015-05-22

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress.

  15. Simulative design and process optimization of the two-stage stretch-blow molding process

    International Nuclear Information System (INIS)

    Hopmann, Ch.; Rasche, S.; Windeck, C.

    2015-01-01

    The total production costs of PET bottles are significantly affected by the costs of raw material. Approximately 70 % of the total costs are spent for the raw material. Therefore, stretch-blow molding industry intends to reduce the total production costs by an optimized material efficiency. However, there is often a trade-off between an optimized material efficiency and required product properties. Due to a multitude of complex boundary conditions, the design process of new stretch-blow molded products is still a challenging task and is often based on empirical knowledge. Application of current CAE-tools supports the design process by reducing development time and costs. This paper describes an approach to determine optimized preform geometry and corresponding process parameters iteratively. The wall thickness distribution and the local stretch ratios of the blown bottle are calculated in a three-dimensional process simulation. Thereby, the wall thickness distribution is correlated with an objective function and preform geometry as well as process parameters are varied by an optimization algorithm. Taking into account the correlation between material usage, process history and resulting product properties, integrative coupled simulation steps, e.g. structural analyses or barrier simulations, are performed. The approach is applied on a 0.5 liter PET bottle of Krones AG, Neutraubling, Germany. The investigations point out that the design process can be supported by applying this simulative optimization approach. In an optimization study the total bottle weight is reduced from 18.5 g to 15.5 g. The validation of the computed results is in progress

  16. A method for manufacturing a tool part for an injection molding process, a hot embossing process, a nano-imprint process, or an extrusion process

    DEFF Research Database (Denmark)

    2013-01-01

    The present invention relates to a method for manufacturing a tool part for an injection molding process, a hot embossing process, nano-imprint process or an extrusion process. First, there is provided a master structure (10) with a surface area comprising nanometre-sized protrusions (11...

  17. Integration of Fiber-Reinforced Polymers in a Life Cycle Assessment of Injection Molding Process Chains with Additive Manufacturing

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Bey, Niki; Mischkot, Michael

    2017-01-01

    Additive manufacturing technologies applied to injection molding process chain have acquired an increasingly important role in the context of tool inserts production, especially by vat polymerization. Despite the decreased lifetime during their use in the injection molding process, the inserts come...... with improvements in terms of production time, costs, exibility, as well as potentially improved environmental performance as compared to conventional materials in a life cycle perspective.This contribution supports the development of additively manufactured injection molding inserts with the use of fiber...

  18. High Temperature Transfer Molding Resins: Preliminary Composite Properties of PETI-375

    Science.gov (United States)

    Connell, J. W.; Smith, J. G., Jr.; Hergenrother, P. M.; Criss, J. M., Jr.

    2004-01-01

    As part of an ongoing effort to develop materials for resin transfer molding (RTM) of high performance/high temperature composites, a new phenylethynyl containing imide designated as PETI-375 has been under evaluation. PETI-375 was prepared using 2,3,3 ,4 - biphenyltetracarboxylic dianhydride (a-BPDA), 1,3-bis(4-aminophenoxy)benzene and 2,2 - bis(trifluoromethyl)benzidine and endcapped with 4-phenylethynylphthalic anhydride. This material exhibited a stable melt viscosity of 0.1-0.4 Pa sec at 280 C. High quality, void-free laminates were fabricated by high temperature RTM using unsized T-650 carbon fabric and evaluated. After curing for 1 hour at 371 C, the laminates exhibited a glass transition temperature of approx. 375 C by thermomechanical analysis. The laminates were essentially void and microcrack free as evidenced by optical microscopic examination. The chemistry, physical, and composite properties of PETI-375 will be discussed.

  19. Two component tungsten powder injection molding – An effective mass production process

    International Nuclear Information System (INIS)

    Antusch, Steffen; Commin, Lorelei; Mueller, Marcus; Piotter, Volker; Weingaertner, Tobias

    2014-01-01

    Tungsten and tungsten-alloys are presently considered to be the most promising materials for plasma facing components for future fusion power plants. The Karlsruhe Institute of Technology (KIT) divertor design concept for the future DEMO power plant is based on modular He-cooled finger units and the development of suitable mass production methods for such parts was needed. A time and cost effective near-net-shape forming process with the advantage of shape complexity, material utilization and high final density is Powder Injection Molding (PIM). This process allows also the joining of two different materials e.g. tungsten with a doped tungsten alloy, without brazing. The complete technological process of 2-Component powder injection molding for tungsten materials and its application on producing real DEMO divertor parts, characterization results of the finished parts e.g. microstructure, hardness, density and joining zone quality are discussed in this contribution

  20. Know your fibers : process and properties, or, a material science approach to designing pulp molded products

    Science.gov (United States)

    John F. Hunt

    1998-01-01

    The following results are preliminary, but show some basic information that will be used in an attempt to model pulp molded structures so that by measuring several basic fundamental properties of a fiber furnish and specifying process conditions, a molded structure could be designed for a particular performance need.

  1. Injection molding of Y-TZP powders prepared by colloidal processing

    International Nuclear Information System (INIS)

    Kimura, Y.; Mineshita, O.; Kaga, T.; Tokinaga, T.; Obitsu, M.

    1991-01-01

    TZP powders containing 3mol% Y 2 O 3 were prepared from ZrOCl 2 solution via an aqueous colloidal suspension of ZrO 2 . Processing variables were optimized to obtain powders suitable for injection molding. Wettability of powders with binders, fluidity of melting compound, removal of binder from green body, and properties of sintered body were investigated

  2. Digital Twin concept for smart injection molding

    Science.gov (United States)

    Liau, Y.; Lee, H.; Ryu, K.

    2018-03-01

    Injection molding industry has evolved over decades and became the most common method to manufacture plastic parts. Monitoring and improvement in the injection molding industry are usually performed separately in each stage, i.e. mold design, mold making and injection molding process. However, in order to make a breakthrough and survive in the industrial revolution, all the stages in injection molding need to be linked and communicated with each other. Any changes in one stage will cause a certain effect in other stage because there is a correlation between each other. Hence, the simulation should not only based on the input of historical data, but it also needs to include the current condition of equipment and prediction of future events in other stages to make the responsive decision. This can be achieved by implementing the concept of Digital Twin that models the entire process as a virtual model and enables bidirectional control with the physical process. This paper presented types of data and technology required to build the Digital Twin for the injection molding industry. The concept includes Digital Twin of each stage and integration of these Digital Twin model as a thoroughgoing model of the injection molding industry.

  3. Surface microstructure replication in injection molding

    DEFF Research Database (Denmark)

    Theilade, Uffe Arlø; Hansen, Hans Nørgaard

    2006-01-01

    topography is transcribed onto the plastic part through complex mechanisms. This replication, however, is not perfect, and the replication quality depends on the plastic material properties, the topography itself, and the process conditions. This paper describes and discusses an investigation of injection...... molding of surface microstructures. The fundamental problem of surface microstructure replication has been studied. The research is based on specific microstructures as found in lab-on-a-chip products and on rough surfaces generated from EDM (electro discharge machining) mold cavities. Emphasis is put...... on the ability to replicate surface microstructures under normal injection-molding conditions, i.e., with commodity materials within typical process windows. It was found that within typical process windows the replication quality depends significantly on several process parameters, and especially the mold...

  4. Injection Molding of High Aspect Ratio Nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels Bent

    We present a process for injection molding of 40 nm wide and >100 nm high pillars (pitch: 200 nm). We explored the effects of mold coatings and injection molding conditions on the replication quality of nanostructures in cyclic olefin copolymer. We found that optimization of molding parameters...

  5. Flow visualization and simulation of the filling process during injection molding

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2017-01-01

    To directly compare experimental moldings from an injection molding machine with simulations, a special mold has been produced with a glass window. The injection plane is perpendicular to the opening and closing planes, in order for the 55. mm thick glass window to be easily visible from the side....... These two had significant effects on the filling times and injection pressure calculated by the simulations. Other effects investigated included transient thermal management of the mold, pressure dependent viscosity and wall slip, but their effect were not remarkably large in this work. The obtained....... A high speed camera recording 500 frames per second was employed, and the mold had three thermocouples and two pressure sensors installed. The molded part is a 2. mm thick plate with a 0.5. mm thin section, which creates a characteristic V-shaped flow pattern. Two different materials were employed...

  6. Based on database and asp.net technologies, a web platform of scientific data in the casting forces on the mold-fi lling behavior of titanium melts in vertically rotating molds

    Directory of Open Access Journals (Sweden)

    Xu Daming

    2008-11-01

    Full Text Available The vertical centrifugal-casting technique is widely used in the manufacture of various irregularlyshaped castings of advanced structural alloys with thin walls, complex shapes and/or large sizes. These castings are used in the increasing applications in aero-space/aviation industries, human teeth/bone repairs with nearnet shaped components, etc. In a vertically rotating casting system, the mold-filling processes of alloy melts, coupled with solidifi cation-heat transfer, may be much more complicated, because they are driven simultaneously by gravity, centrifugal and Coriolis forces. In the present work, an N-S/VOF-equations-based model, solved using a SOLA-VOF algorithm, under a rotating coordinate system was applied to numerically investigate the impacts of centrifugal and Coriolis forces on metallic melt mold-fi lling processes in different vertical centrifugal-casting configurations with different mold-rotation rates using an authors’ computer-codes system. The computational results show that the Coriolis force may cause remarkable variations in the fl ow patterns in the casting-part-cavities of a large horizontal-section area and directly connected to the sprue via a short ingate in a vertical centrifugalcasting process. A “turn-back” mold-filling technique, which only takes advantage of the centrifugal force in a transient rotating melt system, has been confi rmed to be a rational centrifugal-casting process in order to achieve smooth and layer-by-layer casting-cavities-fi lling control. The simulated mold-fi lling processes of Ti-6Al-4V alloy melt, in a vertical centrifugal-casting system with horizontally-connected plate-casting cavities, show reasonable agreement with experimental results from the literature.

  7. Evaluation of Hand Lay-Up and Resin Transfer Molding in Composite Wind Turbine Blade Manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    CAIRNS,DOUGLAS S.; SHRAMSTAD,JON D.

    2000-06-01

    The majority of the wind turbine blade industry currently uses low cost hand lay-up manufacturing techniques to process composite blades. While there are benefits to the hand lay-up process, drawbacks inherent to this process along with advantages of other techniques suggest that better manufacturing alternatives may be available. Resin Transfer Molding (RTM) was identified as a processing alternative and shows promise in addressing the shortcomings of hand lay-up. This report details a comparison of the RTM process to hand lay-up of composite wind turbine blade structures. Several lay-up schedules and critical turbine blade structures were chosen for comparison of their properties resulting from RTM and hand lay-up processing. The geometries investigated were flat plate, thin and thick flanged T-stiffener, I-beam, and root connection joint. It was found that the manufacturing process played an important role in laminate thickness, fiber volume, and weight for the geometries investigated. RTM was found to reduce thickness and weight and increase fiber volumes for all substructures. RTM resulted in tighter material transition radii and eliminated the need for most secondary bonding operations. These results would significantly reduce the weight of wind turbine blades. Hand lay-up was consistently slower in fabrication times for the structures investigated. A comparison of mechanical properties showed no significant differences after employing fiber volume normalization techniques to account for geometry differences resulting from varying fiber volumes. The current root specimen design does not show significant mechanical property differences according to process and exceeds all static and fatigue requirements.

  8. Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules

    DEFF Research Database (Denmark)

    Choi, Uimin; Blaabjerg, Frede; Jørgensen, Søren

    2017-01-01

    levels are presented. This study enables to include the tΔTj effect on lifetime model of IGBT modules for its lifetime estimation and it may result in improved lifetime prediction of IGBT modules under given mission profiles of converters. A postfailure analysis of the tested IGBT modules is also......In this paper, the effect of junction temperature swing duration on lifetime of transfer molded power insulated gate bipolar transistor (IGBT) modules is studied and a relevant lifetime factor is modeled. This study is based on 39 accelerated power cycling test results under six different...

  9. Rubber molds for investment casting

    International Nuclear Information System (INIS)

    Sibtain, S.N.

    2011-01-01

    The main objective of the project is to investigate different types of molding rubbers used for investment casting. The level of shape complexity which can be achieved by using these rubber molds is also studied. It was almost impossible to make complex shapes molds using metal molds, in that cases rubber molds are very important because they arc flexible and give accurate and precise part dimensions. Turbine blades are hi-tech components with air-foil geometries that have close dimensional tolerances. They are made of super-alloys and manufactured by investment casting. The final blade profile depends upon the dimensional accuracy in each of the processing steps. In the present work experimental study for the production of high quality low cost castings of turbine blades using rubber molds and injected wax patterns is presented. Natural Rubber molds and wax patterns from these molds were made. Different types of molding rubbers were studied including natural rubber, silicone rubber and liquid silicone rubber. It was found that by using rubber molds we can make most complex shape with very less finishing required. The shrinkage was 12% as compared to original master pattern. Rubber molds were made using laboratory hot press. Three layers of rubber above and below the master pattern. After that vulcanization was done by giving temperature and pressure. (author)

  10. Optically transparent super-hydrophobic thin film fabricated by reusable polyurethane-acrylate (PUA) mold

    Science.gov (United States)

    Park, J.-S.; Park, J.-H.; Lee, D.-W.

    2018-02-01

    In this paper, we describe a simple manufacturing method for producing an optically transparent super-hydrophobic polymer thin film using a reusable photo-curable polymer mold. Soluble photoresist (PR) molds were prepared with under-exposed and under-baked processes, which created unique hierarchical micro/nano structures. The reverse phase of the PR mold was replicated on the surface of polydimethylsiloxane (PDMS) substrates. The unique patterns on the replicated PDMS molds were successfully transferred back to the UV curable polyurethane-acrylate (PUA) using a laboratory-made UV exposure system. Continuous production of the super-hydrophobic PDMS thin film was demonstrated using the reusable PUA mold. In addition, hydrophobic nano-silica powder was sprayed onto the micro/nano structured PDMS surfaces to further improve hydrophobicity. The fabricated PDMS thin films with hierarchical surface texturing showed a water contact angle  ⩾150°. Excellent optical transmittance within the range of visible light of wavelengths between 400-800 nm was experimentally confirmed using a spectrophotometer. High efficiency of the super-hydrophobic PDMS film in optical transparency was also confirmed using solar panels. The fabricated PUA molds are very suitable for use in roll-to-roll or roll-to-plate systems which allow continuous production of super-hydrophobic thin films with an excellent optical transparency.

  11. Evolution of Surface Texture and Cracks During Injection Molding of Fiber-Reinforced, Additively-Manufactured, Injection Molding Inserts

    DEFF Research Database (Denmark)

    Hofstätter, Thomas; Mischkot, Michael; Pedersen, David Bue

    2016-01-01

    This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow-density polyethy......This paper investigates the lifetime and surfacedeterioration of additively-manufactured, injection-moulding inserts. The inserts were produced using digital light processing and were reinforcedwith oriented short carbon fibers. Theinserts were used during injection molding oflow......-density polyethylene until their failure. The molded products were used to analyse the development of the surface roughness and wear. By enhancing the lifetime of injection-molding inserts,this work contributes to the establishment of additively manufactured inserts in pilot production....

  12. Formation of Au nano-patterns on various substrates using simplified nano-transfer printing method

    Science.gov (United States)

    Kim, Jong-Woo; Yang, Ki-Yeon; Hong, Sung-Hoon; Lee, Heon

    2008-06-01

    For future device applications, fabrication of the metal nano-patterns on various substrates, such as Si wafer, non-planar glass lens and flexible plastic films become important. Among various nano-patterning technologies, nano-transfer print method is one of the simplest techniques to fabricate metal nano-patterns. In nano-transfer printing process, thin Au layer is deposited on flexible PDMS mold, containing surface protrusion patterns, and the Au layer is transferred from PDMS mold to various substrates due to the difference of bonding strength of Au layer to PDMS mold and to the substrate. For effective transfer of Au layer, self-assembled monolayer, which has strong bonding to Au, is deposited on the substrate as a glue layer. In this study, complicated SAM layer coating process was replaced to simple UV/ozone treatment, which can activates the surface and form the -OH radicals. Using simple UV/ozone treatments on both Au and substrate, Au nano-pattern can be successfully transferred to as large as 6 in. diameter Si wafer, without SAM coating process. High fidelity transfer of Au nano-patterns to non-planar glass lens and flexible PET film was also demonstrated.

  13. Application of risk analysis and quality control methods for improvement of lead molding process

    Directory of Open Access Journals (Sweden)

    H. Gołaś

    2016-10-01

    Full Text Available The aim of the paper is to highlight the significance of implication of risk analysis and quality control methods for the improvement of parameters of lead molding process. For this reason, Fault Mode and Effect Analysis (FMEA was developed in the conceptual stage of a new product TC-G100-NR. However, the final product was faulty (a complete lack of adhesion of brass insert to leak regardless of the previously defined potential problem and its preventive action. It contributed to the recognition of root causes, corrective actions and change of production parameters. It showed how these methods, level of their organization, systematic and rigorous study affect molding process parameters.

  14. Investigation on the micro injection molding process of an overmolded multi-material micro component

    DEFF Research Database (Denmark)

    Baruffi, Federico; Calaon, Matteo; Tosello, Guido

    and difficult assembly steps, being the plastic molded directly on a metal substrate. In this scenario, an investigation on the fully automated micro overmolding manufacturing technology of a three-material micro component for acoustic applications has been carried out. Preliminary experiments allowed......Micro injection molding (μIM) is one of the few technologies capable of meeting the increasing demand of complex shaped micro plastic parts. This process, combined with the overmolding technique, allows a fast and cost-efficient production of multi-material micro components, saving numerous...

  15. Experimental validation of viscous and viscoelastic simulations of micro injection molding process

    DEFF Research Database (Denmark)

    Gava, Alberto; Tosello, Guido; Lucchetta, Giovanni

    2009-01-01

    The effects of two different rheological models used in the simulation of the micro injection molding (µIM) process are investigated. The Cross-WLF viscous model and the Giesekus viscoelastic model are selected and their performance evaluated using 3D models implemented on two different...

  16. Application of the lattice Boltzmann method for simulation of the mold filling process in the casting industry

    Science.gov (United States)

    Szucki, Michal; Suchy, J. S.; Lelito, J.; Malinowski, P.; Sobczyk, J.

    2017-12-01

    The aim of this work is the development of the lattice Boltzmann model for simulation of the mold filling process. The authors present a simplified approach to the modeling of liquid metal-gas flows with particular emphasis on the interactions between these phases. The boundary condition for momentum transfer of the moving free surface to the gaseous phase is shown. Simultaneously, the method for modeling influence of gas back pressure on a position and shape of the interfacial boundary is explained in details. The problem of the lattice Boltzmann method (LBM) stability is also analyzed. Since large differences in viscosity of both fluids are a source of the model instability, the so-called fractional step (FS) method allowing to improve the computation stability is applied. The presented solution is verified on the bases of the available reference data and the results of experiments. It is shown that the model describes properly such effects as: gas bubbles formation and air back pressure, accompanying liquid-gas flows in the casting mold. At the same time the proposed approach is easy to be implemented and characterized by a lower demand of operating memory as compared to typical LBM models of two-phase flows.

  17. Three-Dimensional Modeling of Glass Lens Molding

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2015-01-01

    The required accuracy for the final dimensions of the molded lenses in wafer-based precision glass molding as well as the need for elimination of costly experimental trial and error calls for numerical simulations. This study deals with 3D thermo-mechanical modeling of the wafer-based precision...... glass lens molding process. First, a comprehensive 3D thermo-mechanical model of glass is implemented into a FORTRAN user subroutine (UMAT) in the FE program ABAQUS, and the developed FE model is validated with both a well-known sandwich seal test and experimental results of precision molding of several...... glass rings. Afterward, 3D thermo-mechanical modeling of the wafer-based glass lens manufacturing is performed to suggest a proper molding program (i.e., the proper set of process parameters including preset force-time and temperature-time histories) for molding a wafer to a desired dimension...

  18. Molded ultra-low density microcellular foams

    International Nuclear Information System (INIS)

    Rand, P.B.; Montoya, O.J.

    1986-07-01

    Ultra-low density (< 0.01 g/cc) microcellular foams were required for the NARYA pulsed-power-driven x-ray laser development program. Because of their extreme fragility, molded pieces would be necessary to successfully field these foams in the pulsed power accelerator. All of the foams evaluated were made by the thermally induced phase separation technique from solutions of water soluble polymers. The process involved rapidly freezing the solution to induce the phase separation, and then freeze drying to remove the water without destroying the foam's structure. More than sixty water soluble polymers were evaluated by attempting to make their solutions into foams. The foams were evaluated for shrinkage, density, and microstructure to determine their suitability for molding and meeting the required density and cell size requirements of 5.0 mg/cc and less than twenty μmeters. Several promising water soluble polymers were identified including the polyactylic acids, guar gums, polyactylamide, and polyethylene oxide. Because of thier purity, structure, and low shrinkage, the polyacrylic acids were chosen to develop molding processes. The initial requirements were for 2.0 cm. long molded rods with diameters of 1.0, 2.0. and 3.0 mm. These rods were made by freezing the solution in thin walled silicon rubber molds, extracting the frozen preform from the mold, and then freeze drying. Requirements for half rods and half annuli necessitated using aluminum molds. Again we successfully molded these shapes. Our best efforts to date involve molding annuli with 3.0 mm outside diameters and 2.0 mm inside diameters

  19. A Soft Tooling process chain employing Additive Manufacturing for injection molding of a 3D component with micro pillars

    DEFF Research Database (Denmark)

    Zhang, Yang; Pedersen, David Bue; Segebrecht Gøtje, Asger

    2017-01-01

    The purpose of the research presented in this paper is to investigate the capability of a soft tooling process chain employing Additive Manufacturing (AM) for preproduction of an insert with micro features by injection molding. The Soft Tooling insert was manufactured in a high temperature...... photopolymer by Digital Light Processing (vat photopolymerization). The mold cavity was formed by two insert halves, by design; both inserts have four angled tines, with micro holes (Ø200 μm, 200 μm deep) on the surface. Injection molding with polyethylene was used with the soft tool inserts to manufacture...

  20. In-Situ Real Time Monitoring and Control of Mold Making and Filling Processes: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Mohamed Abdelrahman; Kenneth Currie

    2010-12-22

    This project presents a model for addressing several objectives envisioned by the metal casting industries through the integration of research and educational components. It provides an innovative approach to introduce technologies for real time characterization of sand molds, lost foam patterns and monitoring of the mold filling process. The technology developed will enable better control over the casting process. It is expected to reduce scrap and variance in the casting quality. A strong educational component is integrated into the research plan to utilize increased awareness of the industry professional, the potential benefits of the developed technology, and the potential benefits of cross cutting technologies.

  1. A comparison of molding procedures - Contact, injection and vacuum injection

    Science.gov (United States)

    Cathiard, G.

    1980-06-01

    The technical and economic aspects of the contact, injection and vacuum injection molding of reinforced plastic components are compared for the example of a tractor roof with a gel-coated surface. Consideration is given to the possibility of reinforcement, number of smooth faces, condition of the gel-coated surface, reliability, and labor and workplace requirements of the three processes, and advantages of molding between the mold and a countermold in smooth faces, reliability, labor requirements, working surface and industrial hygiene are pointed out. The times and labor requirements of each step in the molding cycles are examined, and material requirements and yields, investment costs, amortization and product cost prices of the processes are compared. It is concluded that, for the specific component examined, the processes of vacuum injection and injection molding appear very interesting, with injection molding processes resulting in lower cost prices than contact molding for any production volume.

  2. The Effect of Epoxy Molding Compound Floor Life to Reliability Performance and mold ability for QFN Package

    Science.gov (United States)

    Peanpunga, Udom; Ugsornrat, Kessararat; Thorlor, Panakamol; Sumithpibul, Chalermsak

    2017-09-01

    This research studied about an epoxy molding compound (EMC) floor life to reliability performance of integrated circuit (IC) package. Molding is the process for protecting the die of IC package form mechanical and chemical reaction from external environment by shaping EMC. From normal manufacturing process, the EMC is stored in the frozen at 5oC and left at around room temperature for aging time or floor life before molding process. The EMC floor life effect to its properties and reliability performance of IC package. Therefore, this work interested in varied the floor life of EMC before molding process to analyze properties of EMC such as spiral flow length, gelation time, and viscosity. In experiment, the floor life of EMC was varied to check the effect of its property to reliability performance. The EMC floor life were varied from 0 hours to 60 hours with a step of 12 hours and observed wire sweep, incomplete EMC, and delamination inside the packages for 3x3, 5x5 and 8x8 mm2 of QFN packages. The evaluation showed about clearly effect of EMC floor life to IC packaging reliability. EMC floor life is not any concern for EMC property, moldabilty, and reliability from 0 hours to 48 hours for molding process of 3x3,5x5 and 8x8 mm2 QFN packaging manufacturing

  3. Implementation of Molding Constraints in Topology Optimization

    DEFF Research Database (Denmark)

    Marx, S.; Kristensen, Anders Schmidt

    2009-01-01

    In many cases the topology optimization method yield inadmissible solutions in respect to a particular manufacturing process, e.g. injection molding. In the present work it is chosen to focus on the most common injection molding parameters/factors determining the quality of the mold geometry, i.......e. uniform thickness, filling of the die and ejection of the molded item, i.e. extrusion. The mentioned injection mold parameters/factors are introduced in the topology optimization by defining a centerline of the initial domain and then penalize elements in respect to the distance to the defined centerline...

  4. Microstructured metal molds fabricated via investment casting

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2010-01-01

    This paper describes an investment casting process to produce aluminum molds having integrated microstructures. Unlike conventional micromolding tools, the aluminum mold was large and had complex curved surfaces. The aluminum was cast from curved microstructured ceramic molds which were themselves cast from curved microstructured rubber. The aluminum microstructures had an aspect ratio of 1:1 and sizes ranging from 25 to 50 µm. Many structures were successfully cast into the aluminum with excellent replication fidelity, including circular, square and triangular holes. We demonstrate molding of large, curved surfaces having surface microstructures using the aluminum mold.

  5. Solvent-assisted polymer micro-molding

    Institute of Scientific and Technical Information of China (English)

    HAN LuLu; ZHOU Jing; GONG Xiao; GAO ChangYou

    2009-01-01

    The micro-molding technology has played an important role in fabrication of polymer micro-patterns and development of functional devices.In such a process,suitable solvent can swell or dissolve the polymer films to decrease their glass transition temperature (Tg) and viscosity and thereby improve flowing ability.Consequently,it is easy to obtain the 2D and 3D patterns with high fidelity by the solvent-assisted micro-molding.Compared with the high temperature molding,this technology overcomes some shortcomings such as shrinking after cooling,degradation at high temperature,difficulty in processing some functional materials having high Tg,etc.It can be applied to making patterns not only on polymer monolayers but also on polyelectrolyte multilayers.Moreover,the compressioninduced patterns on the multilayers are chemically homogenous but physically heterogeneous.In this review,the controlling factors on the pattern quality are also discussed,including materials of the mold,solvent,pressure,temperature and pattern density.

  6. Thermochemical micro imprinting of single-crystal diamond surface using a nickel mold under high-pressure conditions

    Energy Technology Data Exchange (ETDEWEB)

    Imoto, Yuji; Yan, Jiwang, E-mail: yan@mech.keio.ac.jp

    2017-05-15

    Graphical abstract: A Ni mold and thermochemically imprinted microstructures on diamond. - Highlights: • A thermochemical method for micro machining/patterning of diamond is proposed. • Various kinds of microstructures were imprinted on diamond using a Ni mold. • A graphite layer is formed during imprinting which can be removed by acid. • The processing depth depends strongly on pressure and temperature. - Abstract: Single-crystal diamond is an important material for cutting tools, micro electro mechanical systems, optical devices, and semiconductor substrates. However, the techniques for producing microstructures on diamond surface with high efficiency and accuracy have not been established. This paper proposes a thermochemical imprinting method for transferring microstructures from a nickel (Ni) mold onto single-crystal diamond surface. The Ni mold was micro-structured by a nanoindenter and then pressed against the diamond surface under high temperature and pressure in argon atmosphere. Results show that microstructures on the Ni mold were successfully transferred onto the diamond surface, and their depth increased with both pressure and temperature. Laser micro-Raman spectroscopy, transmission electron microscopy (TEM) and electron energy loss spectroscopy (EELS) analyses indicate that a graphite layer was formed over the contact area between diamond and Ni during pressing, and after washing by a mixed acid, the graphite layer could be completely removed. This study demonstrated the feasibility of a cost-efficient fabrication method for large-area microstructures on single-crystal diamond.

  7. A Mathematical Model for the Non-Stationary Process of Compression Molding of Plates from Granulate of Thermoplastic Composites

    Directory of Open Access Journals (Sweden)

    Vladimir N. Vodyakov

    2017-12-01

    Full Text Available Introduction: Mathematical modeling allows assigning optimal parameters for the process of compression molding of plates and calculating the dimensions of the mold without costly and long-term experiments. The options ensure the required precision of pressing. The disadvantages of the known models are the assumptions about the process isothermicity and independence of the thermal-physical coefficients from temperature. The models do not take into account the dependence of the pressure in the cavity of the mold on the excess of the melt; the problem of calculating the dimensions of the mold cavity for given plate dimensions is not posed. The known models do not give a complete description of all stages of the process. The aim of this paper is to develop a perfect mathematical model without limitations for the compression molding of plates from a granulate of highly filled thermoplastic composites. Materials and Methods: The paper proposes a non-stationary mathematical model. The model takes into account the presence of physical states transitions and dependence of the thermophysical characteristics of composites on temperature. The model is based on the known equations of thermal physics and continuum mechanics. Results: Initial and boundary conditions, rheological equations, systems of equations for the material, thermal, and power balance are determined for three stages of the process. The calculation problems are determined too. A program of iterative numerical calculation has been developed because of the resulting system of equations has no analytical solution. A convergence of experimental and theoretical results with the correlation coefficient confirms the adequacy of the developed mathematical model and the calculation program. Discussion and Conclusions: The results of the study allow calculating the dimensions of the mold cavity, the initial granulate required mass, technological losses, the time functions of pressure and temperature

  8. All polymer, injection molded nanoslits, fabricated through two-level UV-LIGA processes

    DEFF Research Database (Denmark)

    Østergaard, Peter Friis; Matteucci, Marco; Marie, Rodolphe

    2012-01-01

    in the micro- and nanoregime is required. To obtain this, injection molding is included in the research process for making several chips (100-1000) with the same layout. The time it takes for the individual chip to be fabricated in this way is much shorter than with conventional cleanroom methods...

  9. Impact insertion of transfer-molded microneedle for localized and minimally invasive ocular drug delivery.

    Science.gov (United States)

    Song, Hyun Beom; Lee, Kang Ju; Seo, Il Ho; Lee, Ji Yong; Lee, Sang-Mok; Kim, Jin Hyoung; Kim, Jeong Hun; Ryu, WonHyoung

    2015-07-10

    It has been challenging for microneedles to deliver drugs effectively to thin tissues with little background support such as the cornea. Herein, we designed a microneedle pen system, a single microneedle with a spring-loaded microneedle applicator to provide impact insertion. To firmly attach solid microneedles with 140 μm in height at the end of macro-scale applicators, a transfer molding process was employed. The fabricated microneedle pens were then applied to mouse corneas. The microneedle pens successfully delivered rhodamine dye deep enough to reach the stromal layer of the cornea with small entry only about 1000 μm(2). When compared with syringes or 30 G needle tips, microneedle pens could achieve more localized and minimally invasive delivery without any chances of perforation. To investigate the efficacy of microneedle pens as a way of drug delivery, sunitinib malate proven to inhibit in vitro angiogenesis, was delivered to suture-induced angiogenesis model. When compared with delivery by a 30 G needle tip dipped with sunitinib malate, only delivery by microneedle pens could effectively inhibit corneal neovascularization in vivo. Microneedle pens could effectively deliver drugs to thin tissues without impairing merits of using microneedles: localized and minimally invasive delivery. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Mold production for polymer optics

    Science.gov (United States)

    Boerret, Rainer; Raab, Jonas; Speich, Marco

    2014-09-01

    The fields of application for polymer optics are huge and thus the need for polymer optics is steadily growing. Most polymer optics are produced in high numbers by injection molding. Therefore molds and dies that fulfill special requirements are needed. Polishing is usually the last process in the common process chain for production of molds for polymer optics. Usually this process step is done manually by experienced polishers. Due to the small number of skilled professionals and health problems because of the monotonous work the idea was to support or probably supersede manual polishing. Polishing using an industrial robot as movement system enables totally new possibilities in automated polishing. This work focuses on the surface generation with a newly designed polishing setup and on the code generation for the robot movement. The process starts on ground surfaces and with different tools and polishing agents surfaces that fulfill the requirements for injection molding of optics can be achieved. To achieve this the attention has to be focused not only on the process itself but also on tool path generation. A proprietary software developed in the Centre for Optical Technologies in Aalen University allows the tool path generation on almost any surface. This allows the usage of the newly developed polishing processes on different surfaces and enables an easy adaption. Details of process and software development will be presented as well as results from different polishing tests on different surfaces.

  11. Effect of Functional Nano Channel Structures Different Widths on Injection Molding and Compression Molding Replication Capabilities

    DEFF Research Database (Denmark)

    Calaon, M.; Tosello, G.; Garnaes, J.

    The present study investigates the capabilities of the two employed processes, injection molding (IM) and injection compression molding (ICM) on replicating different channel cross sections. Statistical design of experiment was adopted to optimize replication quality of produced polymer parts wit...

  12. Tool steel quality and surface finishing of plastic molds

    Directory of Open Access Journals (Sweden)

    Rafael Agnelli Mesquita

    2010-01-01

    Full Text Available Plastic industry is today in a constant growth, demanding several products from other segments, which includes the plastic molds, mainly used in the injection molding process. Considering all the requirements of plastic molds, the surface finishing is of special interest, as the injected plastic part is able to reproduce any details (and also defects from the mold surface. Therefore, several aspects on mold finishing are important, mainly related to manufacturing conditions - machining, grinding, polishing and texturing, and also related to the tool steel quality, in relation to microstructure homogeneity and non-metallic inclusions (cleanliness. The present paper is then focused on this interrelationship between steel quality and manufacturing process, which are both related to the final quality of plastic mold surfaces. Examples are discussed in terms of surface finishing of plastic molds and the properties or the microstructure of mold steels.

  13. Dynamic of taking out molding parts at injection molding

    Directory of Open Access Journals (Sweden)

    E. Ragan

    2012-10-01

    Full Text Available Most plastic parts used in automobile production are manufactured by injection molding. Their quality depends also on taking out molding and on the manipulators for it. Task of this contribution is to theoretically describe a transport of molding at taking out after injection molding in relation on its regulation. The following quantities are derived at it: the transition characteristic of the taking out system, the blocking diagram of taking out molding regulation, the amplitude and phase characteristic and the transition characteristic of action quantity at taking out molding regulation.

  14. Frequency and amplitude dependences of molding accuracy in ultrasonic nanoimprint technology

    International Nuclear Information System (INIS)

    Mekaru, Harutaka; Takahashi, Masaharu

    2009-01-01

    We use neither a heater nor ultraviolet lights, and are researching and developing an ultrasonic nanoimprint as a new nano-patterning technology. In our ultrasonic nanoimprint technology, ultrasonic vibration is not used as a heat generator instead of the heater. A mold is connected with an ultrasonic generator, and mold patterns are pushed down and pulled up at a high speed into a thermoplastic. Frictional heat is generated by ultrasonic vibration between mold patterns and thermoplastic patterns formed by an initial contact force. However, because frictional heat occurs locally, the whole mold is not heated. Therefore, a molding material can be comprehensively processed at room temperature. A magnetostriction actuator was built into our ultrasonic nanoimprint system as an ultrasonic generator, and the frequency and amplitude can be changed between dc–10 kHz and 0–4 µm, respectively. First, the ultrasonic nanoimprint was experimented by using this system on polyethylene terephthalate (PET, T g = 69 °C), whose the glass transition temperature (T g ) is comparatively low in engineering plastics, and it was ascertained that the most suitable elastic material for this technique was an ethyl urethane rubber. In addition, we used a changeable frequency of the magnetostriction actuator, and nano-patterns in an electroformed-Ni mold were transferred to a 0.5 mm thick sheet of PET, polymethylmethacrylate (PMMA) and polycarbonate (PC), which are typical engineering plastics, under variable molding conditions. The frequency and amplitude dependence of ultrasonic vibration to the molding accuracy were investigated by measuring depth and width of imprinted patterns. As a result, regardless of the molding material, the imprinted depth was changed drastically when the frequency exceeded 5 kHz. On the other hand, when the amplitude of ultrasonic vibration grew, the imprinted depth gradually deepened. Influence of the frequency and amplitude of ultrasonic vibration was not

  15. Heat transfer analytical models for the rapid determination of cooling time in crystalline thermoplastic injection molding and experimental validation

    Science.gov (United States)

    Didier, Delaunay; Baptiste, Pignon; Nicolas, Boyard; Vincent, Sobotka

    2018-05-01

    Heat transfer during the cooling of a thermoplastic injected part directly affects the solidification of the polymer and consequently the quality of the part in term of mechanical properties, geometric tolerance and surface aspect. This paper proposes to mold designers a methodology based on analytical models to provide quickly the time to reach the ejection temperature depending of the temperature and the position of cooling channels. The obtained cooling time is the first step of the thermal conception of the mold. The presented methodology is dedicated to the determination of solidification time of a semi-crystalline polymer slab. It allows the calculation of the crystallization time of the part and is based on the analytical solution of the Stefan problem in a semi-infinite medium. The crystallization is then considered as a phase change with an effective crystallization temperature, which is obtained from Fast Scanning Calorimetry (FSC) results. The crystallization time is then corrected to take the finite thickness of the part into account. To check the accuracy of such approach, the solidification time is calculated by solving the heat conduction equation coupled to the crystallization kinetics of the polymer. The impact of the nature of the contact between the polymer and the mold is evaluated. The thermal contact resistance (TCR) appears as significant parameter that needs to be taken into account in the cooling time calculation. The results of the simplified model including or not TCR are compared in the case of a polypropylene (PP) with experiments carried out with an instrumented mold. Then, the methodology is applied for a part made with PolyEtherEtherKetone (PEEK).

  16. Applying simulation to optimize plastic molded optical parts

    Science.gov (United States)

    Jaworski, Matthew; Bakharev, Alexander; Costa, Franco; Friedl, Chris

    2012-10-01

    Optical injection molded parts are used in many different industries including electronics, consumer, medical and automotive due to their cost and performance advantages compared to alternative materials such as glass. The injection molding process, however, induces elastic (residual stress) and viscoelastic (flow orientation stress) deformation into the molded article which alters the material's refractive index to be anisotropic in different directions. Being able to predict and correct optical performance issues associated with birefringence early in the design phase is a huge competitive advantage. This paper reviews how to apply simulation analysis of the entire molding process to optimize manufacturability and part performance.

  17. Injection molded self-cleaning surfaces

    DEFF Research Database (Denmark)

    Søgaard, Emil

    that are superhydrophobic based on topography rather than chemical compounds. Therefore, a novel method for fabricating superhydrophobic polymer surfaces with excellent water-repellant properties is developed. The method is based on microstructure fabrication and superposed nanostructures on silicon wafers. The nano......- and microstructured silicon is electroplated with nickel and the resulting nickel shim with inverse polarity is used in an injection molding process. A versatile injection molding process capable of producing different nano- and microstructures on areas larger than 10 cm2 is developed. Variotherm mold heating is used...... hierarchical structures with nanograss and holes. Water wetting tests are carried out using a pressure cell to control the water pressure. Microscopic wetting behavior of the structures is studied by optical transmission microscopy. Interestingly, it is found that the surface chemistry of the polymer changes...

  18. A simulated RTM process for fabricating polyimide (AMB-21) carbon fiber composites

    Science.gov (United States)

    Avva, V. Sarma; Sadler, Robert L.; Thomas, Shanon

    1995-01-01

    An experimental polyimide matrix, AMB-21 - supplied by NASA/LeRC, was especially formulated to be non-carcinogenic. It was also expected to be amenable to a Resin Transfer Molding Process (RTM). AMB-21 is a solid at room temperature and must be heated to a very high temperature to obtain a fluid state. However, even after heating it to a realistic high temperature, it was found to be too viscous for use in a RTM process. As a result, a promising approach was experimented leading to the introduction of the resin into a solvent solution in order to obtain a viscosity suitable for RTM. A mixture of methanol and tetrahydroferone was found to be a suitable solvent mixture. The matrix solution was introduced into carbon-fiber preform using two techniques: (1) injection of matrix into a Resin Transfer Mold after positioning the preform into the 'mold cavity', and (2) infiltration of matrix into the preform using the 'autoclave through-the-thickness transfer process'. After completing the resin transfer (infiltration) process, the 'filled' preform was heated to 300 F for one hour to reduce the solvent content. The temperature was then increased to 400 F under a vacuum to complete the solvent evaporation and to remove volatile products of the polyimide imidization. The impregnated preform was removed from the mold and press-cured at 200 psi and 600 FF for two hours. The resulting panel was found to be of reasonably good quality. This observation was based on the results obtained from short beam shear strength (700-8000 psi) tests and microscopic examination of the cross-section indicating a very low level of porosity. Further, the flash around the molded panels from the compression molding was free of porosity indicating the removal of volatiles, solvents, and other imidization products. Based on these studies, a new RTM mold containing a diaphragm capable of applying 200 psi at 600 F has been designed and constructed with the expectation that it will allow the

  19. Experimental and Numerical Investigation of the Effect of Process Conditions on Residual Wall Thickness and Cooling and Surface Characteristics of Water-Assisted Injection Molded Hollow Products

    Directory of Open Access Journals (Sweden)

    Hyungpil Park

    2015-01-01

    Full Text Available Recently, water-assisted injection molding was employed in the automobile industry to manufacture three-dimensional hollow tube-type products with functionalities. However, process optimization is difficult in the case of water-assisted injection molding because of the various rheological interactions between the injected water and the polymer. In this study, the boiling phenomenon that occurs because of the high melt temperature when injecting water and the molding characteristics of the hollow section during the water-assisted injection process were analyzed by a water-assisted injection molding analysis. In addition, the changes in the residual wall thickness accompanying changes in the process conditions were compared with the analysis results by considering water-assisted injection molding based on gas-assisted injection molding. Furthermore, by comparing the cooling characteristics and inner wall surface qualities corresponding to the formation of the hollow section by gas and water injections, a water-assisted injection molding technique was proposed for manufacturing hollow products with functionality.

  20. Evacuated, displacement compression mold. [of tubular bodies from thermosetting plastics

    Science.gov (United States)

    Heier, W. C. (Inventor)

    1974-01-01

    A process of molding long thin-wall tubular bodies from thermosetting plastic molding compounds is described wherein the tubular body lengths may be several times the diameters. The process is accomplished by loading a predetermined quantity of molding compound into a female mold cavity closed at one end by a force mandrel. After closing the other end of the female mold with a balance mandrel, the loaded cavity is evacuated by applying a vacuum of from one-to-five mm pressure for a period of fifteen-to-thirty minutes. The mold temperature is raised to the minimum temperature at which the resin constituent of the compound will soften or plasticize and a pressure of 2500 psi is applied.

  1. High Cost/High Risk Components to Chalcogenide Molded Lens Model: Molding Preforms and Mold Technology

    Energy Technology Data Exchange (ETDEWEB)

    Bernacki, Bruce E.

    2012-10-05

    This brief report contains a critique of two key components of FiveFocal's cost model for glass compression molding of chalcogenide lenses for infrared applications. Molding preforms and mold technology have the greatest influence on the ultimate cost of the product and help determine the volumes needed to select glass molding over conventional single-point diamond turning or grinding and polishing. This brief report highlights key areas of both technologies with recommendations for further study.

  2. COMPUTER AIDED THREE DIMENSIONAL DESIGN OF MOLD COMPONENTS

    Directory of Open Access Journals (Sweden)

    Kerim ÇETİNKAYA

    2000-02-01

    Full Text Available Sheet metal molding design with classical methods is formed in very long times calculates and drafts. At the molding design, selection and drafting of most of the components requires very long time because of similar repetative processes. In this study, a molding design program has been developed by using AutoLISP which has been adapted AutoCAD packet program. With this study, design of sheet metal molding, dimensioning, assemly drafting has been realized.

  3. Non-destructive failure analysis and measurement for molded devices and complex assemblies with X-ray CT and 3D image processing techniques

    International Nuclear Information System (INIS)

    Yin, Xiaoming; Liew, Seaw Jia; Jiang, Ting Ying; Xu, Jian; Kakarala, Ramakrishna

    2013-01-01

    In both automotive and healthcare sectors, reliable failure analysis and accurate measurement of molded devices and complex assemblies are important. Current methods of failure analysis and measurement require these molded parts to be cross-sectioned so that internal features or dimensions can be accessible. As a result, the parts are deemed unusable and additional failure introduced by sectioning may cause misinterpretation of the results. X-ray CT and 3D image processing techniques provide a new nondestructive solution for failure analysis and measurement of molded devices and complex assemblies. These techniques simplify failure analysis and measurement of molded devices and assemblies, and improve the productivity of molding manufacturing significantly.

  4. Mechanical Properties Distribution within Polypropylene Injection Molded Samples: Effect of Mold Temperature under Uneven Thermal Conditions

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2017-11-01

    Full Text Available The quality of the polymer parts produced by injection molding is strongly affected by the processing conditions. Uncontrolled deviations from the proper process parameters could significantly affect both internal structure and final material properties. In this work, to mimic an uneven temperature field, a strong asymmetric heating is applied during the production of injection-molded polypropylene samples. The morphology of the samples is characterized by optical and atomic force microscopy (AFM, whereas the distribution of mechanical modulus at different scales is obtained by Indentation and HarmoniX AFM tests. Results clearly show that the temperature differences between the two mold surfaces significantly affect the morphology distributions of the molded parts. This is due to both the uneven temperature field evolutions and to the asymmetric flow field. The final mechanical property distributions are determined by competition between the local molecular stretch and the local structuring achieved during solidification. The cooling rate changes affect internal structures in terms of relaxation/reorganization levels and give rise to an asymmetric distribution of mechanical properties.

  5. Study of the Effect of Mold Corner Shape on the Initial Solidification Behavior of Molten Steel Using Mold Simulator

    Science.gov (United States)

    Lyu, Peisheng; Wang, Wanlin; Long, Xukai; Zhang, Kaixuan; Gao, Erzhuo; Qin, Rongshan

    2018-02-01

    The chamfered mold with a typical corner shape (angle between the chamfered face and hot face is 45 deg) was applied to the mold simulator study in this paper, and the results were compared with the previous results from a well-developed right-angle mold simulator system. The results suggested that the designed chamfered structure would increase the thermal resistance and weaken the two-dimensional heat transfer around the mold corner, causing the homogeneity of the mold surface temperatures and heat fluxes. In addition, the chamfered structure can decrease the fluctuation of the steel level and the liquid slag flow around the meniscus at mold corner. The cooling intensities at different longitudinal sections of shell are close to each other due to the similar time-average solidification factors, which are 2.392 mm/s1/2 (section A-A: chamfered center), 2.372 mm/s1/2 (section B-B: 135 deg corner), and 2.380 mm/s1/2 (section D-D: face), respectively. For the same oscillation mark (OM), the heights of OM roots at different positions (profile L1 (face), profile L2 (135 deg corner), and profile L3 (chamfered center)) are very close to each other. The average value of height difference (HD) between two OMs roots for L1 and L2 is 0.22 mm, and for L2 and L3 is 0.38 mm. Finally, with the help of metallographic examination, the shapes of different hooks were also discussed.

  6. Injection molding tools with micro/nano-meter pattern

    DEFF Research Database (Denmark)

    2011-01-01

    The present invention relates to methods for embedded a micrometer and/or nanometer pattern into an injection molding tool. In a first main aspect, a micro/nanometer structured imprinting device is applied in, or on, an active surface so as to transfer the micro/nanometer patterned structure...... to the tool while the imprinting device is, at least partly, within a cavity of the injection molding tool. In a second main aspect, a base plate with a micro/nanometer structured pattern positioned on an upper part is positioned on the active surface within the tool, the lower part of the base plate facing...

