Transfer function analysis of radiographic imaging systems
International Nuclear Information System (INIS)
Metz, C.E.; Doi, K.
1979-01-01
The theoretical and experimental aspects of the techniques of transfer function analysis used in radiographic imaging systems are reviewed. The mathematical principles of transfer function analysis are developed for linear, shift-invariant imaging systems, for the relation between object and image and for the image due to a sinusoidal plane wave object. The other basic mathematical principle discussed is 'Fourier analysis' and its application to an input function. Other aspects of transfer function analysis included are alternative expressions for the 'optical transfer function' of imaging systems and expressions are derived for both serial and parallel transfer image sub-systems. The applications of transfer function analysis to radiographic imaging systems are discussed in relation to the linearisation of the radiographic imaging system, the object, the geometrical unsharpness, the screen-film system unsharpness, other unsharpness effects and finally noise analysis. It is concluded that extensive theoretical, computer simulation and experimental studies have demonstrated that the techniques of transfer function analysis provide an accurate and reliable means for predicting and understanding the effects of various radiographic imaging system components in most practical diagnostic medical imaging situations. (U.K.)
Analyzing availability using transfer function models and cross spectral analysis
International Nuclear Information System (INIS)
Singpurwalla, N.D.
1980-01-01
The paper shows how the methods of multivariate time series analysis can be used in a novel way to investigate the interrelationships between a series of operating (running) times and a series of maintenance (down) times of a complex system. Specifically, the techniques of cross spectral analysis are used to help obtain a Box-Jenkins type transfer function model for the running times and the down times of a nuclear reactor. A knowledge of the interrelationships between the running times and the down times is useful for an evaluation of maintenance policies, for replacement policy decisions, and for evaluating the availability and the readiness of complex systems
Analysis of diagnostic calorimeter data by the transfer function technique
Energy Technology Data Exchange (ETDEWEB)
Delogu, R. S., E-mail: rita.delogu@igi.cnr.it; Pimazzoni, A.; Serianni, G. [Consorzio RFX, Corso Stati Uniti, 35127 Padova (Italy); Poggi, C.; Rossi, G. [Università degli Studi di Padova, Via 8 Febbraio 1848, 35122 Padova (Italy)
2016-02-15
This paper describes the analysis procedure applied to the thermal measurements on the rear side of a carbon fibre composite calorimeter with the purpose of reconstructing the energy flux due to an ion beam colliding on the front side. The method is based on the transfer function technique and allows a fast analysis by means of the fast Fourier transform algorithm. Its efficacy has been tested both on simulated and measured temperature profiles: in all cases, the energy flux features are well reproduced and beamlets are well resolved. Limits and restrictions of the method are also discussed, providing strategies to handle issues related to signal noise and digital processing.
Analysis of room transfer function and reverberant signal statistics
DEFF Research Database (Denmark)
Georganti, Eleftheria; Mourjopoulos, John; Jacobsen, Finn
2008-01-01
For some time now, statistical analysis has been a valuable tool in analyzing room transfer functions (RTFs). This work examines existing statistical time-frequency models and techniques for RTF analysis (e.g., Schroeder's stochastic model and the standard deviation over frequency bands for the RTF...... magnitude and phase). RTF fractional octave smoothing, as with 1-slash 3 octave analysis, may lead to RTF simplifications that can be useful for several audio applications, like room compensation, room modeling, auralisation purposes. The aim of this work is to identify the relationship of optimal response...... and the corresponding ratio of the direct and reverberant signal. In addition, this work examines the statistical quantities for speech and audio signals prior to their reproduction within rooms and when recorded in rooms. Histograms and other statistical distributions are used to compare RTF minima of typical...
Analysis of the transfer function for layered piezoelectric ultrasonic sensors
Directory of Open Access Journals (Sweden)
E. Gutiérrrez-Reyes
2017-06-01
Full Text Available We model theoretically the voltage response to an acoustic pulse of a multilayer system forming a low noise capacitive sensor including a Polyvinylidene Fluoride piezoelectric film. First we model a generic piezoelectric detector consisting of a piezoelectric film between two metallic electrodes that are the responsible to convert the acoustic signal into a voltage signal. Then we calculate the pressure-to-voltage transfer function for a N-layer piezo-electric capacitor detector, allowing to study the effects of the electrode and protective layers thickness in typical layered piezoelectric sensors. The derived transfer function, when multiplied by the Fourier transform of the incident acoustic pulse, gives the voltage electric response in the frequency domain. An important concern regarding the transfer function is that it may have zeros at specific frequencies, and thus inverting the voltage Fourier transform of the pulse to recover the pressure signal in the time domain is not always, in principle, possible. Our formulas can be used to predict the existence and locations of such zeroes. We illustrate the use of the transfer function by predicting the electric signal generated at a multilayer piezoelectric sensor to an ultrasonic pulse generated photoacoustically by a laser pulse at a three media system with impedance mismatch. This theoretical calculations are compared with our own experimental measurements.
A delivery transfer function (DTF) analysis for helical tomotherapy
International Nuclear Information System (INIS)
Kissick, Michael W; Mackie, Thomas Rockwell; Jeraj, Robert
2007-01-01
The previous theoretical work of a delivery transfer function (DTF) in radiotherapy is expanded to include the unique intensity modulation method of helical tomotherapy. In addition to the collimation of each beamlet, and the Gaussian scatter convolution spreading of the dose that other radiotherapy units have, helical tomotherapy uses 51 small arcs of varying lengths to adjust the intensity. The blurring from these arcs is not taken into account during treatment planning. A theoretical DTF is constructed, and a calculation is performed which includes this unique source motion in relation to the other DTF components. Various typical delivery parameters are used to generate resolution maps for a constant intensity projection. Near the isocenter, the transverse (to a given beam direction) blurring is small but at larger radii (>6 cm), the source blurring dominates over leaf size. For most clinical situations, this inherent source motion blurring is expected to be negligible
Improving Power System Stability Using Transfer Function: A Comparative Analysis
Directory of Open Access Journals (Sweden)
G. Shahgholian
2017-10-01
Full Text Available In this paper, a small-signal dynamic model of a single-machine infinite-bus (SMIB power system that includes IEEE type-ST1 excitation system and PSS based on transfer fu¬n¬c¬¬tion structure is presented. The changes in the operating co¬n¬dition of a power system on dynamic performance have been exa¬m¬ined. The dynamic performance of the closed-loop system is ana¬lyzed base on its eigenvalues. The effectiveness of the par¬a¬m¬e¬t¬ers changes on dynamic stability is verified by simulation res¬u¬l¬ts. Three types of PSS have been considered for analysis: (a the derivative PSS, (b the lead-lag PSS or conventional PSS, and (c the proportional-integral-derivative PSS. The objective fu¬nc¬t¬i¬o¬n is formulated to increase the dam¬¬ping ratio of the electromechanical mode eigenvalues. Simu¬la¬tion results show that the PID-PSS performs better for less ov¬e¬r¬shoot and less settling time comp¬ared with the CPSS and DPSS un¬der different load ope¬ration and the significant system pa¬r¬am¬eter variation conditions.
Analysis of space vehicle structures using the transfer-function concept
Heer, E.; Trubert, M. R.
1969-01-01
Analysis of large complex systems is accomplished by dividing it into suitable subsystems and determining the individual dynamical and vibrational responses. Frequency transfer functions then determine the vibrational response of the whole system.
Faes, L; Porta, A; Cucino, R; Cerutti, S; Antolini, R; Nollo, G
2004-06-01
Although the concept of transfer function is intrinsically related to an input-output relationship, the traditional and widely used estimation method merges both feedback and feedforward interactions between the two analyzed signals. This limitation may endanger the reliability of transfer function analysis in biological systems characterized by closed loop interactions. In this study, a method for estimating the transfer function between closed loop interacting signals was proposed and validated in the field of cardiovascular and cardiorespiratory variability. The two analyzed signals x and y were described by a bivariate autoregressive model, and the causal transfer function from x to y was estimated after imposing causality by setting to zero the model coefficients representative of the reverse effects from y to x. The method was tested in simulations reproducing linear open and closed loop interactions, showing a better adherence of the causal transfer function to the theoretical curves with respect to the traditional approach in presence of non-negligible reverse effects. It was then applied in ten healthy young subjects to characterize the transfer functions from respiration to heart period (RR interval) and to systolic arterial pressure (SAP), and from SAP to RR interval. In the first two cases, the causal and non-causal transfer function estimates were comparable, indicating that respiration, acting as exogenous signal, sets an open loop relationship upon SAP and RR interval. On the contrary, causal and traditional transfer functions from SAP to RR were significantly different, suggesting the presence of a considerable influence on the opposite causal direction. Thus, the proposed causal approach seems to be appropriate for the estimation of parameters, like the gain and the phase lag from SAP to RR interval, which have a large clinical and physiological relevance.
Transfer function combinations
Zhou, Liang; Schott, Mathias; Hansen, Charles
2012-01-01
Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.
Transfer function combinations
Zhou, Liang
2012-10-01
Direct volume rendering has been an active area of research for over two decades. Transfer function design remains a difficult task since current methods, such as traditional 1D and 2D transfer functions, are not always effective for all data sets. Various 1D or 2D transfer function spaces have been proposed to improve classification exploiting different aspects, such as using the gradient magnitude for boundary location and statistical, occlusion, or size metrics. In this paper, we present a novel transfer function method which can provide more specificity for data classification by combining different transfer function spaces. In this work, a 2D transfer function can be combined with 1D transfer functions which improve the classification. Specifically, we use the traditional 2D scalar/gradient magnitude, 2D statistical, and 2D occlusion spectrum transfer functions and combine these with occlusion and/or size-based transfer functions to provide better specificity. We demonstrate the usefulness of the new method by comparing to the following previous techniques: 2D gradient magnitude, 2D occlusion spectrum, 2D statistical transfer functions and 2D size based transfer functions. © 2012 Elsevier Ltd.
Nonparametric Transfer Function Models
Liu, Jun M.; Chen, Rong; Yao, Qiwei
2009-01-01
In this paper a class of nonparametric transfer function models is proposed to model nonlinear relationships between ‘input’ and ‘output’ time series. The transfer function is smooth with unknown functional forms, and the noise is assumed to be a stationary autoregressive-moving average (ARMA) process. The nonparametric transfer function is estimated jointly with the ARMA parameters. By modeling the correlation in the noise, the transfer function can be estimated more efficiently. The parsimonious ARMA structure improves the estimation efficiency in finite samples. The asymptotic properties of the estimators are investigated. The finite-sample properties are illustrated through simulations and one empirical example. PMID:20628584
Measurement of multi-bunch transfer functions using time-domain data and Fourier analysis
International Nuclear Information System (INIS)
Hindi, H.; Sapozhnikov, L.; Fox, J.; Prabhakar, S.; Oxoby, G.; Linscott, I.; Drago, A.
1993-12-01
Multi-bunch transfer functions are principal ingredients in understanding both the behavior of high-current storage rings as well as control of their instabilities. The measurement of transfer functions on a bunch-by-bunch basis is particularly important in the design of active feedback systems. Traditional methods of network analysis that work well in the single bunch case become difficult to implement for many bunches. We have developed a method for obtaining empirical estimates of the multi-bunch longitudinal transfer functions from the time-domain measurements of the bunches' phase oscillations. This method involves recording the response of the bunch of interest to a white-noise excitation. The transfer function can then be computed as the ratio of the fast Fourier transforms (FFTs) of the response and excitation sequences, averaged over several excitations. The calculation is performed off-line on bunch-phase data and is well-suited to the multi-bunch case. A description of this method and an analysis of its performance is presented with results obtained using the longitudinal quick prototype feedback system developed at SLAC
International Nuclear Information System (INIS)
Antonopoulos-Domis, M.; Mourtzanos, K.
1996-01-01
Estimators of the confidence limits of open loop transfer functions via Multivariate Auto-Regressive (MAR) modelling are not available in the literature. The statistics of open loop transfer functions obtained by MAR modelling are investigated via numerical experiments. A system of known open loop transfer functions is simulated digitally and excited by random number series. The digital signals of the simulated system are then MAR modelled and the open loop transfer functions are estimated. Performing a large number of realizations, mean values and variances of the open loop transfer functions are estimated. It is found that if the record length N of each realization is long enough then the estimates of open loop transfer functions follow normal distribution. The variance of the open loop transfer functions is proportional to 1/N. For MAR processes the asymptotic covariance matrix of the estimate of open loop transfer functions was found in agreement with theoretical prediction. (author)
Transfer function analysis of positron-emitting tracer imaging system (PETIS) data
International Nuclear Information System (INIS)
Keutgen, N.; Matsuhashi, S.; Mizuniwa, C.; Ito, T.; Fujimura, T.; Ishioka, N.S.; Watanabe, S.; Sekine, T.; Uchida, H.; Hashimoto, S.
2002-01-01
Quantitative analysis of the two-dimensional image data obtained with the positron-emitting tracer imaging system (PETIS) for plant physiology has been carried out using a transfer function analysis method. While a cut leaf base of Chinese chive (Allium tuberosum Rottler) or a cut stem of soybean (Glycine max L.) was immersed in an aqueous solution containing the [ 18 F] F - ion or [ 13 N]NO 3 - ion, tracer images of the leaf of Chinese chive and the trifoliate of soybean were recorded with PETIS. From the time sequence of images, the tracer transfer function was estimated from which the speed of tracer transport and the fraction moved between specified image positions were deduced
International Nuclear Information System (INIS)
Motta, Mauricio Saldanha; Guimaraes, Ari Sauer
1995-01-01
The influence of the focal size and image magnification variations on the radiographic final image is studied. The analysis used the modulation transfer function for evaluating the ratio of the radiographic image amplitude and that of the inspected object. it was concluded that the increase of the focal size and of the magnifications are not good for the image quality. 3 refs., 4 figs., 1 tab
International Nuclear Information System (INIS)
Keissar, K; Gilad, O; Maestri, R; Pinna, G D; La Rovere, M T
2010-01-01
A novel approach for the estimation of baroreflex sensitivity (BRS) is introduced based on time–frequency analysis of the transfer function (TF). The TF method (TF-BRS) is a well-established non-invasive technique which assumes stationarity. This condition is difficult to meet, especially in cardiac patients. In this study, the classical TF was replaced with a wavelet transfer function (WTF) and the classical coherence was replaced with wavelet transform coherence (WTC), adding the time domain as an additional degree of freedom with dynamic error estimation. Error analysis and comparison between WTF-BRS and TF-BRS were performed using simulated signals with known transfer function and added noise. Similar comparisons were performed for ECG and blood pressure signals, in the supine position, of 19 normal subjects, 44 patients with a history of previous myocardial infarction (MI) and 45 patients with chronic heart failure. This yielded an excellent linear association (R > 0.94, p < 0.001) for time-averaged WTF-BRS, validating the new method as consistent with a known method. The additional advantage of dynamic analysis of coherence and TF estimates was illustrated in two physiological examples of supine rest and change of posture showing the evolution of BRS synchronized with its error estimations and sympathovagal balance
Comparisons of power transfer functions and flow transfer functions
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1987-01-01
Transfer functions may be used to calculate component feedbacks or temperature increments by convolution of the transfer function with the appropriate fractional change in system-quantity. Power-change transfer functions have been reported. The corresponding flow transfer functions for this case, and comparison with the power transfer functions, are reported here. Results of feedback simulation of ramped flow transients using flow transfer functions are also described
Numerical analysis of different neural transfer functions used for best approximation
International Nuclear Information System (INIS)
Gougam, L.A.; Chikhi, A.; Biskri, S.; Chafa, F.
2006-01-01
It is widely recognised that the choice of transfer functions in neural networks is of en importance to their performance. In this paper, different neural transfer functions usec approximation are discussed. We begin with sigmoi'dal functions used most often by diffi authors . At a second step, we use Gaussian functions as previously suggested in refere Finally, we deal with a specified wavelet family. A comparison between the three cases < above is made exhibiting therefore the advantages of each transfer function. The approa< function improves as the dimension N of the elementary task basis increases
International Nuclear Information System (INIS)
2003-08-01
This book deals with analysis of heat transfer which includes nonlinear analysis examples, radiation heat transfer, analysis of heat transfer in ANSYS, verification of analysis result, analysis of heat transfer of transition with automatic time stepping and open control, analysis of heat transfer using arrangement of ANSYS, resistance of thermal contact, coupled field analysis such as of thermal-structural interaction, cases of coupled field analysis, and phase change.
Transfer function for a superficial layer. Parametric analysis and relationship with SM records
International Nuclear Information System (INIS)
Sandi, H.; Stancu, O.
2002-01-01
The developments presented were aimed at providing an analytical and computational support for a research project intended to examine the contribution of source mechanism and of local conditions to the features of ground motion due to Vrancea earthquakes. The project referred to is being developed jointly, by the Academy of Technical Sciences of Romania, the Institute of Geodynamics, the Technical University of Civil Engineering, Bucharest, and GEOTEC, Bucharest. The modelling of the phenomenon of seismic oscillations of ground was based on assumptions of physical and geometrical linearity. The dynamic systems considered were assumed to consist of a sequence of plane = parallel homogeneous geologic layers, accepting that the relevant physical characteristics (thickness, density, low frequency S-wave velocity, rheological characteristic) are constant for a layer, but may change from one layer to another). Alternative constitutive laws were considered (the laws referred to were of Kelvin - Voigt, Poynting and Sorokin types). The transfer function of a geological package is determined as a product of transfer functions of the successive homogeneous layers. A first step of analysis corresponded to the consideration of a single homogeneous layer, for which full analytical solutions could be derived. A parametric analysis, aimed at determining the transfer function, was undertaken considering alternative (credible) values for the parameters characterizing the constitutive laws referred to. Considering alternative possible situations, it turned out that a strong amplification occurs (for any type of constitutive law) especially for the fundamental mode of the dynamic system, while the amplification is weaker for the upper normal modes. These results correlate well with the outcome of analysis of the spectral content of ground motion as obtained from the processing of strong motion records. The most striking fact is represented by the important modifications of the
Energy Technology Data Exchange (ETDEWEB)
Golbahar Haghighi, M.R.; Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran, Islamic Republic of); Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75169-13798 (Iran, Islamic Republic of)], E-mail: malekzadeh@pgu.ac.ir
2008-05-15
In this paper, a mixed finite element (FE) and differential quadrature (DQ) method as a simple, accurate and computationally efficient numerical tool for two dimensional transient heat transfer analysis of functionally graded materials (FGMs) is developed. The method benefits from the high accuracy, fast convergence behavior and low computational efforts of the DQ in conjunction with the advantages of the FE method in general geometry, loading and systematic boundary treatment. Also, the boundary conditions at the top and bottom surfaces of the domain can be implemented more precisely and in strong form. The temporal derivatives are discretized using an incremental DQ method (IDQM), whose numerical stability is not sensitive to time step size. The effects of non-uniform convective-radiative conditions on the boundaries are investigated. The accuracy of the proposed method is demonstrated by comparing its results with those available in the literature. It is shown that using few grid points, highly accurate results can be obtained.
Dynamic stability analysis of microgrid by integrating transfer function of DERs
Energy Technology Data Exchange (ETDEWEB)
Basak, Prasenjit [Calcutta Institute of Engineering & Management, Electrical Engineering Department, Kolkata (India); Chowdhury, S.; Chowdhury, S.P. [University of Cape Town, Electrical Engineering Department, Cape Town (South Africa)
2010-07-01
A microgrid is an integrated form of distributed energy resources (DERs) which are connected together to serve electrical power to the selected consumers or can exchange power with the existing utility grid suitably under standalone or grid connected mode. The microgrid can be cited as a physical system which is a combination of DERs such as, Photovoltaic Generator, Wind turbine, Fuel Cell, Microturbine etc. and can be modelled with suitable assumptions depending upon specific operational condition to be studied. Interconnection of several kinds of power sources would impact the quality of power within the microgrid. Since voltage and frequency are not the only factors for a system delivering good quality power, the capacity of the same to withstand instability due to transient condition is one of the prime factors to be considered to accept a system as a stable system. Before practical integration of distributed energy resources, it would be essential to check the stability of the system at the design stage. In this paper, the authors have presented the microgrid based on control system engineering. To represent the individual components of microgrid, the DERs (Distributed Energy Resources) have been represented with their transfer functions and they have been simulated using Simulink-Matlab. To observe the response of the DERs, the frequency fluctuation due to step and random change in output power/load are considered as the main factors for stability analysis. All the DERs are integrated forming the microgrid which is represented with an equivalent transfer function based model. The models are studied and results are discussed with the waveforms. This paper shows one feasible method to check the dynamic stability of a proposed microgrid.
Exergy costs analysis of water desalination and purification techniques by transfer functions
International Nuclear Information System (INIS)
Carrasquer, Beatriz; Martínez-Gracia, Amaya; Uche, Javier
2016-01-01
Highlights: • A procedure to estimate the unit exergy cost of water treatment techniques is provided. • Unit exergy costs of water purification and desalination are given as a function of design and operating parameters. • Unit exergy costs range from 3.3 to 6.8 in purification and from 2 to 26 in desalination. • They could be used in their preliminary design as good indicators of their energy efficiency. - Abstract: The unit exergy costs of desalination and purification, which are two alternatives commonly used for water supply and treatment, have been characterized as a function of the energy efficiency of the process by combining the Exergy Cost Analysis with Transfer Function Analysis. An equation to assess the exergy costs of these alternatives is then proposed as a quick guide to know the energy efficiency of any water treatment process under different design and operating conditions. This combination, was satisfactory applied to groundwaters and water transfers. After identifying the boundaries of the system, input and output flows are calculated in exergy values. Next, different examples are analyzed in order to propose a generic equation to assess the exergy cost of the water restoration technologies, attending to their main features. Recovery ratio, energy requirements and salts concentrations (for desalination), and plant capacity and organic matter recovery (for water purification) are introduced in the calculations as their main endogenous parameters. Values obtained for typical operation ranges of commercial plants showed that unit exergy costs of water purification ranged from 3.3 to 6.8; maximum values, as expected, were found at low plant capacities and high organic matter removal ratios. For water desalination, values varied from 2 to 7 in membrane technologies and from 10 to 26 in thermal processes. The recovery ratio and salts concentration in raw water increased the unit exergy costs in membrane techniques. In distillation processes
International Nuclear Information System (INIS)
Lee, Jun Shin; Lee, Wook Ryun; Oh, Ki Yong; Kim, Bong Ki
2010-01-01
Understanding water hammer is very important to the prevention of excessive pressure build-up in pipelines. Many researchers have studied this phenomenon, drawing effective solutions through the time- and frequency-domain approaches. For the purposes of enhancing the advantages of the frequency-domain approach and, thereby, rendering investigations of the dynamic characteristics of pipelines more effective, we propose partial fraction expansion of the transfer function between the unsteady flow source and a given section. We simulate the proposed approach using a vibration element inserted into a simple pipeline, deducing much useful physical information pertaining to pipeline design. We conclude that locating the resonance of the vibration element between the first and second resonances of the pipeline can mitigate the excessive pressure build-up attendant on the occurrence of water hammer. Our method of partial fraction expansion is expected to be useful and effective in analyses of unsteady flows in pipelines
Automatic computation of transfer functions
Atcitty, Stanley; Watson, Luke Dale
2015-04-14
Technologies pertaining to the automatic computation of transfer functions for a physical system are described herein. The physical system is one of an electrical system, a mechanical system, an electromechanical system, an electrochemical system, or an electromagnetic system. A netlist in the form of a matrix comprises data that is indicative of elements in the physical system, values for the elements in the physical system, and structure of the physical system. Transfer functions for the physical system are computed based upon the netlist.
International Nuclear Information System (INIS)
Saito, A; Kuroishi, M; Nakai, H
2016-01-01
This paper concerns the noise and structural vibration caused by rotating electric machines. Special attention is given to the magnetic-force induced vibration response of interior-permanent magnet machines. In general, to accurately predict and control the vibration response caused by the electric machines, it is inevitable to model not only the magnetic force induced by the fluctuation of magnetic fields, but also the structural dynamic characteristics of the electric machines and surrounding structural components. However, due to complicated boundary conditions and material properties of the components, such as laminated magnetic cores and varnished windings, it has been a challenge to compute accurate vibration response caused by the electric machines even after their physical models are available. In this paper, we propose a highly-accurate vibration prediction method that couples experimentally-obtained discrete structural transfer functions and numerically-obtained distributed magnetic-forces. The proposed vibration synthesis methodology has been applied to predict vibration responses of an interior permanent magnet machine. The results show that the predicted vibration response of the electric machine agrees very well with the measured vibration response for several load conditions, for wide frequency ranges. (paper)
Game theoretic aspect of production process transfer functions ...
African Journals Online (AJOL)
Game theoretic aspect of production process transfer functions. ... On the final analysis, it was shown that relating transfer function to Bayesian games and mechanism design would lead to optimal bids, optimal ... AJOL African Journals Online.
Three-dimensional inverse transient heat transfer analysis of thick functionally graded plates
Energy Technology Data Exchange (ETDEWEB)
Haghighi, M.R. Golbahar; Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Bushehr 75168 (Iran); Eghtesad, M. [Department of Mechanical Engineering, School of Engineering, Shiraz University, Shiraz 71348-51154 (Iran); Necsulescu, D.S. [Department of Mechanical Engineering, Faculty of Engineering, University of Ottawa, Ottawa, Ontario (Canada)
2009-03-15
In this paper, a three-dimensional transient inverse heat conduction (IHC) procedure is presented to estimate the unknown boundary heat flux of thick functionally graded (FG) plates. For this purpose, the conjugate gradient method (CGM) in conjunction with adjoint problem is used. A recently developed three-dimensional efficient hybrid method is employed to solve variable-coefficient initial-boundary-value differential equations of direct problem as a part of the inverse solution. The accuracy of the inverse analysis is examined by simulating the exact and noisy data for problems with different types of boundary conditions and material properties. In addition to rectangular domain, skew plates are considered. The results obtained show good accuracy for the estimation of boundary heat fluxes. (author)
Multichannel transfer function with dimensionality reduction
Kim, Han Suk
2010-01-17
The design of transfer functions for volume rendering is a difficult task. This is particularly true for multi-channel data sets, where multiple data values exist for each voxel. In this paper, we propose a new method for transfer function design. Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum of three dimensions, which can be displayed visually in a straightforward way. Our approach utilizes channel intensity, gradient, curvature and texture properties of each voxel. The high-dimensional data of the domain is reduced by applying recently developed nonlinear dimensionality reduction algorithms. In this paper, we used Isomap as well as a traditional algorithm, Principle Component Analysis (PCA). Our results show that these dimensionality reduction algorithms significantly improve the transfer function design process without compromising visualization accuracy. In this publication we report on the impact of the dimensionality reduction algorithms on transfer function design for confocal microscopy data.
Experimental measurement of zero power reactor transfer function
International Nuclear Information System (INIS)
Liang Shuhong
2011-01-01
In order to study the zero power reactor (ZPR) transfer function, the ZPR transfer function expression was deduced with the point reactor kinetics equation, which was disturbed by reactivity input response. Based on the Fourier analysis for the input of triangular wave, the relation between the transfer function and reactivity was got. Validating research experiment was made on the DF-VI fast ZPR. After the disturbed reactivity was measured, the experimental value of the transfer function was got. According to the experimental value and the calculated value, the expression of the ZPR transfer function is proved, whereas the disturbed reactivity is got from the transfer function. (authors)
Chai, Rui; Xu, Li-Sheng; Yao, Yang; Hao, Li-Ling; Qi, Lin
2017-01-01
This study analyzed ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO), and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. Invasively measured parameters were compared with parameters measured from brachial pulse waves by regression model and transfer function model. Accuracy of parameters estimated by regression and transfer function model, was compared too. Findings showed that k value, central pulse wave and brachial pulse wave parameters invasively measured, correlated positively. Regression model parameters including A_slope, DBP, SEVR, and transfer function model parameters had good consistency with parameters invasively measured. They had same effect of consistency. SBP, PP, SV, and CO could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Elementary heat transfer analysis
Whitaker, Stephen; Hartnett, James P
1976-01-01
Elementary Heat Transfer Analysis provides information pertinent to the fundamental aspects of the nature of transient heat conduction. This book presents a thorough understanding of the thermal energy equation and its application to boundary layer flows and confined and unconfined turbulent flows. Organized into nine chapters, this book begins with an overview of the use of heat transfer coefficients in formulating the flux condition at phase interface. This text then explains the specification as well as application of flux boundary conditions. Other chapters consider a derivation of the tra
Arul Dhas, D.; Hubert Joe, I.; Roy, S. D. D.; Balachandran, S.
2015-01-01
A widespread exploration on the intra-molecular charge transfer interaction through an efficient π-conjugated path from a strong electron-donor group (amino) to a strong electron-acceptor group (nitro) has been carried out using FTIR, FT-Raman, UV-Vis, fluorescence and NMR spectra on insecticide compound 4-benzyloxy-2-nitroaniline. Density functional theory method is used to determine optimized molecular geometry, harmonic vibrational wavenumbers and intensities using 6-311G(d,p) basis set by means of Gaussian 09W program suit. A comprehensive investigation on the sp2 to sp3 hybridization and non-planarity property has been performed. Natural bond orbital analysis is used to study the existence of C-H⋯O, N-H⋯O and C-H⋯π proper and improper hydrogen bonds. The HOMO and LUMO analysis reveals the possibility of charge transfer within the molecule. A complete assignment of the experimental absorption peaks in the ultraviolet region has also been performed. Isotropic chemical shifts of 13C, 1H, 15N and 18O NMR and nuclear spin-spin coupling constants have been computed using the gauge-invariant atomic orbital method. The biological activity of substituent amino and nitro groups are evident from the hydrogen bonds through which the target amino acids are linked to the drug as evidenced from molecular docking.
Transferability between Hospitals of Hypercalcaemia Discriminant Functions
DEFF Research Database (Denmark)
Frølich, Anne; McNair, Peter; Nielsen, Bo Friis
1996-01-01
Transferability of discriminant functions is potentially useful both from an economical point of view and because, in general, medical knowledge, in this case discriminant functions, should be transferable. In the present study we have evaluated the transferability of discriminant functions......, estimated from routine laboratory analysis, age and sex in two consecutively recorded populations with hypercalcemia including 162 and 257 patients with hypercalcemia. Discriminant functions were developed for each sex to distinguish between hypercalcemia associated with malignancy and hypercalcemia...... associated with other medical diseases. The total diagnostic accuracy in Herlev was 82 and 78%, in women and men, and increased to 87 and 86% in both sexes considering cases classified with posterior probability levels of 60%. In Hvidovre the total diagnostic accuracy was 81 and 84% in women and men...
Multichannel transfer function with dimensionality reduction
Kim, Han Suk; Schulze, Jü rgen P.; Cone, Angela C.; Sosinsky, Gina E.; Martone, Maryann E.
2010-01-01
. Our new method provides a framework to combine multiple approaches and pushes the boundary of gradient-based transfer functions to multiple channels, while still keeping the dimensionality of transfer functions to a manageable level, i.e., a maximum
International Nuclear Information System (INIS)
Raptis, A.C.; Popper, G.F.
1977-08-01
On April 14, 1976, EG and G performed the Semiscale Blowdown 29-1 experiment to try to establish the feasibility of using a transit time flowmeter (TTF) to measure transient blowdown two-phase flow rates. The recorded signals from that experiment were made available to and analyzed by the Argonne National Laboratory using the transfer function cross-correlation technique. The theoretical background for the transfer function method of analysis and the results of the data analysis are presented. Histograms of transit time during the blowdown are shown and topics for further investigation are identified
Chai Rui; Li Si-Man; Xu Li-Sheng; Yao Yang; Hao Li-Ling
2017-07-01
This study mainly analyzed the parameters such as ascending branch slope (A_slope), dicrotic notch height (Hn), diastolic area (Ad) and systolic area (As) diastolic blood pressure (DBP), systolic blood pressure (SBP), pulse pressure (PP), subendocardial viability ratio (SEVR), waveform parameter (k), stroke volume (SV), cardiac output (CO) and peripheral resistance (RS) of central pulse wave invasively and non-invasively measured. These parameters extracted from the central pulse wave invasively measured were compared with the parameters measured from the brachial pulse waves by a regression model and a transfer function model. The accuracy of the parameters which were estimated by the regression model and the transfer function model was compared too. Our findings showed that in addition to the k value, the above parameters of the central pulse wave and the brachial pulse wave invasively measured had positive correlation. Both the regression model parameters including A_slope, DBP, SEVR and the transfer function model parameters had good consistency with the parameters invasively measured, and they had the same effect of consistency. The regression equations of the three parameters were expressed by Y'=a+bx. The SBP, PP, SV, CO of central pulse wave could be calculated through the regression model, but their accuracies were worse than that of transfer function model.
Kantorovich, L V
1982-01-01
Functional Analysis examines trends in functional analysis as a mathematical discipline and the ever-increasing role played by its techniques in applications. The theory of topological vector spaces is emphasized, along with the applications of functional analysis to applied analysis. Some topics of functional analysis connected with applications to mathematical economics and control theory are also discussed. Comprised of 18 chapters, this book begins with an introduction to the elements of the theory of topological spaces, the theory of metric spaces, and the theory of abstract measure space
Bansah, S.; Ali, G.; Haque, M. A.; Tang, V.
2017-12-01
The proportion of precipitation that becomes streamflow is a function of internal catchment characteristics - which include geology, landscape characteristics and vegetation - and influence overall storage dynamics. The timing and quantity of water discharged by a catchment are indeed embedded in event hydrographs. Event hydrograph timing parameters, such as the response lag and time of concentration, are important descriptors of how long it takes the catchment to respond to input precipitation and how long it takes the latter to filter through the catchment. However, the extent to which hydrograph timing parameters relate to average response times derived from fitting transfer functions to annual hydrographs is unknown. In this study, we used a gamma transfer function to determine catchment average response times as well as event-specific hydrograph parameters across a network of eight nested watersheds ranging from 0.19 km2 to 74.6 km2 prairie catchments located in south central Manitoba (Canada). Various statistical analyses were then performed to correlate average response times - estimated using the parameters of the fitted gamma transfer function - to event-specific hydrograph parameters. Preliminary results show significant interannual variations in response times and hydrograph timing parameters: the former were in the order of a few hours to days, while the latter ranged from a few days to weeks. Some statistically significant relationships were detected between response times and event-specific hydrograph parameters. Future analyses will involve the comparison of statistical distributions of event-specific hydrograph parameters with that of runoff response times and baseflow transit times in order to quantity catchment storage dynamics across a range of temporal scales.
International Nuclear Information System (INIS)
Hoppe, P.; Mitzel, F.
1977-02-01
The Reactivity-to-Power-Transfer-Function for the sodium cooled nuclear power plant KNK I (Kompakte Natriumgekuehlte Kernenergieanlage) has been measured and compared with theoretical results. The measurements have been performed with the help of pseudostochastic reactivity perturbations. The transfer function has been determined by computing the auto- and cross-power-spectral-densities for the reactivity- and neutron flux signals. The agreement between the experimental and theoretical transfer function could be improved by adjusting the reactivity coefficients. The applications of these measurements with respect to reactor diagnosis and malfunction detection are discussed. For this purpose the accuracy of the measured transfer function is of great importance. Therefore an extensive error analysis has been performed. It turned out, that the inherent instability of the reactor without control system and the feedback by the primary coolant system were the reasons for comparatively big systematical errors. The conditions have been derived under which these types of errors can be considerably reduced. The conclusions can also be applied to analogical measurements at fast sodium cooled reactors. Because of their inherent stability the systematical errors will be reduced. (orig.) [de
Mongia, Puneet Kumar; Sharma, R. K.
2014-01-01
In this study the principal focus is to examine the influence of psychological stress (both positive and negative stress) on the human articulation and to determine the vocal tract transfer function of an individual using inverse filtering technique. Both of these analyses are carried out by estimating various voice parameters. The outcomes of the analysis of psychological stress indicate that all the voice parameters are affected due to the influence of stress on humans. About 35 out of 51 p...
Mission analysis for cross-site transfer
International Nuclear Information System (INIS)
Riesenweber, S.D.; Fritz, R.L.; Shipley, L.E.
1995-11-01
The Mission Analysis Report describes the requirements and constraints associated with the Transfer Waste Function as necessary to support the Manage Tank Waste, Retrieve Waste, and Process Tank Waste Functions described in WHC-SD-WM-FRD-020, Tank Waste Remediation System (TWRS) Functions and Requirements Document and DOE/RL-92-60, Revision 1, TWRS Functions and Requirements Document, March 1994. It further assesses the ability of the ''initial state'' (or current cross-site transfer system) to meet the requirements and constraints
DISTRIBUTED RC NETWORKS WITH RATIONAL TRANSFER FUNCTIONS,
A distributed RC circuit analogous to a continuously tapped transmission line can be made to have a rational short-circuit transfer admittance and...one rational shortcircuit driving-point admittance. A subcircuit of the same structure has a rational open circuit transfer impedance and one rational ...open circuit driving-point impedance. Hence, rational transfer functions may be obtained while considering either generator impedance or load
Functional check of telescoping transfer pumps
International Nuclear Information System (INIS)
Sharpe, C.L.
1994-01-01
Activities are defined which constitute a functional check of a telescoping transfer pump (TTP). This report is written to the Procedures group of HLW and particularly applies to those TTP's which are the sole means of emergency transfer from a HLW waste tank
Linear circuit transfer functions an introduction to fast analytical techniques
Basso, Christophe P
2016-01-01
Linear Circuit Transfer Functions: An introduction to Fast Analytical Techniques teaches readers how to determine transfer functions of linear passive and active circuits by applying Fast Analytical Circuits Techniques. Building on their existing knowledge of classical loop/nodal analysis, the book improves and expands their skills to unveil transfer functions in a swift and efficient manner. Starting with simple examples, the author explains step-by-step how expressing circuits time constants in different configurations leads to writing transfer functions in a compact and insightful way. By learning how to organize numerators and denominators in the fastest possible way, readers will speed-up analysis and predict the frequency resp nse of simple to complex circuits. In some cases, they will be able to derive the final expression by inspection, without writing a line of algebra. Key features: * Emphasizes analysis through employing time constant-based methods discussed in other text books but not widely us...
Fault detection using parameter transfer functions
Energy Technology Data Exchange (ETDEWEB)
Salamun, I; Mavko, B; Stritar, A [University of Ljubljana, Josef Stefan Inst., Ljubljana (Slovenia). Reactor Engineering Div.
1997-12-31
To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs.
Fault detection using parameter transfer functions
International Nuclear Information System (INIS)
Salamun, I.; Mavko, B.; Stritar, A.
1996-01-01
To reduce the number of alarms in NPP many techniques have been proposed for process monitoring and diagnosis. The object of our investigation is a dynamic process with digital signals. The general parametric model defines the transfer function form and it covers all dynamics characteristics between two monitoring parameters. To determine the proper model coefficients we are using recoursing least square methods. The transfer function coefficients define the correlation between two variables in desired time period. During process monitoring just the relation is observed because the number of coefficients and the structure is predefined with transfer function form. During plant operation the transfer functions for important parameters must be calculated and estimated. The estimated values are input parameters for an analytical algorithm. It determines which part of system causes the transient and recognizes it. The proposed methodology allows a computer to monitor the system behaviour and to find out the most probable cause for abnormal condition. (author). 3 refs, 5 figs, 2 tabs
Directory of Open Access Journals (Sweden)
T Kunisawa
2006-01-01
Full Text Available Complete genomic sequence data are stored in the public GenBank/EMBL/DDBJ databases so that any investigator can make use of the data. This report describes a comparative analysis of codon usage that is impossible without such a public and open data system. A limited number of bacteriophages harbor their own transfer RNAs. Based on a comparison between T4 phage-encoded tRNA species and the relative cellular amounts of host Escherichia coli tRNAs, it is hypothesized that T4 tRNAs could serve to supplement host isoacceptor tRNA species that are present in minor amounts and thus enhance the translational efficiency of phage proteins. When compared to their respective host bacteria, the codon usage data of bacteriophages D3, φC31, HP1, D29 and 933W all show an increased frequency of synonymous codons or amino acids that correspond to phage tRNA species, suggesting their supplemental role in the efficient production of phage proteins. The data-analysis presents an example in which the availability of an open and fully accessible database system would allow one to obtain comprehensive insights into a fundamental problem in molecular biology.
Directory of Open Access Journals (Sweden)
Puneet Kumar Mongia
2014-01-01
Full Text Available In this study the principal focus is to examine the influence of psychological stress (both positive and negative stress on the human articulation and to determine the vocal tract transfer function of an individual using inverse filtering technique. Both of these analyses are carried out by estimating various voice parameters. The outcomes of the analysis of psychological stress indicate that all the voice parameters are affected due to the influence of stress on humans. About 35 out of 51 parameters follow a unique course of variation from normal to positive and negative stress in 32% of the total analyzed signals. The upshot of the analysis is to determine the vocal tract transfer function for each vowel for an individual. The analysis indicates that it can be computed by estimating the mean of the pole zero plots of that individual’s vocal tract estimated for the whole day. Besides this, an analysis is presented to find the relationship between the LPC coefficients of the vocal tract and the vocal tract cavities. The results of the analysis indicate that all the LPC coefficients of the vocal tract are affected due to change in the position of any cavity.
Transfer Function Control for Biometric Monitoring System
Chmiel, Alan J. (Inventor); Humphreys, Bradley T. (Inventor); Grodinsky, Carlos M. (Inventor)
2015-01-01
A modular apparatus for acquiring biometric data may include circuitry operative to receive an input signal indicative of a biometric condition, the circuitry being configured to process the input signal according to a transfer function thereof and to provide a corresponding processed input signal. A controller is configured to provide at least one control signal to the circuitry to programmatically modify the transfer function of the modular system to facilitate acquisition of the biometric data.
Milligan, Craig; Kopp, Andreas; Dahdah, Said; Montufar, Jeannette
2014-10-01
We model a value of statistical life (VSL) transfer function for application to road-safety engineering in developing countries through an income-disaggregated meta-analysis of scope-sensitive stated preference VSL data. The income-disaggregated meta-analysis treats developing country and high-income country data separately. Previous transfer functions are based on aggregated datasets that are composed largely of data from high-income countries. Recent evidence, particularly with respect to the income elasticity of VSL, suggests that the aggregate approach is deficient because it does not account for a possible change in income elasticity across income levels. Our dataset (a minor update of the OECD database published in 2012) includes 123 scope-sensitive VSL estimates from developing countries and 185 scope-sensitive estimates from high-income countries. The transfer function for developing countries gives VSL=1.3732E-4×(GDP per capita)(∧)2.478, with VSL and GDP per capita expressed in 2005 international dollars (an international dollar being a notional currency with the same purchasing power as the U.S. dollar). The function can be applied for low- and middle-income countries with GDPs per capita above $1268 (with a data gap for very low-income countries), whereas it is not useful above a GDP per capita of about $20,000. The corresponding function built using high-income country data is VSL=8.2474E+3×(GDP per capita)(∧).6932; it is valid for high-income countries but over-estimates VSL for low- and middle-income countries. The research finds two principal significant differences between the transfer functions modeled using developing-country and high-income-country data, supporting the disaggregated approach. The first of these differences relates to between-country VSL income elasticity, which is 2.478 for the developing country function and .693 for the high-income function; the difference is significant at peconomic performance measures for road
Transfer Function Identification Using Orthogonal Fourier Transform Modeling Functions
Morelli, Eugene A.
2013-01-01
A method for transfer function identification, including both model structure determination and parameter estimation, was developed and demonstrated. The approach uses orthogonal modeling functions generated from frequency domain data obtained by Fourier transformation of time series data. The method was applied to simulation data to identify continuous-time transfer function models and unsteady aerodynamic models. Model fit error, estimated model parameters, and the associated uncertainties were used to show the effectiveness of the method for identifying accurate transfer function models from noisy data.
DRY TRANSFER FACILITY SEISMIC ANALYSIS
International Nuclear Information System (INIS)
EARNEST, S.; KO, H.; DOCKERY, W.; PERNISI, R.
2004-01-01
The purpose of this calculation is to perform a dynamic and static analysis on the Dry Transfer Facility, and to determine the response spectra seismic forces for the design basis ground motions. The resulting seismic forces and accelerations will be used in a subsequent calculation to complete preliminary design of the concrete shear walls, diaphragms, and basemat
Directory of Open Access Journals (Sweden)
Shamshad Ul Haq
2016-01-01
Full Text Available Expressed sequence tags (ESTs are important resource for gene discovery, gene expression and its regulation, molecular marker development, and comparative genomics. We procured 10000 ESTs and analyzed 267 EST-SSRs markers through computational approach. The average density was one SSR/10.45 kb or 6.4% frequency, wherein trinucleotide repeats (66.74% were the most abundant followed by di- (26.10%, tetra- (4.67%, penta- (1.5%, and hexanucleotide (1.2% repeats. Functional annotations were done and after-effect newly developed 63 EST-SSRs were used for cross transferability, genetic diversity, and bulk segregation analysis (BSA. Out of 63 EST-SSRs, 42 markers were identified owing to their expansion genetics across 20 different plants which amplified 519 alleles at 180 loci with an average of 2.88 alleles/locus and the polymorphic information content (PIC ranged from 0.51 to 0.93 with an average of 0.83. The cross transferability ranged from 25% for wheat to 97.22% for Schlerostachya, with an average of 55.86%, and genetic relationships were established based on diversification among them. Moreover, 10 EST-SSRs were recognized as important markers between bulks of pooled DNA of sugarcane cultivars through BSA. This study highlights the employability of the markers in transferability, genetic diversity in grass species, and distinguished sugarcane bulks.
Functional studies on the phosphatidychloride transfer protein
Brouwer, A.P.M. de
2002-01-01
The phosphatidylcholine transfer protein (PC-TP) has been studied for over 30 years now. Despite extensive research concerning the biochemical, biophysical and structural properties of PC-TP, the function of this protein is still elusive. We have studied in vitro the folding and the mechanism of PC
Ustinov, E.
1999-01-01
Sensitivity analysis based on using of the adjoint equation of radiative transfer is applied to the case of atmospheric remote sensing in the thermal spectral region with non-negligeable atmospheric scattering.
International Nuclear Information System (INIS)
Lee, Haw-Long; Chang, Win-Jin; Chen, Wen-Lih; Yang, Yu-Ching
2012-01-01
Highlights: ► Time-dependent base heat flux of a functionally graded fin is inversely estimated. ► An inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied. ► The distributions of temperature in the fin are determined as well. ► The influence of measurement error and measurement location upon the precision of the estimated results is also investigated. - Abstract: In this study, an inverse algorithm based on the conjugate gradient method and the discrepancy principle is applied to estimate the unknown time-dependent base heat flux of a functionally graded fin from the knowledge of temperature measurements taken within the fin. Subsequently, the distributions of temperature in the fin can be determined as well. It is assumed that no prior information is available on the functional form of the unknown base heat flux; hence the procedure is classified as the function estimation in inverse calculation. The temperature data obtained from the direct problem are used to simulate the temperature measurements. The influence of measurement errors and measurement location upon the precision of the estimated results is also investigated. Results show that an excellent estimation on the time-dependent base heat flux and temperature distributions can be obtained for the test case considered in this study.
Nodewise analytical calculation of the transfer function
International Nuclear Information System (INIS)
Makai, Mihaly
1994-01-01
The space dependence of neutron noise has so far been mostly investigated in homogeneous core models. Application of core diagnostic methods to locate a malfunction requires however that the transfer function be calculated for real, inhomogeneous cores. A code suitable for such purpose must be able to handle complex arithmetic and delta-function source. Further requirements are analytical dependence in one spatial variable and fast execution. The present work describes the TIDE program written to fulfil the above requirements. The core is subdivided into homogeneous, square assemblies. An analytical solution is given, which is a generalisation of the inhomogeneous response matrix method. (author)
Andrés, Juan; Berski, Sławomir; Silvi, Bernard
2016-07-07
Probing the electron density transfers during a chemical reaction can provide important insights, making possible to understand and control chemical reactions. This aim has required extensions of the relationships between the traditional chemical concepts and the quantum mechanical ones. The present work examines the detailed chemical insights that have been generated through 100 years of work worldwide on G. N. Lewis's ground breaking paper on The Atom and the Molecule (Lewis, G. N. The Atom and the Molecule, J. Am. Chem. Soc. 1916, 38, 762-785), with a focus on how the determination of reaction mechanisms can be reached applying the bonding evolution theory (BET), emphasizing how curly arrows meet electron density transfers in chemical reaction mechanisms and how the Lewis structure can be recovered. BET that combines the topological analysis of the electron localization function (ELF) and Thom's catastrophe theory (CT) provides a powerful tool providing insight into molecular mechanisms of chemical rearrangements. In agreement with physical laws and quantum theoretical insights, BET can be considered as an appropriate tool to tackle chemical reactivity with a wide range of possible applications. Likewise, the present approach retrieves the classical curly arrows used to describe the rearrangements of chemical bonds for a given reaction mechanism, providing detailed physical grounds for this type of representation. The ideas underlying the valence-shell-electron pair-repulsion (VSEPR) model applied to non-equilibrium geometries provide simple chemical explanations of density transfers. For a given geometry around a central atom, the arrangement of the electronic domain may comply or not with the VSEPR rules according with the valence shell population of the considered atom. A deformation yields arrangements which are either VSEPR defective (at least a domain is missing to match the VSEPR arrangement corresponding to the geometry of the ligands), VSEPR compliant
DEFF Research Database (Denmark)
Dalby, Arne Brejning
1994-01-01
A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed to calcul......A flow graph relating voltages and the forward and reflected propagation modes (¿ TEM) on multiple coupled transmission lines in an inhomogeneous dielectric medium is presented. This flow graph directy gives the different transfer functions, including S-parameters, in matrix form needed...
Quadrupole Transfer Function for Emittance Measurement
Cameron, Peter; Jansson, Andreas; Tan, Cheng-Yang
2008-01-01
Historically the use of the quadrupole moment measurement has been impeded by the requirement for large dynamic range, as well as measurement sensitivity to beam position. We investigate the use of the transfer function technique [1-3] in combination with the sensitivity and 160dB revolution line rejection of the direct diode detection analog front end [4] to open the possibility of an emittance diagnostic that may be implemented without operational complication, quasi- parasitic to the operation of existing tune measurement systems. Such a diagnostic would be particularly useful as an emittance monitor during acceleration ramp development in machines like RHIC and the LHC.
Schottky Noise and Beam Transfer Functions
Energy Technology Data Exchange (ETDEWEB)
Blaskiewicz M.; Blaskiewicz M.
2016-12-01
Beam transfer functions (BTF)s encapsulate the stability properties of charged particle beams. In general one excites the beam with a sinusoidal signal and measures the amplitude and phase of the beam response. Most systems are very nearly linear and one can use various Fourier techniques to reduce the number of measurements and/or simulations needed to fully characterize the response. Schottky noise is associated with the finite number of particles in the beam. This signal is always present. Since the Schottky current drives wakefields, the measured Schottky signal is influenced by parasitic impedances.
Determination of acoustical transfer functions using an impulse method
MacPherson, J.
1985-02-01
The Transfer Function of a system may be defined as the relationship of the output response to the input of a system. Whilst recent advances in digital processing systems have enabled Impulse Transfer Functions to be determined by computation of the Fast Fourier Transform, there has been little work done in applying these techniques to room acoustics. Acoustical Transfer Functions have been determined for auditoria, using an impulse method. The technique is based on the computation of the Fast Fourier Transform (FFT) of a non-ideal impulsive source, both at the source and at the receiver point. The Impulse Transfer Function (ITF) is obtained by dividing the FFT at the receiver position by the FFT of the source. This quantity is presented both as linear frequency scale plots and also as synthesized one-third octave band data. The technique enables a considerable quantity of data to be obtained from a small number of impulsive signals recorded in the field, thereby minimizing the time and effort required on site. As the characteristics of the source are taken into account in the calculation, the choice of impulsive source is non-critical. The digital analysis equipment required for the analysis is readily available commercially.
Waste Feed Delivery Transfer System Analysis
Energy Technology Data Exchange (ETDEWEB)
JULYK, L.J.
2000-05-05
This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms.
Waste Feed Delivery Transfer System Analysis
International Nuclear Information System (INIS)
JULYK, L.J.
2000-01-01
This document provides a documented basis for the required design pressure rating and pump pressure capacity of the Hanford Site waste-transfer system in support of the waste feed delivery to the privatization contractor for vitrification. The scope of the analysis includes the 200 East Area double-shell tank waste transfer pipeline system and the associated transfer system pumps for a11 Phase 1B and Phase 2 waste transfers from AN, AP, AW, AY, and A2 Tank Farms
Electricity price forecasting through transfer function models
International Nuclear Information System (INIS)
Nogales, F.J.; Conejo, A.J.
2006-01-01
Forecasting electricity prices in present day competitive electricity markets is a must for both producers and consumers because both need price estimates to develop their respective market bidding strategies. This paper proposes a transfer function model to predict electricity prices based on both past electricity prices and demands, and discuss the rationale to build it. The importance of electricity demand information is assessed. Appropriate metrics to appraise prediction quality are identified and used. Realistic and extensive simulations based on data from the PJM Interconnection for year 2003 are conducted. The proposed model is compared with naive and other techniques. Journal of the Operational Research Society (2006) 57, 350-356.doi:10.1057/palgrave.jors.2601995; published online 18 May 2005. (author)
International Nuclear Information System (INIS)
Romanowicz, Renata; Young, Peter C.
2003-01-01
Stochastic Transfer Function (STF) and Generalised Likelihood Uncertainty Estimation (GLUE) techniques are outlined and applied to an environmental problem concerned with marine dose assessment. The goal of both methods in this application is the estimation and prediction of the environmental variables, together with their associated probability distributions. In particular, they are used to estimate the amount of radionuclides transferred to marine biota from a given source: the British Nuclear Fuel Ltd (BNFL) repository plant in Sellafield, UK. The complexity of the processes involved, together with the large dispersion and scarcity of observations regarding radionuclide concentrations in the marine environment, require efficient data assimilation techniques. In this regard, the basic STF methods search for identifiable, linear model structures that capture the maximum amount of information contained in the data with a minimal parameterisation. They can be extended for on-line use, based on recursively updated Bayesian estimation and, although applicable to only constant or time-variable parameter (non-stationary) linear systems in the form used in this paper, they have the potential for application to non-linear systems using recently developed State Dependent Parameter (SDP) non-linear STF models. The GLUE based-methods, on the other hand, formulate the problem of estimation using a more general Bayesian approach, usually without prior statistical identification of the model structure. As a result, they are applicable to almost any linear or non-linear stochastic model, although they are much less efficient both computationally and in their use of the information contained in the observations. As expected in this particular environmental application, it is shown that the STF methods give much narrower confidence limits for the estimates due to their more efficient use of the information contained in the data. Exploiting Monte Carlo Simulation (MCS) analysis
Functional transferred DNA within extracellular vesicles
International Nuclear Information System (INIS)
Cai, Jin; Wu, Gengze; Jose, Pedro A.; Zeng, Chunyu
2016-01-01
Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.
Functional transferred DNA within extracellular vesicles
Energy Technology Data Exchange (ETDEWEB)
Cai, Jin [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Department of Neurology, Jinling Hospital, Nanjing University School of Medicine, Jiangsu Province (China); Wu, Gengze [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China); Jose, Pedro A. [Division of Nephrology, Department of Medicine and Physiology, University of Maryland, School of Medicine, Baltimore, MD 21201 (United States); Zeng, Chunyu, E-mail: Chunyuzeng01@163.com [Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing 400042 (China)
2016-11-15
Extracellular vesicles (EVs) are small membrane vesicles including exosomes and shedding vesicles that mediated a cell-to-cell communication. EVs are released from almost all cell types under both physiological and pathological conditions and incorporate nuclear and cytoplasmic molecules for intercellular delivery. Besides protein, mRNA, and microRNA of these molecules, as recent studies show, specific DNA are prominently packaged into EVs. It appears likely that some of exosomes or shedding vesicles, bearing nuclear molecules are released upon bubble-like blebs. Specific interaction of EVs with susceptible recipients performs the uptake of EVs into the target cells, discharging their cargo including nuclear and cytoplasmic macromolecules into the cytosol. These findings expand the nucleic acid content of EVs to include increased levels of specific DNA. Thus, EVs contain a repertoire of genetic information available for horizontal gene transfer and potential use as blood biomarkers for cancer and atherosclerosis. In this review, the focus is on the characteristics, biological functions, and roles in diseases of DNA within EVs. - Highlights: • This review is focused on the DNA within EVs including its characteristics, biological functions, and roles in diseases. • It is clear that DNA within EVs might have important physiological and pathological roles in various diseases. • Knowledge in this area may provides us alternative methods for disease diagnosis or therapy in the future.
Properties of Zero-Free Transfer Function Matrices
D. O. Anderson, Brian; Deistler, Manfred
Transfer functions of linear, time-invariant finite-dimensional systems with more outputs than inputs, as arise in factor analysis (for example in econometrics), have, for state-variable descriptions with generic entries in the relevant matrices, no finite zeros. This paper gives a number of characterizations of such systems (and indeed square discrete-time systems with no zeros), using state-variable, impulse response, and matrix-fraction descriptions. Key properties include the ability to recover the input values at any time from a bounded interval of output values, without any knowledge of an initial state, and an ability to verify the no-zero property in terms of a property of the impulse response coefficient matrices. Results are particularized to cases where the transfer function matrix in question may or may not have a zero at infinity or a zero at zero.
Indicators for knowledge transfer analysis
International Nuclear Information System (INIS)
Plaza, L. M.
2007-01-01
Understanding by knowledge transfer, the process by which the scientific knowledge generated by the R+Ds Spanish public system investigators is finally harnessed and officially used by the agents that make up the productive system, or by the administration; this project aims to offer a global view of the main scientific indicators by which said process can be analysed and in particular, of the way that some of these indicators allow us to evaluate this transfer in the case of the Spanish I+D system and in that concerning the Biotechnology sector. (Author) 12 refs
International Nuclear Information System (INIS)
Schiabel, H.; Frere, A.F.
1992-01-01
The evaluation of mammography systems behaviour, using the conventional analysis method of transfer function is discussed. An investigation for evaluating the behaviour of modulation transfer function on several direction of orifices in the radiation field is also presented. (C.G.C.)
Energy Technology Data Exchange (ETDEWEB)
Dietrich, Olaf, E-mail: od@dtrx.net [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Gaass, Thomas [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany); Comprehensive Pneumology Center, German Center for Lung Research, Munich (Germany); Reiser, Maximilian F. [Josef Lissner Laboratory for Biomedical Imaging, Institute for Clinical Radiology, Ludwig-Maximilians-University Hospital Munich, Munich (Germany)
2017-01-15
Purpose: To pool and summarize published data from magnetic resonance longitudinal relaxation measurements of the human lung at 1.5 T to provide a reliable basis of T{sub 1} relaxation time constants of healthy lung tissue both under respiration of room air and of pure oxygen. In particular, the oxygen-induced shortening of T{sub 1} was evaluated. Materials and methods: The PubMed database was comprehensively searched up to June 2016 for original publications in English containing quantitative T{sub 1} data (at least mean values and standard deviations) of the lung parenchyma of healthy subjects (minimum subject number: 3) at 1.5 T. From all included publications, T{sub 1} values of the lung of healthy subjects were extracted (inhaling room air and, if available, inhaling pure oxygen). Weighted mean values and standard deviations of all extracted data and the oxygen transfer function (OTF) were calculated. Results: 22 publications were included with a total number of 188 examined healthy subjects. 103 of these subjects (from 13 studies) were examined while breathing pure oxygen and room air; 85 subjects were examined only under room-air conditions. The weighted mean value (weighted sample standard deviation) of the room-air T{sub 1} values over all 22 studies was 1196 ms (152 ms). Based on studies with room-air and oxygen results, the mean T{sub 1} value at room-air conditions was 1172 ms (161 ms); breathing pure oxygen, the mean T{sub 1} value was reduced to 1054 ms (138 ms). This corresponds to a mean T{sub 1} reduction by 118 ms (35 ms) or 10.0 % (2.3 %) and to a mean OTF value of 1.22 (0.32) × 10{sup −3} s{sup −1}/(%O{sub 2}). Conclusion: This meta-analysis with data from 188 subjects indicates that the average T{sub 1} relaxation time constant of healthy lung tissue at 1.5 T is distributed around 1200 ms with a standard deviation of about 150 ms; breathing pure oxygen reduces this value significantly by 10 % to about 1050 ms.
Vacuum Large Current Parallel Transfer Numerical Analysis
Directory of Open Access Journals (Sweden)
Enyuan Dong
2014-01-01
Full Text Available The stable operation and reliable breaking of large generator current are a difficult problem in power system. It can be solved successfully by the parallel interrupters and proper timing sequence with phase-control technology, in which the strategy of breaker’s control is decided by the time of both the first-opening phase and second-opening phase. The precise transfer current’s model can provide the proper timing sequence to break the generator circuit breaker. By analysis of the transfer current’s experiments and data, the real vacuum arc resistance and precise correctional model in the large transfer current’s process are obtained in this paper. The transfer time calculated by the correctional model of transfer current is very close to the actual transfer time. It can provide guidance for planning proper timing sequence and breaking the vacuum generator circuit breaker with the parallel interrupters.
Numerical computation of aeroacoustic transfer functions for realistic airfoils
De Santana, Leandro Dantas; Miotto, Renato Fuzaro; Wolf, William Roberto
2017-01-01
Based on Amiet's theory formalism, we propose a numerical framework to compute the aeroacoustic transfer function of realistic airfoil geometries. The aeroacoustic transfer function relates the amplitude and phase of an incoming periodic gust to the respective unsteady lift response permitting,
Improved Wave-vessel Transfer Functions by Uncertainty Modelling
DEFF Research Database (Denmark)
Nielsen, Ulrik Dam; Fønss Bach, Kasper; Iseki, Toshio
2016-01-01
This paper deals with uncertainty modelling of wave-vessel transfer functions used to calculate or predict wave-induced responses of a ship in a seaway. Although transfer functions, in theory, can be calculated to exactly reflect the behaviour of the ship when exposed to waves, uncertainty in inp...
Comparative analysis on flexibility requirements of typical Cryogenic Transfer lines
Jadon, Mohit; Kumar, Uday; Choukekar, Ketan; Shah, Nitin; Sarkar, Biswanath
2017-04-01
The cryogenic systems and their applications; primarily in large Fusion devices, utilize multiple cryogen transfer lines of various sizes and complexities to transfer cryogenic fluids from plant to the various user/ applications. These transfer lines are composed of various critical sections i.e. tee section, elbows, flexible components etc. The mechanical sustainability (under failure circumstances) of these transfer lines are primary requirement for safe operation of the system and applications. The transfer lines need to be designed for multiple design constraints conditions like line layout, support locations and space restrictions. The transfer lines are subjected to single load and multiple load combinations, such as operational loads, seismic loads, leak in insulation vacuum loads etc. [1]. The analytical calculations and flexibility analysis using professional software are performed for the typical transfer lines without any flexible component, the results were analysed for functional and mechanical load conditions. The failure modes were identified along the critical sections. The same transfer line was then refurbished with the flexible components and analysed for failure modes. The flexible components provide additional flexibility to the transfer line system and make it safe. The results obtained from the analytical calculations were compared with those obtained from the flexibility analysis software calculations. The optimization of the flexible component’s size and selection was performed and components were selected to meet the design requirements as per code.
General post-Minkowskian expansion of time transfer functions
International Nuclear Information System (INIS)
Teyssandier, Pierre; Poncin-Lafitte, Christophe Le
2008-01-01
Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation
General post-Minkowskian expansion of time transfer functions
Energy Technology Data Exchange (ETDEWEB)
Teyssandier, Pierre; Poncin-Lafitte, Christophe Le [Departement Systemes de Reference Temps et Espace, CNRS/UMR 8630, Observatoire de Paris, 61 avenue de l' Observatoire, F-75014 Paris (France)
2008-07-21
Modeling most of the tests of general relativity requires us to know the function relating light travel time to the coordinate time of reception and to the spatial coordinates of the emitter and the receiver. We call such a function the reception time transfer function. Of course, an emission time transfer function may as well be considered. We present here a recursive procedure enabling us to expand each time transfer function into a perturbative series of ascending powers of the Newtonian gravitational constant G (general post-Minkowskian expansion). Our method is self-sufficient in the sense that neither the integration of null geodesic equations nor the determination of Synge's world function is necessary. To illustrate the method, the time transfer function of a three-parameter family of static, spherically symmetric metrics is derived within the post-linear approximation.
A method for the direct generation of comprehensive numerical solar building transfer functions
Energy Technology Data Exchange (ETDEWEB)
Chen, T.Y. [The Hong Kong Polytechnic University (China). Dept. of Building Services Engineering
2003-02-01
This paper describes a method for the direct generation of comprehensive numerical room transfer functions with any derived parameters as output, such as operative temperature or thermal load. Complex conductive, convective and radiant heat transfer processes, or any derived thermal parameters in buildings can be explicitly and precisely described by a generalized thermal network. This allows the s-transfer and z-transfer functions to be directly generated, using semi-symbolic analysis techniques, Cayley's expansion of determinant and Heaviside's expansion theorem. A simple algorithm is developed for finding the roots of the denominator in the inverse transform of the s-transfer functions, which ensures that no single root is missing. The techniques have been applied to generating the transfer functions of a passive solar room with floor heating. The example calculation demonstrates the high efficiency of the computational method. (author)
DEFF Research Database (Denmark)
Raket, Lars Lau
We propose a direction it the field of statistics which we will call functional object analysis. This subfields considers the analysis of functional objects defined on continuous domains. In this setting we will focus on model-based statistics, with a particularly emphasis on mixed......-effect formulations, where the observed functional signal is assumed to consist of both fixed and random functional effects. This thesis takes the initial steps toward the development of likelihood-based methodology for functional objects. We first consider analysis of functional data defined on high...
Mantus, M.; Pardo, H.
1973-01-01
Computer programming, data processing, and a correlation study that employed data collected in the first phase test were used to demonstrate that standard test procedures and equipment could be used to collect a significant number of transfer functions from tests of the Lunar Module test article LTA-11. The testing consisted of suspending the vehicle from the apex fittings of the outrigger trusses through a set of air springs to simulate the free-free state. Impulsive loadings were delivered, one at a time, at each of the landing gear's attachment points, in three mutually perpendicular directions; thus a total of 36 impulses were applied to the vehicle. Time histories of each pulse were recorded on magnetic tape along with 40 channels of strain gage response and 28 channels of accelerometer response. Since an automated data processing system was not available, oscillograph playbacks were made of all 2400 time histories as a check on the validity of the data taken. In addition, one channel of instrumentation was processed to determine its response to a set of forcing functions from a prior LTA-11 drop test. This prediction was compared with drop test results as a first measure of accuracy.
Functional analysis and applications
Siddiqi, Abul Hasan
2018-01-01
This self-contained textbook discusses all major topics in functional analysis. Combining classical materials with new methods, it supplies numerous relevant solved examples and problems and discusses the applications of functional analysis in diverse fields. The book is unique in its scope, and a variety of applications of functional analysis and operator-theoretic methods are devoted to each area of application. Each chapter includes a set of problems, some of which are routine and elementary, and some of which are more advanced. The book is primarily intended as a textbook for graduate and advanced undergraduate students in applied mathematics and engineering. It offers several attractive features making it ideally suited for courses on functional analysis intended to provide a basic introduction to the subject and the impact of functional analysis on applied and computational mathematics, nonlinear functional analysis and optimization. It introduces emerging topics like wavelets, Gabor system, inverse pro...
Directory of Open Access Journals (Sweden)
Lisa A. De Stefano
2014-01-01
Full Text Available This paper describes a mathematical model of the learning process suitable for studies of conditioning using the proboscis extension reflex (PER in honey bees when bees are exposed to agrochemicals. Although procedural variations exist in the way laboratories use the PER paradigm, proboscis conditioning is widely used to investigate the influence of pesticides and repellents on honey bee learning. Despite the availability of several mathematical models of the learning process, no attempts have been made to apply a mathematical model to the learning curve in honey bees exposed to agrochemicals. Our model is based on the standard transfer function in the form Y=B3 e-B2 (X-1 +B4(1-e-B2 (X-1 where X is the trial number, Y is the proportion of correct responses, B2 is the learning rate, B3 is readiness to learn, and B4 is ability to learn. We reanalyze previously published data on the effect of several classes of agrochemicals including: (1 those that are considered harmless to bees (e.g., pymetrozine, essential oils, dicofol; (2 sublethal exposure to pesticides known to harm honey bees (e.g., coumaphos, cyfluthrin, fluvalinate, permethrin; and (3 putative repellents of honey bees (e.g., butyric acid, citronella. The model revealed additional effects not detected with standard statistical tests of significance.
Mayer Transfer Operator Approach to Selberg Zeta Function
DEFF Research Database (Denmark)
Momeni, Arash; Venkov, Alexei
. In a special situation the dynamical zeta function is defined for a geodesic flow on a hyperbolic plane quotient by an arithmetic cofinite discrete group. More precisely, the flow is defined for the corresponding unit tangent bundle. It turns out that the Selberg zeta function for this group can be expressed...... in terms of a Fredholm determinant of a classical transfer operator of the flow. The transfer operator is defined in a certain space of holomorphic functions and its matrix representation in a natural basis is given in terms of the Riemann zeta function and the Euler gamma function....
TRANSFER-FUNCTIONS OF A LINEARIZED MULTI-REGION REACTOR
Energy Technology Data Exchange (ETDEWEB)
Higgins, Thomas J.
1963-09-15
The development of the transfer functions for a linearized multi-region reactor is studied, and an illustration is made of application of the corresponding theory by a numerical illustrative example. (auth)
Transfer function between EEG and BOLD signals of epileptic activity
Directory of Open Access Journals (Sweden)
Marco eLeite
2013-01-01
Full Text Available Simultaneous EEG-fMRI recordings have seen growing application in the evaluation of epilepsy, namely in the characterization of brain networks related to epileptic activity. In EEG-correlated fMRI studies, epileptic events are usually described as boxcar signals based on the timing information retrieved from the EEG, and subsequently convolved with a heamodynamic response function to model the associated BOLD changes. Although more flexible approaches may allow a higher degree of complexity for the haemodynamics, the issue of how to model these dynamics based on the EEG remains an open question. In this work, a new methodology for the integration of simultaneous EEG-fMRI data in epilepsy is proposed, which incorporates a transfer function from the EEG to the BOLD signal. Independent component analysis (ICA of the EEG is performed, and a number of metrics expressing different models of the EEG-BOLD transfer function are extracted from the resulting time courses. These metrics are then used to predict the fMRI data and to identify brain areas associated with the EEG epileptic activity. The methodology was tested on both ictal and interictal EEG-fMRI recordings from one patient with a hypothalamic hamartoma. When compared to the conventional analysis approach, plausible, consistent and more significant activations were obtained. Importantly, frequency-weighted EEG metrics yielded superior results than those weighted solely on the EEG power, which comes in agreement with previous literature. Reproducibility, specificity and sensitivity should be addressed in an extended group of patients in order to further validate the proposed methodology and generalize the presented proof of concept.
Ramsay, J O
1997-01-01
Scientists today collect samples of curves and other functional observations. This monograph presents many ideas and techniques for such data. Included are expressions in the functional domain of such classics as linear regression, principal components analysis, linear modelling, and canonical correlation analysis, as well as specifically functional techniques such as curve registration and principal differential analysis. Data arising in real applications are used throughout for both motivation and illustration, showing how functional approaches allow us to see new things, especially by exploiting the smoothness of the processes generating the data. The data sets exemplify the wide scope of functional data analysis; they are drwan from growth analysis, meterology, biomechanics, equine science, economics, and medicine. The book presents novel statistical technology while keeping the mathematical level widely accessible. It is designed to appeal to students, to applied data analysts, and to experienced researc...
Fundamentals of functional analysis
Farenick, Douglas
2016-01-01
This book provides a unique path for graduate or advanced undergraduate students to begin studying the rich subject of functional analysis with fewer prerequisites than is normally required. The text begins with a self-contained and highly efficient introduction to topology and measure theory, which focuses on the essential notions required for the study of functional analysis, and which are often buried within full-length overviews of the subjects. This is particularly useful for those in applied mathematics, engineering, or physics who need to have a firm grasp of functional analysis, but not necessarily some of the more abstruse aspects of topology and measure theory normally encountered. The reader is assumed to only have knowledge of basic real analysis, complex analysis, and algebra. The latter part of the text provides an outstanding treatment of Banach space theory and operator theory, covering topics not usually found together in other books on functional analysis. Written in a clear, concise manner,...
Analysis of heat transfer in plain carbon steels
International Nuclear Information System (INIS)
Han, Heung Nam; Lee, Kyung Jong
1999-01-01
During cooling of steels, the heat transfer was controlled by radiation, convection, conduction and heat evolution from phase transformation. To analyze the heat transfer during cooling precisely, the material constants such as density, heat capacity and the heat evolved during transformation were obtained as functions of temperature and chemical composition for each phase observed in plain carbon steel using a thermodynamic analysis based on the sublattice model of Fe-C-Mn system. The results were applied to 0.049 wt% and 0.155 wt% carbon steels with an austenitic stainless steel as reference by developing a proper heat transfer governing equation. The equation was solved using the lumped system method. In addition, using a transformation dilatometer with adequate experimental conditions to clarify the individual heat transfer effect, the transformation heat evolved during cooling and the transformation behavior as well as the temperature change were observed. The predicted temperature profiles during cooling were well agreed with the measured ones
Functionalization of lanthanum hydroxide nanowires by atom transfer radical polymerization
International Nuclear Information System (INIS)
Zhou Mi; Yuan Jinying; Yuan Weizhong; Yin Yingwu; Hong Xiaoyin
2007-01-01
Atom transfer radical polymerization (ATRP) has been used to prepare a core-shell hybrid nanostructure successfully: a hard core of single-crystalline lanthanum hydroxide nanowires and a soft shell of polystyrene (PS) brushes. Transmission electron microscopy (TEM) images indicated that the resulting products presented special structures and different thicknesses of polymer layers. The chemical components and grafted PS quantities of the samples were measured by Fourier transform infrared (FT-IR) spectroscopy and thermogravimetric analysis (TGA). The polymers showed narrow polydispersity, which proved that the lanthanum hydroxide nanowires initiated the 'living'/controlled polymerization of styrene. With the modifiability of lanthanum hydroxide nanowires, the solubility increased, which affords a new way to functionalize nanowires
Consistent Parameter and Transfer Function Estimation using Context Free Grammars
Klotz, Daniel; Herrnegger, Mathew; Schulz, Karsten
2017-04-01
This contribution presents a method for the inference of transfer functions for rainfall-runoff models. Here, transfer functions are defined as parametrized (functional) relationships between a set of spatial predictors (e.g. elevation, slope or soil texture) and model parameters. They are ultimately used for estimation of consistent, spatially distributed model parameters from a limited amount of lumped global parameters. Additionally, they provide a straightforward method for parameter extrapolation from one set of basins to another and can even be used to derive parameterizations for multi-scale models [see: Samaniego et al., 2010]. Yet, currently an actual knowledge of the transfer functions is often implicitly assumed. As a matter of fact, for most cases these hypothesized transfer functions can rarely be measured and often remain unknown. Therefore, this contribution presents a general method for the concurrent estimation of the structure of transfer functions and their respective (global) parameters. Note, that by consequence an estimation of the distributed parameters of the rainfall-runoff model is also undertaken. The method combines two steps to achieve this. The first generates different possible transfer functions. The second then estimates the respective global transfer function parameters. The structural estimation of the transfer functions is based on the context free grammar concept. Chomsky first introduced context free grammars in linguistics [Chomsky, 1956]. Since then, they have been widely applied in computer science. But, to the knowledge of the authors, they have so far not been used in hydrology. Therefore, the contribution gives an introduction to context free grammars and shows how they can be constructed and used for the structural inference of transfer functions. This is enabled by new methods from evolutionary computation, such as grammatical evolution [O'Neill, 2001], which make it possible to exploit the constructed grammar as a
Griffel, DH
2002-01-01
A stimulating introductory text, this volume examines many important applications of functional analysis to mechanics, fluid mechanics, diffusive growth, and approximation. Detailed enough to impart a thorough understanding, the text is also sufficiently straightforward for those unfamiliar with abstract analysis. Its four-part treatment begins with distribution theory and discussions of Green's functions. Essentially independent of the preceding material, the second and third parts deal with Banach spaces, Hilbert space, spectral theory, and variational techniques. The final part outlines the
Transfer function and near-field detection of evanescent waves
DEFF Research Database (Denmark)
Radko, Ylia P.; Bozhevolnyi, Sergey I.; Gregersen, Niels
2006-01-01
of collection and illumination modes. Making use of a collection near-field microscope with a similar fiber tip illuminated by an evanescent field, we measure the collected power as a function of the field spatial frequency in different polarization configurations. Considering a two-dimensional probe...... for the transfer function, which is derived by introducing an effective pointof (dipolelike) detection inside the probe tip. It is found to be possible to fit reasonably well both the experimental and the simulation data for evanescent field components, implying that the developed approximation of the near......-field transfer function can serve as a simple, rational, and sufficiently reliable means of fiber probe characterization....