  7. Progress in Titanium Metal Powder Injection Molding

    Directory of Open Access Journals (Sweden)

    Randall M. German

    2013-08-01

    Full Text Available Metal powder injection molding is a shaping technology that has achieved solid scientific underpinnings. It is from this science base that recent progress has occurred in titanium powder injection molding. Much of the progress awaited development of the required particles with specific characteristics of particle size, particle shape, and purity. The production of titanium components by injection molding is stabilized by a good understanding of how each process variable impacts density and impurity level. As summarized here, recent research has isolated the four critical success factors in titanium metal powder injection molding (Ti-MIM that must be simultaneously satisfied—density, purity, alloying, and microstructure. The critical role of density and impurities, and the inability to remove impurities with sintering, compels attention to starting Ti-MIM with high quality alloy powders. This article addresses the four critical success factors to rationalize Ti-MIM processing conditions to the requirements for demanding applications in aerospace and medical fields. Based on extensive research, a baseline process is identified and reported here with attention to linking mechanical properties to the four critical success factors.

  8. A two-dimensional simulation model for the molded underfill process in flip chip packaging

    Energy Technology Data Exchange (ETDEWEB)

    Guo, Xue Ru; Young, Wen Bin [National Cheng Kung University, Tainan (China)

    2015-07-15

    The flip chip process involves the deposition of solder bumps on the chip surface and their subsequent direct attachment and connection to a substrate. Underfilling traditional flip chip packaging is typically performed following a two-step approach. The first step uses capillary force to fill the gap between the chip and the substrate, and the second step uses epoxy molding compound (EMC) to overmold the package. Unlike traditional flip chip packaging, the molded underfill (MUF) concept uses a single-step approach to simultaneously achieve both underfill and overmold. MUF is a simpler and faster process. In this study, a 2D numerical model is developed to simulate the front movement of EMC flow and the void formation for different geometric parameters. The 2D model simplifies the procedures of geometric modeling and reduces the modeling time for the MUF simulation. Experiments are conducted to verify the prediction results of the model. The effect on void formation for different geometric parameters is investigated using a 2D model.

  9. Study on the performance of MoS2 modified PTFE composites by molding process

    Science.gov (United States)

    Ma, Weiqiang; Hou, Genliang; Bi, Song; Li, Ping; Li, Penghui

    2017-10-01

    MoS2 filled PTFE composites were prepared by cold pressing and sintering molding. The compressive and creep properties of composite materials were analyzed by controlling the size of molded composites during molding. The results show that the composites have the best compressive and creep resistance when the molding pressure is 55 MPa in the MoS2 composites with 15% mass fraction, which is a practical reference for the preparation of MoS2-modified PTFE composites.

  10. Nuclear fuel powder transfer device

    International Nuclear Information System (INIS)

    Komono, Akira

    1998-01-01

    A pair of parallel rails are laid between a receiving portion to a molding portion of a nuclear fuel powder transfer device. The rails are disposed to the upper portion of a plurality of parallel support columns at the same height. A powder container is disposed while being tilted in the inside of the vessel main body of a transfer device, and rotational shafts equipped with wheels are secured to right and left external walls. A nuclear powder to be mixed, together with additives, is supplied to the powder container of the transfer device. The transfer device engaged with the rails on the receiving side is transferred toward the molding portion. The wheels are rotated along the rails, and the rotational shafts, the vessel main body and the powder container are rotated. The nuclear powder in the tilted powder container disposed is rotated right and left and up and down by the rotation, and the powder is mixed satisfactory when it reaches the molding portion. (I.N.)

  11. Allergies, asthma, and molds

    Science.gov (United States)

    Reactive airway - mold; Bronchial asthma - mold; Triggers - mold; Allergic rhinitis - pollen ... Things that make allergies or asthma worse are called triggers. Mold is a common trigger. When your asthma or allergies become worse due to mold, you are ...

  12. Validation of three-dimensional micro injection molding simulation accuracy

    DEFF Research Database (Denmark)

    Tosello, Guido; Costa, F.S.; Hansen, Hans Nørgaard

    2011-01-01

    length, injection pressure profile, molding mass and flow pattern. The importance of calibrated micro molding process monitoring for an accurate implementation strategy of the simulation and its validation has been demonstrated. In fact, inconsistencies and uncertainties in the experimental data must...... be minimized to avoid introducing uncertainties in the simulation calculations. Simulations of bulky sub-100 milligrams micro molded parts have been validated and a methodology for accurate micro molding simulations was established....

  13. Factors influencing microinjection molding replication quality

    Science.gov (United States)

    Vera, Julie; Brulez, Anne-Catherine; Contraires, Elise; Larochette, Mathieu; Trannoy-Orban, Nathalie; Pignon, Maxime; Mauclair, Cyril; Valette, Stéphane; Benayoun, Stéphane

    2018-01-01

    In recent years, there has been increased interest in producing and providing high-precision plastic parts that can be manufactured by microinjection molding: gears, pumps, optical grating elements, and so on. For all of these applications, the replication quality is essential. This study has two goals: (1) fabrication of high-precision parts using the conventional injection molding machine; (2) identification of robust parameters that ensure production quality. Thus, different technological solutions have been used: cavity vacuuming and the use of a mold coated with DLC or CrN deposits. AFM and SEM analyses were carried out to characterize the replication profile. The replication quality was studied in terms of the process parameters, coated and uncoated molds and crystallinity of the polymer. Specific studies were processed to quantify the replicability of injection molded parts (ABS, PC and PP). Analysis of the Taguchi experimental designs permits prioritization of the impact of each parameter on the replication quality. A discussion taking into account these new parameters and the thermal and spreading properties on the coatings is proposed. It appeared that, in general, increasing the mold temperature improves the molten polymer fill in submicron features except for the steel insert (for which the presence of a vacuum is the most important factor). Moreover, the DLC coating was the best coating to increase the quality of the replication. This result could be explained by the lower thermal diffusivity of this coating. We noted that the viscosity of the polymers is not a primordial factor of the replication quality.

  14. Glass molding of 3mm diameter aspheric plano-convex lens

    Science.gov (United States)

    Sung, Hayeong; Hue, Myung sang; Lee, Giljae; Ryu, Geunman; Kim, Dongguk; Yang, Suncheol

    2017-10-01

    The many industries and research fields have demands for small scale optical systems. To satisfy the demands, many studies are conducted and the miniaturization technologies have been developed. The optical lens is directly related to the optical systems and a key component for the miniaturization. So the aspheric surface which can replace multispherical lenses is applied to the optical lens. And fabrication methods to reduce the diameter of the lens have been developed. The glass molding pressing (GMP) process is an attractive method to fabricate aspheric lens among the lens manufacturing processes. Because the GMP process has advantages of productivity, repeatability and so on. In this study, a 3 mm diameter aspheric plano-convex lens was fabricated using the GMP process. The GMP process was divided into heating, pressing, annealing and cooling. And the process was conducted using a commercial glass molding machine. Mold tools consist of an upper and a lower mold insert, an inner and an outer guide. The aspheric and the flat surfaces of the mold inserts were coated with ta-C to prevent the sticking of the glass to the mold. The surfaces of molded lens were measured by white interferometry and surface profilometer. The height and the diameter were measured using optical microscopy. As results, the aspheric surface of the lens was 5.1187 nm in Ra and 0.242 um in Pt. And the flat surface was 2.6697 nm in Ra and 0.13 um in Pt. The height and the diameter were 1.935 mm and 3.002 mm respectively.

  15. Injection molding of high aspect ratio sub-100 nm nanostructures

    DEFF Research Database (Denmark)

    Matschuk, Maria; Larsen, Niels B

    2013-01-01

    We have explored the use of mold coatings and optimized processing conditions to injection mold high aspect ratio nanostructures (height-to-width >1) in cyclic olefin copolymer (COC). Optimizing the molding parameters on uncoated nickel molds resulted in slight improvements in replication quality...... as described by height, width and uniformity of the nanoscopic features. Use of a mold temperature transiently above the polymer glass transition temperature (Tg) was the most important factor in increasing the replication fidelity. Surface coating of the nickel molds with a fluorocarbon-containing thin film...... (FDTS) greatly enhanced the quality of replicated features, in particular at transient mold temperatures above Tg. Injection molding using the latter mold temperature regime resulted in a bimodal distribution of pillar heights, corresponding to either full or very poor replication of the individual...

  16. Study on Improving Thickness Uniformity of Microfluidic Chip Mold in the Electroforming Process

    Directory of Open Access Journals (Sweden)

    Liqun Du

    2016-01-01

    Full Text Available Electroformed microfluidic chip mold faces the problem of uneven thickness, which decreases the dimensional accuracy of the mold, and increases the production cost. To fabricate a mold with uniform thickness, two methods are investigated. Firstly, experiments are carried out to study how the ultrasonic agitation affects the thickness uniformity of the mold. It is found that the thickness uniformity is maximally improved by about 30% after 2 h electroforming under 200 kHz and 500 W ultrasonic agitation. Secondly, adding a second cathode, a method suitable for long-time electroforming is studied by numerical simulation. The simulation results show that with a 4 mm width second cathode used, the thickness uniformity is improved by about 30% after 2 h of electroforming, and that with electroforming time extended, the thickness uniformity is improved more obviously. After 22 h electroforming, the thickness uniformity is increased by about 45%. Finally, by comparing two methods, the method of adding a second cathode is chosen, and a microfluidic chip mold is made with the help of a specially designed second cathode. The result shows that the thickness uniformity of the mold is increased by about 50%, which is in good agreement with the simulation results.

  17. Feasibility of using Big Area Additive Manufacturing to Directly Manufacture Boat Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian K. [ORNL; Chesser, Phillip C. [ORNL; Lind, Randall F. [ORNL; Sallas, Matthew R. [ORNL; Love, Lonnie J. [ORNL

    2018-01-01

    The goal of this project was to explore the feasibility of using Big Area Additive Manufacturing (BAAM) to directly manufacture a boat mold without the need for coatings. All prior tooling projects with BAAM required the use to thick coatings to overcome the surface finish limitations of the BAAM process. While the BAAM process significantly lowers the cost of building the mold, the high cost element rapidly became the coatings (cost of the material, labor on coating, and finishing). As an example, the time and cost to manufacture the molds for the Wind Turbine project with TPI Composites Inc. and the molds for the submarine project with Carderock Naval Warfare Systems was a fraction of the time and cost of the coatings. For this project, a catamaran boat hull mold was designed, manufactured, and assembled with an additional 0.15” thickness of material on all mold surfaces. After printing, the mold was immediately machined and assembled. Alliance MG, LLC (AMG), the industry partner of this project, experimented with mold release agents on the carbon-fiber reinforced acrylonitrile butadiene styrene (CF ABS) to verify that the material can be directly used as a mold (rather than needing a coating). In addition, for large molds (such as the wind turbine mold with TPI Composites Inc.), the mold only provided the target surface. A steel subframe had to be manufactured to provide structural integrity. If successful, this will significantly reduce the time and cost necessary for manufacturing large resin infusion molds using the BAAM process.

  18. Manufacture of mold of polymeric composite water pipe reinforced charcoal

    Science.gov (United States)

    Zulfikar; Misdawati; Idris, M.; Nasution, F. K.; Harahap, U. N.; Simanjuntak, R. K.; Jufrizal; Pranoto, S.

    2018-03-01

    In general, household wastewater pipelines currently use thermoplastic pipes of Polyvinyl Chloride (PVC). This material is known to be not high heat resistant, contains hazardous chemicals (toxins), relatively inhospitable, and relatively more expensive. Therefore, researchers make innovations utilizing natural materials in the form of wood charcoal as the basic material of making the water pipe. Making this pipe requires a simple mold design that can be worked in the scale of household and intermediate industries. This research aims to produce water pipe mold with simple design, easy to do, and making time relatively short. Some considerations for molding materials are weight of mold, ease of raw material, strong, sturdy, and able to cast. Pipe molds are grouped into 4 (four) main parts, including: outer diameter pipe molding, pipe inside diameter, pipe holder, and pipe alignment control. Some materials have been tested as raw materials for outer diameter of pipes, such as wood, iron / steel, cement, and thermoset. The best results are obtained on thermoset material, where the process of disassembling is easier and the resulting mold weight is relatively lighter. For the inside diameter of the pipe is used stainless steel, because in addition to be resistant to chemical processes that occur, in this part of the mold must hold the press load due to shrinkage of raw materials of the pipe during the process of hardening (polymerization). Therefore, it needs high pressure resistant material and does not blend with the raw material of the pipe. The base of the mold is made of stainless steel material because it must be resistant to corrosion due to chemical processes. As for the adjustment of the pipe is made of ST 37 carbon steel, because its function is only as a regulator of the alignment of the pipe structure.

  19. Ceramic injection molding

    International Nuclear Information System (INIS)

    Agueda, Horacio; Russo, Diego

    1988-01-01

    Interest in making complex net-shape ceramic parts with good surface finishing and sharp tolerances without machining is a driving force for studying the injection molding technique. This method consists of softhening the ceramic material by means of adding some plastic and heating in order to inject the mixture under pressure into a relatively cold mold where solidification takes place. Essentially, it is the same process used in thermoplastic industry but, in the present case, the ceramic powder load ranges between 80 to 90 wt.%. This work shows results obtained from the fabrication of pieces of different ceramic materials (alumina, barium titanate ferrites, etc.) in a small scale, using equipments developed and constructed in the laboratory. (Author) [es

  20. CAE for Injection Molding — Past, Present and the Future

    Science.gov (United States)

    Wang, Kuo K.

    2004-06-01

    It is well known that injection molding is the most effective process for mass-producing discrete plastic parts of complex shape to the highest precision at the lowest cost. However, due to the complex property of polymeric materials undergoing a transient non-isothermal process, it is equally well recognized that the quality of final products is often difficult to be assured. This is particularly true when a new mold or material is encountered. As a result, injection molding has often been viewed as an art than a science. During the past few decades, numerical simulation of injection molding process based on analytic models has become feasible for practical use as computers became faster and cheaper continually. A research effort was initiated at the Cornell Injection Molding Program (CIMP) in 1974 under a grant from the National Science Foundation. Over a quarter of the century, CIMP has established some scientific bases ranging from materials characterization, flow analysis, to prediction of part quality. Use of such CAE tools has become common place today in industry. Present effort has been primarily aimed at refinements of many aspects of the process. Computational efficiency and user-interface have been main thrusts by commercial software developers. Extension to 3-dimensional flow analysis for certain parts has drawn some attention. Research activities are continuing on molding of fiber-filled materials and reactive polymers. Expanded molding processes such as gas-assisted, co-injection, micro-molding and many others are continually being investigated. In the future, improvements in simulation accuracy and efficiency will continue. This will include in-depth studies on materials characterization. Intelligent on-line process control may draw more attention in order to achieve higher degree of automation. As Internet technology continues to evolve, Web-based CAE tools for design, production, remote process monitoring and control can come to path. The CAE

  1. Manufacturing Process Selection of Composite Bicycle’s Crank Arm using Analytical Hierarchy Process (AHP)

    Science.gov (United States)

    Luqman, M.; Rosli, M. U.; Khor, C. Y.; Zambree, Shayfull; Jahidi, H.

    2018-03-01

    Crank arm is one of the important parts in a bicycle that is an expensive product due to the high cost of material and production process. This research is aimed to investigate the potential type of manufacturing process to fabricate composite bicycle crank arm and to describe an approach based on analytical hierarchy process (AHP) that assists decision makers or manufacturing engineers in determining the most suitable process to be employed in manufacturing of composite bicycle crank arm at the early stage of the product development process to reduce the production cost. There are four types of processes were considered, namely resin transfer molding (RTM), compression molding (CM), vacuum bag molding and filament winding (FW). The analysis ranks these four types of process for its suitability in the manufacturing of bicycle crank arm based on five main selection factors and 10 sub factors. Determining the right manufacturing process was performed based on AHP process steps. Consistency test was performed to make sure the judgements are consistent during the comparison. The results indicated that the compression molding was the most appropriate manufacturing process because it has the highest value (33.6%) among the other manufacturing processes.

  2. IMPROVEMENT OF EQUIPMENT FOR EFFECTIVE HARDENING SAND MIXTURE BY VACUUM MOLDING

    Directory of Open Access Journals (Sweden)

    V. S. Doroshenko

    2016-01-01

    Full Text Available The review deals with the design flask tooling and patterns for effective hardening sand mixture in the vacuum molding (V-Process, and molding on a one-off patterns (Lost Foam Casting. Sealing and evacuating sand mixture – two major factors influence the strength of the casting mold and casting quality, management practices which will enable to improve the casting process.

  3. Molds in the Environment

    Science.gov (United States)

    ... on Facebook Tweet Share Compartir Molds in the Environment What are molds? What are some of the ... molds found? Molds are found in virtually every environment and can be detected, both indoors and outdoors, ...

  4. Economic Analysis of Additive Manufacturing Integration in Injection Molding Process Chain

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Kerbache, Laoucine; Tosello, Guido

    The purpose of this research is to analyze how additive manufacturing can create value when it is utilized as a supportive technology to injection molding by quantifying the cost advantages that can be obtained. Tooling for the product development phase is investigated as pilot integration area...... of additive manufacturing with injection molding. Cost considerations are discussed through the development of a cost estimation model. The study shows that integration of additive manufacturing in the product development phase for fabrication of soft tooling is economically convenient with a cost reduction...... of 79,8% and 89,9%. The cost models on additive manufacturing have been built so far on the idea of substituting injection molding with additive manufacturing. In response to this literature gap, this research addresses the advantages of additive manufacturing utilized in a synergistic rather than...

  5. Analysis of cracking in glass molds made of cast iron

    Science.gov (United States)

    Leushin, I. O.; Chistyakov, D. G.

    2014-09-01

    The cracking in the parts of cast iron molds intended for glass is considered, and this cracking substantially affects the operation of glass-blowing equipment, maintainability, and the replacement of mold sets. The processes that cause cracking in the parts of glass molds and initiate crack growth are studied.

  6. Predicting and preventing mold spoilage of food products.

    Science.gov (United States)

    Dagnas, Stéphane; Membré, Jeanne-Marie

    2013-03-01

    This article is a review of how to quantify mold spoilage and consequently shelf life of a food product. Mold spoilage results from having a product contaminated with fungal spores that germinate and form a visible mycelium before the end of the shelf life. The spoilage can be then expressed as the combination of the probability of having a product contaminated and the probability of mold growth (germination and proliferation) up to a visible mycelium before the end of the shelf life. For products packed before being distributed to the retailers, the probability of having a product contaminated is a function of factors strictly linked to the factory design, process, and environment. The in-factory fungal contamination of a product might be controlled by good manufacturing hygiene practices and reduced by particular processing practices such as an adequate air-renewal system. To determine the probability of mold growth, both germination and mycelium proliferation can be mathematically described by primary models. When mold contamination on the product is scarce, the spores are spread on the product and more than a few spores are unlikely to be found at the same spot. In such a case, models applicable for a single spore should be used. Secondary models can be used to describe the effect of intrinsic and extrinsic factors on either the germination or proliferation of molds. Several polynomial models and gamma-type models quantifying the effect of water activity and temperature on mold growth are available. To a lesser extent, the effect of pH, ethanol, heat treatment, addition of preservatives, and modified atmospheres on mold growth also have been quantified. However, mold species variability has not yet been properly addressed, and only a few secondary models have been validated for food products. Once the probability of having mold spoilage is calculated for various shelf lives and product formulations, the model can be implemented as part of a risk management

  7. EVALUATION OF POLLUTION PREVENTION OPTIONS TO REDUCE STYRENE EMISSIONS FROM FIBER-REINFORCED PLASTIC OPEN MOLDING PROCESSES

    Science.gov (United States)

    Pollution prevention (P2) options to reduce styrene emissions, such as new materials, and application equipment, are commercially available to the operators of open molding processes. However, information is lacking on the emissions reduction that these options can achieve. To me...

  8. Multiphysics modeling of the steel continuous casting process

    Science.gov (United States)

    Hibbeler, Lance C.

    This work develops a macroscale, multiphysics model of the continuous casting of steel. The complete model accounts for the turbulent flow and nonuniform distribution of superheat in the molten steel, the elastic-viscoplastic thermal shrinkage of the solidifying shell, the heat transfer through the shell-mold interface with variable gap size, and the thermal distortion of the mold. These models are coupled together with carefully constructed boundary conditions with the aid of reduced-order models into a single tool to investigate behavior in the mold region, for practical applications such as predicting ideal tapers for a beam-blank mold. The thermal and mechanical behaviors of the mold are explored as part of the overall modeling effort, for funnel molds and for beam-blank molds. These models include high geometric detail and reveal temperature variations on the mold-shell interface that may be responsible for cracks in the shell. Specifically, the funnel mold has a column of mold bolts in the middle of the inside-curve region of the funnel that disturbs the uniformity of the hot face temperatures, which combined with the bending effect of the mold on the shell, can lead to longitudinal facial cracks. The shoulder region of the beam-blank mold shows a local hot spot that can be reduced with additional cooling in this region. The distorted shape of the funnel mold narrow face is validated with recent inclinometer measurements from an operating caster. The calculated hot face temperatures and distorted shapes of the mold are transferred into the multiphysics model of the solidifying shell. The boundary conditions for the first iteration of the multiphysics model come from reduced-order models of the process; one such model is derived in this work for mold heat transfer. The reduced-order model relies on the physics of the solution to the one-dimensional heat-conduction equation to maintain the relationships between inputs and outputs of the model. The geometric

  9. Classification of buildings mold threat using electronic nose

    Science.gov (United States)

    Łagód, Grzegorz; Suchorab, Zbigniew; Guz, Łukasz; Sobczuk, Henryk

    2017-07-01

    Mold is considered to be one of the most important features of Sick Building Syndrome and is an important problem in current building industry. In many cases it is caused by the rising moisture of building envelopes surface and exaggerated humidity of indoor air. Concerning historical buildings it is mostly caused by outdated raising techniques among that is absence of horizontal isolation against moisture and hygroscopic materials applied for construction. Recent buildings also suffer problem of mold risk which is caused in many cases by hermetization leading to improper performance of gravitational ventilation systems that make suitable conditions for mold development. Basing on our research there is proposed a method of buildings mold threat classification using electronic nose, based on a gas sensors array which consists of MOS sensors (metal oxide semiconductor). Used device is frequently applied for air quality assessment in environmental engineering branches. Presented results show the interpretation of e-nose readouts of indoor air sampled in rooms threatened with mold development in comparison with clean reference rooms and synthetic air. Obtained multivariate data were processed, visualized and classified using a PCA (Principal Component Analysis) and ANN (Artificial Neural Network) methods. Described investigation confirmed that electronic nose - gas sensors array supported with data processing enables to classify air samples taken from different rooms affected with mold.

  10. Replication of optical microlens arrays using photoresist coated molds

    DEFF Research Database (Denmark)

    Chakrabarti, Maumita; Dam-Hansen, Carsten; Stubager, Jørgen

    2016-01-01

    A cost reduced method of producing injection molding tools is reported and demonstrated for the fabrication of optical microlens arrays. A standard computer-numerical-control (CNC) milling machine was used to make a rough mold in steel. Surface treatment of the steel mold by spray coating...... with photoresist is used to smooth the mold surface providing good optical quality. The tool and process are demonstrated for the fabrication of an ø50 mm beam homogenizer for a color mixing LED light engine. The acceptance angle of the microlens array is optimized, in order to maximize the optical efficiency from...

  11. Two component micro injection molding for MID fabrication

    DEFF Research Database (Denmark)

    Islam, Mohammad Aminul; Hansen, Hans Nørgaard; Tang, Peter Torben

    2009-01-01

    Molded Interconnect Devices (MIDs) are plastic substrates with electrical infrastructure. The fabrication of MIDs is usually based on injection molding and different process chains may be identified from this starting point. The use of MIDs has been driven primarily by the automotive sector......, but recently the medical sector seems more and more interested. In particular the possibility of miniaturization of 3D components with electrical infrastructure is attractive. The paper describes possible manufacturing routes and challenges of miniaturized MIDs based on two component micro injection molding...

  12. Development of Maltodextrin-Based Immediate-Release Tablets Using an Integrated Twin-Screw Hot-Melt Extrusion and Injection-Molding Continuous Manufacturing Process.

    Science.gov (United States)

    Puri, Vibha; Brancazio, Dave; Desai, Parind M; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-11-01

    The combination of hot-melt extrusion and injection molding (HME-IM) is a promising process technology for continuous manufacturing of tablets. However, there has been limited research on its application to formulate crystalline drug-containing immediate-release tablets. Furthermore, studies that have applied the HME-IM process to molded tablets have used a noncontinuous 2-step approach. The present study develops maltodextrin (MDX)-based extrusion-molded immediate-release tablets for a crystalline drug (griseofulvin) using an integrated twin-screw HME-IM continuous process. At 10% w/w drug loading, MDX was selected as the tablet matrix former based on a preliminary screen. Furthermore, liquid and solid polyols were evaluated for melt processing of MDX and for impact on tablet performance. Smooth-surfaced tablets, comprising crystalline griseofulvin solid suspension in the amorphous MDX-xylitol matrix, were produced by a continuous process on a twin-screw extruder coupled to a horizontally opening IM machine. Real-time HME process profiles were used to develop automated HME-IM cycles. Formulation adjustments overcame process challenges and improved tablet strength. The developed MDX tablets exhibited adequate strength and a fast-dissolving matrix (85% drug release in 20 min), and maintained performance on accelerated stability conditions. Copyright © 2017 American Pharmacists Association®. Published by Elsevier Inc. All rights reserved.

  13. Microinjection molding of microsystem components: new aspects in improving performance

    International Nuclear Information System (INIS)

    Yang, Can; Yin, Xiao-Hong; Cheng, Guang-Ming

    2013-01-01

    Microinjection molding (µIM) is considered to be one of the most flexible, reliable and cost effective manufacturing routes to form plastic micro-components for microsystems. The molding machine, mold tool fabrication, material selection and process controlling in this specific field have been greatly developed over the past decades. This review aims to present the new trends towards improving micro-component performance by reviewing the latest developments in this area and by considering potential directions. The key concerns in product and mold designing, essential factors in simulation, and micro-morphology and resultant properties are evaluated and discussed. In addition, the applications, variant processes and outlook for µIM are presented. Throughout this review, decisive considerations in seeking improved performance for microsystem components are highlighted. (topical review)

  14. RANCANG BANGUN MOLD UNTUK PROSES TERMOFORMING PROSTHETIC BELOW KNEE (B/K

    Directory of Open Access Journals (Sweden)

    Bambang Waluyo Febriantoko

    2017-10-01

    ABSTRACT   The growing of industry has the effect to the increase of plastic need.  However, the application of plastic forming process often experiences constraints. One of them is depreciation. Depreciation often occurs in the plastic forming process, especially forming with mechanical thermoforming system. So it is necessary to analyze the things that cause shrinkage on the product. Some of the things that are identified to influence the shrinkage are the molds, temperatures and types of used plastics. The used method is to make mechanical thermoforming test and make mold which will be used to analyze depreciation. There are 2 kinds of molds, namely upper foot sole mold and bottom foot sole mold. In addition to the variations of the mold, the analysis is also aimed at the temperature of polypropylene plastic (PP and PVC plastic which will be processed. The temperature variations are 1000C, 1200C and 140oC and the types of plastics that are tested is polypropylene plastic (PP and PVC plastic. The results show that on mechanical thermoforming process for polypropylene (PP plastic with 1.0 mm thickness, the percentage of shrinkage can not be analyzed because of the low viscous nature of plastic. PP type plastic can form a pattern, but not perfect. PP plastic material does not experience a good expansion after pressing process with 100ºC-120ºC plastic temperature. This is because the plastic is still elastic. At 140ºC, the plastic undergoes expansion, but when the plastic pressing process, it undergoes an imperfect pattern. The reason is the temperature is too high. Meanwhile for the PVC plastic, it was found that in the upper foot sole mold with height of 2 cm and 1.0 mm plastic thickness, the percentages of shrinkage average are 7.85% with temperature 100ºC, 9.80% with temperature 120ºC and 12.11% with temperature of 140ºC. In the bottom foot sole mold with 2 cm height and 1.0 mm plastic thickness, the percentages of shrinkage average are 10.01% with

  15. Thermal Stress of Surface of Mold Cavities and Parting Line of Silicone Molds

    Directory of Open Access Journals (Sweden)

    Bajčičák Martin

    2014-06-01

    Full Text Available The paper is focused on the study of thermal stress of surface of mold cavities and parting line of silicone molds after pouring. The silicone mold White SD - THT was thermally stressed by pouring of ZnAl4Cu3 zinc alloy with pouring cycle 20, 30 and 40 seconds. The most thermally stressed part of surface at each pouring cycle is gating system and mold cavities. It could be further concluded that linear increase of the pouring cycle time leads to the exponential increasing of the maximum temperature of mold surface after its cooling. The elongated pouring cycle increases the temperature accumulated on the surface of cavities and the ability of silicone mold to conduct the heat on its surface decreases, because the low thermal conductivity of silicone molds enables the conduction of larger amount of heat into ambient environment.

  16. Real-time parameter optimization based on neural network for smart injection molding

    Science.gov (United States)

    Lee, H.; Liau, Y.; Ryu, K.

    2018-03-01

    The manufacturing industry has been facing several challenges, including sustainability, performance and quality of production. Manufacturers attempt to enhance the competitiveness of companies by implementing CPS (Cyber-Physical Systems) through the convergence of IoT(Internet of Things) and ICT(Information & Communication Technology) in the manufacturing process level. Injection molding process has a short cycle time and high productivity. This features have been making it suitable for mass production. In addition, this process is used to produce precise parts in various industry fields such as automobiles, optics and medical devices. Injection molding process has a mixture of discrete and continuous variables. In order to optimized the quality, variables that is generated in the injection molding process must be considered. Furthermore, Optimal parameter setting is time-consuming work to predict the optimum quality of the product. Since the process parameter cannot be easily corrected during the process execution. In this research, we propose a neural network based real-time process parameter optimization methodology that sets optimal process parameters by using mold data, molding machine data, and response data. This paper is expected to have academic contribution as a novel study of parameter optimization during production compare with pre - production parameter optimization in typical studies.

  17. Hydrogen silsesquioxane mold coatings for improved replication of nanopatterns by injection molding

    DEFF Research Database (Denmark)

    Hobæk, Thor Christian; Matschuk, Maria; Kafka, Jan

    2015-01-01

    of replication, thus allowing more time to fill the nanoscale cavities compared to standard metal molds. A monolayer of a fluorinated silane (heptadecafluorotrichlorosilane) deposited on the mold surface reduces the mold/polymer interfacial energy to support demolding of the polymer replica. The mechanical...

  18. Deep UV patterning of acrylic masters for molding biomimetic dry adhesives

    International Nuclear Information System (INIS)

    Sameoto, D; Menon, C

    2010-01-01

    We present a novel fabrication method for the production of biomimetic dry adhesives that allows enormous variation in fiber shapes and sizes. The technology is based on deep-UV patterning of commercial acrylic with semi-collimated light available from germicidal lamps, and combined careful processing conditions, material selection and novel developer choices to produce relatively high-aspect-ratio fibers with overhanging caps on large areas. These acrylic fibers are used as a master mold for subsequent silicone rubber negative mold casting. Because the bulk acrylic demonstrates little inherent adhesion to silicone rubbers, the master molds created in this process do not require any surface treatments to achieve high-yield demolding of interlocked structures. Multiple polymers can be cast from silicone rubber negative molds and this process could be used to structure smart materials on areas over multiple square feet. Using direct photopatterning of acrylic allows many of the desired structures for biomimetic dry adhesives to be produced with relative ease compared to silicon-based molding processes, including angled fibers and hierarchical structures. Optimized fiber shapes for a variety of polymers can be produced using this process, and adhesion measurements on a well-characterized polyurethane, ST-1060, are used to determine the effect of fiber geometry on adhesion performance

  19. A study on compound contents for plastic injection molding products of metallic resin pigment

    International Nuclear Information System (INIS)

    Park, Young Whan; Kwak, Jae Seob; Lee, Gyu Sang

    2016-01-01

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated

  20. A study on compound contents for plastic injection molding products of metallic resin pigment

    Energy Technology Data Exchange (ETDEWEB)

    Park, Young Whan; Kwak, Jae Seob [Dept. of Mechanical Engineering, Pukyong National University, Busan (Korea, Republic of); Lee, Gyu Sang [Alliance Molding Engineering TeamLG Electronics Inc., Osan (Korea, Republic of)

    2016-12-15

    Injection molding process is widely used for producing most plastic products. In order to make a metal-colored plastic product especially in modern luxury home alliances, metallic pigments which are mixed to a basic resin material for injection molding are available. However, the process control for the metal-colored plastic product is extremely difficult due to non-uniform melt flow of the metallic resin pigments. To improve the process efficiency, a rapid mold cooling method by a compressed cryogenic fluid and electricity mold are also proposed to decrease undesired compound contents within a molded plastic product. In this study, a quality of the metal-colored plastic product is evaluated with process parameters; injection speed, injection pressure, and pigment contents, and an influence of the rapid cooling and heating system is demonstrated.

  1. Direct molding of pavement tiles made of ground tire rubber

    Science.gov (United States)

    Quadrini, Fabrizio; Gagliardi, Donatella; Tedde, Giovanni Matteo; Santo, Loredana; Musacchi, Ettore

    2016-10-01

    Large rubber products can be molded by using only ground tire rubber (GTR) without any additive or binder due to a new technology called "direct molding". Rubber granules and powders from tire recycling are compression molded at elevated temperatures and pressures. The feasibility of this process was clearly shown in laboratory but the step to the industrial scale was missing. Thanks to an European Project (SMART "Sustainable Molding of Articles from Recycled Tires") this step has been made and some results are reported in this study. The press used for compression molding is described. Some tests were made to measure the energy consumption so as to evaluate costs for production in comparison with conventional technologies for GTR molding (by using binders). Results show that 1 m2 tiles can be easily molded with several thicknesses in a reasonable low time. Energy consumption is higher than conventional technologies but it is lower than the cost for binders.

  2. Transferencia de calor en la colada continua de aceros. I parte. El molde

    Directory of Open Access Journals (Sweden)

    Cicutti, C.

    1997-10-01

    Full Text Available The continuous casting mold plays the important role of receiving the liquid steel and allowing an uniform and defect free solidified skin to be developed. In this work, the different heat transfer mechanisms which are present from the liquid steel to the mold cooling water are reviewed. The effect of operating variables on heat extraction and the relationship between global and distributed heat flux are also analyzed.

    El molde de colada continua cumple la importante función de recibir el acero líquido y permitir que se desarrolle una capa solidificada uniforme y libre de defectos. En este trabajo se revisan los distintos mecanismos implicados en el proceso de transferencia de calor, desde el acero líquido hasta el agua de refrigeración del molde. Se analiza también el efecto de las distintas variables de funcionamiento en la extracción calórica producida y la relación entre el flujo global de calor y su distribución a lo largo del molde.

  3. Compensating additional optical power in the central zone of a multifocal contact lens forminimization of the shrinkage error of the shell mold in the injection molding process.

    Science.gov (United States)

    Vu, Lien T; Chen, Chao-Chang A; Lee, Chia-Cheng; Yu, Chia-Wei

    2018-04-20

    This study aims to develop a compensating method to minimize the shrinkage error of the shell mold (SM) in the injection molding (IM) process to obtain uniform optical power in the central optical zone of soft axial symmetric multifocal contact lenses (CL). The Z-shrinkage error along the Z axis or axial axis of the anterior SM corresponding to the anterior surface of a dry contact lens in the IM process can be minimized by optimizing IM process parameters and then by compensating for additional (Add) powers in the central zone of the original lens design. First, the shrinkage error is minimized by optimizing three levels of four IM parameters, including mold temperature, injection velocity, packing pressure, and cooling time in 18 IM simulations based on an orthogonal array L 18 (2 1 ×3 4 ). Then, based on the Z-shrinkage error from IM simulation, three new contact lens designs are obtained by increasing the Add power in the central zone of the original multifocal CL design to compensate for the optical power errors. Results obtained from IM process simulations and the optical simulations show that the new CL design with 0.1 D increasing in Add power has the closest shrinkage profile to the original anterior SM profile with percentage of reduction in absolute Z-shrinkage error of 55% and more uniform power in the central zone than in the other two cases. Moreover, actual experiments of IM of SM for casting soft multifocal CLs have been performed. The final product of wet CLs has been completed for the original design and the new design. Results of the optical performance have verified the improvement of the compensated design of CLs. The feasibility of this compensating method has been proven based on the measurement results of the produced soft multifocal CLs of the new design. Results of this study can be further applied to predict or compensate for the total optical power errors of the soft multifocal CLs.

  4. Interactive Mold House Tour

    Science.gov (United States)

    Get a quick glimpse of some of the most important ways to protect your home from mold by this interactive tour of the Mold House. Room-by-room, you'll learn about common mold issues and how to address them.

  5. An easy mold

    International Nuclear Information System (INIS)

    Kim, Nam Hun; Choe, Jong Sun

    1988-04-01

    This book deals with an easy mold, which introduces what is a mold kinds and classification of mold. It gives descriptions of easy theories such as basic knowledge on shearing work, clearance, power for punching and shear angle, basic knowledge for bending such as transform by bending, the minimal bending radius, spring back, the length of material, flexural strength for bending, fundamental knowledge for drawing work with transform of drawing and limitation of drawing.

  6. Ultrasound - Aided ejection in micro injection molding

    Science.gov (United States)

    Masato, D.; Sorgato, M.; Lucchetta, G.

    2018-05-01

    In this work, an ultrasound-aided ejection system was designed and tested for different polymers (PS, COC and POM) and mold topographies. The proposed solution aims at reducing the ejection friction by decreasing the adhesion component of the frictional force, which is controlled by the contact area developed during the filling stage of the injection molding process. The experimental results indicate a positive effect of ultrasound vibration on the friction force values, with a maximum reduction of 16. Moreover, it is demonstrated that the ultrasound effect is strictly related to both polymer selection and mold roughness. The combined effect on the ejection force of mold surface roughness, melt viscosity during filling and polymer elastic modulus at ejection was modeled to the experimental data, in order to demonstrate that the effect of ultrasound vibration on the ejection friction reduction is due to the heating of the contact interface and the consequent reduction of the polymer elastic modulus.

  7. Effect of Binder and Mold parameters on Collapsibility and Surface Finish of Gray Cast Iron No-bake Sand Molds

    Science.gov (United States)

    Srinivasulu Reddy, K.; Venkata Reddy, Vajrala; Mandava, Ravi Kumar

    2017-08-01

    Chemically bonded no-bake molds and cores have good mechanical properties and produce dimensionally accurate castings compared to green sand molds. Poor collapsibility property of CO2 hardened sodium silicate bonded sand mold and phenolic urethane no-bake (PUN) binder system, made the reclamation of the sands more important. In the present work fine silica sand is mixed with phenolic urethane no-bake binder and the sand sets in a very short time within few minutes. In this paper it is focused on optimizing the process parameters of PUN binder based sand castings for better collapsibility and surface finish of gray cast iron using Taguchi design. The findings were successfully verified through experiments.

  8. Applying dynamic mold temperature control to cosmetic package design

    Directory of Open Access Journals (Sweden)

    Hsiao Shih-Wen

    2017-01-01

    Full Text Available Owing to the fashion trend and the market needs, this study developed the eco-cushion compact. Through the product design and the advanced process technology, many issues have improved, for instance, the inconvenience of transportation, the lack of multiuse capability, the increase of costs, and the low yield rate. The eco-cushion compact developed in this study was high quality, low cost, and meets the requirements of the eco market. The study aimed at developing a reusable container. Dynamic mold temperature control was introduced in the injection modeling process. The innovation in the product was its multi-functional formula invention, eco-product design, one-piece powder case design, and multifunctional design in the big powder case, mold flow and development of dynamic mold temperature control. Finally, through 3D drawing and modeling, and computer assistance for mold flow and verification to develop and produce models. During the manufacturing process, in order to solve the problems of tightness and warping, development and manufacture of dynamic mold temperature control were introduced. This decreased the injection cycle and residual stress, and deformation of the products has reduced to less than 0.2 mm, and the air tightness increased. In addition, air leakage was less than 2% and the injection cycle decreased to at least 10%. The results of the study can be extended and applied on the future design on cosmetic package and an alternative can be proposed to solve the problems of air tightness and warping. In this study, dynamic mold temperature control is considered as a design with high price-performance ratio, which can be adopted on industrial application for practical benefit and improvement.

  9. Performance Test of the Salt transfer and Pellet fabrication of UCl3 Making Equipment for Electrorefining

    International Nuclear Information System (INIS)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B.

    2014-01-01

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl 2 occurring in a Cd layer, followed by a process to produce UCl 3 by the reaction of U in the LiCl-KCl eutectic salt and CdCl 2 . Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl 2 - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl 3 The apparatus for producing UCl 3 consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer

  10. Performance of U-Pu-Zr fuel cast into zirconium molds

    International Nuclear Information System (INIS)

    Crawford, D.C.; Lahm, C.E.; Tsai, H.

    1992-01-01

    Current fabrication techniques for the integral fast reactor (IFR) fuel utilize injection casting into quartz molds after reprocessing in the IFR fuel cycle facility. The quartz molds are destroyed during the fuel demolding process, and the quartz residue must therefore be treated as contaminated waste. Alternatively, if the fuel can be cast into molds that remain as part of the fuel slugs (i.e., if the fuel can be left inside the molds for irradiation), then the quartz mold contribution to the waste stream can be eliminated. This possibility is being addresssed in an ongoing effort to evaluate the irradiation performance of fuel cast into zirconium sheaths rather than quartz molds. Zirconium was chosen as the sheath material because it is the component of the U-Pu-Zr fuel alloy that raises the alloy solidus temperatures and provides resistance to fuel-cladding chemical interaction (FCCI)

  11. Nanostructuring steel for injection molding tools

    DEFF Research Database (Denmark)

    Al-Azawi, A.; Smistrup, Kristian; Kristensen, Anders

    2014-01-01

    The production of nanostructured plastic items by injection molding with ridges down to 400 nm in width, which is the smallest line width replicated from nanostructured steel shims, is presented. Here we detail a micro-fabrication method where electron beam lithography, nano-imprint lithography...... and ion beam etching are combined to nanostructure the planar surface of a steel wafer. Injection molded plastic parts with enhanced surface properties, like anti-reflective, superhydrophobic and structural colors can be achieved by micro-and nanostructuring the surface of the steel molds. We investigate...... the minimum line width that can be realized by our fabrication method and the influence of etching angle on the structure profile during the ion beam etching process. Trenches down to 400 nm in width have been successfully fabricated into a 316 type electro-polished steel wafer. Afterward a plastic replica...

  12. Numerical approach of the injection molding process of fiber-reinforced composite with considering fiber orientation

    Science.gov (United States)

    Nguyen Thi, T. B.; Yokoyama, A.; Ota, K.; Kodama, K.; Yamashita, K.; Isogai, Y.; Furuichi, K.; Nonomura, C.

    2014-05-01

    One of the most important challenges in the injection molding process of the short-glass fiber/thermoplastic composite parts is being able to predict the fiber orientation, since it controls the mechanical and the physical properties of the final parts. Folgar and Tucker included into the Jeffery equation a diffusive type of term, which introduces a phenomenological coefficient for modeling the randomizing effect of the mechanical interactions between the fibers, to predict the fiber orientation in concentrated suspensions. Their experiments indicated that this coefficient depends on the fiber volume fraction and aspect ratio. However, a definition of the fiber interaction coefficient, which is very necessary in the fiber orientation simulations, hasn't still been proven yet. Consequently, this study proposed a developed fiber interaction model that has been introduced a fiber dynamics simulation in order to obtain a global fiber interaction coefficient. This supposed that the coefficient is a sum function of the fiber concentration, aspect ratio, and angular velocity. The proposed model was incorporated into a computer aided engineering simulation package C-Mold. Short-glass fiber/polyamide-6 composites were produced in the injection molding with the fiber weight concentration of 30 wt.%, 50 wt.%, and 70 wt.%. The physical properties of these composites were examined, and their fiber orientation distributions were measured by micro-computed-tomography equipment μ-CT. The simulation results showed a good agreement with experiment results.

  13. Three-dimensional numerical simulation for plastic injection-compression molding

    Science.gov (United States)

    Zhang, Yun; Yu, Wenjie; Liang, Junjie; Lang, Jianlin; Li, Dequn

    2018-03-01

    Compared with conventional injection molding, injection-compression molding can mold optical parts with higher precision and lower flow residual stress. However, the melt flow process in a closed cavity becomes more complex because of the moving cavity boundary during compression and the nonlinear problems caused by non-Newtonian polymer melt. In this study, a 3D simulation method was developed for injection-compression molding. In this method, arbitrary Lagrangian- Eulerian was introduced to model the moving-boundary flow problem in the compression stage. The non-Newtonian characteristics and compressibility of the polymer melt were considered. The melt flow and pressure distribution in the cavity were investigated by using the proposed simulation method and compared with those of injection molding. Results reveal that the fountain flow effect becomes significant when the cavity thickness increases during compression. The back flow also plays an important role in the flow pattern and redistribution of cavity pressure. The discrepancy in pressures at different points along the flow path is complicated rather than monotonically decreased in injection molding.

  14. Analysis of form deviation in non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, H.; Grunwald, T.; Dambon, O.; Klocke, F.

    2018-02-01

    Especially in the market of sensors, LED lighting and medical technologies, there is a growing demand for precise yet low-cost glass optics. This demand poses a major challenge for glass manufacturers who are confronted with the challenge arising from the trend towards ever-higher levels of precision combined with immense pressure on market prices. Since current manufacturing technologies especially grinding and polishing as well as Precision Glass Molding (PGM) are not able to achieve the desired production costs, glass manufacturers are looking for alternative technologies. Non-isothermal Glass Molding (NGM) has been shown to have a big potential for low-cost mass manufacturing of complex glass optics. However, the biggest drawback of this technology at the moment is the limited accuracy of the manufactured glass optics. This research is addressing the specific challenges of non-isothermal glass molding with respect to form deviation of molded glass optics. Based on empirical models, the influencing factors on form deviation in particular form accuracy, waviness and surface roughness will be discussed. A comparison with traditional isothermal glass molding processes (PGM) will point out the specific challenges of non-isothermal process conditions. Furthermore, the underlying physical principle leading to the formation of form deviations will be analyzed in detail with the help of numerical simulation. In this way, this research contributes to a better understanding of form deviations in non-isothermal glass molding and is an important step towards new applications demanding precise yet low-cost glass optics.

  15. Analysis of Cavity Pressure and Warpage of Polyoxymethylene Thin Walled Injection Molded Parts: Experiments and Simulations

    DEFF Research Database (Denmark)

    Guerrier, Patrick; Tosello, Guido; Hattel, Jesper Henri

    2014-01-01

    Process analysis and simulations on molding experiments of 3D thin shell parts have been conducted. Moldings were carried out with polyoxymethylene (POM). The moldings were performed with cavity pressure sensors in order to compare experimental process results with simulations. The warpage...... was characterized by measuring distances using a tactile coordinate measuring machine (CMM). Molding simulations have been executed taking into account actual processing conditions. Various aspects have been considered in the simulation: machine barrel geometry, injection speed profiles, cavity injection pressure......, melt and mold temperatures, material rheological and pvT characterization. Factors investigated for comparisons were: injection pressure profile, short shots length, flow pattern, and warpage. A reliable molding experimental database was obtained, accurate simulations were conducted and a number...

  16. Development of magnesium semi-solid injection molding; Magnesium han`yoyu shashutsu seikei gijutsu no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Sakamoto, K; Sakate, N; Ishida, K; Yamamoto, Y; Nishimura, K [Mazda Motor Corp., Hiroshima (Japan)

    1997-10-01

    Magnesium semi-solid injection molding is safety and clean process. We have investigated influence of molding conditions on mechanical properties and dimension accuracy of products by semi-solid injection molding. As a result it was proved that the accuracy of products by this process is superior to die casting. This advantage as well as better mechanical properties can be utilized for net shape molding of some automobile parts. 4 refs., 8 figs., 3 tabs.

  17. Hydrophobicity Tuning by the Fast Evolution of Mold Temperature during Injection Molding

    Directory of Open Access Journals (Sweden)

    Sara Liparoti

    2018-03-01

    Full Text Available The surface topography of a molded part strongly affects its functional properties, such as hydrophobicity, cleaning capabilities, adhesion, biological defense and frictional resistance. In this paper, the possibility to tune and increase the hydrophobicity of a molded polymeric part was explored. An isotactic polypropylene was injection molded with fast cavity surface temperature evolutions, obtained adopting a specifically designed heating system layered below the cavity surface. The surface topology was characterized by atomic force microscopy (AFM and, concerning of hydrophobicity, by measuring the water static contact angle. Results show that the hydrophobicity increases with both the temperature level and the time the cavity surface temperature was kept high. In particular, the contact angle of the molded sample was found to increase from 90°, with conventional molding conditions, up to 113° with 160 °C of cavity surface temperature kept for 18 s. This increase was found to be due to the presence of sub-micro and nano-structures characterized by high values of spatial frequencies which could be more accurately replicated by adopting high heating temperatures and times. The surface topography and the hydrophobicity resulted therefore tunable by selecting appropriate injection molding conditions.

  18. Performance Test of the Salt transfer and Pellet fabrication of UCl{sub 3} Making Equipment for Electrorefining

    Energy Technology Data Exchange (ETDEWEB)

    Woo, M. S.; Jin, H. J.; Park, G. I.; Park, S. B. [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2014-05-15

    The process to produce a uranium chloride salt includes two steps: a reaction process of gaseous chlorine with liquid cadmium to form the CdCl{sub 2} occurring in a Cd layer, followed by a process to produce UCl{sub 3} by the reaction of U in the LiCl-KCl eutectic salt and CdCl{sub 2}. Chemical reaction is next chlorination reaction; - Cd chlorination : Cd + Cl2 → CdCl{sub 2} - U chlorination : 3CdCl2 + 2U → 3Cd + 2UCl{sub 3} The apparatus for producing UCl{sub 3} consists of a chlorine gas generator, a uranium chlorinator, a Cd distiller, the pelletizer, a off-gas wet scrubber and a dry scrubber. Salt transfer system set among reactors to transfer salt at 500 .deg. C. The temperature of the reactants is maintained at about 600 .deg. C. After the reaction is completed in the uranium chlorinator, The Salt product is transferred to the Cd distiller to decrease residual Cd concentration in the salts, and then salt is transferred to the mould of pelletizer by a transfer system to fabricate pellet type salt. Performance test of the salt transfer and pellet fabrication of its equipment was tested in this work. Performance test of the salt transfer and pellet fabrication of UCl3 making equipment for Electrorefining carried out in this work. The result of equipment test is that melted salt at 600 .deg. C was easy transferred by salt transfer equipment heated at 500 .deg. C. In this time, salt transfer was carried out by argon gas pressurization at 3bar. When velocity of salt transfer was controlled under reduce pressure, velocity of salt transfer was difficult to control. And when salt pellet was fabricated by the mold of pelletizer heated at 90 .deg. C better than mold of pelletizer heated at 200 .deg. C because salt melted prevent leakage from mold of pelletizer.

  19. Development of automated system based on neural network algorithm for detecting defects on molds installed on casting machines

    Science.gov (United States)

    Bazhin, V. Yu; Danilov, I. V.; Petrov, P. A.

    2018-05-01

    During the casting of light alloys and ligatures based on aluminum and magnesium, problems of the qualitative distribution of the metal and its crystallization in the mold arise. To monitor the defects of molds on the casting conveyor, a camera with a resolution of 780 x 580 pixels and a shooting rate of 75 frames per second was selected. Images of molds from casting machines were used as input data for neural network algorithm. On the preparation of a digital database and its analytical evaluation stage, the architecture of the convolutional neural network was chosen for the algorithm. The information flow from the local controller is transferred to the OPC server and then to the SCADA system of foundry. After the training, accuracy of neural network defect recognition was about 95.1% on a validation split. After the training, weight coefficients of the neural network were used on testing split and algorithm had identical accuracy with validation images. The proposed technical solutions make it possible to increase the efficiency of the automated process control system in the foundry by expanding the digital database.

  20. Injection molding of bushes made of tribological PEEK composites

    Directory of Open Access Journals (Sweden)

    2007-12-01

    Full Text Available Polyetheretherketone (PEEK composites have been extensively studied because of the excellent tribological behavior among plastics. However, laboratory specimens and tests are generally discussed, whereas application studies on industrial components are infrequent. In this paper, an injection molded bush made of tribological PEEK was analyzed to correlate wear behavior and molded material structure. Bushes were tested under unlubricated sliding conditions by means of a short wear test. Surface analysis, differential scanning calorimetry (DSC and optical microscopy were used to evaluate the distribution of the different composite fillers (polytetrafluoroethylene, PTFE, graphite particles and carbon microfibers and their effect on the final bush behavior. A significant lack of homogeneity was observed in the molded bush and black bands appeared on the shaft surface after testing due to the sliding. The bush geometry and the injection molding process should be optimized to allow the best tribological behavior of the molded material under working conditions.

  1. Soft lithography of ceramic microparts using wettability-tunable poly(dimethylsiloxane) (PDMS) molds

    International Nuclear Information System (INIS)

    Su, Bo; Zhang, Aijun; Meng, Junhu; Zhang, Zhaozhu

    2016-01-01

    Green alumina microparts were fabricated from a high solid content aqueous suspension by microtransfer molding using air plasma-treated poly(dimethylsiloxane) (PDMS) molds. The wettability of the air plasma-treated PDMS molds spontaneously changed between the hydrophilic and hydrophobic states during the process. Initial hydrophilicity of the air plasma-treated PDMS molds significantly improved the flowability of the concentrated suspension. Subsequent hydrophobic recovery of the air plasma-treated PDMS molds enabled a perfect demolding of the green microparts. Consequently, defect-free microchannel parts of 60 μ m and a micromixer with an area of several square centimeters were successfully fabricated. In soft lithography, tuning the wetting behavior of PDMS molds has a great effect on the quality of ceramic microparts. Using wettability-tunable PDMS molds has great potential in producing complex-shaped and large-area ceramic microparts and micropatterns. (paper)

  2. Triple Plate Mold Final Report: Optimization of the Mold Design and Casting Parameters for a Thin U-10mo Fuel Casting

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-01-04

    This work describes the experiments and modeling that have been performed to improve and try to optimize the simultaneous casting of three plates of U-10wt%Mo in a single coil vacuum induction melting (VIM) furnace. The plates of interest are 280 mm wide by 203 mm tall by 5 mm thick (11" x 8" x 0.2"). The initial mold design and processing parameters were supplied by Y-12. The mold and casting cavity were instrumented with a number of thermocouples, and the casting performed to determine the thermal history of the mold and casting. The resulting cast plates were radiographed and numerous defects identified. Metallography was performed to help identify the nature of the radiographically observed defects. This information was then used to validate a mold filling and solidification model of that casting. Based on the initial casting, good casting design practice, and process simulation of several design alternatives, a revised design was developed with the goal of minimizing casting defects such as porosity. The redesigned mold had a larger hot-top and had its long axis along the horizontal direction. These changes were to try to develop a strong thermal gradient conducive to good feeding and minimization of micro- and macroporosity in the cast plates. An instrumented casting was then performed with the revised mold design and a linear distributor. This design yielded cast plates with significantly less radiographically identified defects. Unfortunately, there was significant variation in plate weight and metal content in their hot-tops. Fluid flow simulations were then performed on this mold/distributor design. This helped identify the issue with this linear distributor design. Additional simulations were then performed on candidate distributor redesigns and a preferred distributor annular design was identified. This improved annular design was used to produce a third instrumented casting with favorable results. These refined designs and their radiographic

  3. Study of soft magnetic iron cobalt based alloys processed by powder injection molding

    International Nuclear Information System (INIS)

    Silva, Aline; Lozano, Jaime A.; Machado, Ricardo; Escobar, Jairo A.; Wendhausen, Paulo A.P.

    2008-01-01

    As a near net shape process, powder injection molding (PIM) opens new possibilities to process Fe-Co alloys for magnetic applications. Due to the fact that PIM does not involve plastic deformation of the material during processing, we envisioned the possibility of eliminating vanadium (V), which is generally added to Fe-Co alloys to improve the ductility in order to enable its further shaping by conventional processes such as forging and cold rolling. In our investigation we have found out two main futures related to the elimination of V, which lead to a cost-benefit gain in manufacturing small magnetic components where high-saturation induction is needed at low frequencies. Firstly, the elimination of V enables the achievement of much better magnetic properties when alloys are processed by PIM. Secondly, a lower sintering temperature can be used when the alloy is processed starting with elemental Fe and Co powders without the addition of V

  4. Toolpath Strategy and Optimum Combination of Machining Parameter during Pocket Mill Process of Plastic Mold Steels Material

    Science.gov (United States)

    Wibowo, Y. T.; Baskoro, S. Y.; Manurung, V. A. T.

    2018-02-01

    Plastic based products spread all over the world in many aspects of life. The ability to substitute other materials is getting stronger and wider. The use of plastic materials increases and become unavoidable. Plastic based mass production requires injection process as well Mold. The milling process of plastic mold steel material was done using HSS End Mill cutting tool that is widely used in a small and medium enterprise for the reason of its ability to be re sharpened and relatively inexpensive. Study on the effect of the geometry tool states that it has an important effect on the quality improvement. Cutting speed, feed rate, depth of cut and radii are input parameters beside to the tool path strategy. This paper aims to investigate input parameter and cutting tools behaviors within some different tool path strategy. For the reason of experiments efficiency Taguchi method and ANOVA were used. Response studied is surface roughness and cutting behaviors. By achieving the expected quality, no more additional process is required. Finally, the optimal combination of machining parameters will deliver the expected roughness and of course totally reduced cutting time. However actually, SMEs do not optimally use this data for cost reduction.

  5. Comparative analysis of different process simulation settings of a micro injection molded part featuring conformal cooling

    DEFF Research Database (Denmark)

    Marhöfer, David Maximilian; Tosello, Guido; Islam, Aminul

    2015-01-01

    . In the reported work, process simulations using Autodesk Moldflow Insight 2015® are applied to a micro mechanical part to be fabricated by micro injection molding and with over-all dimensions of 12.0 × 3.0 × 0.8 mm³ and micro features (micro hole, diameter of 580 μm, and sharp radii down to 100 μm). Three...

  6. Precision glass molding: Toward an optimal fabrication of optical lenses

    Science.gov (United States)

    Zhang, Liangchi; Liu, Weidong

    2017-03-01

    It is costly and time consuming to use machining processes, such as grinding, polishing and lapping, to produce optical glass lenses with complex features. Precision glass molding (PGM) has thus been developed to realize an efficient manufacture of such optical components in a single step. However, PGM faces various technical challenges. For example, a PGM process must be carried out within the super-cooled region of optical glass above its glass transition temperature, in which the material has an unstable non-equilibrium structure. Within a narrow window of allowable temperature variation, the glass viscosity can change from 105 to 1012 Pas due to the kinetic fragility of the super-cooled liquid. This makes a PGM process sensitive to its molding temperature. In addition, because of the structural relaxation in this temperature window, the atomic structure that governs the material properties is strongly dependent on time and thermal history. Such complexity often leads to residual stresses and shape distortion in a lens molded, causing unexpected changes in density and refractive index. This review will discuss some of the central issues in PGM processes and provide a method based on a manufacturing chain consideration from mold material selection, property and deformation characterization of optical glass to process optimization. The realization of such optimization is a necessary step for the Industry 4.0 of PGM.

  7. Experiments and numerical simulations of flow field and heat transfer coefficients inside an autoclave model

    Science.gov (United States)

    Ghamlouch, T.; Roux, S.; Bailleul, J.-L.; Lefèvre, N.; Sobotka, V.

    2017-10-01

    Today's aerospace industrial first priority is the quality improvement of the composite material parts with the reduction of the manufacturing time in order to increase their quality/cost ratio. A fabrication method that could meet these specifications especially for large parts is the autoclave curing process. In fact the autoclave molding ensures the thermal control of the composite parts during the whole curing cycle. However the geometry of the tools as well as their positioning in the autoclave induce non uniform and complex flows around composite parts. This heterogeneity implies non-uniform heat transfers which can directly impact on part quality. One of the main challenges is therefore to describe the flow field inside an autoclave as well as the convective heat transfer from the heated pressurized gas to the composite part and the mold. For this purpose, and given the technical issues associated with instrumentation and measurements in actual autoclaves, an autoclave model was designed and then manufactured based on similarity laws. This tool allows the measurement of the flow field around representative real industrial molds using the PIV technique and the characterization of the heat transfer thanks to thermal instrumentation. The experimental results are then compared with those derived from numerical simulations using a commercial RANS CFD code. This study aims at developing a semi-empirical approach for the prediction of the heat transfer coefficient around the parts and therefore predicts its thermal history during the process with a view of optimization.

  8. Effects of mold geometry on fiber orientation of powder injection molded metal matrix composites

    Energy Technology Data Exchange (ETDEWEB)

    Ahmad, Faiz, E-mail: faizahmad@petronas.com.my; Aslam, Muhammad, E-mail: klaira73@gmail.com; Altaf, Khurram, E-mail: khurram.altaf@petronas.com.my; Shirazi, Irfan, E-mail: irfanshirazi@hotmail.com [Mechanical Engineering Universiti Teknologi PETRONAS Malaysia (Malaysia)

    2015-07-22

    Fiber orientations in metal matrix composites have significant effect on improving tensile properties. Control of fiber orientations in metal injection molded metal composites is a difficult task. In this study, two mold cavities of dimensions 6x6x90 mm and 10x20x180 mm were used for comparison of fiber orientation in injection molded metal composites test parts. In both mold cavities, convergent and divergent flows were developed by modifying the sprue dimensions. Scanning electron microscope (SEM) was used to examine the fiber orientations within the test samples. The results showed highly aligned fiber in injection molded test bars developed from the convergent melt flow. Random orientation of fibers was noted in the composites test bars produced from divergent melt flow.

  9. Molds contamination of raw milk and dairy products: Occurrence, diversity and contamination source

    Directory of Open Access Journals (Sweden)

    T Moshtaghi Maleki

    2015-11-01

    Full Text Available This study aimed to assess the occurrence and diversity of mold species in raw milk and its products along with the identification of potential contamination sources. For this reason, a total of 260 samples consisting of 80 raw milk, 100 dairy products (i.e., pasteurized milk, yoghurt, cheese and buttermilk and 80 environmental (i.e. ingredients, packaging materials, surface of processing equipments and air specimens were collected. Using culture assay and microscopic observation, the occurrence as well as the diversity of mold species was investigated. According to the results, 82.3% of the samples were identified as positive for mold contamination. The percentage of mold contamination for raw milk was estimated as 97.5%. In the case of pasteurized milk, yoghurt, buttermilk, cheese and environmental samples, it was determined as 52%, 76%, 52%, 56% and 96.25%, respectively. Mold diversity among various samples consisted of Aspergillus, Geotrichum, Penicillium, Mucor, Alternaria, Rhizopus, Stemphylium, Cladosporium, and Fusarium. Results revealed a significant (p < 0.01 correlation between kind of mold species isolated from raw milk and dairy products. Similarly, a correlation was observed between dairy products and environmental sources. Regarding the high occurrence of mold contamination in raw milk and environmental sources, it seems that in some instances heat treatment was not effective enough to inactivate all molds; whereas in some other cases, cross contamination may have resulted in mold contamination. Therefore, it is crucial to maintain hygienic conditions during raw milk handling as well as processing steps. These practices could efficiently reduce the occurrence of mold contaminations in dairy products.

  10. Creating mold-free buildings: a key to avoiding health effects of indoor molds.

    Science.gov (United States)

    Small, Bruce M

    2003-08-01

    In view of the high costs of building diagnostics and repair subsequent to water damage--as well as the large medical diagnostic and healthcare costs associated with mold growth in buildings--commitment to a philosophy of proactive preventive maintenance for home, apartment, school, and commercial buildings could result in considerable cost savings and avoidance of major health problems among building occupants. The author identifies common causes of mold growth in buildings and summarizes key building design and construction principles essential for preventing mold contamination indoors. Physicians and healthcare workers must be made aware of conditions within buildings that can give rise to mold growth, and of resulting health problems. Timely advice provided to patients already sensitized by exposure to molds could save these individuals, and their families, from further exposures as a result of inadequate building maintenance or an inappropriate choice of replacement housing.

  11. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-02-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  12. Stress and Friction Distribution around Slab Corner in Continuous Casting Mold with Different Corner Structures

    Science.gov (United States)

    Yu, Sheng; Long, Mujun; Chen, Huabiao; Chen, Dengfu; Liu, Tao; Duan, Huamei; Cao, Junsheng

    2018-06-01

    The non-uniform friction and thermal stress in the mold are important as causes of the transverse cracks around strand corner. To analyze the stress distribution features around strand corner, a three-dimensional thermo-elastoplastic finite-element mold model with different corner structures (right-angle, big-chamfer, multi-chamfer, and fillet) was established. The temperature field in the mold was indirectly coupled through a three-dimensional fluid flow and heat transfer model. In addition, the non-uniform mold friction stress loaded on the strand surface was calculated through a friction model. The results show that the stress distribution on the shell is similar to the temperature distribution. The stress concentration appears in the strand corner and the lower part of wide face. The friction stress enhances the corner stress around the edge of the air-gap. For chamfered molds, the stress around the corner between the wide face and chamfer face is larger than that between the narrow face and chamfer face. Around the corner region, both the stress peak and the area of the large stress zone of the right-angle strand are the largest, while those of big-chamfered, multi-chamfered, and fillet strands decrease in that order. The stress peak position of the chamfered strands is closer to the mold exit than that of the right-angle strand. Compared with the use of the right-angle mold, the application of chamfered molds is able to reduce the stress concentration around the strand corner.

  13. Injection molded polymer optics in the 21st Century

    Science.gov (United States)

    Beich, William S.

    2005-08-01

    Precision polymer optics, manufactured by injection molding techniques, has been a key enabling technology for several decades now. The technology, which can be thought of as a subset of the wider field of precision optics manufacturing, was pioneered in the United States by companies such as Eastman Kodak, US Precision Lens, and Polaroid. In addition to suppliers in the U.S. there are several companies worldwide that design and manufacture precision polymer optics, for example Philips High Tech Plastics in Europe and Fujinon in Japan. Designers who are considering using polymer optics need a fundamental understanding of exactly how the optics are created. This paper will survey the technology and processes that are employed in the successful implementation of a polymer optic solution from a manufacturer's perspective. Special emphasis will be paid to the unique relationship between the molds and the optics that they produce. We will discuss the key elements of production: molding resins, molds and molding equipment, and metrology. Finally we will offer a case study to illustrate just how the optics designer carries a design concept through to production. The underlying theme throughout the discussion of polymer optics is the need for the design team to work closely with an experienced polymer optics manufacturer with a solid track record of success in molded optics. As will be seen shortly, the complex interaction between thermoplastics, molds, and molding machines dictates the need for working closely with a supplier who has the critical knowledge needed to manage all aspects of the program.

  14. Comparison of product drying performance in molded and serum tubing vials using gentamicin sulfate as a model system.

    Science.gov (United States)

    Hibler, Susanne; Wagner, Christophe; Gieseler, Henning

    2012-01-01

    In a previous study, heat transfer coefficients of different 10 mL tubing and molded vials were determined gravimetrically via sublimation tests with pure water. Contrary to "conventional wisdom", only small differences in K(v) values between tubing and molded vials were found in the pressure range relevant for pharmaceutical freeze-drying. In order to investigate the impact of these relatively small differences on the primary drying time of an actual product, freeze-drying experiments with 5% gentamicin sulfate solution as a model system were performed at 68, 100 and 200 mTorr. The primary drying times of the API in recently developed molded (EasyLyo™), tubing (TopLyo™) and polymer vials (TopPac™) were compared. At 68 and 100 mTorr the primary drying time of the drug in the glass vials only differed by 3% to 4%, while the polymer vial took around 9% longer. At 200 mTorr, the API in the EasyLyo™ vials dried approximately 15% faster compared to the other vial types. The present study suggest that molded vials that have been modified in design to have better heat transfer properties can achieve drying times comparable to tubing vials.

  15. Evaluation of Additive Manufacturing for High Volume Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kunc, Vlastimil [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lokitz, Bradley S. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2017-05-01

    ORNL worked with TruDesign, LLC to develop viable coating solutions to enable the use of large scale 3D printing for both low-temperature and high-temperature composite molds. This project resulted in two commercial products and successfully demonstrated the use of printed molds for autoclave processing for the first time.

  16. Traditional Mold Analysis Compared to a DNA-based Method of Mold Analysis with Applications in Asthmatics' Homes

    Science.gov (United States)

    Traditional environmental mold analysis is based-on microscopic observations and counting of mold structures collected from the air on a sticky surface or culturing of molds on growth media for identification and quantification. A DNA-based method of mold analysis called mol...

  17. The effects of casting speed on steel continuous casting process

    Energy Technology Data Exchange (ETDEWEB)

    Sadat, Mohammad; Honarvar Gheysari, Ali; Sadat, Saeid [Islamic Azad University, Department of Mechanics, Mashhad Branch, Mashhad (Iran, Islamic Republic of)

    2011-12-15

    A three dimensional simulation of molten steel flow, heat transfer and solidification in mold and ''secondary cooling zone'' of Continuous Casting machine was performed with consideration of standard k-{epsilon} model. For this purpose, computational fluid dynamics software, FLUENT was utilized. From the simulation standpoint, the main distinction between this work and preceding ones is that, the phase change process (solidification) and flow (turbulent in mold section and laminar in secondary cooling zone) have been coupled and solved jointly instead of dividing it into ''transient heat conduction'' and ''steady fluid flow'' that can lead to more realistic simulation. Determining the appropriate boundary conditions in secondary cooling zone is very complicated because of various forms of heat transfer involved, including natural and forced convection and simultaneous radiation heat transfer. The main objective of this work is to have better understanding of heat transfer and solidification in the continuous casting process. Also, effects of casting speed on heat flux and shell thickness and role of radiation in total heat transfer is discussed. (orig.)

  18. Computer-aided injection molding system

    Science.gov (United States)

    Wang, K. K.; Shen, S. F.; Cohen, C.; Hieber, C. A.; Isayev, A. I.

    1982-10-01

    Achievements are reported in cavity-filling simulation, modeling viscoelastic effects, measuring and predicting frozen-in birefringence in molded parts, measuring residual stresses and associated mechanical properties of molded parts, and developing an interactive mold-assembly design program and an automatic NC maching data generation and verification program. The Cornell Injection Molding Program (CIMP) consortium is discussed as are computer user manuals that have been published by the consortium. Major tasks which should be addressed in future efforts are listed, including: (1) predict and experimentally determine the post-fillin behavior of thermoplastics; (2) simulate and experimentally investigate the injection molding of thermosets and filled materials; and (3) further investigate residual stresses, orientation and mechanical properties.

  19. Fabrication of combined-scale nano- and microfluidic polymer systems using a multilevel dry etching, electroplating and molding process

    DEFF Research Database (Denmark)

    Tanzi, Simone; Østergaard, Peter Friis; Matteucci, Marco

    2012-01-01

    Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions to fabric......Microfabricated single-cell capture and DNA stretching devices have been produced by injection molding. The fabrication scheme employed deep reactive ion etching in a silicon substrate, electroplating in nickel and molding in cyclic olefin polymer. This work proposes technical solutions...

  20. Damage Modeling Of Injection-Molded Short- And Long-Fiber Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Bapanapalli, Satish K.; Phelps, Jay; Tucker, Charles L. III

    2009-01-01

    This article applies the recent anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation and a new damage model for injection-molded long-fiber thermoplastics (LFTs) to analyze progressive damage leading to total failure of injection-molded long-glass-fiber/polypropylene (PP) specimens. The ARD-RSC model was implemented in a research version of the Autodesk Moldflow Plastics Insight (MPI) processing code, and it has been used to simulate injection-molding of a long-glass-fiber/PP plaque. The damage model combines micromechanical modeling with a continuum damage mechanics description to predict the nonlinear behavior due to plasticity coupled with damage in LFTs. This model has been implemented in the ABAQUS finite element code via user-subroutines and has been used in the damage analyses of tensile specimens removed from the injection-molded long-glass-fiber/PP plaques. Experimental characterization and mechanical testing were performed to provide input data to support and validate both process modeling and damage analyses. The predictions are in agreement with the experimental results.

  1. A scalable fabrication process of polymer microneedles

    Directory of Open Access Journals (Sweden)

    Yang S

    2012-03-01

    Full Text Available Sixing Yang, Yan Feng, Lijun Zhang, Nixiang Chen, Weien Yuan, Tuo JinSchool of Pharmacy, Shanghai Jiao Tong University, Shanghai, People's Republic of ChinaAbstract: While polymer microneedles may easily be fabricated by casting a solution in a mold, either centrifugation or vacuumizing is needed to pull the viscous polymer solution into the microholes of the mold. We report a novel process to fabricate polymer microneedles with a one-sided vacuum using a ceramic mold that is breathable but water impermeable. A polymer solution containing polyvinyl alcohol and polysaccharide was cast in a ceramic mold and then pulled into the microholes by a vacuum applied to the opposite side of the mold. After cross-linking and solidification through freeze-thawing, the microneedle patch was detached from the mold and transferred with a specially designed instrument for the drying process, during which the patch shrank evenly to form an array of regular and uniform needles without deformation. Moreover, the shrinkage of the patches helped to reduce the needles' size to ease microfabrication of the male mold. The dried microneedle patches were finally punched to the desired sizes to achieve various properties, including sufficient strength to penetrate skin, microneedles-absorbed water-swelling ratios, and drug-release kinetics. The results showed that the microneedles were strong enough to penetrate pigskin and that their performance was satisfactory in terms of swelling and drug release.Keywords: polymer microneedles, ceramic mold, polyvinyl alcohol, swelling

  2. Computer Aided Design of The Cooling System for Plastic Injection Molds

    Directory of Open Access Journals (Sweden)

    Hakan GÜRÜN

    2009-02-01

    Full Text Available The design of plastic injection molds and their cooling systems affect both the dimension, the shape, the quality of a plastic part and the cycle time of process and the cost of mold. In this study, the solid model design of a plastic injection mold and the design of cooling sysytem were possibly carried out without the designer interaction. Developed program permited the use of three types of the cooling system and the different cavity orientations and the multible plastic part placement into the mold cores. The program which was developed by using Visual LISP language and the VBA (Visual BASIC for Application modules, was applicated in the AutoCAD software domain. Trial studies were presented that the solid model design of plastic injection molds and the cooling systems increased the reliability, the flexibility and the speed of the design.

  3. Micro Machining of Injection Mold Inserts for Fluidic Channel of Polymeric Biochips

    Directory of Open Access Journals (Sweden)

    Myeong-Woo Cho

    2007-08-01

    Full Text Available Recently, the polymeric micro-fluidic biochip, often called LOC (lab-on-a-chip, has been focused as a cheap, rapid and simplified method to replace the existing biochemical laboratory works. It becomes possible to form miniaturized lab functionalities on a chip with the development of MEMS technologies. The micro-fluidic chips contain many micro-channels for the flow of sample and reagents, mixing, and detection tasks. Typical substrate materials for the chip are glass and polymers. Typical techniques for micro-fluidic chip fabrication are utilizing various micro pattern forming methods, such as wet-etching, micro-contact printing, and hot-embossing, micro injection molding, LIGA, and micro powder blasting processes, etc. In this study, to establish the basis of the micro pattern fabrication and mass production of polymeric micro-fluidic chips using injection molding process, micro machining method was applied to form micro-channels on the LOC molds. In the research, a series of machining experiments using micro end-mills were performed to determine optimum machining conditions to improve surface roughness and shape accuracy of designed simplified micro-channels. Obtained conditions were used to machine required mold inserts for micro-channels using micro end-mills. Test injection processes using machined molds and COC polymer were performed, and then the results were investigated.

  4. Floods and Mold Growth

    Science.gov (United States)

    Mold growth may be a problem after flooding. Excess moisture in the home is cause for concern about indoor air quality primarily because it provides breeding conditions for pests, molds and other microorganisms.

  5. Parylene C coating for high-performance replica molding.

    Science.gov (United States)

    Heyries, Kevin A; Hansen, Carl L

    2011-12-07

    This paper presents an improvement to the soft lithography fabrication process that uses chemical vapor deposition of poly(chloro-p-xylylene) (parylene C) to protect microfabricated masters and to improve the release of polymer devices following replica molding. Chemical vapor deposition creates nanometre thick conformal coatings of parylene C on silicon wafers having arrays of 30 μm high SU8 pillars with densities ranging from 278 to 10,040 features per mm(2) and aspect ratios (height : width) from 1 : 1 to 6 : 1. A single coating of parylene C was sufficient to permanently promote poly(dimethyl)siloxane (PDMS) mold release and to protect masters for an indefinite number of molding cycles. We also show that the improved release properties of parylene treated masters allow for fabrication with hard polymers, such as poly(urethane), that would otherwise not be compatible with SU8 on silicon masters. Parylene C provides a robust and high performance mold release coating for soft lithography microfabrication that extends the life of microfabricated masters and improves the achievable density and aspect ratio of replicated features.

  6. Design and thermal analysis of a mold used in the injection of elastomers

    Science.gov (United States)

    Fekiri, Nasser; Canto, Cécile; Madec, Yannick; Mousseau, Pierre; Plot, Christophe; Sarda, Alain

    2017-10-01

    In the process of injection molding of elastomers, improving the energy efficiency of the tools is a current challenge for industry in terms of energy consumption, productivity and product quality. In the rubber industry, 20% of the energy consumed by capital goods comes from heating processes; more than 50% of heat losses are linked to insufficient control and thermal insulation of Molds. The design of the tooling evolves in particular towards the reduction of the heated mass and the thermal insulation of the molds. In this paper, we present a complex tool composed, on one hand, of a multi-cavity mold designed by reducing the heated mass and equipped with independent control zones placed closest to each molding cavity and, on the other hand, of a regulated channel block (RCB) which makes it possible to limit the waste of rubber during the injection. The originality of this tool lies in thermally isolating the regulated channel block from the mold and the cavities between them in order to better control the temperature field in the material which is transformed. We present the design and the instrumentation of the experimental set-up. Experimental measurements allow us to understand the thermal of the tool and to show the thermal heterogeneities on the surface of the mold and in the various cavities. Tests of injection molding of the rubber and a thermal balance on the energy consumption of the tool are carried out.

  7. Tablet coating by injection molding technology - Optimization of coating formulation attributes and coating process parameters.

    Science.gov (United States)

    Desai, Parind M; Puri, Vibha; Brancazio, David; Halkude, Bhakti S; Hartman, Jeremy E; Wahane, Aniket V; Martinez, Alexander R; Jensen, Keith D; Harinath, Eranda; Braatz, Richard D; Chun, Jung-Hoon; Trout, Bernhardt L

    2018-01-01

    We developed and evaluated a solvent-free injection molding (IM) coating technology that could be suitable for continuous manufacturing via incorporation with IM tableting. Coating formulations (coating polymers and plasticizers) were prepared using hot-melt extrusion and screened via stress-strain analysis employing a universal testing machine. Selected coating formulations were studied for their melt flow characteristics. Tablets were coated using a vertical injection molding unit. Process parameters like softening temperature, injection pressure, and cooling temperature played a very important role in IM coating processing. IM coating employing polyethylene oxide (PEO) based formulations required sufficient room humidity (>30% RH) to avoid immediate cracks, whereas other formulations were insensitive to the room humidity. Tested formulations based on Eudrajit E PO and Kollicoat IR had unsuitable mechanical properties. Three coating formulations based on hydroxypropyl pea starch, PEO 1,000,000 and Opadry had favorable mechanical (35% elongation, >95×10 4 J/m 3 toughness) and melt flow (>0.4g/min) characteristics, that rendered acceptable IM coats. These three formulations increased the dissolution time by 10, 15 and 35min, respectively (75% drug release), compared to the uncoated tablets (15min). Coated tablets stored in several environmental conditions remained stable to cracking for the evaluated 8-week time period. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Large Eddy Simulation of Transient Flow, Solidification, and Particle Transport Processes in Continuous-Casting Mold

    Science.gov (United States)

    Liu, Zhongqiu; Li, Linmin; Li, Baokuan; Jiang, Maofa

    2014-07-01

    The current study developed a coupled computational model to simulate the transient fluid flow, solidification, and particle transport processes in a slab continuous-casting mold. Transient flow of molten steel in the mold is calculated using the large eddy simulation. An enthalpy-porosity approach is used for the analysis of solidification processes. The transport of bubble and non-metallic inclusion inside the liquid pool is calculated using the Lagrangian approach based on the transient flow field. A criterion of particle entrapment in the solidified shell is developed using the user-defined functions of FLUENT software (ANSYS, Inc., Canonsburg, PA). The predicted results of this model are compared with the measurements of the ultrasonic testing of the rolled steel plates and the water model experiments. The transient asymmetrical flow pattern inside the liquid pool exhibits quite satisfactory agreement with the corresponding measurements. The predicted complex instantaneous velocity field is composed of various small recirculation zones and multiple vortices. The transport of particles inside the liquid pool and the entrapment of particles in the solidified shell are not symmetric. The Magnus force can reduce the entrapment ratio of particles in the solidified shell, especially for smaller particles, but the effect is not obvious. The Marangoni force can play an important role in controlling the motion of particles, which increases the entrapment ratio of particles in the solidified shell obviously.

  9. Environmental Sustainability and Mold Hygiene in Buildings.

    Science.gov (United States)

    Wu, Haoxiang; Ng, Tsz Wai; Wong, Jonathan Wc; Lai, Ka Man

    2018-04-04

    Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  10. Environmental Sustainability and Mold Hygiene in Buildings

    Directory of Open Access Journals (Sweden)

    Haoxiang Wu

    2018-04-01

    Full Text Available Environmental sustainability is one of the key issues in building management. In Hong Kong, one of the initiatives is to reduce the operation hours of air-conditioning in buildings to cut down energy consumption. In this study, we reported a mold contamination case in a newly refurbished laboratory, in which the air-conditioner was switched from 24- to 18-h mode after refurbishment. In order to prevent mold recurrence, the air-conditioner was switched back to 24-h mode in the laboratory. During the mold investigation, visible mold patches in the laboratory were searched and then cultured, counted and identified. Building and environmental conditions were recorded, and used to deduce different causes of mold contamination. Eight contaminated sites including a wall, a bench, some metal and plastic surfaces and seven types of molds including two Cladosporium spp., two Aspergillus spp., one Rhizopus sp., one Trichoderma sp., and one Tritirachium sp. were identified. Cladosporium spp. were the most abundant and frequently found molds in the laboratory. The contaminated areas could have one to five different species on them. Based on the mold and environmental conditions, several scenarios causing the mold contamination were deduced, and different mold control measures were discussed to compare them with the current solution of using 24-h air-conditioning to control mold growth. This study highlights the importance of mold hygiene in sustainable building management.

  11. Characterization of curing behavior of UV-curable LSR for LED embedded injection mold

    Science.gov (United States)

    Tae, Joon-Sung; Yim, Kyung-Gyu; Rhee, Byung-Ohk; Kwak, Jae B.

    2016-11-01

    For many applications, liquid silicone rubber (LSR) injection molding is widely used for their great design flexibility and high productivity. In particular, a sealing part for a mobile device such as smartphone and watch has been produced by injection molding. While thermally curable LSR causes deformation problem due to a high mold temperature, UV-curable LSR can be molded at room temperature, which has advantages for over-molding with inserts of temperature-sensitive materials. Ultraviolet light-emitting diodes (UV LEDs) have advantages such as a longer service life, a lower heat dissipation, and smaller size to equip into the mold than conventional halogen or mercury UV lamps. In this work, rheological behavior of UV-curable LSR during curing process was analyzed by UV LEDs available in the market. UV-LEDs of various wave lengths and intensities were tested. The steady shear test was applied to find the starting time of curing and the SAOS was applied to find the ending time of curing to estimate processing time. In addition, the hardness change with irradiation energy was compared with the rheological data to confirm the reliability of the rheological test.

  12. Effects of heat pipe cooling on permanent mold castings of aluminum alloys

    International Nuclear Information System (INIS)

    Zhang, C.; Mucciardi, F.; Gruzleski, J.E.

    2002-01-01

    The temperature distribution within molds is a critical parameter in determining the ultimate casting quality in permanent mold casting processes, so there is a considerable incentive to develop a more effective method of mold cooling. Based on this consideration, a novel, effective and controllable heat pipe has been successfully developed and used as a new method of permanent mold cooling. Symmetric step casting of A356 alloy have been produced in an experimental permanent mold made of H13 tool steel, which is cooled by such heat pipes. The experimental results show that heat pipes can provide extremely high cooling rates in permanent mold castings of aluminum. The dendrite arm spacing of A356 alloy is refined considerably, and porosity and shrinkage of the castings are redistributed by the heat pipe cooling. Moreover, the heat pipe can be used to determine the time when the air gap forms at the interface between the mold and the casting. The effect of heat pipe cooling on solidification time of castings of A356 alloy with different coating types is also discussed in this paper. (author)

  13. Cavity air flow behavior during filling in microinjection molding

    DEFF Research Database (Denmark)

    Griffiths, C.A.; Dimov, S.S.; Scholz, S.

    2011-01-01

    Process monitoring of microinjection molding (μ-IM) is of crucial importance in understanding the effects of different parameter settings on the process, especially on its performance and consistency with regard to parts' quality. Quality factors related to mold cavity air evacuation can provide...... valuable information about the process dynamics and also about the filling of a cavity by a polymer melt. In this paper, a novel experimental setup is proposed to monitor maximum air flow and air flow work as an integral of the air flow over time by employing a microelectromechanical system gas sensor...... the effects of process parameters on cavity air evacuation, and the influence of air evacuation on the part flow length. © 2011 American Society of Mechanical Engineers....

  14. Comparing suppository mold variability which can lead to dosage errors for suppositories prepared with the same or different molds.

    Science.gov (United States)

    Alexander, Kenneth S; Baki, Gabriella; Hart, Christine; Hejduk, Courtney; Chillas, Stephanie

    2013-01-01

    Suppository molds must be properly calibrated to ensure accurate dosing. There are often slight differences between molds and even in the cavities within a mold. A method is presented for the calibration of standard aluminum 6-, 12-, 50-, or 100-well suppository molds. Ten different molds were tested using water for volume calibration, and cocoa butter for standardization involving establishing the density factor. This method is shown to be straightforward and appropriate for calibrating suppository molds.

  15. Injection molding simulation to improve the efficiency and quality of metal molding designs. Kanagata no sekkei koritsu ka to hinshitsu kojo wo hakaru shashutsu seikei simulation

    Energy Technology Data Exchange (ETDEWEB)

    Ito, Y. (Sony Corp., Tokyo (Japan))

    1992-01-01

    In order to improve the efficiency and quality of metal molding designs, Sony Corp. has adopted an injection molding simulation system since the first half of 1980s. Since, however, molding materials are thermal fluids, which transit their phase from liquid into solid, and boundary conditions will be changed in the middle of their cycles, their analyzing works are very difficult. Therefore, softwares in this field are still on the way to be developed. Since this corporation has joined to the Cornell Injection Molding Program (CIMP) project in Cornell University, they have added improvements on their programs to be supplied, and have used them with their own programs developed additionally based on transformation processes. They have carried out minimizing of shape of boss root and examining holding pressure control by this simulation system. Since actually input works for CAD process have been carried out by hand now, it takes a time a little, though, they have also considered to make it easy by automating for applications of the full model. 4 refs., 7 figs.

  16. Molding method of buffer material for underground disposal of radiation-contaminated material, and molded buffer material

    International Nuclear Information System (INIS)

    Akasaka, Hidenari; Shimura, Satoshi; Kawakami, Susumu; Ninomiya, Nobuo; Yamagata, Junji; Asano, Eiichi

    1995-01-01

    Upon molding of a buffer material to be used upon burying a vessel containing radiation-contaminated materials in a sealed state, a powdery buffer material to be molded such as bentonite is disposed at the periphery of a mandrel having a cylindrical portion somewhat larger than contaminate container to be subjected to underground disposal. In addition, it is subjected to integration-molding such as cold isotropic press with a plastic film being disposed therearound, to form a molding product at high density. The molding product is released and taken out with the plastic film being disposed thereon. Releasability from an elastic mold is improved by the presence of the plastic film. In addition, if it is stored or transported while having the plastic film being disposed thereon, swelling of the buffer material due to water absorption or moisture absorption can be suppressed. (T.M.)

  17. Results on powder injection molding of Ni[sub 3]Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-01-01

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni[sub 3]Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  18. Results on powder injection molding of Ni{sub 3}Al and application to other intermetallic compositions

    Energy Technology Data Exchange (ETDEWEB)

    Cooper, R.M.

    1992-12-31

    Net forming processes are under development to allow affordable production of intermetallic components. Powder injection molding (PIM) mav be employed for the production of complex-shaped intermetallic geometries. Proper choice of powder parameters and processing conditions can lead to the formation of fullv dense structures through pressure-less sintering. In this study, Ni{sub 3}Al with 0.04 wt.-% boron has been successfully injection molded and sintered to full density. A yield strength of 340 MPa, ultimate tensile strength (UTS) of 591 MPa, and 8% elongation were attained for injection molded and sintered tensile bars. Powder characteristics and sintering behavior are given for the nickel aluminide employed in this study to highlight the powder attributes needed for injection molding. Molding parameters, debinding and sintering schedules, along, with mechanical properties are presented to indicate the viability of PIM for intermetallics. This approach based on the understanding of key powder characteristics and use of the reactive synthesis powder process mav be extended to the successful injection molding of other intermetallic systems.

  19. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei; Fan, Yiqiang; Foulds, Ian G.

    2011-01-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  20. Rapid and low-cost fabrication of polystyrene-based molds for PDMS microfluidic devices using a CO2 laser

    KAUST Repository

    Li, Huawei

    2011-11-01

    In this article, we described a rapid and low-cost method to fabricate polystyrene molds for PDMS microfluidic devices using a CO2 laser system. It takes only several minutes to fabricate the polystyrene mold with bump pattern on top of it using a CO2 laser system. The bump pattern can be easily transferred to PDMS and fabricate microchannles as deep as 3μm on PDMS. © (2012) Trans Tech Publications, Switzerland.

  1. Fabrication of an infrared Shack-Hartmann sensor by combining high-speed single-point diamond milling and precision compression molding processes.

    Science.gov (United States)

    Zhang, Lin; Zhou, Wenchen; Naples, Neil J; Yi, Allen Y

    2018-05-01

    A novel fabrication method by combining high-speed single-point diamond milling and precision compression molding processes for fabrication of discontinuous freeform microlens arrays was proposed. Compared with slow tool servo diamond broaching, high-speed single-point diamond milling was selected for its flexibility in the fabrication of true 3D optical surfaces with discontinuous features. The advantage of single-point diamond milling is that the surface features can be constructed sequentially by spacing the axes of a virtual spindle at arbitrary positions based on the combination of rotational and translational motions of both the high-speed spindle and linear slides. By employing this method, each micro-lenslet was regarded as a microstructure cell by passing the axis of the virtual spindle through the vertex of each cell. An optimization arithmetic based on minimum-area fabrication was introduced to the machining process to further increase the machining efficiency. After the mold insert was machined, it was employed to replicate the microlens array onto chalcogenide glass. In the ensuing optical measurement, the self-built Shack-Hartmann wavefront sensor was proven to be accurate in detecting an infrared wavefront by both experiments and numerical simulation. The combined results showed that precision compression molding of chalcogenide glasses could be an economic and precision optical fabrication technology for high-volume production of infrared optics.

  2. Fast Mold Temperature Evolution on Micro Features Replication Quality during Injection Molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, Matteo; Speranza, V.

    2016-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded aselectrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule effect...

  3. Reduction of birefringence in a skin-layer of injection molded polymer strips using CO{sub 2} laser irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Kurosaki, Yasuo; Satoh, Isao; Saito, Takushi [Tokyo Inst. of Tech. (Japan). Dept. of Mechanical Intelligent Systems Engineering

    1995-12-31

    Injection molding of polymers is currently utilized for numerous industrial applications. Because of high productivity and stable quality of molded products, the injection-molding process makes the production costs lower, and therefore, is expected to spread more widely in the future. This paper deals with a technique for improving the optical quality of injection molded polymer products using radiative heating. The birefringence frozen in a skin-layer of the molded part was reduced by CO{sub 2} laser heating, and the efficiency of this technique was investigated experimentally. Namely, a simple numerical calculation was performed to estimate the heating efficiency of CO{sub 2} laser in the polymer, effects of radiation heating on the skin-layer of the molded polymer were observed by using a mold with transparent windows, and the residual birefringence frozen in the final molded specimen was measured. The results clearly showed that the birefringence in the skin-layer of injection molded polymer strips was reduced with CO{sub 2} laser heating. The authors believe that the proposed method for reducing the birefringence frozen in injection-molded polymer products is suitable for practical molding, because process time required for the injection-molding is only slightly increased with this method.

  4. Molding of strength testing samples using modern PDCPD material for purpose of automotive industry

    Science.gov (United States)

    Grabowski, L.; Baier, A.; Sobek, M.

    2017-08-01

    The casting of metal materials is widely known but the molding of composite polymer materials is not well-known method still. The initial choice of method for producing composite bodies was the method of casting of PDCPD material. For purpose of performing casting of polymer composite material, a special mold was made. Firstly, the 3D printed, using PLA material, mold was used. After several attempts of casting PDCPD many problems were encountered. The second step was to use mold milled from a firm and dense isocyanate foam. After several attempts research shown that this solution is more resistant to high-temperature peak, but this material is too fragile to use it several times. This solution also prevents mold from using external heating, which can be necessary for performing correct molding process. The last process was to use the aluminum mold, which is dedicated to PDCPD polymer composite, because of low adhesiveness. This solution leads to perform correct PDCPD polymer composite material injection. After performing casting operation every PDCPD testing samples were tested. These results were compared together. The result of performed work was to archive correct properties of injection of composite material. Research and results were described in detail in this paper.

  5. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    International Nuclear Information System (INIS)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri; Raghavan, Vijay R.

    2016-01-01

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time

  6. Determining the effects of thermal conductivity on epoxy molds using profiled cooling channels with metal inserts

    Energy Technology Data Exchange (ETDEWEB)

    Altaf, Khurram; Rani, Abdul Ahmad Majdi; Ahmad, Faiz; Baharom, Masri [Mechanical Engineering Dept., Universiti Teknologi PETRONAS, Bandar Seri Iskandar, Perak (Malaysia); Raghavan, Vijay R. [OYL Manufacturing, Sungai Buloh (Malaysia)

    2016-11-15

    Polymer injection molds are generally manufactured with metallic materials, such as tool steel, which provide reliable working of molds and extended service life. The manufacture of injection molds with steel is a prolonged process because of the strength of steel. For a short prototype production run, one of the suitable choices could be the use of aluminum-filled epoxy material, which can produce a functional mold in a short time as compared with a conventionally machined tool. Aluminum-filled epoxy tooling is a good choice for short production runs for engineering applications, yet works best for relatively simple shapes. The advantages in relation to the fabrication of injection molds with epoxy-based materials include time saving in producing the mold, epoxy curing at ambient temperature, and ease of machining and post processing. Nevertheless, one major drawback of epoxy material is its poor thermal conductivity, which results in a relatively longer cooling time for epoxy injection molds. This study investigates some of the innovative ideas for enhancing the thermal conductivity for epoxy molds. The basic concept behind these ideas was to embed a highly thermally conductive metal insert within the mold between cavities with an innovative design of cooling channels called profiled cooling channels. This technique will increase the effective thermal conductivity of the epoxy mold, leading to the reduction in cooling time for the injection molded polymer part. Experimental analysis conducted in the current study also verified that the mold with profiled cooling channels and embedded metal insert has significantly reduced the cooling time.

  7. Model-Assisted Control of Flow Front in Resin Transfer Molding Based on Real-Time Estimation of Permeability/Porosity Ratio

    Directory of Open Access Journals (Sweden)

    Bai-Jian Wei

    2016-09-01

    Full Text Available Resin transfer molding (RTM is a popular manufacturing technique that produces fiber reinforced polymer (FRP composites. In this paper, a model-assisted flow front control system is developed based on real-time estimation of permeability/porosity ratio using the information acquired by a visualization system. In the proposed control system, a radial basis function (RBF network meta-model is utilized to predict the position of the future flow front by inputting the injection pressure, the current position of flow front, and the estimated ratio. By conducting optimization based on the meta-model, the value of injection pressure to be implemented at each step is obtained. Moreover, a cascade control structure is established to further improve the control performance. Experiments show that the developed system successfully enhances the performance of flow front control in RTM. Especially, the cascade structure makes the control system robust to model mismatch.

  8. Gas-Assisted Heating Technology for High Aspect Ratio Microstructure Injection Molding

    Directory of Open Access Journals (Sweden)

    Shia-Chung Chen

    2013-01-01

    Full Text Available A hot gas is used for heating the cavity surface of a mold. Different mold gap sizes were designed. The mold surface temperature was heated to above the glass transition temperature of the plastic material, and the mold then closed for melt filling. The cavity surface can be heated to 130°C to assist the melt filling of the microfeatures. Results show that hot gas heating can improve the filling process and achieve 91% of the high aspect ratio microgrooves (about 640.38 μm of the maximum of 700 μm. The mold gap size strongly affects the heating speed and heating uniformity. Without surface preheating, the center rib is the highest. When the heating target temperature is 90°C or 100°C, the three microribs have a good uniformity of height. However, when the target temperature exceeds 100°C, the left side rib is higher than the other ribs.