Geometric optical transfer function and tis computation method
International Nuclear Information System (INIS)
Wang Qi
1992-01-01
Geometric Optical Transfer Function formula is derived after expound some content to be easily ignored, and the computation method is given with Bessel function of order zero and numerical integration and Spline interpolation. The method is of advantage to ensure accuracy and to save calculation
Robust localized-orbital transferability using the Harris functional
International Nuclear Information System (INIS)
Hierse, W.; Stechel, E.B.
1996-01-01
Replacing diagonalization in a density-functional code by an order-N algorithm does not automatically produce large efficiency gains, at least for system sizes accessible to the current generation of computers. However, both efficiency and conceptual advantages do arise from the transfer of local electronic structure between locally similar, but globally different systems. Order-N methods produce potentially transferable local electronic structure. For practical applications, it is desirable that electronic structure be transferable between subsystems of similar yet somewhat different geometry. We show, in the context of molecular deformations of a simple hydrocarbon system, that this can be accomplished by combining a transfer prescription with the Harris functional. We show proof of principle and discuss the resulting efficiency gains. copyright 1996 The American Physical Society
Helmet Sensor - Transfer Function and Model Development
2010-09-01
that helmets be examined forensically when estimating the impact direction and location and the electronic HMSS data not be used in that determination... forensic analysis of the helmet itself is therefore recommended to determine the direction and severity of the ballistic impact 5. The helmet shell does...ot83 HTI l ot 8J HT1 lot S ,HTt IOt S , HTI l otiH HTt lotSS HTt l vt85 HTI l o)t 85 HT1 Front Level Acceleration ~~,--~----~--,30’p~g
Directory of Open Access Journals (Sweden)
Maria Inês Rebelo Gonçalves
2009-10-01
Full Text Available The vocal tract transfers its characteristics onto the sounds produced at the glottis, depending on its tridimensional configuration. AIM: this study aims to determine which of the seven oral vowels in Brazilian Portuguese is acoustically less impacted by changes to the vocal tract. MATERIALS AND METHOD: this is a cross-sectional prospective study. Twenty-three males and 23 females with ages ranging between 20 and 45 years (mean values of 28.95 and 29.79 years respectively were enrolled in the study; none had voice complaints and their voices were normal under perceptive-auditory evaluation. Three-hundred and twenty-two sustained vocal emissions were digitized and acoustically analyzed by three computer programs combined. Results were compared against the distribution of resonance frequencies in a straight tube with one end sealed. RESULTS: statistical analysis showed that vowel /ε/ was significantly different when compared to the other vowels, with higher mean harmonic values and lower standard deviation for both genders. CONCLUSION: in Brazilian Portuguese, vowel /ε/ is less impacted by changes to the vocal tract and is significantly less attenuated in both genders. The inclusion of this vowel in voice assessment standard protocols may contribute to improve the quality of the information obtained as a result of quantitative spectrographic and acoustic tests.O trato vocal transfere suas características ao som produzido na glote, de acordo com sua configuração tridimensional. OBJETIVO: Determinar qual das sete vogais orais do Português brasileiro sofre a menor interferência acústica das modificações do trato vocal. MATERIAL E MÉTODO: Estudo transversal prospectivo. Os indivíduos foram 23 homens e 23 mulheres, na faixa etária entre 20 e 45 anos (médias de 28,95 e 29,79 respectivamente, sem queixas vocais e com qualidade vocal normal na avaliação perceptivo-auditiva. 322 emissões vocais sustentadas foram digitalizadas e analisadas
Transfers of stimulus function during roulette wagering.
Dixon, Mark R; Enoch, Mary Rachel; Belisle, Jordan
2017-10-01
Twenty-five recreational gamblers were initially asked to place bets on either red or black positions on a roulette board in a simulated casino setting. Each participant was then exposed to a stimulus pairing observing procedure which attempted to develop equivalence classes between one color (black or red) and traditionally positive words (e.g., love, happy, sex) and another color (black or red) and traditionally negative words (e.g., death, cancer, taxes), in the absence of consequence manipulations. Twenty-one of the twenty-five participants demonstrated greater response allocation to the color position on the roulette board that participated in a relational network with the positive words. Variations in sequencing of experimental conditions had no impact on poststimulus-pairing wagers, but did impact tests for equivalence accuracy. © 2017 Society for the Experimental Analysis of Behavior.
The transfer function of neuron spike.
Palmieri, Igor; Monteiro, Luiz H A; Miranda, Maria D
2015-08-01
The mathematical modeling of neuronal signals is a relevant problem in neuroscience. The complexity of the neuron behavior, however, makes this problem a particularly difficult task. Here, we propose a discrete-time linear time-invariant (LTI) model with a rational function in order to represent the neuronal spike detected by an electrode located in the surroundings of the nerve cell. The model is presented as a cascade association of two subsystems: one that generates an action potential from an input stimulus, and one that represents the medium between the cell and the electrode. The suggested approach employs system identification and signal processing concepts, and is dissociated from any considerations about the biophysical processes of the neuronal cell, providing a low-complexity alternative to model the neuronal spike. The model is validated by using in vivo experimental readings of intracellular and extracellular signals. A computational simulation of the model is presented in order to assess its proximity to the neuronal signal and to observe the variability of the estimated parameters. The implications of the results are discussed in the context of spike sorting. Copyright © 2015 Elsevier Ltd. All rights reserved.
Evolution of the transfer function characterization of surface scatter phenomena
Harvey, James E.; Pfisterer, Richard N.
2016-09-01
Based upon the empirical observation that BRDF measurements of smooth optical surfaces exhibited shift-invariant behavior when plotted versus o , the original Harvey-Shack (OHS) surface scatter theory was developed as a scalar linear systems formulation in which scattered light behavior was characterized by a surface transfer function (STF) reminiscent of the optical transfer function (OTF) of modern image formation theory (1976). This shift-invariant behavior combined with the inverse power law behavior when plotting log BRDF versus log o was quickly incorporated into several optical analysis software packages. Although there was no explicit smooth-surface approximation in the OHS theory, there was a limitation on both the incident and scattering angles. In 1988 the modified Harvey-Shack (MHS) theory removed the limitation on the angle of incidence; however, a moderate-angle scattering limitation remained. Clearly for large incident angles the BRDF was no longer shift-invariant as a different STF was now required for each incident angle. In 2011 the generalized Harvey-Shack (GHS) surface scatter theory, characterized by a two-parameter family of STFs, evolved into a practical modeling tool to calculate BRDFs from optical surface metrology data for situations that violate the smooth surface approximation inherent in the Rayleigh-Rice theory and/or the moderate-angle limitation of the Beckmann-Kirchhoff theory. And finally, the STF can be multiplied by the classical OTF to provide a complete linear systems formulation of image quality as degraded by diffraction, geometrical aberrations and surface scatter effects from residual optical fabrication errors.
Identification of MIMO systems with sparse transfer function coefficients
Qiu, Wanzhi; Saleem, Syed Khusro; Skafidas, Efstratios
2012-12-01
We study the problem of estimating transfer functions of multivariable (multiple-input multiple-output--MIMO) systems with sparse coefficients. We note that subspace identification methods are powerful and convenient tools in dealing with MIMO systems since they neither require nonlinear optimization nor impose any canonical form on the systems. However, subspace-based methods are inefficient for systems with sparse transfer function coefficients since they work on state space models. We propose a two-step algorithm where the first step identifies the system order using the subspace principle in a state space format, while the second step estimates coefficients of the transfer functions via L1-norm convex optimization. The proposed algorithm retains good features of subspace methods with improved noise-robustness for sparse systems.
Determination of the transfer function of a reactor
International Nuclear Information System (INIS)
Dencs, B.
1976-01-01
The theoretical and experimental methods of the determination of reactor transfer functions are reviewed. Preliminary measurements were made on the experimental and final core of the training reactor of the Budapest Technical University. The rod-drop curves, the hole effect of the reactor and the control rod worths were determined. The effect of Cd ring and Cd profile was studied, too. The neutron flux distribution in the core was determined in several geometries. The oscillatory method is treated in detail. After the zero measurements of the core the oscillatory determination of the transfer function has been made on some frequency. The simplified model of the reactor transfer function was reconstructed from the measurement data. (R.J.)
Analysis of transference in Gestalt group psychotherapy.
Frew, J E
1990-04-01
In Gestalt therapy, transference is viewed as a contact boundary disturbance which impairs the patient's ability to accurately perceive the present therapy situation. The boundary disturbances in Gestalt therapy most closely related to the analytic notion of transference are projection, introjection, and confluence. In Gestalt group psychotherapy, group members interfere with the process of need identification and satisfaction by distorting their contact with each other through projecting, introjecting, and being confluent. The Gestalt group therapist uses interventions directed to individuals and to the group to increase participants' awareness of these boundary disturbances and of the present contact opportunities available to them when these disturbances are resolved. In formulating interventions, the leader is mindful of the function of boundary disturbances to the group-as-a-whole as well as to individuals.
Matrix Transfer Function Design for Flexible Structures: An Application
Brennan, T. J.; Compito, A. V.; Doran, A. L.; Gustafson, C. L.; Wong, C. L.
1985-01-01
The application of matrix transfer function design techniques to the problem of disturbance rejection on a flexible space structure is demonstrated. The design approach is based on parameterizing a class of stabilizing compensators for the plant and formulating the design specifications as a constrained minimization problem in terms of these parameters. The solution yields a matrix transfer function representation of the compensator. A state space realization of the compensator is constructed to investigate performance and stability on the nominal and perturbed models. The application is made to the ACOSSA (Active Control of Space Structures) optical structure.
Soil transfer function obtention by Wiener's optimum filter
International Nuclear Information System (INIS)
Flores Ruiz, J.H.
1987-01-01
Transfer function in nuclear power plant Laguna Verde, Veracruz, using Wiener filter. This paper deal with identification of complex structural and soil-interaction systems often are modeling in nuclear industry. Nonparametric identification techniques are used to analyse the response of a class nonlinear vibrations. Efficient computational algorithms and experimental techniques based input-output system methods such as the Wiener-Kernel approach and least-square regression techniques are applied to get the transfer function in nuclear power plant Laguna Verde, Veracruz (Mexico) (Author)
Oden, J Tinsley
2010-01-01
The textbook is designed to drive a crash course for beginning graduate students majoring in something besides mathematics, introducing mathematical foundations that lead to classical results in functional analysis. More specifically, Oden and Demkowicz want to prepare students to learn the variational theory of partial differential equations, distributions, and Sobolev spaces and numerical analysis with an emphasis on finite element methods. The 1996 first edition has been used in a rather intensive two-semester course. -Book News, June 2010
Selberg zeta functions and transfer operators an experimental approach to singular perturbations
Fraczek, Markus Szymon
2017-01-01
This book presents a method for evaluating Selberg zeta functions via transfer operators for the full modular group and its congruence subgroups with characters. Studying zeros of Selberg zeta functions for character deformations allows us to access the discrete spectra and resonances of hyperbolic Laplacians under both singular and non-singular perturbations. Areas in which the theory has not yet been sufficiently developed, such as the spectral theory of transfer operators or the singular perturbation theory of hyperbolic Laplacians, will profit from the numerical experiments discussed in this book. Detailed descriptions of numerical approaches to the spectra and eigenfunctions of transfer operators and to computations of Selberg zeta functions will be of value to researchers active in analysis, while those researchers focusing more on numerical aspects will benefit from discussions of the analytic theory, in particular those concerning the transfer operator method and the spectral theory of hyperbolic spac...
Estimation of acoustic resonances for room transfer function equalization
DEFF Research Database (Denmark)
Gil-Cacho, Pepe; van Waterschoot, Toon; Moonen, Marc
2010-01-01
Strong acoustic resonances create long room impulse responses (RIRs) which may harm the speech transmission in an acoustic space and hence reduce speech intelligibility. Equalization is performed by cancelling the main acoustic resonances common to multiple room transfer functions (RTFs), i...
DEFF Research Database (Denmark)
Gunabalan, R.; Sanjeevikumar, P.; Blaabjerg, Frede
2015-01-01
This paper presents the transfer function modeling and stability analysis of two induction motors of same ratings and parameters connected in parallel. The induction motors are controlled by a single inverter and the entire drive system is modeled using transfer function in LabView. Further...
Preliminary modulation transfer function study on amorphous silicon
International Nuclear Information System (INIS)
Khairul Anuar Mohd Salleh; Ab Razak Hamzah; Mohd Ashhar Khalid
2006-01-01
Modulation Transfer Function, (MTF) is the scientific means of evaluating the fundamental spatial resolution performance of an imaging system. In the study, the modulation transfer function of an amorphous silicon (aSi) sensor array is measured by using Edge Spread Function (ESF) Technique which is extracting a profile from the linearised image of the sharp edge. The Platinum foil is used to determine the ESF. The detector under study was a 2,304 (h) x 3,200 (v) total pixel matrix, 127 μm2 pixel pitch, 57% fill factor and using Gd2O2S:Tb Kodak Lanex Regular as the conversion screen. The ESF measurement is done by using 75 - 100 kV range of x-ray with constant mA. (Author)
Bhatia, Rajendra
2009-01-01
These notes are a record of a one semester course on Functional Analysis given by the author to second year Master of Statistics students at the Indian Statistical Institute, New Delhi. Students taking this course have a strong background in real analysis, linear algebra, measure theory and probability, and the course proceeds rapidly from the definition of a normed linear space to the spectral theorem for bounded selfadjoint operators in a Hilbert space. The book is organised as twenty six lectures, each corresponding to a ninety minute class session. This may be helpful to teachers planning a course on this topic. Well prepared students can read it on their own.
Nuclear response functions at large energy and momentum transfer
International Nuclear Information System (INIS)
Bertozzi, W.; Moniz, E.J.; Lourie, R.W.
1991-01-01
Quasifree nucleon processes are expected to dominate the nuclear electromagnetic response function for large energy and momentum transfers, i.e., for energy transfers large compared with nuclear single particle energies and momentum transfers large compared with typical nuclear momenta. Despite the evident success of the quasifree picture in providing the basic frame work for discussing and understanding the large energy, large momentum nuclear response, the limits of this picture have also become quite clear. In this article a selected set of inclusive and coincidence data are presented in order to define the limits of the quasifree picture more quantitatively. Specific dynamical mechanisms thought to be important in going beyond the quasifree picture are discussed as well. 75 refs, 37 figs
Deimling, Klaus
1985-01-01
topics. However, only a modest preliminary knowledge is needed. In the first chapter, where we introduce an important topological concept, the so-called topological degree for continuous maps from subsets ofRn into Rn, you need not know anything about functional analysis. Starting with Chapter 2, where infinite dimensions first appear, one should be familiar with the essential step of consider ing a sequence or a function of some sort as a point in the corresponding vector space of all such sequences or functions, whenever this abstraction is worthwhile. One should also work out the things which are proved in § 7 and accept certain basic principles of linear functional analysis quoted there for easier references, until they are applied in later chapters. In other words, even the 'completely linear' sections which we have included for your convenience serve only as a vehicle for progress in nonlinearity. Another point that makes the text introductory is the use of an essentially uniform mathematical languag...
Exergy costs analysis of groundwater use and water transfers
International Nuclear Information System (INIS)
Carrasquer, Beatriz; Uche, Javier; Martínez-Gracia, Amaya
2016-01-01
Highlights: • A methodology to estimate the unit exergy cost of water supply alternatives is provided. • Two alternatives (water transfers and groundwaters) are defined. • The unit exergy costs are given as a function of design and operating parameters. • Unit exergy cost of groundwaters go from 1.01 to 2.67 and from 1 to 4.06 in water transfers. • Unit exergy costs are calculated and contrasted for the medium course of the Ebro. - Abstract: In the search for new alternatives to meet the water demands, it is interesting to analyze the cost of using alternatives different from those such as desalination and pumping. The exergy cost analysis can be a useful tool to estimate costs of those alternatives as a function of its energy efficiency and its relative abundance with respect to existing resources in their surroundings. This study proposes a methodology for assessing the costs of groundwaters and water transfers from surplus basins within the exergy perspective. An equation to assess the exergy costs of these alternatives is proposed. System boundaries are first identified to the assessment of input and output currents to the system in exergy values for the design and certain operating conditions. Next, an equation to assess water supply costs depending on design and operational parameters is proposed, from the analysis of different examples. Pumping efficiency, altitude gap and flow among other features are introduced in the calculations as those characteristics parameters. In the developed examples, unit exergy costs of groundwaters go from 1.01 to 2.67, and from 1 to 4.06 in case of water transfers. Maximum values, as expected within this perspective, are found at high pumped/transferred flows and high pumping levels and/or low pumping efficiency if pumping is required.
Heat Transfer Performance of Functionalized Graphene Nanoplatelet Aqueous Nanofluids
Directory of Open Access Journals (Sweden)
Roberto Agromayor
2016-06-01
Full Text Available The low thermal conductivity of fluids used in many industrial applications is one of the primary limitations in the development of more efficient heat transfer systems. A promising solution to this problem is the suspension of nanoparticles with high thermal conductivities in a base fluid. These suspensions, known as nanofluids, have great potential for enhancing heat transfer. The heat transfer enhancement of sulfonic acid-functionalized graphene nanoplatelet water-based nanofluids is addressed in this work. A new experimental setup was designed for this purpose. Convection coefficients, pressure drops, and thermophysical properties of various nanofluids at different concentrations were measured for several operational conditions and the results are compared with those of pure water. Enhancements in thermal conductivity and in convection heat transfer coefficient reach 12% (1 wt % and 32% (0.5 wt %, respectively. New correlations capable of predicting the Nusselt number and the friction factor of this kind of nanofluid as a function of other dimensionless quantities are developed. In addition, thermal performance factors are obtained from the experimental convection coefficient and pressure drop data in order to assess the convenience of replacing the base fluid with designed nanofluids.
Ko, William L.; Fleischer, Van Tran
2014-01-01
To eliminate the need to use finite-element modeling for structure shape predictions, a new method was invented. This method is to use the Displacement Transfer Functions to transform the measured surface strains into deflections for mapping out overall structural deformed shapes. The Displacement Transfer Functions are expressed in terms of rectilinearly distributed surface strains, and contain no material properties. This report is to apply the patented method to the shape predictions of non-symmetrically loaded slender curved structures with different curvatures up to a full circle. Because the measured surface strains are not available, finite-element analysis had to be used to analytically generate the surface strains. Previously formulated straight-beam Displacement Transfer Functions were modified by introducing the curvature-effect correction terms. Through single-point or dual-point collocations with finite-elementgenerated deflection curves, functional forms of the curvature-effect correction terms were empirically established. The resulting modified Displacement Transfer Functions can then provide quite accurate shape predictions. Also, the uniform straight-beam Displacement Transfer Function was applied to the shape predictions of a section-cut of a generic capsule (GC) outer curved sandwich wall. The resulting GC shape predictions are quite accurate in partial regions where the radius of curvature does not change sharply.
Filtering Non-Linear Transfer Functions on Surfaces.
Heitz, Eric; Nowrouzezahrai, Derek; Poulin, Pierre; Neyret, Fabrice
2014-07-01
Applying non-linear transfer functions and look-up tables to procedural functions (such as noise), surface attributes, or even surface geometry are common strategies used to enhance visual detail. Their simplicity and ability to mimic a wide range of realistic appearances have led to their adoption in many rendering problems. As with any textured or geometric detail, proper filtering is needed to reduce aliasing when viewed across a range of distances, but accurate and efficient transfer function filtering remains an open problem for several reasons: transfer functions are complex and non-linear, especially when mapped through procedural noise and/or geometry-dependent functions, and the effects of perspective and masking further complicate the filtering over a pixel's footprint. We accurately solve this problem by computing and sampling from specialized filtering distributions on the fly, yielding very fast performance. We investigate the case where the transfer function to filter is a color map applied to (macroscale) surface textures (like noise), as well as color maps applied according to (microscale) geometric details. We introduce a novel representation of a (potentially modulated) color map's distribution over pixel footprints using Gaussian statistics and, in the more complex case of high-resolution color mapped microsurface details, our filtering is view- and light-dependent, and capable of correctly handling masking and occlusion effects. Our approach can be generalized to filter other physical-based rendering quantities. We propose an application to shading with irradiance environment maps over large terrains. Our framework is also compatible with the case of transfer functions used to warp surface geometry, as long as the transformations can be represented with Gaussian statistics, leading to proper view- and light-dependent filtering results. Our results match ground truth and our solution is well suited to real-time applications, requires only a few
MLP based LOGSIG transfer function for solar generation monitoring
Hashim, Fakroul Ridzuan; Din, Muhammad Faiz Md; Ahmad, Shahril; Arif, Farah Khairunnisa; Rizman, Zairi Ismael
2018-02-01
Solar panel is one of the renewable energy that can reduce the environmental pollution and have a wide potential of application. The exact solar prediction model will give a big impact on the management of solar power plants and the design of solar energy systems. This paper attempts to use Multilayer Perceptron (MLP) neural network based transfer function. The MLP network can be used to calculate the temperature module (TM) in Malaysia. This can be done by simulating the collected data of four weather variables which are the ambient temperature (TA), local wind speed (VW), solar radiation flux (GT) and the relative humidity (RH) as the input into the neural network. The transfer function will be applied to the 14 types of training. Finally, an equation from the best training algorithm will be deduced to calculate the temperature module based on the input of weather variables in Malaysia.
Oversampling ad converters with improved signal transfer functions
Pandita, Bupesh
2011-01-01
This book describes techniques for designing complex, discrete-time I""IGBP ADCs with signal-transfer functions that significantly filter interfering signals. The book provides an understanding of theory, issues, and implementation of discrete complex I""IGBP ADCs. The concepts developed in each chapter are further explained by applying them to a target application of I""IGBP ADCs in DTV receivers.
Measurement of the transfer function of the main SPS Quadrupoles
Dinius, A; Semanaz, P; CERN. Geneva. SPS and LEP Division
1998-01-01
During two short MD's we have measured the transfer function (amplitude and phase) of the main quadrupole string QD. By the word string we mean the global effect of power supplies, magnets and the eddy current effects of the vacuum chamber. This paper presents the measurement procedure and the results, which are needed for the design of a real-time feedback system for the betatron tunes ( Qloop).
The partial coherence modulation transfer function in testing lithography lens
Huang, Jiun-Woei
2018-03-01
Due to the lithography demanding high performance in projection of semiconductor mask to wafer, the lens has to be almost free in spherical and coma aberration, thus, in situ optical testing for diagnosis of lens performance has to be established to verify the performance and to provide the suggesting for further improvement of the lens, before the lens has been build and integrated with light source. The measurement of modulation transfer function of critical dimension (CD) is main performance parameter to evaluate the line width of semiconductor platform fabricating ability for the smallest line width of producing tiny integrated circuits. Although the modulation transfer function (MTF) has been popularly used to evaluation the optical system, but in lithography, the contrast of each line-pair is in one dimension or two dimensions, analytically, while the lens stand along in the test bench integrated with the light source coherent or near coherent for the small dimension near the optical diffraction limit, the MTF is not only contributed by the lens, also by illumination of platform. In the study, the partial coherence modulation transfer function (PCMTF) for testing a lithography lens is suggested by measuring MTF in the high spatial frequency of in situ lithography lens, blended with the illumination of partial and in coherent light source. PCMTF can be one of measurement to evaluate the imperfect lens of lithography lens for further improvement in lens performance.
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2001-01-01
We present a new technique that measures the full amplitude and phase transfer curves of the modulator as a function of the applied bias, from which the small signal α-parameter can be calculated. The technique measures the amplitude and phase transfer functions simultaneously and directly......, compared to techniques where a time-consuming data analysis is necessary to calculate the a-parameter and an additional measurement is necessary to estimate the phase. Additionally, the chirp profile for all operation points can be calculated....
Evaluation of Geometrical Modulation Transfer Function in Optical Lens System
Directory of Open Access Journals (Sweden)
Cheng-Mu Tsai
2015-01-01
Full Text Available This paper presents ray tracing algorithms to evaluate the geometrical modulation transfer function (GMTF of optical lens system. There are two kinds of ray tracings methods that can be applied to help simulate the point spread function (PSF in the image plane, for example, paraxial optics and real ray tracings. The paraxial optics ray tracing is used to calculate the first-order properties such as the effective focal length (EFL and the entrance pupil position through less cost of computation. However, the PSF could have a large tolerance by only using paraxial optics ray tracing for simulation. Some formulas for real ray tracing are applied in the sagittal and tangential line spread function (LSF. The algorithms are developed to demonstrate the simulation of LSF. Finally, the GMTF is evaluated after the fast Fourier transform (FFT of the LSF.
A real-time transfer function analyser program for PFR
International Nuclear Information System (INIS)
McWilliam, D.
1980-03-01
A transfer function analyser software package has been produced which is believed to constitute a significant advance over others reported in the literature. The main advantages of the system are its operating speed, especially at low frequencies, which is due to its use of part-cycle integration and its high degree of interactive operator control. The driving sine wave, the return signals and the computed vector diagrams are displayed on TV type visual display units. Data output is by means of an incremental graph plotter or an IBM typewriter. (author)
Audibility of spectral differences in head-related transfer functions
DEFF Research Database (Denmark)
Hoffmann, Pablo F.F.; Møller, Henrik
2006-01-01
The spatial resolution at which head-related transfer functions (HRTFs) are available is an important aspect in the implementation of three-dimensional sound. Specifically, synthesis of moving sound requires that HRTFs are sufficiently close so the simulated sound is perceived as moving smoothly....... How close they must be, depends directly on how much the characteristics of neighboring HRTFs differ, and, most important, when these differences become audible. Differences between HRTFs exist in the interaural delay (ITD) and in the spectral characteristics, i.e. the magnitude spectrum of the HRTFs...
Monaural and binaural subjective modulation transfer functions in simple reverberation
DEFF Research Database (Denmark)
Thompson, Eric Robert; Dau, Torsten
2008-01-01
conditions, with single reflections at different arrival times in the two ears and with a simulated room impulse response. The monaural data describe a subjective MTF, which is similar to the physical MTF. An interaural modulation phase difference can create an interaural intensity fluctuation, which can......, M.R. (1981) Modulation transfer-functions: Definition and measurement, Acustica, 49, 179-182]. The envelope of a speech signal is critical for intelligibility, and the speech transmission index (STI) predicts the intelligibility of speech through a given transmission channel based on its MTF...
A Primer on Functional Analysis
Yoman, Jerome
2008-01-01
This article presents principles and basic steps for practitioners to complete a functional analysis of client behavior. The emphasis is on application of functional analysis to adult mental health clients. The article includes a detailed flow chart containing all major functional diagnoses and behavioral interventions, with functional assessment…
Directory of Open Access Journals (Sweden)
Zbigniew Staroszczyk
2014-12-01
Full Text Available [b]Abstract[/b]. In the paper, the calibrating method for error correction in transfer function determination with the use of DSP has been proposed. The correction limits/eliminates influence of transfer function input/output signal conditioners on the estimated transfer functions in the investigated object. The method exploits frequency domain conditioning paths descriptor found during training observation made on the known reference object.[b]Keywords[/b]: transfer function, band extension, error correction, phase errors
Functional brain activation associated with working memory training and transfer.
Clark, Cameron M; Lawlor-Savage, Linette; Goghari, Vina M
2017-09-15
While behavioural trials of working memory (WM) training have received much attention in recent years, a lesser explored parallel approach is functional neuroimaging. A small literature has suggested a complex time course for functional activation pattern changes following WM training (i.e. not simply increasing or decreasing due to training); however, no study to date has examined such neuroplastic effects in both the training task (dual n-back) and the fluid intelligence transfer task to which the training is purported to transfer (Raven's Matrices). This study investigated neural correlates of WM training in healthy young adults randomized to six weeks of WM training, or an active control condition (processing speed training) with a pre- and post-training fMRI design. Results indicated significant reductions in activation for the WM trained group in key WM-task related areas for trained WM tasks after training compared to the processing speed active control group. The same pattern of training related decreases in activation for the WM trained group was not observed for the transfer task, which is consistent with null results for all cognitive outcomes of the present trial. The observed pattern of results suggests that repetitive practice with a complex task does indeed lead to neuroplastic processes that very likely represent the reduced demand for attentional control while sub-components of the task become more routinized with practice. We suggest that future research investigate neural correlates of WM training in populations for which WM itself is impaired and/or behavioural trials of WM training have returned more promising results. Copyright © 2017 Elsevier B.V. All rights reserved.
[Development and technological transfer of functional pastas extended with legumes].
Granito, Marisela; Ascanio, Vanesa
2009-03-01
Development and technological transfer of functional pastas extended with legumes. Semolina pasta is a highly consumed foodstuff, the biological value of which is low because its protein is deficient in lysine. However, if the semolina is extended with legumes rich in this essential aminoacid, not only and aminoacid supplementation is produced, but also the dietary fibre and minerals are increased. In this work, pastas extended in 10% with a white variety of Phaseolus vulgaris and with Cajanus cajan were produced on a pilot plant scale, and this technology was transferred to a cooperative producing artisanal pastas. The cooking qualities and the physical, chemical, and nutritional characteristics of the pastas were evaluated, as well as the sensorial acceptability in institutionalized elderly people. The extension of the pastas with legume flours increased the optimum cooking time (15 to 20%), the weight (20% and 25%), and the loss of solids by cooking. Similarly, the functional value of the pastas increased by increasing the contents of minerals and dietary fibre. The protein content, as well as the protein digestibility in vitro also increased; however, the parameters of colour L, a and b, and the total starch content of the pastas decreased. At consumer level, the pastas extended with legumes had a good acceptability, for what it was concluded that the extension of the semolina with legume flours in the manufacture of pastas is technologically feasible.
Multidimensional Wave Field Signal Theory: Transfer Function Relationships
Directory of Open Access Journals (Sweden)
Natalie Baddour
2012-01-01
Full Text Available The transmission of information by propagating or diffusive waves is common to many fields of engineering and physics. Such physical phenomena are governed by a Helmholtz (real wavenumber or pseudo-Helmholtz (complex wavenumber equation. Since these equations are linear, it would be useful to be able to use tools from signal theory in solving related problems. The aim of this paper is to derive multidimensional input/output transfer function relationships in the spatial domain for these equations in order to permit such a signal theoretic approach to problem solving. This paper presents such transfer function relationships for the spatial (not Fourier domain within appropriate coordinate systems. It is shown that the relationships assume particularly simple and computationally useful forms once the appropriate curvilinear version of a multidimensional spatial Fourier transform is used. These results are shown for both real and complex wavenumbers. Fourier inversion of these formulas would have applications for tomographic problems in various modalities. In the case of real wavenumbers, these inversion formulas are presented in closed form, whereby an input can be calculated from a given or measured wavefield.
Strange functions in real analysis
Kharazishvili, AB
2005-01-01
Weierstrass and Blancmange nowhere differentiable functions, Lebesgue integrable functions with everywhere divergent Fourier series, and various nonintegrable Lebesgue measurable functions. While dubbed strange or "pathological," these functions are ubiquitous throughout mathematics and play an important role in analysis, not only as counterexamples of seemingly true and natural statements, but also to stimulate and inspire the further development of real analysis.Strange Functions in Real Analysis explores a number of important examples and constructions of pathological functions. After introducing the basic concepts, the author begins with Cantor and Peano-type functions, then moves to functions whose constructions require essentially noneffective methods. These include functions without the Baire property, functions associated with a Hamel basis of the real line, and Sierpinski-Zygmund functions that are discontinuous on each subset of the real line having the cardinality continuum. Finally, he considers e...
Dynamic Stiffness Transfer Function of an Electromechanical Actuator Using System Identification
Kim, Sang Hwa; Tahk, Min-Jea
2018-04-01
In the aeroelastic analysis of flight vehicles with electromechanical actuators (EMAs), an accurate prediction of flutter requires dynamic stiffness characteristics of the EMA. The dynamic stiffness transfer function of the EMA with brushless direct current (BLDC) motor can be obtained by conducting complicated mathematical calculations of control algorithms and mechanical/electrical nonlinearities using linearization techniques. Thus, system identification approaches using experimental data, as an alternative, have considerable advantages. However, the test setup for system identification is expensive and complex, and experimental procedures for data collection are time-consuming tasks. To obtain the dynamic stiffness transfer function, this paper proposes a linear system identification method that uses information obtained from a reliable dynamic stiffness model with a control algorithm and nonlinearities. The results of this study show that the system identification procedure is compact, and the transfer function is able to describe the dynamic stiffness characteristics of the EMA. In addition, to verify the validity of the system identification method, the simulation results of the dynamic stiffness transfer function and the dynamic stiffness model were compared with the experimental data for various external loads.
Electron transfer flavoprotein deficiency: Functional and molecular aspects
DEFF Research Database (Denmark)
Schiff, M; Froissart, R; Olsen, Rikke Katrine Jentoft
2006-01-01
Multiple acyl-CoA dehydrogenase deficiency (MADD) is a recessively inherited metabolic disorder that can be due to a deficiency of electron transfer flavoprotein (ETF) or its dehydrogenase (ETF-ubiquinone oxidoreductase). ETF is a mitochondrial matrix protein consisting of alpha- (30kDa) and beta......- (28kDa) subunits encoded by the ETFA and ETFB genes, respectively. In the present study, we have analysed tissue samples from 16 unrelated patients with ETF deficiency, and we report the results of ETF activity, Western blot analysis and mutation analysis. The ETF assay provides a reliable diagnostic...... tool to confirm ETF deficiency in patients suspected to suffer from MADD. Activity ranged from less than 1 to 16% of controls with the most severely affected patients disclosing the lowest activity values. The majority of patients had mutations in the ETFA gene while only two of them harboured...
Theoretical numerical analysis a functional analysis framework
Atkinson, Kendall
2005-01-01
This textbook prepares graduate students for research in numerical analysis/computational mathematics by giving to them a mathematical framework embedded in functional analysis and focused on numerical analysis. This helps the student to move rapidly into a research program. The text covers basic results of functional analysis, approximation theory, Fourier analysis and wavelets, iteration methods for nonlinear equations, finite difference methods, Sobolev spaces and weak formulations of boundary value problems, finite element methods, elliptic variational inequalities and their numerical solu
TRANSFER PRICING AS A TOOLFOR FINANCIAL ANALYSIS OFENTERPRISES
Directory of Open Access Journals (Sweden)
Alexey S. Besfamilnyy
2015-01-01
Full Text Available The article outlines the basics of using transfer pricing methods applied to the financial analysis of the enterprise. It focuses on the application of transfer pricing methods not only over prices control between related organizations, but for analysis of the financial performance of companies. It proposes to use comparison of profitability of comparable companies during the reporting period. Shows an approach for the search and selection of comparable companies using information systems SPARKS or Bureau van Dijk. It analysis some examples in which the methodology is applicable transfer pricing as a tool of financial analysis.
Modulation Transfer Function of Infrared Focal Plane Arrays
Gunapala, S. D.; Rafol, S. B.; Ting, D. Z.; Soibel, A.; Hill, C. J.; Khoshakhlagh, A.; Liu, J. K.; Mumolo, J. M.; Hoglund, L.; Luong, E. M.
2015-01-01
Modulation transfer function (MTF) is the ability of an imaging system to faithfully image a given object. The MTF of an imaging system quantifies the ability of the system to resolve or transfer spatial frequencies. In this presentation we will discuss the detail MTF measurements of 1024x1024 pixels mid -wavelength and long- wavelength quantum well infrared photodetector, and 320x256 pixels long- wavelength InAs/GaSb superlattice infrared focal plane arrays (FPAs). Long wavelength Complementary Barrier Infrared Detector (CBIRD) based on InAs/GaSb superlattice material is hybridized to recently designed and fabricated 320x256 pixel format ROIC. The n-type CBIRD was characterized in terms of performance and thermal stability. The experimentally measured NE delta T of the 8.8 micron cutoff n-CBIRD FPA was 18.6 mK with 300 K background and f/2 cold stop at 78K FPA operating temperature. The horizontal and vertical MTFs of this pixel fully delineated CBIRD FPA at Nyquist frequency are 49% and 52%, respectively.
Energy Technology Data Exchange (ETDEWEB)
Rahimpour, Ebrahim [ABB AG, Bad Honnef (Germany). R and D Abt.