  9. Resin infusion of large composite structures modeling and manufacturing process

    Energy Technology Data Exchange (ETDEWEB)

    Loos, A.C. [Michigan State Univ., Dept. of Mechanical Engineering, East Lansing, MI (United States)

    2006-07-01

    The resin infusion processes resin transfer molding (RTM), resin film infusion (RFI) and vacuum assisted resin transfer molding (VARTM) are cost effective techniques for the fabrication of complex shaped composite structures. The dry fibrous preform is placed in the mold, consolidated, resin impregnated and cured in a single step process. The fibrous performs are often constructed near net shape using highly automated textile processes such as knitting, weaving and braiding. In this paper, the infusion processes RTM, RFI and VARTM are discussed along with the advantages of each technique compared with traditional composite fabrication methods such as prepreg tape lay up and autoclave cure. The large number of processing variables and the complex material behavior during infiltration and cure make experimental optimization of the infusion processes costly and inefficient. Numerical models have been developed which can be used to simulate the resin infusion processes. The model formulation and solution procedures for the VARTM process are presented. A VARTM process simulation of a carbon fiber preform was presented to demonstrate the type of information that can be generated by the model and to compare the model predictions with experimental measurements. Overall, the predicted flow front positions, resin pressures and preform thicknesses agree well with the measured values. The results of the simulation show the potential cost and performance benefits that can be realized by using a simulation model as part of the development process. (au)

  10. Welding lines formation in holes obtained by low pressure injection molding of ceramic parts

    Directory of Open Access Journals (Sweden)

    C. A. Costa

    Full Text Available Abstract This work presents a study to evaluate the process of producing internal holes in ceramic disks produced by low pressure injection molding (LPIM process. Two process conditions defined as pre-injection and post-injection were used to test the proposition. In the first one the pin cores that produce the holes were positioned in the cavity before the injection of the feedstock; and in the second one, the pin cores were positioned in the cavity, just after the feeding phase of the injection mold. An experimental injection mold designed and manufactured to test both processes was developed to produce ceramic disk with Ø 50 x 2 mm with four holes of Ø 5 mm, equally and radially distributed through the disk. The feedstock was composed of 86 wt% alumina (Al2O3 and 14 wt% organic vehicle based on paraffin wax. Heating and cooling systems controlled by a data acquisition system were included in the mold. The results showed that there were no welding lines with the post-injection process, proving to be an option for creating holes in the ceramic parts produced by LPIM. It was observed that best results were obtained at 58 °C mold temperature. The pins extraction temperature was about 45 °C, and the injection pressure was 170 kPa.

  11. Numerical simulation of mold shape’s influence on NbTi cold-pressing superconducting joint

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Feng, E-mail: zhoufeng@mail.iee.ac.cn; Cheng, Junsheng; Dai, Yinming; Wang, Qiuliang; Yan, Luguang

    2014-03-15

    Highlights: • Four different shape molds’ influence on NbTi cold-pressing joint are analyzed. • Deformation of filaments is the most uniform in the case of radial compression. • The square mold is the optimum one for decreasing joint resistance in practice. - Abstract: The cold-pressing welding methods are employed to fabricate joints between NbTi multi-filamentary conductors, and a series of joints are made with the molds of different shapes for nuclear magnetic resonance (NMR) magnet applications. The Abaqus–Explicit method was used to do a quasi-static analysis of the cold-pressing welding process. In the simulation, we analyzed four molds with different shapes: plate mold, cap mold, square mold, and radial compression. The simulation shows that the deformation of filaments is the most uniform in the case of radial compression and the square mold is the optimum one for decreasing joint resistance.

  12. Silane based coating of aluminium mold

    DEFF Research Database (Denmark)

    2013-01-01

    having at least one closed cavity is provided, at least one surface of the at least one cavity being an aluminium surface coated with a silane based coating layer. The silane based anti-stiction coating improves the anti-stiction properties of the mold which may allow for molding and demolding...... of structures which would otherwise be difficult to mold. The resistance of the coated aluminium mold is significantly improved by applying a silane-based coating layer....

  13. Applications of thin carbon coatings and films in injection molding

    Science.gov (United States)

    Cabrera, Eusebio Duarte

    In this research, the technical feasibility of two novel applications of thin carbon coatings is demonstrated. The first application consists of using thin carbon coatings on molds for molding ultra-thin plastic parts (graphene coating with carbide bonding to the mold surface. The coating resulted in a significant decrease of surface friction and consequently easiness of flow when compared to their uncoated counterparts. Thermoplastic polymers and their composites are a very attractive alternative but are hindered by the non-conductive nature of polymers. There are two general approaches used to date to achieve EMI shielding for plastic products. One is to spray a conductive metal coating onto the plastic surface forming a layer that must maintain its shielding effectiveness (SE), and its adhesion to the plastic throughout the expected life of the product. However, metal coatings add undesirable weight and tend to corrode over time. Furthermore, scratching the coating may create shielding failure; therefore, a protective topcoat may be required. The other approach is to use polymer composites filled with conductive fillers such as carbon black (CB), carbon nanofiber (CNF), and carbon nanotube (CNT). While conductive fillers may increase the electrical conductivity of polymer composites, the loading of such fillers often cannot reach a high level (painting using carbon black (CB). Such process can also be applied to injection molding for creating a top conductive layer. Increasing the amount of CB will increase the surface conductivity of the coated part, thus improving the paint transfer efficiency. However the CB levels needed to achieve the conductivity levels required for achieving EMI shielding would make the coating viscosity too large for proper coating. Nanopaper based composites are excellent candidates for EMI shielding because of the nanopaper's high concentration of carbon nanofibers (CNFs) (~2 wt% to 10 wt% depending on nanopaper/thermoplastic thickness

  14. End Uses Mechanical Properties Settled By The Modified Sintering Conditions Of The Metal Injection Molding Process

    International Nuclear Information System (INIS)

    Marray, Tarek; Jaccquet, Philippe; Moinard-Checot, Delphine; Fabre, Agnes; Barrallier, Laurent

    2011-01-01

    Most common mechanical applications require parts with specific properties as hard faced features. It is well known that treating parts under suitable atmospheres may improve hardness and strength yield of steels. Heat treatment process and more particularly thermo-chemical diffusion processes (such as carburizing or its variation: carbonitriding) can be performed to reach the industrial hardness profile requirements. In this work, a low-alloyed steel feedstock based on water soluble binder system is submitted to the MIM process steps (including injection molding, debinding and sintering). As-sintered parts are then treated under a low pressure carbonitriding treatment. This contribution focuses on preliminary results such as microstructural analyses and mechanical properties which are established at each stage of the process to determine and monitor changes.

  15. Computer Texture Mapping for Laser Texturing of Injection Mold

    Directory of Open Access Journals (Sweden)

    Yongquan Zhou

    2014-04-01

    Full Text Available Laser texturing is a relatively new multiprocess technique that has been used for machining 3D curved surfaces; it is more flexible and efficient to create decorative texture on 3D curved surfaces of injection molds so as to improve the surface quality and achieve cosmetic surface of molded plastic parts. In this paper, a novel method of laser texturing 3D curved surface based on 3-axis galvanometer scanning unit has been presented to prevent the texturing of injection mold surface from much distortion which is often caused by traditional texturing processes. The novel method has been based on the computer texture mapping technology which has been developed and presented. The developed texture mapping algorithm includes surface triangulation, notations, distortion measurement, control, and numerical method. An interface of computer texture mapping has been built to implement the algorithm of texture mapping approach to controlled distortion rate of 3D texture math model from 2D original texture applied to curvature surface. Through a case study of laser texturing of a high curvature surface of injection mold of a mice top case, it shows that the novel method of laser texturing meets the quality standard of laser texturing of injection mold.

  16. Mold

    Science.gov (United States)

    ... has developed a device known as an acoustical generator that can create and disperse molds for rodent ... Sciences) . 2004. Damp Indoor Spaces and Health. Washington, DC: The National Academies Press. 3 WHO ( World Health ...

  17. Mold After a Disaster

    Science.gov (United States)

    ... should clean up the mold and fix any water problem, such as leaks in roofs, walls, or plumbing. Controlling moisture in your home is the most critical factor for preventing mold growth. To ... use commercial products, soap and water, or a bleach solution of no more than ...

  18. The influence of microwave heating and water glass kind on the properties of molding sands

    Directory of Open Access Journals (Sweden)

    K. Granat

    2008-03-01

    Full Text Available This work presents rcsults of research on thc influcncc of microwave heating time on the process of hardening of warcr glass moldingsands. Essential influence of this drying process on basic properties such as: cornprcssion, bcnding mind tcnsitc strcng~h as well aspcrrneabili~y and war resistance, has bccn found. It has bccn proved, that at1 thc investigated sorts of sodium water glass could be uscd asbinding material of molding sands intended for curing with the microwave process healing. It has bccn found, while analyzing the rcsultsof property studics or microwavc heated molding sands with 2.5% addition of water glass, that aIl available on the markct kinds of thisbinding agent (inctuding the most frequently uscd in foundry 145 and 149 kinds after microwave heating guarantee very goodcompression, bending and tensile strength as well as permeability and wcar resistance. Moroovcr, it has bccn dctcrmined that the optimalcuring powcr of molding sands containing various kinds of water gIass is 560 W. AII values exceeding this rcsult in stabilization of basicpropcrtics of molding sands. The use of microwave curing of water glass molding sands results in a significant decrease of hardeningprocess time. full stabilization of molding sands as well as much lower energy consumption.

  19. Adaptive temporal refinement in injection molding

    Science.gov (United States)

    Karyofylli, Violeta; Schmitz, Mauritius; Hopmann, Christian; Behr, Marek

    2018-05-01

    Mold filling is an injection molding stage of great significance, because many defects of the plastic components (e.g. weld lines, burrs or insufficient filling) can occur during this process step. Therefore, it plays an important role in determining the quality of the produced parts. Our goal is the temporal refinement in the vicinity of the evolving melt front, in the context of 4D simplex-type space-time grids [1, 2]. This novel discretization method has an inherent flexibility to employ completely unstructured meshes with varying levels of resolution both in spatial dimensions and in the time dimension, thus allowing the use of local time-stepping during the simulations. This can lead to a higher simulation precision, while preserving calculation efficiency. A 3D benchmark case, which concerns the filling of a plate-shaped geometry, is used for verifying our numerical approach [3]. The simulation results obtained with the fully unstructured space-time discretization are compared to those obtained with the standard space-time method and to Moldflow simulation results. This example also serves for providing reliable timing measurements and the efficiency aspects of the filling simulation of complex 3D molds while applying adaptive temporal refinement.

  20. Permanent Mold Casting of JIS-AC4C Aluminum Alloy Using a Low-Temperature Mold

    International Nuclear Information System (INIS)

    Yamagata, Hiroshi; Nikawa, Makoto

    2011-01-01

    Permanent mold casting using mold temperatures below 200 deg. C was conducted to obtain a high-strength, thin-walled casting. Al-7.36 mass% Si -0.18 Cu- 0.27Mg-0.34Fe alloy JIS-AC4C was cast using a bottom pouring cast plan. The product had a rectangular tube shape (70 mm W x 68 mm D x 180 mm H) with wall thicknesses of 1, 3 and 5 mm. The effect of heat insulation at the melt path was compared when using a sand runner insert and when using a steel runner insert as well as a powder mold release agent. Fine microstructures were observed in the casting. The smaller the thickness, the higher the hardness with smaller secondary dendrite arm spacing (SDAS). However, the hardness and the SDAS were unaffected by the mold temperature. It was proposed that the avoidance of the formation of primary α dendrite at the melt path generates a higher strength casting with adequate mold filling.

  1. Comparison Of Simulation Results When Using Two Different Methods For Mold Creation In Moldflow Simulation

    Directory of Open Access Journals (Sweden)

    Kaushikbhai C. Parmar

    2017-04-01

    Full Text Available Simulation gives different results when using different methods for the same simulation. Autodesk Moldflow Simulation software provide two different facilities for creating mold for the simulation of injection molding process. Mold can be created inside the Moldflow or it can be imported as CAD file. The aim of this paper is to study the difference in the simulation results like mold temperature part temperature deflection in different direction time for the simulation and coolant temperature for this two different methods.

  2. Injection molding of coarse 316L stainless steel powder

    International Nuclear Information System (INIS)

    Omar, M.A.; Abdullah, N.S.; Subuki, I; Ali, E.A.G.E.; Ismail, F.; Hassan, N.

    2007-01-01

    Metal injection molding (MIM) process using 316L stainless steel powder of 45 μm was investigated. The binder system consists of a major fraction of palm stearins and minor fraction of polyethylene with a powder loading of 65 vol. %. The rheological behaviour of the feedstock was determined using Capillary Rheometer. The feedstock then injected using vertical injection molding machine into the tensile test bar. Then molded parts were de bound and sintered in vacuum at temperature of 1360 degree Celsius. The results show that the viscosity of the feedstock decreased with the temperature increased. The best sintered density achieved was about 7.5 g/cm 3 with the tensile strength of more than 460 MPa. The properties of the sintered specimens could be increased with the increasing of sintering temperature. (author)

  3. Prototyping of radially oriented piezoelectric ceramic-polymer tube composites using fused deposition and lost mold processing techniques

    Science.gov (United States)

    McNulty, Thomas Francis

    Piezoelectric tube composite hydrophones of 3-1, 3-2, and 2-2 connectivity were developed using Fused Deposition (FD) and lost mold processing (LMP). In this work, a new series of thermoplastic binder formulations, named the ECG series, were developed for the FD process. The ECG-9 formulation exhibits mechanical, thermal, and rheological properties suitable for the Fused Deposition of functional lead zirconate titanate ceramic devices. This binder consists of 100 parts (by weight) Vestoplast 408, 20 parts Escorez 2520, 15 parts Vestowax A-227, and 5 parts Indopol H-1500. Oleic acid, oleyl alcohol, stearic acid, and stearyl alcohol (in toluene) were tested for use as a dispersant in the PZT/ECG-9 system. It was found that stearic acid adsorbs the most onto PZT powder, adsorbing 8.1 mg/m2. Using stearic acid, solutions of increasing concentration (5.0--50.0 g/l) were measured for adsorption. It was found that 30.0 g/l is the minimum concentration necessary for optimum surface coverage. The surfactant-coated powder was compounded with ECG-9 binder to create a 54 vol.% mix. The mix was extruded using a single screw extrusion apparatus into continuous lengths (>30 m) of 1.78 mm diameter filament. Fused Deposition was used to create composite designs of 3-1, 3-2, and 2-2 connectivity. After sintering, samples exhibit a sintered density greater than 97%. Sanders Prototyping (SPI) was used to manufacture molds for use with LMP techniques. Molds of 3-1, 3-2, and 2-2 connectivity were developed. The molds were infiltrated with a 55 vol.% aqueous based PZT slurry. The parts were subjected to a binder decomposition cycle, followed by sintering. Resultant samples were highly variable due to random macro-pores present in the samples after sintering. The resultant preforms were embedded in epoxy, and polished to dimensions of 8.0 mm inside diameter (ID), 14.0 mm outside diameter (OD), and 10.0 mm length (l) the OD and l dimensions are accurate to +/--2%, while the ID is accurate

  4. Improved compression molding technology for continuous fiber reinforced composite laminates. Part 2: AS-4/Polyimidesulfone prepreg system

    Science.gov (United States)

    Baucom, Robert M.; Hou, Tan-Hung; Kidder, Paul W.; Reddy, Rakasi M.

    1991-01-01

    AS-4/polyimidesulfone (PISO2) composite prepreg was utilized for the improved compression molding technology investigation. This improved technique employed molding stops which advantageously facilitate the escape of volatile by-products during the B-stage curing step, and effectively minimize the neutralization of the consolidating pressure by intimate interply fiber-fiber contact within the laminate in the subsequent molding cycle. Without the modifying the resin matrix properties, composite panels with both unidirectional and angled plies with outstanding C-scans and mechanical properties were successfully molded using moderate molding conditions, i.e., 660 F and 500 psi, using this technique. The size of the panels molded were up to 6.00 x 6.00 x 0.07 in. A consolidation theory was proposed for the understanding and advancement of the processing science. Processing parameters such as vacuum, pressure cycle design, prepreg quality, etc. were explored.

  5. Microinjection molding of thermoplastic polymers: morphological comparison with conventional injection molding

    International Nuclear Information System (INIS)

    Giboz, Julien; Mélé, Patrice; Copponnex, Thierry

    2009-01-01

    The skin–core crystalline morphology of injection-molded semi-crystalline polymers is well documented in the scientific literature. The thermomechanical environment provokes temperature and shear gradients throughout the entire thickness of the part during molding, thus influencing the polymer crystallization. Crystalline morphologies of a high-density polyethylene (HDPE) micromolded part (μpart) and a classical part (macropart) are compared with optical, thermal and x-ray diffraction analyses. Results show that the crystalline morphologies with regard to thickness vary between the two parts. While a 'skin–core' morphology is present for the macropart, the μpart exhibits a specific 'core-free' morphology, i.e. no spherulite is present at the center of the thickness. This result seems to be generated under the specific conditions used in microinjection molding that lead to the formation of smaller and more oriented crystalline entities

  6. Interim Report on Mixing During the Casting of LEU-10Mo Plates in the Triple Plate Molds

    Energy Technology Data Exchange (ETDEWEB)

    Aikin, Jr., Robert M. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2017-04-12

    LEU-10%Mo castings are commonly produced by down blending unalloyed HEU with a DU-12.7%Mo master-alloy. This work uses process modeling to provide insight into the mixing of the unalloyed uranium and U-Mo master alloy during melting and mold filling of a triple plate casting. Two different sets of situations are considered: (1) mixing during mold filling from a compositionally stratified crucible and (2) convective mixing of a compositionally stratified crucible during mold heating. The mold filling simulations are performed on the original Y-12 triple plate mold and the horizontal triple plate mold.

  7. Rapid fabrication method of a microneedle mold with controllable needle height and width.

    Science.gov (United States)

    Lin, Yen-Heng; Lee, I-Chi; Hsu, Wei-Chieh; Hsu, Ching-Hong; Chang, Kai-Ping; Gao, Shao-Syuan

    2016-10-01

    The main issue of transdermal drug delivery is that macromolecular drugs cannot diffuse through the stratum corneum of skin. Many studies have pursued micro-sized needles encapsulated with drugs to overcome this problem, as these needles can pierce the stratum corneum and allow drugs to enter the circulatory system of the human body. However, most microneedle fabrication processes are time-consuming and require expensive equipment. In this study, we demonstrate a rapid method for fabricating a microneedle mold using drawing lithography and a UV-cured resin. The mold was filled with a water-soluble material, polyvinylpyrrolidone (PVP), which was then demolded to produce a water-soluble microneedle array. The results of an in vitro skin insertion test using PVP microneedles and pig ear skin demonstrated the feasibility of the microneedle mold. In addition, by controlling the viscosity of the UV-cured resin through various heat treatments, microneedles with different heights and aspect ratios were produced. Compared with other methods, this technology significantly simplifies and accelerates the mold fabrication process. In addition, the required equipment is relatively simple and inexpensive. Through this technology, we can rapidly fabricate microneedle molds with controllable dimensions for various applications.

  8. Sensory quality of Camembert-type cheese: Relationship between starter cultures and ripening molds.

    Science.gov (United States)

    Galli, Bruno Domingues; Martin, José Guilherme Prado; da Silva, Paula Porrelli Moreira; Porto, Ernani; Spoto, Marta Helena Fillet

    2016-10-03

    Starter cultures and ripening molds used in the manufacture of moldy cheese aimed at obtaining characteristic flavors and textures considerably differ among dairy industries. Thus, the study of variables inherent to the process and their influence on sensory patterns in cheese can improve the standardization and control of the production process. The aim of this work was to study the influence of three different variables on the sensory quality of Camembert-type cheese: type of lactic bacteria, type of ripener molds and inoculation method. Batches of Camembert-type cheese were produced using O or DL-type mesophilic starter culture, ripened with Penicillium camemberti or Penicillium candidum and mold inoculation was made directly into the milk or by spraying. All batches were sensorially evaluated using Quantitative Descriptive Analysis (QDA) with panelists trained for various attributes. Among the combinations analyzed, those resulting in more typical Camembert-type cheese were those using O-type mesophilic starter culture and P. candidum maturation mold directly applied into the milk or sprayed and those using DL-type mesophilic starter and P. camemberti ripener mold applied by surface spraying. These results demonstrate, therefore, that the combination of different ripener molds, inoculation methods and starter cultures directly influences the sensory quality of Camembert-type cheese, modifying significantly its texture, appearance, aroma and taste. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Mold-filling experiments for validation of modeling encapsulation. Part 1, "wine glass" mold.

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, Jaime N.; Grillet, Anne Mary; Altobelli, Stephen A. (New Mexico Resonance, Albuquerque, NM); Cote, Raymond O.; Mondy, Lisa Ann

    2005-06-01

    The C6 project 'Encapsulation Processes' has been designed to obtain experimental measurements for discovery of phenomena critical to improving these processes, as well as data required in the verification and validation plan (Rao et al. 2001) for model validation of flow in progressively complex geometries. We have observed and recorded the flow of clear, Newtonian liquids and opaque, rheologically complex suspensions in two mold geometries. The first geometry is a simple wineglass geometry in a cylinder and is reported here in Part 1. The results in a more realistic encapsulation geometry are reported in Part 2.

  10. 3D printed metal molds for hot embossing plastic microfluidic devices.

    Science.gov (United States)

    Lin, Tung-Yi; Do, Truong; Kwon, Patrick; Lillehoj, Peter B

    2017-01-17

    Plastics are one of the most commonly used materials for fabricating microfluidic devices. While various methods exist for fabricating plastic microdevices, hot embossing offers several unique advantages including high throughput, excellent compatibility with most thermoplastics and low start-up costs. However, hot embossing requires metal or silicon molds that are fabricated using CNC milling or microfabrication techniques which are time consuming, expensive and required skilled technicians. Here, we demonstrate for the first time the fabrication of plastic microchannels using 3D printed metal molds. Through optimization of the powder composition and processing parameters, we were able to generate stainless steel molds with superior material properties (density and surface finish) than previously reported 3D printed metal parts. Molds were used to fabricate poly(methyl methacrylate) (PMMA) replicas which exhibited good feature integrity and replication quality. Microchannels fabricated using these replicas exhibited leak-free operation and comparable flow performance as those fabricated from CNC milled molds. The speed and simplicity of this approach can greatly facilitate the development (i.e. prototyping) and manufacture of plastic microfluidic devices for research and commercial applications.

  11. Electrical and dielectric properties of foam injection-molded polypropylene/multiwalled carbon nanotube composites

    Energy Technology Data Exchange (ETDEWEB)

    Ameli, A.; Nofar, M.; Saniei, M.; Hossieny, N.; Park, C. B. [Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King’s College Road, Toronto, Ontario, Canada M5S 3G8 (Canada); Pötschke, P. [Leibniz-Institut für Polymerforschung Dresden e.V. (IPF), Hohe Strasse 6, D-01069 Dresden (Germany)

    2015-05-22

    A combination of high dielectric permittivity (ε′) and low dielectric loss (tan δ) is required for charge storage applications. In percolative systems such as conductive polymer composites, however, obtaining high ε′ and low tan δ is very challenging due to the sharp insulation-conduction transition near the threshold region. Due to the particular arrangement of conductive fillers induced by both foaming and injection molding processes, they may address this issue. Therefore, this work evaluates the application of foam injection molding process in fabricating polymer nanocomposites for energy storage. Polypropylene-multiwalled carbon nanotubes (PP-MWCNT) composites were prepared by melt mixing and foamed in an injection molding process. Electrical conductivity (σ), ε′ and tan δ were then characterized. Also, scanning and transmission electron microscopy (SEM and TEM) was used to investigate the carbon nanotube’s arrangement as well as cellular morphology. The results showed that foam injection-molded composites exhibited highly superior dielectric properties to those of solid counterparts. For instance, foamed samples had ε′=68.3 and tan δ =0.05 (at 1.25 vol.% MWCNT), as opposed to ε′=17.8 and tan δ=0.04 in solid samples (at 2.56 vol.% MWCNT). The results of this work reveal that high performance dielectric nanocomposites can be developed using foam injection molding technologies for charge storage applications.

  12. Mold

    Centers for Disease Control (CDC) Podcasts

    2011-05-02

    This podcast answers a listener's question about the risks associated with mold after a natural disaster or severe weather.  Created: 5/2/2011 by National Center for Environmental Health (NCEH).   Date Released: 5/2/2011.

  13. A Modular, Reconfigurable Mold for a Soft Robotic Gripper Design Activity

    Directory of Open Access Journals (Sweden)

    Jiawei Zhang

    2017-09-01

    Full Text Available Soft robotics is an emerging field with strong potential to serve as an educational tool due to its advantages such as low costs and shallow learning curves. In this paper, we introduce a modular and reconfigurable mold for flexible design of pneumatic soft robotic grippers. By using simple assembly kits, students at all levels are able to design and construct soft robotic grippers that vary in function and performance. The process of constructing the modular mold enables students to understand how design choices impact system performance. Our unique modular mold allows students to select the number and length of fingers in a gripper, as well as to adjust the internal geometry of the pneumatic actuator cavity, which dictates how and where bending of a finger occurs. In addition, the mold may be deconstructed and reconfigured, which allows for fast iterative design and lowers material costs (since a new mold does not need to be made to implement a design change. We further demonstrate the feasibility of the modular mold by implementing it in a soft robot design activity in classrooms and showing a sufficiently high rate of student success in designing and constructing a functional soft robotic gripper.

  14. Methodology supporting production control in a foundry applying modern DISAMATIC molding line

    Directory of Open Access Journals (Sweden)

    Sika Robert

    2017-01-01

    Full Text Available The paper presents methodology of production control using statistical methods in foundry conditions, using the automatic DISAMATIC molding line. The authors were inspired by many years of experience in implementing IT tools for foundries. The authors noticed that there is a lack of basic IT tools dedicated to specific casting processes, that would greatly facilitate their oversight and thus improve the quality of manufactured products. More and more systems are installed in the ERP or CAx area, but they integrate processes only partially, mainly in the area of technology design and business management from finance and control. Monitoring of foundry processes can generate a large amount of process-related data. This is particularly noticeable in automated processes. An example is the modern DISAMATIC molding line, which integrates several casting processes, such as mold preparation, assembly, pouring or shake out. The authors proposed a methodology that supports the control of the above-mentioned foundry processes using statistical methods. Such an approach can be successfully used, for example, during periodic external audits. The mentioned methodology in the innovative DISAM-ProdC computer tool was implemented.

  15. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Directory of Open Access Journals (Sweden)

    Daeryeong Bae

    2018-05-01

    Full Text Available A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry.

  16. Experimental and Numerical Studies on Fiber Deformation and Formability in Thermoforming Process Using a Fast-Cure Carbon Prepreg: Effect of Stacking Sequence and Mold Geometry

    Science.gov (United States)

    Bae, Daeryeong; Kim, Shino; Lee, Wonoh; Yi, Jin Woo; Um, Moon Kwang; Seong, Dong Gi

    2018-01-01

    A fast-cure carbon fiber/epoxy prepreg was thermoformed against a replicated automotive roof panel mold (square-cup) to investigate the effect of the stacking sequence of prepreg layers with unidirectional and plane woven fabrics and mold geometry with different drawing angles and depths on the fiber deformation and formability of the prepreg. The optimum forming condition was determined via analysis of the material properties of epoxy resin. The non-linear mechanical properties of prepreg at the deformation modes of inter- and intra-ply shear, tensile and bending were measured to be used as input data for the commercial virtual forming simulation software. The prepreg with a stacking sequence containing the plain-woven carbon prepreg on the outer layer of the laminate was successfully thermoformed against a mold with a depth of 20 mm and a tilting angle of 110°. Experimental results for the shear deformations at each corner of the thermoformed square-cup product were compared with the simulation and a similarity in the overall tendency of the shear angle in the path at each corner was observed. The results are expected to contribute to the optimization of parameters on materials, mold design and processing in the thermoforming mass-production process for manufacturing high quality automotive parts with a square-cup geometry. PMID:29883413

  17. Mold inhibition on unseasoned southern pine

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2003-01-01

    Concerns about indoor air quality due to mold growth have increased dramatically in the United States. In the absence of moisture management, fungicides need to be developed for indoor use to control mold establishment. An ideal fungicide for prevention of indoor mold growth on wood-based materials needs to specifically prevent spore germination and provide long-term...

  18. Medical diagnostics for indoor mold exposure.

    Science.gov (United States)

    Hurraß, Julia; Heinzow, Birger; Aurbach, Ute; Bergmann, Karl-Christian; Bufe, Albrecht; Buzina, Walter; Cornely, Oliver A; Engelhart, Steffen; Fischer, Guido; Gabrio, Thomas; Heinz, Werner; Herr, Caroline E W; Kleine-Tebbe, Jörg; Klimek, Ludger; Köberle, Martin; Lichtnecker, Herbert; Lob-Corzilius, Thomas; Merget, Rolf; Mülleneisen, Norbert; Nowak, Dennis; Rabe, Uta; Raulf, Monika; Seidl, Hans Peter; Steiß, Jens-Oliver; Szewszyk, Regine; Thomas, Peter; Valtanen, Kerttu; Wiesmüller, Gerhard A

    2017-04-01

    In April 2016, the German Society of Hygiene, Environmental Medicine and Preventative Medicine (Gesellschaft für Hygiene, Umweltmedizin und Präventivmedizin (GHUP)) together with other scientific medical societies, German and Austrian medical societies, physician unions and experts has provided an AWMF (Association of the Scientific Medical Societies) guideline 'Medical diagnostics for indoor mold exposure'. This guideline shall help physicians to advise and treat patients exposed indoors to mold. Indoor mold growth is a potential health risk, even without a quantitative and/or causal association between the occurrence of individual mold species and health effects. Apart from the allergic bronchopulmonary aspergillosis (ABPA) and the mycoses caused by mold, there is only sufficient evidence for the following associations between moisture/mold damages and different health effects: Allergic respiratory diseases, asthma (manifestation, progression, exacerbation), allergic rhinitis, exogenous allergic alveolitis and respiratory tract infections/bronchitis. In comparison to other environmental allergens, the sensitizing potential of molds is estimated to be low. Recent studies show a prevalence of sensitization of 3-10% in the total population of Europe. The evidence for associations to mucous membrane irritation and atopic eczema (manifestation, progression, exacerbation) is classified as limited or suspected. Inadequate or insufficient evidence for an association is given for COPD, acute idiopathic pulmonary hemorrhage in children, rheumatism/arthritis, sarcoidosis, and cancer. The risk of infections from indoor molds is low for healthy individuals. Only molds that are capable to form toxins can cause intoxications. The environmental and growth conditions and especially the substrate determine whether toxin formation occurs, but indoor air concentrations are always very low. In the case of indoor moisture/mold damages, everyone can be affected by odor effects and

  19. Molding cork sheets to complex shapes

    Science.gov (United States)

    Sharpe, M. H.; Simpson, W. G.; Walker, H. M.

    1977-01-01

    Partially cured cork sheet is easily formed to complex shapes and then final-cured. Temperature and pressure levels required for process depend upon resin system used and final density and strength desired. Sheet can be bonded to surface during final cure, or can be first-formed in mold and bonded to surface in separate step.

  20. Characterization methods of nano-patterned surfaces generated by induction heating assisted injection molding

    DEFF Research Database (Denmark)

    Tang, Peter Torben; Ravn, Christian; Menotti, Stefano

    2015-01-01

    An induction heating-assisted injection molding (IHAIM) process developed by the authors is used to replicate surfaces containing random nano-patterns. The injection molding setup is developed so that an induction heating system rapidly heats the cavity wall at rates of up to 10◦C/s. In order...

  1. Injection molded superhydrophobic surfaces based on microlithography and black silicon processing

    DEFF Research Database (Denmark)

    Søgaard, Emil; Andersen, Nis Korsgaard; Taboryski, Rafael

    2012-01-01

    in detail with an engineering perspective on choice of materials and manufacturability by injection molding. Microscope slides with superhydrophobic properties were succesfully fabricated. Preliminary results indicate a contact angle increase from 95° for the unstructured polymer to a maximum 150......°. The lowest drop roll off angles observed were in the range 1° to 5°....

  2. Influence of sorbitol on mechanical and physico-chemical properties of soy protein-based bioplastics processed by injection molding

    Directory of Open Access Journals (Sweden)

    Manuel Felix

    Full Text Available Abstract Soy Protein Isolate (SPI has been evaluated as useful candidate for the development of protein-based bioplastic materials processed by injection molding. The influence of sorbitol (SB as plasticizer in mechanical properties and water uptake capacity was evaluated in SPI-based bioplastics. A mixing rheometer that allows monitoring torque and temperature during mixing and a small-scale-plunger-type injection molding machine were used to obtain SPI/Plasticizer blends and SPI-based bioplastics, respectively. Dynamic measurements were carried out to obtain mechanical spectra of different bioplastics. Moreover, the mechanical characterization was supplemented with uniaxial tensile tests. Additionally, the influence of SB in water uptake capacity was also evaluated. The introduction of SB leads to increase the rigidity of bioplastics as well as the water uptake capacity after 24h, however it involves a decrease in strain at break. Final bioplastics are plastic materials with both adequate properties for the substitution of conventional petroleum plastics and high biodegradability.

  3. Fast prototyping of injection molded polymer microfluidic chips

    DEFF Research Database (Denmark)

    Hansen, Thomas Steen; Selmeczi, David; Larsen, Niels Bent

    2010-01-01

    We present fast prototyping of injection molding tools by the definition of microfluidic structures in a light-curable epoxy (SU-8) directly on planar nickel mold inserts. Optimized prototype mold structures could withstand injection molding of more than 300 replicas in cyclic olefin copolymer (COC...

  4. Tool application CAD / CAM for design and construction of a prototype of plastic injection mold

    Directory of Open Access Journals (Sweden)

    Albert Miyer Suárez Castrillón

    2015-11-01

    Full Text Available The study, development and production of injection molds comes with the implementation of CAD and CAM tools available on the market; using these tools, a prototype injection mold for thermoplastic materials was designed and built, based on a mold is injection in the laboratory of the University of Pamplona, in which a couple of modifications were made in order to experiment with its design. The prototype was manufactured through a 3D scan of the original mold to provide the CAD / CAM files with the simulated 3D printing technique for performing an experimental study with the prototype for adjusting temperature and pressure sensors and for coatings metallic materials for use in the injection molding process.

  5. Immune Response among Patients Exposed to Molds

    Directory of Open Access Journals (Sweden)

    Jordan N. Fink

    2009-12-01

    Full Text Available Macrocyclic trichothecenes, mycotoxins produced by Stachybotrys chartarum, have been implicated in adverse reactions in individuals exposed to mold-contaminated environments. Cellular and humoral immune responses and the presence of trichothecenes were evaluated in patients with mold-related health complaints. Patients underwent history, physical examination, skin prick/puncture tests with mold extracts, immunological evaluations and their sera were analyzed for trichothecenes. T-cell proliferation, macrocyclic trichothecenes, and mold specific IgG and IgA levels were not significantly different than controls; however 70% of the patients had positive skin tests to molds. Thus, IgE mediated or other non-immune mechanisms could be the cause of their symptoms.

  6. Fabrication of Complex Optical Components From Mold Design to Product

    CERN Document Server

    Riemer, Oltmann; Gläbe, Ralf

    2013-01-01

    High quality optical components for consumer products made of glass and plastic are mostly fabricated by replication. This highly developed production technology requires several consecutive, well-matched processing steps called a "process chain" covering all steps from mold design, advanced machining and coating of molds, up to the actual replication and final precision measurement of the quality of the optical components. Current market demands for leading edge optical applications require high precision and cost effective parts in large volumes. For meeting these demands it is necessary to develop high quality process chains and moreover, to crosslink all demands and interdependencies within these process chains. The Transregional Collaborative Research Center "Process chains for the replication of complex optical elements" at Bremen, Aachen and Stillwater worked extensively and thoroughly in this field from 2001 to 2012. This volume will present the latest scientific results for the complete process chain...

  7. Dense vertical SU-8 microneedles drawn from a heated mold with precisely controlled volume

    International Nuclear Information System (INIS)

    Xiang, Zhuolin; Wang, Hao; Yen, Shih-Cheng; Lee, Chengkuo; Murugappan, Suresh Kanna; Pastorin, Giorgia

    2015-01-01

    Drawing lithography technology has recently become a popular technique to fabricate (3D) microneedles. The conventional drawing process shows some limitations in fabricating dense, scale-up and small microneedles. In this study, we demonstrate a new drawing lithography process from a self-loading mold which is able to overcome these challenges. Different from the conventional molds which have difficult alignment and loading issues, a released SU-8 membrane is attached onto a SU-8 coated wafer to generate an innovative self-loading mold. The physically distinct SU-8 colloid in this mold successfully avoids the merging of the microneedle tips in the drawing process. Meanwhile, the same SU-8 colloid in mold can provide microneedles with uniform lengths on a large surface area. Furthermore, a low temperature drawing process with this improved technique prevents sharp tips from bending during the solidification stage. Remarkably, this new drawing lithography technology can fabricate microneedles with various lengths and they are strong enough to penetrate the outermost skin layer, namely the stratum corneum. The spacing between two adjacent microneedles is optimized to maximize the penetration rate through the skin. Histology images and drug diffusion testing demonstrate that microchannels are successfully created and the drugs can permeate the tissue under the skin. The fabricated microneedles are demonstrated to deliver insulin in vivo and lower blood glucose levels, suggesting future possible applications for minimally invasive transdermal delivery of macromolecules. (paper)

  8. Desain dan Optimasi Injection Mold Sistem Slider pada Produk Stick T15

    Directory of Open Access Journals (Sweden)

    Lutfi Khoirul Miftakhul Ni'am

    2017-12-01

    Full Text Available The design of injection molding is the initial process to produce a large-scale product of plastic material which heated and injected into the mold. Design of the preform mold using the plastic material polyethylene terephthalate with the construction of the slider, so that the products which was made have undercut and can’t be made in the core section and cavity. The purpose of this design is to design the slider on the product preform. The software which used for this design using CATIA V5R19 and simulation software production using Autodesk Moldflow Insight 2016. The step on designing a unit injection mold in the preform includes several steps. The first step is identify the product, the calculation of the cooling and input the data calculation result to an moldflow. The second step is design construction slider and determine the mold material as well as calculating the construction mold. The third step is pour the results of the design in figure 2D. Based on the analysis results from moldflow obtained cooling optimal.i.e. the type of cooling series type 2, and if can be concluded construction of the mold said to be safe if the stress, the style and the determination  of material which occurs under the stress and style of permit.

  9. Polyethylene ionomer-based nano-composite foams prepared by a batch process and MuCell injection molding

    International Nuclear Information System (INIS)

    Hayashi, Hidetomo; Mori, Tomoki; Okamoto, Masami; Yamasaki, Satoshi; Hayami, Hiroshi

    2010-01-01

    To understand the correlation between foamability and melt rheology of polyethylene-based ionomers having different degrees of the neutralization and corresponding nano-composites, we have conducted the foam processing via a batch process in an autoclave and microcellular foam injection molding (FIM) process using the MuCell technology. We have discussed the obtainable morphological properties in both foaming processes. All cellular structures were investigated by using field emission scanning electron microscopy. The competitive phenomenon between the cell nucleation and the cell growth including the coalescence of cell was discussed in light of the interfacial energy and the relaxation rate as revealed by the modified classical nucleation theory and rheological measurement, respectively. The FIM process led to the opposite behavior in the cell growth and coalescence of cell as compared with that of the batch process, where the ionic cross-linked structure has significant contribution to retard the cell growth and coalescence of cell. The mechanical properties of the structural foams obtained by FIM process were discussed.

  10. Effects of fast mold temperature evolution on micro features replication quality during injection molding

    DEFF Research Database (Denmark)

    Liparoti, S.; Calaon, M.; Speranza, V.

    2017-01-01

    lithography and subsequent nickel electroplating. The mold temperature was controlled by a thin heating device (composed by polyimide as insulating layer and polyimide carbon black loaded as electrical conductive layer) able to increase the temperature on mold surface in a few seconds (40°C/s) by Joule...

  11. Improvement Performance of the Filling Step in Injection Mold through Vibration

    Directory of Open Access Journals (Sweden)

    Trejo-Hernández M.

    2012-10-01

    Full Text Available This paper shows the flow improvement in the filling step of the polymer injection process due to the polymer excitation though vibration. This process can be split up into three main steps: filling, pocking and cooling. Several mechanical and aesthetic properties of the finished product can be changed in the filling step. The objective of this investigation is to demonstrate the improvement in the filling mold under vibration without adding chemical products. To reach this result, an experimental mold was designed and manufactured in which a vibration device was coupled; it was possible to demonstrate the vibration advantage through this process. Moreover, a heuristic methodology was proposed for the experiment which shows an improvement in the filling process with frequencies close to 3 Hz.

  12. Molding of L band niobium superconductor cavity

    Energy Technology Data Exchange (ETDEWEB)

    Inoue, Hitoshi; Funahashi, Yoshisato; Saito, Kenji; Noguchi, Shuichi; Koizumi, Susumu [National Lab. for High Energy Physics, Tsukuba, Ibaraki (Japan)

    1995-07-01

    A cavity to produce high accelerating electron field was developed. The L-band (1.3 GHz) niobium superconductor unit cell cavity was ellipsoid with {phi}217.3 mm outer diameter and 2.5 mm thickness and consisted of two pieces of half cell, two beam pipes and flange. A deep drawing process was adapted. In spite of the first trial manufacture, each good cavity was obtained. Characteristic properties of niobium materials, molding method of cavity, extension of sheet after molding, production of beam pipe, accuracy and the cost were explained. Niobium materials. showed tensile strength 15.6 kg/mm{sup 2}, load-carrying capacity 4.1 kg/mm{sup 2}, density 8.57, extension 42.5% and RRR (resistance residual ratio){>=}200. (S.Y.)

  13. Stability of FDTS monolayer coating on aluminum injection molding tools

    International Nuclear Information System (INIS)

    Cech, Jiri; Taboryski, Rafael

    2012-01-01

    Highlights: ► We present novel and highly useful results on FDTS monolayer coating of aluminum. ► The coating is particularly applicable for coating of prototyping injection molding tools, which often are made of Al. ► We have demonstrated that the coating prevails in injection molding conditions and that the coating will prevent wear of the tools. - Abstract: We have characterized perfluorodecyltrichlorosilane (FDTS) molecular coating of aluminum molds for polymer replication via injection molding (IM). X-ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energies and roughness data have been collected. Samples have been characterized immediately after coating, after more than 500 IM cycles to test durability, and after 7 months to test temporal stability. The coating was deposited in an affordable process, involving near room temperature gas phase reactions. XPS shows detectable fluorine presence on both freshly coated samples as well as on post-IM samples with estimated 30 at.% on freshly coated and 28 at.% on post-IM samples with more than 500 IM cycles with polystyrene (PS) and ABS polymer.

  14. From Process Modeling to Elastic Property Prediction for Long-Fiber Injection-Molded Thermoplastics

    International Nuclear Information System (INIS)

    Nguyen, Ba Nghiep; Kunc, Vlastimil; Frame, Barbara J.; Phelps, Jay; Tucker III, Charles L.; Bapanapalli, Satish K.; Holbery, James D.; Smith, Mark T.

    2007-01-01

    This paper presents an experimental-modeling approach to predict the elastic properties of long-fiber injection-molded thermoplastics (LFTs). The approach accounts for fiber length and orientation distributions in LFTs. LFT samples were injection-molded for the study, and fiber length and orientation distributions were measured at different locations for use in the computation of the composite properties. The current fiber orientation model was assessed to determine its capability to predict fiber orientation in LFTs. Predicted fiber orientations for the studied LFT samples were also used in the calculation of the elastic properties of these samples, and the predicted overall moduli were then compared with the experimental results. The elastic property prediction was based on the Eshelby-Mori-Tanaka method combined with the orientation averaging technique. The predictions reasonably agree with the experimental LFT data

  15. Micro-ball lens structure fabrication based on drop on demand printing the liquid mold

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Xiaoyang, E-mail: zhuxy1026@163.com; Zhu, Li, E-mail: zhuli@njust.edu.cn; Chen, Hejuan; Yang, Lijun; Zhang, Weiyi

    2016-01-15

    Graphical abstract: - Highlights: • The glycerol micro-ball droplet was introduced to be as liquid mold to fabricate micro-ball lens. • A molding process was used to fabricate the micro-ball lens and the scales of them can be controlled. • The accurate molding process is mainly attributed to the ultrahigh adhesion of the treated substrate. • The micro-ball lenses with contact angle of 120° and 150° were fabricated, analyzed and discussed. - Abstract: In this paper, we demonstrated a simple micro-ball lens array (MBLA) fabrication method using a drop-on-demand (DOD) droplet printing technique and liquid mold. The micro-ball droplet array on the hydrophobic surface is used as the liquid mold to fabricate the MBLA. The ultrahigh adhesion force between the micro-ball droplet and the substrate is ascribed to the Wenzel state of the micro-ball droplet, while the replication process with low position error is attributed to the ultrahigh adhesion force between the micro-ball droplet and the substrate and the high viscosity of the micro-ball droplet and polydimethylsiloxane (PDMS) liquid. The micro-ball lenses (MBLs) with a contact angle of 120° and 150° were fabricated and the important fabrication details were discussed. The optical performance and scanning electron microscope (SEM) data of the MBLs showed that the MBLs had high quality surface morphology and good optical performance.

  16. Development of metallic molds for the large volume plastic scintillator fabrication

    International Nuclear Information System (INIS)

    Calvo, Wilson A.P.; Vieira, Jose M.; Rela, Paulo R.; Bruzinga, Wilson A.; Araujo, Eduardo P.; Costa Junior, Nelson P.; Hamada, Margarida M.

    1997-01-01

    The plastic scintillators are radiation detectors made of organic fluorescent compounds dissolved in a solidified polymer matrix. The manufacturing process of large volume detectors (55 liters) at low cost, by polymerization of the styrene monomer plus PPO and POPOP scintillators, was studied in this paper. Metallic molds of ASTM 1200 aluminum and AISI 304 stainless steel were produced by TIG welding process since the polymerization reaction is very exothermic. The measurements of transmittance, luminescence, X-ray fluorescence and light output were carried out in the plastic scintillators made using different metallic molds. The characterization results of the detectors produced in an open system using ASTM 1200 aluminum mold show that there is not quality change in the scintillator, even with aluminum being considered as unstable for styrene monomer. Therefore, the ASTM 1200 aluminum was found to be the best alternative to produce the detector by an open system polymerization. (author). 11 refs., 8 figs., 1 tab

  17. Effect of modified mold shell on the microstructure and tensile fracture morphology of single-crystal nickel-base superalloy

    Science.gov (United States)

    Xu, Weitai; Zhao, Yutao; Sun, Shaochun; Liu, Manping; Ma, Dexin; Liang, Xiangfeng; Wang, Cunlong; Tao, Ran

    2018-04-01

    The mold shell used for single-crystal turbine blades preparation was modified from conventional process to fiber reinforcement technology. The wall thickness was decreased by 32.3 percent (pct) than the conventional process. Then these two mold shells were used to produce single crystal samples of nickel-base superalloy in a Bridgman furnace. The local temperature curves were recorded in the process. The results show that the modified mold shell can increase the temperature gradient in the mushy zone than the conventional mold shell. The primary and secondary dendrite arm space were reduced by 8 pct and 12 pct, respectively. Moreover, both the area fraction and mean size of the γ‧/γ eutectic were declined, as well as the dendritic segregation tendency. Therefore it contributed to the lower residual eutectic and micro-porosity in the heat-treated microstructure. Further, fracture surface of the samples made by modified mold shell exhibited smaller facets and more uniform dimples in the size and shape.

  18. Long fiber polymer composite property calculation in injection molding simulation

    Science.gov (United States)

    Jin, Xiaoshi; Wang, Jin; Han, Sejin

    2013-05-01

    Long fiber filled polymer composite materials have attracted a great attention and usage in recent years. However, the injection and compression molded long fiber composite materials possess complex microstructures that include spatial variations in fiber orientation and length. This paper presents the recent implemented anisotropic rotary diffusion - reduced strain closure (ARD-RSC) model for predicting fiber orientation distribution[1] and a newly developed fiber breakage model[2] for predicting fiber length distribution in injection and compression molding simulation, and Eshelby-Mori-Tanaka model[3,4] with fiber-matrix de-bonding model[5] have been implemented to calculate the long fiber composite property distribution with predicted fiber orientation and fiber length distributions. A validation study on fiber orientation, fiber breakage and mechanical property distributions are given with injection molding process simulation.

  19. Replicative manufacturing of complex lighting optics by non-isothermal glass molding

    Science.gov (United States)

    Kreilkamp, Holger; Vu, Anh Tuan; Dambon, Olaf; Klocke, Fritz

    2016-09-01

    The advantages of LED lighting, especially its energy efficiency and the long service life have led to a wide distribution of LED technology in the world. However, in order to make fully use of the great potential that LED lighting offers, complex optics are required to distribute the emitted light from the LED efficiently. Nowadays, many applications use polymer optics which can be manufactured at low costs. However, due to ever increasing luminous power, polymer optics reach their technological limits. Due to its outstanding properties, especially its temperature resistance, resistance against UV radiation and its long term stability, glass is the alternative material of choice for the use in LED optics. This research is introducing a new replicative glass manufacturing approach, namely non-isothermal glass molding (NGM) which is able to manufacture complex lighting optics in high volumes at competitive prices. The integration of FEM simulation at the early stage of the process development is presented and helps to guarantee a fast development cycle. A coupled thermo-mechanical model is used to define the geometry of the glass preform as well as to define the mold surface geometry. Furthermore, simulation is used to predict main process outcomes, especially in terms of resulting form accuracy of the molded optics. Experiments conducted on a commercially available molding machine are presented to validate the developed simulation model. Finally, the influence of distinct parameters on important process outcomes like form accuracy, surface roughness, birefringence, etc. is discussed.

  20. Study of microcellular injection-molded polypropylene/waste ground rubber tire powder blend

    International Nuclear Information System (INIS)

    Xin, Zhen Xiang; Zhang, Zhen Xiu; Pal, Kaushik; Byeon, Jong Ung; Lee, Sung Hyo; Kim, Jin Kuk

    2010-01-01

    Microcellular polypropylene/waste ground rubber tire powder blend processing was performed on an injection-molding machine with a chemical foaming agent. The molded samples produced based on the design of experiments (DOE) matrices were subjected to tensile testing and scanning electron microscope (SEM) analyses. Molding conditions and waste ground rubber tire (WGRT) powder have been found to have profound effects on the cell structures and mechanical properties of polypropylene (PP) and waste ground rubber tire powder composite samples. The result shows that microcellular PP/WGRT blend samples exhibit smaller cell size and higher cell density compare with polypropylene resin. Among the molding parameters studied, chemical foaming agent weight percentage has the most significant effect on cell size, cell density, and tensile strength. The results also suggest that tensile strength of microcellular PP/WGRT composites is sensitive to weight reduction, and skin thickness.

  1. Neodymium: YAG laser damage threshold. A comparison of injection-molded and lathe-cut polymethylmethacrylate intraocular lenses.

    Science.gov (United States)

    Wilson, S E; Brubaker, R F

    1987-01-01

    The possibility that injection-molded intraocular lenses (IOLs) with imperfections called iridescent clefts could have a decreased threshold to neodymium: YAG (Nd:YAG) laser-induced damage was investigated. Thresholds for Nd:YAG laser-induced damage were determined for injection-molded and lathe-cut polymethylmethacrylate lenses. When aimed at a membrane in contact with a posterior convex surface, the average thresholds were 0.96 +/- 0.18 mJ (Standard deviation [SD]) and 1.80 +/- 0.55 mJ, respectively. The difference was significant at P = 0.001. When injection-molding polymethylmethacrylate was used to make lathe-cut IOLs, very few iridescent clefts were present, and the threshold to Nd:YAG laser-induced damage was 0.94 +/- 0.25 mJ. Iridescent clefts are therefore produced during the injection-molding process but they do not lower the threshold to Nd:YAG laser-induced damage. Rather, the reduced threshold in injection-molded lenses is most probably a result of the polymethylmethacrylate used in their manufacture. Clinically, iridescent clefts in a lens suggest that it has been manufactured by an injection-molding process and that Nd:YAG laser posterior capsulotomy must be performed at the lowest possible energy level to avoid damage.

  2. Fabrication of silicon molds for polymer optics

    DEFF Research Database (Denmark)

    Nilsson, Daniel; Jensen, Søren; Menon, Aric Kumaran

    2003-01-01

    A silicon mold used for structuring polymer microcavities for optical applications is fabricated, using a combination of DRIE (deep reactive ion etching) and anisotropic chemical wet etching with KOH + IPA. For polymer optical microcavities, low surface roughness and vertical sidewalls are often ...... and KOH + IPA etch have been optimized. To reduce stiction between the silicon mold and the polymers used for molding, the mold is coated with a teflon-like material using the DRIE system. Released polymer microstructures characterized with AFM and SEM are also presented....

  3. Additive technology of soluble mold tooling for embedded devices in composite structures: A study on manufactured tolerances

    Science.gov (United States)

    Roy, Madhuparna

    Composite textiles have found widespread use and advantages in various industries and applications. The constant demand for high quality products and services requires companies to minimize their manufacturing costs, and delivery time in order to compete in general and niche marketplaces. Advanced manufacturing methods aim to provide economical methods of mold production. Creation of molding and tooling options for advanced composites encompasses a large portion of the fabrication time, making it a costly process and restraining factor. This research discusses a preliminary investigation into the use of soluble polymer compounds and additive manufacturing to fabricate soluble molds. These molds suffer from dimensional errors due to several factors, which have also been characterized. The basic soluble mold of a composite is 3D printed to meet the desired dimensions and geometry of holistic structures or spliced components. The time taken to dissolve the mold depends on the rate of agitation of the solvent. This process is steered towards enabling the implantation of optoelectronic devices within the composite to provide sensing capability for structural health monitoring. The shape deviation of the 3D printed mold is also studied and compared to its original dimensions to optimize the dimensional quality to produce dimensionally accurate parts. Mechanical tests were performed on compact tension (CT) resin samples prepared from these 3D printed molds and revealed crack propagation towards an embedded intact optical fiber.

  4. Heat-radiation combination for control of mold infection in harvested fruits and processed cereal foods

    International Nuclear Information System (INIS)

    Pawdal-Desai, S.R.; Ghanekar, A.S.; Thomas, P.; Sreenivasan, A.

    1973-01-01

    A combination of mild heat and low dose irradiation was found to extend the shelf-life of fresh fruits and processed cereal foods by controlling mold infection. Chapaties (Indian unleavened bread) and bread slices packed in polycell pouches, subjected to 50 krad followed by dry heat (65 0 C) were free from mold and shelf-stable for 10 weeks at ambient temperature (28-32 0 C). Inoculated pack studies confirmed the efficiency of the treatment. No immediate changes in organoleptic attributes were discernible even after exposure to 100 krad. The quality deterioration in sliced bread stored for 2 1/2 months has been attributed to natural staling rather than radiation. Hot water dip (50 0 C for 5 min) followed by 150 krad irradiation extended the shelf-life of fresh figs by 3-4 days at 28-32 0 C and 8-10 days at 15 0 C. Regardless of the sequence of treatments, combination of heat and 100 krad extended the shelf-life of grapes both at ambinet and refrigerated storage. In mangoes, heat followed by 50 krad was effective in controlling anthracnose and stem-end rot whereas in bananas irradiated for delayed ripening, hot water treatment can be used as a supplementary process to control stem-end rot. Quality of combination treated fruits was comparable to normally ripened fruits. In vitro studies with fungal pathogens isolated from the above fruits and cereal foods revealed that the synergistic effect of heat-radiation combination depends on the sequence of treatments which varied with respect to different pathogens studied. Some biochemical aspects of combination treated fruits is discussed. (F.J.)

  5. Indoor visible mold and mold odor are associated with new-onset childhood wheeze in a dose-dependent manner.

    Science.gov (United States)

    Shorter, Caroline; Crane, Julian; Pierse, Nevil; Barnes, Phillipa; Kang, Janice; Wickens, Kristin; Douwes, Jeroen; Stanley, Thorsten; Täubel, Martin; Hyvärinen, Anne; Howden-Chapman, Philippa

    2018-01-01

    Evidence is accumulating that indoor dampness and mold are associated with the development of asthma. The underlying mechanisms remain unknown. New Zealand has high rates of both asthma and indoor mold and is ideally placed to investigate this. We conducted an incident case-control study involving 150 children with new-onset wheeze, aged between 1 and 7 years, each matched to two control children with no history of wheezing. Each participant's home was assessed for moisture damage, condensation, and mold growth by researchers, an independent building assessor and parents. Repeated measures of temperature and humidity were made, and electrostatic dust cloths were used to collect airborne microbes. Cloths were analyzed using qPCR. Children were skin prick tested for aeroallergens to establish atopy. Strong positive associations were found between observations of visible mold and new-onset wheezing in children (adjusted odds ratios ranged between 1.30 and 3.56; P ≤ .05). Visible mold and mold odor were consistently associated with new-onset wheezing in a dose-dependent manner. Measurements of qPCR microbial levels, temperature, and humidity were not associated with new-onset wheezing. The association between mold and new-onset wheeze was not modified by atopic status, suggesting a non-allergic association. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  6. Energy Saving Melting and Revert Reduction Technology (Energy-SMARRT): Light Metals Permanent Mold Casting

    Energy Technology Data Exchange (ETDEWEB)

    Fasoyinu, Yemi [CanmetMATERIALS

    2014-03-31

    Current vehicles use mostly ferrous components for structural applications. It is possible to reduce the weight of the vehicle by substituting these parts with those made from light metals such as aluminum and magnesium. Many alloys and manufacturing processes can be used to produce these light metal components and casting is known to be most economical. One of the high integrity casting processes is permanent mold casting which is the focus of this research report. Many aluminum alloy castings used in automotive applications are produced by the sand casting process. Also, aluminum-silicon (Al-Si) alloys are the most widely used alloy systems for automotive applications. It is possible that by using high strength aluminum alloys based on an aluminum-copper (Al-Cu) system and permanent mold casting, the performance of these components can be enhanced significantly. This will also help to further reduce the weight. However, many technological obstacles need to be overcome before using these alloys in automotive applications in an economical way. There is very limited information in the open literature on gravity and low-pressure permanent mold casting of high strength aluminum alloys. This report summarizes the results and issues encountered during the casting trials of high strength aluminum alloy 206.0 (Al-Cu alloy) and moderate strength alloy 535.0 (Al-Mg alloy). Five engineering components were cast by gravity tilt-pour or low pressure permanent mold casting processes at CanmetMATERIALS (CMAT) and two production foundries. The results of the casting trials show that high integrity engineering components can be produced successfully from both alloys if specific processing parameters are used. It was shown that a combination of melt processing and mold temperature is necessary for the elimination of hot tears in both alloys.

  7. The study and fabrication of DLC micropattern on roll mold

    Science.gov (United States)

    Kwon, Young Woo; Lee, Tae Dong; Park, Yeong Min; Cho, Hyun; Kim, Jin Kon; Kim, Tae Gyu

    2015-03-01

    Diamond-like carbon (DLC) coating is becoming a promising protective coating layers due to its superior properties. In this study, instead of protective coating, DLC film was applied as the only component for micropattern then etched with lithography and lift-off process selectively. Furthermore, DLC film has been fabricated on aluminum roll mold. Then UV curing resin was applied to form the pattern on the polyethylene terephthalate (PET) film. The dimension and formation of the DLC micropattern on roll mold were analyzed. Moreover, the Raman spectroscopic of nitrogen-doped DLC film was analyzed.

  8. Smart plastic functionalization by nanoimprint and injection molding

    DEFF Research Database (Denmark)

    Zalkovskij, Maksim; Thamdrup, Lasse Højlund; Smistrup, Kristian

    2015-01-01

    In this paper, we present a route for making smart functionalized plastic parts by injection molding with sub-micrometer surface structures. The method is based on combining planar processes well known and established within silicon micro and sub-micro fabrication with proven high resolution...

  9. Analysis of Deformation and Equivalent Stress during Biomass Material Compression Molding

    Science.gov (United States)

    Xu, Guiying; Wei, Hetao; Zhang, Zhien; Yu, Shaohui; Wang, Congzhe; Huang, Guowen

    2018-02-01

    Ansys is adopted to analyze mold deformation and stress field distribution rule during the process of compressing biomass under pressure of 20Mpa. By means of unit selection, material property setting, mesh partition, contact pair establishment, load and constraint applying, and solver setting, the stress and strain of overall mold are analyzed. Deformation and equivalent Stress of compression structure, base, mold, and compression bar were analyzed. We can have conclusions: The distribution of stress forced on compressor is not completely uniform, where the stress at base is slightly decreased; the stress and strain of compression bar is the largest, and stress concentration my occur at top of compression bar, which goes against compression bar service life; the overall deformation of main mold is smaller; although there is slight difference between upper and lower part, the overall variation is not obvious, but the stress difference between upper and lower part of main mold is extremely large so that reaches to 10 times; the stress and strain in base decrease in circular shape, but there is still stress concentration in ledge, which goes against service life; contact stress does not distribute uniformly, there is increasing or decreasing trend in adjacent parts, which is very large in some parts. in constructing both.

  10. Hydrodynamics and mass transfer in trickle leaching process

    International Nuclear Information System (INIS)

    Jin Suoqing; Xiang Qinfang; Guo Jianzheng

    1995-01-01

    The initial research results of the hydrodynamic behavior and mass transfer of the trickle leaching process are summarized. It was shown that the dropping mode, the height of uranium ore heap and the flow rate of the dropping fluid affect the mass transfer of the trickle leaching process. Based on the concept of the keeping form of liquid in ore particle bed and the diffusion in porous medium, a mass transfer pattern, i.e. 'double-membrane transfer process' controlled by porous diffusion, was presented and proved for trickle leaching process

  11. A casting based process to fabricate 3D alginate scaffolds and to investigate the influence of heat transfer on pore architecture during fabrication

    International Nuclear Information System (INIS)

    Parks, W.M.; Guo, Y.B.

    2008-01-01

    The fabrication of 3-dimensional (3D) tissue scaffolds is a competitive approach to engineered tissues. An ideal tissue scaffold must be highly porous, biocompatible, biodegradable, easily processed and cost-effective, and have adequate mechanical properties. A casting based process has been developed in this study to fabricate 3D alginate tissue scaffolds. The alginate/calcium gluconate hydrogel was quenched in a glass mold and freeze dried to form a highly porous tissue scaffold whose tiny pores retain the shape of the ice crystals during quenching. Knowing that the water in the alginate hydrogel would form ice crystals if frozen and that different cooling conditions may dramatically influence the pore architecture, the speed and direction of the heat transfer in freeze drying hydrogel were examined with regard to pore size and orientation. The pore architecture at the different locations of the fabricated scaffolds was characterized using scanning electron microscopy. The fabricated scaffolds consist of pores that are highly interconnected, with a diameter about 200 μm (average diameter of a capillary) to permit blood vessel penetration. It also has been found that the pore size, orientation, and uniformity are significantly affected by the condition of heat transfer during freeze drying. Tailoring the pore architecture of the scaffolds is feasible by controlling heat transfer. This study provides an insight on pore architecture formation and control by altered process parameters

  12. Influence of different process settings conditions on the accuracy of micro injection molding simulations: an experimental validation

    DEFF Research Database (Denmark)

    Tosello, Guido; Gava, Alberto; Hansen, Hans Nørgaard

    2009-01-01

    Currently available software packages exhibit poor results accuracy when performing micro injection molding (µIM) simulations. However, with an appropriate set-up of the processing conditions, the quality of results can be improved. The effects on the simulation results of different and alternative...... process conditions are investigated, namely the nominal injection speed, as well as the cavity filling time and the evolution of the cavity injection pressure as experimental data. In addition, the sensitivity of the results to the quality of the rheological data is analyzed. Simulated results...... are compared with experiments in terms of flow front position at part and micro features levels, as well as cavity injection filling time measurements....

  13. Patterning lead zirconate titanate nanostructures at sub-200-nm resolution by soft confocal imprint lithography and nanotransfer molding

    NARCIS (Netherlands)

    Khan, Sajid; Göbel, Ole; Blank, David H.A.; ten Elshof, Johan E.

    2009-01-01

    Patterned sol-gel-derived lead zirconate titanate (PZT) thin films with lateral resolutions down to 100 nm on silicon are reported. Both an imprint and a transfer-molding method were employed. The formed patterns after annealing were characterized with scanning electron microscopy, atomic force

  14. 3D scanning based mold correction for planar and cylindrical parts in aluminum die casting

    Directory of Open Access Journals (Sweden)

    Takashi Seno

    2015-04-01

    Full Text Available Aluminum die casting is an important manufacturing process for mechanical components. Die casting is known to be more accurate than other types of casting; however, post-machining is usually necessary to achieve the required accuracy. The goal of this investigation is to develop machining- free aluminum die casting. Improvement of the accuracy of planar and cylindrical parts is expected by correcting metal molds. In the proposed method, the shape of cast aluminum made with the initial metal molds is measured by 3D scanning. The 3D scan data includes information about deformations that occur during casting. Therefore, it is possible to estimate the deformation and correction amounts by comparing 3D scan data with product computer-aided design (CAD data. We corrected planar and cylindrical parts of the CAD data for the mold. In addition, we corrected the planar part of the metal mold using the corrected mold data. The effectiveness of the proposed method is demonstrated by evaluating the accuracy improvement of the cast aluminum made with the corrected mold.

  15. Nano-ceramics and its molding technologies

    International Nuclear Information System (INIS)

    Liu Jian; Xu Yunshu

    2007-01-01

    Nano-ceramics and its related knowledge were introduced. Fabrication of nano-ceramic powder, as well as the molding and sintering technologies of nano-ceramics were reviewed. Features of the present molding technologies were analyzed. The applications of nano-ceramics were prospected. (authors)

  16. Modeling of magnetic particle orientation in magnetic powder injection molding

    Science.gov (United States)

    Doo Jung, Im; Kang, Tae Gon; Seul Shin, Da; Park, Seong Jin

    2018-03-01

    The magnetic micro powder orientation under viscous shear flow has been analytically understood and characterized into a new analytical orientation model for a powder injection molding process. The effects of hydrodynamic force from the viscous flow, external magnetic force and internal dipole-dipole interaction were considered to predict the orientation under given process conditions. Comparative studies with a finite element method proved the calculation validity with a partial differential form of the model. The angular motion, agglomeration and magnetic chain formation have been simulated, which shows that the effect of dipole-dipole interaction among powders on the orientation state becomes negligible at a high Mason number condition and at a low λ condition (the ratio of external magnetic field strength and internal magnetic moment of powder). Our developed model can be very usefully employed in the process analysis and design of magnetic powder injection molding.

  17. Enhancement of low power CO2 laser cutting process for injection molded polycarbonate

    Science.gov (United States)

    Moradi, Mahmoud; Mehrabi, Omid; Azdast, Taher; Benyounis, Khaled Y.

    2017-11-01

    Laser cutting technology is a non-contact process that typically is used for industrial manufacturing applications. Laser cut quality is strongly influenced by the cutting processing parameters. In this research, CO2 laser cutting specifications have been investigated by using design of experiments (DOE) with considering laser cutting speed, laser power and focal plane position as process input parameters and kerf geometry dimensions (i.e. top and bottom kerf width, ratio of the upper kerf to lower kerf, upper heat affected zone (HAZ)) and surface roughness of the kerf wall as process output responses. A 60 Watts CO2 laser cutting machine is used for cutting the injection molded samples of polycarbonate sheet with the thickness of 3.2 mm. Results reveal that by decreasing the laser focal plane position and laser power, the bottom kerf width will be decreased. Also the bottom kerf width decreases by increasing the cutting speed. As a general result, locating the laser spot point in the depth of the workpiece the laser cutting quality increases. Minimum value of the responses (top kerf, heat affected zone, ratio of the upper kerf to lower kerf, and surface roughness) are considered as optimization criteria. Validating the theoretical results using the experimental tests is carried out in order to analyze the results obtained via software.

  18. Process for the production of prismatic graphite molded articles for high temperature fuel elements

    International Nuclear Information System (INIS)

    Huschka, H.; Rachor, L.; Hrovat, M.; Wolff, W.

    1976-01-01

    Prismatic graphite molded objects for high temperature fuel elements are prepared by producing the outer geometry and the holes for cooling channels and for receiving fuel and fertile materials in the formation of the carbon object

  19. Isolation and Identification of Contaminant Molds on Pumpkin Candy From Sumbawa Besar

    OpenAIRE

    Henny Nurul Khasanah, Utami Sri Hastuti, Linda Hapsari

    2015-01-01

    Pumpkin candy is a sort of pumpkin fruit processed products that is typical food from Sumbawa Besar. Pumpkin candy contains carbohydrates, fats, protein, fiber, and minerals. The mold can contaminate and degradate the pumpkin candy compounds, thus lowering the quality of the pumpkins candy. The purpose of this research were: 1) to identify the species of contaminant mold on candy pumpkin; 2) to determining the most dominant species on the pumpkins candy. The research were conducted at the Mic...

  20. Diseño y construcción de un molde permanente utilizando un software por elementos finitos Design and construction of a permanent mold using finite element software

    Directory of Open Access Journals (Sweden)

    Fausto Oviedo Fierro

    2013-06-01

    -practicalapplication for a piece of aluminum that will be built, and consists in the analysis of the functionsand stresses to which it is submitted. The metal mold is designed specifically for the mentionedpieces using “VULCAN” which is based on the Finite Element Method (FEM. The simulation isperformed in three stages of the fusion process: filling, solidification and cooling. The filling isconsidered slow enough so that there are not expected to be greater turbulences and that thepieces are completely filled. Solidification is analyzed as an optimal process, avoiding defects oflack of material in the mold cavity (shrinkage. In the cooling stage, deformations and residualstresses are analyzed. At the same time, every result is validated analytically. With thisinformation the final geometry of the metal mold is defined and the alloy which will be used is confirmed. Subsequently, a CAD-CAM-CAE system is used for the design and development ofthe mold, and the aluminum pieces (knobs obtained are tested.

  1. Mechanical performance of injection molded polypropylene : characterization and modeling

    NARCIS (Netherlands)

    Erp, van T.B.; Govaert, L.E.; Peters, G.W.M.

    2013-01-01

    It is shown that predictions of local mechanical properties in a product can be made from the orientation only using an anisotropic viscoplastic model. Due to processing-induced crystalline orientations, the mechanical properties of injection-molded polymer products are anisotropic and exhibit

  2. Match properties of heat transfer and coupled heat and mass transfer processes in air-conditioning system

    International Nuclear Information System (INIS)

    Zhang Tao; Liu Xiaohua; Zhang Lun; Jiang Yi

    2012-01-01

    Highlights: ► Investigates match properties of heat or mass transfer processes in HVAC system. ► Losses are caused by limited transfer ability, flow and parameter mismatching. ► Condition of flow matching is the same heat capacity of the fluids. ► Parameter matching is only reached along the saturation line in air–water system. ► Analytical solutions of heat and mass transfer resistance are derived. - Abstract: Sensible heat exchangers and coupled heat and mass transfer devices between humid air and water/desiccant are commonly used devices in air-conditioning systems. This paper focuses on the match properties of sensible heat transfer processes and coupled heat and mass transfer processes in an effort to understand the reasons for performance limitations in order to optimize system performance. Limited heat transfer capability and flow mismatching resulted in heat resistance of the sensible heat transfer process. Losses occurred during the heat and mass transfer processes due to limited transfer capability, flow mismatching, and parameter mismatching. Flow matching was achieved when the heat capacities of the fluids were identical, and parameter matching could only be reached along the saturation line in air–water systems or the iso-concentration line in air–desiccant systems. Analytical solutions of heat transfer resistance and mass transfer resistance were then derived. The heat and mass transfer process close to the saturation line is recommended, and heating sprayed water resulted in better humidification performance than heating inlet air in the air humidifier.

  3. Public health and economic impact of dampness and mold

    Energy Technology Data Exchange (ETDEWEB)

    Mudarri, David; Fisk, William J.

    2007-06-01

    The public health risk and economic impact of dampness and mold exposures was assessed using current asthma as a health endpoint. Individual risk of current asthma from exposure to dampness and mold in homes from Fisk et al. (2007), and asthma risks calculated from additional studies that reported the prevalence of dampness and mold in homes were used to estimate the proportion of U.S. current asthma cases that are attributable to dampness and mold exposure at 21% (95% confidence internal 12-29%). An examination of the literature covering dampness and mold in schools, offices, and institutional buildings, which is summarized in the appendix, suggests that risks from exposure in these buildings are similar to risks from exposures in homes. Of the 21.8 million people reported to have asthma in the U.S., approximately 4.6 (2.7-6.3) million cases are estimated to be attributable to dampness and mold exposure in the home. Estimates of the national cost of asthma from two prior studies were updated to 2004 and used to estimate the economic impact of dampness and mold exposures. By applying the attributable fraction to the updated national annual cost of asthma, the national annual cost of asthma that is attributable to dampness and mold exposure in the home is estimated to be $3.5 billion ($2.1-4.8 billion). Analysis indicates that exposure to dampness and mold in buildings poses significant public health and economic risks in the U.S. These findings are compatible with public policies and programs that help control moisture and mold in buildings.

  4. Additive Manufacturing of Wind Turbine Molds

    Energy Technology Data Exchange (ETDEWEB)

    Post, Brian [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Richardson, Bradley [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Lloyd, Peter [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Love, Lonnie [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Nolet, Stephen [TPI Composites, Scottsdale, AZ (United States); Hannan, James [TPI Composites, Scottsdale, AZ (United States)

    2017-07-01

    The objective of this project was to explore the utility of Big Area Additive Manufacturing (BAAM) for low cost manufacturing of wind turbine molds. Engineers at Oak Ridge National Laboratory (ORNL) and TPI Composites (TPI) collaborated to design and manufacture a printed mold that can be used for resin infusion of wind turbine components. Specific focus was on required material properties (operating temperatures and pressures, coefficient of thermal expansion (CTE), thermal conductivity), surface finish (accuracy and coatings) and system integration (integrated vacuum ports, and heating element). The project began with a simple proof of principle components, targeting surface coatings and material properties for printing a small section (approximately 4’ x 4’ x 2’) of a mold. Next, the second phase scaled up and integrated with the objective of capturing all of the necessary components (integrated heating to accelerate cure time, and vacuum, sealing) for resin infusion on a mold of significant size (8’ x 20’ x 6’).

  5. Die Casting Mold Design for Aluminum Alloy Shell of Instrument

    Directory of Open Access Journals (Sweden)

    Li Yuanyuan

    2015-01-01

    Full Text Available This paper is about die casting mold design for aluminum alloy shell of instrument. Three-dimensional model of the casting and mold are designed by using Pro/Engineer and AutoCad which can analyze forming quality. Digital design and theoretical calculation can greatly shorten product development cycle and mold design cycle, improve the accuracy of product design and mold design, and reduce the cost of mold design.

  6. Simulation Based Low-Cost Composite Process Development at the US Air Force Research Laboratory

    Science.gov (United States)

    Rice, Brian P.; Lee, C. William; Curliss, David B.

    2003-01-01

    Low-cost composite research in the US Air Force Research Laboratory, Materials and Manufacturing Directorate, Organic Matrix Composites Branch has focused on the theme of affordable performance. Practically, this means that we use a very broad view when considering the affordability of composites. Factors such as material costs, labor costs, recurring and nonrecurring manufacturing costs are balanced against performance to arrive at the relative affordability vs. performance measure of merit. The research efforts discussed here are two projects focused on affordable processing of composites. The first topic is the use of a neural network scheme to model cure reaction kinetics, then utilize the kinetics coupled with simple heat transport models to predict, in real-time, future exotherms and control them. The neural network scheme is demonstrated to be very robust and a much more efficient method that mechanistic cure modeling approach. This enables very practical low-cost processing of thick composite parts. The second project is liquid composite molding (LCM) process simulation. LCM processing of large 3D integrated composite parts has been demonstrated to be a very cost effective way to produce large integrated aerospace components specific examples of LCM processes are resin transfer molding (RTM), vacuum assisted resin transfer molding (VARTM), and other similar approaches. LCM process simulation is a critical part of developing an LCM process approach. Flow simulation enables the development of the most robust approach to introducing resin into complex preforms. Furthermore, LCM simulation can be used in conjunction with flow front sensors to control the LCM process in real-time to account for preform or resin variability.

  7. Precision casting into disposable ceramic mold – a high efficiency method of production of castings of irregular shape

    OpenAIRE

    Уваров, Б. И.; Лущик, П. Е.; Андриц, А. А.; Долгий, Л. П.; Заблоцкий, А. В.

    2016-01-01

    The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  8. ICAT and the NASA technology transfer process

    Science.gov (United States)

    Rifkin, Noah; Tencate, Hans; Watkins, Alison

    1993-01-01

    This paper will address issues related to NASA's technology transfer process and will cite the example of using ICAT technologies in educational tools. The obstacles to effective technology transfer will be highlighted, viewing the difficulties in achieving successful transfers of ICAT technologies.

  9. Adhesion strength between thermoplastics and its polyurethane coating made by using the technology combination of injection molding and reaction injection molding

    Science.gov (United States)

    Bloß, P.; Böhme, A.; Müller, J.; Krajewsky, P.; Michaelis, J.

    2014-05-01

    A complete equipment for injection molding (IM) of a thermoplastic (TP) carrier and reaction injection molding (RIM) of polyurethane (PUR) coatings including IM and RIM machines, a color module for PUR, and a robot was built up. A modularly composed sliding split mold was constructed and manufactured allowing different parts including thicker (2 mm thickness) soft touch and thin (0.4 mm) lacquer PUR coatings. As TP PC/ABS and PA6 GF15 compounds were used, and aromatic and aliphatic PUR systems as well. From the parts made by IM+RIM, test specimens for peel force measurements were cut. These investigations were performed prior and after ageing under climatic conditions @ 50 % RH and temperature changes between -30 °C and 90 °C. By varying IM processing parameters, we have found that mold and TP temperatures are particularly important for the adhesion strength between TP and PUR. The waiting time between the end of TP cooling and PUR injection has a minor influence on its mean value. However, to short waiting times may result in inhomogeneous adhesion. It was surprising that surface defects of the TP carrier leads also to inhomogeneous adhesion. We have observed that ageing may cause an increase and decrease of adhesions strength depending on the TP+PUR system used. We have found that the results are valid only for the actual TP and PUR combination. A generalization seems to be inappropriate, hence, the actual combination should be investigated to prevent unwanted surprises when the coated TP part is in its application.

  10. The development of lab-on-a-chip fabricated from two molds

    Science.gov (United States)

    Pramuanjaroenkij, A.; Bunta, J.; Thiangpadung, J.; Sansaradee, S.; Kamsopa, P.; Sodsai, S.; Vichainsan, S.; Wongpanit, K.; Maturos, T.; Lomas, T.; Tuantranont, A.; Cetin, B.; Phankhoksoong, S.; Tongkratoke, A.

    2018-01-01

    Development of diagnostic technique of microfluidic or lab-on-a-chip (LOCs) is currently of great interest for researchers and inventors for their many advantages. It can be used as a real laboratory was many ways to help to the diagnosis faster. This research aims to develop Polydimethylsiloxane (PDMS) lab-on-a-chip (LOCs) which were produced from different molds; the silicon wafer mold and the stainless mold to investigate the flow of the biological sample as the flow in nanochannels. In addition, this research proposes a means to leakage and the blockage of the channel flow. The experimental results were found that the LOCs casted from the silicon wafer mold sandwiched by both the plasma cleaner machine and H shaped acrylic sheets showed leakages around the electrode areas because the first new electrodes were too thick, the proper thickness of the nickel electrode was at 0.05 millimeters. The LOCs casted from the stainless mold were inserted by the nickel electrodes produced by the from the prototype shaped electroplating process; this LOCs using nickel plated electrodes 2 times to make a groove on the nickel electrode backsides when pouring the PDMS into the LOCs casted from the stainless mold. It was found that PDMS was able to flow under the nickel electrode and the PDMS sheet could stick with the glass slide smoothly. In conclusion, it was possible to develop these LOC designs and new electrode fabrications continually under helps from Micro-Electro-Mechanical system, Thailand National Electronics and Computer Technology Center, since causes of the LOC problems were found, and demonstrated the feasibility of developing the LOCs for chemical detection and disease diagnostics.

  11. Molded polymer solar water heater

    Science.gov (United States)

    Bourne, Richard C.; Lee, Brian E.

    2004-11-09

    A solar water heater has a rotationally-molded water box and a glazing subassembly disposed over the water box that enhances solar gain and provides an insulating air space between the outside environment and the water box. When used with a pressurized water system, an internal heat exchanger is integrally molded within the water box. Mounting and connection hardware is included to provide a rapid and secure method of installation.

  12. Development of Integrally Molded Bipolar Plates for All-Vanadium Redox Flow Batteries

    Directory of Open Access Journals (Sweden)

    Chih-Hsun Chang

    2016-05-01

    Full Text Available All-vanadium redox flow batteries (VRBs are potential energy storage systems for renewable power sources because of their flexible design, deep discharge capacity, quick response time, and long cycle life. To minimize the energy loss due to the shunt current, in a traditional design, a flow field is machined on two electrically insulated frames with a graphite plate in between. A traditional bipolar plate (BP of a VRB consists of many components, and thus, the assembly process is time consuming. In this study, an integrally molded BP is designed and fabricated to minimize the manufacturing cost. First, the effects of the mold design and injection parameters on frame formability were analyzed by simulation. Second, a new graphite plate design for integral molding was proposed, and finally, two integrally molded BPs were fabricated and compared. Results show that gate position significantly affects air traps and the maximum volume shrinkage occurs at the corners of a BP. The volume shrinkage can be reduced using a large graphite plate embedded within the frame.

  13. Vibration monitoring for aircraft wing model using fiber Bragg grating array packaged by vacuum-assisted resin transfer molding

    Science.gov (United States)

    Zhang, Wen; Liu, Xiaolong; He, Wei; Dong, Mingli; Zhu, Lianqing

    2017-09-01

    For the improvement of monitoring accuracy, a vibration monitoring for aircraft wing model using a fiber Bragg grating (FBG) array packaged by vacuum-assisted resin transfer molding (VARTM) is proposed. The working principle of the vibration monitoring using FBG array has been explained, which can theoretically support the idea of this paper. VARTM has been explained in detail, which is suitable for not only the single FBG sensor but also the FBG array within a relatively large area. The calibration experiment has been performed using the FBG sensor packaged by VARTM. The strain sensitivity of the VARTM package is 1.35 pm/μɛ and the linearity is 0.9999. The vibration monitoring experiment has been carried out using FBG array packaged by VARTM. The measured rate of strain changes across the aluminum test board used to simulate the aircraft wing is 0.69 μɛ/mm and the linearity is 0.9931. The damping ratio is 0.16, which could be further used for system performance evaluation. Experimental results demonstrate that the vibration monitoring using FBG sensors packaged by VARTM can be efficiently used for the structural health monitoring. Given the validation and great performance, this method is quite promising for in-flight monitoring and holds great reference value in other similar engineering structures.

  14. Mold exposure and health effects following hurricanes Katrina and Rita.

    Science.gov (United States)

    Barbeau, Deborah N; Grimsley, L Faye; White, LuAnn E; El-Dahr, Jane M; Lichtveld, Maureen

    2010-01-01

    The extensive flooding in the aftermath of Hurricanes Katrina and Rita created conditions ideal for indoor mold growth, raising concerns about the possible adverse health effects associated with indoor mold exposure. Studies evaluating the levels of indoor and outdoor molds in the months following the hurricanes found high levels of mold growth. Homes with greater flood damage, especially those with >3 feet of indoor flooding, demonstrated higher levels of mold growth compared with homes with little or no flooding. Water intrusion due to roof damage was also associated with mold growth. However, no increase in the occurrence of adverse health outcomes has been observed in published reports to date. This article considers reasons why studies of mold exposure after the hurricane do not show a greater health impact.

  15. Estimation of state and material properties during heat-curing molding of composite materials using data assimilation: A numerical study

    Directory of Open Access Journals (Sweden)

    Ryosuke Matsuzaki

    2018-03-01

    Full Text Available Accurate simulations of carbon fiber-reinforced plastic (CFRP molding are vital for the development of high-quality products. However, such simulations are challenging and previous attempts to improve the accuracy of simulations by incorporating the data acquired from mold monitoring have not been completely successful. Therefore, in the present study, we developed a method to accurately predict various CFRP thermoset molding characteristics based on data assimilation, a process that combines theoretical and experimental values. The degree of cure as well as temperature and thermal conductivity distributions during the molding process were estimated using both temperature data and numerical simulations. An initial numerical experiment demonstrated that the internal mold state could be determined solely from the surface temperature values. A subsequent numerical experiment to validate this method showed that estimations based on surface temperatures were highly accurate in the case of degree of cure and internal temperature, although predictions of thermal conductivity were more difficult. Keywords: Engineering, Materials science, Applied mathematics

  16. Exploring the Critical Role of Motivation to Transfer in the Training Transfer Process

    Science.gov (United States)

    Grohmann, Anna; Beller, Johannes; Kauffeld, Simone

    2014-01-01

    The present study aims at exploring the critical role of motivation to transfer within the training transfer process. In a sample of N?=?252 employees of one industrial company, one peer rating and several self-ratings of transfer were used to investigate the mediating role of motivation to transfer in the relationship between training…

  17. PRECISION CASTING INTO DISPOSABLE CERAMIC MOLD – A HIGH EFFICIENCY METHOD OF PRODUCTION OF CASTINGS OF IRREGULAR SHAPE

    Directory of Open Access Journals (Sweden)

    B. I. Uvarov

    2016-01-01

    Full Text Available The article shows the advantages and disadvantages of precision casting into disposable ceramic molds. The high quality shaped castings produced by modernized ceramic molding process are proved the reliability and prospects of this advanced technology.

  18. Grain Refinement of Permanent Mold Cast Copper Base Alloys

    Energy Technology Data Exchange (ETDEWEB)

    M.Sadayappan; J.P.Thomson; M.Elboujdaini; G.Ping Gu; M. Sahoo

    2005-04-01

    Grain refinement is a well established process for many cast and wrought alloys. The mechanical properties of various alloys could be enhanced by reducing the grain size. Refinement is also known to improve casting characteristics such as fluidity and hot tearing. Grain refinement of copper-base alloys is not widely used, especially in sand casting process. However, in permanent mold casting of copper alloys it is now common to use grain refinement to counteract the problem of severe hot tearing which also improves the pressure tightness of plumbing components. The mechanism of grain refinement in copper-base alloys is not well understood. The issues to be studied include the effect of minor alloy additions on the microstructure, their interaction with the grain refiner, effect of cooling rate, and loss of grain refinement (fading). In this investigation, efforts were made to explore and understand grain refinement of copper alloys, especially in permanent mold casting conditions.

  19. Low-pressure injection molding of alumina ceramics using a carnauba wax binder: preliminary results

    Energy Technology Data Exchange (ETDEWEB)

    Quevedo Nogueira, R.E.F.; Bezerra, A.C.; Santos, F.C. dos [Dept. de Engenharia Mecanica, Centro de Tecnologia-UFC, Fortaleza, CE (Brazil); Sousa, M.R. de; Acchar, W. [Dept. de Engenharia Mecanica, Univ. Federal do Rio Grande do Norte, UFRN-Campus Univ., Natal, RN (Brazil)

    2001-07-01

    Carnauba wax, a natural product from Northeastern Brazil, has found application in the processing of ceramics. However, the use of pure carnauba wax is not recommended due to its narrow melting range and poor mechanical properties. In the present work carnauba wax based organic vehicles with the addition of low-density polyethylene and stearic acid were developed for use in the low-pressure injection molding of alumina ceramics. Viscosimetric testing was employed for the determination of optimal composition of the organic vehicle. The optimal content of ceramic powder in the mixture was also determined. All the materials used are easily available in the Brazilian market. A simple ceramic part was injected at low pressures (0.6 MPa) using a semi-automatic injection molding machine. For this purpose a double cavity mold was designed and built. Preliminary results demonstrate the technical viability of the process using the organic vehicle developed. (orig.)

  20. Facts about Stachybotrys chartarum and Other Molds

    Science.gov (United States)

    ... there is moisture from water damage, excessive humidity, water leaks, condensation, water infiltration, or flooding. Constant moisture is ... visible mold. The conditions causing mold (such as water leaks, condensation, infiltration, or flooding) should be corrected to ...

  1. Development and Characterization of a Metal Injection Molding Bio Sourced Inconel 718 Feedstock Based on Polyhydroxyalkanoates

    Directory of Open Access Journals (Sweden)

    Alexandre Royer

    2016-04-01

    Full Text Available The binder plays the most important role in the metal injection molding (MIM process. It provides fluidity of the feedstock mixture and adhesion of the powder to keep the molded shape during injection molding. The binder must provide strength and cohesion for the molded part and must be easy to remove from the molded part. Moreover, it must be recyclable, environmentally friendly and economical. Also, the miscibility between polymers affects the homogeneity of the injected parts. The goal of this study is to develop a feedstock of superalloy Inconel 718 that is environmentally friendly. For these different binders, formulations based on polyethylene glycol (PEG, because of his water solubility property, and bio sourced polymers were studied. Polyhydroxyalkanoates (PHA were investigated as a bio sourced polymer due to its miscibility with the PEG. The result is compared to a standard formulation using polypropylene (PP. The chemical and rheological behavior of the binder formulation during mixing, injection and debinding process were investigated. The feedstock was characterized in the same way as the binders and the interactions between the powder and the binders were also studied. The results show the well adapted formulation of polymer binder to produce a superalloy Inconel 718 feedstock.

  2. Redesign and Automation of a mold for manufacturing of refrigerated display cases using Polyurethane Foam Injection

    Directory of Open Access Journals (Sweden)

    Eugenio Yime

    2016-10-01

    Full Text Available Context: To stay competitive over time, a company must continually submit their processes to improvements and updates. Herein are proposed some improvements with regard to safety at work and the reduction of time that occurs during the operation of a mold for manufacturing refrigerators. Method: Some operating conditions of the mold are analyzed and then some factors affecting the processing time and the safety of operating personnel are established. The weaknesses found are related to the intrinsic design of the mold, which raises the need for a structural redesign that also includes automation. Results: It is presented a new design and way to operate the mold which reduces the risk of accidents at having no heavy loads over operator heads. Another contribution of the redesign is the increase in the system rigidity which helps to reduce manufacturing defects. Finally, it is show a automation design which helps to reduce manufacturing times. Conclusions: Significant improvements were obtained in the operation of the mold, such as the reduction of occupational hazards and reduced manufacturing time of refrigerators. These improvements translate into benefits for the company, by reducing costs and increasing production. Both benefits help strengthen the competitiveness of the company.

  3. Process simulations for manufacturing of thick composites

    Science.gov (United States)

    Kempner, Evan A.

    The availability of manufacturing simulations for composites can significantly reduce the costs associated with process development. Simulations provide a tool for evaluating the effect of processing conditions on the quality of parts produced without requiring numerous experiments. This is especially significant in parts that have troublesome features such as large thickness. The development of simulations for thick walled composites has been approached by examining the mechanics of resin flow and fiber deformation during processing, applying these evaluations to develop simulations, and evaluating the simulation with experimental results. A unified analysis is developed to describe the three-dimensional resin flow and fiber preform deformation during processing regardless of the manufacturing process used. It is shown how the generic governing evaluations in the unified analysis can be applied to autoclave molding, compression molding, pultrusion, filament winding, and resin transfer molding. A comparison is provided with earlier models derived individually for these processes. The evaluations described for autoclave curing were used to produce a one-dimensional cure simulation for autoclave curing of thick composites. The simulation consists of an analysis for heat transfer and resin flow in the composite as well as bleeder plies used to absorb resin removed from the part. Experiments were performed in a hot press to approximate curing in an autoclave. Graphite/epoxy laminates of 3 cm and 5 cm thickness were cured while monitoring temperatures at several points inside the laminate and thickness. The simulation predicted temperatures fairly closely, but difficulties were encountered in correlation of thickness results. This simulation was also used to study the effects of prepreg aging on processing of thick composites. An investigation was also performed on filament winding with prepreg tow. Cylinders were wound of approximately 12 mm thickness with pressure

  4. Transfer printing of 3D hierarchical gold structures using a sequentially imprinted polymer stamp

    International Nuclear Information System (INIS)

    Zhang Fengxiang; Low, Hong Yee

    2008-01-01

    Complex three-dimensional (3D) hierarchical structures on polymeric materials are fabricated through a process referred to as sequential imprinting. In this work, the sequentially imprinted polystyrene film is used as a soft stamp to replicate hierarchical structures onto gold (Au) films, and the Au structures are then transferred to a substrate by transfer printing at an elevated temperature and pressure. Continuous and isolated 3D structures can be selectively fabricated with the assistance of thermo-mechanical deformation of the polymer stamp. Hierarchical Au structures are achieved without the need for a corresponding three-dimensionally patterned mold

  5. Technical assistance for development of thermally conductive nitride filler for epoxy molding compounds

    Energy Technology Data Exchange (ETDEWEB)

    Ryu, Ho Jin; Song, Kee Chan; Jung, In Ha

    2005-07-15

    Technical assistance was carried out to develop nitride filler for thermally conductive epoxy molding compounds. Carbothermal reduction method was used to fabricate silicon nitride powder from mixtures of silica and graphite powders. Microstructure and crystal structure were observed by using scanning electron microscopy and x-ray diffraction technique. Thermal properties of epoxy molding compounds containing silicon nitride were measured by using laser flash method. Fabrication process of silicon nitride nanowire was developed and was applied to a patent.

  6. Parameter Optimization Of Natural Hydroxyapatite/SS316l Via Metal Injection Molding (MIM)

    Science.gov (United States)

    Mustafa, N.; Ibrahim1, M. H. I.; Amin, A. M.; Asmawi, R.

    2017-01-01

    Metal injection molding (MIM) are well known as a worldwide application of powder injection molding (PIM) where as applied the shaping concept and the beneficial of plastic injection molding but develops the applications to various high performance metals and alloys, plus metal matrix composites and ceramics. This study investigates the strength of green part by using stainless steel 316L/ Natural hydroxyapatite composite as a feedstock. Stainless steel 316L (SS316L) was mixed with Natural hydroxyapatite (NHAP) by adding 40 wt. % Low Density Polyethylene and 60 %wt. Palm Stearin as a binder system at 63 wt. % powder loading consist of 90 % wt. of SS316 L and 10 wt. % NHAP prepared thru critical powder volume percentage (CPVC). Taguchi method was functional as a tool in determining the optimum green strength for Metal Injection Molding (MIM) parameters. The green strength was optimized with 4 significant injection parameter such as Injection temperature (A), Mold temperature (B), Pressure (C) and Speed (D) were selected throughout screening process. An orthogonal array of L9 (3)4 was conducted. The optimum injection parameters for highest green strength were established at A1, B2, C0 and D1 and where as calculated based on Signal to Noise Ratio.

  7. Initial verification of an induction heating set-up for injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2013-01-01

    Molding of thin and long parts by injection molding leads to special requirements for the mold in order to ensure proper filling and acceptable cycle time. This paper investigates the applicability of embedded induction heating for the improvement of the filling of thin long parts. The object...... selected for the investigation is a thin spiral. For the complete molding of the component, elevated mold temperatures are required. For this propose a new injection molding set-up was developed, which allows rapid heating of the cavity wall by an induction heating system. The temperature was measured...

  8. Mold Flora of Traditional Cheeses Produced in Turkey

    Directory of Open Access Journals (Sweden)

    Musa Yalman

    2016-11-01

    Full Text Available In our country, there are many cheese types that are produced traditionally. Cheeses which produced from cows, sheep and goat milk that matured with spontaneous growth of molds present in livestock skins, pots and similar environments are among them. They are produced traditionally in Mediterrian, Central and Eastern Anatolia regions. Molds that grow spontaneously in cheeses could create public health risk because of their secondary metabolites. Penicillium spp. are the most isolated mold from these cheeses and Penicillium roqueforti is determined as the dominant species. Furthermore, Aspergillus, Alternaria, Mucor, Geotrichum, Cladosporium species have been isolated. It is very important to control the ripening conditions and starter strain selection since some strains were reported as mycotoxin producers. In this review, it has been tried to give general information about traditional production of mold-ripened cheese in Turkey and the mold flora found in traditional cheeses. In addition, public health risk of these cheeses is reported.

  9. Characterization of wood-based molding bonded with citric acid

    OpenAIRE

    Umemura, Kenji; Ueda, Tomohide; Kawai, Shuichi

    2012-01-01

    The wood-based moldings were fabricated by using only citric acid as an adhesive. The mechanical properties, water resistances, thermal properties and chemical structure were investigated. Wood powder obtained from Acacia mangium was mixed with citric acid under certain weight ratios (0-40 wt%), and each powder mixture was molded using two types of metal molds at 200 °C and 4MPa for 10 min. The modulus of rupture (MOR) and the modulus of elasticity (MOE) values of the wood-based molding conta...