2011-11-14
The task of modern diagnostics is to provide an optimal use of transformation by means of an exact condition monitoring according to portable power and operating time without an inadmissible impact on the operational safety. Several methods are investigated with respect to this problem: thermal monitoring, oil analysis (DGA, furfural), partial discharge measurements (electric, acoustic), transfer function, relaxation current, RVM (Recovery Voltage Measurement) and various others. Each method has a certain suitability to detect changes.
Time constants and feedback transfer functions of EBR-II subassembly types
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1986-01-01
Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1986-09-01
Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel
Time constants and feedback transfer functions of EBR-II subassembly types
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1987-01-01
Time constants, feedback reactivity transfer functions and power coefficients are calculated for stereotypical subassemblies in the EBR-II reactor. These quantities are calculated from nodal reactivities obtained from a reactor kinetic code analysis for a step change in power. Due to the multiplicity of eigenvalues, there are several time constants for each nodal position in a subassembly. Compared with these calculated values are analytically derived values for the initial node of a given channel. (author)
Long Range Transport of Air Pollution Into Norway - A Transfer Function Approach
Directory of Open Access Journals (Sweden)
Eivind Damsleth
1984-07-01
Full Text Available The daily and monthly concentration of sulphate in the air at Birkcnes in the southern part of Norway is analysed within an intervention analysis and transfer function framework. As input to the model we use the prevailing wind direction. It is shown that when the wind comes mainly from the South, that is from Central Europe and England, this gives a significant increase in the sulphate concentration, while a northern wind leads to a decrease.
Spatial distribution measured by the modulation transfer function
International Nuclear Information System (INIS)
Rossi, P.; Brice, D.K.; Doyle, B.L.
2003-01-01
Spatial distributions in ion micro-beam and IBA experimental practice are regularly characterized through the parameters of FWHM and tail area percentage (TF, tail fraction). Linear and stationary transducer theory allows these distributions to be described in the Fourier-dual frequency space, and provides an indirect method to evaluate them through measurement of the modulation transfer function (MTF). We suggest direct measurement of MTF by employing bar pattern grids, similar to those used for calibration of radiological equipment. Assuming spatial distributions of the form exp(-(|αx|) η ), we are able to relate the MTF measurements to the more popular FWHM and TF. This new approach to determine spatial resolution can become a standard for use by the micro-beam community
Experimental research of limits for thermal modulation transfer function
Directory of Open Access Journals (Sweden)
Tomić Ljubiša D.
2009-01-01
Full Text Available The paper presented testing of surface defects by pulse video thermography techniques. Such techniques rely on transient infrared radiation from the sample heated by the short duration flux initiated by flesh. Experimental measurements are realized by infrared sensor (FLIR camera. Testing results are considered for the samples with controlled designed defects beyond observed surfaces. The effects of response through the transparent wall are measured as infrared visible radiance. Researches with controlled samples are performed to verify visibility threshold of defect dimensions and forms, for possible use as modulation transfer function of defects hidden beyond the surfaces of thin metal walls. Dimensionless coefficients are derived for method estimations as the results from experimental research.
Transcriptomic and genetic analysis of direct interspecies electron transfer
DEFF Research Database (Denmark)
Shrestha, Pravin Malla; Rotaru, Amelia-Elena; Summers, Zarath M
2013-01-01
The possibility that metatranscriptomic analysis could distinguish between direct interspecies electron transfer (DIET) and H2 interspecies transfer (HIT) in anaerobic communities was investigated by comparing gene transcript abundance in cocultures in which Geobacter sulfurreducens....... These results demonstrate that there are unique gene expression patterns that distinguish DIET from HIT and suggest that metatranscriptomics may be a promising route to investigate interspecies electron transfer pathways in more-complex environments....
TESTING SOME PEDO-TRANSFER FUNCTIONS (PTFS IN APULIA REGION
Directory of Open Access Journals (Sweden)
Floriano Buccigrossi
2009-03-01
Full Text Available The knowledge of soil water retention vs. soil water matric potential is used to study irrigation and drainage schedules, soil water storage capacity (plant available water, solute movement, plant growth and water stress. The hydraulic soil properties measuring is expensive, laborious and takes too long time, so, frequently, matemathic models, called pedo-transfer functions (PTFs are utilized to estimate hydraulic soil properties through soil chimical and phisical characteristics. Six pedo-transfer functions have been evaluated (Gupta & Larson, 1979; Rawls et al., 1982; De Jong et al., 1983; Rawls & Brakensiek, 1985; Saxton et al., 1986; Vereecken et al., 1989 by comparing estimated with measured soil moisture values at soil water matric potential of –33 and –1500 kPa of 361 soil samples collected from 185 pedons of Apulia Region (South Italy, having various combinations of particle-size distribution, soil organic matter content and bulk density. Accuracy of the soil moisture predictions have been evaluated by statistic indexes such as Weighted stantard error (WSEE, Mean Deviation (MD, Root Mean Squared Deviation (RMSD and the determination coefficient (R2 between estimated and measured water retention values. The Rawls PTF model demostrated to have the lowest values of WSEE, MD and RMSD indexes (0.044, -0.007 and 0.059 m3 H2O m-3 soil, respectively at –33 Kpa soil water matric potential (Field Capacity, while for estimating soil moisture at the Wilting Point (-1500 kPa Rawls & Brakensiek model is adequate (WSEE, MD and RMSD of 0.034, -0.016 and 0.046 m3 H2O m-3 soil. De Jong, Saxton and Rawls & Brakensiek models, at –33 kPa soil water matric potential and Gupta & Larson and De Jong models at –1500 kPa soil water matric potential, showed the highest statistic errors.
Surprisal analysis and probability matrices for rotational energy transfer
International Nuclear Information System (INIS)
Levine, R.D.; Bernstein, R.B.; Kahana, P.; Procaccia, I.; Upchurch, E.T.
1976-01-01
The information-theoretic approach is applied to the analysis of state-to-state rotational energy transfer cross sections. The rotational surprisal is evaluated in the usual way, in terms of the deviance of the cross sections from their reference (''prior'') values. The surprisal is found to be an essentially linear function of the energy transferred. This behavior accounts for the experimentally observed exponential gap law for the hydrogen halide systems. The data base here analyzed (taken from the literature) is largely computational in origin: quantal calculations for the hydrogenic systems H 2 +H, He, Li + ; HD+He; D 2 +H and for the N 2 +Ar system; and classical trajectory results for H 2 +Li + ; D 2 +Li + and N 2 +Ar. The surprisal analysis not only serves to compact a large body of data but also aids in the interpretation of the results. A single surprisal parameter theta/subR/ suffices to account for the (relative) magnitude of all state-to-state inelastic cross sections at a given energy
Isegawa, Miho; Gao, Jiali; Truhlar, Donald G
2011-08-28
Molecular fragmentation algorithms provide a powerful approach to extending electronic structure methods to very large systems. Here we present a method for including charge transfer between molecular fragments in the explicit polarization (X-Pol) fragment method for calculating potential energy surfaces. In the conventional X-Pol method, the total charge of each fragment is preserved, and charge transfer between fragments is not allowed. The description of charge transfer is made possible by treating each fragment as an open system with respect to the number of electrons. To achieve this, we applied Mermin's finite temperature method to the X-Pol wave function. In the application of this method to X-Pol, the fragments are open systems that partially equilibrate their number of electrons through a quasithermodynamics electron reservoir. The number of electrons in a given fragment can take a fractional value, and the electrons of each fragment obey the Fermi-Dirac distribution. The equilibrium state for the electrons is determined by electronegativity equalization with conservation of the total number of electrons. The amount of charge transfer is controlled by re-interpreting the temperature parameter in the Fermi-Dirac distribution function as a coupling strength parameter. We determined this coupling parameter so as to reproduce the charge transfer energy obtained by block localized energy decomposition analysis. We apply the new method to ten systems, and we show that it can yield reasonable approximations to potential energy profiles, to charge transfer stabilization energies, and to the direction and amount of charge transferred. © 2011 American Institute of Physics
Functional Analysis in Interdisciplinary Applications
Nursultanov, Erlan; Ruzhansky, Michael; Sadybekov, Makhmud
2017-01-01
This volume presents current research in functional analysis and its applications to a variety of problems in mathematics and mathematical physics. The book contains over forty carefully refereed contributions to the conference “Functional Analysis in Interdisciplinary Applications” (Astana, Kazakhstan, October 2017). Topics covered include the theory of functions and functional spaces; differential equations and boundary value problems; the relationship between differential equations, integral operators and spectral theory; and mathematical methods in physical sciences. Presenting a wide range of topics and results, this book will appeal to anyone working in the subject area, including researchers and students interested to learn more about different aspects and applications of functional analysis.
Fitting of transfer functions to frequency response measurements
International Nuclear Information System (INIS)
Moret, J.M.
1994-12-01
An algorithm for approximating a given complex frequency response with a rational function of two polynomials with real coefficients is presented, together with its extension to distributed parameter systems, the corresponding error analysis and its application to a real case. (author) 5 figs., 4 refs
Heat transfer and thermal stress analysis in grooved tubes
Indian Academy of Sciences (India)
Heat transfer and thermal stresses, induced by temperature differencesin the internally grooved tubes of heat transfer equipment, have been analysed numerically. The analysis has been conducted for four different kinds of internally grooved tubes and three different mean inlet water velocities. Constant temperature was ...
Smith, Walter T., Jr.; Patterson, John M.
1984-01-01
Literature on analytical methods related to the functional groups of 17 chemical compounds is reviewed. These compounds include acids, acid azides, alcohols, aldehydes, ketones, amino acids, aromatic hydrocarbons, carbodiimides, carbohydrates, ethers, nitro compounds, nitrosamines, organometallic compounds, peroxides, phenols, silicon compounds,…
Automatic Functional Harmonic Analysis
de Haas, W.B.; Magalhães, J.P.; Wiering, F.; Veltkamp, R.C.
2013-01-01
Music scholars have been studying tonal harmony intensively for centuries, yielding numerous theories and models. Unfortunately, a large number of these theories are formulated in a rather informal fashion and lack mathematical precision. In this article we present HarmTrace, a functional model of
Method for estimating modulation transfer function from sample images.
Saiga, Rino; Takeuchi, Akihisa; Uesugi, Kentaro; Terada, Yasuko; Suzuki, Yoshio; Mizutani, Ryuta
2018-02-01
The modulation transfer function (MTF) represents the frequency domain response of imaging modalities. Here, we report a method for estimating the MTF from sample images. Test images were generated from a number of images, including those taken with an electron microscope and with an observation satellite. These original images were convolved with point spread functions (PSFs) including those of circular apertures. The resultant test images were subjected to a Fourier transformation. The logarithm of the squared norm of the Fourier transform was plotted against the squared distance from the origin. Linear correlations were observed in the logarithmic plots, indicating that the PSF of the test images can be approximated with a Gaussian. The MTF was then calculated from the Gaussian-approximated PSF. The obtained MTF closely coincided with the MTF predicted from the original PSF. The MTF of an x-ray microtomographic section of a fly brain was also estimated with this method. The obtained MTF showed good agreement with the MTF determined from an edge profile of an aluminum test object. We suggest that this approach is an alternative way of estimating the MTF, independently of the image type. Copyright © 2017 Elsevier Ltd. All rights reserved.
Heat transfer analysis of parabolic trough solar receiver
International Nuclear Information System (INIS)
Padilla, Ricardo Vasquez; Demirkaya, Gokmen; Goswami, D. Yogi; Stefanakos, Elias; Rahman, Muhammad M.
2011-01-01
Highlights: → In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. → The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. → Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented. → The proposed heat transfer model was validated with experimental data obtained from Sandia National Laboratory. → Our results showed a better agreement with experimental data compared to other models. -- Abstract: Solar Parabolic Trough Collectors (PTCs) are currently used for the production of electricity and applications with relatively higher temperatures. A heat transfer fluid circulates through a metal tube (receiver) with an external selective surface that absorbs solar radiation reflected from the mirror surfaces of the PTC. In order to reduce the heat losses, the receiver is covered by an envelope and the enclosure is usually kept under vacuum pressure. The heat transfer and optical analysis of the PTC is essential to optimize and understand its performance under different operating conditions. In this paper a detailed one dimensional numerical heat transfer analysis of a PTC is performed. The receiver and envelope were divided into several segments and mass and energy balance were applied in each segment. Improvements either in the heat transfer correlations or radiative heat transfer analysis are presented as well. The partial differential equations were discretized and the nonlinear algebraic equations were solved simultaneously. Finally, to validate the numerical results, the model was compared with experimental data obtained from Sandia National Laboratory (SNL) and other one dimensional heat transfer models. Our results showed a better agreement with experimental data compared to other models.
Elementary functional analysis
Shilov, Georgi E
1996-01-01
Introductory text covers basic structures of mathematical analysis (linear spaces, metric spaces, normed linear spaces, etc.), differential equations, orthogonal expansions, Fourier transforms - including problems in the complex domain, especially involving the Laplace transform - and more. Each chapter includes a set of problems, with hints and answers. Bibliography. 1974 edition.
MD 1407 - Landau Damping: Beam Transfer Functions and diffusion mechanisms
Tambasco, Claudia; Boccardi, Andrea; Buffat, Xavier; Gasior, Marek; Lefevre, Thibaut; Levens, Tom; Pojer, Mirko; Salvachua Ferrando, Belen Maria; Solfaroli Camillocci, Matteo; Pieloni, Tatiana; Crouch, Matthew Paul; CERN. Geneva. ATS Department
2017-01-01
In the 2012, 2015 and 2016 run several instabilities were developing at flat-top, during and at the end of the betatron squeeze where beam-beam interactions are present. The tune spread in the beams is therefore modified by the beam-beam long-range interactions and by other sources of spread. Studies of the stability area computed by evaluating the dispersion integral for different tune spreads couldn’t explain the observed instabilities during the squeeze and stable beams. The size of the stability area given by the computed dispersion integral depends on the transverse tune spread but its shape is defined by the particle distribution in the beams. Therefore any change of the particle distribution can lead to a deterioration of the Landau stability area. The Beam Transfer Functions (BTF) are direct measurements of the Stability Diagrams (SD). They are sensitive to particle distributions and contain information about the transverse tune spread in the beams. In this note are summarized the results of the BTF...
Line-scanning tomographic optical microscope with isotropic transfer function
International Nuclear Information System (INIS)
Gajdátsy, Gábor; Dudás, László; Erdélyi, Miklós; Szabó, Gábor
2010-01-01
An imaging method and optical system, referred to as a line-scanning tomographic optical microscope (LSTOM) using a combination of line-scanning technique and CT reconstruction principle, is proposed and studied theoretically and experimentally. In our implementation a narrow focus line is scanned over the sample and the reflected light is measured in a confocal arrangement. One such scan is equivalent to a transverse projection in tomography. Repeating the scanning procedure in several directions, a number of transverse projections are recorded from which the image can be obtained using conventional CT reconstruction algorithms. The resolution of the image is independent of the spatial dimensions and structure of the applied detector; furthermore, the transfer function of the system is isotropic. The imaging performance of the implemented confocal LSTOM was compared with a point-scanning confocal microscope, based on recorded images. These images demonstrate that the resolution of the confocal LSTOM exceeds (by 15%) the resolution limit of a point-scanning confocal microscope
Functional Generalized Structured Component Analysis.
Suk, Hye Won; Hwang, Heungsun
2016-12-01
An extension of Generalized Structured Component Analysis (GSCA), called Functional GSCA, is proposed to analyze functional data that are considered to arise from an underlying smooth curve varying over time or other continua. GSCA has been geared for the analysis of multivariate data. Accordingly, it cannot deal with functional data that often involve different measurement occasions across participants and a large number of measurement occasions that exceed the number of participants. Functional GSCA addresses these issues by integrating GSCA with spline basis function expansions that represent infinite-dimensional curves onto a finite-dimensional space. For parameter estimation, functional GSCA minimizes a penalized least squares criterion by using an alternating penalized least squares estimation algorithm. The usefulness of functional GSCA is illustrated with gait data.
Heat transfer analysis of liquid piston compressor for hydrogen applications
DEFF Research Database (Denmark)
Kermani, Nasrin Arjomand; Rokni, Masoud
2015-01-01
A hydrogen compression technology using liquid as the compression piston is investigated from heat transfer point of view. A thermodynamic model, simulating a single compression stroke, is developed to investigate the heat transfer phenomena inside the compression chamber. The model is developed...... and through the walls, is investigated and compared with the adiabatic case. The results show that depending on heat transfer correlation, the hydrogen temperature reduces slightly between 0.2% and 0.4% compared to the adiabatic case, at 500bar, due to the large wall resistance and small contact area...... at the interface. Moreover, the results of the sensitivity analysis illustrates that increasing the total heat transfer coefficients at the interface and the wall, together with compression time, play key roles in reducing the hydrogen temperature. Increasing the total heat transfer coefficient at the interface...
A transfer function model of the BEPO reactor for control studies
Energy Technology Data Exchange (ETDEWEB)
Cummins, J D [Dynamics Group, Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1962-09-15
A spatially independent (one point) transfer function model of the BEPO reactor is presented. Perturbations in control rod reactivity and coolant flow are considered and transfer functions deduced for variations about four steady states namely zero power, one sixth full power and one sixth full flow, one sixth full power and full flow and also full power and full flow. The transfer functions are presented in pole-zero form. The use of the transfer functions in verifying experimental frequency responses, in automatic control studies and in multi-variable non-interacting control design are briefly considered. (author)
Transform analysis of generalized functions
Misra, O P
1986-01-01
Transform Analysis of Generalized Functions concentrates on finite parts of integrals, generalized functions and distributions. It gives a unified treatment of the distributional setting with transform analysis, i.e. Fourier, Laplace, Stieltjes, Mellin, Hankel and Bessel Series.Included are accounts of applications of the theory of integral transforms in a distributional setting to the solution of problems arising in mathematical physics. Information on distributional solutions of differential, partial differential equations and integral equations is conveniently collected here.The volume will
Nerve Transfers for Improved Hand Function Following Cervical Spinal Cord Injury
the cervical spine resulting in diminished or complete loss of arm and/or hand function. Cervical SCI patients consistently rank hand function as the...most desired function above bowel and bladder function, sexual function, standing, and pain control. The overall goal of the proposed study is to...evaluate the efficacy of nerve transfers to treat patients with cervical SCIs. Over the last decade, nerve transfers have been used with increasing
Functional Analysis in Virtual Environments
Vasquez, Eleazar, III; Marino, Matthew T.; Donehower, Claire; Koch, Aaron
2017-01-01
Functional analysis (FA) is an assessment procedure involving the systematic manipulation of an individual's environment to determine why a target behavior is occurring. An analog FA provides practitioners the opportunity to manipulate variables in a controlled environment and formulate a hypothesis for the function of a behavior. In previous…
Atmospheric turbulence affects wind turbine nacelle transfer functions
Directory of Open Access Journals (Sweden)
C. M. St. Martin
2017-06-01
Full Text Available Despite their potential as a valuable source of individual turbine power performance and turbine array energy production optimization information, nacelle-mounted anemometers have often been neglected because complex flows around the blades and nacelle interfere with their measurements. This work quantitatively explores the accuracy of and potential corrections to nacelle anemometer measurements to determine the degree to which they may be useful when corrected for these complex flows, particularly for calculating annual energy production (AEP in the absence of other meteorological data. Using upwind meteorological tower measurements along with nacelle-based measurements from a General Electric (GE 1.5sle model, we calculate empirical nacelle transfer functions (NTFs and explore how they are impacted by different atmospheric and turbulence parameters. This work provides guidelines for the use of NTFs for deriving useful wind measurements from nacelle-mounted anemometers. Corrections to the nacelle anemometer wind speed measurements can be made with NTFs and used to calculate an AEP that comes within 1 % of an AEP calculated with upwind measurements. We also calculate unique NTFs for different atmospheric conditions defined by temperature stratification as well as turbulence intensity, turbulence kinetic energy, and wind shear. During periods of low stability as defined by the Bulk Richardson number (RB, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of high stability at some wind speed bins below rated speed, leading to a steeper NTF during periods of low stability. Similarly, during periods of high turbulence, the nacelle-mounted anemometer underestimates the upwind wind speed more than during periods of low turbulence at most wind bins between cut-in and rated wind speed. Based on these results, we suggest different NTFs be calculated for different regimes of atmospheric stability and turbulence
Vent System Analysis for the Cryogenic Propellant Storage Transfer Ground Test Article
Hedayat, A
2013-01-01
To test and validate key capabilities and technologies required for future exploration elements such as large cryogenic propulsion stages and propellant depots, NASA is leading the efforts to develop and design the Cryogenic Propellant Storage and Transfer (CPST) Cryogenic Fluid Management (CFM) payload. The primary objectives of CPST payload are to demonstrate: 1) in-space storage of cryogenic propellants for long duration applications; and 2) in-space transfer of cryogenic propellants. The Ground Test Article (GTA) is a technology development version of the CPST payload. The GTA consists of flight-sized and flight-like storage and transfer tanks, liquid acquisition devices, transfer, and pressurization systems with all of the CPST functionality. The GTA is designed to perform integrated passive and active thermal storage and transfer performance testing with liquid hydrogen (LH2) in a vacuum environment. The GTA storage tank is designed to store liquid hydrogen and the transfer tank is designed to be 5% of the storage tank volume. The LH2 transfer subsystem is designed to transfer propellant from one tank to the other utilizing pressure or a pump. The LH2 vent subsystem is designed to prevent over-pressurization of the storage and transfer tanks. An in-house general-purpose computer program was utilized to model and simulate the vent subsystem operation. The modeling, analysis, and the results will be presented in the final paper.
Pleiotropic functions of magnetic nanoparticles for ex vivo gene transfer.
Kami, Daisuke; Kitani, Tomoya; Kishida, Tsunao; Mazda, Osam; Toyoda, Masashi; Tomitaka, Asahi; Ota, Satoshi; Ishii, Ryuga; Takemura, Yasushi; Watanabe, Masatoshi; Umezawa, Akihiro; Gojo, Satoshi
2014-08-01
Gene transfer technique has various applications, ranging from cellular biology to medical treatments for diseases. Although nonviral vectors, such as episomal vectors, have been developed, it is necessary to improve their gene transfer efficacy. Therefore, we attempted to develop a highly efficient gene delivery system combining an episomal vector with magnetic nanoparticles (MNPs). In comparison with the conventional method using transfection reagents, polyethylenimine-coated MNPs introduced episomal vectors more efficiently under a magnetic field and could express the gene in mammalian cells with higher efficiency and for longer periods. This novel in vitro separation method of gene-introduced cells utilizing the magnetic property of MNPs significantly facilitated the separation of cells of interest. Transplanted cells in vivo were detected using magnetic resonance. These results suggest that MNPs play multifunctional roles in ex vivo gene transfer, such as improvement of gene transfer efficacy, separation of cells, and detection of transplanted cells. This study convincingly demonstrates enhanced efficiency of gene transfer via magnetic nanoparticles. The method also enables magnetic sorting of cells positive for the transferred gene, and in vivo monitoring of the process with MRI. Copyright © 2014 Elsevier Inc. All rights reserved.
DEFF Research Database (Denmark)
Nielsen, Mads Lønstrup; Blumenthal, D. J.; Mørk, Jesper
2000-01-01
A theoretical analysis of the small-signal frequency response (SSFR) of a wavelength converter based on cross-gain modulation in a semiconductor optical amplifier with a finite waveguide loss is presented. We use a transfer function formalism to explain the resonant behavior of the frequency...... response. The limitations to the magnitude of the spectral overshoot are also accounted for. Operating with the data and CW signals in a co-propagating configuration, we End that the resonance only exists for a finite waveguide loss. In a counter-propagating scheme, a resonance can exist regardless...
Sulik-Górecka, Aleksandra
2018-06-01
Modern manufacturing entities often operate in capital groups, and their role is sometimes limited to the function of cost centers. From the legal point of view, however, they are separate entities obliged to apply transfer pricing regulations. Meeting the requirements of the arm's length principle can be very difficult at this time, given the relationships and conflicts of interest in the capital group. Complexity increases in capital groups operating in different countries, due to differences in tax regulations. The main purpose of the paper is to demonstrate that the need to valuate the sale of finished goods to a manufacturing entity, which is a subject to a different tax jurisdiction, may lead to a problem of compliance with the arm's length principle. In addition, the paper proposes a methodology for comparability analysis that may be used by manufacturing entities to defend conditions of setting transfer pricing. The paper presents the different functional profiles of manufacturing entities and points out the difficulties that they may encounter when preparing the comparability analysis. It has also been noted that there are differences in transfer pricing regulations in different countries, for example by analyzing Polish and Czech regulations. The lack of uniform benchmarking legislation can cause inconsistencies in the selection of comparable data, resulting in differences in transfer pricing. The paper uses the method of legal regulation review and analysis of results of published studies concerning the scope of transfer pricing and comparability analysis. The paper also adopts a case study analysis.
Fourier analysis of conductive heat transfer for glazed roofing materials
Energy Technology Data Exchange (ETDEWEB)
Roslan, Nurhana Lyana; Bahaman, Nurfaradila; Almanan, Raja Noorliyana Raja; Ismail, Razidah [Faculty of Computer and Mathematical Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia); Zakaria, Nor Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)
2014-07-10
For low-rise buildings, roof is the most exposed surface to solar radiation. The main mode of heat transfer from outdoor via the roof is conduction. The rate of heat transfer and the thermal impact is dependent on the thermophysical properties of roofing materials. Thus, it is important to analyze the heat distribution for the various types of roofing materials. The objectives of this paper are to obtain the Fourier series for the conductive heat transfer for two types of glazed roofing materials, namely polycarbonate and polyfilled, and also to determine the relationship between the ambient temperature and the conductive heat transfer for these materials. Ambient and surface temperature data were collected from an empirical field investigation in the campus of Universiti Teknologi MARA Shah Alam. The roofing materials were installed on free-standing structures in natural ventilation. Since the temperature data are generally periodic, Fourier series and numerical harmonic analysis are applied. Based on the 24-point harmonic analysis, the eleventh order harmonics is found to generate an adequate Fourier series expansion for both glazed roofing materials. In addition, there exists a linear relationship between the ambient temperature and the conductive heat transfer for both glazed roofing materials. Based on the gradient of the graphs, lower heat transfer is indicated through polyfilled. Thus polyfilled would have a lower thermal impact compared to polycarbonate.
Zhou, Jianlong; Takatsuka, Masahiro
2009-01-01
Transfer functions facilitate the volumetric data visualization by assigning optical properties to various data features and scalar values. Automation of transfer function specifications still remains a challenge in volume rendering. This paper presents an approach for automating transfer function generations by utilizing topological attributes derived from the contour tree of a volume. The contour tree acts as a visual index to volume segments, and captures associated topological attributes involved in volumetric data. A residue flow model based on Darcy's Law is employed to control distributions of opacity between branches of the contour tree. Topological attributes are also used to control color selection in a perceptual color space and create harmonic color transfer functions. The generated transfer functions can depict inclusion relationship between structures and maximize opacity and color differences between them. The proposed approach allows efficient automation of transfer function generations, and exploration on the data to be carried out based on controlling of opacity residue flow rate instead of complex low-level transfer function parameter adjustments. Experiments on various data sets demonstrate the practical use of our approach in transfer function generations.
Error of the slanted edge method for measuring the modulation transfer function of imaging systems.
Xie, Xufen; Fan, Hongda; Wang, Hongyuan; Wang, Zebin; Zou, Nianyu
2018-03-01
The slanted edge method is a basic approach for measuring the modulation transfer function (MTF) of imaging systems; however, its measurement accuracy is limited in practice. Theoretical analysis of the slanted edge MTF measurement method performed in this paper reveals that inappropriate edge angles and random noise reduce this accuracy. The error caused by edge angles is analyzed using sampling and reconstruction theory. Furthermore, an error model combining noise and edge angles is proposed. We verify the analyses and model with respect to (i) the edge angle, (ii) a statistical analysis of the measurement error, (iii) the full width at half-maximum of a point spread function, and (iv) the error model. The experimental results verify the theoretical findings. This research can be referential for applications of the slanted edge MTF measurement method.
A theoretical analysis on vibrational-energy transfers in gases
International Nuclear Information System (INIS)
Mastrocinque, G.
1981-01-01
In order to investigate the relationships between three-dimensional and colinear molecular-collision models with particular emphasis on the role of repulsive and attractive forces in vibrational-energy transfers in gases, a theoretical analysis is developed in this paper. A few known results - mainly the Cottrell and Ream equation, the Takayanagi and the Shin expressions of the transfer probability - relevant to repulsive-force-dominated processes are obtained and/or discussed in the proposed frame. Light is also given on long-range, attractive-forces-dominated processes. The main result of this investigation is that, when a suitable hypothesis is done on the transfer probability, centrifugal effects on the intermolecular trajectories due to standard potentials are negligible in the low-temperature range. A quasi-colinear collision model, which is found to be correlated to the Cottrell and Ream expression for the transfer probability, is regained from a three-dimensional geometry in these conditions. (author)
Laplace transform analysis of a multiplicative asset transfer model
Sokolov, Andrey; Melatos, Andrew; Kieu, Tien
2010-07-01
We analyze a simple asset transfer model in which the transfer amount is a fixed fraction f of the giver’s wealth. The model is analyzed in a new way by Laplace transforming the master equation, solving it analytically and numerically for the steady-state distribution, and exploring the solutions for various values of f∈(0,1). The Laplace transform analysis is superior to agent-based simulations as it does not depend on the number of agents, enabling us to study entropy and inequality in regimes that are costly to address with simulations. We demonstrate that Boltzmann entropy is not a suitable (e.g. non-monotonic) measure of disorder in a multiplicative asset transfer system and suggest an asymmetric stochastic process that is equivalent to the asset transfer model.
Functional and shape data analysis
Srivastava, Anuj
2016-01-01
This textbook for courses on function data analysis and shape data analysis describes how to define, compare, and mathematically represent shapes, with a focus on statistical modeling and inference. It is aimed at graduate students in analysis in statistics, engineering, applied mathematics, neuroscience, biology, bioinformatics, and other related areas. The interdisciplinary nature of the broad range of ideas covered—from introductory theory to algorithmic implementations and some statistical case studies—is meant to familiarize graduate students with an array of tools that are relevant in developing computational solutions for shape and related analyses. These tools, gleaned from geometry, algebra, statistics, and computational science, are traditionally scattered across different courses, departments, and disciplines; Functional and Shape Data Analysis offers a unified, comprehensive solution by integrating the registration problem into shape analysis, better preparing graduate students for handling fu...
Can we observe open loop transfer functions in a stochastic feedback system ?
International Nuclear Information System (INIS)
Kishida, Kuniharu; Suda, Nobuhide.
1991-01-01
There are two kinds of problems concerning open loop and closed loop transfer functions in a feedback system. One is a problem even in the deterministic case, and the other is in the stochastic case. In the deterministic case it is guaranteed under a necessary and sufficient condition that total sum of degrees of sub-transfer functions coincides to the degree of the total system. In the stochastic case a systematic understanding of a physical state model, a theoretical innovation model and a data-oriented innovation model is indispensable for determination of open loop transfer functions from time series data. Undesirable factors appear in determination of open loop transfer functions, since a transfer function matrix from input noises to output variables has a redundancy factor of diagonal matrix. (author)
Functional Analysis of Metabolomics Data.
Chagoyen, Mónica; López-Ibáñez, Javier; Pazos, Florencio
2016-01-01
Metabolomics aims at characterizing the repertory of small chemical compounds in a biological sample. As it becomes more massive and larger sets of compounds are detected, a functional analysis is required to convert these raw lists of compounds into biological knowledge. The most common way of performing such analysis is "annotation enrichment analysis," also used in transcriptomics and proteomics. This approach extracts the annotations overrepresented in the set of chemical compounds arisen in a given experiment. Here, we describe the protocols for performing such analysis as well as for visualizing a set of compounds in different representations of the metabolic networks, in both cases using free accessible web tools.
Energy Technology Data Exchange (ETDEWEB)
Guppy, C B [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1961-10-15
This report outlines a method which might have some application for Transfer Function analysis of a given system. It consists of using the system itself in a general external feed-back, feed-forward circuit. The coefficients of the external circuit are set up one at a time to produce recognisable steady states at the output terminals of the external circuit. In effect step by step neutralisation of the system under test is achieved in the external circuit by setting up the inverse transfer function. (author)
International Nuclear Information System (INIS)
Guppy, C.B.
1961-10-01
This report outlines a method which might have some application for Transfer Function analysis of a given system. It consists of using the system itself in a general external feed-back, feed-forward circuit. The coefficients of the external circuit are set up one at a time to produce recognisable steady states at the output terminals of the external circuit. In effect step by step neutralisation of the system under test is achieved in the external circuit by setting up the inverse transfer function. (author)
Wavelets in functional data analysis
Morettin, Pedro A; Vidakovic, Brani
2017-01-01
Wavelet-based procedures are key in many areas of statistics, applied mathematics, engineering, and science. This book presents wavelets in functional data analysis, offering a glimpse of problems in which they can be applied, including tumor analysis, functional magnetic resonance and meteorological data. Starting with the Haar wavelet, the authors explore myriad families of wavelets and how they can be used. High-dimensional data visualization (using Andrews' plots), wavelet shrinkage (a simple, yet powerful, procedure for nonparametric models) and a selection of estimation and testing techniques (including a discussion on Stein’s Paradox) make this a highly valuable resource for graduate students and experienced researchers alike.
TOWARDS PHASE TRANSFERABLE POTENTIAL FUNCTIONS - METHODOLOGY AND APPLICATION TO NITROGEN
JORDAN, PC; VAN MAAREN, PJ; MAVRI, J; VAN DER SPOEL, D; BERENDSEN, HJC
1995-01-01
We describe a generalizable approach to the development of phase transferable effective intermolecular potentials and apply the method to the study of N-2 The method is based on a polarizable shell model description of the isolated molecule and uses experimental data to establish the parameters.
Analysis of Heat Transfer in Cooling of a Hot Plate by Planar Impingement Jet
International Nuclear Information System (INIS)
Ahn, Dae Hwan; Kim, Dong Sik
2009-01-01
Water jet impingement cooling is used to remove heat from high-temperature surfaces such as hot steel plates in the steel manufacturing process (thermo-mechanical cooling process; TMCP). In those processes, uniform cooling is the most critical factor to ensure high strength steel and good quality. In this study, experiments are performed to measure the heat transfer coefficient together with the inverse heat conduction problem (IHCP) analysis for a plate cooled by planar water jet. In the inverse heat transfer analysis, spatial and temporal variations of heat transfer coefficient, with no information regarding its functional form, are determined by employing the conjugate gradient method with an adjoint problem. To estimate the two dimensional distribution of heat transfer coefficient and heat flux for planar waterjet cooling, eight thermo-couple are installed inside the plate. The results show that heat transfer coefficient is approximately uniform in the span-wise direction in the early stage of cooling. In the later stage where the forced-convection effect is important, the heat transfer coefficient becomes larger in the edge region. The surface temperature vs. heat flux characteristics are also investigated for the entire boiling regimes. In addition, the heat transfer rate for the two different plate geometries are compared at the same Reynolds number
Uncertainty of Monetary Valued Ecosystem Services - Value Transfer Functions for Global Mapping.
Directory of Open Access Journals (Sweden)
Stefan Schmidt
Full Text Available Growing demand of resources increases pressure on ecosystem services (ES and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision to 44% (food provision of variance and provide statistically reliable extrapolations for 70% (water provision to 91% (food provision of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests. Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support.
Uncertainty of Monetary Valued Ecosystem Services – Value Transfer Functions for Global Mapping
Schmidt, Stefan; Manceur, Ameur M.; Seppelt, Ralf
2016-01-01
Growing demand of resources increases pressure on ecosystem services (ES) and biodiversity. Monetary valuation of ES is frequently seen as a decision-support tool by providing explicit values for unconsidered, non-market goods and services. Here we present global value transfer functions by using a meta-analytic framework for the synthesis of 194 case studies capturing 839 monetary values of ES. For 12 ES the variance of monetary values could be explained with a subset of 93 study- and site-specific variables by utilizing boosted regression trees. This provides the first global quantification of uncertainties and transferability of monetary valuations. Models explain from 18% (water provision) to 44% (food provision) of variance and provide statistically reliable extrapolations for 70% (water provision) to 91% (food provision) of the terrestrial earth surface. Although the application of different valuation methods is a source of uncertainty, we found evidence that assuming homogeneity of ecosystems is a major error in value transfer function models. Food provision is positively correlated with better life domains and variables indicating positive conditions for human well-being. Water provision and recreation service show that weak ownerships affect valuation of other common goods negatively (e.g. non-privately owned forests). Furthermore, we found support for the shifting baseline hypothesis in valuing climate regulation. Ecological conditions and societal vulnerability determine valuation of extreme event prevention. Valuation of habitat services is negatively correlated with indicators characterizing less favorable areas. Our analysis represents a stepping stone to establish a standardized integration of and reporting on uncertainties for reliable and valid benefit transfer as an important component for decision support. PMID:26938447
Energy Technology Data Exchange (ETDEWEB)
Kim, K.T.; Lee, J.G.; Quay, B.D.; Santavicca, D.A. [Center for Advanced Power Generation, Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA (United States)
2010-09-15
The present paper describes a methodology to improve the accuracy of prediction of the eigenfrequencies and growth rates of self-induced instabilities and demonstrates its application to a laboratory-scale, swirl-stabilized, lean-premixed, gas turbine combustor. The influence of the spatial heat release distribution is accounted for using local flame transfer function (FTF) measurements. The two-microphone technique and CH{sup *} chemiluminescence intensity measurements are used to determine the input (inlet velocity perturbation) and the output functions (heat release oscillation), respectively, for the local flame transfer functions. The experimentally determined local flame transfer functions are superposed using the flame transfer function superposition principle, and the result is incorporated into an analytic thermoacoustic model, in order to predict the linear stability characteristics of a given system. Results show that when the flame length is not acoustically compact the model prediction calculated using the local flame transfer functions is better than the prediction made using the global flame transfer function. In the case of a flame in the compact flame regime, accurate predictions of eigenfrequencies and growth rates can be obtained using the global flame transfer function. It was also found that the general response characteristics of the local FTF (gain and phase) are qualitatively the same as those of the global FTF. (author)
Transference system of gaseous fluoride compounds for infrared spectrofotometric analysis
International Nuclear Information System (INIS)
Prado, L.