  10. Heat Transfer in a Thermoacoustic Process

    Science.gov (United States)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis…

  11. Enhancing dry adhesives and replica molding with ethyl cyano-acrylate

    International Nuclear Information System (INIS)

    Bovero, E; Menon, C

    2014-01-01

    The use of cyano-acrylate to improve the performance of dry adhesives and their method of fabrication is investigated. Specifically, the contributions of this work are: (1) a new adhesion method to adhere to a large variety of surfaces, (2) a strategy to increase the compliance of dry adhesives, and (3) an improved fabrication process for micro-structured dry adhesives based on replica molding. For the first contribution, the adhesion method consists of anchoring a micro-structured dry adhesive to a surface through a layer of hardened ethyl cyano-acrylate (ECA). This method increases the adhesion of the orders of magnitude at the expense of leaving residue after detachment. However, this method preserves reusability. For the second contribution, a double-sided dry adhesive is obtained by introducing a substrate with a millimeter-sized pillar structure, which enabled further increasing adhesion. For the third contribution, an ECA layer is used as a mold for the fabrication of new adhesives. These new types of molds proved able to produce dry adhesives with high reproducibility and low degradation. (paper)

  12. Packing parameters effect on injection molding of polypropylene nanostructured surfaces

    DEFF Research Database (Denmark)

    Calaon, Matteo; Tosello, Guido; Hansen, Hans Nørgaard

    2012-01-01

    having a diameter of 500 nm was employed. The tool insert surface was produced using chemical-based-batch techniques such aluminum anodization and nickel electroplating. During the injection molding process, polypropylene (PP) was employed as material and packing phase parameters (packing time, packing...

  13. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    Science.gov (United States)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  14. Experimental Analysis for Factors Affecting the Repeatability of Plastics Injection Molding Tests on the Self-developed Apparatus

    Directory of Open Access Journals (Sweden)

    Yugang Huang

    2013-06-01

    Full Text Available Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 To improve the repeatability of the injection molding test result, the affecting factors were investigated by means of experiments. Besides the traditional processing parameter, the factors of test conditions were also considered. In order to focus on the molding process rather than the molded part, the curve measurement of the melt pressure at the entrance to the nozzle was used as the output characteristic. Experiments for polypropylene (PP showed that the injected volume was the key processing parameter. Within the test conditions, the injection number is the most important factor. According to the analysis the operating procedure was improved effectively. Normal 0 false false false IN X-NONE X-NONE MicrosoftInternetExplorer4 Doi: 10.12777/ijse.5.1.6-11 [How to cite this article: Huang, Y., Li, D., Liu, Y. (2013. Experimental Analysis for Factors Affecting the Repeatability of Plastics Injection Molding Tests on the Self-developed Apparatus. International Journal of Science and Engineering, 5(1,6-11. Doi: 10.12777/ijse.5.1.6-11]

  15. Wetting Behavior of Mold Flux Droplet on Steel Substrate With or Without Interfacial Reaction

    Science.gov (United States)

    Zhou, Lejun; Li, Jingwen; Wang, Wanlin; Sohn, Il

    2017-08-01

    The slag entrapment in mold tends to cause severe defects on the slab surface, especially for casting steels containing active alloy elements such as Al, Ti, and Mn. The wetting behavior of molten mold flux on the initial solidified shell is considered to be a key factor to determine the entrapment of mold slag on the shell surface. Therefore, the wetting behavior of mold flux droplet on the steel substrate with or without interfacial reaction was investigated by the sessile drop method. The results indicated that the melting process of mold flux has a significant influence on the variation of contact angle, and the final contact angle for Flux1 droplet on 20Mn23AlV is only 15 deg, which is lower than the other two cases due to the intensive interracial reactions occurring in this case. In addition, the thickness of the interaction layer for the case of Flux1 on 20Mn23AlV is 10- μm greater than the other two cases, which confirms that the most intensive reactions occurred at the interface area. The microstructure and element distribution at the interface analyzed by a scanning electron microscope (SEM) and energy dispersive spectrum (EDS) suggested that the increase of wettability of mold flux droplet on the steel substrate is caused by the migration of Al, Mn, and Si elements occurring in the vicinity of the interface. The results obtained in this article can reveal the mechanism of flux entrapment by hook or shell and provide theoretic guidance for mold flux design and optimization.

  16. A feasible injection molding technique for the manufacturing of large diameter aspheric plastic lenses

    Science.gov (United States)

    Shieh, Jen-Yu; Wang, Luke K.; Ke, Shih-Ying

    2010-07-01

    A computer aided engineering (CAE) tool-assisted technique, using Moldex3D and aspheric analysis utility (AAU) software in a polycarbonate injection molding design, is proposed to manufacture large diameter aspheric plastic lenses. An experiment is conducted to verify the applicability/feasibility of the proposed technique. Using the preceding two software tools, these crucial process parameters associated with the surface profile errors and birefringence of a molded lens can be attainable. The strategy adopted here is to use the actual quantity of shrinkage after an injection molding trial of an aspherical plastic lens as a reference to perform the core shaping job while keeping the coefficients of aspheric surface, radius, and conic constant unchanged. The design philosophy is characterized by using the CAE tool as a guideline to pursue the best symmetry condition, followed by injection molding trials, to accelerate a product’s developmental time. The advantages are less design complexity and shorter developmental time for a product.

  17. Powder injection molding of Stellite 6 powder: Sintering, microstructural and mechanical properties

    International Nuclear Information System (INIS)

    Gülsoy, H. Özkan; Özgün, Özgür; Bilketay, Sezer

    2016-01-01

    The purpose of this study was to produce Co-based Stellite 6 superalloy components by using the method of Powder Injection Molding (PIM) and to characterize the microstructural and mechanical properties of the produced components. The experimental studies were started through the formation of feedstock by mixing Stellite 6 powder with a multicomponent binder system. Prepared feedstock was formed by utilizing powder injection molding technique. Then the molded samples were subjected to the solvent and thermal debinding processes. Different sintering cycles were applied to the raw components for the purpose of determining the optimum sintering conditions. The densities of the sintered components were determined in accordance with the Archimedes' principle. The microstructural characterization was performed through scanning electron microscope (SEM) analysis, energy dispersive spectrometry (EDS) analyses, and X-ray diffraction (XRD) analysis. Hardness measurement and tensile test were conducted in order to determine the mechanical properties. The results illustrated that the injection molded Stellite 6 components were composed of fine and equiaxed grains, plenty of carbide precipitates exhibiting homogenous distribution throughout the microstructure formed at the grain boundaries and thus the mechanical properties were considerably high.

  18. Study on the Surface Microstructure of a Modified STD61 Steel Mold Used for the Die Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Yu, Ha-Young; Lee, Seung-Joon; Kang, Minwoo; Lee, Suk-Jin; Lee, Young-Kook [Yonsei University, Seoul (Korea, Republic of); Yang, Won Jon [Korea Institute of Materials Science, Changwon (Korea, Republic of); Jeong, Jae Suk; Kim, Byung-Hoon [Doosan Heavy Industries and Construction, Changwon (Korea, Republic of)

    2016-09-15

    The surface microstructure and crack formation of an aluminum die-casting mold were investigated. The mold was made of a modified STD61 steel, and was used for more than 165,000 cycles. The mold surface consisted of four layers; an oxidized layer, a decarburized layer, a network carbide layer and a tempered martensite matrix. The depth down to the hardest network carbide layer was ⁓200 μm. Inside the matrix, M{sub 3}C transition carbides were dissolved so that solute C joined pre-existing M{sub 2}3C{sub 6} and MC carbides to make them coarse. About 60% of thermal fatigue cracks had a depth less than 200 μm due to the hard network carbide layer, which obstructed the propagation of cracks. Cracks of over 200 μm were filled with oxide wedges of Al and Si which was which flown from the molten alloy as well as the Fe oxide.

  19. Study on the flow of molten polymers in a mold an investigation on mold printability; Kobunshi yoyutai no kanagatanai bisho ryudo. Kanagata tenshasei no kenkyu

    Energy Technology Data Exchange (ETDEWEB)

    Kano, Y.; Nishimura, T.; Ito, S. [Ube Industries Ltd. Yamaguchi (Japan)] Usui, H. [Kobe Univ. (Japan)] Saeki, T. [Yamaguchi Univ. (Japan)

    1998-09-15

    A visualization experiment was carried out using a small metal mold with rectangular grooves as a mold printable model to observe the micro-flow of molten polymer in a metal mold. The glitter, which is an index of printability, was correlated with blow velocity and space area. Since it is highly correlated with space area, it can be thought that filling up well the fine grooves of mold heighten the glitter and printability as well. The effect of such factors as mold temperature, polymer melt temperature, air blow pressure and air blow velocity on the mold printability was investigated. For high density polyethylene and polypropylene, the glitter depended the most on the mold temperature. The higher the temperature, the higher the glitter. It was also found that the increase in blow pressure was effective. For high density polyethylene, the effect of blow velocity and polymer melt temperature was also recognized. 3 refs., 6 figs., 3 tabs.

  20. Redesign and Automation of a mold for manufacturing of refrigerated display cases using Polyurethane Foam Injection

    OpenAIRE

    Eugenio Yime; Jheifer Páez

    2016-01-01

    Context: To stay competitive over time, a company must continually submit their processes to improvements and updates. Herein are proposed some improvements with regard to safety at work and the reduction of time that occurs during the operation of a mold for manufacturing refrigerators. Method: Some operating conditions of the mold are analyzed and then some factors affecting the processing time and the safety of operating personnel are established. The weaknesses found are related to th...

  1. Analysis of the Influence of Microcellular Injection Molding on the Environmental Impact of an Industrial Component

    Directory of Open Access Journals (Sweden)

    Daniel Elduque

    2014-09-01

    Full Text Available Microcellular injection molding is a process that offers numerous benefits due to the internal structure generated; thus, many applications are currently being developed in different fields, especially home appliances. In spite of the advantages, when changing the manufacturing process from conventional to microcellular injection molding, it is necessary to analyze its new mechanical properties and the environmental impact of the component. This paper presents a deep study of the environmental behavior of a manufactured component by both conventional and microcellular injection molding. Environmental impact will be evaluated performing a life cycle assessment. Functionality of the component will be also evaluated with samples obtained from manufactured components, to make sure that the mechanical requirements are fulfilled when using microcellular injection molding. For this purpose a special device has been developed to measure the flexural modulus. With a 16% weight reduction, the variation of flexural properties in the microcellular injected components is only 6.8%. Although the energy consumption of the microcellular injection process slightly increases, there is an overall reduction of the environmental burden of 14.9% in ReCiPe and 15% in carbon footprint. Therefore, MuCell technology can be considered as a green manufacturing technology for components working mainly under flexural load.

  2. When Creativity Met Transfer: Increasing Creativity and Transfer by Controlling the Styles of Processing

    Science.gov (United States)

    Kaniel, Shlomo

    2013-01-01

    The primary purpose of this article is to combine both transfer of learning (hereafter, transfer) and creativity into similar processes that can increase the products of transfer and creativity. Both transfer and creativity operate within reciprocal relationships between memory storage and working memory. Moreover, they are also based on moving…

  3. 21 CFR 177.2410 - Phenolic resins in molded articles.

    Science.gov (United States)

    2010-04-01

    ... 21 Food and Drugs 3 2010-04-01 2009-04-01 true Phenolic resins in molded articles. 177.2410... as Components of Articles Intended for Repeated Use § 177.2410 Phenolic resins in molded articles. Phenolic resins identified in this section may be safely used as the food-contact surface of molded...

  4. Investigation of gating parameter, temperature and density effects on mold filling in the lost foam casting (LFC process by direct observation method

    Directory of Open Access Journals (Sweden)

    A. Sharifi

    2013-03-01

    Full Text Available Mold filling sequence of A356 aluminum alloy was investigated with the aid of direct observation method (photography method. The results show that increase of the foam density causes decrease of the filling rate and increase of the filling time. Foam density has more pronounced effect on mold filling rate rather than pouring temperature. Gating design also affects the profile of molten metal advancement in the mold. The results show that the higher filling rate was obtained with G2 gating than with other gating system. Regarding the mold filling pattern, G3 gating system has more effective contact interface than G2 gating system and has lower filling time. Filling time in G4 gating and G1 gating system are nearly the same.

  5. Taxonomic re-evaluation of black koji molds

    NARCIS (Netherlands)

    Hong, S.B.; Yamada, O.; Samson, R.A.

    2013-01-01

    Black koji molds including its albino mutant, the white koji mold, have been widely used for making the distilled spirit shochu in Northeast Asia because they produce citric acid which prevents undesirable contamination from bacteria. Since Inui reported Aspergillus luchuensis from black koji in

  6. Local mechanical properties of LFT injection molded parts: Numerical simulations versus experiments

    Science.gov (United States)

    Desplentere, F.; Soete, K.; Bonte, H.; Debrabandere, E.

    2014-05-01

    In predictive engineering for polymer processes, the proper prediction of material microstructure from known processing conditions and constituent material properties is a critical step forward properly predicting bulk properties in the finished composite. Operating within the context of long-fiber thermoplastics (LFT, length Autodesk Simulation Moldflow Insight 2014 software has been used. In this software, a fiber breakage algorithm for the polymer flow inside the mold is available. Using well known micro mechanic formulas allow to combine the local fiber length with the local orientation into local mechanical properties. Different experiments were performed using a commercially available glass fiber filled compound to compare the measured data with the numerical simulation results. In this investigation, tensile tests and 3 point bending tests are considered. To characterize the fiber length distribution of the polymer melt entering the mold (necessary for the numerical simulations), air shots were performed. For those air shots, similar homogenization conditions were used as during the injection molding tests. The fiber length distribution is characterized using automated optical method on samples for which the matrix material is burned away. Using the appropriate settings for the different experiments, good predictions of the local mechanical properties are obtained.

  7. Mold contamination of automobile air conditioner systems.

    Science.gov (United States)

    Kumar, P; Lopez, M; Fan, W; Cambre, K; Elston, R C

    1990-02-01

    Eight cars belonging to patients who were found to have exacerbation of allergic rhinitis and bronchial asthma after turning on the air conditioner in their cars were examined. Mold concentrations inside the passenger compartment with the a/c turned off and at different climate control settings were lower than concentrations in the outside air. After turning on the air conditioner to "Max", cultures obtained at various intervals revealed that mold concentrations decreased significantly with time. Furthermore, placement of a filter at the portal of entry of outside air significantly reduced the mold concentration in the passenger compartment.

  8. Process of international kaizen transfer in the Netherlands

    NARCIS (Netherlands)

    Yokozawa, Kodo; Steenhuis, H.J.; de Bruijn, E.J.

    2011-01-01

    This study sheds light on the international kaizen transfer process. Two research questions were explored: what are the major stages in the kaizen transfer process? And what are the activities, positive and negative factors influencing each stage? Case studies with 15 Japanese manufacturers in the

  9. Studies on the quantitative autoradiography. III. Quantitative comparison of a novel tissue-mold measurement technique "paste-mold method," to the semiquantitative whole body autoradiography (WBA), using the same animals.

    Science.gov (United States)

    Motoji, N; Hamai, Y; Niikura, Y; Shigematsu, A

    1995-01-01

    A novel preparation technique, so called "Paste Mold," was devised for organ and tissue distribution studies. This is the most powerful by joining with autoradioluminography (ARLG), which was established and validated recently in the working group of Forum '93 of Japanese Society for study of xenobiotics. A small piece (10-50 mg) of each organ or tissue was available for measuring its radioactive concentration and it was sampled from the remains of frozen carcass used for macroautoradiography (MARG). The solubilization of the frozen pieces was performed with mixing a suitable volume of gelatine and strong alkaline solution prior to mild heating kept at 40 degrees C for a few hours. After that, the tissue paste was molded in template pattern to form the small plates. The molded plates were contacted with Imaging plate (IP) for recording their radioactive concentration. The recorded IP was processed by BAS2000. The molded plate was formed in thickness of 200 microns, so called infinit thickness against soft beta rays, and therefore the resulting relative intensities, represented by (PSL-BG)/S values, indicated practically responsible ratio of the radioactive concentration in organs and tissues, without any calibulation for beta-self absorption coefficiency. On the other hand, the left half body of the frozen carcass was used for making whole body autoradiography (WBA) before the Paste-Mold preparation. Comparison was performed for difference in (PSL-BG)/S values of organs and tissues between frozen and dried sections. A good concordance in relative intensities, (PSL-BG)/S by the Paste-Mold preparation was given with those by the frozen sections rather than dried sections.(ABSTRACT TRUNCATED AT 250 WORDS)

  10. Die casting copper motor rotors: mold materials and processing for cost-effective manufacturing

    Energy Technology Data Exchange (ETDEWEB)

    Peters, D.T.; Cowie, J.G.; Brush, E.F. Jr.

    2000-07-01

    This project seeks to demonstrate mold materials for copper pressure die-casting that are cost-effective and practical for production use in die-casting copper motor rotors. The incorporation of die-cast copper for conductor bars and end rings of the induction motor in place of aluminum would result in attractive improvements in motor energy efficiency through reductions in motor losses ranging from 15% to 20%. Die-cast motor rotors are produced in aluminum today because rotor fabrication by pressure die-casting is an established practice. Lack of a durable and cost-effective mold material has been the technical barrier preventing manufacture of the die-cast copper rotor. This project tested H-13 steel die inserts that establish the baseline. Nickel-, tungsten-, and molybdenum-based high temperature alloys were extensively tested. Results indicate that substantially extended die life is possible using high temperature die materials, pre-heated and operated at elevated temperatures. Pre-heating and high operating temperatures were shown to be critical in extending the die life by decreasing the cyclic stresses associated with thermal expansion. Extended die life provides the opportunity for economically viable copper motor rotor die-casting. (orig.)

  11. Mechanism of Void Prediction in Flip Chip Packages with Molded Underfill

    Science.gov (United States)

    Wu, Kuo-Tsai; Hwang, Sheng-Jye; Lee, Huei-Huang

    2017-08-01

    Voids have always been present using the molded underfill (MUF) package process, which is a problem that needs further investigation. In this study, the process was studied using the Moldex3D numerical analysis software. The effects of gas (air vent effect) on the overall melt front were also considered. In this isothermal process containing two fluids, the gas and melt colloid interact in the mold cavity. Simulation enabled an appropriate understanding of the actual situation to be gained, and, through analysis, the void region and exact location of voids were predicted. First, the global flow end area was observed to predict the void movement trend, and then the local flow ends were observed to predict the location and size of voids. In the MUF 518 case study, simulations predicted the void region as well as the location and size of the voids. The void phenomenon in a flip chip ball grid array underfill is discussed as part of the study.

  12. Prediction of Mold Spoilage for Soy/Polyethylene Composite Fibers

    Directory of Open Access Journals (Sweden)

    Chinmay Naphade

    2015-01-01

    Full Text Available Mold spoilage was determined over 109 days on soy/PE fibers held under controlled temperatures (T ranging from 10°C to 40°C and water activities (aw from 0.11 to 0.98. Water activities were created in sealed containers using saturated salt solutions and placed in temperature-controlled incubators. Soy/PE fibers that were held at 0.823 aw or higher exhibited mold growth at all temperatures. As postulated, increased water activity (greater than 0.89 and temperature (higher than 25°C accelerated mold growth on soy/PE fibers. A slower mold growth was observed on soy/PE fibers that were held at 0.87 aw and 10°C. A Weibull model was employed to fit the observed logarithmic values of T, aw, and an interaction term log⁡T×log⁡aw and was chosen as the final model as it gave the best fit to the raw mold growth data. These growth models predict the expected mold-free storage period of soy/PE fibers when exposed to various environmental temperatures and humidities.

  13. INTEGRATION OF COST MODELS AND PROCESS SIMULATION TOOLS FOR OPTIMUM COMPOSITE MANUFACTURING PROCESS

    Energy Technology Data Exchange (ETDEWEB)

    Pack, Seongchan [General Motors; Wilson, Daniel [General Motors; Aitharaju, Venkat [General Motors; Kia, Hamid [General Motors; Yu, Hang [ESI, Group.; Doroudian, Mark [ESI Group

    2017-09-05

    Manufacturing cost of resin transfer molded composite parts is significantly influenced by the cycle time, which is strongly related to the time for both filling and curing of the resin in the mold. The time for filling can be optimized by various injection strategies, and by suitably reducing the length of the resin flow distance during the injection. The curing time can be reduced by the usage of faster curing resins, but it requires a high pressure injection equipment, which is capital intensive. Predictive manufacturing simulation tools that are being developed recently for composite materials are able to provide various scenarios of processing conditions virtually well in advance of manufacturing the parts. In the present study, we integrate the cost models with process simulation tools to study the influence of various parameters such as injection strategies, injection pressure, compression control to minimize high pressure injection, resin curing rate, and demold time on the manufacturing cost as affected by the annual part volume. A representative automotive component was selected for the study and the results are presented in this paper

  14. Multi-height structures in injection molded polymer

    DEFF Research Database (Denmark)

    Andersen, Nis Korsgaard; Taboryski, Rafael J.

    2015-01-01

    of different geometries, and electroforming a nickel mold from a polymer foil. The injection-molded samples are characterized by contact angle hysteresis obtained by the tilting method. We find that the receding contact angle depends on the surface coverage of the random surface structure, while the advancing...

  15. Microcellular injection-molding of polylactide with chain-extender

    International Nuclear Information System (INIS)

    Pilla, Srikanth; Kramschuster, Adam; Yang Liqiang; Lee, Junghoo; Gong Shaoqin; Turng, Lih-Sheng

    2009-01-01

    The effects of adding an epoxy-based chain-extender (CE) on the properties of injection-molded solid and microcellular polylactide (PLA) were studied. PLA and PLA with 8 wt.% CE (PLA-CE) were melt-compounded using a twin-screw extruder. Solid and microcellular specimens were produced via a conventional and microcellular injection-molding process, respectively. Various characterization techniques including gel permeation chromatography, tensile testing and dynamic mechanical analysis, scanning electron microscopy and differential scanning calorimetry were applied to study the molecular weight, static and dynamic mechanical properties, cell morphology, and crystallization behavior, respectively. The addition of CE enhanced the molecular weight but decreased the crystallinity of PLA. The addition of CE also reduced the cell size and increased the cell density. Furthermore, the decomposition temperatures and several tensile properties, including specific strength, specific toughness, and strain-at-break of both solid and microcellular PLA specimens, increased with the addition of CE.

  16. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    Energy Technology Data Exchange (ETDEWEB)

    Zhao Guangying, E-mail: zhaogy-user@163.com [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China); Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin [Food Safety Key Lab of Zhejiang Province, Department of Food Quality and Safety, Zhejiang Gongshang University, Hangzhou 310035 (China)

    2011-04-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  17. Use of the smart tongue to monitor mold growth and discriminate between four mold species grown in liquid media

    International Nuclear Information System (INIS)

    Zhao Guangying; Lin Xiaona; Dou Wenchao; Tian Shiyi; Deng Shaoping; Shi Jinqin

    2011-01-01

    A novel voltammetric electronic tongue, smart tongue, was employed to monitor the growth of mold and to differentiate between four types of mold grown in liquid medium. Principal component analysis (PCA) was used to extract the relevant information obtained by the smart tongue. Reference growth curves were based on measurements of dry weight and pH. The growth detected by the smart tongue was basically consistent with that observed by the measurement of dry weight and pH. The optimal combinations of electrodes and frequencies for monitoring growth were as follows: for Aspergillus, both the Pt and Au electrodes at 1 Hz, 10 Hz and 100 Hz; for Penicillium, the Pt and W electrodes at 100 Hz; for Mucor, the Pt, Pd and W electrodes at the three frequency segments; for Rhizopus, the Pd, Ti and Ag electrodes at the three frequency segments. The Ag electrode at 10 Hz or 100 Hz frequency could differentiate well between the four types of mold for culturing 6 h in the liquid media. Therefore, the smart tongue has a promising future as a modern rapid analytical technology for the real time detection of the growth of mold and for the classification model of mold.

  18. Measurement and assessment of aflatoxin B1 and its producing molds in Iranian sausages and burgers

    Directory of Open Access Journals (Sweden)

    Siavash Maktabi

    2016-09-01

    Full Text Available Abstract Introduction: Aflatoxin B1 (AFB1 is one of the most well-known hepatocarcinogens in humans. Contamination of raw materials, used in the production of sausages and burgers, with aflatoxin producing molds can lead to increased level of aflatoxin in the final products and can impose hazards to human health. Unfortunately, aflatoxin is resistant to heating and freezing processes, etc. and can remain in these products untile consumption. Methods: During a six-month period, 45 sausage and 53 burger samples from valid brands across the country were randomly purchased from the stores. The samples were analyzed for AFB1 by ELISA technique. Meanwhile, the number of molds was calculated and aflatoxin producing molds were identified by direct and slide culture methods. Results: The findings showed that 2 susage samples (4.9% and 3 burger samples (6.3% were contaminated with >1 ng/g aflatoxin. Moreover, 4 burger samples (8.9% contaminated with mold included aspergillus flavus, aspergillus niger, mucor, and penicillium while, none of the susage samples showed mold contamination. Conclusion: The Iranian meat products had a relative aflatoxin B1 contamination during the study period, but the contamination rate was low and in allowable range. Standard hygienic preparation and packaging of meat products molds is recommended to reduce fungal contamination, especially aflatoxin-producing molds.

  19. A poly(dimethylsiloxane)-coated flexible mold for nanoimprint lithography

    International Nuclear Information System (INIS)

    Lee, Nae Yoon; Kim, Youn Sang

    2007-01-01

    In this paper, we introduce an anti-adhesion poly(dimethylsiloxane) (PDMS)-coated flexible mold and its applications for room-temperature imprint lithography. The flexible mold is fabricated using an ultraviolet-curable prepolymer on a flexible substrate, and its surface is passivated with a thin layer of PDMS to impart an anti-adhesion property. The highly flexible mold enables conformal contact with a substrate on which a low-viscosity polymer resist is spin-cast in a thin layer. Large-area imprinting is then realized at room temperature under significantly reduced pressure. The mold was durable even after repetitive imprinting of over 200 times. Also, we show a double imprinting on the substrate with a PDMS-coated replica polymeric mold having 500 nm line patterns. This enables the formation of matrix patterns with varying feature heights in less than 7 min

  20. Production application of injection-molded diffractive elements

    Science.gov (United States)

    Clark, Peter P.; Chao, Yvonne Y.; Hines, Kevin P.

    1995-12-01

    We demonstrate that transmission kinoforms for visible light applications can be injection molded in acrylic in production volumes. A camera is described that employs molded Fresnel lenses to change the convergence of a projection ranging system. Kinoform surfaces are used in the projection system to achromatize the Fresnel lenses.

  1. Selection of antifungal protein-producing molds from dry-cured meat products.

    Science.gov (United States)

    Acosta, Raquel; Rodríguez-Martín, Andrea; Martín, Alberto; Núñez, Félix; Asensio, Miguel A

    2009-09-30

    To control unwanted molds in dry-cured meats it is necessary to allow the fungal development essential for the desired characteristics of the final product. Molds producing antifungal proteins could be useful to prevent hazards due to the growth of mycotoxigenic molds. The objective has been to select Penicillium spp. that produce antifungal proteins against toxigenic molds. To obtain strains adapted to these products, molds were isolated from dry-cured ham. A first screening with 281 isolates by the radial inhibition assay revealed that 166 were active against some of the toxigenic P. echinulatum, P. commune, and Aspergillusniger used as reference molds. The activity of different extracts from cultured medium was evaluated by a microspectroscopic assay. Molds producing active chloroform extracts were eliminated from further consideration. A total of 16 Penicillium isolates were screened for antifungal activity from both cell-free media and the aqueous residues obtained after chloroform extraction. The cell-free media of 10 isolates that produced a strong inhibition of the three reference molds were fractionated by FPLC on a cationic column. For protein purification, the fractions of the three molds that showed high inhibitory activity were further chromatographed on a gel filtration column, and the subfractions containing the highest absorbance peaks were assayed against the most sensitive reference molds. One subfraction each from strains AS51D and RP42C from Penicilliumchrysogenum confirmed the inhibitory activity against the reference molds. SDS-PAGE revealed a single band from each subfraction, with estimated molecular masses of 37kDa for AS51D and 9kDa for RP42C. Although further characterisation is required, both these proteins and the producing strains can be of interest to control unwanted molds on foods.

  2. Differential allergy induction by molds found in water-damaged homes**

    Science.gov (United States)

    Molds are ubiquitous in the environment and exposures to molds contribute to various human diseases including allergic lung diseases. The Institute of Medicine reports (NAS, 2004) and World Health Organization guidelines (WHO, 2009) concluded that the role of molds in asthma indu...

  3. Injection molded polymeric hard X-ray lenses

    DEFF Research Database (Denmark)

    Stöhr, Frederik; Simons, Hugh; Jakobsen, Anders Clemen

    2015-01-01

    of the etching profile and were removed after DRIE. By electroplating, an inverse nickel sample was obtained, which was used as a mold insert in a commercial polymer injection molding machine. A prototype lens made of polyethylene with a focal length of 350 mm was tested using synchrotron radiation at photon...

  4. Facile Fabrication of Animal-Specific Positioning Molds For Multi-modality Molecular Imaging

    International Nuclear Information System (INIS)

    Park, Jeong Chan; Oh, Ji Eun; Woo, Seung Tae

    2008-01-01

    Recently multi-modal imaging system has become widely adopted in molecular imaging. We tried to fabricate animal-specific positioning molds for PET/MR fusion imaging using easily available molding clay and rapid foam. The animal-specific positioning molds provide immobilization and reproducible positioning of small animal. Herein, we have compared fiber-based molding clay with rapid foam in fabricating the molds of experimental animal. The round bottomed-acrylic frame, which fitted into microPET gantry, was prepared at first. The experimental mice was anesthetized and placed on the mold for positioning. Rapid foam and fiber-based clay were used to fabricate the mold. In case of both rapid foam and the clay, the experimental animal needs to be pushed down smoothly into the mold for positioning. However, after the mouse was removed, the fabricated clay needed to be dried completely at 60 .deg. C in oven overnight for hardening. Four sealed pipe tips containing [ 18 F]FDG solution were used as fiduciary markers. After injection of [ 18 F]FDG via tail vein, microPET scanning was performed. Successively, MRI scanning was followed in the same animal. Animal-specific positioning molds were fabricated using rapid foam and fiber-based molding clay for multimodality imaging. Functional and anatomical images were obtained with microPET and MRI, respectively. The fused PET/MR images were obtained using freely available AMIDE program. Animal-specific molds were successfully prepared using easily available rapid foam, molding clay and disposable pipet tips. Thanks to animal-specific molds, fusion images of PET and MR were co-registered with negligible misalignment

  5. Wafer-Level Membrane-Transfer Process for Fabricating MEMS

    Science.gov (United States)

    Yang, Eui-Hyeok; Wiberg, Dean

    2003-01-01

    A process for transferring an entire wafer-level micromachined silicon structure for mating with and bonding to another such structure has been devised. This process is intended especially for use in wafer-level integration of microelectromechanical systems (MEMS) that have been fabricated on dissimilar substrates. Unlike in some older membrane-transfer processes, there is no use of wax or epoxy during transfer. In this process, the substrate of a wafer-level structure to be transferred serves as a carrier, and is etched away once the transfer has been completed. Another important feature of this process is that two electrodes constitutes an electrostatic actuator array. An SOI wafer and a silicon wafer (see Figure 1) are used as the carrier and electrode wafers, respectively. After oxidation, both wafers are patterned and etched to define a corrugation profile and electrode array, respectively. The polysilicon layer is deposited on the SOI wafer. The carrier wafer is bonded to the electrode wafer by using evaporated indium bumps. The piston pressure of 4 kPa is applied at 156 C in a vacuum chamber to provide hermetic sealing. The substrate of the SOI wafer is etched in a 25 weight percent TMAH bath at 80 C. The exposed buried oxide is then removed by using 49 percent HF droplets after an oxygen plasma ashing. The SOI top silicon layer is etched away by using an SF6 plasma to define the corrugation profile, followed by the HF droplet etching of the remaining oxide. The SF6 plasma with a shadow mask selectively etches the polysilicon membrane, if the transferred membrane structure needs to be patterned. Electrostatic actuators with various electrode gaps have been fabricated by this transfer technique. The gap between the transferred membrane and electrode substrate is very uniform ( 0.1 m across a wafer diameter of 100 mm, provided by optimizing the bonding control). Figure 2 depicts the finished product.

  6. Production of Liquid Metal Spheres by Molding

    Directory of Open Access Journals (Sweden)

    Mohammed G. Mohammed

    2014-10-01

    Full Text Available This paper demonstrates a molding technique for producing spheres composed of eutectic gallium-indium (EGaIn with diameters ranging from hundreds of microns to a couple millimeters. The technique starts by spreading EGaIn across an elastomeric sheet featuring cylindrical reservoirs defined by replica molding. The metal flows into these features during spreading. The spontaneous formation of a thin oxide layer on the liquid metal keeps the metal flush inside these reservoirs. Subsequent exposure to acid removes the oxide and causes the metal to bead up into a sphere with a size dictated by the volume of the reservoirs. This technique allows for the production and patterning of droplets with a wide range of volumes, from tens of nanoliters up to a few microliters. EGaIn spheres can be embedded or encased subsequently in polymer matrices using this technique. These spheres may be useful as solder bumps, electrodes, thermal contacts or components in microfluidic devices (valves, switches, pumps. The ease of parallel-processing and the ability to control the location of the droplets during their formation distinguishes this technique.

  7. Additive Manufacturing of Molds for Fabrication of Insulated Concrete Block

    Energy Technology Data Exchange (ETDEWEB)

    Love, Lonnie J. [ORNL; Lloyd, Peter D. [ORNL

    2018-02-01

    ORNL worked with concrete block manufacturer, NRG Insulated Block, to demonstrate additive manufacturing of a multi-component block mold for its line of insulated blocks. Solid models of the mold parts were constructed from existing two-dimensional drawings and the parts were fabricated on a Stratasys Fortus 900 using ULTEM 9085. Block mold parts were delivered to NRG and installed on one of their fabrication lines. While form and fit were acceptable, the molds failed to function during NRG’s testing.

  8. Use of a general-purpose heat-transfer code for casting simulation

    International Nuclear Information System (INIS)

    Erickson, W.C.

    1975-07-01

    The practical use of numerical techniques in simulating casting solidification dictate that a general purpose heat transfer code be used and that results be obtained in an easy-to-analyze format. Color film plotting routines were developed for use with NASA's CINDA-3G heat transfer code; the combination of which meet the above criteria. The subroutine LQSLTR written for SINDA, the successor to CINDA-3G, was verified by comparing calculated results obtained using LQSLTR with those obtained using the specific heat method for handling the heat of fusion. Excellent agreement existed when similar data was used. When the more restrictive requirement of a 1 0 F melting range was used, comparable results were obtained. Uranium and lead rod castings were cast in instrumented graphite molds and the solidification sequence simulated using CINDA-3G. Discrepancies attributed to initial assumptions of instantaneous mold filling, uniform melt temperature, and intimate metal/mold contact were encountered. Further calculations using a model incorporating a gap between the mold and casting showed that the intimate contact assumption could not be used; a three-dimensional model also showed that the thermocouple assemblies used with the platinum--platinum-10 percent rhodium were a significant perturbation to the system. An L-shaped steel casting was simulated and the results compared to those reported in the literature. The experimental data for this casting were reproduced within the accuracy permitted by the thermal conductivity of the sand, thus demonstrating that agreement can be obtained when the mold material does not act as a chill. (U.S.)

  9. Proton solvation and proton transfer in chemical and electrochemical processes

    International Nuclear Information System (INIS)

    Lengyel, S.; Conway, B.E.

    1983-01-01

    This chapter examines the proton solvation and characterization of the H 3 O + ion, proton transfer in chemical ionization processes in solution, continuous proton transfer in conductance processes, and proton transfer in electrode processes. Topics considered include the condition of the proton in solution, the molecular structure of the H 3 O + ion, thermodynamics of proton solvation, overall hydration energy of the proton, hydration of H 3 O + , deuteron solvation, partial molal entropy and volume and the entropy of proton hydration, proton solvation in alcoholic solutions, analogies to electrons in semiconductors, continuous proton transfer in conductance, definition and phenomenology of the unusual mobility of the proton in solution, solvent structure changes in relation to anomalous proton mobility, the kinetics of the proton-transfer event, theories of abnormal proton conductance, and the general theory of the contribution of transfer reactions to overall transport processes

  10. 75 FR 55340 - Recovery Fact Sheet 9580.100, Mold Remediation

    Science.gov (United States)

    2010-09-10

    ...] Recovery Fact Sheet 9580.100, Mold Remediation AGENCY: Federal Emergency Management Agency, DHS. ACTION... accepting comments on Recovery Fact Sheet RP9580.100, Mold Remediation. DATES: Comments must be received by... 20472-3100. II. Background The Recovery Fact Sheet RP9580.100, Mold Remediation, identifies the expenses...

  11. Energy transfer processes in Er-doped crystals

    International Nuclear Information System (INIS)

    Georgescu, Serban; Toma, Octavian

    2005-01-01

    In this paper, the microparameters characteristic to various energy-transfer processes in erbium doped crystals are estimated using the Dexter theory. For all the investigated processes, electric dipole-dipole interaction between donor and acceptor ions is assumed. The spectra appearing in Dexter's expression of the microparameter are simulated as a superposition of Lorentzian lines, knowing the positions of both initial and final Stark levels, and calibrated using the Judd-Ofelt model. This approach can give an estimation of the importance of the energy-transfer processes. (copyright 2005 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim) (orig.)

  12. Quantum tunneling resonant electron transfer process in Lorentzian plasmas

    International Nuclear Information System (INIS)

    Hong, Woo-Pyo; Jung, Young-Dae

    2014-01-01

    The quantum tunneling resonant electron transfer process between a positive ion and a neutral atom collision is investigated in nonthermal generalized Lorentzian plasmas. The result shows that the nonthermal effect enhances the resonant electron transfer cross section in Lorentzian plasmas. It is found that the nonthermal effect on the classical resonant electron transfer cross section is more significant than that on the quantum tunneling resonant charge transfer cross section. It is shown that the nonthermal effect on the resonant electron transfer cross section decreases with an increase of the Debye length. In addition, the nonthermal effect on the quantum tunneling resonant electron transfer cross section decreases with increasing collision energy. The variation of nonthermal and plasma shielding effects on the quantum tunneling resonant electron transfer process is also discussed

  13. Nanopatterning planar and non-planar mold surfaces for a polymer replication

    DEFF Research Database (Denmark)

    Cech, Jiri; Pranov, Henrik; Kofod, Guggi

    2013-01-01

    such as low reflectivity or color effects, self cleaning, superhydrofobicity, antifouling, etc, all created in a single injection molding cycle. Presented process is based on the classic cleanroom microfabrication of micro/nano patterns, nickel electroplating and template removal to form a flexible...

  14. Method and mold for casting thin metal objects

    Science.gov (United States)

    Pehrson, Brandon P; Moore, Alan F

    2014-04-29

    Provided herein are various embodiments of systems for casting thin metal plates and sheets. Typical embodiments include layers of mold cavities that are oriented vertically for casting the metal plates. In some embodiments, the mold cavities include a beveled edge such that the plates that are cast have a beveled edge. In some embodiments, the mold cavities are filled with a molten metal through an open horizontal edge of the cavity. In some embodiments, the mold cavities are filled through one or more vertical feed orifices. Further disclosed are methods for forming a thin cast metal plate or sheet where the thickness of the cast part is in a range from 0.005 inches to 0.2 inches, and the surface area of the cast part is in a range from 16 square inches to 144 square inches.

  15. Topographic design and application of hierarchical polymer surfaces replicated by microinjection compression molding

    Science.gov (United States)

    Guan, Wei-Sheng; Huang, Han-Xiong; Wang, Bin

    2013-10-01

    In recent years, the fast growing demand for biomimetic surfaces featuring unique wettability and functionality in various fields highlights the necessity of developing a reliable technique for mass production. In this work, hierarchical topography designs of templates were applied to prepare superhydrophobic surfaces via microinjection compression molding, comprehensively considering the feasibility of mechanical demolding and the superhydrophobicity and mechanical robustness of the molded polypropylene parts. Mimicking the wettability of a lotus leaf or rose petal, superhydrophobic surfaces were replicated. An unstable wetting state formed on the surface exhibiting the petal effect. On such a surface, the increased water pressure could cause water penetration into the micro gaps between the hierarchical asperities featuring low-roughness sidewalls and bottom surface; the resultant water membrane led to drastically increased water adhesion of the surface. Moreover, the low-adhesion superhydrophobicity of the molded surface was changed into superhydrophilicity, by means of introducing carbonyl groups via ultraviolet/ozone treatment and the subsequent water membrane preserved in microstructures via the pre-wetting process. Patterning the superhydrophilic micro channel on the superhydrophobic surface developed the surface microfluidic devices for micro-liter fluid pumping and mixing processes driven by surface tension.

  16. Investigation of compression behavior of PE/EVA foam injection molded parts

    Science.gov (United States)

    Spina, Roberto

    2017-10-01

    The main objective of the presented work is to evaluate the compression behavior of a polymeric foam blend by using a robust framework for the testing sequence of foaming injection molded parts, with the aim of establishing a standard testing cycle for the evaluation of new matrix material. The research purpose is to assess parameters influencing compression behavior and give useful suggestions for the implementation of a finite element analysis. The polymeric blend consisted of a mixture of low density polyethylenes (LDPEs), a high-density polyethylene (HDPE), an ethylene-vinyl acetate (EVA) and an azodicarbonamide (ADC). The thermal, rheological and compression properties of the blend are fully described, as well as the injection molding process for two specimen types.

  17. Diagnosis of mold allergy by RAST and skin prick testing.

    Science.gov (United States)

    Nordvall, S L; Agrell, B; Malling, H J; Dreborg, S

    1990-11-01

    Sera from 33 patients with mold allergy proven by bronchial provocation were analyzed for specific IgE against six mold species comparing an improved Phadebas RAST with four other techniques. The new method was more sensitive and gave significantly higher IgE antibody concentrations for all tested molds except Cladosporium herbarum.

  18. The Neurological Significance of Abnormal Natural Killer Cell Activity in Chronic Toxigenic Mold Exposures

    Directory of Open Access Journals (Sweden)

    Ebere Anyanwu

    2003-01-01

    Full Text Available Toxigenic mold activities produce metabolites that are either broad-spectrum antibiotics or mycotoxins that are cytotoxic. Indoor environmental exposure to these toxigenic molds leads to adverse health conditions with the main outcome measure of frequent neuroimmunologic and behavioral consequences. One of the immune system disorders found in patients presenting with toxigenic mold exposure is an abnormal natural killer cell activity. This paper presents an overview of the neurological significance of abnormal natural killer cell (NKC activity in chronic toxigenic mold exposure. A comprehensive review of the literature was carried out to evaluate and assess the conditions under which the immune system could be dysfunctionally interfered with leading to abnormal NKC activity and the involvement of mycotoxins in these processes. The functions, mechanism, the factors that influence NKC activities, and the roles of mycotoxins in NKCs were cited wherever necessary. The major presentations are headache, general debilitating pains, nose bleeding, fevers with body temperatures up to 40�C (104�F, cough, memory loss, depression, mood swings, sleep disturbances, anxiety, chronic fatigue, vertigo/dizziness, and in some cases, seizures. Although sleep is commonly considered a restorative process that is important for the proper functioning of the immune system, it could be disturbed by mycotoxins. Most likely, mycotoxins exert some rigorous effects on the circadian rhythmic processes resulting in sleep deprivation to which an acute and transient increase in NKC activity is observed. Depression, psychological stress, tissue injuries, malignancies, carcinogenesis, chronic fatigue syndrome, and experimental allergic encephalomyelitis could be induced at very low physiological concentrations by mycotoxin-induced NKC activity. In the light of this review, it is concluded that chronic exposures to toxigenic mold could lead to abnormal NKC activity with a wide

  19. Design and Checking Analysis of Injection Mold for a Plastic Cup

    Science.gov (United States)

    Li, Xuebing

    2018-03-01

    A special injection mold was designed for the structural characteristics of a plastic cup part. The mold was simulated by Moldflow software and verified by calculating the stripping force, the pulling force and the clamping force of the mold so that to determine the appropriate injection parameters. It has been proved that the injection mold is effective and practical in the actual producing and can meet the quality requirements during the course of using it, which solved some problems for injection molding of this kind of parts and can provide some reference for the production of other products in the same industry.

  20. Comparison of two setups for induction heating in injection molding

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2015-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness......, and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper, a new embedded induction heating system is proposed and validated and two different coil setups were tested and compared. An experimental investigation was performed based...

  1. Low Speed Technology for Small Turbine Development Reaction Injection Molded 7.5 Meter Wind Turbine Blade

    Energy Technology Data Exchange (ETDEWEB)

    David M. Wright; DOE Project Officer - Keith Bennett

    2007-07-31

    An optimized small turbine blade (7.5m radius) was designed and a partial section molded with the RIM (reaction-injection molded polymer) process for mass production. The intended market is for generic three-bladed wind turbines, 100 kilowatts or less, for grid-assist end users with rural and semi-rural sites, such as the farm/ranch market, having low to moderate IEC Class 3-4 wind regimes. This blade will have substantial performance improvements over, and be cheaper than, present-day 7.5m blades. This is made possible by the injection-molding process, which yields high repeatability, accurate geometry and weights, and low cost in production quantities. No wind turbine blade in the 7.5m or greater size has used this process. The blade design chosen uses a RIM skin bonded to a braided infused carbon fiber/epoxy spar. This approach is attractive to present users of wind turbine blades in the 5-10m sizes. These include rebladeing California wind farms, refurbishing used turbines for the Midwest farm market, and other manufacturers introducing new turbines in this size range.

  2. Microstructural and mechanical characterization of injection molded 718 superalloy powders

    Energy Technology Data Exchange (ETDEWEB)

    Özgün, Özgür [Bingol University, Faculty of Engineering and Architecture, Mechanical Eng. Dep., 12000 Bingol (Turkey); Gülsoy, H. Özkan, E-mail: ogulsoy@marmara.edu.tr [Marmara University, Technology Faculty, Metallurgy and Materials Eng. Dep., 34722 Istanbul (Turkey); Yılmaz, Ramazan [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey); Fındık, Fehim [Sakarya University, Technology Faculty, Metallurgy and Materials Eng. Dep., 54187 Sakarya (Turkey) and International University of Sarajevo, Faculty of Engineering and Natural Sciences, Department of Mechanical Engineering, 71000 Sarajevo, Bosnia and Herzegovina (Bosnia and Herzegowina)

    2013-11-05

    Highlights: •Microstructural and mechanical properties of injection molded Nickel 718 superalloy were studied. •The maximum sintered density achieved this study was 97.3% at 1290 °C for 3 hours. •Tensile strength of 1022 MPa and elongation of 5.3% were achieved for sintered-heat treated samples. -- Abstract: This study concerns with the determination of optimum production parameters for injection molding 718 superalloy parts. And at the same time, microstructural and mechanical characterization of these produced parts was also carried out. At the initial stage, 718 superalloy powders were mixed with a multi-component binder system for preparing feedstock. Then the prepared feedstock was granulated and shaped by injection molding. Following this operation, the shaped samples were subjected to the debinding process. These samples were sintered at different temperatures for various times. Samples sintered under the condition that gave way to the highest relative density (3 h at 1290 °C) were solution treated and aged respectively. Sintered, solution treated and aged samples were separately subjected to microstructural and mechanical characterization. Microstructural characterization operations such as X-ray diffraction, optical microscope (OM), scanning electron microscope (SEM), transmission electron microscope (TEM) and elemental analysis showed that using polymeric binder system led to plentiful carbide precipitates to be occurred in the injection molded samples. It is also observed that the volume fractions of the intermetallic phases (γ′ and γ″) obtained by aging treatment were decreased due to the plentiful carbide precipitation in the samples. Mechanical characterization was performed by hardness measurements and tensile tests.