1988-07-01
A vacuum line design for transference of gaseous fluoride compounds involved in the uranium hexafluoride infrared analysis is presented. The text include specific comments about the characteristics of each component and about the possibilities of its acquisition in the national market. (author) [pt
Computational heat transfer analysis and combined ANN–GA ...
Indian Academy of Sciences (India)
The analysis using the numerical simulation and neural network ... Optimization is the process of finding the most plausible and desirable solution to a problem. ... increased heat transfer and compared the results of regular non-fuzzy model and fuzzy model. ..... network is designed using MATLAB Neural network toolbox.
Fifteen papers on functional analysis
Allakhverdiev, B P; Fainshtein, A S; Khelemskii, AYa; Klenina, LI
1984-01-01
The papers in this volume cover topics on functional analysis. They have been selected, translated, and edited from publications not otherwise translated into English under the auspices of the AMS-ASL-IMS Committee on Translations from Russian and Other Foreign Languages.
Static Analysis of Functional Programs
van den Berg, Klaas; van den Broek, P.M.
1994-01-01
In this paper, the static analysis of programs in the functional programming language Miranda is described based on two graph models. A new control-flow graph model of Miranda definitions is presented, and a model with four classes of caligraphs. Standard software metrics are applicable to these
Simultaneous heat and moisture transfer in porous elements: transfer function method
International Nuclear Information System (INIS)
Souza, H.A. de.
1985-01-01
The presence of moisture in a porous element may strongly affect the transfer of heat through this element due to the processes which occur associated with the phase changes at the boundary surfaces and internally in the wall body. In addition, the structural properties of the element may also be meaningfully affected. The formulation of mathematical models for the simultaneous heat and mass transfer in porous elements results in a pair of nonlinear coupled equations for the temperature and moisture content distributions, in the material. It is supposed, in this work, that the actual variation of the properties of the porous medium is small in the range of variables which describe the specific problem to be analyzed. This enables us to work with linearized equations, making possible the use of linear solution methods. In this context, the present work deals with a linear procedure for the solution of simultaneous heat and moisture transfer problems in porous elements, sujected to arbitrary boundary conditions. This results in a linear relation between the heat and mass flux densities through the boundary surfaces of the elements and their associated potentials. It is shown that the model is consistent in asymptotical limiting cases; the model is then used for analyzing the drying process of a porous element, subjected to ambient actual conditions. (Author) [pt
Function analysis of unknown genes
DEFF Research Database (Denmark)
Rogowska-Wrzesinska, A.
2002-01-01
This thesis entitled "Function analysis of unknown genes" presents the use of proteome analysis for the characterisation of yeast (Saccharomyces cerevisiae) genes and their products (proteins especially those of unknown function). This study illustrates that proteome analysis can be used...... to describe different aspects of molecular biology of the cell, to study changes that occur in the cell due to overexpression or deletion of a gene and to identify various protein modifications. The biological questions and the results of the described studies show the diversity of the information that can...... genes and proteins. It reports the first global proteome database collecting 36 yeast single gene deletion mutants and selecting over 650 differences between analysed mutants and the wild type strain. The obtained results show that two-dimensional gel electrophoresis and mass spectrometry based proteome...
DEFF Research Database (Denmark)
Wahlgren, Bjarne; Aarkrog, Vibe
Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...
Control of pneumatic transfer system for neutron activation analysis
Energy Technology Data Exchange (ETDEWEB)
Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y
2000-06-01
Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading.
Lossless droplet transfer of droplet-based microfluidic analysis
Kelly, Ryan T [West Richland, WA; Tang, Keqi [Richland, WA; Page, Jason S [Kennewick, WA; Smith, Richard D [Richland, WA
2011-11-22
A transfer structure for droplet-based microfluidic analysis is characterized by a first conduit containing a first stream having at least one immiscible droplet of aqueous material and a second conduit containing a second stream comprising an aqueous fluid. The interface between the first conduit and the second conduit can define a plurality of apertures, wherein the apertures are sized to prevent exchange of the first and second streams between conduits while allowing lossless transfer of droplets from the first conduit to the second conduit through contact between the first and second streams.
Control of pneumatic transfer system for neutron activation analysis
International Nuclear Information System (INIS)
Jung, H. S.; Chung, Y. S.; Wu, J. S.; Kim, H. K.; Choi, Y. S.; Kim, S. H.; Moon, J. H.; Baek, S. Y.
2000-06-01
Pneumatic transfer system(PTS) is one of the facilities to be used in irradiation of target materials for neutron activation analysis(NAA) in the research reactor. There are two systems the manual and the automatic system in PTS of HANARO research reactor. The pneumatic transfer system consists of many devices, sends and loads the capsules from NAA laboratory into three holes in the reflector tank of reactor and retrieves irradiated capsules after irradiation. This report describes the part's design, control system and the operation procedures. All the algorithm described in the text will be used for maintenance and upgrading
Fisher, Wayne W; Greer, Brian D; Fuhrman, Ashley M; Querim, Angie C
2015-12-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and therapists. With 2 children, we conducted FCT in the context of mixed (baseline) and multiple (treatment) schedules introduced across settings or therapists using a multiple baseline design. Results indicated that when the multiple schedules were introduced, the functional communication response came under rapid discriminative control, and problem behavior remained at near-zero rates. We extended these findings with another individual by using a more traditional baseline in which problem behavior produced reinforcement. Results replicated those of the previous participants and showed rapid reductions in problem behavior when multiple schedules were implemented across settings. © Society for the Experimental Analysis of Behavior.
Directory of Open Access Journals (Sweden)
Susanne P. Clinch
2018-05-01
Full Text Available The basal ganglia are implicated in a wide range of motor, cognitive and behavioral activities required for normal function. This region is predominantly affected in Huntington's disease (HD, meaning that functional ability progressively worsens. However, functional outcome measures for HD, particularly those for the upper limb, are limited meaning there is an imperative for well-defined, quantitative measures. Here we describe the development and evaluation of the Moneybox test (MBT. This novel, functional upper limb assessment was developed in accordance with translational neuroscience and physiological principles for people with a broad disease manifestation, such as HD. Participants with HD (n = 64 and healthy controls (n = 21 performed the MBT, which required subjects to transfer tokens into a container in order of size (Baseline Transfer, value (Complex Transfer with and without reciting the alphabet (Dual Transfer. Disease specific measures of motor, cognition, behavior, and function were collected. HD patients were grouped into disease stage, from which, discriminative and convergent validity was assessed using Analysis of Variance and Pearson's correlation respectively. Manifest HD participants were slower than pre-manifest and control participants, and achieved significantly lower MBT total scores. Performance in the Complex Transfer and Dual Transfer tasks were significantly different between pre-manifest and stage 1 HD. All MBT performance variables significantly correlated with routinely used measures of motor, cognition, behavior, and function. The MBT provides a valid, sensitive, and affordable functional outcome measure. Unlike current assessments, MBT performance significantly distinguished the subtle differences between the earliest disease stages of HD, which are the populations typically targeted in clinical trials.
Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City
Priska Arindya Purnama
2017-01-01
The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt) sequence expected to be effected by an input series (Xt) and other inputs in a group called a noise series (Nt). Multi input transfer function model obtained is (b1,s1,r1) (b2,s2,r2) (b3,s3,r3) (b4,s4,r4)(pn,qn) = (0,0,0)...
Time constants and transfer functions for a homogeneous 900 MWt metallic fueled LMR
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1988-01-01
Nodal transfer functions are calculated for a 900 MWt U10Zr-fueled sodium cooled reactor. From the transfer functions the time constants, feedback reactivity transfer function coefficients, and power coefficients can be determined. These quantities are calculated for core fuel, upper and lower axial reflector steel, radial blanket fuel, radial reflector steel, and B 4 C rod shaft expansion effect. The quantities are compared to the analogous quantities of a 60 MWt metallic-fueled sodium cooled Experimental Breeder Reactor II configuration. 8 refs., 2 figs., 6 tabs
Transfer of Chemically Modified Graphene with Retention of Functionality for Surface Engineering.
Whitener, Keith E; Lee, Woo-Kyung; Bassim, Nabil D; Stroud, Rhonda M; Robinson, Jeremy T; Sheehan, Paul E
2016-02-10
Single-layer graphene chemically reduced by the Birch process delaminates from a Si/SiOx substrate when exposed to an ethanol/water mixture, enabling transfer of chemically functionalized graphene to arbitrary substrates such as metals, dielectrics, and polymers. Unlike in previous reports, the graphene retains hydrogen, methyl, and aryl functional groups during the transfer process. This enables one to functionalize the receiving substrate with the properties of the chemically modified graphene (CMG). For instance, magnetic force microscopy shows that the previously reported magnetic properties of partially hydrogenated graphene remain after transfer. We also transfer hydrogenated graphene from its copper growth substrate to a Si/SiOx wafer and thermally dehydrogenate it to demonstrate a polymer- and etchant-free graphene transfer for potential use in transmission electron microscopy. Finally, we show that the Birch reduction facilitates delamination of CMG by weakening van der Waals forces between graphene and its substrate.
The transfer function model for dynamic response of wet cooling coils
International Nuclear Information System (INIS)
Yao Ye; Liu Shiqing
2008-01-01
This paper mainly concerned about the dynamic response model of wet cooling coils that is developed by the Laplace transform method. The theoretic equations are firstly established based on the theory of energy conservation. Then, the transfer functions on the transient responses of wet cooling coils have been deduced using the method of Laplace transform. The transfer functions reveal the dynamic relationships between the inlet variables and the outlet ones of the cooling coils. Partial-fraction method and Newton-Raphson method are both used in the inversion of the transfer functions from the s-domain to τ-domain. To make the dynamic model of wet cooling coils more adaptive, RBFNN method is employed to determine the coefficients of heat and mass transfer. Experiments have been done and manifested that the coefficients of heat and mass transfer by RBFNN will be of great value to the validity of the transient response model of wet cooling coils in this study
Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave
2011-01-01
Experimental results describing the hydraulic dynamic pump transfer matrix (Yp) for a cavitating J-2X oxidizer turbopump inducer+impeller tested in subscale waterflow are presented. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Dynamic transfer functions across widely varying pump hydrodynamic inlet conditions are extracted from measured data in conjunction with 1D-model based corrections. Derived Dynamic transfer functions are initially interpreted relative to traditional Pogo pump equations. Water-to-liquid oxygen scaling of measured cavitation characteristics are discussed. Comparison of key dynamic transfer matrix terms derived from waterflow testing are made with those implemented in preliminary Ares Upper Stage Pogo stability modeling. Alternate cavitating pump hydraulic dynamic equations are suggested which better reflect frequency dependencies of measured transfer matrices.
EVENT PLANNING USING FUNCTION ANALYSIS
Energy Technology Data Exchange (ETDEWEB)
Lori Braase; Jodi Grgich
2011-06-01
Event planning is expensive and resource intensive. Function analysis provides a solid foundation for comprehensive event planning (e.g., workshops, conferences, symposiums, or meetings). It has been used at Idaho National Laboratory (INL) to successfully plan events and capture lessons learned, and played a significant role in the development and implementation of the “INL Guide for Hosting an Event.” Using a guide and a functional approach to planning utilizes resources more efficiently and reduces errors that could be distracting or detrimental to an event. This integrated approach to logistics and program planning – with the primary focus on the participant – gives us the edge.
MEANING TRANSFER ANALYSIS OF BALINESE ARTS TERMS INTO ENGLISH AND FRENCH: A COMPARATIVE STUDY
Directory of Open Access Journals (Sweden)
Putu Weddha Savitri
2015-11-01
Full Text Available In order to show and promote Balinese culture to the incoming tourists, many specific terms, especially in arts terms, must be well translated. This paper aims at analyzing the meaning transfer of Balinese Arts Terms into English and French found in Tourism Promotion Book published by Bali Government Tourism Department in two languages versions. The analysis focused on the techniques or procedures applied in transferring Balinese art terms into English (TL1 and French (TL2. Besides, it is also to figure out the most common technique used by the translator in transferring the meanings. The findings showed that there are three techniques used to transfer the meaning of the SL into the TL 1, those are descriptive, transcription, and functional equivalence, meanwhile, there are three translation techniques: transcription, functional equivalence, and formal equivalence and one translation procedure: cultural equivalence used in transferring the SL meaning to TL 2. Transcription technique, usually called borrowing was mostly used by the translator in the meaning transfer from the SL to both the target languages in order to retain the SL meaning in the TL.
Pregnancy following nonsurgical donor ovum transfer to a functionally agonadal woman
International Nuclear Information System (INIS)
Sauer, M.V.; Macaso, T.M.; Ishida, E.H.; Giudice, L.; Marshall, J.R.; Buster, J.E.
1987-01-01
We report this country's first nonsurgical donor ovum transfer pregnancy in a functionally agonadal woman who had received chemotherapy and radiation for Hodgkin's lymphoma. For women with ovarian failure, nonsurgical uterine lavage and ovum transfer may provide an opportunity for motherhood that was not possible previously
Transfer factor - hypotheses for its structure and function.
Shifrine, M; Scibienski, R
1975-01-01
Transfer factor (TF) is a dialyzable extract from primed lymphocytes that is able to transfer specific delayed hypersensitivity from one animal to another. On the basis of available data we suggest that TF is a polypeptide with a molecular weight below 15,000 daltons. We hypothesize that TF is the variable light or heavy chain domain of immunoglobulin: such a molecule conforms with the accepted properties of TF and also has the necessary specificity requirements. We also hypothesize that TF is part of a receptor site. beta-2-microglobulin, a molecule that is an integral part of cell surfaces, could be the anchor for TF. beta-2-microglobulin has homologies with the constant portion of immunoglobulin light or heavy chain and thus would combine with the variable domain (TF) to form a complete receptor site for a specific antigen. The properties of TF suggest its mode of action, which is discussed in detail in the text. The biologic advantages of TF is its ability to confer immediate (immunologie specific) protection while the 'normal' immune response develops.
Multi-spectrometer calibration transfer based on independent component analysis.
Liu, Yan; Xu, Hao; Xia, Zhenzhen; Gong, Zhiyong
2018-02-26
Calibration transfer is indispensable for practical applications of near infrared (NIR) spectroscopy due to the need for precise and consistent measurements across different spectrometers. In this work, a method for multi-spectrometer calibration transfer is described based on independent component analysis (ICA). A spectral matrix is first obtained by aligning the spectra measured on different spectrometers. Then, by using independent component analysis, the aligned spectral matrix is decomposed into the mixing matrix and the independent components of different spectrometers. These differing measurements between spectrometers can then be standardized by correcting the coefficients within the independent components. Two NIR datasets of corn and edible oil samples measured with three and four spectrometers, respectively, were used to test the reliability of this method. The results of both datasets reveal that spectra measurements across different spectrometers can be transferred simultaneously and that the partial least squares (PLS) models built with the measurements on one spectrometer can predict that the spectra can be transferred correctly on another.
Algebraic Functions, Computer Programming, and the Challenge of Transfer
Schanzer, Emmanuel Tanenbaum
2015-01-01
Students' struggles with algebra are well documented. Prior to the introduction of functions, mathematics is typically focused on applying a set of arithmetic operations to compute an answer. The introduction of functions, however, marks the point at which mathematics begins to focus on building up abstractions as a way to solve complex problems.…
Functional analysis theory and applications
Edwards, RE
2011-01-01
""The book contains an enormous amount of information - mathematical, bibliographical and historical - interwoven with some outstanding heuristic discussions."" - Mathematical Reviews.In this massive graduate-level study, Emeritus Professor Edwards (Australian National University, Canberra) presents a balanced account of both the abstract theory and the applications of linear functional analysis. Written for readers with a basic knowledge of set theory, general topology, and vector spaces, the book includes an abundance of carefully chosen illustrative examples and excellent exercises at the
Seismic analysis with FEM for fuel transfer system of PWR nuclear power plant
International Nuclear Information System (INIS)
Jia Xiaofeng; Liu Pengliang; Bi Xiangjun; Ji Shunying
2012-01-01
In the PWR nuclear power plant, the function of the fuel transfer system (FTS) is to transfer the fuel assembly between the reactor building and the fuel building. The seismic analysis of the transfer system structure should be carried out to ensure the safety under OBE and SSE. Therefore, the ANASYS 12.0 software is adopted to construct the finite element analysis model for the fuel transfer system in a million kilowatt nuclear power plant. For the various configurations of FTS in the operating process, the stresses of the main structures, such as the transfer tube, fuel assembly container, fuel conveyor car, lifting frame in the reactor building, lifting frame in the fuel building, support and guide structure of conveyor car and the lifting frame in both buildings, are computed. The stresses are combined with the method of square root of square sum (SRSS) and assessed under various seismic conditions based on RCCM code, the results of the assessment satisfy the code. The results show that the stresses of the fuel transfer system structure meet the strength requirement, meanwhile, it can withstand the earthquake well. (authors)
Heat transfer and performance analysis of thermoelectric stoves
International Nuclear Information System (INIS)
Najjar, Yousef S.H.; Kseibi, Musaab M.
2016-01-01
Highlights: • Design and testing of a thermo electric stove. • Three biofuels namely: wood, peat and manure are used. • Heat transfer analysis is detailed. • Resulting thermoelectric energy for vital purposes in remote poor regions. • Evaluation of performance of the stove subcomponents. - Abstract: Access to electricity is one of the important challenges for remote poor regions of the world. Adding TEG (thermoelectric generators) to stoves can provide electricity for the basic benefits such as: operating radio, light, phones, medical instruments and other small electronic devices. Heat transfer analysis of a multi-purpose stove coupled with 12 TEG modules is presented. This analysis comprises a well aerodynamically designed combustor, finned TEG base plate, cooker and water heater beside the outer surface for space heating. Heat transfer analysis was also carried out for all the subcomponents of the stove, and performance predicted against the experimental results. It was found that the maximum power obtained is about 7.88 W using wood, manure or peat with an average overall efficiency of the stove about 60%.
CSIR Research Space (South Africa)
Roos, TH
2014-06-01
Full Text Available large sphere scattering phase function distributions of interest for packed bed radiative heat transfer: the analytic distribution for a diffusely reflecting sphere (a backscattering test case) and the distribution for a transparent sphere (n = 1...
Suto, Noriko; Harada, Makoto; Izutsu, Jun; Nagao, Toshiyasu
2006-07-01
In order to accurately estimate the geomagnetic transfer functions in the area of the volcano Mt. Iwate (IWT), we applied the interstation transfer function (ISTF) method to the three-component geomagnetic field data observed at Mt. Iwate station (IWT), using the Kakioka Magnetic Observatory, JMA (KAK) as remote reference station. Instead of the conventional Fourier transform, in which temporary transient noises badly degrade the accuracy of long term properties, continuous wavelet transform has been used. The accuracy of the results was as high as that of robust estimations of transfer functions obtained by the Fourier transform method. This would provide us with possibilities for routinely monitoring the transfer functions, without sophisticated statistical procedures, to detect changes in the underground electrical conductivity structure.
Cai, Lile; Tay, Wei-Liang; Nguyen, Binh P; Chui, Chee-Kong; Ong, Sim-Heng
2013-01-01
Transfer functions play a key role in volume rendering of medical data, but transfer function manipulation is unintuitive and can be time-consuming; achieving an optimal visualization of patient anatomy or pathology is difficult. To overcome this problem, we present a system for automatic transfer function design based on visibility distribution and projective color mapping. Instead of assigning opacity directly based on voxel intensity and gradient magnitude, the opacity transfer function is automatically derived by matching the observed visibility distribution to a target visibility distribution. An automatic color assignment scheme based on projective mapping is proposed to assign colors that allow for the visual discrimination of different structures, while also reflecting the degree of similarity between them. When our method was tested on several medical volumetric datasets, the key structures within the volume were clearly visualized with minimal user intervention. Copyright © 2013 Elsevier Ltd. All rights reserved.
Bok, Jan; Schauer, Petr
2014-01-01
In the paper, the SEM detector is evaluated by the modulation transfer function (MTF) which expresses the detector's influence on the SEM image contrast. This is a novel approach, since the MTF was used previously to describe only the area imaging detectors, or whole imaging systems. The measurement technique and calculation of the MTF for the SEM detector are presented. In addition, the measurement and calculation of the detective quantum efficiency (DQE) as a function of the spatial frequency for the SEM detector are described. In this technique, the time modulated e-beam is used in order to create well-defined input signal for the detector. The MTF and DQE measurements are demonstrated on the Everhart-Thornley scintillation detector. This detector was alternated using the YAG:Ce, YAP:Ce, and CRY18 single-crystal scintillators. The presented MTF and DQE characteristics show good imaging properties of the detectors with the YAP:Ce or CRY18 scintillator, especially for a specific type of the e-beam scan. The results demonstrate the great benefit of the description of SEM detectors using the MTF and DQE. In addition, point-by-point and continual-sweep e-beam scans in SEM were discussed and their influence on the image quality was revealed using the MTF. © 2013 Wiley Periodicals, Inc.
Fire hazards analysis for the replacement cross-site transfer system, project W-058
International Nuclear Information System (INIS)
Sepahpur, J.B.
1996-01-01
The fire hazards analysis assess the risk from fire and determines compliance with the applicable criteria of DOE 5480.7A, DOE 6430.1A, and RLID 5480.7. (Project W-058 will provide encased pipelines to connect the SY Tank Farms in 200 West Area with the tank farms in 200 East Area via an interface with the 244-A lift station. Function of the cross-site transfer system will be to transfer radioactive waste from the SY Tank Farm to treatment, storage, and disposal facilities in 200 East Area.)
Numerical study on identification of transfer functions in a feedback system and model reduction
International Nuclear Information System (INIS)
Kishida, Kuniharu
1997-01-01
Identification of transfer function matrices in a feedback system is discussed by using the singular value decomposition of Hankel matrix from the viewpoint of inverse problems. A method of model reduction is considered, and selection criteria are proposed for identification of them. Transformation formula between open loop and closed loop transfer function matrices are determined from the feedback loop structure, and they are needed for identification of open loop transfer function matrices under such a condition where the feedback system is in a minimum phase. Though the identifiability of open loop transfer function matrices can be examined in the framework of innovation model equivalent to the feedback system, there are pole-zero cancellations in the identification of them. The method to reduce a model order of an open loop transfer function is discussed by using the singular value decomposition of a gramian given by the open loop transfer function with higher degree. To check reliability of the present algorithm, a simulation study is performed for an example. (author)
Efficient Transfer Entropy Analysis of Non-Stationary Neural Time Series
Vicente, Raul; Díaz-Pernas, Francisco J.; Wibral, Michael
2014-01-01
Information theory allows us to investigate information processing in neural systems in terms of information transfer, storage and modification. Especially the measure of information transfer, transfer entropy, has seen a dramatic surge of interest in neuroscience. Estimating transfer entropy from two processes requires the observation of multiple realizations of these processes to estimate associated probability density functions. To obtain these necessary observations, available estimators typically assume stationarity of processes to allow pooling of observations over time. This assumption however, is a major obstacle to the application of these estimators in neuroscience as observed processes are often non-stationary. As a solution, Gomez-Herrero and colleagues theoretically showed that the stationarity assumption may be avoided by estimating transfer entropy from an ensemble of realizations. Such an ensemble of realizations is often readily available in neuroscience experiments in the form of experimental trials. Thus, in this work we combine the ensemble method with a recently proposed transfer entropy estimator to make transfer entropy estimation applicable to non-stationary time series. We present an efficient implementation of the approach that is suitable for the increased computational demand of the ensemble method's practical application. In particular, we use a massively parallel implementation for a graphics processing unit to handle the computationally most heavy aspects of the ensemble method for transfer entropy estimation. We test the performance and robustness of our implementation on data from numerical simulations of stochastic processes. We also demonstrate the applicability of the ensemble method to magnetoencephalographic data. While we mainly evaluate the proposed method for neuroscience data, we expect it to be applicable in a variety of fields that are concerned with the analysis of information transfer in complex biological, social, and
Multi-scale symbolic transfer entropy analysis of EEG
Yao, Wenpo; Wang, Jun
2017-10-01
From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.
Transfer Relations Between Landscape Functions - The Hydrological Point of View
Fohrer, N.; Lenhart, T.; Eckhardt, K.; Frede, H.-G.
EC market policies and regional subsidy programs have an enormous impact on local land use. This has far reaching consequences on various landscape functions. In the joint research project SFB299 at the Giessen University the effect of land use options on economic, ecological and hydrological landscape functions are under investigation. The continuous time step model SWAT-G (Eckhardt et al., 2000; Arnold et al., 1998) is employed to characterize the influence of land use patterns on hydrological processes. The model was calibrated and validated employing a split sample approach. For two mesoscale watersheds (Aar, 60 km2; Dietzhölze, 81 km2) located in the Lahn-Dill- Bergland, Germany, different land use scenarios were analyzed with regard to their hydrological impact. Additionally the effect of land use change was analyzed with an ecological and an agro-economic model. The impact of the stepwise changing land use was expressed as trade off relations between different landscape functions.
Foundation heat transfer analysis for buildings with thermal piles
International Nuclear Information System (INIS)
Almanza Huerta, Luis Enrique; Krarti, Moncef
2015-01-01
Highlights: • A numerical transient thermal model for thermo-active foundations is developed. • Thermal interactions between thermal piles and building foundations are evaluated. • A simplified analysis method of thermal interactions between thermal piles and building foundations is developed. - Abstract: Thermal piles or thermo-active foundations utilize heat exchangers embedded within foundation footings to heat and/or cool buildings. In this paper, the impact of thermal piles on building foundation heat transfer is investigated. In particular, a simplified analysis method is developed to estimate the annual ground-coupled foundation heat transfer when buildings are equipped with thermal piles. First, a numerical analysis of the thermal performance of thermo-active building foundations is developed and used to assess the interactions between thermal piles and slab-on-grade building foundations. The impact of various design parameters and operating conditions is evaluated including foundation pile depth, building slab width, foundation insulation configuration, and soil thermal properties. Based on the results of a series of parametric analyses, a simplified analysis method is presented to assess the impact of the thermal piles on the annual heat fluxes toward or from the building foundations. A comparative evaluation of the predictions of the simplified analysis method and those obtained from the detailed numerical analysis indicated good agreement with prediction accuracy lower than 5%. Moreover, it is found that thermal piles can affect annual building foundation heat loss/gain by up to 30% depending on foundation size and insulation level
B Plant function analysis report
International Nuclear Information System (INIS)
Lund, D.P.
1995-09-01
The document contains the functions, function definitions, function interfaces, function interface definitions, Input Computer Automated Manufacturing Definition (IDEFO) diagrams, and a function hierarchy chart that describe what needs to be performed to deactivate B Plant
Heat Transfer Analysis of a Diesel Engine Head
Directory of Open Access Journals (Sweden)
M. Diviš
2003-01-01
Full Text Available This paper documents the research carried out at the Josef Božek Research Center of Engine and Automotive Engineering dealing with extended numerical stress/deformation analyses of engines parts loaded by heat and mechanical forces. It contains a detailed description of a C/28 series diesel engine head FE model and a discussion of heat transfer analysis tunning and results. The head model consisting of several parts allows a description of contact interaction in both thermal and mechanical analysis.
Zeng, Xiang-Yang; Wang, Shu-Guang; Gao, Li-Ping
2010-09-01
As the basic data for virtual auditory technology, head-related transfer function (HRTF) has many applications in the areas of room acoustic modeling, spatial hearing and multimedia. How to individualize HRTF fast and effectively has become an opening problem at present. Based on the similarity and relativity of anthropometric structures, a hybrid HRTF customization algorithm, which has combined the method of principal component analysis (PCA), multiple linear regression (MLR) and database matching (DM), has been presented in this paper. The HRTFs selected by both the best match and the worst match have been applied into obtaining binaurally auralized sounds, which are then used for subjective listening experiments and the results are compared. For the area in the horizontal plane, the localization results have shown that the selection of HRTFs can enhance the localization accuracy and can also abate the problem of front-back confusion.
African Journals Online (AJOL)
This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...
Convective heat transfer analysis in aggregates rotary drum reactor
International Nuclear Information System (INIS)
Le Guen, Laurédan; Huchet, Florian; Dumoulin, Jean; Baudru, Yvan; Tamagny, Philippe
2013-01-01
Heat transport characterisation inside rotary drum dryer has a considerable importance linked to many industrial applications. The present paper deals with the heat transfer analysis from experimental apparatus installed in a large-scale rotary drum reactor applied to the asphalt materials production. The equipment including in-situ thermal probes and external visualization by mean of infrared thermography gives rise to the longitudinal evaluation of inner and external temperatures. The assessment of the heat transfer coefficients by an inverse methodology is resolved in order to accomplish a fin analysis of the convective mechanism inside baffled (or flights) rotary drum. The results are discussed and compared with major results of the literature. -- Highlights: ► A thermal and flow experimentation is performed on a large-scale rotary drum. ► Four working points is chosen in the frame of asphalt materials production. ► Evaluation of the convective transfer mechanisms is calculated by inverse method. ► The drying stage is performed in the combustion area. ► Wall/aggregates heat exchanges have a major contribution in the heating stage
A nuclide transfer model for barriers of the seabed repository using response function
International Nuclear Information System (INIS)
Lee, Youn Myoung; Kang, Chul Hyung; Hahn, Pil Soo
1996-01-01
A nuclide transfer by utilizing mass transfer coefficient and barrier response function defined for each barrier is proposed, by which the final nuclide transfer rate into the sea water can be evaluated. When simple and immediate quantification of the nuclide release is necessary in the conservative aspect, using this kind of approach may be advantageous since each layered barrier can be treated separately from other media in series in the repository system, making it possible to apply separate solutions in succession to other various media. Although one disadvantage is that while flux continuity can be maintained at the interface by using the exit nuclide flux from the first medium as the source flux for the next one, there may be no guarantee for concentration continuity, this problem could be eliminated assuming that there is no boundary resistance to mass transfer across the interface. Mass transfer coefficient can be determined by the assumption that the nuclide concentration gradient at the interface between adjacent barriers remains constant and barrier response function is obtained from an analytical expression for nuclide flow rate out of each barrier in response to a unit impulse into the barrier multiplied by mass transfer coefficient. Total time-dependent nuclide transfer rate from the barrier can then be obtained by convoluting the response function for the barrier with a previously calculated set of time-varying input of nuclide flow rate for the previous barrier. 18 refs., 5 figs. (author)
Comparative analysis of heat transfer correlations for forced convection boiling
International Nuclear Information System (INIS)
Guglielmini, G.; Nannei, E.; Pisoni, C.
1978-01-01
A critical survey was conducted of the most relevant correlations of boiling heat transfer in forced convection flow. Most of the investigations carried out on partial nucleate boiling and fully developed nucleate boiling have led to the formulation of correlations that are not able to cover a wide range of operating conditions, due to the empirical approach of the problem. A comparative analysis is therefore required in order to delineate the relative accuracy of the proposed correlations, on the basis of the experimental data presently available. The survey performed allows the evaluation of the accuracy of the different calculating procedure; the results obtained, moreover, indicate the most reliable heat transfer correlations for the different operating conditions investigated. This survey was developed for five pressure range (up to 180bar) and for both saturation and subcooled boiling condition
Dry Transfer Facility No.1 - Ventilation Confinement Zoning Analysis
International Nuclear Information System (INIS)
K.D. Draper
2005-01-01
The purpose of this analysis is to establish the preliminary Ventilation Confinement Zone (VCZ) for the Dry Transfer Facility (DTF). The results of this document is used to determine the air quantities for each VCZ that will eventually be reflected in the development of the Ventilation Flow Diagrams. The calculations contained in this document were developed by D and E/Mechanical-HVAC and are intended solely for the use of the D and E/Mechanical-HVAC department in its work regarding the HVAC system for the Dry Transfer Facility. Yucca Mountain Project personnel from the D and E/Mechanical-HVAC department should be consulted before use of the calculation for purposes other than those stated herein or used by individuals other than authorized personnel in D and E/Mechanical-HVAC department
Calculation of playback signals from MFM images using transfer functions
Vellekoop, S.J.L.; Abelmann, Leon; Porthun, S.; Lodder, J.C.; Miles, J.J.
1999-01-01
Magnetic force microscopy has proven to be a suitable tool for analysis of high-density magnetic recording materials. Comparison of the MFM image of a written signal with the actual read-back signal of the recording system can give valuable insight in the recording properties of both heads and
Alternative approach for establishing the Nacelle Transfer Function
DEFF Research Database (Denmark)
Krishna, Vinay B.; Ormel, Frank; Hansen, Kurt Schaldemose
2016-01-01
The IEC 61400-12-2:2013 is an alternative for all the power performance measurements and analysis when the requirements of the IEC 61400-12-1:2005 are not met. The methodology in the IEC 61400-12-2 standard is solely based on the nacelle anemometry instead of the more traditional methods involving...
Functional Multiple-Set Canonical Correlation Analysis
Hwang, Heungsun; Jung, Kwanghee; Takane, Yoshio; Woodward, Todd S.
2012-01-01
We propose functional multiple-set canonical correlation analysis for exploring associations among multiple sets of functions. The proposed method includes functional canonical correlation analysis as a special case when only two sets of functions are considered. As in classical multiple-set canonical correlation analysis, computationally, the…
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
International Nuclear Information System (INIS)
Li, Yan-Rong; Wang, Jian-Min; Bai, Jin-Ming
2016-01-01
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
A NON-PARAMETRIC APPROACH TO CONSTRAIN THE TRANSFER FUNCTION IN REVERBERATION MAPPING
Energy Technology Data Exchange (ETDEWEB)
Li, Yan-Rong; Wang, Jian-Min [Key Laboratory for Particle Astrophysics, Institute of High Energy Physics, Chinese Academy of Sciences, 19B Yuquan Road, Beijing 100049 (China); Bai, Jin-Ming, E-mail: liyanrong@mail.ihep.ac.cn [Yunnan Observatories, Chinese Academy of Sciences, Kunming 650011 (China)
2016-11-10
Broad emission lines of active galactic nuclei stem from a spatially extended region (broad-line region, BLR) that is composed of discrete clouds and photoionized by the central ionizing continuum. The temporal behaviors of these emission lines are blurred echoes of continuum variations (i.e., reverberation mapping, RM) and directly reflect the structures and kinematic information of BLRs through the so-called transfer function (also known as the velocity-delay map). Based on the previous works of Rybicki and Press and Zu et al., we develop an extended, non-parametric approach to determine the transfer function for RM data, in which the transfer function is expressed as a sum of a family of relatively displaced Gaussian response functions. Therefore, arbitrary shapes of transfer functions associated with complicated BLR geometry can be seamlessly included, enabling us to relax the presumption of a specified transfer function frequently adopted in previous studies and to let it be determined by observation data. We formulate our approach in a previously well-established framework that incorporates the statistical modeling of continuum variations as a damped random walk process and takes into account long-term secular variations which are irrelevant to RM signals. The application to RM data shows the fidelity of our approach.
Gaussian process regression analysis for functional data
Shi, Jian Qing
2011-01-01
Gaussian Process Regression Analysis for Functional Data presents nonparametric statistical methods for functional regression analysis, specifically the methods based on a Gaussian process prior in a functional space. The authors focus on problems involving functional response variables and mixed covariates of functional and scalar variables.Covering the basics of Gaussian process regression, the first several chapters discuss functional data analysis, theoretical aspects based on the asymptotic properties of Gaussian process regression models, and new methodological developments for high dime
Functional knowledge transfer for high-accuracy prediction of under-studied biological processes.
Directory of Open Access Journals (Sweden)
Christopher Y Park
Full Text Available A key challenge in genetics is identifying the functional roles of genes in pathways. Numerous functional genomics techniques (e.g. machine learning that predict protein function have been developed to address this question. These methods generally build from existing annotations of genes to pathways and thus are often unable to identify additional genes participating in processes that are not already well studied. Many of these processes are well studied in some organism, but not necessarily in an investigator's organism of interest. Sequence-based search methods (e.g. BLAST have been used to transfer such annotation information between organisms. We demonstrate that functional genomics can complement traditional sequence similarity to improve the transfer of gene annotations between organisms. Our method transfers annotations only when functionally appropriate as determined by genomic data and can be used with any prediction algorithm to combine transferred gene function knowledge with organism-specific high-throughput data to enable accurate function prediction. We show that diverse state-of-art machine learning algorithms leveraging functional knowledge transfer (FKT dramatically improve their accuracy in predicting gene-pathway membership, particularly for processes with little experimental knowledge in an organism. We also show that our method compares favorably to annotation transfer by sequence similarity. Next, we deploy FKT with state-of-the-art SVM classifier to predict novel genes to 11,000 biological processes across six diverse organisms and expand the coverage of accurate function predictions to processes that are often ignored because of a dearth of annotated genes in an organism. Finally, we perform in vivo experimental investigation in Danio rerio and confirm the regulatory role of our top predicted novel gene, wnt5b, in leftward cell migration during heart development. FKT is immediately applicable to many bioinformatics
Analysis and hazard evaluation of heat-transfer fluids for the direct contact cooling system
International Nuclear Information System (INIS)
Hong, Joo Hi; Lee, Yeon Hee; Shin, You Hwan; Karng, Sarng Woo; Kim, Seo Young; Kim, Young Gil
2006-01-01
This paper discusses several low-temperature heat-transfer fluids, including water-based inorganic salt, organic salt, alcohol/glycol mixtures, silicones, and halogenated hydrocarbons in order to choose the best heat-transfer fluid for the newly designed direct contact refrigeration system. So, it contains a survey on commercial products such as propylene glycol and potassium formate as newly used in super market and food processing refrigeration. The stability of commercial fluids at the working temperature of -20 .deg. C was monitored as a function of time up to two months. And organic and inorganic compositions of candidate fluids were obtained by analytical instruments such as ES, XRF, AAS, ICP-AES, GC, and GC-MS. Analysis results indicate that commercial propylene glycol is very efficient and safe heat transfer fluids for the direct cooling system with liquid phase
Energy Technology Data Exchange (ETDEWEB)
Hoogenboom, J.E.; van Dam, H.; Kleiss, E.B.J.; van Uitert, G.C.; Veldhuis, D.