  3. Aluminum-based one- and two-dimensional micro fin array structures: high-throughput fabrication and heat transfer testing

    International Nuclear Information System (INIS)

    Primeaux, Philip A; Zhang, Bin; Zhang, Xiaoman; Miller, Jacob; Meng, W J; KC, Pratik; Moore, Arden L

    2017-01-01

    Microscale fin array structures were replicated onto surfaces of aluminum 1100 and aluminum 6061 alloy (Al1100/Al6061) sheet metals through room-temperature instrumented roll molding. Aluminum-based micro fin arrays were replicated at room temperature, and the fabrication process is one with high throughput and low cost. One-dimensional (1D) micro fin arrays were made through one-pass rolling, while two-dimensional (2D) micro fin arrays were made by sequential 90° cross rolling with the same roller sleeve. For roll molding of 1D micro fins, fin heights greater than 600 µ m were achieved and were shown to be proportional to the normal load force per feature width. At a given normal load force, the fin height was further shown to scale inversely with the hardness of the sheet metal. For sequential 90° cross rolling, morphologies of roll molded 2D micro fin arrays were examined, which provided clues to understand how plastic deformation occurred under cross rolling conditions. A series of pool boiling experiments on low profile Al micro fin array structures were performed within Novec 7100, a widely used commercial dielectric coolant. Results for both horizontal and vertical surface orientations show that roll molded Al micro fin arrays can increase heat flux at fixed surface temperature as compared to un-patterned Al sheet. The present results further suggest that many factors beyond just increased surface area can influence heat transfer performance, including surface finish and the important multiphase transport mechanisms in and around the fin geometry. These factors must also be considered when designing and optimizing micro fin array structures for heat transfer applications. (paper)

  4. METHOD FOR EVALUATING MOLD GROWTH ON CEILING TILE

    Science.gov (United States)

    A method to extract mold spores from porous ceiling tiles was developed using a masticator blender. Ceiling tiles were inoculated and analyzed using four species of mold. Statistical analysis comparing results obtained by masticator extraction and the swab method was performed. T...

  5. Finite element analysis and simulation of rheological properties of bulk molding compound (BMC)

    Science.gov (United States)

    Ergin, M. Fatih; Aydin, Ismail

    2013-12-01

    Bulk molding compound (BMC) is one of the important composite materials with various engineering applications. BMC is a thermoset plastic resin blend of various inert fillers, fiber reinforcements, catalysts, stabilizers and pigments that form a viscous, molding compound. Depending on the end-use application, bulk molding compounds are formulated to achieve close dimensional control, flame and scratch resistance, electrical insulation, corrosion and stain resistance, superior mechanical properties, low shrink and color stability. Its excellent flow characteristics, dielectric properties, and flame resistance make this thermoset material well-suited to a wide variety of applications requiring precision in detail and dimensions as well as high performance. When a BMC is used for these purposes, the rheological behavior and properties of the BMC is the main concern. In this paper, finite element analysis of rheological properties of bulk molding composite material was studied. For this purpose, standard samples of composite material were obtained by means of uniaxial hot pressing. 3 point flexural tests were then carried out by using a universal testing machine. Finite element analyses were then performed with defined material properties within a specific constitutive material behavior. Experimental and numerical results were then compared. Good correlation between the numerical simulation and the experimental results was obtained. It was expected with this study that effects of various process parameters and boundary conditions on the rheological behavior of bulk molding compounds could be determined by means of numerical analysis without detailed experimental work.

  6. The competence accumulation process in the technology transference strategy

    OpenAIRE

    Souza, André Silva de; Segatto-Mendes, Andréa Paula

    2008-01-01

    The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001) and during the technology transference process (2002-2005). Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch...

  7. Finite Element Modeling of Reheat Stretch Blow Molding of PET

    Science.gov (United States)

    Krishnan, Dwarak; Dupaix, Rebecca B.

    2004-06-01

    Poly (ethylene terephthalate) or PET is a polymer used as a packaging material for consumer products such as beverages, food or other liquids, and in other applications including drawn fibers and stretched films. Key features that make it widely used are its transparency, dimensional stability, gas impermeability, impact resistance, and high stiffness and strength in certain preferential directions. These commercially useful properties arise from the fact that PET crystallizes upon deformation above the glass transition temperature. Additionally, this strain-induced crystallization causes the deformation behavior of PET to be highly sensitive to processing conditions. It is thus crucial for engineers to be able to predict its performance at various process temperatures, strain rates and strain states so as to optimize the manufacturing process. In addressing these issues; a finite element analysis of the reheat blow molding process with PET has been carried out using ABAQUS. The simulation employed a constitutive model for PET developed by Dupaix and Boyce et al.. The model includes the combined effects of molecular orientation and strain-induced crystallization on strain hardening when the material is deformed above the glass transition temperature. The simulated bottles were also compared with actual blow molded bottles to evaluate the validity of the simulation.

  8. Rapid tooling for functional prototyping of metal mold processes. CRADA final report

    Energy Technology Data Exchange (ETDEWEB)

    Zacharia, T.; Ludtka, G.M.; Bjerke, M.A.; Gray, W.H.

    1997-12-01

    The overall scope of this endeavor was to develop an integrated computer system, running on a network of heterogeneous computers, that would allow the rapid development of tool designs, and then use process models to determine whether the initial tooling would have characteristics which produce the prototype parts. The major thrust of this program for ORNL was the definition of the requirements for the development of the integrated die design system with the functional purpose to link part design, tool design, and component fabrication through a seamless software environment. The principal product would be a system control program that would coordinate the various application programs and implement the data transfer so that any networked workstation would be useable. The overall system control architecture was to be required to easily facilitate any changes, upgrades, or replacements of the model from either the manufacturing end or the design criteria standpoint. The initial design of such a program is described in the section labeled ``Control Program Design``. A critical aspect of this research was the design of the system flow chart showing the exact system components and the data to be transferred. All of the major system components would have been configured to ensure data file compatibility and transferability across the Internet. The intent was to use commercially available packages to model the various manufacturing processes for creating the die and die inserts in addition to modeling the processes for which these parts were to be used. In order to meet all of these requirements, investigative research was conducted to determine the system flow features and software components within the various organizations contributing to this project. This research is summarized.

  9. Low temperature high density plasma nitriding of stainless steel molds for stamping of oxide glasses

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2016-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a die for mold- and direct-stamping processes of optical oxide glasses. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical oxide-glass elements. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness over 1400 HV within its thickness of 50 μm without any formation of nitrides after plasma nitriding at 693 K for 14.4 ks. This plasma-nitrided mold was utilized for mold-stamping of two colored oxide glass plates at 833 K; these plates were successfully deformed and joined into a single glass plate by this stamping without adhesion or galling of oxide glasses onto the nitrided mold surface.

  10. Application of heat pipe technology in permanent mold casting of nonferrous alloys

    Science.gov (United States)

    Elalem, Kaled

    The issue of mold cooling is one, which presents a foundry with a dilemma. On the one hand; the use of air for cooling is safe and practical, however, it is not very effective and high cost. On the other hand, water-cooling can be very effective but it raises serious concerns about safety, especially with a metal such as magnesium. An alternative option that is being developed at McGill University uses heat pipe technology to carry out the cooling. The experimental program consisted of designing a permanent mold to produce AZ91E magnesium alloy and A356 aluminum alloy castings with shrinkage defects. Heat pipes were then used to reduce these defects. The heat pipes used in this work are novel and are patent pending. They are referred to as McGill Heat Pipes. Computer modeling was used extensively in designing the mold and the heat pipes. Final designs for the mold and the heat pipes were chosen based on the modeling results. Laboratory tests of the heat pipe were performed before conducting the actual experimental plan. The laboratory testing results verified the excellent performance of the heat pipes as anticipated by the model. An industrial mold made of H13 tool steel was constructed to cast nonferrous alloys. The heat pipes were installed and initial testing and actual industrial trials were conducted. This is the first time where a McGill heat pipe was used in an industrial permanent mold casting process for nonferrous alloys. The effects of cooling using heat pipes on AZ91E and A356 were evaluated using computer modeling and experimental trials. Microstructural analyses were conducted to measure the secondary dendrite arm spacing, SDAS, and the grain size to evaluate the cooling effects on the castings. The modeling and the experimental results agreed quite well. The metallurgical differences between AZ91E and A356 were investigated using modeling and experimental results. Selected results from modeling, laboratory and industrial trials are presented. The

  11. Structural materialization of stainless steel molds and dies by the low temperature high density plasma nitriding

    Directory of Open Access Journals (Sweden)

    Aizawa Tatsuhiko

    2015-01-01

    Full Text Available Various kinds of stainless steels have been widely utilized as a mold substrate material for injection molding and as a die for mold-stamping and direct stamping processes. Since they suffered from high temperature transients and thermal cycles in practice, they must be surface-treated by dry and wet coatings, or, by plasma nitriding. Martensitic stainless steel mold was first wet plated by the nickel phosphate (NiP, which was unstable at the high temperature stamping condition; and, was easy to crystalize or to fracture by itself. This issue of nuisance significantly lowered the productivity in fabrication of optical elements at present. In the present paper, the stainless steel mold was surface-treated by the low-temperature plasma nitriding. The nitrided layer by this surface modification had higher nitrogen solute content than 4 mass%; the maximum solid-solubility of nitrogen is usually 0.1 mass% in the equilibrium phase diagram. Owing to this solid-solution with high nitrogen concentration, the nitrided layer had high hardness of 1400 Hv within its thickness of 40 μm without any formation of nitrides after 14.4 ks plasma nitriding at 693 K. This nitrogen solid-solution treated stainless steel had thermal resistivity even at the mold-stamping conditions up to 900 K.

  12. Injection Molding Parameters Calculations by Using Visual Basic (VB) Programming

    Science.gov (United States)

    Tony, B. Jain A. R.; Karthikeyen, S.; Alex, B. Jeslin A. R.; Hasan, Z. Jahid Ali

    2018-03-01

    Now a day’s manufacturing industry plays a vital role in production sectors. To fabricate a component lot of design calculation has to be done. There is a chance of human errors occurs during design calculations. The aim of this project is to create a special module using visual basic (VB) programming to calculate injection molding parameters to avoid human errors. To create an injection mold for a spur gear component the following parameters have to be calculated such as Cooling Capacity, Cooling Channel Diameter, and Cooling Channel Length, Runner Length and Runner Diameter, Gate Diameter and Gate Pressure. To calculate the above injection molding parameters a separate module has been created using Visual Basic (VB) Programming to reduce the human errors. The outcome of the module dimensions is the injection molding components such as mold cavity and core design, ejector plate design.

  13. Mold: Cleanup and Remediation

    Science.gov (United States)

    ... National Center for Environmental Health (NCEH) Cleanup and Remediation Recommend on Facebook Tweet Share Compartir On This ... CDC and EPA on mold cleanup, removal and remediation. Cleanup information for you and your family Homeowner’s ...

  14. Game theoretic aspect of production process transfer functions ...

    African Journals Online (AJOL)

    Game theoretic aspect of production process transfer functions. ... On the final analysis, it was shown that relating transfer function to Bayesian games and mechanism design would lead to optimal bids, optimal ... AJOL African Journals Online.

  15. Precision Glass Molding: Validation of an FE Model for Thermo-Mechanical Simulation

    DEFF Research Database (Denmark)

    Sarhadi, Ali; Hattel, Jesper Henri; Hansen, Hans Nørgaard

    2014-01-01

    glass molding process including heating, pressing, and cooling stages. Temperature- dependent viscoelastic and structural relaxation behavior of the glass material are implemented through a FORTRAN material subroutine (UMAT) into the commercial FEM program ABAQUS, and the FE model is validated...

  16. Electron transfer and decay processes of highly charged iodine ions

    International Nuclear Information System (INIS)

    Sakaue, Hiroyuki A.; Danjo, Atsunori; Hosaka, Kazumoto

    2005-01-01

    In the present experimental work we have investigated multi-electron transfer processes in I q+ (q=10, 15, 20 and 25) + Ne, Ar, Kr and Xe collisions at 1.5q keV energy. The branching ratios between Auger and radiative decay channels have been measured in decay processes of multiply excited states formed by multi-electron transfer collisions. It has been shown that, in all the multi-electron transfer processes investigated, the Auger decays are far dominant over the radiative decay processes and the branching ratios are clearly characterized by the average principal quantum number of the initial excited states of projectile ions. We could express the branching ratios in high Rydberg states formed in multi-electron transfer processes by using the decay probability of one Auger electron emission. (author)

  17. Numerical simulation of heat transfer process in automotive brakes

    OpenAIRE

    Gonzalo Voltas, David

    2013-01-01

    This master thesis concerns the theoretical investigations of the heat transfer process in automotive brakes. The process of heat generation and heat transfer to ambient air in automotive brake was presented. The two–dimensional, axi-symmetrical model of transient heat conduction for the brake was applied. The relevant boundary conditions, that describe the heat generated in the brake and the heat transferred to ambient air, were used. The unsteady heat conduction problem was solved by the...

  18. NEW SOURCES OF GRAIN MOLD RESISTANCE AMONG SORGHUM ACCESSIONS FROM SUDAN

    Directory of Open Access Journals (Sweden)

    Louis Kajac Prom

    2009-05-01

    Full Text Available   Fifty-nine sorghum accessions from Sudan were evaluated in replicated plots at Isabela, Puerto Rico, for resistance against Fusarium thapsinum, one of the causal agents of grain mold.  The environmental conditions such as temperature, relative humidity, and rainfall during this study, especially at and after physiological maturity were optimal for grain mold development.  Highly significant negative correlations between grain mold severity ratings in the field and on threshed grains with germination rate and seed weight were recorded, indicating that germination and seed weight were adversely affected when challenged with F. thapsinum.  Temperature showed a significant negative correlation with grain mold severity and a significant positive correlation with germination rate.  However, no significant correlation was observed between rainfall and grain mold severity or germination rate.  Accessions PI570011, PI570027, PI569992, PI569882, PI571312, PI570759, and PI267548 exhibited the lowest grain mold severities and among the highest germination rates, indicating that these accessions may possess genetic resistance to grain mold and might be useful in sorghum enhancement programs.  Four of these accessions had significantly higher germination rates than the resistant control genotypes with PI267548 having the highest germination rate.  PI267548 was the only white seeded accessions showing significantly better grain mold resistance than the control genotypes.

  19. Evaluation of stability for monolayer injection molding tools coating

    DEFF Research Database (Denmark)

    Cech, Jiri; Taboryski, Rafael J.

    2012-01-01

    We tested and characterized molecular coating of Aluminium and Nickel prototype molds and mold inserts for polymer replication via injection molding (IM). X-Ray photoelectron spectroscopy (XPS) data, sessile drop contact angles with multiple fluids, surface energy and roughness data have been...... collected and used to predict coating lifetimes. Samples have been characterized immediately after coating, after 500+ IM cycles to test durability and after 7 months to test temporal stability. Sessile drop contact angle was measured for multiple fluids, namely water, di-iodomethane and benzylacohol....... Detectable coating presence was indicated by an increased angle on all post IM samples. To conclude, we present mold coating evaluation method, which is well suited for ultrathin, controlable, covalently bonded coating, that is reasonably durable, affordable, scalable to production, detectable on surface...

  20. An Impedance-Based Mold Sensor with on-Chip Optical Reference

    Directory of Open Access Journals (Sweden)

    Poornachandra Papireddy Vinayaka

    2016-09-01

    Full Text Available A new miniaturized sensor system with an internal optical reference for the detection of mold growth is presented. The sensor chip comprises a reaction chamber provided with a culture medium that promotes the growth of mold species from mold spores. The mold detection is performed by measuring impedance changes with integrated electrodes fabricated inside the reaction chamber. The impedance change in the culture medium is caused by shifts in the pH (i.e., from 5.5 to 8 as the mold grows. In order to determine the absolute pH value without the need for calibration, a methyl red indicator dye has been added to the culture medium. It changes the color of the medium as the pH passes specific values. This colorimetric principle now acts as a reference measurement. It also allows the sensitivity of the impedance sensor to be established in terms of impedance change per pH unit. Major mold species that are involved in the contamination of food, paper and indoor environments, like Fusarium oxysporum, Fusarium incarnatum, Eurotium amstelodami, Aspergillus penicillioides and Aspergillus restrictus, have been successfully analyzed on-chip.

  1. Influence of Injection-Molding Process Parameters on Part Replication of Microstructures with Additively-Manufactured Soft Tooling Inserts WCMNM 2017 No

    DEFF Research Database (Denmark)

    Mischkot, Michael; Zhang, Yang; Segebrecht Gøtje, Asger

    The objective of this research is to investigate the influence of injection molding parameters on the dimensional replication of microstructure surfaces in injection molding with additively manufactured soft tooling inserts in a photopolymer material. The replication degree of micropillars...... diameter and decreases the replication degree of the pillar height. A high melt temperature increases the pillar diameter independently from the pillar height. A higher injection speed affects both pillar diameter and height negatively. In addition, the study showed a significant difference...

  2. Microstructure and High Temperature Oxidation Property of Fe-Cr-B Based Metal/Ceramic Composite Manufactured by Powder Injection Molding Process

    Science.gov (United States)

    Joo, Yeun-Ah; Kim, Young-Kyun; Yoon, Tae-Sik; Lee, Kee-Ahn

    2018-03-01

    This study investigated the microstructure and high temperature oxidation property of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding process. Observations of initial microstructure showed a unique structure where α-Fe and (Cr, Fe)2B form a continuous three-dimensional network. High temperature oxidation tests were performed at 900, 1000 and 1100 °C, for 24 h, and the oxidation weight gain according to each temperature condition was 0.13, 0.84 and 6.4 mg/cm2, respectively. The oxidation results according to time at 900 and 1000 °C conditions represented parabolic curves, and at 1100 °C condition formed a rectilinear curve. Observation and phase analysis results of the oxides identified Cr2O3 and SiO2 at 900 and 1000 °C. In addition to Cr2O3 and SiO2, CrBO3 and FeCr2O4 formed due to phase decomposition of boride were identified at 1100 °C. Based on the findings above, this study suggested the high temperature oxidation mechanism of Fe-Cr-B metal/ceramic composite manufactured using powder injection molding, and the possibility of its application as a high temperature component material was also discussed.

  3. Fiscal 2000 survey report. Basic research on hot molding of amorphous ceramics; 2000 nendo amorphous netsukan ceramics seikeiho ni kansuru kiso kenkyu chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-03-01

    Experiments were conducted on the plasticity processing of heat resistant ceramics making use of the viscous deformation of amorphous ceramics in the supercooled liquid temperature domain. Concerning the preparation of powder of amorphous ceramics, the plasma rotating electrode method of Institute for Materials Research, Tohoku University, was employed, and a bamboo leaf shaped amorphous flake was successfully fabricated by increasing the arc discharge current. In a search of texture easy to turn amorphous, it was observed that Al{sub 2}O{sub 3}-La{sub 2}O{sub 3} had a supercooled liquid domain of as large as 70K, and this enabled a conclusion that it was a promising candidate for hot molding in a supercooled liquid domain. In an experiment of molding in a supercooled liquid domain, Al{sub 2}O{sub 3}-Gd{sub 2}O{sub 3} was used in a press molding process. As the result, a compact bulk mold was obtained in a temperature domain far lower than in the case of conventional sintering. Crystallization had already advanced in all the molds experimentally fabricated by press molding, and this disabled a study of characteristics to be exhibited by an amorphous mold, but it was found that they had a compressive strength of approximately 1,800MPa. (NEDO)

  4. Direct metal transfer printing on flexible substrate for fabricating optics functional devices

    Science.gov (United States)

    Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi

    2015-11-01

    New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.

  5. Influence of mold temperature associated with glass fiber on the mechanical and thermal properties of a (PA6/GF/MMT) nanocomposite

    International Nuclear Information System (INIS)

    Damiani, Renato Adriano

    2017-01-01

    This work describes the second of a series of studies of the effects of injection molding conditions on the mechanical and thermal properties of Polyamide 6/Glass Fiber/Montmorillonite (PA6/GF/MMT) composites and was motivated by the lack of information about how the processing variables influence on the properties of three-phase composites containing fiber glass. By this time, the effects of the injection molding temperature associated with the fiber glass percentage on the mechanical and thermal properties of the composite are investigated. Some samples were processed, following a statistical experimental factorial planning, varying the mold temperature and the fiber glass percentage and maintaining 5 wt % of the MMT. The samples were submitted to tensile and flexural tests, XRD, SEM and DSC. The studies showed that an increase in the mold temperature and the fiber percentage improves the maximum tensile and flexural stresses. The increased mold temperature slows the cooling rate, which, over time, decreases the degree of crystallinity. However, there is an increase in the intercalation of the polymeric chains and the nanoclay lamellae, and the structure forms with fewer defects. (author)

  6. Influence of mold temperature associated with glass fiber on the mechanical and thermal properties of a (PA6/GF/MMT) nanocomposite

    Energy Technology Data Exchange (ETDEWEB)

    Damiani, Renato Adriano, E-mail: eng.damiani@hotmail.com [Universidade do Extremo Sul Catarinense (UNESC), Criciuma, SC (Brazil). Programa de Pos-Graduacao em Ciencias e Engenharia de Materiais; Duarte, Glaucea Warmeling; Riella, Humberto Gracher, E-mail: gwduarte@gmail.com, E-mail: huberto.riella@ufsc.br [Universidade Federal de Santa Catarina (UFSC), Florianopolis, SC (Brazil). Programa de Pos-Graduacao em Engenharia Quimica; Silva, Luciano Luiz; Mello, Josiane Maria Muneron de; Fiori, Marcio Antonio; Batiston, Eduardo Roberto, E-mail: marciofiori@gmail.com, E-mail: lucianols@unochapeco.edu.br, E-mail: josimello@unochapeco.edu.br, E-mail: erbatiston@unochapeco.edu.br [Universidade Comunitaria da Regiao de Chapeco (UNOCHAPECO), Chapeco, SC (Brazil)

    2017-01-15

    This work describes the second of a series of studies of the effects of injection molding conditions on the mechanical and thermal properties of Polyamide 6/Glass Fiber/Montmorillonite (PA6/GF/MMT) composites and was motivated by the lack of information about how the processing variables influence on the properties of three-phase composites containing fiber glass. By this time, the effects of the injection molding temperature associated with the fiber glass percentage on the mechanical and thermal properties of the composite are investigated. Some samples were processed, following a statistical experimental factorial planning, varying the mold temperature and the fiber glass percentage and maintaining 5 wt % of the MMT. The samples were submitted to tensile and flexural tests, XRD, SEM and DSC. The studies showed that an increase in the mold temperature and the fiber percentage improves the maximum tensile and flexural stresses. The increased mold temperature slows the cooling rate, which, over time, decreases the degree of crystallinity. However, there is an increase in the intercalation of the polymeric chains and the nanoclay lamellae, and the structure forms with fewer defects. (author)

  7. Designing a combined casting mold for manufacture of a gasoline centrifugal pump body using CAD/CAM-systems

    Science.gov (United States)

    Galin, N. E.; Ogol, I. I.; Chervach, Yu B.; Dammer, V. Kh; Ru, Jia Hong

    2017-02-01

    The present paper examines designing of a combined casting mold for manufacture of a gasoline centrifugal pump body. The paper offers technological solutions for obtaining high quality castings at the testing stage of the finished mold. The paper is intended for practical use and prepared by order of JSC ‘Tomsk Electrical Engineering Plant’ using software and equipment of the department ‘Technologies of Computer-Aided Machinery Manufacturing’ of the Tomsk Polytechnic University (TPU) under the economic contract within state import substitution program. In preparing the paper, CAD/CAM-systems KOMPAS-3D and PowerMILL were used. In 2015, the designed casting mold was introduced into the production process at JSC ‘Tomsk Electrical Engineering Plant’.

  8. Effect of surface tension and coefficient of thermal expansion in 30 nm scale nanoimprinting with two flexible polymer molds

    International Nuclear Information System (INIS)

    Kim, Jae Kwan; Cho, Hye Sung; Jung, Ho-Sup; Suh, Kahp-Yang; Lim, Kipil; Kim, Ki-Bum; Choi, Dae-Geun; Jeong, Jun-Ho

    2012-01-01

    We report on nanoimprinting of polymer thin films at 30 nm scale resolution using two types of ultraviolet (UV)-curable, flexible polymer molds: perfluoropolyether (PFPE) and polyurethane acrylate (PUA). It was found that the quality of nanopatterning at the 30 nm scale is largely determined by the combined effects of surface tension and the coefficient of thermal expansion of the polymer mold. In particular, the polar component of surface tension may play a critical role in clean release of the mold, as evidenced by much reduced delamination or broken structures for the less polarized PFPE mold when patterning a relatively hydrophilic PMMA film. In contrast, such problems were not notably observed with a relatively hydrophobic PS film for both polymer molds. In addition, the demolding characteristic was also influenced by the coefficient of thermal expansion so that no delamination or uniformity problems were observed when patterning a UV-curable polymer film at room temperature. These results suggest that a proper polymeric mold material needs to be chosen for patterning polymer films under different surface properties and processing conditions, providing insights into how a clean demolding characteristic can be obtained at 30 nm scale nanopatterning. (paper)

  9. Double blind placebo controlled exposure to molds

    DEFF Research Database (Denmark)

    Meyer, H W; Jensen, K A; Nielsen, K F

    2005-01-01

    non-significant, and at the same level as after placebo exposure. The developed exposure system based on the Particle-Field and Laboratory Emission Cell (P-FLEC) makes it possible to deliver a precise and highly controlled dose of mold spores from water-damaged building materials, imitating realistic......The objective was to develop an experimental setup for human exposure to mold spores, and to study the clinical effect of this exposure in sensitive subjects who had previously experienced potentially building-related symptoms (BRS) at work. From three water-damaged schools eight employees....... In conclusion this is, to our knowledge, the first study to successfully conduct a human exposure to a highly controlled dose of fungal material aerosolized directly from wet building materials. This short-term exposure to high concentrations of two different molds induced no more reactions than exposure...

  10. The process for technology transfer in Baltimore

    Science.gov (United States)

    Golden, T. S.

    1978-01-01

    Ingredients essential for a successful decision process relative to proper technological choices for a large city were determined during four years of experience in the NASA/Baltimore Applications Project. The general approach, rationale, and process of technology transfer are discussed.

  11. Color measurement of plastics - From compounding via pelletizing, up to injection molding and extrusion

    Science.gov (United States)

    Botos, J.; Murail, N.; Heidemeyer, P.; Kretschmer, K.; Ulmer, B.; Zentgraf, T.; Bastian, M.; Hochrein, T.

    2014-05-01

    The typical offline color measurement on injection molded or pressed specimens is a very expensive and time-consuming process. In order to optimize the productivity and quality, it is desirable to measure the color already during the production. Therefore several systems have been developed to monitor the color e.g. on melts, strands, pellets, the extrudate or injection molded part already during the process. Different kinds of inline, online and atline methods with their respective advantages and disadvantages will be compared. The criteria are e.g. the testing time, which ranges from real-time to some minutes, the required calibration procedure, the spectral resolution and the final measuring precision. The latter ranges between 0.05 to 0.5 in the CIE L*a*b* system depending on the particular measurement system. Due to the high temperatures in typical plastics processes thermochromism of polymers and dyes has to be taken into account. This effect can influence the color value in the magnitude of some 10% and is barely understood so far. Different suitable methods to compensate thermochromic effects during compounding or injection molding by using calibration curves or artificial neural networks are presented. Furthermore it is even possible to control the color during extrusion and compounding almost in real-time. The goal is a specific developed software for adjusting the color recipe automatically with the final objective of a closed-loop control.

  12. Development of heat pipe technology for permanent mold casting of magnesium alloys

    International Nuclear Information System (INIS)

    Elalem, K.; Mucciardi, F.; Gruzleski, J.E.; Carbonneau, Y.

    2002-01-01

    One of the key techniques for producing sound permanent mold castings is to use controlled mold cooling such as air cooling, water cooling and heat pipe cooling. Air-cooling has limited applications in permanent mold casting due to its low cooling capability and high cost. Water-cooling is widely used in permanent mold casting, but has some disadvantages such as safety issues and the facilities required. The early applications of heat pipes in permanent mold casting have shown tremendous results due to their high cooling rates, low cost and safety. In this work, a permanent mold for magnesium casting has been designed with the intention of producing shrinkage defects in the castings. Novel heat pipes that can generate high cooling rates have been constructed and used to direct the solidification in order to reduce the shrinkage. In this paper, the design of the mold and that of the heat pipes are presented. The results of some of the computer simulations that were conducted to determine casting conditions along with the potential of using heat pipes to direct the solidification are also presented. Moreover, a preliminary evaluation of the performance of heat pipes in the permanent mold casting of magnesium will also be discussed. (author)

  13. Differentiation of Toxic Molds via Headspace SPME-GC/MS and Canine Detection

    Directory of Open Access Journals (Sweden)

    Kenneth G. Furton

    2007-08-01

    Full Text Available Indoor mold growth has recently become a concern in the legal world in regards to insurance litigation. Hazardous mold exposure to humans has been linked to many acute and chronic adverse health effects including death. As it grows, mold produces several types of primary and secondary metabolites, including microbial volatile organic compounds (MVOCs. Microbial volatile organic compound emission may be used as a preliminary indication of a mold infestation that is invisible to the unaided eye. The objective of the study is to identify the unique odor signatures of three species of molds, Aspergillus versicolor, Penicillium chrysogenum, and Stachybotrys chartarum by SPME-GC/MS analysis. Determining the compounds that are emitted by the selected species has made it possible to conduct validation studies of canine detection of these mold species through a series of field tests.

  14. Understanding the impact of molds on indoor air quality and possible links to health effects Indoor Molds - More than Just a Musty Smell

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed ...

  15. Tritium transfer process using the CRNL wetproof catalyst

    International Nuclear Information System (INIS)

    Chuang, K.T.; Holtslander, W.J.

    1980-01-01

    The recovery of tritium from heavy water in CANDU reactor systems requires the transfer of the tritium atoms from water to hydrogen molecules prior to tritium concentration by cryogenic distillation. Isotopic exchange between liquid water and hydrogen using the CRNL-developed wetproof catalyst provides an effective method for the tritium transfer process. The development of this process has required the translation of the technology from a laboratory demonstration of catalyst activity for the exchange reaction to proving and demonstration that the process will meet the practical restraints in a full-scale tritium recovery plant. This has led to a program to demonstrate acceptable performance of the catalyst at operating conditions that will provide data for design of large plants. Laboratory and pilot plant work has shown adequate catalyst lifetimes, demonstrated catalyst regeneration techniques and defined and required feedwater purification systems to ensure optimum catalyst performance. The ability of the catalyst to promote the exchange of hydrogen isotopes between water and hydrogen has been shown to be technically feasible for the tritium transfer process

  16. Effect of injection molded micro-structured polystyrene surfaces on proliferation of MC3T3-E1 cells

    Directory of Open Access Journals (Sweden)

    G. Lucchetta

    2015-04-01

    Full Text Available In this work, osteoinductive micro-pillared polystyrene surfaces were mass-produced for bone replacement applications, by means of the micro injection molding process. Firstly, the molding process parameters were optimized with a two-level, three-factor central composite face-centered plan to increase the quality of polystyrene micro pillars replication and to maximize the pillars height uniformity over the molded part. Secondly, osteoblastic MC3T3-E1 cells adhesion and proliferation on the replicated substrates were assessed as a function of micro topography parameters, such as pillars diameter, aspect ratio and spacing. Cell morphology and proliferation were evaluated through MTS test after 1, 3 and 7 days from seeding. The experimental results showed that cells adhesion and proliferation is more positively promoted on micro-pillared surfaces compared to flat surfaces, but no correlations were observed between cell proliferation and pillar diameter and spacing.

  17. On the origin of the ''core-free'' morphology in microinjection-molded HDPE

    NARCIS (Netherlands)

    Giboz, J.; Spoelstra, A.B.; Portale, G.; Copponnex, T.; Meijer, H.E.H.; Peters, G.W.M.; Mélé, P.

    2011-01-01

    This study investigates the morphology of a high-density polyethylene processed with microinjection molding. Previous work pointed out that a "core-free" morphology exists for a micropart (150-µm thick), contrasting with the well-known "skin-core" morphology of a conventional part (1.5-mm thick).

  18. Feedback Specificity, Information Processing, and Transfer of Training

    Science.gov (United States)

    Goodman, Jodi S.; Wood, Robert E.; Chen, Zheng

    2011-01-01

    This study examines the effects of feedback specificity on transfer of training and the mechanisms through which feedback can enhance or inhibit transfer. We used concurrent verbal protocol methodology to elicit and operationalize the explicit information processing activities used by 48 trainees performing the Furniture Factory computer…

  19. CT use for nasopharingeal molds realization in endocavitary brachytherapy

    International Nuclear Information System (INIS)

    Lopez, J. Torrecilla; Crispin, V.; Chust, M.; Guinot, J.; Arribas, L.; Mengual, J.; Carrasco, P.; Miragall, E.; Hernandez, A.; Guardino, C.; Carrascosa, M.; Cardenal, R.; Casana, M.; Prats, C.

    1996-01-01

    Purpose: We present the following procedure for the making of individual molds with dental silicone for endocavitary brachytherapy of nasopharingeal cancer aided by CT scan. Procedure: Head immobilization during the realization of nasopharynx CT. Planification of treatment using these CT images, to determine the optimum position of radioactive sources. Printing on paper CT images with the nasopharynx contoured walls and the radioactive sources position. Realization of the mold in plastiline with the aid of the cuts of printer paper cut out with the nasopharynx form. Obtaining of the negative of the mold of plastiline by means of the use of alginate. Placement of two number 20 rectal rigid catheters with metal malleable bars inside them, in order to give them an adequate form in relation to the previous carried out planning. Filling in of alginato negative, where rectal catheters were placed, with Provil MCD Bayer Dental, a silicone based material for precision impression. We recommend to crossing the catheters' end with a number 2 silk thread to secure the catheter. An end of the silk thread is left outside the mold in order to help the extraction at the end of application. We advise to carry out a neuroleptic anaesthesia for its insertion, for the purpose of achieving a soft palate suitable relaxation. It makes the insertion easier. Repeat CT with the mold and phantoms in position to know a definitive dose distribution calculation. Conclusion: This method avoids the necessity of general anaesthesia in the realization of individual molds of nasopharyx for endocavitary brachytherapy and it improves the implant dosimetry

  20. Graphene transfer process and optimization of graphene coverage

    OpenAIRE

    Sabki Syarifah Norfaezah; Shamsuri Shafiq Hafly; Fauzi Siti Fazlina; Chon-Ki Meghashama Lim; Othman Noraini

    2017-01-01

    Graphene grown on transition metal is known to be high in quality due to its controlled amount of defects and potentially used for many electronic applications. The transfer process of graphene grown on transition metal to a new substrate requires optimization in order to ensure that high graphene coverage can be obtained. In this work, an improvement in the graphene transfer process is performed from graphene grown on copper foil. It has been observed that the graphene coverage is affected b...

  1. Micro Injection Molding of Thin Walled Geometries with Induction Heating System

    DEFF Research Database (Denmark)

    Menotti, Stefano; Hansen, Hans Nørgaard; Bissacco, Giuliano

    2014-01-01

    To eliminate defects and improve the quality of molded parts, increasing the mold temperature is one of the applicable solutions. A high mold temperature can increase the path flow of the polymer inside the cavity allowing reduction of the number of injection points, reduction of part thickness...... and moulding of smaller and more complex geometries. The last two aspects are very important in micro injection molding. In this paper a new embedded induction heating system is proposed and validated. An experimental investigation was performed based on a test geometry integrating different aspect ratios...... of small structures. ABS was used as material and different combinations of injection velocity, pressure and mold temperature were tested. The replicated test objects were measured by means of an optical CMM machine. On the basis of the experimental investigation the efficacy of the embedded induction...

  2. Understanding the impact of molds on indoor air quality and ...

    Science.gov (United States)

    Molds are multi-celled, colony forming, eukaryotic microorganisms lacking chlorophyll belonging to the Kingdom Fungi. Furthermore, molds are ubiquitous in both indoor and outdoor environments. There are more than 200 different types of fungi to which people are routinely exposed (NAS. 2000). The growth of molds in homes, schools, offices, and other public buildings has been implicated as the cause of a wide variety of adverse health effects. Headlines resulting from moldy, water-damaged homes, particularly

  3. The effect of α-cellulose fiber on the properties of melamine-formaldehyde molding compounds

    International Nuclear Information System (INIS)

    Khatibi, M. A.; Beheshti, M. A.; Morshedian, J.

    2001-01-01

    Melamine-formaldehyde molding compounds have found different industrial applications. This is due to their good mechanical properties such as hardness, gloss and high modulus and strength. One of the major components of these compounds is α-cellulose fiber and has a major effect on the mechanical properties. Although this fiber is being used in these compounds for a long time, there is not much data available of α-cellulose fibers on the physical and mechanical properties of melamine-formaldehyde molding compounds being investigated. Results show that although the microstructures of these two fibers are quite different from each other, but they do not have any effect on the mechanical properties of the molding. Whereas, it has a significant effect on the wettability (processing condition) and glossiness of the mol dings. Since this latter property is very important in house wares applications, the darker mol dings can not be used in domestic applications

  4. Exclusive processes at high momentum transfer

    CERN Document Server

    Radyushkin, Anatoly; Stoker, Paul

    2002-01-01

    This book focuses on the physics of exclusive processes at high momentum transfer and their description in terms of generalized parton distributions, perturbative QCD, and relativistic quark models. It covers recent developments in the field, both theoretical and experimental.

  5. Replication performance of Si-N-DLC-coated Si micro-molds in micro-hot-embossing

    International Nuclear Information System (INIS)

    Saha, B; Tor, S B; Liu, E; Khun, N W; Hardt, D E; Chun, J H

    2010-01-01

    Micro-hot-embossing is an emerging technology with great potential to form micro- and nano-scale patterns into polymers with high throughput and low cost. Despite its rapid progress, there are still challenges when this technology is employed, as demolding stress is usually very high due to large friction and adhesive forces induced during the process. Surface forces are dominating parameters in micro- and nano-fabrication technologies because of a high surface-to-volume ratio of products. This work attempted to improve the surface properties of Si micro-molds by means of silicon- and nitrogen-doped diamond-like carbon (Si-N-DLC) coatings deposited by dc magnetron cosputtering on the molds. The bonding structure, surface roughness, surface energy, adhesive strength and tribological behavior of the coated samples were characterized with micro Raman spectroscopy, atomic force microscopy (AFM), contact angle measurement, microscratch test and ball-on-disk sliding tribological test, respectively. It was observed that the doping condition had a great effect on the performance of the coatings. The Si-N-DLC coating deposited with 5 × 10 −6 m 3 min −1 N 2 had lowest surface roughness and energy of about 1.2 nm and 38.2 × 10 −3 N m −1 , respectively, while the coatings deposited with 20 × 10 −6 and 25 × 10 −6 m 3 min −1 N 2 showed lowest friction coefficients. The uncoated and Si-N-DLC-coated Si micro-molds were tested in a micro-hot-embossing process for a comparative study of their replication performance and lifetime. The experimental results showed that the performance of the Si micro-molds was improved by the Si-N-DLC coatings, and well-defined micro-features with a height of about 100 µm were fabricated successfully into cyclic olefin copolymer (COC) sheets using the Si-N-DLC-coated micro-molds.

  6. Decontamination formulation with additive for enhanced mold remediation

    Science.gov (United States)

    Tucker, Mark D [Albuquerque, NM; Irvine, Kevin [Huntsville, AL; Berger, Paul [Rome, NY; Comstock, Robert [Bel Air, MD

    2010-02-16

    Decontamination formulations with an additive for enhancing mold remediation. The formulations include a solubilizing agent (e.g., a cationic surfactant), a reactive compound (e.g., hydrogen peroxide), a carbonate or bicarbonate salt, a water-soluble bleaching activator (e.g., propylene glycol diacetate or glycerol diacetate), a mold remediation enhancer containing Fe or Mn, and water. The concentration of Fe.sup.2+ or Mn.sup.2+ ions in the aqueous mixture is in the range of about 0.0001% to about 0.001%. The enhanced formulations can be delivered, for example, as a foam, spray, liquid, fog, mist, or aerosol for neutralization of chemical compounds, and for killing certain biological compounds or agents and mold spores, on contaminated surfaces and materials.

  7. Treatment principles for the management of mold infections.

    Science.gov (United States)

    Kontoyiannis, Dimitrios P; Lewis, Russell E

    2014-11-06

    Survival rates among immunocompromised patients with invasive mold infections have markedly improved over the last decade with earlier diagnosis and new antifungal treatment options. Yet, increasing antifungal resistance, breakthrough infections with intrinsically resistant fungi, and potentially life-threatening adverse effects and drug interactions are becoming more problematic, especially with prolonged therapy. Evidence-based recommendations for treating invasive aspergillosis and mucormycosis provide excellent guidance on the initial workup and treatment of these molds, but they cannot address all of the key management issues. Herein, we discuss 10 general treatment principles in the management of invasive mold disease in immunocompromised patients and discuss how these principles can be integrated to develop an effective, individualized treatment plan. Copyright © 2015 Cold Spring Harbor Laboratory Press; all rights reserved.

  8. Applications of polyamide/cellulose fiber/wollastonite composites for microcellular injection molding

    Science.gov (United States)

    Herman Winata; Lih-Sheng Turng; Daniel F. Caulfield; Tom Kuster; Rick Spindler; Rod Jacobson

    2003-01-01

    In this study, a cellulose-fiber-reinforced Polyamide-6 (PA-6) composite, a hybrid composite (PA-6/cellulose/Wollastonite), and the neat PA-6 resin were injection molded into ASTM test–bar samples with conventional and microcellular injection molding. The impact and tensile strengths of molded samples were measured and the Scanning Electron Microscopy (SEM) images were...

  9. Effect of preparation variables of plaster molds for slip casting of sanitary ware

    Directory of Open Access Journals (Sweden)

    Rafael E. Ochoa

    2017-11-01

    Full Text Available A full factorial design was used to evaluate the effect of various preparation conditions for making plaster molds for slip casting of sanitary ware. We investigated the relationships between the processing conditions, microstructure, and final properties of the plaster molds. The results showed that the rheological behavior, and hence, the time during which the plaster suspension is pourable for making the plaster molds (before an important increase in viscosity due to the precipitation of gypsum crystals were dependent on the preparation conditions. Variations in the chemical composition, pore size distribution, and microstructure explained the statistically significant effect of preparation variables (including the mixing time, water temperature, and water quality. Preparation conditions that promoted high initial viscosity of the plaster suspension (accelerative effect of the setting time developed less porous structure in the mold that principally increased the compressive strength (16%, deionized water instead of tap water and the casting rate (9%, water at 25 °C instead of 38 °C. According to the results are proposed optimum conditions to make the molds while avoiding unnecessary energy use. Resumen: Mediante un diseño factorial completo se evaluaron diferentes condiciones de preparación de moldes de yeso para colado tradicional de muebles sanitarios. Se investigó la relación entre procesamiento, microestructura y propiedades del molde. Los resultados mostraron que el comportamiento reológico y por lo tanto el tiempo durante el cual la suspensión de yeso se puede verter para conformar los moldes (antes de un incremento importante de viscosidad debido a la formación de cristales de yeso fueron dependientes de las condiciones de preparación. Variaciones en composición química, distribución de tamaño de poro y microestructura explicaron el efecto estadísticamente significativo de las variables de preparación (que incluyeron

  10. Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives

    DEFF Research Database (Denmark)

    Bavaro, Simona L.; Susca, Antonia; Frisvad, Jens Christian

    2017-01-01

    Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food...

  11. Molding compound development with semiconductor PKGs; Handotai PKG doko to fushi jushi zairyo

    Energy Technology Data Exchange (ETDEWEB)

    Katayama, I. [NEC Corp., Tokyo (Japan)

    1998-11-05

    This paper describes the semiconductor packaging and molding compound materials. Major constituents of the molding resins are epoxy resin and inorganic silica, to which various additives are added. In order to make thin packages, biphenyl-based resins with low viscosity are often used in response to high fluidity. To fill the clearance less than 100 {mu}m, size adjusting techniques of the inorganic silica are also significant apart from resins. Since it is heated under the water absorption condition for the packaging in substrates, low water absorption, high adhesion, high strength and low stress are required to avoid peeling and cracking due to the vapor pressure of moisture. Generation of voids is also a problem. Improvement of productivity by reducing the processing period is also significant. In response to the strict environmental regulation, disuse of brominated epoxy and antimony oxide which are flame retardants in the molding resins is an urgent problem to be solved. For the epoxy resins, bisphenol A is to be regulated as a mutation substance. The cost reduction is required with keeping current quality kept. 1 fig.

  12. Predictive Engineering Tools for Injection-Molded Long-Carbon-Fiber Thermoplastic Composites. Topical Report

    Energy Technology Data Exchange (ETDEWEB)

    Nguyen, Ba Nghiep [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Fifield, Leonard S. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Wang, Jin [Autodesk, Inc., Ithaca, NY (United States); Costa, Franco [Autodesk, Inc., Ithaca, NY (United States); Lambert, Gregory [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Baird, Donald G. [Virginia Polytechnic Inst. and State Univ. (Virginia Tech), Blacksburg, VA (United States); Sharma, Bhisham A. [Purdue Univ., West Lafayette, IN (United States); Kijewski, Seth A. [Purdue Univ., West Lafayette, IN (United States); Sangid, Michael D. [Purdue Univ., West Lafayette, IN (United States); Gandhi, Umesh N. [Toyota Research Inst. North America, Ann Arbor, MI (United States); Wollan, Eric J. [PlastiComp, Inc., Winona, MN (United States); Roland, Dale [PlastiComp, Inc., Winona, MN (United States); Mori, Steven [Magna Exteriors and Interiors Corporation, Aurora, ON (Canada); Tucker, III, Charles L. [Univ. of Illinois, Urbana-Champaign, IL (United States)

    2016-06-01

    This project aimed to integrate, optimize, and validate the fiber orientation and length distribution models previously developed and implemented in the Autodesk® Simulation Moldflow® Insight (ASMI) software package for injection-molded long-carbon-fiber (LCF) thermoplastic composite structures. The project was organized into two phases. Phase 1 demonstrated the ability of the advanced ASMI package to predict fiber orientation and length distributions in LCF/polypropylene (PP) and LCF/polyamide-6, 6 (PA66) plaques within 15% of experimental results. Phase 2 validated the advanced ASMI package by predicting fiber orientation and length distributions within 15% of experimental results for a complex three-dimensional (3D) Toyota automotive part injection-molded from LCF/PP and LCF/PA66 materials. Work under Phase 2 also included estimate of weight savings and cost impacts for a vehicle system using ASMI and structural analyses of the complex part. The present report summarizes the completion of Phases 1 and 2 work activities and accomplishments achieved by the team comprising Pacific Northwest National Laboratory (PNNL); Purdue University (Purdue); Virginia Polytechnic Institute and State University (Virginia Tech); Autodesk, Inc. (Autodesk); PlastiComp, Inc. (PlastiComp); Toyota Research Institute North America (Toyota); Magna Exteriors and Interiors Corp. (Magna); and University of Illinois. Figure 1 illustrates the technical approach adopted in this project that progressed from compounding LCF/PP and LCF/PA66 materials, to process model improvement and implementation, to molding and modeling LCF/PP and LCF/PA66 plaques. The lessons learned from the plaque study and the successful validation of improved process models for fiber orientation and length distributions for these plaques enabled the project to go to Phase 2 to mold, model, and optimize the 3D complex part.

  13. The Competence Accumulation Process in the Technology Transference Strategy

    Directory of Open Access Journals (Sweden)

    André Silva de Souza

    2008-04-01

    Full Text Available The present article evaluates and measures the technological competence accumulation in an automation area enterprise to distribution centers, Knapp Sudamérica Logistic and Automation Ltd, in the interval of the technology transference process previous period (1998-2001 and during the technology transference process(2002-2005. Therefore, based on an individual case study, the study identified the technology transference strategy and mechanism accorded between the head office and the branch office, the technological functions and activities developed by the receiver and, at last, the critical factors present in this process. The echnological competences accumulation exam was accomplished based on an analytical structure existent in the literature that was adapted to the researched segment analysis. The obtained results showed that the planed, organized, controlled and continuous effort to generating and disseminating knowledge allowed the enterprise to speed up the accumulation process of technological competences promoting the converting of this process from individual level to the organizational one: besides, it also allowed the identification of barriers and facilitators involved in this process.

  14. Highly conductive thermoplastic composite blends suitable for injection molding of bipolar plates

    International Nuclear Information System (INIS)

    Mighri, F.; Huneault, M.A.; Champagne, M.F.