1982-01-01
The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations.
International Nuclear Information System (INIS)
Hoogenboom, J.E.
1982-01-01
The measured cross power spectral densities of the signals from three neutron detectors and the displacement of the control rod of the 2 MW research reactor HOR at Delft have been used to determine the space-dependent reactor transfer function, the transfer function of the automatic reactor control system and the noise sources influencing the measured signals. From a block diagram of the reactor with control system and noise sources expressions were derived for the measured cross power spectral densities, which were adjusted to satisfy the requirements following from the adopted model. Then for each frequency point the required transfer functions and noise sources could be derived. The results are in agreement with those of autoregressive modelling of the reactor control feed-back loop. A method has been developed to determine the non-linear characteristics of the automatic reactor control system by analysing the non-gaussian probability density function of the power fluctuations. (author)
Hadronic wave functions and high momentum transfer interactions in quantum chromodynamics
International Nuclear Information System (INIS)
Brodsky, S.J.; Huang, T.; Lepage, G.P.
1983-01-01
This chapter emphasizes the utility of a Fock state representation of the meson and baryon wave functions as a means not only to parametrize the effects of bound state dynamics in QCD phenomena, but also to interrelate exclusive, inclusive, and higher twist processes. Discusses hadronic wave functions in QCD, measures of hadronic wave functions (form factors of composite systems, form factors of mesons, the meson distribution amplitude); large momentum transfer exclusive processes (two-photon processes); deep inelastic lepton scattering; and the phenomenology of hadronic wave functions (measures of hadron wave functions, constraints on the pion and proton valence wave function, quark jet diffraction excitation, the ''unveiling'' of the hadronic wave function and intrinsic charm). Finds that the testing ground of perturbative QCD where rigorous, definitive tests of the theory can be made can now be extended throughout a large domain of large momentum transfer exclusive and inclusive lepton, photon, and hadron reactions
Izaks, Gerbrand J.; van der Knaap, Aafke M.; Gansevoort, Ron T.; Navis, Gerjan; Slaets, Joris P. J.; Dullaart, Robin P. F.
Common polymorphisms of the Cholestryl Ester Transfer Protein (CETP) gene may predict lower risk of cognitive decline. We investigated the association of cognitive function with CETP genotype in a population-based cohort of 4135 persons aged 35-82 years. Cognitive function was measured with the Ruff
DEFF Research Database (Denmark)
Shekarchi, Sayedali; Christensen-Dalsgaard, Jakob; Hallam, John
2015-01-01
A head-related transfer function (HRTF) model employing Legendre polynomials (LPs) is evaluated as an HRTF spatial complexity indicator and interpolation technique in the azimuth plane. LPs are a set of orthogonal functions derived on the sphere which can be used to compress an HRTF dataset...
Numerical Analysis of Heat Transfer During Quenching Process
Madireddi, Sowjanya; Krishnan, Krishnan Nambudiripad; Reddy, Ammana Satyanarayana
2018-04-01
A numerical model is developed to simulate the immersion quenching process of metals. The time of quench plays an important role if the process involves a defined step quenching schedule to obtain the desired characteristics. Lumped heat capacity analysis used for this purpose requires the value of heat transfer coefficient, whose evaluation requires large experimental data. Experimentation on a sample work piece may not represent the actual component which may vary in dimension. A Fluid-Structure interaction technique with a coupled interface between the solid (metal) and liquid (quenchant) is used for the simulations. Initial times of quenching shows boiling heat transfer phenomenon with high values of heat transfer coefficients (5000-2.5 × 105 W/m2K). Shape of the work piece with equal dimension shows less influence on the cooling rate Non-uniformity in hardness at the sharp corners can be reduced by rounding off the edges. For a square piece of 20 mm thickness, with 3 mm fillet radius, this difference is reduced by 73 %. The model can be used for any metal-quenchant combination to obtain time-temperature data without the necessity of experimentation.
Heat transfer capability analysis of heat pipe for space reactor
International Nuclear Information System (INIS)
Li Huaqi; Jiang Xinbiao; Chen Lixin; Yang Ning; Hu Pan; Ma Tengyue; Zhang Liang
2015-01-01
To insure the safety of space reactor power system with no single point failures, the reactor heat pipes must work below its heat transfer limits, thus when some pipes fail, the reactor could still be adequately cooled by neighbor heat pipes. Methods to analyze the reactor heat pipe's heat transfer limits were presented, and that for the prevailing capillary limit analysis was improved. The calculation was made on the lithium heat pipe in core of heat pipes segmented thermoelectric module converter (HP-STMC) space reactor power system (SRPS), potassium heat pipe as radiator of HP-STMC SRPS, and sodium heat pipe in core of scalable AMTEC integrated reactor space power system (SAIRS). It is shown that the prevailing capillary limits of the reactor lithium heat pipe and sodium heat pipe is 25.21 kW and 14.69 kW, providing a design margin >19.4% and >23.6%, respectively. The sonic limit of the reactor radiator potassium heat pipe is 7.88 kW, providing a design margin >43.2%. As the result of calculation, it is concluded that the main heat transfer limit of HP-STMC SRPS lithium heat pipe and SARIS sodium heat pipe is prevailing capillary limit, but the sonic limit for HP-STMC SRPS radiator potassium heat pipe. (authors)
The evolution of the mass-transfer functions in liquid Yukawa systems
Energy Technology Data Exchange (ETDEWEB)
Vaulina, O. S., E-mail: olga.vaulina@bk.ru [Russian Academy of Sciences, Joint Institute for High Temperatures (Russian Federation)
2016-09-15
The results of analytic and numerical investigation of mass-transfer processes in nonideal liquid systems are reported. Calculations are performed for extended 2D and 3D systems of particles that interact with a screened Yukawa-type Coulomb potential. The main attention is paid to 2D structures. A new analytic model is proposed for describing the evolution of mass-transfer functions in systems of interacting particles, including the transition between the ballistic and diffusion regimes of their motion.
PHENOMENOLOGICAL INQUIRY AND SELF-FUNCTIONS IN THE TRANSFERENCE-COUNTERTRANSFERENCE MILIEU
Directory of Open Access Journals (Sweden)
Richard G. Erskine
2013-05-01
Full Text Available The article “Balancing on the ‘Borderline’ of Early Affect-Confusion: Part 2 of a Case Study Trilogy” serves as the basis for this rejoinder and collegial discourse. The organizing-functions of reparation, stabilization, regulation, and enhancement are described and placed within the transference-countertransference milieu. Examples of bifurcating client’s questions to resolve transference are provided.
Modelling of Multi Input Transfer Function for Rainfall Forecasting in Batu City
Directory of Open Access Journals (Sweden)
Priska Arindya Purnama
2017-11-01
Full Text Available The aim of this research is to model and forecast the rainfall in Batu City using multi input transfer function model based on air temperature, humidity, wind speed and cloud. Transfer function model is a multivariate time series model which consists of an output series (Yt sequence expected to be effected by an input series (Xt and other inputs in a group called a noise series (Nt. Multi input transfer function model obtained is (b1,s1,r1 (b2,s2,r2 (b3,s3,r3 (b4,s4,r4(pn,qn = (0,0,0 (23,0,0 (1,2,0 (0,0,0 ([5,8],2 and shows that air temperature on t-day affects rainfall on t-day, rainfall on t-day is influenced by air humidity in the previous 23 days, rainfall on t-day is affected by wind speed in the previous day , and rainfall on day t is affected by clouds on day t. The results of rainfall forecasting in Batu City with multi input transfer function model can be said to be accurate, because it produces relatively small RMSE value. The value of RMSE data forecasting training is 7.7921 while forecasting data testing is 4.2184. Multi-input transfer function model is suitable for rainfall in Batu City.
Determination of the transfer function for optical surface topography measuring instruments—a review
International Nuclear Information System (INIS)
Foreman, Matthew R; Török, Peter; Giusca, Claudiu L; Leach, Richard K; Coupland, Jeremy M
2013-01-01
A significant number of areal surface topography measuring instruments, largely based on optical techniques, are commercially available. However, implementation of optical instrumentation into production is currently difficult due to the lack of understanding of the complex interaction between the light and the component surface. Studying the optical transfer function of the instrument can help address this issue. Here a review is given of techniques for the measurement of optical transfer functions. Starting from the basis of a spatially coherent, monochromatic confocal scanning imaging system, the theory of optical transfer functions in three-dimensional (3D) imaging is presented. Further generalizations are reviewed allowing the extension of the theory to the description of conventional and interferometric 3D imaging systems. Polychromatic transfer functions and surface topography measurements are also discussed. Following presentation of theoretical results, experimental methods to measure the optical transfer function of each class of system are presented, with a focus on suitable methods for the establishment of calibration standards in 3D imaging and surface topography measurements. (topical review)
Analysis of transferred fragrance and its forensic implications.
Gherghel, Simona; Morgan, Ruth M; Blackman, Christopher S; Karu, Kersti; Parkin, Ivan P
2016-12-01
Perfumes are widely used by many people in developed countries, and a large number of both men and women wear perfumes on a daily basis. Analysis of perfume trace materials from clothing is not commonly employed within forensic casework, yet as a form of trace evidence it has the potential to provide valuable intelligence. In order to appreciate the value of trace evidence there is a fundamental need for an evidence base that can both offer insight into how a trace material behaves under different scenarios and activities, and from which inferences can be made. With this purpose a gas chromatography-mass spectrometry method for trace analysis of perfumes was developed. This paper presents two different series of experiments that investigate the dynamics of perfume transfer as a factor of perfume ageing time, and as a factor of perfume contact time. Empirical data showed that both perfume ageing time, and perfume contact time play a key role in the number of perfume components transferred. These studies have implication for forensic protocols, specifically for perfume trace evidence collection, analysis, interpretation, and presentation, and there is potentially great value in analysing perfumes from clothing exhibits in forensic enquiries that involve close contact between individuals, such as sexual assaults. Copyright Â© 2016 The Authors. Published by Elsevier Ireland Ltd.. All rights reserved.
Advanced Wireless Power Transfer Vehicle and Infrastructure Analysis (Presentation)
Energy Technology Data Exchange (ETDEWEB)
Gonder, J.; Brooker, A.; Burton, E.; Wang, J.; Konan, A.
2014-06-01
This presentation discusses current research at NREL on advanced wireless power transfer vehicle and infrastructure analysis. The potential benefits of E-roadway include more electrified driving miles from battery electric vehicles, plug-in hybrid electric vehicles, or even properly equipped hybrid electric vehicles (i.e., more electrified miles could be obtained from a given battery size, or electrified driving miles could be maintained while using smaller and less expensive batteries, thereby increasing cost competitiveness and potential market penetration). The system optimization aspect is key given the potential impact of this technology on the vehicles, the power grid and the road infrastructure.
Interpretable functional principal component analysis.
Lin, Zhenhua; Wang, Liangliang; Cao, Jiguo
2016-09-01
Functional principal component analysis (FPCA) is a popular approach to explore major sources of variation in a sample of random curves. These major sources of variation are represented by functional principal components (FPCs). The intervals where the values of FPCs are significant are interpreted as where sample curves have major variations. However, these intervals are often hard for naïve users to identify, because of the vague definition of "significant values". In this article, we develop a novel penalty-based method to derive FPCs that are only nonzero precisely in the intervals where the values of FPCs are significant, whence the derived FPCs possess better interpretability than the FPCs derived from existing methods. To compute the proposed FPCs, we devise an efficient algorithm based on projection deflation techniques. We show that the proposed interpretable FPCs are strongly consistent and asymptotically normal under mild conditions. Simulation studies confirm that with a competitive performance in explaining variations of sample curves, the proposed FPCs are more interpretable than the traditional counterparts. This advantage is demonstrated by analyzing two real datasets, namely, electroencephalography data and Canadian weather data. © 2015, The International Biometric Society.
Transfer function restoration in 3D electron microscopy via iterative data refinement
International Nuclear Information System (INIS)
Sorzano, C O S; Marabini, R; Herman, G T; Censor, Y; Carazo, J M
2004-01-01
Three-dimensional electron microscopy (3D-EM) is a powerful tool for visualizing complex biological systems. As with any other imaging device, the electron microscope introduces a transfer function (called in this field the contrast transfer function, CTF) into the image acquisition process that modulates the various frequencies of the signal. Thus, the 3D reconstructions performed with these CTF-affected projections are also affected by an implicit 3D transfer function. For high-resolution electron microscopy, the effect of the CTF is quite dramatic and limits severely the achievable resolution. In this work we make use of the iterative data refinement (IDR) technique to ameliorate the effect of the CTF. It is demonstrated that the approach can be successfully applied to noisy data
International Nuclear Information System (INIS)
Garis, N.S.; Pazsit, I.
1997-02-01
Control rod vibrations can be detected via the fluctuations they generate in the neutron flux, i.e. the neutron noise. In a previous paper, a neural network-based algorithm for locating a vibrating control rod from the measured neutron noise was developed. The transfer function used for the core model was based on the so called power-reactor approximation resulting in a simple, real-valued solution which means that the phase delay of the signal propagation is neglected. In the present work a more realistic transfer function is used, without the approximations of the previous model. The transfer function is calculated from the Fourier transformed diffusion equation with a complex, frequency dependent buckling leading to a complex solution. In physical terms, this means that the phase delay of the signal propagation is accounted for. Using such a complex core model, the present paper investigates the effectiveness of applying neural networks for control rod localisation. 7 refs, 4 figs
New transfer functions for probing 3-D mantle conductivity from ground and sea
DEFF Research Database (Denmark)
Püthe, C.; Kuvshinov, A.; Olsen, Nils
2014-01-01
The C-response is a conventional transfer function in global electromagnetic induction research and is classically determined from local observations of magnetic variations in the vertical and the horizontal components. Its estimation and interpretation rely on the assumptions that the source...... source. We investigate the variability of C-responses due to non-P10 contributions to the source. We show that this variability, which we denote as 'source effect' (as opposed to the well-known ocean effect), is significant and persists at all periods. If inverting estimated C-responses for mantle...... telecommunication cables to spherical harmonic coefficients in the same way as described above, one can define yet another array of transfer functions. In spite of the fact that the newly introduced transfer functions allow for a consistent treatment of a complex spatial structure of the source, the sparse...
Directory of Open Access Journals (Sweden)
María F. Pomponio
2015-08-01
Full Text Available Aim of study: The aim of the study was to characterize functional microsatellite markers in Prosopis alba and examine the transferability to species from the Prosopis genus. Area of the study: samples were obtained from natural populations of Argentina. Material and Methods: Eleven SSR functional markers related to stress and metabolism were amplified in a sample of 152 genotypes from P.alba, P. denudans, P. hassleriP. chilensis, P. flexuosa, and interspecific hybrids. Main results: In P. alba, the PIC average value was 0.36; and 6 out of the 11 primers showed high values of polymorphism ranging from 0.40 to 0.71. The cross-species transferability was high with high percentages of polymorphic loci. Research highlights: The SSR markers developed in P.alba were easily transferred to other Prosopis species which did not have functional markers.
Jones, L; Nellist, P D
2014-05-01
In the scanning transmission electron microscope, hardware aberration correctors can now correct for the positive spherical aberration of round electron lenses. These correctors make use of nonround optics such as hexapoles or octupoles, leading to the limiting aberrations often being of a nonround type. Here we explore the effect of a number of potential limiting aberrations on the imaging performance of the scanning transmission electron microscope through their resulting optical transfer functions. In particular, the response of the optical transfer function to changes in defocus are examined, given that this is the final aberration to be tuned just before image acquisition. The resulting three-dimensional optical transfer functions also allow an assessment of the performance of a system for focal-series experiments or optical sectioning applications. © 2014 The Authors Journal of Microscopy © 2014 Royal Microscopical Society.
Steep and Adjustable Transfer Functions of Monolithic SOA-EA 2R-Regenerators
DEFF Research Database (Denmark)
Öhman, Filip; Kjær, Rasmus; Christiansen, Lotte Jin
2006-01-01
of a semiconductor waveguide with alternating amplifier and absorber sections using quantum-well active material. The steep nonlinearity of the transfer function is achieved by concatenating several sections. We identify the saturation properties of the absorbing media, as dictated by the band-filling and field......Measurements and numerical modeling of a reamplification and reshaping (2R) regenerator demonstrate a steep power transfer function with adjustable threshold. The threshold can be adjusted more than 6 dB by simple control of the reverse bias voltage of the absorber section. The device consists...... screening, as important for the observed transfer functions. The relation of the saturation powers of the gain and absorption sectionsis important for design optimization....
The Mid-Term Changes of Pulmonary Function Tests After Phrenic Nerve Transfer.
Yavari, Masoud; Hassanpour, Seyed Esmail; Khodayari, Mohammad
2016-03-01
In the restoration of elbow flexion, the phrenic nerve has proven to be a good donor, but considering the role of the phrenic nerve in respiratory function, we cannot disregard the potential dangers of this method. In the current study, we reviewed the results of pulmonary function tests (PFT) in four patients who underwent phrenic nerve transfer. We reviewed the results of serial spirometry tests, which were performed before and after phrenic nerve transfer surgery. All patients regained Biceps power to M3 strength or above. None of our patients experienced pulmonary problems or respiratory complaints, but a significant reduction of spirometric parameters occurred after surgery. This study highlights the close link between the role of the phrenic nerve and pulmonary function, such that the use of this nerve as a transfer donor leads to spirometric impairments.
The Use of Nerve Transfers to Restore Upper Extremity Function in Cervical Spinal Cord Injury.
Fox, Ida K; Novak, Christine B; Krauss, Emily M; Hoben, Gwendolyn M; Zaidman, Craig; Ruvinskaya, Rimma; Juknis, Neringa; Winter, Anke C; Mackinnon, Susan E
2018-03-15
Nerve transfer surgery to restore upper extremity function in cervical spinal cord injury (SCI) is novel and may transform treatment. Determining candidacy even years post-SCI is ill defined and deserves investigation. To develop a diagnostic algorithm, focusing on electrodiagnostic (EDX) studies, to determine eligibility for nerve transfer surgery. Retrospective descriptive case series. Tertiary university-based institution. Individuals with cervical SCI (n = 45). The electronic medical records of people referred to the Plastic Surgery Multidisciplinary Upper Extremity Surgery unit in the SCI clinic from 2010-2015 were reviewed. People were considered for nerve transfers to restore elbow extension or finger flexion and/or extension. Data including demographic, clinical evaluation, EDX results, surgery, and outcomes were collected and analyzed. EDX data, including nerve conduction studies and electromyography, for bilateral upper extremities of each patient examined was used to assess for the presence of lower motor neuron injury, which would preclude late nerve transfer. Based on our criteria and the results of EDX testing, a substantial number of patients presenting even years post-SCI were candidates for nerve transfers. Clinical outcome results are heterogeneous but promising and suggest that further refinement of eligibility, long-term follow-up, and standardized assessment will improve our understanding of the role of nerve transfer surgery to restore function in people with midcervical SCI. Many patients living with SCI are candidates for nerve transfer surgery to restore upper extremity function. Although the ultimate efficacy of these surgeries is not yet determined, this study attempts to report the criteria we are using and may ultimately determine the timing for intervention and which transfers are most useful for this heterogeneous population. IV. Copyright © 2018 American Academy of Physical Medicine and Rehabilitation. Published by Elsevier Inc. All
Heat Transfer Analysis in Wire Bundles for Aerospace Vehicles
Rickman, S. L.; Iamello, C. J.
2016-01-01
Design of wiring for aerospace vehicles relies on an understanding of "ampacity" which refers to the current carrying capacity of wires, either, individually or in wire bundles. Designers rely on standards to derate allowable current flow to prevent exceedance of wire temperature limits due to resistive heat dissipation within the wires or wire bundles. These standards often add considerable margin and are based on empirical data. Commercial providers are taking an aggressive approach to wire sizing which challenges the conventional wisdom of the established standards. Thermal modelling of wire bundles may offer significant mass reduction in a system if the technique can be generalized to produce reliable temperature predictions for arbitrary bundle configurations. Thermal analysis has been applied to the problem of wire bundles wherein any or all of the wires within the bundle may carry current. Wire bundles present analytical challenges because the heat transfer path from conductors internal to the bundle is tortuous, relying on internal radiation and thermal interface conductance to move the heat from within the bundle to the external jacket where it can be carried away by convective and radiative heat transfer. The problem is further complicated by the dependence of wire electrical resistivity on temperature. Reduced heat transfer out of the bundle leads to higher conductor temperatures and, hence, increased resistive heat dissipation. Development of a generalized wire bundle thermal model is presented and compared with test data. The steady state heat balance for a single wire is derived and extended to the bundle configuration. The generalized model includes the effects of temperature varying resistance, internal radiation and thermal interface conductance, external radiation and temperature varying convective relief from the free surface. The sensitivity of the response to uncertainties in key model parameters is explored using Monte Carlo analysis.
Functional 2D Procrustes Shape Analysis
DEFF Research Database (Denmark)
Larsen, Rasmus
2005-01-01
Using a landmark based approach to Procrustes alignment neglects the functional nature of outlines and surfaces. In order to re-introduce this functional nature into the analysis we will consider alignment of shapes with functional representations. First functional Procrustes analysis of curve...
Functional Analysis and Treatment of Nail Biting
Dufrene, Brad A.; Watson, T. Steuart; Kazmerski, Jennifer S.
2008-01-01
This study applied functional analysis methodology to nail biting exhibited by a 24-year-old female graduate student. Results from the brief functional analysis indicated variability in nail biting across assessment conditions. Functional analysis data were then used to guide treatment development and implementation. Treatment included a…
The heat transfer analysis of the first stage blade
International Nuclear Information System (INIS)
Hong, Yong Ju; Choi, Bum Seog; Park, Byung Gyu; Yoon, Eui Soo
2001-01-01
To get higher efficiency of gas turbine, the designer should have more higher Turbine Inlet Temperature(TIT). Today, modern gas turbine having sophisticated cooling scheme has TIT above 1,700 .deg. C. In the Korea, many gas turbine having TIT above 1,300 .deg. C was imported and being operated, but the gas with high TIT above 1,300 .deg. C in the turbine will give damage to liner of combustor, and blade of turbine and etc. So frequently maintenance for parts enduring high temperature was performed. In this study, the heat transfer analysis of cooling air in the internal cooling channel (network analysis) and temperature analysis of the blade (Finite Element Analysis) in the first stage rotor was conducted for development of the optimal cooling passage design procedure. The results of network analysis and FEM analysis of blade show that the high temperature spot are occurred at the leading edge, trailing edge near tip, and platform. So to get more reliable performance of gas turbine, the more efficient cooling method should be applied at the leading edge and tip section and the thermal barrier coating on the blade surface has important role in cooling blade
A binaural advantage in the subjective modulation transfer function with simple impulse responses
DEFF Research Database (Denmark)
Thompson, Eric Robert; Dau, Torsten
2008-01-01
into account that humans listen with two ears. There can be large interaural phase differences in the modulation transfer functions, which can create detectable interaural level difference fluctuations. Measurements were made to determine whether these interaural modulation phase differences can be used......The speech transmission index (STI) has been a popular method for predicting speech intelligibility in rooms. It is based on the magnitude of the modulation transfer function, which can be derived from the impulse response of the room and the background noise levels. However, it does not take...
Characterizing short-term stability for Boolean networks over any distribution of transfer functions
International Nuclear Information System (INIS)
Seshadhri, C.; Smith, Andrew M.; Vorobeychik, Yevgeniy; Mayo, Jackson R.; Armstrong, Robert C.
2016-01-01
Here we present a characterization of short-term stability of random Boolean networks under arbitrary distributions of transfer functions. Given any distribution of transfer functions for a random Boolean network, we present a formula that decides whether short-term chaos (damage spreading) will happen. We provide a formal proof for this formula, and empirically show that its predictions are accurate. Previous work only works for special cases of balanced families. Finally, it has been observed that these characterizations fail for unbalanced families, yet such families are widespread in real biological networks.
DEFF Research Database (Denmark)
Romstad, Francis Pascal; Birkedal, Dan; Mørk, Jesper
2002-01-01
In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From the measure...... the measurements we derive the small-signal alpha-parameter and the time-dependent chirp for different operation conditions.......In this letter, we propose a technique based on heterodyne detection for accurately and simultaneously measuring the amplitude and phase transfer functions of an optical modulator. The technique is used to characterize an InGaAsp multiple quantum-well electroabsorption modulator. From...
Studying Policy Transfer through the Lens of Social Network Analysis
DEFF Research Database (Denmark)
Staunæs, Dorthe; Brøgger, Katja; Steiner-Khamsi, Gita
Studying Policy Transfer through the Lens of Social Network Analysis The panelists present the findings of a joint empirical research project carried out at Aarhus University (DPU/Copenhagen) and at Teachers College, Columbia University (New York). The research project succeeded to identify...... discursive networks of political stakeholders and policy advisors that were considered key actors in the Danish school reform. The research team investigated how these networks interrelate, change over time, and represent different constituents (government, academe, business), at times contradicting...... or collaborating with each other, respectively. Against the backdrop of globalization studies in comparative education, the research project attempted to identify borrowers, translators, and brokers of educational reform drawing on a complementary set of expertise from social network analysis methodology (Oren...
Cost-effectiveness analysis of different embryo transfer strategies in England.
Dixon, S; Faghih Nasiri, F; Ledger, W L; Lenton, E A; Duenas, A; Sutcliffe, P; Chilcott, J B
2008-05-01
The objective of this study was to assess the cost-effectiveness of different embryo transfer strategies for a single cycle when two embryos are available, and taking the NHS cost perspective. Cost-effectiveness model. Five in vitro fertilisation (IVF) centres in England between 2003/04 and 2004/05. Women with two embryos available for transfer in three age groups (Costs and adverse outcomes are estimated up to 5 years after the birth. Incremental cost per live birth was calculated for different embryo transfer strategies and for three separate age groups: less than 30, 30-35 and 36-39 years. Premature birth, neonatal intensive care unit admissions and days, cerebral palsy and incremental cost-effectiveness ratios. Single fresh embryo transfer (SET) plus frozen single embryo transfer (fzSET) is the more costly in terms of IVF costs, but the lower rates of multiple births mean that in terms of total costs, it is less costly than double embryo transfer (DET). Adverse events increase when moving from SET to SET+fzSET to DET. The probability of SET+fzSET being cost-effective decreases with age. When SET is included in the analysis, SET+fzSET no longer becomes a cost-effective option at any threshold value for all age groups studied. The analyses show that the choice of embryo transfer strategy is a function of four factors: the age of the mother, the relevance of the SET option, the value placed on a live birth and the relative importance placed on adverse outcomes. For each patient group, the choice of strategy is a trade-off between the value placed on a live birth and cost.
Directory of Open Access Journals (Sweden)
Petr Maca
2014-01-01
Full Text Available The presented paper aims to analyze the influence of the selection of transfer function and training algorithms on neural network flood runoff forecast. Nine of the most significant flood events, caused by the extreme rainfall, were selected from 10 years of measurement on small headwater catchment in the Czech Republic, and flood runoff forecast was investigated using the extensive set of multilayer perceptrons with one hidden layer of neurons. The analyzed artificial neural network models with 11 different activation functions in hidden layer were trained using 7 local optimization algorithms. The results show that the Levenberg-Marquardt algorithm was superior compared to the remaining tested local optimization methods. When comparing the 11 nonlinear transfer functions, used in hidden layer neurons, the RootSig function was superior compared to the rest of analyzed activation functions.
Extremely environment-hard and low work function transfer-mold field emitter arrays
Energy Technology Data Exchange (ETDEWEB)
Nakamoto, Masayuki, E-mail: m-nakamoto@rie.shizuoka.ac.jp [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan); Moon, Jonghyun [Research Institute of Electronics, Shizuoka University, 3-5-1 Johoku, Naka-ku, Hamamatsu, Shizuoka 432-8011 (Japan)
2013-06-15
Extremely environment-hard and low work function field-emitter arrays (FEAs) were fabricated by a transfer-mold emitter fabrication method to produce highly reliable vacuum nanoelectronic devices able to operate stably at low voltage in highly oxidizing atmospheres. Amorphous carbon (a-C) having a work function of 3.6 eV and sp{sup 3} fraction of 85.6% prepared by plasma-enhanced chemical vapor deposition was used as the emitter material. The field-emission characteristics of the obtained transfer-mold FEAs strongly depended on their work function and morphology. The environment-hard characteristics of the transfer-mold a-C FEAs were compared with those of the transfer-mold titanium nitride FEAs and nickel FEAs. X-ray photoelectron spectroscopy was used to confirm the stable chemical states of the FEAs after oxygen radical treatment. The small amount of material oxidized (6.3%) at the surface of the a-C FEAs compared with 11.8% for the TiN-FEAs and 39.0% for Ni FEAs after oxygen radical treatment explained their almost constant work function in oxidizing atmospheres. The emission fluctuation rates of transfer-mold a-C FEAs without resistive layers under in situ radical treatment were as low as ±5.0%, compared with 5–100% for conventional FEAs with resistive layers not under highly oxidizing atmospheres. Therefore, the present environment-hard and low work function transfer-mold a-C FEAs are expected to be useful for reliable vacuum nanoelectronic devices.
An analytical wall-function for recirculating and impinging turbulent heat transfer
International Nuclear Information System (INIS)
Suga, K.; Ishibashi, Y.; Kuwata, Y.
2013-01-01
Highlights: ► Improvement of the analytical wall-function is proposed. ► Strain parameter dependency is introduced to the prescribed eddy viscosity profile of the analytical wall-function. ► The model performance is evaluated in turbulent pipe, channel, back-step, abrupt expansion pipe and plane impinging flows. ► Generally improved heat transfer is obtained in all the test cases with the standard k-e model. -- Abstract: The performance of the analytical wall-function (AWF) of Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002, Progress in the generalisation of wall-function treatments. Int. J. Heat Fluid Flow 23, 148–160.] is improved for predicting turbulent heat transfer in recirculating and impinging flows. Since constant parameters of the eddy viscosity formula were used to derive the AWF, the prediction accuracy of the original AWF tends to deteriorate in complex flows where those parameters need changing according to the local turbulence. To overcome such shortcomings, the present study introduces a functional behaviour on the strain parameter into the coefficient of the eddy viscosity of the AWF. The presently modified version of the AWF is validated in turbulent heat transfer of pipe flows, channel flows, back-step flows, pipe flows with abrupt expansion and plane impinging slot jets. The results confirm that the present modification successfully improves the performance of the original AWF for all the flows and heat transfer tested
Direct metal transfer printing on flexible substrate for fabricating optics functional devices
Jiang, Yingjie; Zhou, Xiaohong; Zhang, Feng; Shi, Zhenwu; Chen, Linsen; Peng, Changsi
2015-11-01
New functional materials and devices based on metal patterns can be widely used in many new and expanding industries,such as flat panel displays, alternative energy,sensors and so on. In this paper, we introduce a new transfer printing method for fabricating metal optics functional devices. This method can directly transfer a metal pattern from a polyethylene terephthalate (PET)supported UV or polydimethylsiloxane (PDMS) pattern to another PET substrate. Purely taking advantage of the anaerobic UV curing adhesive (a-UV) on PET substrate, metal film can be easily peeled off from micro/nano-structured surface. As a result, metal film on the protrusion can be selectively transferred onto the target substrate, to make it the metal functional surface. But which on the bottom can not be transferred. This method provides low cost fabrication of metal thin film devices by avoiding high cost lithography process. Compared with conventional approach, this method can get more smooth rough edges and has wider tolerance range for the original master mold. Future developments and potential applications of this metal transfer method will be addressed.
Conjugative Plasmid Transfer in Xylella fastidiosa Is Dependent on tra and trb Operon Functions.
Burbank, Lindsey P; Van Horn, Christopher R
2017-11-01
The insect-transmitted plant pathogen Xylella fastidiosa is capable of efficient horizontal gene transfer (HGT) and recombination. Natural transformation occurs at high rates in X. fastidiosa , but there also is evidence that certain strains of X. fastidiosa carry native plasmids equipped with transfer and mobilization genes, suggesting conjugation as an additional mechanism of HGT in some instances. Two operons, tra and trb , putatively encoding a conjugative type IV secretion system, are found in some but not all X. fastidiosa isolates, often on native plasmids. X. fastidiosa strains that carry the conjugative transfer genes can belong to different subspecies and frequently differ in host ranges. Using X. fastidiosa strain M23 ( X. fastidiosa subsp. fastidiosa ) or Dixon ( X. fastidiosa subsp. multiplex ) as the donor strain and Temecula ( X. fastidiosa subsp. fastidiosa ) as the recipient strain, plasmid transfer was characterized using the mobilizable broad-host-range vector pBBR5pemIK. Transfer of plasmid pBBR5pemIK was observed under in vitro conditions with both donor strains and was dependent on both tra and trb operon functions. A conjugative mechanism likely contributes to gene transfer between diverse strains of X. fastidiosa , possibly facilitating adaptation to new environments or different hosts. IMPORTANCE Xylella fastidiosa is an important plant pathogen worldwide, infecting a wide range of different plant species. The emergence of new diseases caused by X. fastidiosa , or host switching of existing strains, is thought to be primarily due to the high frequency of HGT and recombination in this pathogen. Transfer of plasmids by a conjugative mechanism enables movement of larger amounts of genetic material at one time, compared with other routes of gene transfer such as natural transformation. Establishing the prevalence and functionality of this mechanism in X. fastidiosa contributes to a better understanding of HGT, adaptation, and disease emergence
Heat transfer analysis of short helical borehole heat exchangers
International Nuclear Information System (INIS)
Zarrella, Angelo; De Carli, Michele
2013-01-01
Highlights: ► Vertical ground heat exchanger with a helical shaped pipe is analyzed. ► The model considers the interaction between the ground and the environment. ► The results of the model are in good agreement with the experimental values. ► The weather conditions considerably affect the fluid heat carrier temperature. ► The pitch between the turns does not affect the behaviour of the heat exchanger. -- Abstract: In this paper a numerical model to analyze the thermal behaviour of vertical ground heat exchangers with a helical shaped pipe is presented. This type of configuration can be a suitable alternative to conventional ground heat exchangers, especially when the heating and cooling loads of the building are very low. The model describes the heat transfer problem by means of a network of interconnected thermal resistances and capacitances. Moreover, as the investigated ground heat exchanger is usually installed in shallow depth, the model takes into account the interaction between the ground and the ambient environment which affects the fluid heat carrier temperature into the heat exchanger and, as a consequence, the energy efficiency of the heat pump. After a sensitivity analysis on the mesh parameters, the presented model is compared with experimental data and the simulation results show good agreement with the measurements. Finally, analyses to investigate the influence of the weather conditions, of the axial heat transfer and of the pitch between the turns of the helical pipe for two types of ground are carried out.
Morphing continuum analysis of energy transfer in compressible turbulence
Cheikh, Mohamad Ibrahim; Wonnell, Louis B.; Chen, James
2018-02-01
A shock-preserving finite volume solver with the generalized Lax-Friedrichs splitting flux for morphing continuum theory (MCT) is presented and verified. The numerical MCT solver is showcased in a supersonic turbulent flow with Mach 2.93 over an 8∘ compression ramp. The simulation results validated MCT with experiments as an alternative for modeling compressible turbulence. The required size of the smallest mesh cell for the MCT simulation is shown to be almost an order larger than that in a similar direct numerical simulation study. The comparison shows MCT is a much more computationally friendly theory than the classical Navier-Stokes equations. The dynamics of energy cascade at the length scale of individual eddies is illuminated through the subscale rotation introduced by MCT. In this regard, MCT provides a statistical averaging procedure for capturing energy transfer in compressible turbulence, not found in classical fluid theories. Analysis of the MCT results show the existence of a statistical coupling of the internal and translational kinetic energy fluctuations with the corresponding eddy rotational energy fluctuations, indicating a multiscale transfer of energy. In conclusion, MCT gives a new characterization of the energy cascade within compressible turbulence without the use of excessive computational resources.
An immersed-boundary method for conjugate heat transfer analysis
Energy Technology Data Exchange (ETDEWEB)
Song, Jeong Chul; Lee, Joon Sik [Seoul National University, Seoul (Korea, Republic of); Ahn, Joon [Kookmin University, Seoul (Korea, Republic of)
2017-05-15
An immersed-boundary method is proposed for the analysis of conjugate problems of convective heat transfer in conducting solids. In- side the solid body, momentum forcing is applied to set the velocity to zero. A thermal conductivity ratio and a heat capacity ratio, between the solid body and the fluid, are introduced so that the energy equation is reduced to the heat diffusion equation. At the solid fluid interface, an effective conductivity is introduced to satisfy the heat flux continuity. The effective thermal conductivity is obtained by considering the heat balance at the interface or by using a harmonic mean formulation. The method is first validated against the analytic solution to the heat transfer problem in a fully developed laminar channel flow with conducting solid walls. Then it is applied to a laminar channel flow with a heated, block-shaped obstacle to show its validity for geometry with sharp edges. Finally the validation for a curvilinear solid body is accomplished with a laminar flow through arrayed cylinders.
Heat Transfer Analysis for a Fixed CST Column
International Nuclear Information System (INIS)
Lee, S.Y.