    2003-01-01

    This study aimed at developing highly conductive, lightweight, and low-cost bipolar plates for use in proton exchange membranes (PEM) fuel cells. Injection and compression molding of highly filled polypropylene, PP, and polyphenylene sulfide, PPS, based blends were used as a mean for mass production of bipolar plates. Loadings up to 60-wt% in the form of graphite, conductive carbon black and carbon fibers were investigated. The developed formulations have a combination of properties and processability suitable for bipolar plate manufacturing, such as good chemical resistance, sufficient fluidity, and good electrical and thermal conductivity. Electrical resistivities around 0.15 and 0.09 Ohm-cm were respectively achieved for the PP and PPS-based blends, respectively. Two bipolar plate designs were successfully fabricated by molding the gas flow channels over aluminum plates to form a metallic/polymer composite plate, or simply by direct injection molding of the conductive polymer composite. For the first design, overall plate resistivities of 0.2 and 0.1 Ohm-cm were respectively attained using PP and PPS based blends as conductive skin. A lower volume resistivity of around 0.06 Ohm-cm was attained for the second injected plate design with PPS based blend. (author)

  15. Minimization of variation in volumetric shrinkage and deflection on injection molding of Bi-aspheric lens using numerical simulation

    Energy Technology Data Exchange (ETDEWEB)

    Bensingh, R. Joseph [Central Institute of Plastics Engineering and Technology, Chennai (India); Boopathy, S. Rajendra [College of Engineering, Anna University, Chennai (India); Jebaraj, C. [Vellore Institutes of Technology, Chennai (India)

    2016-11-15

    The profile of a bi-aspheric lens is such a way that the thickness narrows down from center to periphery (convex). Injection molding of these profiles has high shrinkage in localized areas, which results in internal voids or sink marks when the part gets cool down to room temperature. This paper deals with the influence of injection molding process parameters such as mold surface temperature, melt temperature, injection time, V/P Switch over by percentage volume filled, packing pressure, and packing duration on the volumetric shrinkage and deflection. The optimal molding parameters for minimum variation in volumetric shrinkage and deflection of bi-aspheric lens have been determined with the application of computer numerical simulation integrated with optimization. The real experimental work carried out with optimal molding parameters and found to have a shallow and steep surface profile accuracy of 0.14 and 1.57 mm, 21.38-45.66 and 12.28-26.90 μm, 41.56-157.33 and 41.56-157.33 nm towards Radii of curvatures (RoC), surface roughness (Ra) and waviness of the surface profiles (profile error Pt), respectively.

  16. Effect of reinforcement amount, mold temperature, superheat, and mold thickness on fluidity of in-situ Al-Mg2Si composites

    Directory of Open Access Journals (Sweden)

    Reza Vatankhah Barenji

    2018-01-01

    Full Text Available In the present study, the effects of mold temperature, superheat, mold thickness, and Mg2Si amount on the fluidity of the Al-Mg2Si as-cast in-situ composites were investigated using the mathematical models. Composites with different amounts of Mg2Si were fabricated, and the fluidity and microstructure of each were then analyzed. For this purpose, the experiments were designed using a central composite rotatable design, and the relationship between parameters and fluidity were developed using the response surface method. In addition, optical and scanning electron microscopes were used for microstructural observation. The ANOVA shows that the mathematical models can predict the fluidity accurately. The results show that by increasing the mold temperature from 25 °C to 200 °C, superheat from 50 °C to 250 °C, and thickness from 3 mm to 12 mm, the fluidity of the composites decreases, where the mold thickness is more effective than other factors. In addition, the higher amounts of Mg2Si in the range from 15wt.% to 25wt.% lead to the lower fluidity of the composites. For example, when the mold temperature, superheat, and thickness are respectively 100 °C, 150 °C, and 7 mm, the fluidity length is changed in the range of 11.9 cm to 15.3 cm. By increasing the amount of Mg2Si, the morphology of the primary Mg2Si becomes irregular and the size of primary Mg2Si is increased. Moreover, the change of solidification mode from skin to pasty mode is the most noticeable microstructural effect on the fluidity.

  17. Structural Reorganization of CNC in Injection-Molded CNC/PBAT Materials under Thermal Annealing.

    Science.gov (United States)

    Mariano, Marcos; El Kissi, Nadia; Dufresne, Alain

    2016-10-04

    Composite materials were prepared by extrusion and injection molding from polybutyrate adipate terephthalate (PBAT) and high aspect ratio cellulose nanocrystals (CNCs) extracted from capim dourado fibers. Three CNC contents were used, corresponding to 0.5, 1, and 2 times the theoretical percolation threshold. Small-amplitude oscillary shear (SAOS) experiments show that as the CNC content increases, a more elastic behavior is observed but no percolating network can form within the polymeric matrix as a result of the high shear rates involved during the injection-molding process. Annealing of the samples at 170 °C was performed, and the possible reorganization of the nanofiller was investigated. This reorganization was further elucidated using 2D-SAOS and creep experiments.

  18. In-body tissue-engineered aortic valve (Biovalve type VII) architecture based on 3D printer molding.

    Science.gov (United States)

    Nakayama, Yasuhide; Takewa, Yoshiaki; Sumikura, Hirohito; Yamanami, Masashi; Matsui, Yuichi; Oie, Tomonori; Kishimoto, Yuichiro; Arakawa, Mamoru; Ohmuma, Kentaro; Tajikawa, Tsutomu; Kanda, Keiichi; Tatsumi, Eisuke

    2015-01-01

    In-body tissue architecture--a novel and practical regeneration medicine technology--can be used to prepare a completely autologous heart valve, based on the shape of a mold. In this study, a three-dimensional (3D) printer was used to produce the molds. A 3D printer can easily reproduce the 3D-shape and size of native heart valves within several processing hours. For a tri-leaflet, valved conduit with a sinus of Valsalva (Biovalve type VII), the mold was assembled using two conduit parts and three sinus parts produced by the 3D printer. Biovalves were generated from completely autologous connective tissue, containing collagen and fibroblasts, within 2 months following the subcutaneous embedding of the molds (success rate, 27/30). In vitro evaluation, using a pulsatile circulation circuit, showed excellent valvular function with a durability of at least 10 days. Interposed between two expanded polytetrafluoroethylene grafts, the Biovalves (N = 3) were implanted in goats through an apico-aortic bypass procedure. Postoperative echocardiography showed smooth movement of the leaflets with minimal regurgitation under systemic circulation. After 1 month of implantation, smooth white leaflets were observed with minimal thrombus formation. Functional, autologous, 3D-shaped heart valves with clinical application potential were formed following in-body embedding of specially designed molds that were created within several hours by 3D printer. © 2014 Wiley Periodicals, Inc.

  19. Characterization of Mullite-Zirconia Composite Processed by Non-Transferred and Transferred Arc Plasma

    International Nuclear Information System (INIS)

    Yugeswaran, S.; Selvarajan, V.; Lusvarghi, L.; Tok, A. I. Y.; Krishna, D. Siva Rama

    2009-01-01

    The arc plasma melting technique is a simple method to synthesize high temperature reaction composites. In this study, mullite-zirconia composite was synthesized by transferred and non-transferred arc plasma melting, and the results were compared. A mixture of alumina and zircon powders with a mole ratio of 3: 2 were ball milled for four hours and melted for two minutes in the transferred and non-transferred mode of plasma arcs. Argon and air were used as plasma forming gases. The phase and microstructural formation of melted samples were investigated by X-ray diffraction (XRD) and scanning electron microscope (SEM). The microstructure of the composites was found to be affected by the mode of melting. In transferred arc melting, zirconia flowers with uniform lines along with mullite whiskers were obtained. In the case of non-transferred arc plasma melting, mullite whiskers along with star shape zirconia were formed. Differential thermal analysis (DTA) of the synthesized mullite-zirconia composites provided a deeper understanding of the mechanisms of mullite formation during the two different processes. (plasma technology)

  20. A rapid colorimetric assay for mold spore germination using XTT tetrazolium salt

    Science.gov (United States)

    Carol A. Clausen; Vina W. Yang

    2011-01-01

    Current laboratory test methods to measure efficacy of new mold inhibitors are time consuming, some require specialized test equipment and ratings are subjective. Rapid, simple quantitative assays to measure the efficacy of mold inhibitors are needed. A quantitative, colorimetric microassay was developed using XTT tetrazolium salt to metabolically assess mold spore...

  1. Fluid flow and heat transfer modeling for castings

    International Nuclear Information System (INIS)

    Domanus, H.M.; Liu, Y.Y.; Sha, W.T.

    1986-01-01

    Casting is fundamental to manufacturing of many types of equipment and products. Although casting is a very old technology that has been in existence for hundreds of years, it remains a highly empirical technology, and production of new castings requires an expensive and time-consuming trial-and-error approach. In recent years, mathematical modeling of casting has received increasing attention; however, a majority of the modeling work has been in the area of heat transfer and solidification. Very little work has been done in modeling fluid flow of the liquid melt. This paper presents a model of fluid flow coupled with heat transfer of a liquid melt for casting processes. The model to be described in this paper is an extension of the COMMIX code and is capable of handling castings with any shape, size, and material. A feature of this model is the ability to track the liquid/gas interface and liquid/solid interface. The flow of liquid melt through the sprue and runners and into the mold cavity is calculated as well as three-dimensional temperature and velocity distributions of the liquid melt throughout the casting process. 14 refs., 13 figs

  2. Coping With Cleft: A Conceptual Framework of Caregiver Responses to Nasoalveolar Molding.

    Science.gov (United States)

    Sischo, Lacey; Broder, Hillary L; Phillips, Ceib

    2015-11-01

    To present a conceptual framework of caregiver coping and adaptation to early cleft care using nasoalveolar molding. In-depth interviews were conducted at three time points with caregivers of infants with cleft lip or cleft lip and palate whose children had nasoalveolar molding to treat their cleft. Qualitative data were analyzed using modified grounded theory. Most caregivers expressed initial apprehension and anxiety about the responsibilities of care associated with nasoalveolar molding (e.g., changing and positioning tapes, cleaning the appliance). In subsequent interviews, caregivers often reported positive feelings related to their active participation in their child's treatment for cleft. These positive feelings were associated with increased self-esteem and feelings of empowerment for the caregivers. Although caregivers also identified burdens associated with nasoalveolar molding (e.g., stress related to lip taping, concerns about the appliance causing sores in their child's mouth, travel to weekly appointments), they tended to minimize the impact of these issues in comparison with the perceived benefits of nasoalveolar molding. Despite the increased burden of care, many caregivers of infants with cleft used nasoalveolar molding as a problem-focused coping strategy to deal with their child's cleft. Completing nasoalveolar molding was often associated with positive factors such as increased empowerment, self-esteem, and bonding with their infant.

  3. Computer Simulation of Cure Process of an Axisymmetric Rubber Article Reinforced by Metal Plates Using Extended ABAQUS Code

    Directory of Open Access Journals (Sweden)

    M.H.R. Ghoreishy

    2013-01-01

    Full Text Available Afinite element model is developed for simulation of the curing process of a thick axisymmetric rubber article reinforced by metal plates during the molding and cooling stages. The model consists of the heat transfer equation and a newly developed kinetics model for the determination of the state of cure in the rubber. The latter is based on the modification of the well-known Kamal-Sourour model. The thermal contact of the rubber with metallic surfaces (inserts and molds and the variation of the thermal properties (conductivity and specific heat with temperature and state-of-cure are taken into consideration. The ABAQUS code is used in conjunction with an in-house developed user subroutine to solve the governing equations. Having compared temperature profile and variation of the state-of-cure with experimentally measured data, the accuracy and applicability of the model is confirmed. It is also shown that this model can be successfully used for the optimization of curing process which gives rise to reduction of the molding time.

  4. Infant origins of childhood asthma associated with specific molds.

    Science.gov (United States)

    Reponen, Tiina; Lockey, James; Bernstein, David I; Vesper, Stephen J; Levin, Linda; Khurana Hershey, Gurjit K; Zheng, Shu; Ryan, Patrick; Grinshpun, Sergey A; Villareal, Manuel; Lemasters, Grace

    2012-09-01

    The specific cause or causes of asthma development must be identified to prevent this disease. Our hypothesis was that specific mold exposures are associated with childhood asthma development. Infants were identified from birth certificates. Dust samples were collected from 289 homes when the infants were 8 months of age. Samples were analyzed for concentrations of 36 molds that comprise the Environmental Relative Moldiness Index (ERMI) and endotoxin, house dust mite, cat, dog, and cockroach allergens. Children were evaluated at age 7 years for asthma based on reported symptoms and objective measures of lung function. Host, environmental exposure, and home characteristics evaluated included a history of parental asthma, race, sex, upper and lower respiratory tract symptoms, season of birth, family income, cigarette smoke exposure, air conditioning, use of a dehumidifier, presence of carpeting, age of home, and visible mold at age 1 year and child's positive skin prick test response to aeroallergens and molds at age 7 years. Asthma was diagnosed in 24% of the children at age 7 years. A statistically significant increase in asthma risk at age 7 years was associated with high ERMI values in the child's home in infancy (adjusted relative risk for a 10-unit increase in ERMI value, 1.8; 95% CI, 1.5-2.2). The summation of levels of 3 mold species, Aspergillus ochraceus, Aspergillus unguis, and Penicillium variabile, was significantly associated with asthma (adjusted relative risk, 2.2; 95% CI, 1.8-2.7). In this birth cohort study exposure during infancy to 3 mold species common to water-damaged buildings was associated with childhood asthma at age 7 years. Copyright © 2012 American Academy of Allergy, Asthma & Immunology. Published by Mosby, Inc. All rights reserved.

  5. Easy fabrication of high quality nickel mold for deep polymer microfluidic channels

    International Nuclear Information System (INIS)

    Wong, Ten It; Tan, Christina Yuan Ling; Zhou, Xiaodong; Limantoro, Julian; Fong, Kin Phang; Quan, Chenggen; Sun, Ling Ling

    2016-01-01

    Mass fabrication of disposable microfluidic chips with hot embossing is a key technology for microfluidic chip based biosensors. In this work, we develop a new method of fabricating high quality and highly durable nickel molds for hot embossing polymer chips. The process involves the addition of a thick, patterned layer of negative photoresist AZ-125nxT to a 4″ silicon wafer, followed by nickel electroplating and delamination of the nickel mold. Our investigations found that compared to a pillar mask, a hole mask can minimize the diffraction effect in photolithography of a thick photoresist, reduce the adhesion of the AZ-125nxT to the photomask in photolithography, and facilitate clean development of the photoresist patterns. By optimizing the hot embossing and chip bonding parameters, microfluidic chips with deep channels are achieved. (paper)

  6. Azole-based antimycotic agents inhibit mold on unseasoned pine

    Science.gov (United States)

    Carol. A. Clausen; Vina W. Yang

    2005-01-01

    Inhibiting the growth of mold fungi on cellulose-based building materials may be achievable through the use of azole-based antimycotics. Azoles were variably effective against mold fungi that are frequently found on wood and wood products. Unseasoned southern yellow pine specimens that were dip-treated with varying concentrations of eight azoles were evaluated for...

  7. Integrated hot-melt extrusion - injection molding continuous tablet manufacturing platform: Effects of critical process parameters and formulation attributes on product robustness and dimensional stability.

    Science.gov (United States)

    Desai, Parind M; Hogan, Rachael C; Brancazio, David; Puri, Vibha; Jensen, Keith D; Chun, Jung-Hoon; Myerson, Allan S; Trout, Bernhardt L

    2017-10-05

    This study provides a framework for robust tablet development using an integrated hot-melt extrusion-injection molding (IM) continuous manufacturing platform. Griseofulvin, maltodextrin, xylitol and lactose were employed as drug, carrier, plasticizer and reinforcing agent respectively. A pre-blended drug-excipient mixture was fed from a loss-in-weight feeder to a twin-screw extruder. The extrudate was subsequently injected directly into the integrated IM unit and molded into tablets. Tablets were stored in different storage conditions up to 20 weeks to monitor physical stability and were evaluated by polarized light microscopy, DSC, SEM, XRD and dissolution analysis. Optimized injection pressure provided robust tablet formulations. Tablets manufactured at low and high injection pressures exhibited the flaws of sink marks and flashing respectively. Higher solidification temperature during IM process reduced the thermal induced residual stress and prevented chipping and cracking issues. Polarized light microscopy revealed a homogeneous dispersion of crystalline griseofulvin in an amorphous matrix. DSC underpinned the effect of high tablet residual moisture on maltodextrin-xylitol phase separation that resulted in dimensional instability. Tablets with low residual moisture demonstrated long term dimensional stability. This study serves as a model for IM tablet formulations for mechanistic understanding of critical process parameters and formulation attributes required for optimal product performance. Copyright © 2017 Elsevier B.V. All rights reserved.

  8. Mechanical properties of the weld line defect in micro injection molding for various nano filled polypropylene composites

    International Nuclear Information System (INIS)

    Xie Lei; Ziegmann, Gerhard

    2011-01-01

    Research highlights: → PP/CNFs and PP/TiO 2 composites with relative high loading fractions (10, 20, 30 and 35 wt%) were fabricated by inner melt mixing process. Micro tensile test samples were formed by injection molding combined with variotherm process for all composites. → The morphological properties of all nano composites were characterized by WXRD, whose results imply the adding nano fillers did not change the crystal form of PP, but the crystallites size and distance between lattices of crystals were changed with various nano fillers and loading fractions. → DSC analysis show that due to the nucleating function of nano fillers, the peak temperature of crystallization was increased and the peak temperature of crystallization melting was decreased by adding the nanofillers. → The flow ability of nano composites was tested by high pressure single capillary rheometer and the results demonstrate that nano fillers increased the viscosity of PP matrix. → Based on these significant information and analysis foundation of the nano filled composites, the micro weld line samples were formed by injection molding process and characterized by tensile test method. From the achieved results, it can be found that in general, for functional nano filled polymer composites, the mechanical property of micro weld lines were obviously influenced by nano fillers' shape and loading fractions. → The E modulus of micro weld line was increased due to loading CNFs in PP matrix, while the elongation of the micro tensile samples with weld line is considerably decreased comparing with those of unfilled PP samples. The detrimental tensile strength of micro weld lines were observed when CNFs contents increasing, except for at a 10 wt%. → For TiO 2 nano particles filled PP, due to the poor dispersion of nano particles, at low loading fraction of 10 wt%, the E modulus and tensile strength of micro weld lines were decreased by filling nano particles, but when the loading fraction

  9. Populations and identification of fungi causing postharvest molds, on pineapple peduncles in two regions in Costa Rica

    Directory of Open Access Journals (Sweden)

    Johanny Castro Chinchilla

    2015-11-01

    Full Text Available Pineapple peduncle mold is an important postharvest problem in Costa Rica and it causes fruit rejection. The objective of this study was to identify and quantify the most important fungi in different postharvest phases. Monthly samplings were performed during one production year in 2 regions of Costa Rica. The main genera of fungi were identified and characterized at the molecular level. The colony forming units (CFU were determined in disinfection water, wax, cooling rooms air and in the peel and peduncle of fruits before (NP and after (P processing with the common postharvest treatments of the farms. Fruits were stored in cooling rooms during 22 days and at the end incidence and severity of peduncle molds were evaluated. During the year, changes in fungi populations were observed in all postharvest phases and in the fruits, with higher populations in wax than in disinfection water. Fungi population and molds were higher in the peduncle of NP fruits as compared with P fruits, coincident with larger mold populations at the end of storage. Fungi recovered in the cooling rooms air could also be a source for peduncle molds development. Penicillium purpureogenum, P. diversum and Penicllium sp., were the main fungi identified, with an in vitro high sporulation rate and growing in the peduncle. Moreover, different commercial practices, such as waxing and cooling, where spores were captured, can enhance the peduncle molds development, so it is considered important the cleaning of cooling rooms, as well as developing mechanisms to avoid accumulation in wax of important populations of microorganisms.

  10. Intelligent Machine Vision Based Modeling and Positioning System in Sand Casting Process

    Directory of Open Access Journals (Sweden)

    Shahid Ikramullah Butt

    2017-01-01

    Full Text Available Advanced vision solutions enable manufacturers in the technology sector to reconcile both competitive and regulatory concerns and address the need for immaculate fault detection and quality assurance. The modern manufacturing has completely shifted from the manual inspections to the machine assisted vision inspection methodology. Furthermore, the research outcomes in industrial automation have revolutionized the whole product development strategy. The purpose of this research paper is to introduce a new scheme of automation in the sand casting process by means of machine vision based technology for mold positioning. Automation has been achieved by developing a novel system in which casting molds of different sizes, having different pouring cup location and radius, position themselves in front of the induction furnace such that the center of pouring cup comes directly beneath the pouring point of furnace. The coordinates of the center of pouring cup are found by using computer vision algorithms. The output is then transferred to a microcontroller which controls the alignment mechanism on which the mold is placed at the optimum location.

  11. Evaluation of Additive Manufacturing for Composite Part Molds

    Energy Technology Data Exchange (ETDEWEB)

    Duty, Chad E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Springfield, Robert M. [Tru Design, LLC, Knoxville, TN (United States)

    2015-02-01

    The ORNL Manufacturing Demonstration Facility (MDF) collaborated with Tru-Design to test the quality and durability of molds used for making fiber reinforced composites using additive manufacturing. The partners developed surface treatment techniques including epoxy coatings and machining to improve the quality of the surface finish. Test samples made using the printed and surface finished molds demonstrated life spans suitable for one-of-a-kind and low-volume applications, meeting the project objective.

  12. Measurement of casting parameters in ZnAlCu3 molds created by additive technology

    Directory of Open Access Journals (Sweden)

    S. Medić

    2016-10-01

    Full Text Available This paper examines the parameters of casting ZnAl4Cu3 alloy (volume, castability, density and occupancy of the mold in mold made additive technology. Molds made by additive technology are: cheaper in production of a small number of castings, geometrically more accurate and faster made. From obtained results of this paper it is clearly seen that printed mold must be protected with thermal coating because liquid adhesive of powder otherwise evaporates during casting and creates additional moisture in the mold, as it was noted.

  13. High momentum transfer processes in QCD

    International Nuclear Information System (INIS)

    Efremov, A.V.; Radyushkin, A.V.

    1978-01-01

    A unified approach to the investigation of inclusive high momentum transfer processes in the QCD framework is proposed. A modified parton model (with parton distribution functions depending on an additional renormalization parameter) is shown to be valid in all orders of perturbation theory. The approach is also applicable for studying wide-angle elastic scattering processes of colourless bound states of quarks (the hadrons). The asymptotic behaviour of pion electromagnetic form factor is calculated as an example

  14. Effect of Residence Time of Graphitisation on Thermal Conductivity of Molded Graphite

    Directory of Open Access Journals (Sweden)

    Pedy Artsanti

    2010-06-01

    Full Text Available The effect of residence time of graphitisation on thermal conductivity of molded graphite has been examined. The examination has been conducted by varying residence time of graphitisation of molded carbon with petroleum coke as raw material and coal tar pitch. Graphitisation has been conducted by heating molded graphite at 2500 °C in argon atmosphere with residention time of 10, 30 and 90 minutes. Graphitisation degree, density, shrinking mass and porosity of molded graphite were examined and so was its thermal conductivity. The result showed that the decrease of porosity and the increase of graphitisation degree due to the increasing of residention time of graphitisation will increase the thermal conductivity of graphite. Molded graphite graphitisized with residence time for 90 minutes residention time gave thermal conductivity of 2.134 Watt/mK and graphitization degree 0.718.

  15. Heat transfer phenomena during thermal processing of liquid particulate mixtures-A review.

    Science.gov (United States)

    Singh, Anubhav Pratap; Singh, Anika; Ramaswamy, Hosahalli S

    2017-05-03

    During the past few decades, food industry has explored various novel thermal and non-thermal processing technologies to minimize the associated high-quality loss involved in conventional thermal processing. Among these are the novel agitation systems that permit forced convention in canned particulate fluids to improve heat transfer, reduce process time, and minimize heat damage to processed products. These include traditional rotary agitation systems involving end-over-end, axial, or biaxial rotation of cans and the more recent reciprocating (lateral) agitation. The invention of thermal processing systems with induced container agitation has made heat transfer studies more difficult due to problems in tracking the particle temperatures due to their dynamic motion during processing and complexities resulting from the effects of forced convection currents within the container. This has prompted active research on modeling and characterization of heat transfer phenomena in such systems. This review brings to perspective, the current status on thermal processing of particulate foods, within the constraints of lethality requirements from safety view point, and discusses available techniques of data collection, heat transfer coefficient evaluation, and the critical processing parameters that affect these heat transfer coefficients, especially under agitation processing conditions.

  16. A novel vision-based mold monitoring system in an environment of intense vibration

    International Nuclear Information System (INIS)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-01-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration. (paper)

  17. A novel vision-based mold monitoring system in an environment of intense vibration

    Science.gov (United States)

    Hu, Fen; He, Zaixing; Zhao, Xinyue; Zhang, Shuyou

    2017-10-01

    Mold monitoring has been more and more widely used in the modern manufacturing industry, especially when based on machine vision, but these systems cannot meet the detection speed and accuracy requirements for mold monitoring because they must operate in environments that exhibit intense vibration during production. To ensure that the system runs accurately and efficiently, we propose a new descriptor that combines the geometric relationship-based global context feature and the local scale-invariant feature transform for the image registration step of the mold monitoring system. The experimental results of four types of molds showed that the detection accuracy of the mold monitoring system is improved in the environment with intense vibration.

  18. Anti-sticking behavior of DLC-coated silicon micro-molds

    International Nuclear Information System (INIS)

    Saha, B; Tor, S B; Liu, E; Khun, N W; Hardt, D E; Chun, J H

    2009-01-01

    Pure carbon- (C), nitrogen- (N) and titanium- (Ti) doped diamond-like carbon (DLC) coatings were deposited on silicon (Si) micro-molds by dc magnetron sputtering deposition to improve the tribological performance of the micro-molds. The coated and uncoated Si molds were used in injection molding for the fabrication of secondary metal-molds, which were used for the replication of micro-fluidic devices. The bonding structure, surface roughness, surface energy, critical load and friction coefficient of the DLC coatings were characterized with micro-Raman spectroscopy, atomic force microscopy (AFM), contact angle, microscratch and ball-on-disc sliding wear tests, respectively. It was observed that the doping conditions had significant effects on Raman peak positions, mechanical and tribological properties of the coatings. The G peak shifted toward a lower position with N and Ti doping. The DLC coating deposited with 1 sccm N 2 flow rate showed the lowest G peak position and the smoothest surface. The surface energies of the pure carbon and Ti-doped DLC coatings were lower than that of the N-doped DLC, which was more significant at a higher N 2 flow rate. In terms of adhesion and friction coefficient, it was observed that the Ti-doped DLC coating had the best performance. Ti incorporated in the DLC coating decreased the residual stress of the coating, which improved the adhesive strength of the coating with the Si substrate

  19. Molded underfill (MUF) encapsulation for flip-chip package: A numerical investigation

    Science.gov (United States)

    Azmi, M. A.; Abdullah, M. K.; Abdullah, M. Z.; Ariff, Z. M.; Saad, Abdullah Aziz; Hamid, M. F.; Ismail, M. A.

    2017-07-01

    This paper presents the numerical simulation of epoxy molding compound (EMC) filling in multi flip-chip packages during encapsulation process. The empty and a group flip chip packages were considered in the mold cavity in order to study the flow profile of the EMC. SOLIDWORKS software was used for three-dimensional modeling and it was incorporated into fluid analysis software namely as ANSYS FLUENT. The volume of fluid (VOF) technique was used for capturing the flow front profiles and Power Law model was applied for its rheology model. The numerical result are compared and discussed with previous experimental and it was shown a good conformity for model validation. The prediction of flow front was observed and analyzed at different filling time. The possibility and visual of void formation in the package is captured and the number of flip-chip is one factor that contributed to the void formation.

  20. Development of plastic pulley by injection molding; Shashutsu keisei ni yoru jushi pulley no kaihatsu

    Energy Technology Data Exchange (ETDEWEB)

    Yoshizumi, F; Funatsu, A; Yazawa, H [Sumitomo Bakelite Co. Ltd., Tokyo (Japan)

    1997-10-01

    We developed plastic pulley for automobile manufactured by injection molding which will reduce manufacturing cost. We have developed product design, injection molding technology especially to improve mechanical strength and phenolic molding compound with good wear resistance and high mechanical strength. We have established `Injection Compression molding` technology to improve mechanical strength of weld portion. We also developed phenolic molding compound which is composed of one step resin and long organic fiber to obtain good wear resistance and high mechanical strength. Manufacturing cost will be reduced by using injection molding combined with lower material cost of the newly developed compound. 12 figs., 2 tabs.

  1. Effect of injection molding parameters on nanofillers dispersion in masterbatch based PP-clay nanocomposites

    Directory of Open Access Journals (Sweden)

    J. Soulestin

    2012-03-01

    Full Text Available The effect of injection molding parameters (screw rotational speed, back pressure, injec-tion flow rate and holding pressure on the nanofiller dispersion of melt-mixed PP/clay nanocomposites was investigated. The nanocomposites containing 4 wt% clay were obtained by dilution of a PP/clay masterbatch into a PP matrix. The evaluation of the dispersion degree was obtained from dynamic rheological measurements. The storage modulus and complex viscosity exhibit significant dependence on the injection molding parameters. PP/clay nanocomposite molded using more severe injection parameters (high shear and long residence time displays the highest storage modulus and complex viscosity, which illustrates the improved dispersion of clay platelets. This better dispersion leads to better mechanical properties particularly higher Young modulus, tensile strength and unnotched impact strength. A Taguchi analysis was used to identify the influence of individual process parameters. The major individual parameter is the injection flow rate, whose increase improves nanoclay dispersion. The combination of high back pressure and high screw rotational speed is also necessary to optimize the dispersion of clay nanoplatelets.

  2. Water Transfer Characteristics during Methane Hydrate Formation Processes in Layered Media

    Directory of Open Access Journals (Sweden)

    Yousheng Deng

    2011-08-01

    Full Text Available Gas hydrate formation processes in porous media are always accompanied by water transfer. To study the transfer characteristics comprehensively, two kinds of layered media consisting of coarse sand and loess were used to form methane hydrate in them. An apparatus with three PF-meter sensors detecting water content and temperature changes in media during the formation processes was applied to study the water transfer characteristics. It was experimentally observed that the hydrate formation configurations in different layered media were similar; however, the water transfer characteristics and water conversion ratios were different.

  3. Grain refinement of permanent mold cast copper base alloys. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sadayappan, M.; Thomson, J. P.; Elboujdaini, M.; Gu, G. Ping; Sahoo, M.

    2004-04-29

    Grain refinement behavior of copper alloys cast in permanent molds was investigated. This is one of the least studied subjects in copper alloy castings. Grain refinement is not widely practiced for leaded copper alloys cast in sand molds. Aluminum bronzes and high strength yellow brasses, cast in sand and permanent molds, were usually fine grained due to the presence of more than 2% iron. Grain refinement of the most common permanent mold casting alloys, leaded yellow brass and its lead-free replacement EnviroBrass III, is not universally accepted due to the perceived problem of hard spots in finished castings and for the same reason these alloys contain very low amounts of iron. The yellow brasses and Cu-Si alloys are gaining popularity in North America due to their low lead content and amenability for permanent mold casting. These alloys are prone to hot tearing in permanent mold casting. Grain refinement is one of the solutions for reducing this problem. However, to use this technique it is necessary to understand the mechanism of grain refinement and other issues involved in the process. The following issues were studied during this three year project funded by the US Department of Energy and the copper casting industry: (1) Effect of alloying additions on the grain size of Cu-Zn alloys and their interaction with grain refiners; (2) Effect of two grain refining elements, boron and zirconium, on the grain size of four copper alloys, yellow brass, EnviroBrass II, silicon brass and silicon bronze and the duration of their effect (fading); (3) Prediction of grain refinement using cooling curve analysis and use of this method as an on-line quality control tool; (4) Hard spot formation in yellow brass and EnviroBrass due to grain refinement; (5) Corrosion resistance of the grain refined alloys; (6) Transfer the technology to permanent mold casting foundries; It was found that alloying elements such as tin and zinc do not change the grain size of Cu-Zn alloys

  4. Differential Allergy Induction by Molds Found in Water-Damaged Homes

    Science.gov (United States)

    Abstract: We compared the allergy induction potential of high concentration molds found in water-damaged homes and molds found more universally to house dust mite (HDM) in our mouse allergy/asthma model. Female BALB/c mice received 1 or 4 exposures by intratracheal aspiration of ...

  5. Application of atmospheric-pressure argon plasma jet for bread mold decontamination

    Science.gov (United States)

    Thonglor, P.; Amnuaycheewa, P.

    2017-09-01

    Atmospheric-pressure argon plasma (APAP) is a promising non-thermal technology for microbial control and prevention minimally affecting quality of foods. Effect of APAP jet on the growth of bread molds, including two Aspergillus sp., Rhizopus stolonifer, and Penicillium roqueforti, isolated from white bread were investigated. The molds were isolated, verified, cultured to fully grown on potato dextrose agar (PDA), and subsequently treated with APAP jet using plasma generating power at 24 W for 5, 10, and 20 min, respectively. The inhibition of mold growth was investigated by comparing fungal dry weights and the effect on fungal cell structure was observed using compound light microscope. The results indicated that the 20-min treatment time is most effective in retarding the growth of the three bread molds. However, this level of generating power did not lead to destruction of the cellular structures for all the four fungi. Plasma generating power and treatment time are significant parameters determining the success of bread mold decontamination and further investigation on real bread matrix is needed.

  6. White mold of Jerusalem artichoke

    Science.gov (United States)

    Jerusalem artichoke (Helianthus tuberosus) is a Native American food plant closely related to the common sunflower (Helianthus annuus). Tubers of Jerusalem artichoke are increasingly available in retail grocery outlets. White mold (Sclerotinia stem rot), caused by the fungus, Sclerotinia sclerotioru...

  7. Isolation, Characterization, and Selection of Molds Associated to Fermented Black Table Olives

    Directory of Open Access Journals (Sweden)

    Simona L. Bavaro

    2017-07-01

    Full Text Available Table olives are one of the most important fermented food in the Mediterranean countries. Apart from lactic acid bacteria and yeasts that mainly conduct the olive fermentation, molds can develop on the brine surface, and can have either deleterious or useful effects on this process. From the food safety point of view, occurring molds could also produce mycotoxins, so, it is important to monitor and control them. In this respect, identification of molds associated to two Italian and two Greek fermented black table olives cultivars, was carried out. Sixty strains were isolated and molecularly identified as Penicillium crustosum (21, P. roqueforti (29, P. paneum (1, P. expansum (6, P. polonicum (2, P. commune (1. A group of 20 selected isolates was subjected to technological (beta-glucosidase, cellulolytic, ligninolytic, pectolytic, and xylanolytic activities; proteolytic enzymes and safety (biogenic amines and secondary metabolites, including mycotoxins characterization. Combining both technological (presence of desired and absence of undesired enzymatic activities and safety aspects (no or low production of biogenic amines and regulated mycotoxins, it was possible to select six strains with biotechnological interest. These are putative candidates for future studies as autochthonous co-starters with yeasts and lactic acid bacteria for black table olive production.

  8. Characterization of Ni–Cr alloys using different casting techniques and molds

    International Nuclear Information System (INIS)

    Chen, Wen-Cheng; Teng, Fu-Yuan; Hung, Chun-Cheng

    2014-01-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis

  9. Characterization of Ni–Cr alloys using different casting techniques and molds

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Wen-Cheng, E-mail: wencchen@fcu.edu.tw [Advanced Medical Devices and Composites Laboratory, Department of Fiber and Composite Materials, College of Engineering, Feng Chia University, Taichung 40724, Taiwan (China); Teng, Fu-Yuan [Department of Dentistry, Kaohsiung Armed Forces General Hospital, Kaohsiung 802, Taiwan (China); School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Hung, Chun-Cheng [School of Dentistry, College of Dental Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan (China); Department of Dentistry, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan (China)

    2014-02-01

    This study differentiated the mechanical properties of nickel–chromium (Ni–Cr) alloys under various casting techniques (different casting molds and casting atmospheres). These techniques were sampled by a sand mold using a centrifugal machine in ambient air (group I) and electromagnetic induction in an automatic argon castimatic casting machine (group II). The specimen casting used a graphite mold by a castimatic casting machine (group III). The characteristics of the Ni–Cr alloys, yield and ultimate tensile strength, bending modulus, microhardness, diffraction phase, grindability, ability to spring back, as well as ground microstructure and pattern under different casting conditions were evaluated. The group III specimens exhibited the highest values in terms of strength, modulus, hardness, and grindability at a grind rate of 500 rpm. Moreover, group III alloys exhibited smaller grain sizes, higher ability to spring back, and greater ductility than those casted by sand investment (groups I and II). The main factor, “casting mold,” significantly influenced all mechanical properties. The graphite mold casting of the Ni–Cr dental alloys in a controlled atmosphere argon casting system provided an excellent combination of high mechanical properties and good ability to spring back, and preserved the ductile properties for application in Ni–Cr porcelain-fused system. The results can offer recommendations to assist a prosthetic technician in selecting the appropriate casting techniques to obtain the desired alloy properties. - Highlights: • Properties of Ni–Cr alloys using various casting techniques are characterized. • Alloys cast by graphite mold exhibited higher recovery angle and more ductility. • Alloys cast by graphite mold exhibited higher strength and grinding rate. • Alloys in this study increase operative room to adjust the precision for prosthesis.

  10. Casting metal microstructures from a flexible and reusable mold

    International Nuclear Information System (INIS)

    Cannon, Andrew H; King, William P

    2009-01-01

    This paper describes casting-based microfabrication of metal microstructures and nanostructures. The metal was cast into flexible silicone molds which were themselves cast from microfabricated silicon templates. Microcasting is demonstrated in two metal alloys of melting temperature 70 °C or 138 °C. Many structures were successfully cast into the metal with excellent replication fidelity, including ridges with periodicity 400 nm and holes or pillars with diameter in the range 10–100 µm and aspect ratio up to 2:1. The flexibility of the silicone mold permits casting of curved surfaces, which we demonstrate by fabricating a cylindrical metal roller of diameter 8 mm covered with microstructures. The metal microstructures can be in turn used as a reusable molding tool

  11. Mold prevention strategies and possible health effects in the aftermath of hurricanes and major floods.

    Science.gov (United States)

    Brandt, Mary; Brown, Clive; Burkhart, Joe; Burton, Nancy; Cox-Ganser, Jean; Damon, Scott; Falk, Henry; Fridkin, Scott; Garbe, Paul; McGeehin, Mike; Morgan, Juliette; Page, Elena; Rao, Carol; Redd, Stephen; Sinks, Tom; Trout, Douglas; Wallingford, Kenneth; Warnock, David; Weissman, David

    2006-06-09

    Extensive water damage after major hurricanes and floods increases the likelihood of mold contamination in buildings. This report provides information on how to limit exposure to mold and how to identify and prevent mold-related health effects. Where uncertainties in scientific knowledge exist, practical applications designed to be protective of a person's health are presented. Evidence is included about assessing exposure, clean-up and prevention, personal protective equipment, health effects, and public health strategies and recommendations. The recommendations assume that, in the aftermath of major hurricanes or floods, buildings wet for health effects in susceptible persons regardless of the type of mold or the extent of contamination. For the majority of persons, undisturbed mold is not a substantial health hazard. Mold is a greater hazard for persons with conditions such as impaired host defenses or mold allergies. To prevent exposure that could result in adverse health effects from disturbed mold, persons should 1) avoid areas where mold contamination is obvious; 2) use environmental controls; 3) use personal protective equipment; and 4) keep hands, skin, and clothing clean and free from mold-contaminated dust. Clinical evaluation of suspected mold-related illness should follow conventional clinical guidelines. In addition, in the aftermath of extensive flooding, health-care providers should be watchful for unusual mold-related diseases. The development of a public health surveillance strategy among persons repopulating areas after extensive flooding is recommended to assess potential health effects and the effectiveness of prevention efforts. Such a surveillance program will help CDC and state and local public health officials refine the guidelines for exposure avoidance, personal protection, and clean-up and assist health departments to identify unrecognized hazards.

  12. Heat transfer in a thermoacoustic process

    International Nuclear Information System (INIS)

    Beke, Tamas

    2012-01-01

    Thermoacoustic instability is defined as the excitation of acoustic modes in chambers with heat sources due to the coupling between acoustic perturbations and unsteady heat addition. The major objective of this paper is to achieve accurate theoretical results in a thermoacoustic heat transfer process. We carry out a detailed heat transfer analysis aimed at determining the stability–instability border of the thermoacoustic system. In this paper, we present a project type of physical examination and modelling task. We employed an electrically heated Rijke tube in our thermoacoustic project work. The aim of our project is to help our students enlarge their knowledge about thermodynamics, mainly about thermoacoustics, and develop their applied information technology and mathematical skills. (paper)

  13. A novel 2D silicon nano-mold fabrication technique for linear nanochannels over a 4 inch diameter substrate

    Science.gov (United States)

    Yin, Zhifu; Qi, Liping; Zou, Helin; Sun, Lei

    2016-01-01

    A novel low-cost 2D silicon nano-mold fabrication technique was developed based on Cu inclined-deposition and Ar+ (argon ion) etching. With this technique, sub-100 nm 2D (two dimensional) nano-channels can be etched economically over the whole area of a 4 inch n-type  silicon wafer. The fabricating process consists of only 4 steps, UV (Ultraviolet) lithography, inclined Cu deposition, Ar+ sputter etching, and photoresist & Cu removing. During this nano-mold fabrication process, we investigated the influence of the deposition angle on the width of the nano-channels and the effect of Ar+ etching time on their depth. Post-etching measurements showed the accuracy of the nanochannels over the whole area: the variation in width is 10%, in depth it is 11%. However, post-etching measurements also showed the accuracy of the nanochannels between chips: the variation in width is 2%, in depth it is 5%. With this newly developed technology, low-cost and large scale 2D nano-molds can be fabricated, which allows commercial manufacturing of nano-components over large areas. PMID:26752559

  14. The Design of 3D-Printed Lattice-Reinforced Thickness-Varying Shell Molds for Castings.

    Science.gov (United States)

    Shangguan, Haolong; Kang, Jinwu; Yi, Jihao; Zhang, Xiaochuan; Wang, Xiang; Wang, Haibin; Huang, Tao

    2018-03-30

    3D printing technologies have been used gradually for the fabrication of sand molds and cores for castings, even though these molds and cores are dense structures. In this paper, a generation method for lattice-reinforced thickness-varying shell molds is proposed and presented. The first step is the discretization of the STL (Stereo Lithography) model of a casting into finite difference meshes. After this, a shell is formed by surrounding the casting with varying thickness, which is roughly proportional to the surface temperature distribution of the casting that is acquired by virtually cooling it in the environment. A regular lattice is subsequently constructed to support the shell. The outside surface of the shell and lattice in the cubic mesh format is then converted to STL format to serve as the external surface of the new shell mold. The internal surface of the new mold is the casting's surface with the normals of all of the triangles in STL format reversed. Experimental verification was performed on an Al alloy wheel hub casting. Its lattice-reinforced thickness-varying shell mold was generated by the proposed method and fabricated by the binder jetting 3D printing. The poured wheel hub casting was sound and of good surface smoothness. The cooling rate of the wheel hub casting was greatly increased due to the shell mold structure. This lattice-reinforced thickness-varying shell mold generation method is of great significance for mold design for castings to achieve cooling control.

  15. Molding 4.0 - The Economics of an Injection Molding As-a-Service Business Model

    DEFF Research Database (Denmark)

    Charalambis, Alessandro; Tonetti, Marco Alessandro; Tosello, Guido

    involved contributes to a hazy definition of the phenomenon. In this work, Industry 4.0 is analyzed by analyzing into its influence on the plastics industry, with a focus on the injection molding technology. A new business model for the plastic industry is proposed, which fosters closer cooperation......During the last few years, the term Industry 4.0 or The Fourth Industrial Revolution, made its appearance and spread across industries. While it is accepted that the term broadly refers to a set of recent innovations with potential to disrupt value and process chains, the heterogeneity of actors...... the paradigm of Industry 4.0 is able to disrupt the industry by decreasing machine downtime and offering remarkable improvements in machine up-time. The present research aims to highlighting some of the opportunities for the plastic industry enabled by the implementation of an Internet of Things architecture....

  16. The Influence of runner system on production of injection molds

    Directory of Open Access Journals (Sweden)

    Janostik Vaclav

    2016-01-01

    Full Text Available This experimental study describes the influence of runner system on rheological properties during the injection molding process. Economic effects on the amount of production are discussed as well. Autodesk Moldflow Synergy 2016 (Moldflow was used for the study of the injection process. Three suggestions of the runner system, cold runner system, hot runner system and the combination of cold–hot runner system have been promoted. These three variants underwent the rheological and economic analysis. As a result, recommendations for the application of the runner system for the required amount of production have been suggested

  17. Report of Separate Effects Testing for Modeling of Metallic Fuel Casting Process

    Energy Technology Data Exchange (ETDEWEB)

    Crapps, Justin M. [Los Alamos National Laboratory; Galloway, Jack D. [Los Alamos National Laboratory; Decroix, David S. [Los Alamos National Laboratory; Korzekwa, David A. [Los Alamos National Laboratory; Aikin, Robert M. Jr. [Los Alamos National Laboratory; Unal, Cetin [Los Alamos National Laboratory; Fielding, R. [Idaho National Laboratory; Kennedy, R [Idaho National Laboratory

    2012-06-29

    In order to give guidance regarding the best investment of time and effort in experimental determination of parameters defining the casting process, a Flow-3D model of the casting process was used to investigate the most influential parameters regarding void fraction of the solidified rods and solidification speed for fluid flow parameters, liquid heat transfer parameters, and solid heat transfer parameters. Table 1 summarizes the most significant variables for each of the situations studied. A primary, secondary, and tertiary effect is provided for fluid flow parameters (impacts void fraction) and liquid heat transfer parameters (impacts solidification). In Table 1, the wetting angle represents the angle between the liquid and mold surface as pictured in Figure 1. The viscosity is the dynamic viscosity of the liquid and the surface tension is the property of the surface of a liquid that allows it to resist an external force. When only considering solid heat transfer properties, the variations from case to case were very small. Details on this conclusion are provided in the section considering solid heat transfer properties. The primary recommendation of the study is to measure the fluid flow parameters, specifically the wetting angle, surface tension, and dynamic viscosity, in order of importance, as well as the heat transfer parameters latent heat and specific heat of the liquid alloy. The wetting angle and surface tension can be measured simultaneously using the sessile drop method. It is unclear whether there is a temperature dependency in these properties. Thus measurements for all three parameters are requested at 1340, 1420, and 1500 degrees Celsius, which correspond to the minimum, middle, and maximum temperatures of the liquid alloy during the process. In addition, the heat transfer coefficient between the mold and liquid metal, the latent heat of transformation, and the specific heat of the liquid metal all have strong influences on solidification. These

  18. Compression Molding of Composite of Recycled HDPE and Recycled Tire Particles

    Science.gov (United States)

    Liu, Ping; Waskom, Tommy L.; Chen, Zhengyu; Li, Yanze; Peng, Linda

    1996-01-01

    Plastic and rubber recycling is an effective means of reducing solid waste to the environment and preserving natural resources. A project aimed at developing a new composite material from recycled high density polyethylene (HDPE) and recycled rubber is currently being conducted at Eastern Illinois University. The recycled plastic pellets with recycled rubber particles are extruded into some HDPE/rubber composite strands. The strand can be further cut into pellets that can be used to fabricate other material forms or products. This experiment was inspired by the above-mentioned research activity. In order to measure Durometer hardness of the extruded composite, a specimen with relatively large dimensions was needed. Thus, compression molding was used to form a cylindrical specimen of 1 in. diameter and 1 in. thickness. The initial poor quality of the molded specimen prompted a need to optimize the processing parameters such as temperature, holding time, and pressure. Design of experiment (DOE) was used to obtain optimum combination of the parameters.

  19. Fabricating microfluidic valve master molds in SU-8 photoresist

    Science.gov (United States)

    Dy, Aaron J.; Cosmanescu, Alin; Sluka, James; Glazier, James A.; Stupack, Dwayne; Amarie, Dragos

    2014-05-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution.

  20. Fabricating microfluidic valve master molds in SU-8 photoresist

    International Nuclear Information System (INIS)

    Dy, Aaron J; Cosmanescu, Alin; Sluka, James; Glazier, James A; Amarie, Dragos; Stupack, Dwayne

    2014-01-01

    Multilayer soft lithography has become a powerful tool in analytical chemistry, biochemistry, material and life sciences, and medical research. Complex fluidic micro-circuits require reliable components that integrate easily into microchips. We introduce two novel approaches to master mold fabrication for constructing in-line micro-valves using SU-8. Our fabrication techniques enable robust and versatile integration of many lab-on-a-chip functions including filters, mixers, pumps, stream focusing and cell-culture chambers, with in-line valves. SU-8 created more robust valve master molds than the conventional positive photoresists used in multilayer soft lithography, but maintained the advantages of biocompatibility and rapid prototyping. As an example, we used valve master molds made of SU-8 to fabricate PDMS chips capable of precisely controlling beads or cells in solution. (technical note)