2004-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, a transient two-dimensional heat transfer model that includes the conduction process neglecting the convection cooling mechanism inside the crystalline silicotitanate (CST) column has been constructed and heat transfer calculations made for the present design configurations. For this situation, a no process flow condition through the column was assumed as one of the reference conditions for the simulation of a loss-of-flow accident. A series of the modeling calculations has been performed using a computational heat transfer approach. Results for the baseline model indicate that transit times to reach 130 degrees Celsius maximum temperature of the CST-salt solution column are about 96 hours when the 20-in CST column with 300 Ci/liter heat generation source and 25 degrees Celsius initial column temperature is cooled by natural convection of external air as a primary heat transfer mechanism. The modeling results for the 28-in column equipped with water jacket systems on the external wall surface of the column and water coolant pipe at the center of the CST column demonstrate that the column loaded with 300 Ci/liter heat source can be maintained non-boiling indefinitely. Sensitivity calculations for several alternate column sizes, heat loads of the packed column, engineered cooling systems, and various ambient conditions at the exterior wall of the column have been performed under the reference conditions of the CST-salt solution to assess the impact of those parameters on the peak temperatures of the packed column for a given transient time. The results indicate that a water-coolant pipe at the center of the CST column filled with salt solution is the most effective one among the potential design parameters related to the thermal energy dissipation of decay heat load. It is noted that the cooling mechanism at the wall boundary of the column has significant
HEAT TRANSFER ANALYSIS FOR FIXED CST AND RF COLUMNS
International Nuclear Information System (INIS)
Lee, S
2007-01-01
In support of a small column ion exchange (SCIX) process for the Savannah River Site waste processing program, transient and steady state two-dimensional heat transfer models have been constructed for columns loaded with cesium-saturated crystalline silicotitanate (CST) or spherical Resorcinol-Formaldehyde (RF) beads and 6 molar sodium tank waste supernate. Radiolytic decay of sorbed cesium results in heat generation within the columns. The models consider conductive heat transfer only with no convective cooling and no process flow within the columns (assumed column geometry: 27.375 in ID with a 6.625 in OD center-line cooling pipe). Heat transfer at the column walls was assumed to occur by natural convection cooling with 35 C air. A number of modeling calculations were performed using this computational heat transfer approach. Minimal additional calculations were also conducted to predict temperature increases expected for salt solution processed through columns of various heights at the slowest expected operational flow rate of 5 gpm. Results for the bounding model with no process flow and no active cooling indicate that the time required to reach the boiling point of ∼130 C for a CST-salt solution mixture containing 257 Ci/liter of Cs-137 heat source (maximum expected loading for SCIX applications) at 35 C initial temperature is about 6 days. Modeling results for a column actively cooled with external wall jackets and the internal coolant pipe (inlet coolant water temperature: 25 C) indicate that the CST column can be maintained non-boiling under these conditions indefinitely. The results also show that the maximum temperature of an RF-salt solution column containing 133 Ci/liter of Cs-137 (maximum expected loading) will never reach boiling under any conditions (maximum predicted temperature without cooling: 88 C). The results indicate that a 6-in cooling pipe at the center of the column provides the most effective cooling mechanism for reducing the maximum
Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere
Energy Technology Data Exchange (ETDEWEB)
Qin Yi [School of Physics, University of New South Wales (Australia)]. E-mail: yi.qin@csiro.au; Box, Michael A. [School of Physics, University of New South Wales (Australia)
2006-01-15
Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function.
Vector Green's function algorithm for radiative transfer in plane-parallel atmosphere
International Nuclear Information System (INIS)
Qin Yi; Box, Michael A.
2006-01-01
Green's function is a widely used approach for boundary value problems. In problems related to radiative transfer, Green's function has been found to be useful in land, ocean and atmosphere remote sensing. It is also a key element in higher order perturbation theory. This paper presents an explicit expression of the Green's function, in terms of the source and radiation field variables, for a plane-parallel atmosphere with either vacuum boundaries or a reflecting (BRDF) surface. Full polarization state is considered but the algorithm has been developed in such way that it can be easily reduced to solve scalar radiative transfer problems, which makes it possible to implement a single set of code for computing both the scalar and the vector Green's function
Directory of Open Access Journals (Sweden)
Xiaoling Chen
2018-05-01
Full Text Available Recently, functional corticomuscular coupling (FCMC between the cortex and the contralateral muscle has been used to evaluate motor function after stroke. As we know, the motor-control system is a closed-loop system that is regulated by complex self-regulating and interactive mechanisms which operate in multiple spatial and temporal scales. Multiscale analysis can represent the inherent complexity. However, previous studies in FCMC for stroke patients mainly focused on the coupling strength in single-time scale, without considering the changes of the inherently directional and multiscale properties in sensorimotor systems. In this paper, a multiscale-causal model, named multiscale transfer entropy, was used to quantify the functional connection between electroencephalogram over the scalp and electromyogram from the flexor digitorum superficialis (FDS recorded simultaneously during steady-state grip task in eight stroke patients and eight healthy controls. Our results showed that healthy controls exhibited higher coupling when the scale reached up to about 12, and the FCMC in descending direction was stronger at certain scales (1, 7, 12, and 14 than that in ascending direction. Further analysis showed these multi-time scale characteristics mainly focused on the beta1 band at scale 11 and beta2 band at scale 9, 11, 13, and 15. Compared to controls, the multiscale properties of the FCMC for stroke were changed, the strengths in both directions were reduced, and the gaps between the descending and ascending directions were disappeared over all scales. Further analysis in specific bands showed that the reduced FCMC mainly focused on the alpha2 at higher scale, beta1 and beta2 across almost the entire scales. This study about multi-scale confirms that the FCMC between the brain and muscles is capable of complex and directional characteristics, and these characteristics in functional connection for stroke are destroyed by the structural lesion in the
Biçer, M.; Kaşkaş, A.
2018-03-01
The infinite medium Green's function is used to solve the half-space albedo, slab albedo and Milne problems for the unpolarized Rayleigh scattering case; these problems are the most classical problems of radiative transfer theory. The numerical results are obtained and are compared with previous ones.
Investigating the effects of heat exchanger on flame transfer function in a simplified boiler
Hosseini, N.; Kornilov, V.N.; Teerling, O. J.; Lopez Arteaga, I.; de Goey, Ph.
2015-01-01
The goal of the present work is to investigate the effects the heat exchanger can have on the acoustic response of the flames(flame transfer function) in a boiler. In compact condensing boilers the distance between the burner and heat exchanger is small enough to cause intense interactions. That is
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
Directory of Open Access Journals (Sweden)
J. Kochendorfer
2018-02-01
Full Text Available Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment, different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.
The Derived Transfer and Reversal of Mood Functions through Equivalence Relations: II
Cahill, Jane; Barnes-Holmes, Yvonne; Barnes-Holmes, Dermot; Rodriguez-Valverde, Miguel; Luciano, Carmen; Smeets, Paul M.
2007-01-01
Recent research has demonstrated the transfer of induced mood functions through equivalence relations by means of a musical mood-induction procedure. The research described in this article replicated and extended such work, primarily with the inclusion of a baseline and two types of reversal procedures. First, 16 adult participants were trained…
Menamparambath, Mini Mol; Park, Jong Ho; Yoo, Ho Sung; Patole, Shashikant P.; Yoo, Ji Beom; Kim, Sung Wng; Baik, Seunghyun
2014-01-01
V. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers
A parametric transfer function methodology for analyzing reactive transport in nonuniform flow.
Luo, Jian; Cirpka, Olaf A; Fienen, Michael N; Wu, Wei-min; Mehlhorn, Tonia L; Carley, Jack; Jardine, Philip M; Criddle, Craig S; Kitanidis, Peter K
2006-02-01
We analyze reactive transport during in-situ bioremediation in a nonuniform flow field, involving multiple extraction and injection wells, by the method of transfer functions. Gamma distributions are used as parametric models of the transfer functions. Apparent parameters of classical transport models may be estimated from those of the gamma distributions by matching temporal moments. We demonstrate the method by application to measured data taken at a field experiment on bioremediation conducted in a multiple-well system in Oak Ridge, TN. Breakthrough curves (BTCs) of a conservative tracer (bromide) and a reactive compound (ethanol) are measured at multi-level sampling (MLS) wells and in extraction wells. The BTCs of both compounds are jointly analyzed to estimate the first-order degradation rate of ethanol. To quantify the tracer loss, we compare the approaches of using a scaling factor and a first-order decay term. Results show that by including a scaling factor both gamma distributions and inverse-Gaussian distributions (transfer functions according to the advection-dispersion equation) are suitable to approximate the transfer functions and estimate the reactive rate coefficients for both MLS and extraction wells. However, using a first-order decay term for tracer loss fails to describe the BTCs at the extraction well, which is affected by the nonuniform distribution of travel paths.
Testing and development of transfer functions for weighing precipitation gauges in WMO-SPICE
Kochendorfer, John; Nitu, Rodica; Wolff, Mareile; Mekis, Eva; Rasmussen, Roy; Baker, Bruce; Earle, Michael E.; Reverdin, Audrey; Wong, Kai; Smith, Craig D.; Yang, Daqing; Roulet, Yves-Alain; Meyers, Tilden; Buisan, Samuel; Isaksen, Ketil; Brækkan, Ragnar; Landolt, Scott; Jachcik, Al
2018-02-01
Weighing precipitation gauges are used widely for the measurement of all forms of precipitation, and are typically more accurate than tipping-bucket precipitation gauges. This is especially true for the measurement of solid precipitation; however, weighing precipitation gauge measurements must still be adjusted for undercatch in snowy, windy conditions. In WMO-SPICE (World Meteorological Organization Solid Precipitation InterComparison Experiment), different types of weighing precipitation gauges and shields were compared, and adjustments were determined for the undercatch of solid precipitation caused by wind. For the various combinations of gauges and shields, adjustments using both new and previously existing transfer functions were evaluated. For most of the gauge and shield combinations, previously derived transfer functions were found to perform as well as those more recently derived. This indicates that wind shield type (or lack thereof) is more important in determining the magnitude of wind-induced undercatch than the type of weighing precipitation gauge. It also demonstrates the potential for widespread use of the previously developed transfer functions. Another overarching result was that, in general, the more effective shields, which were associated with smaller unadjusted errors, also produced more accurate measurements after adjustment. This indicates that although transfer functions can effectively reduce measurement biases, effective wind shielding is still required for the most accurate measurement of solid precipitation.
Goetheer, E.L.V.; Baars, M.W.P.L.; Broeke, van den L.J.P.; Meijer, E.W.; Keurentjes, J.T.F.
2000-01-01
Perfluoro-functionalized poly(propylene imine) dendrimers have been used as reactive extractants for anionic species and as phase transfer catalysts for two types of reactions. Different generations of dendrimers have been used for applications in carbon dioxide. First, the reactive extraction of
Transfer functions of double- and multiple-cavity Fabry-Perot filters driven by Lorentzian sources.
Marti, J; Capmany, J
1996-12-20
We derive expressions for the transfer functions of double- and multiple-cavity Fabry-Perot filters driven by laser sources with Lorentzian spectrum. These are of interest because of their applications in sensing and channel filtering in optical frequency-division multiplexing networks.
Fisher, Wayne W.; Greer, Brian D.; Fuhrman, Ashley M.; Querim, Angie C.
2015-01-01
Multiple schedules with signaled periods of reinforcement and extinction have been used to thin reinforcement schedules during functional communication training (FCT) to make the intervention more practical for parents and teachers. We evaluated whether these signals would also facilitate rapid transfer of treatment effects across settings and…
María F. Pomponio; Cintia Acuña; Vivien Pentreath; Diego L. Lauenstein; Susana M. Poltri; Susana Torales
2015-01-01
Aim of study: The aim of the study was to characterize functional microsatellite markers in Prosopis alba and examine the transferability to species from the Prosopis genus. Area of the study: samples were obtained from natural populations of Argentina. Material and Methods: Eleven SSR functional markers related to stress and metabolism were amplified in a sample of 152 genotypes from P.alba, P. denudans, P. hassleriP. chilensis, P. flexuosa, and interspecific hybrids. Main res...
Directory of Open Access Journals (Sweden)
Faruquee Sajedur
2008-05-01
Full Text Available Abstract Background Purpose of this study was to evaluate the functional outcome of spinal accessory to suprascapular nerve transfer (XI-SSN done for restoration of shoulder function and partial transfer of ulnar nerve to the motor branch to the biceps muscle for the recovery of elbow flexion (Oberlin transfer. Methods This is a prospective study involving 15 consecutive cases of upper plexus injury seen between January 2004 and December 2005. The average age of patients was 35.6 yrs (15–52 yrs. The injury-surgery interval was between 2–6 months. All underwent XI-SSN and Oberlin nerve transfer. The coaptation was done close to the biceps muscle to ensure early recovery. The average follow up was 15 months (range 12–36 months. The functional outcome was assessed by measuring range of movements and also on the grading scale proposed by Narakas for shoulder function and Waikakul for elbow function. Results Good/Excellent results were seen in 13/15 patients with respect to elbow function and 8/15 for shoulder function. The time required for the first sign of clinical reinnervation of biceps was 3 months 9 days (range 1 month 25 days to 4 months and for the recovery of antigravity elbow flexion was 5 months (range 3 1/2 months to 8 months. 13 had M4 and two M3 power. On evaluating shoulder function 8/15 regained active abduction, five had M3 and three M4 shoulder abduction. The average range of abduction in these eight patients was 66 degrees (range 45–90. Eight had recovered active external rotation, average 44 degrees (range 15–95. The motor recovery of external rotation was M3 in 5 and M4 in 3. 7/15 had no active abduction/external rotation, but they felt that their shoulder was more stable. Comparable results were observed in both below and above 40 age groups and those with injury to surgery interval less than 3 or 3–6 months. Conclusion Transfer of ulnar nerve fascicle to the motor branch of biceps close to the muscle consistently
Functional analysis and treatment of diurnal bruxism.
Lang, Russell; Davenport, Katy; Britt, Courtney; Ninci, Jennifer; Garner, Jennifer; Moore, Melissa
2013-01-01
An analogue functional analysis identified attention as a function for a 5-year-old boy's bruxism (teeth grinding). Functional communication training resulted in a reduction of bruxism and an increase in alternative mands for attention. Results were maintained 3 weeks following the intervention. © Society for the Experimental Analysis of Behavior.
Knowledge transfer in pair programming: An in-depth analysis
DEFF Research Database (Denmark)
Plonka, Laura; Sharp, Helen; van der Linden, Janet
2015-01-01
Whilst knowledge transfer is one of the most widely-claimed benefits of pair programming, little is known about how knowledge transfer is achieved in this setting. This is particularly pertinent for novice−expert constellations, but knowledge transfer takes place to some degree in all constellati...
Using transfer functions to quantify El Niño Southern Oscillation dynamics in data and models.
MacMartin, Douglas G; Tziperman, Eli
2014-09-08
Transfer function tools commonly used in engineering control analysis can be used to better understand the dynamics of El Niño Southern Oscillation (ENSO), compare data with models and identify systematic model errors. The transfer function describes the frequency-dependent input-output relationship between any pair of causally related variables, and can be estimated from time series. This can be used first to assess whether the underlying relationship is or is not frequency dependent, and if so, to diagnose the underlying differential equations that relate the variables, and hence describe the dynamics of individual subsystem processes relevant to ENSO. Estimating process parameters allows the identification of compensating model errors that may lead to a seemingly realistic simulation in spite of incorrect model physics. This tool is applied here to the TAO array ocean data, the GFDL-CM2.1 and CCSM4 general circulation models, and to the Cane-Zebiak ENSO model. The delayed oscillator description is used to motivate a few relevant processes involved in the dynamics, although any other ENSO mechanism could be used instead. We identify several differences in the processes between the models and data that may be useful for model improvement. The transfer function methodology is also useful in understanding the dynamics and evaluating models of other climate processes.
Directory of Open Access Journals (Sweden)
Gabriele Scheler
Full Text Available We present a novel formulation for biochemical reaction networks in the context of protein signal transduction. The model consists of input-output transfer functions, which are derived from differential equations, using stable equilibria. We select a set of "source" species, which are interpreted as input signals. Signals are transmitted to all other species in the system (the "target" species with a specific delay and with a specific transmission strength. The delay is computed as the maximal reaction time until a stable equilibrium for the target species is reached, in the context of all other reactions in the system. The transmission strength is the concentration change of the target species. The computed input-output transfer functions can be stored in a matrix, fitted with parameters, and even recalled to build dynamical models on the basis of state changes. By separating the temporal and the magnitudinal domain we can greatly simplify the computational model, circumventing typical problems of complex dynamical systems. The transfer function transformation of biochemical reaction systems can be applied to mass-action kinetic models of signal transduction. The paper shows that this approach yields significant novel insights while remaining a fully testable and executable dynamical model for signal transduction. In particular we can deconstruct the complex system into local transfer functions between individual species. As an example, we examine modularity and signal integration using a published model of striatal neural plasticity. The modularizations that emerge correspond to a known biological distinction between calcium-dependent and cAMP-dependent pathways. Remarkably, we found that overall interconnectedness depends on the magnitude of inputs, with higher connectivity at low input concentrations and significant modularization at moderate to high input concentrations. This general result, which directly follows from the properties of
Excitation functions for quasielastic transfer reactions induced with heavy ions in bismuth
International Nuclear Information System (INIS)
Gardes, D.; Bimbot, R.; Maison, J.; de Reilhac, L.; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.
1978-01-01
The excitation functions for the production of 210 Bi, 210 Po, /sup 207-211/At, and 211 Rn through quasielastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two charges, and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ar, 40 Ca, 56 Fe, and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measuremnts of incident energies and cross sections were performed close to the reaction thresholds. All excitation functions exhibit the typical features of quasielastic transfer reactions: a sharp increase at low energy, and a constant value at high incident energy. The position of the thresholds are strongly influenced by the energetics of the reaction: High cross sections are observed under the strong interaction barrier if the energy balance at the minimum distance of approach is positive. This balance is equal to the difference between the interaction potentials in the entrance and exit channels, corrected for the mass balance. The constant cross sections observed for the high energy part of a given excitation function are consistent with the assumption that the curve P (R) which represents the transfer probability versus the distance between the nucleus centers does not vary with incident energy. This assumption implies the constancy of the optimum distance of approach R/sub opt/, of the R window ΔR for which P (R) is significant, and of the magnitude of P (R). Moreover the data show that the high energy cross sections for one-proton transfer are independent of the projectile, while odd-even effects of the projectile atomic number Z on the two-charge transfer cross sections are observed for the lightest incident ions 14 N to 20 Ne
Excitation functions for quasi-elastic transfer reactions induced with heavy ions in bismuth
International Nuclear Information System (INIS)
Gardes, D.; Bimbot, R.; Maison, J.; Reilhac, L. de; Rivet, M.F.; Fleury, A.; Hubert, F.; Llabador, Y.
1977-01-01
The excitation functions for the production of 210 Bi, 210 Po, sup(207-211)At and 211 Rn through quasi-elastic transfer reactions induced with heavy ions in 209 Bi have been measured. The corresponding reactions involved the transfer of one neutron, one proton, two and three charges from projectile to target. The projectiles used were 12 C, 14 N, 16 O, 19 F, 20 Ne, 40 Ca, 56 Fe and 63 Cu. The experimental techniques involved target irradiations and off-line α and γ activity measurements. Chemical separations were used to solve specific problems. Careful measurements of incident energies and cross sections were performed close to the reaction thresholds
Simbaqueba, Jaime; Catanzariti, Ann-Maree; González, Carolina; Jones, David A
2018-05-22
RNAseq reads from cape-gooseberry plants (Physalis peruviana) infected with Fusarium oxysporum f. sp. physali (Foph) were mapped against the lineage-specific transcriptome of Fusarium oxysporum f. sp. lycopersici (Fol) to look for putative effector genes. Homologues of Fol SIX1 (designated SIX1a and SIX1b), SIX7, SIX10, SIX12, SIX15 and Ave1 were identified. The near identity of the Foph and Fol SIX7, SIX10 and SIX12 genes and their intergenic regions suggest that this gene cluster may have undergone recent lateral transfer. Foph SIX1a and SIX1b were tested for their ability to complement a SIX1 knockout mutant of Fol. This mutant has reduced pathogenicity on susceptible tomato plants, but is able to infect otherwise resistant tomato plants carrying the I-3 gene for Fusarium wilt resistance (SIX1 corresponds to Avr3). Neither, SIX1a nor SIX1b could restore full pathogenicity on susceptible tomato plants, suggesting that any role they may play in pathogenicity is likely to be specific to cape gooseberry. SIX1b, but not SIX1a, was able to restore avirulence on tomato plants carrying I-3. These findings separate the recognition of SIX1 from its role as an effector and suggest direct recognition by I-3. A hypervariable region of SIX1 undergoing diversifying selection within the F. oxysporum species complex is likely to play an important role in SIX1 recognition. These findings also indicate that I-3 could potentially be deployed as a transgene in cape gooseberry to protect this emerging crop from Foph. Alternatively, cape gooseberry germplasm could be explored for I-3 homologues capable of providing resistance to Foph. This article is protected by copyright. All rights reserved. © 2018 BSPP and John Wiley & Sons Ltd.
Vanreusel, Wouter; Maes, Dirk; Van Dyck, Hans
2007-02-01
Numerous models for predicting species distribution have been developed for conservation purposes. Most of them make use of environmental data (e.g., climate, topography, land use) at a coarse grid resolution (often kilometres). Such approaches are useful for conservation policy issues including reserve-network selection. The efficiency of predictive models for species distribution is usually tested on the area for which they were developed. Although highly interesting from the point of view of conservation efficiency, transferability of such models to independent areas is still under debate. We tested the transferability of habitat-based predictive distribution models for two regionally threatened butterflies, the green hairstreak (Callophrys rubi) and the grayling (Hipparchia semele), within and among three nature reserves in northeastern Belgium. We built predictive models based on spatially detailed maps of area-wide distribution and density of ecological resources. We used resources directly related to ecological functions (host plants, nectar sources, shelter, microclimate) rather than environmental surrogate variables. We obtained models that performed well with few resource variables. All models were transferable--although to different degrees--among the independent areas within the same broad geographical region. We argue that habitat models based on essential functional resources could transfer better in space than models that use indirect environmental variables. Because functional variables can easily be interpreted and even be directly affected by terrain managers, these models can be useful tools to guide species-adapted reserve management.
Smith, David R.; Gowda, Vinay R.; Yurduseven, Okan; Larouche, Stéphane; Lipworth, Guy; Urzhumov, Yaroslav; Reynolds, Matthew S.
2017-01-01
Wireless power transfer (WPT) has been an active topic of research, with a number of WPT schemes implemented in the near-field (coupling) and far-field (radiation) regimes. Here, we consider a beamed WPT scheme based on a dynamically reconfigurable source aperture transferring power to receiving devices within the Fresnel region. In this context, the dynamic aperture resembles a reconfigurable lens capable of focusing power to a well-defined spot, whose dimension can be related to a point spread function. The necessary amplitude and phase distribution of the field imposed over the aperture can be determined in a holographic sense, by interfering a hypothetical point source located at the receiver location with a plane wave at the aperture location. While conventional technologies, such as phased arrays, can achieve the required control over phase and amplitude, they typically do so at a high cost; alternatively, metasurface apertures can achieve dynamic focusing with potentially lower cost. We present an initial tradeoff analysis of the Fresnel region WPT concept assuming a metasurface aperture, relating the key parameters such as spot size, aperture size, wavelength, and focal distance, as well as reviewing system considerations such as the availability of sources and power transfer efficiency. We find that approximate design formulas derived from the Gaussian optics approximation provide useful estimates of system performance, including transfer efficiency and coverage volume. The accuracy of these formulas is confirmed through numerical studies.
A note on G-functions within the scope of radiative transfer in turbid vegetation media
International Nuclear Information System (INIS)
Otto, Sebastian; Trautmann, Thomas
2008-01-01
This work reports on the use of leaf normal distribution functions (LNDFs) in the radiative transfer theory of turbid vegetation media to calculate the so-called G-function (GF). We revisit the normalisation condition of the LNDFs and present an extended set of fully explicit analytical expressions for GF considering commonly used standard LNDFs from purely vertical to purely horizontal model leaves. Applying them we derive GF for a generalised LNDF, which is written as a series of cosine functions with a number of free parameters. This generalisation opens up the possibility to fit leaf orientation measurements to our generalised LNDF and to determine the respective analytical GF. Thus, an extended range of leaf architectures, beyond the usual and less realistic standard LNDFs, can be considered with respect to applications of the radiative transfer theory in turbid vegetation media
DEFF Research Database (Denmark)
Plessen, Kerstin J; Lundervold, Arvid; Grüner, Renate
2007-01-01
on the right ear stimulus in the dichotic listening situation is thought to involve the same prefrontal attentional and executive functions that are involved in the suppression of tics, whereas, performance when focusing attention on the left ear stimulus additionally involves a callosal transfer...... to shift attention normally when instructed to focus on the right ear stimulus. When instructed to focus attention on the left ear stimulus, however, performance deteriorated in the TS group. Correlations with CC area further supported the hypothesized presence of deviant callosal functioning in the TS...... of information. In light of presumed disturbances in transfer of information across the corpus callosum, we hypothesized that children with TS would, however, have difficulty modulating the functional lateralization that ensues through a shift of attention to the left side. This hypothesis was tested...
Square function analysis of the Inductor-Converter Bridge
International Nuclear Information System (INIS)
Ehsani, M.; Kustom, R.L.
1979-03-01
The transfer of energy between two superconducting coils can be controlled with an Inductor-Converter Bridge (ICB) by changing the relative timing between the storage side bridge and the load side bridge. The average voltages on the coils have been previously derived as a function of relative timing between the two halves of the bridges and the relative currents in the two coils using a one-line, harmonic current source representation of each coil and its bridge network. Since the coil current in each of the ICB phases appears as bipolar rectangular pulses, an analysis based on unit step functions has been developed. The unit step function analysis leads to simple polynomial expressions relating the average coil voltages to relative timing. The new derivations are shown to have the same harmonic representation as previously developed. The polynomial expressions are more compatible to microprocessor control than are the harmonic function expressions
Smith, Andrew; LaVerde, Bruce; Hunt, Ron; Fulcher, Clay; Towner, Robert; McDonald, Emmett
2012-01-01
The design and theoretical basis of a new database tool that quickly generates vibroacoustic response estimates using a library of transfer functions (TFs) is discussed. During the early stages of a launch vehicle development program, these response estimates can be used to provide vibration environment specification to hardware vendors. The tool accesses TFs from a database, combines the TFs, and multiplies these by input excitations to estimate vibration responses. The database is populated with two sets of uncoupled TFs; the first set representing vibration response of a bare panel, designated as H(sup s), and the second set representing the response of the free-free component equipment by itself, designated as H(sup c). For a particular configuration undergoing analysis, the appropriate H(sup s) and H(sup c) are selected and coupled to generate an integrated TF, designated as H(sup s +c). This integrated TF is then used with the appropriate input excitations to estimate vibration responses. This simple yet powerful tool enables a user to estimate vibration responses without directly using finite element models, so long as suitable H(sup s) and H(sup c) sets are defined in the database libraries. The paper discusses the preparation of the database tool and provides the assumptions and methodologies necessary to combine H(sup s) and H(sup c) sets into an integrated H(sup s + c). An experimental validation of the approach is also presented.
Contrast computation methods for interferometric measurement of sensor modulation transfer function
Battula, Tharun; Georgiev, Todor; Gille, Jennifer; Goma, Sergio
2018-01-01
Accurate measurement of image-sensor frequency response over a wide range of spatial frequencies is very important for analyzing pixel array characteristics, such as modulation transfer function (MTF), crosstalk, and active pixel shape. Such analysis is especially significant in computational photography for the purposes of deconvolution, multi-image superresolution, and improved light-field capture. We use a lensless interferometric setup that produces high-quality fringes for measuring MTF over a wide range of frequencies (here, 37 to 434 line pairs per mm). We discuss the theoretical framework, involving Michelson and Fourier contrast measurement of the MTF, addressing phase alignment problems using a moiré pattern. We solidify the definition of Fourier contrast mathematically and compare it to Michelson contrast. Our interferometric measurement method shows high detail in the MTF, especially at high frequencies (above Nyquist frequency). We are able to estimate active pixel size and pixel pitch from measurements. We compare both simulation and experimental MTF results to a lens-free slanted-edge implementation using commercial software.
Functional Techniques for Data Analysis
Tomlinson, John R.
1997-01-01
This dissertation develops a new general method of solving Prony's problem. Two special cases of this new method have been developed previously. They are the Matrix Pencil and the Osculatory Interpolation. The dissertation shows that they are instances of a more general solution type which allows a wide ranging class of linear functional to be used in the solution of the problem. This class provides a continuum of functionals which provide new methods that can be used to solve Prony's problem.
Tokaya, Janot P; Raaijmakers, Alexander J E; Luijten, Peter R; van den Berg, Cornelis A T
2018-04-24
We introduce the transfer matrix (TM) that makes MR-based wireless determination of transfer functions (TFs) possible. TFs are implant specific measures for RF-safety assessment of linear implants. The TF relates an incident tangential electric field on an implant to a scattered electric field at its tip that generally governs local heating. The TM extends this concept and relates an incident tangential electric field to a current distribution in the implant therewith characterizing the RF response along the entire implant. The TM is exploited to measure TFs with MRI without hardware alterations. A model of rightward and leftward propagating attenuated waves undergoing multiple reflections is used to derive an analytical expression for the TM. This allows parameterization of the TM of generic implants, e.g., (partially) insulated single wires, in a homogeneous medium in a few unknowns that simultaneously describe the TF. These unknowns can be determined with MRI making it possible to measure the TM and, therefore, also the TF. The TM is able to predict an induced current due to an incident electric field and can be accurately parameterized with a limited number of unknowns. Using this description the TF is determined accurately (with a Pearson correlation coefficient R ≥ 0.9 between measurements and simulations) from MRI acquisitions. The TM enables measuring of TFs with MRI of the tested generic implant models. The MR-based method does not need hardware alterations and is wireless hence making TF determination in more realistic scenarios conceivable. © 2018 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine.
Functional analysis of controbloc incidents
International Nuclear Information System (INIS)
Gouffon, A.; Jorel, M.
1992-11-01
The subject of the present paper is the survey jointly carried out in 1989 by the IPSN Safety Analysis Department and the Firm BERTIN and Co. on significant incidents related to the Controbloc system equipping the EDF 1300 MWe PWR power plants in France. This survey consisted in a general review of Controbloc operating problems, together with analysis of the safety consequences of the incidents discussed. The survey enabled improvements to be recommended in this respect and provided a basis for safety analysis
Financial time series analysis based on effective phase transfer entropy
Yang, Pengbo; Shang, Pengjian; Lin, Aijing
2017-02-01
Transfer entropy is a powerful technique which is able to quantify the impact of one dynamic system on another system. In this paper, we propose the effective phase transfer entropy method based on the transfer entropy method. We use simulated data to test the performance of this method, and the experimental results confirm that the proposed approach is capable of detecting the information transfer between the systems. We also explore the relationship between effective phase transfer entropy and some variables, such as data size, coupling strength and noise. The effective phase transfer entropy is positively correlated with the data size and the coupling strength. Even in the presence of a large amount of noise, it can detect the information transfer between systems, and it is very robust to noise. Moreover, this measure is indeed able to accurately estimate the information flow between systems compared with phase transfer entropy. In order to reflect the application of this method in practice, we apply this method to financial time series and gain new insight into the interactions between systems. It is demonstrated that the effective phase transfer entropy can be used to detect some economic fluctuations in the financial market. To summarize, the effective phase transfer entropy method is a very efficient tool to estimate the information flow between systems.
Polyhedral meshing in numerical analysis of conjugate heat transfer
Sosnowski, Marcin; Krzywanski, Jaroslaw; Grabowska, Karolina; Gnatowska, Renata
2018-06-01
Computational methods have been widely applied in conjugate heat transfer analysis. The very first and crucial step in such research is the meshing process which consists in dividing the analysed geometry into numerous small control volumes (cells). In Computational Fluid Dynamics (CFD) applications it is desirable to use the hexahedral cells as the resulting mesh is characterized by low numerical diffusion. Unfortunately generating such mesh can be a very time-consuming task and in case of complicated geometry - it may not be possible to generate cells of good quality. Therefore tetrahedral cells have been implemented into commercial pre-processors. Their advantage is the ease of its generation even in case of very complex geometry. On the other hand tetrahedrons cannot be stretched excessively without decreasing the mesh quality factor, so significantly larger number of cells has to be used in comparison to hexahedral mesh in order to achieve a reasonable accuracy. Moreover the numerical diffusion of tetrahedral elements is significantly higher. Therefore the polyhedral cells are proposed within the paper in order to combine the advantages of hexahedrons (low numerical diffusion resulting in accurate solution) and tetrahedrons (rapid semi-automatic generation) as well as to overcome the disadvantages of both the above mentioned mesh types. The major benefit of polyhedral mesh is that each individual cell has many neighbours, so gradients can be well approximated. Polyhedrons are also less sensitive to stretching than tetrahedrons which results in better mesh quality leading to improved numerical stability of the model. In addition, numerical diffusion is reduced due to mass exchange over numerous faces. This leads to a more accurate solution achieved with a lower cell count. Therefore detailed comparison of numerical modelling results concerning conjugate heat transfer using tetrahedral and polyhedral meshes is presented in the paper.
One dimensional analysis model for condensation heat transfer in feed water heater
International Nuclear Information System (INIS)
Murase, Michio; Takamori, Kazuhide; Aihara, Tsuyoshi
1998-01-01
In order to simplify condensation heat transfer calculations for feed water heaters, one dimensional (1D) analyses were compared with three dimensional (3D) analyses. The results showed that average condensation heat transfer coefficients by 1D analyses with 1/2 rows of heat transfer tubes agreed with those by 3D analyses within 7%. Using the 1D analysis model, effects of the pitch of heat transfer tubes were evaluated. The results showed that the pitch did not affect much on heat transfer rates and that the size of heat transfer tube bundle could be decreased by a small pitch. (author)
DEFF Research Database (Denmark)
Koefoed, Line; Pedersen, Emil Bjerglund; Thyssen, Lena
2016-01-01
Development of versatile methods for graphene functionalization is necessary before use in applications such as composites or as catalyst support. In this study, bipolar electrochemistry is used as a wireless functionalization method to graft 4-bromobenzenediazonium on large (10 × 10 mm2) monolayer...... graphene sheets supported on SiO2. Using this technique, transferred graphene can be electrochemically functionalized without the need of a metal support or the deposition of physical contacts. X-ray photoelectron spectroscopy and Raman spectroscopy are used to map the chemical changes and modifications...
Assessment of right atrial function analysis
International Nuclear Information System (INIS)
Shohgase, Takashi; Miyamoto, Atsushi; Kanamori, Katsushi; Kobayashi, Takeshi; Yasuda, Hisakazu
1988-01-01
To assess the potential utility of right atrial function analysis in cardiac disease, reservoir function, pump function, and right atrial peak emptying rate (RAPER) were compared in 10 normal subjects, 32 patients with coronary artery disease, and 4 patients with primary pulmonary hypertension. Right atrial volume curves were obtained using cardiac radionuclide method with Kr-81m. In normal subjects, reservoir function index was 0.41+-0.05; pump function index was 0.25+-0.05. Both types of patients has decreased reservoir funcion and increased pump function. Pump function tended to decrease with an increase of right ventricular end-diastolic pressure. RAPER correlated well with right ventricular peak filling rate, probably reflecting right ventricular diastolic function. Analysis of right atrial function seemed to be of value in evaluating factors regulating right ventricular contraction and diastolic function, and cardiac output. (Namekawa, K)
Basic methods of linear functional analysis
Pryce, John D
2011-01-01
Introduction to the themes of mathematical analysis, geared toward advanced undergraduate and graduate students. Topics include operators, function spaces, Hilbert spaces, and elementary Fourier analysis. Numerous exercises and worked examples.1973 edition.
Innate Functions of Immunoglobulin M Lessen Liver Gene Transfer with Helper-Dependent Adenovirus
Unzu, Carmen; Morales-Kastresana, Aizea; Sampedro, Ana; Serrano-Mendioroz, Irantzu; Azpilikueta, Arantza; Ochoa, María Carmen; Dubrot, Juan; Martínez-Ansó, Eduardo
2014-01-01
The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA) vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors. PMID:24465560
Innate functions of immunoglobulin M lessen liver gene transfer with helper-dependent adenovirus.
Directory of Open Access Journals (Sweden)
Carmen Unzu
Full Text Available The immune system poses obstacles to viral vectors, even in the first administration to preimmunized hosts. We have observed that the livers of B cell-deficient mice were more effectively transduced by a helper-dependent adenovirus serotype-5 (HDA vector than those of WT mice. This effect was T-cell independent as shown in athymic mice. Passive transfer of the serum from adenovirus-naïve WT to Rag1KO mice resulted in a reduction in gene transfer that was traced to IgM purified from serum of adenovirus-naïve mice. To ascribe the gene transfer inhibition activity to either adenoviral antigen-specific or antigen-unspecific functions of IgM, we used a monoclonal IgM antibody of unrelated specificity. Both the polyclonal and the irrelevant monoclonal IgM inhibited gene transfer by the HDA vector to either cultured hepatocellular carcinoma cells or to the liver of mice in vivo. Adsorption of polyclonal or monoclonal IgMs to viral capsids was revealed by ELISAs on adenovirus-coated plates. These observations indicate the existence of an inborn IgM mechanism deployed against a prevalent virus to reduce early post-infection viremia. In conclusion, innate IgM binding to adenovirus serotype-5 capsids restrains gene-transfer and offers a mechanism to be targeted for optimization of vector dosage in gene therapy with HDA vectors.
Functional Analysis of Kori Unit 1
International Nuclear Information System (INIS)
Choi, Seong Soo; Han, Jeong Hyun; Heo, Tae Young
2009-07-01
Function Analysis of Kori Unit 1 has been performed as a part of independent human factors review tasks for control room renovation of the plant. The top level goal defined for the scope of function analysis is 'Generate Electricity'. Through this function analysis of Kori Unit 1, the detailed sub-functions extracted from the existing design documents and procedures, functional relationships among the high level functions, functional classification of each hierarchical level, and tree diagrams of the hierarchical function structures of the plant were developed and identified as the result of the project. In addition, we investigated and compiled the specifications of MMIS devices used in Ulchin Nuclear Power Plant Unit 5,6 in accordance with the request from KAERI. The results of those researches will be used as basis data for independent review of the control room MMIS design of the Kori Unit 1
Second Law Analysis in Convective Heat and Mass Transfer
Directory of Open Access Journals (Sweden)
A. Ben Brahim
2006-02-01
Full Text Available This paper reports the numerical determination of the entropy generation due to heat transfer, mass transfer and fluid friction in steady state for laminar double diffusive convection, in an inclined enclosure with heat and mass diffusive walls, by solving numerically the mass, momentum, species conservation and energy balance equations, using a Control Volume Finite-Element Method. The influences of the inclination angle, the thermal Grashof number and the buoyancy ratio on total entropy generation were investigated. The irreversibilities localization due to heat transfer, mass transfer and fluid friction is discussed for three inclination angles at a fixed thermal Grashof number.
Functional analysis, spectral theory, and applications
Einsiedler, Manfred
2017-01-01
This textbook provides a careful treatment of functional analysis and some of its applications in analysis, number theory, and ergodic theory. In addition to discussing core material in functional analysis, the authors cover more recent and advanced topics, including Weyl’s law for eigenfunctions of the Laplace operator, amenability and property (T), the measurable functional calculus, spectral theory for unbounded operators, and an account of Tao’s approach to the prime number theorem using Banach algebras. The book further contains numerous examples and exercises, making it suitable for both lecture courses and self-study. Functional Analysis, Spectral Theory, and Applications is aimed at postgraduate and advanced undergraduate students with some background in analysis and algebra, but will also appeal to everyone with an interest in seeing how functional analysis can be applied to other parts of mathematics.
Heat transfer modelling and stability analysis of selective laser melting
International Nuclear Information System (INIS)
Gusarov, A.V.; Yadroitsev, I.; Bertrand, Ph.; Smurov, I.
2007-01-01
The process of direct manufacturing by selective laser melting basically consists of laser beam scanning over a thin powder layer deposited on a dense substrate. Complete remelting of the powder in the scanned zone and its good adhesion to the substrate ensure obtaining functional parts with improved mechanical properties. Experiments with single-line scanning indicate, that an interval of scanning velocities exists where the remelted tracks are uniform. The tracks become broken if the scanning velocity is outside this interval. This is extremely undesirable and referred to as the 'balling' effect. A numerical model of coupled radiation and heat transfer is proposed to analyse the observed instability. The 'balling' effect at high scanning velocities (above ∼20 cm/s for the present conditions) can be explained by the Plateau-Rayleigh capillary instability of the melt pool. Two factors stabilize the process with decreasing the scanning velocity: reducing the length-to-width ratio of the melt pool and increasing the width of its contact with the substrate
National Research Council Canada - National Science Library
Zimmerman, Donald
2000-01-01
.... The functions cost about $25 million annually and are funded by operations and maintenance (O&M) dollars. This study analyzed if the functions should be transferred to the Defense Working Capital Fund...
Heat And Mass Transfer Analysis of a Film Evaporative MEMS Tunable Array
O'Neill, William J.
This thesis details the heat and mass transfer analysis of a MEMs microthruster designed to provide propulsive, attitude control and thermal control capabilities to a cubesat. This thruster is designed to function by retaining water as a propellant and applying resistive heating in order to increase the temperature of the liquid-vapor interface to either increase evaporation or induce boiling to regulate mass flow. The resulting vapor is then expanded out of a diverging nozzle to produce thrust. Because of the low operating pressure and small length scale of this thruster, unique forms of mass transfer analysis such as non-continuum gas flow were modeled using the Direct Simulation Monte Carlo method. Continuum fluid/thermal simulations using COMSOL Multiphysics have been applied to model heat and mass transfer in the solid and liquid portions of the thruster. The two methods were coupled through variables at the liquid-vapor interface and solved iteratively by the bisection method. The simulations presented in this thesis confirm the thermal valving concept. It is shown that when power is applied to the thruster there is a nearly linear increase in mass flow and thrust. Thus, mass flow can be regulated by regulating the applied power. This concept can also be used as a thermal control device for spacecraft.
DEFF Research Database (Denmark)
Jeong, Cheol-Ho; Ih, Jeong-Guon
2012-01-01
The accuracy of a phased beam tracing method in predicting transfer functions is investigated with a special focus on the positions of the source and receiver. Simulated transfer functions for various source-receiver pairs using the phased beam tracing method were compared with analytical Green’s...
Differential analysis of matrix convex functions II
DEFF Research Database (Denmark)
Hansen, Frank; Tomiyama, Jun
2009-01-01
We continue the analysis in [F. Hansen, and J. Tomiyama, Differential analysis of matrix convex functions. Linear Algebra Appl., 420:102--116, 2007] of matrix convex functions of a fixed order defined in a real interval by differential methods as opposed to the characterization in terms of divided...
Basic Functional Analysis Puzzles of Spectral Flow
DEFF Research Database (Denmark)
Booss-Bavnbek, Bernhelm
2011-01-01
We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles.......We explain an array of basic functional analysis puzzles on the way to general spectral flow formulae and indicate a direction of future topological research for dealing with these puzzles....
Zhou, Liang; Hansen, Charles
2013-01-01
Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.
Detecting regional lung properties using audio transfer functions of the respiratory system.
Mulligan, K; Adler, A; Goubran, R
2009-01-01
In this study, a novel instrument has been developed for measuring changes in the distribution of lung fluid the respiratory system. The instrument consists of a speaker that inputs a 0-4kHz White Gaussian Noise (WGN) signal into a patient's mouth and an array of 4 electronic stethoscopes, linked via a fully adjustable harness, used to recover signals on the chest surface. The software system for processing the data utilizes the principles of adaptive filtering in order to obtain a transfer function that represents the input-output relationship for the signal as the volume of fluid in the lungs is varied. A chest phantom model was constructed to simulate the behavior of fluid related diseases within the lungs through the injection of varying volumes of water. Tests from the phantom model were compared to healthy subjects. Results show the instrument can obtain similar transfer functions and sound propagation delays between both human and phantom chests.
Zhou, Liang
2013-02-01
Multivariate volumetric datasets are important to both science and medicine. We propose a transfer function (TF) design approach based on user selected samples in the spatial domain to make multivariate volumetric data visualization more accessible for domain users. Specifically, the user starts the visualization by probing features of interest on slices and the data values are instantly queried by user selection. The queried sample values are then used to automatically and robustly generate high dimensional transfer functions (HDTFs) via kernel density estimation (KDE). Alternatively, 2D Gaussian TFs can be automatically generated in the dimensionality reduced space using these samples. With the extracted features rendered in the volume rendering view, the user can further refine these features using segmentation brushes. Interactivity is achieved in our system and different views are tightly linked. Use cases show that our system has been successfully applied for simulation and complicated seismic data sets. © 2013 IEEE.
Directional resolution of head-related transfer functions required in binaural synthesis
DEFF Research Database (Denmark)
Minnaar, Pauli; Plogsties, Jan; Christensen, Flemming
2005-01-01
In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured and interpola......In binaural synthesis a virtual sound source is implemented by convolving an anechoic signal with a pair of head-related transfer functions (HRTFs). In order to represent all possible directions of the sound source with respect to the listener a discrete number of HRTFs are measured...... and moving sound sources. A criterion was found that predicts the experimental results. This criterion was used to estimate the directional resolution required in binaural synthesis for all directions on the sphere around the head....
Weissman, D. E.; Johnson, J. W.
1986-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Weissman, D. E.; Johnson, J. W.
1984-01-01
The directional spectrum and the microwave modulation transfer function of ocean waves can be measured with the airborne two frequency scatterometer technique. Similar to tower based observations, the aircraft measurements of the Modulation Transfer Function (MTF) show that it is strongly affected by both wind speed and sea state. Also detected are small differences in the magnitudes of the MTF between downwind and upwind radar look directions, and variations with ocean wavenumber. The MTF inferred from the two frequency radar is larger than that measured using single frequency, wave orbital velocity techniques such as tower based radars or ROWS measurements from low altitude aircraft. Possible reasons for this are discussed. The ability to measure the ocean directional spectrum with the two frequency scatterometer, with supporting MTF data, is demonstrated.
Analysis of adiabatic transfer in cavity quantum electrodynamics
Indian Academy of Sciences (India)
adiabatic transfer process through the 'dark state' by a slow variation of the control laser intensity. ... control field of Rabi frequency C(t) transfers one photon in the cavity mode to a long- .... It gives an approximate statistical description of the.
Analysis of heat transfer in a centrifugal film evaporator
Bruin, S.
1970-01-01
Heat transfer in a centrifugal film evaporator with a conical heating surface is analyzed. Two regions of transfer can be distinguished: an entrance region, where the temp. profile in the film develops, and an evapn. region, where \\"surface evapn.\\" takes place. Relations are derived for liq.-film
Functional Analysis and Reduction of Inappropriate Spitting
Carter, Stacy L.; Wheeler, John J.
2007-01-01
Functional analysis was used to determine the possible function of inappropriate spitting behavior of an adult woman who had been diagnosed with profound mental retardation. Results of an initial descriptive assessment indicated a possible attention function and led to an attention-based intervention, which was deemed ineffective at reducing the…
Functional analysis in MR urography - made simple
Energy Technology Data Exchange (ETDEWEB)
Khrichenko, Dmitry; Darge, Kassa [Children' s Hospital of Philadelphia, Department of Radiology, Philadelphia, PA (United States)
2010-02-15
MR urography (MRU) has proved to be a most advantageous imaging modality of the urinary tract in children, providing one-stop comprehensive morphological and functional information, without the utilization of ionizing radiation. The functional analysis of the MRU scan still requires external post-processing using relatively complex software. This has proved to be a limiting factor in widespread routine implementation of MRU functional analysis and use of MRU functional parameters similar to nuclear medicine. We present software, developed in a pediatric radiology department, that not only enables comprehensive automated functional analysis, but is also very user-friendly, fast, easily operated by the average radiologist or MR technician and freely downloadable Virtual Machine is required for the installation, which is obtained at no charge. The analysis software, known as ''CHOP-fMRU,'' has the potential to help overcome the obstacles to widespread use of functional MRU in children. (orig.)
Simulation analysis on miniature wireless power transfer system
Liu, Tao; Wei, Zhiqiang; Yin, Bo; Chi, Haokun; Du, Panpan
2018-03-01
In recent years, the research on implantable medical devices has become a hot scientific topic, and the power supply of these devices are especially concerned. Generally, these devices are usually powered by disposable batteries. However, for some of the long-term human implant devices, such as pacemakers, once the battery has been exhausted after several years, the patient has to replace the battery by surgery, which increases the patient’s economic burden and pain. Wireless power transfer technology, using non-contact way for power transfer, can be a good solution to this problem. In this paper, a micro induction coil was designed, and the transfer efficiency in the air and human tissue model of two-layers were simulated by Ansoft HFSS. The results showed that the system could achieve the energy transfer in both cases, meanwhile, it indicated that the transfer efficiency was lower in a relative larger permittivity of transmission medium.
Integrated analysis of energy transfers in elastic-wave turbulence.
Yokoyama, Naoto; Takaoka, Masanori
2017-08-01
In elastic-wave turbulence, strong turbulence appears in small wave numbers while weak turbulence does in large wave numbers. Energy transfers in the coexistence of these turbulent states are numerically investigated in both the Fourier space and the real space. An analytical expression of a detailed energy balance reveals from which mode to which mode energy is transferred in the triad interaction. Stretching energy excited by external force is transferred nonlocally and intermittently to large wave numbers as the kinetic energy in the strong turbulence. In the weak turbulence, the resonant interactions according to the weak turbulence theory produce cascading net energy transfer to large wave numbers. Because the system's nonlinearity shows strong temporal intermittency, the energy transfers are investigated at active and moderate phases separately. The nonlocal interactions in the Fourier space are characterized by the intermittent bundles of fibrous structures in the real space.
Linear functional analysis for scientists and engineers
Limaye, Balmohan V
2016-01-01
This book provides a concise and meticulous introduction to functional analysis. Since the topic draws heavily on the interplay between the algebraic structure of a linear space and the distance structure of a metric space, functional analysis is increasingly gaining the attention of not only mathematicians but also scientists and engineers. The purpose of the text is to present the basic aspects of functional analysis to this varied audience, keeping in mind the considerations of applicability. A novelty of this book is the inclusion of a result by Zabreiko, which states that every countably subadditive seminorm on a Banach space is continuous. Several major theorems in functional analysis are easy consequences of this result. The entire book can be used as a textbook for an introductory course in functional analysis without having to make any specific selection from the topics presented here. Basic notions in the setting of a metric space are defined in terms of sequences. These include total boundedness, c...
Realization of Nth-Order Voltage Transfer Function using Current Conveyors CCII
Directory of Open Access Journals (Sweden)
K. Vrba
1997-06-01
Full Text Available A universal method for the realization of arbitrary voltage transfer function in canonic form is presented. A voltage-controlled current-source using a plus-type second-generation current conveyor is here applied as the basic building element. Filters designed according to this method have a high input impedance and low sensitivity to variations of circuit parameters. All passive elements are grounded.
International Nuclear Information System (INIS)
Oliveira, Isaura N. Sombra; Schiable, Homero; Porcel, Naider T.; Frere, Annie F.; Marques, Paulo M.A.
1996-01-01
An investigation of the 'optimum region' of the radiation field considering mammographic systems is studied. Such a region was defined in previous works as the field range where the system has its best performance and sharpest images. This study is based on a correlation of two methods for evaluating radiologic imaging systems, both using computer simulation in order to determine modulation transfer functions (MTFs) due to the X-ray tube focal spot in several field orientation and locations
Use of a novel transfer function to reduce repolarization interval hysteresis
Czech Academy of Sciences Publication Activity Database
Halámek, Josef; Jurák, Pavel; Bunch, T.J.; Lipoldová, J.; Novák, M.; Vondra, Vlastimil; Leinveber, Pavel; Plachý, M.; Kára, T.; Villa, M.; Fráňa, P.; Souček, M.; Somers, V. K.; Asirvatham, S.J.
2010-01-01
Roč. 29, č. 1 (2010), s. 23-32 ISSN 1383-875X R&D Projects: GA ČR GA102/08/1129 Institutional research plan: CEZ:AV0Z20650511 Keywords : QT hysteresis * QT/RR coupling * Transfer function * Long QT syndrome Subject RIV: FA - Cardiovascular Diseases incl. Cardiotharic Surgery Impact factor: 1.228, year: 2010
Vibration analysis of pipes conveying fluid by transfer matrix method
International Nuclear Information System (INIS)
Li, Shuai-jun; Liu, Gong-min; Kong, Wei-tao
2014-01-01
Highlights: • A theoretical study on vibration analysis of pipes with FSI is presented. • Pipelines with high fluid pressure and velocity can be solved by developed method. • Several pipeline schemes are discussed to illustrate the application of the method. • The proposed method is easier to apply compared to most existing procedures. • Influence laws of structural and fluid parameters on FSI of pipe are analyzed. -- Abstract: Considering the effects of pipe wall thickness, fluid pressure and velocity, a developed 14-equation model is presented, which describes the fluid–structure interaction behavior of pipelines. The transfer matrix method has been used for numerical modeling of both hydraulic and structural equations. Based on these models and algorithms, several pipeline schemes are presented to illustrate the application of the proposed method. Furthermore, the influence laws of supports, structural properties and fluid parameters on the dynamic response and natural frequencies of pipeline are analyzed, which shows using the optimal supports and structural properties is beneficial to reduce vibration of pipelines
Analysis of transfer reactions: determination of spectroscopic factors
Energy Technology Data Exchange (ETDEWEB)
Keeley, N. [CEA Saclay, Dept. d' Astrophysique, de Physique des Particules de Physique Nucleaire et de l' Instrumentation Associee (DSM/DAPNIA/SPhN), 91- Gif sur Yvette (France); The Andrzej So an Institute for Nuclear Studies, Dept. of Nuclear Reactions, Warsaw (Poland)
2007-07-01
An overview of the most popular models used for the analysis of direct reaction data is given, concentrating on practical aspects. The 4 following models (in order of increasing sophistication): the distorted wave born approximation (DWBA), the adiabatic model, the coupled channels born approximation, and the coupled reaction channels are briefly described. As a concrete example, the C{sup 12}(d,p)C{sup 13} reaction at an incident deuteron energy of 30 MeV is analysed with progressively more physically sophisticated models. The effect of the choice of the reaction model on the spectroscopic information extracted from the data is investigated and other sources of uncertainty in the derived spectroscopic factors are discussed. We have showed that the choice of the reaction model can significantly influence the nuclear structure information, particularly the spectroscopic factors or amplitudes but occasionally also the spin-parity, that we wish to extract from direct reaction data. We have also demonstrated that the DWBA can fail to give a satisfactory description of transfer data but when the tenets of the theory are fulfilled DWBA can work very well and will yield the same results as most sophisticated models. The use of global rather than fitted optical potentials can also lead to important differences in the extracted spectroscopic factors.
Analysis of heat transfer and contaminant transport in fume hoods
International Nuclear Information System (INIS)
Pathanjali, C.; Rahman, M.M.
1996-01-01
The paper presents the analysis of three-dimensional flow patterns and the associated heat and mass transfer mechanisms in a fume hood enclosure. The flow enters the hood through the front window opening (positive x-direction) and leaves the cupboard through an opening on the top of the hood (positive z-direction). The flow was assumed to be fully turbulent. The flow pattern for different sash openings were studied. The flow pattern around an object located at the bottom of the hood was studied for different locations of the object. It was found that air entering the hood proceeds directly to the back wall, impinges it and turns upward toward the top wall and exits through the outlet. The flow finds its way around any object forming a recirculating region at its training surface. With an increase in the sash opening, the velocity becomes higher and the fluid traces the path to the outlet more quickly. The volume occupied by recirculating flow decreases with increase in sash opening. Both temperature and concentration were found to be maximum near the source and gradually decreased as the heated air or gaseous contaminant entrained with incoming air. The local concentration decreased with increase in sash opening area. The results will be very useful to design experiments with optimum sash opening providing adequate disposal of contaminants with minimum use of conditioned air inside the room
Lessons learned in applying function analysis
International Nuclear Information System (INIS)
Mitchel, G.R.; Davey, E.; Basso, R.
2001-01-01
This paper summarizes the lessons learned in undertaking and applying function analysis based on the recent experience of utility, AECL and international design and assessment projects. Function analysis is an analytical technique that can be used to characterize and asses the functions of a system and is widely recognized as an essential component of a 'systematic' approach to design, on that integrated operational and user requirements into the standard design process. (author)
Transfer function synthesis for reactor spatial dynamics using the modal approach
Energy Technology Data Exchange (ETDEWEB)
Guppy, C B [Control and Instrumentation Division, Atomic Energy Establishment, Winfrith, Dorchester, Dorset (United Kingdom)
1962-08-15
Techniques are developed below which will enable the construction of transfer functions relating changes in variables such as power or neutron flux with reactivity perturbations when there is a need for taking into account spatial effects within a reactor. Initially each of the transfer functions derived comprises the sum of a series of harmonics each of which has a laplace transform with associated spatial eigenfunction. Series of this kind can then be reduced to pure polynomial form (numerators on denominators) the coefficients of which have implicit allowance for spatial effects. The existence of large reactors having several independent controllers make necessary knowledge of transfer functions of this form. The technique will allow the characteristics of each controlled sector to be obtained as well as the characteristics of the complete control system with its couplings through the reactor core. In addition, the developing use of frequency response testing of reactors makes necessary a knowledge of the spatial behaviour to be expected of a reactor under test. (author)
Directory of Open Access Journals (Sweden)
Maciejewska Beata
2017-01-01
Full Text Available This paper shows the results concerning flow boiling heat transfer in an asymmetrically heated vertical minichannel. The heated element for FC-72 Fluorinert flowing in that minichannel was a thin foil. The foil surface temperature was monitored continuously at 18 points by K-type thermocouples from the outer foil surface. Fluid temperature and pressure in the minichannel inlet and outlet, current supplied to the foil and voltage drop were also monitored. Measurements were carried out at 1 s intervals. The objective was to determine the heat transfer coefficient on the heated foil–fluid contact surface in the minichannel. It was obtained from the Robin boundary condition. The foil temperature was the result of solving the nonstationary two-dimensional inverse boundary problem in the heated foil. Using the FEM combined with Trefftz functions as basis functions solved the problem. The unknown temperature values at nodes were calculated by minimising the adequate functional. The values of local heat transfer coefficients were consistent with the results obtained by the authors in their previous studies when steady-state conditions were analysed. This time, however, these values were analysed as time dependent, which facilitated observation of coefficient changes that were impossible to observe under the steady-state conditions.
Menamparambath, Mini Mol
2014-06-23
A difference in work function plays a key role in charge transfer between two materials. Inorganic electrides provide a unique opportunity for electron transfer since interstitial anionic electrons result in a very low work function of 2.4-2.6 eV. Here we investigated charge transfer between two different types of electrides, [Ca2N]+·e- and [Ca 24Al28O64]4+·4e-, and single-walled carbon nanotubes (SWNTs) with a work function of 4.73-5.05 eV. [Ca2N]+·e- with open 2-dimensional electron layers was more effective in donating electrons to SWNTs than closed cage structured [Ca24Al28O64] 4+·4e- due to the higher electron concentration (1.3 × 1022 cm-3) and mobility (∼200 cm 2 V-1 s-1 at RT). A non-covalent conjugation enhanced near-infrared fluorescence of SWNTs as high as 52%. The field emission current density of electride-SWNT-silver paste dramatically increased by a factor of 46000 (14.8 mA cm-2) at 2 V μm-1 (3.5 wt% [Ca2N]+·e-) with a turn-on voltage of 0.85 V μm-1. This journal is © the Partner Organisations 2014.
Simone, Sean Anthony
2014-01-01
The federal government invests billions of dollars in grants and loans to help students access and complete postsecondary education. Federal policymakers, therefore, have had a continuing interest in understanding the ability of students to transfer credits between postsecondary institutions. In 2005, the Senate Health, Education, Labor, and…
Transfer Efficiency Analysis of Wireless Power Transfer System under Frequency Drift
DEFF Research Database (Denmark)
Huang, Shoudao; Li, Zhongqi; Lu, Kaiyuan
2015-01-01
Magnetic resonant wireless power transfer (WPT) is an emerging technology that may create new applications for wireless power charging. However, low efficiency resulting from resonant frequency drift is a main obstructing factor for promoting this technology. In this paper, the system efficiency...
B1 -sensitivity analysis of quantitative magnetization transfer imaging.
Boudreau, Mathieu; Stikov, Nikola; Pike, G Bruce
2018-01-01
To evaluate the sensitivity of quantitative magnetization transfer (qMT) fitted parameters to B 1 inaccuracies, focusing on the difference between two categories of T 1 mapping techniques: B 1 -independent and B 1 -dependent. The B 1 -sensitivity of qMT was investigated and compared using two T 1 measurement methods: inversion recovery (IR) (B 1 -independent) and variable flip angle (VFA), B 1 -dependent). The study was separated into four stages: 1) numerical simulations, 2) sensitivity analysis of the Z-spectra, 3) healthy subjects at 3T, and 4) comparison using three different B 1 imaging techniques. For typical B 1 variations in the brain at 3T (±30%), the simulations resulted in errors of the pool-size ratio (F) ranging from -3% to 7% for VFA, and -40% to > 100% for IR, agreeing with the Z-spectra sensitivity analysis. In healthy subjects, pooled whole-brain Pearson correlation coefficients for F (comparing measured double angle and nominal flip angle B 1 maps) were ρ = 0.97/0.81 for VFA/IR. This work describes the B 1 -sensitivity characteristics of qMT, demonstrating that it varies substantially on the B 1 -dependency of the T 1 mapping method. Particularly, the pool-size ratio is more robust against B 1 inaccuracies if VFA T 1 mapping is used, so much so that B 1 mapping could be omitted without substantially biasing F. Magn Reson Med 79:276-285, 2018. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.
Weight transfer analysis in adults with hemiplegia using ankle foot orthosis.
Nolan, Karen J; Yarossi, Mathew
2011-03-01
Identifying and understanding the changes in transfer of momentum that are directly affected by orthotic intervention are significant factors related to the improvement of mobility in individuals with hemiplegia. The purpose of this investigation was to use a novel analysis technique to objectively measure weight transfer during double support (DS) in healthy individuals and individuals with hemiplegia secondary to stroke with and without an ankle foot orthosis. Prospective, Repeated measures, case-controlled trial. Participants included 25 adults with stroke-related hemiplegia >6 months using a prescribed ankle foot orthosis and 12 age-matched healthy controls. Main outcome measures included the weight transfer point timing (WTP, %DS), maximum total force timing (MTF, %DS), timing difference between WTP and MTF (MTF-WTP, %DS) and the linearity of loading (LOL, R(2)) during the DS phase of the gait cycle. The WTP and LOL were significantly different between conditions with and without the ankle foot orthosis for the affected and unaffected limb in post-stroke individuals, p ≤ 0.01. The MTF and difference in timing between MTF-WTP were significantly different during affected limb loading with and without the ankle foot orthosis in the stroke group, p ≤ 0.0001 and p = 0.03, respectively. MTF, MTF-WTP and LOL were significantly different between individuals with stroke (during affected limb loading) and healthy controls (during right limb loading). This research established a systematic method for analysing weight transfer during walking to evaluate the effect of an ankle foot orthosis on loading during double support in hemiplegic gait. This novel method can be used to elucidate biomechanical mechanisms behind orthosis-mediated changes in gait patterns and quantify functional mobility outcomes in rehabilitation. This novel approach to orthotic assessment will provide the clinician with needed objective evidence to select the most effective orthotic
On the low frequency characteristics of head-related transfer function
Institute of Scientific and Technical Information of China (English)
XIE Bosun
2009-01-01
A method to correct the measured head-related transfer functions (HRTFs) at low frequency was proposed. By analyzing the HRTFs from the spherical head model at low frequency, it is proved that below the frequency of 400 Hz, magnitude of HRTF is nearly constant and the phase is a linear function of frequency both for the far and near field. Therefore, if the HRTFs above 400 Hz are accurately measured by experiment, it is able to correct the HRTFs at low frequency by the theoretical model. The results of calculation and subjective experiment show that the feasibility of the proposed method.
Headphone-To-Ear Transfer Function Estimation Using Measured Acoustic Parameters
Directory of Open Access Journals (Sweden)
Jinlin Liu
2018-06-01
Full Text Available This paper proposes to use an optimal five-microphone array method to measure the headphone acoustic reflectance and equivalent sound sources needed in the estimation of headphone-to-ear transfer functions (HpTFs. The performance of this method is theoretically analyzed and experimentally investigated. With the measured acoustic parameters HpTFs for different headphones and ear canal area functions are estimated based on a computational acoustic model. The estimation results show that HpTFs vary considerably with headphones and ear canals, which suggests that individualized compensations for HpTFs are necessary for headphones to reproduce desired sounds for different listeners.
Performance of the dot product function in radiative transfer code SORD
Korkin, Sergey; Lyapustin, Alexei; Sinyuk, Aliaksandr; Holben, Brent
2016-10-01
The successive orders of scattering radiative transfer (RT) codes frequently call the scalar (dot) product function. In this paper, we study performance of some implementations of the dot product in the RT code SORD using 50 scenarios for light scattering in the atmosphere-surface system. In the dot product function, we use the unrolled loops technique with different unrolling factor. We also considered the intrinsic Fortran functions. We show results for two machines: ifort compiler under Windows, and pgf90 under Linux. Intrinsic DOT_PRODUCT function showed best performance for the ifort. For the pgf90, the dot product implemented with unrolling factor 4 was the fastest. The RT code SORD together with the interface that runs all the mentioned tests are publicly available from ftp://maiac.gsfc.nasa.gov/pub/skorkin/SORD_IP_16B (current release) or by email request from the corresponding (first) author.
Shang, De-Yi
2012-01-01
This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...
Post-dryout heat transfer analysis model with droplet Lagrangian simulation
International Nuclear Information System (INIS)
Keizo Matsuura; Isao Kataoka; Kaichiro Mishima
2005-01-01
Post-dryout heat transfer analysis was carried out considering droplet behavior by using the Lagrangian simulation method. Post-dryout heat transfer is an important heat transfer mechanism in many industrial appliances. Especially in recent Japanese BWR licensing, the standard for assessing the integrity of fuel that has experienced boiling transition is being examined. Although post-dryout heat transfer analysis is important when predicting wall temperature, it is difficult to accurately predict the heat transfer coefficient in the post-dryout regime because of the many heat transfer paths and non-equilibrium status between droplet and vapor. Recently, an analysis model that deals with many heat transfer paths including droplet direct contact heat transfer was developed and its results showed good agreement with experimental results. The model also showed that heat transfer by droplet could not be neglected in the low mass flux condition. However, the model deals with droplet deposition behavior by experimental droplet deposition correlation, so it cannot estimate the effect of droplet flow on turbulent flow field and heat transfer. Therefore, in this study we deal with many droplets separately by using the Lagrangian simulation method and hence estimate the effect of droplet flow on the turbulent flow field. We analyzed post-dryout experimental results and found that they correlated well with the analysis results. (authors)
Computer aided heat transfer analysis in a laboratory scaled heat exchanger unit
International Nuclear Information System (INIS)
Gunes, M.
1998-01-01
In this study. an explanation of a laboratory scaled heat exchanger unit and a software which is developed to analyze heat transfer. especially to use it in heat transfer courses, are represented. Analyses carried out in the software through sample values measured in the heat exchanger are: (l) Determination of heat transfer rate, logarithmic mean temperature difference and overall heat transfer coefficient; (2)Determination of convection heat transfer coefficient inside and outside the tube and the effect of fluid velocity on these; (3)Investigation of the relationship between Nusselt Number. Reynolds Number and Prandtl Number by using multiple non-linear regression analysis. Results are displayed on the screen graphically
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy; Guillaume, Maxime; Sini, Gjergji; Sears, John S.; Geskin, Victor; Bré das, Jean-Luc; Beljonne, David; Cornil, Jé rô me
2012-01-01
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Ovarian transfer following irradiation as an alternative to restore reproductive functions
Energy Technology Data Exchange (ETDEWEB)
Salgado, Andreia Ruis; Passos, Luiz Augusto Correa; Ginemes, Ana Paula; Dias, Viviane Liotti [Universidade Estadual de Campinas, SP (Brazil). Centro Multidisciplinar para a Investigacao Biologica (CEMIB/UNICAMP)], e-mail: viviliotti@cemib.unicamp.br; Spencer, Patrick Jack; Nascimento, Nanci do [Instituto de Pesquisas Energeticas e Nucleares (IPEN-CNEN/SP), Sao Paulo, SP (Brazil)
2009-07-01
Assisted reproduction technologies are essential for restoring reproductive functions, especially in ovary cancer cases, which besides impairing fertility; present the highest lethality amongst gynecological diseases. Classical treatment involves surgery, radiotherapy and chemotherapy, and in young women, the recommended treatment is the removal of the affected ovary, leading to physical, psychological and emotional problems. An alternative would be the ovarian transfer after the treatment. However, there are no data in the literature about experiments specifically designed to investigate the interference of this procedure on reproductive functions. In the present work, we used the C57BL/6Unib and B6CF1 hybrid mice strains to evaluate the viability of ovarian transfer before and after irradiation, as well as possible differences in radiosensitivity between the strains. To do so, female mice from both strains were irradiated with 4 Gy and submitted to either partial or total ovarian transfer form healthy donors. After the surgery, the animals were mated and the results obtained so far for mating 7 days after the procedure indicate that irradiation promoted a significant decrease in fertility (p=0.0127). Also, our data show that the recovery of fertility is proportional to the amount of grafted ovarian tissue. Furthermore, there seems to be differences in radiosensitivity, from genetic origin, between the two mice strain, since, after irradiation, the hybrid mice had bigger litters than the donor strain. (author)
Density functional theory for the description of charge-transfer processes at TTF/TCNQ interfaces
Van Regemorter, Tanguy
2012-09-15
In the field of organic electronics, a central issue is to assess how the frontier electronic levels of two adjacent organic layers align with respect to one another at the interface. This alignment can be driven by the presence of a partial charge transfer and the formation of an interface dipole; it plays a key role for instance in determining the rates of exciton dissociation or exciton formation in organic solar cells or light-emitting diodes, respectively. Reliably modeling the processes taking place at these interfaces remains a challenge for the computational chemistry community. Here, we review our recent theoretical work on the influence of the choice of density functional theory (DFT) methodology on the description of the charge-transfer character in the ground state of TTF/ TCNQ model complexes and interfaces. Starting with the electronic properties of the isolated TTF and TCNQ molecules and then considering the charge transfer and resulting interface dipole in TTF/TCNQ donor-acceptor stacks and bilayers, we examine the impact of the choice of DFT functional in describing the interfacial electronic structure. Finally, we employ computations based on periodic boundary conditions to highlight the impact of depolarization effects on the interfacial dipole moment. © Springer-Verlag 2012.
Characterizing 3D sensors using the 3D modulation transfer function
Kellner, Timo; Breitbarth, Andreas; Zhang, Chen; Notni, Gunther
2018-03-01
The fields of optical 3D measurement system applications are continuously expanding and becoming more and more diverse. To evaluate appropriate systems for various measurement tasks, comparable parameters are necessary, whereas the 3D modulation transfer function (3D-MTF) has been established as a further criterion. Its aim is the determination of the system response between the measurement of a straight, sharp-edged cube and its opposite ideal calculated one. Within the scope of this work simulations and practical investigations regarding the 3D-MTF’s influences and its main issues are specifically investigated. Therefore, different determined edge radii representing the high-frequency spectra lead to various decreasing 3D-MTF characteristics. Furthermore, rising sampling frequencies improve its maximum transfer value to a saturation point in dependence of the radius. To approve these results of previous simulations, three fringe projection scanners were selected to determine the diversity. As the best 3D-MTF characteristic, a saturated transfer value of H_3D( f_N, 3D) = 0.79 has been identified at a sufficient sampling frequency, which is reached at four times the Nyquist limit. This high 3D resolution can mainly be achieved due to an improved camera projector interaction. Additionally, too small sampling ratios lead to uncertainties in the edge function determination, while higher ratios do not show major improvements. In conclusion, the 3D-MTF algorithm has thus been practically verified and its repeatability as well as its robustness have been confirmed.
Ovarian transfer following irradiation as an alternative to restore reproductive functions
International Nuclear Information System (INIS)
Salgado, Andreia Ruis; Passos, Luiz Augusto Correa; Ginemes, Ana Paula; Dias, Viviane Liotti; Spencer, Patrick Jack; Nascimento, Nanci do
2009-01-01
Assisted reproduction technologies are essential for restoring reproductive functions, especially in ovary cancer cases, which besides impairing fertility; present the highest lethality amongst gynecological diseases. Classical treatment involves surgery, radiotherapy and chemotherapy, and in young women, the recommended treatment is the removal of the affected ovary, leading to physical, psychological and emotional problems. An alternative would be the ovarian transfer after the treatment. However, there are no data in the literature about experiments specifically designed to investigate the interference of this procedure on reproductive functions. In the present work, we used the C57BL/6Unib and B6CF1 hybrid mice strains to evaluate the viability of ovarian transfer before and after irradiation, as well as possible differences in radiosensitivity between the strains. To do so, female mice from both strains were irradiated with 4 Gy and submitted to either partial or total ovarian transfer form healthy donors. After the surgery, the animals were mated and the results obtained so far for mating 7 days after the procedure indicate that irradiation promoted a significant decrease in fertility (p=0.0127). Also, our data show that the recovery of fertility is proportional to the amount of grafted ovarian tissue. Furthermore, there seems to be differences in radiosensitivity, from genetic origin, between the two mice strain, since, after irradiation, the hybrid mice had bigger litters than the donor strain. (author)
Transference of function shapes organ identity in the dove tree inflorescence.
Vekemans, Dries; Viaene, Tom; Caris, Pieter; Geuten, Koen
2012-01-01
• An important evolutionary mechanism shaping the biodiversity of flowering plants is the transfer of function from one plant organ to another. To investigate whether and how transference of function is associated with the remodeling of the floral organ identity program we studied Davidia involucrata, a species with conspicuous, petaloid bracts subtending a contracted inflorescence with reduced flowers. • A detailed ontogeny enabled the interpretation of expression patterns of B-, C- and E-class homeotic MADS-box genes using qRT-PCR and in situ hybridization techniques. We investigated protein-protein interactions using yeast two-hybrid assays. • Although loss of organs does not appear to have affected organ identity in the retained organs of the reduced flowers of D. involucrata, the bracts express the B-class TM6 (Tomato MADS box gene 6) and GLOBOSA homologs, but not DEFICIENS, and the C-class AGAMOUS homolog, representing a subset of genes also involved in stamen identity. • Our results may illustrate how petal identity can be partially transferred outside the flower by expressing a subset of stamen identity genes. This adds to the molecular mechanisms explaining the diversity of plant reproductive morphology. © 2011 The Authors. New Phytologist © 2011 New Phytologist Trust.
CFD analysis of heat transfer in a vertical annular gas gap
International Nuclear Information System (INIS)
Borgohain, A.; Maheshwari, N.K.; Vijayan, P.K.
2011-01-01
Heat transfer analysis in a vertical annulus is carried out by using a CFD code TRIO-U. The results are used to understand heat transfer in the vertical annulus. An experimental study is taken from literature for the CFD analysis. The geometry of the test section of the experiment is simulated in TRIO-U. The operating conditions of the experiment are simulated by imposing appropriate boundary conditions. Three modes of the heat transfer, conduction, radiation and convection in the gas gap are considered in the analysis. From the analysis it is found that TRIO-U can successfully handle all modes heat transfer. The theoretical results for heat transfer have been compared with experimental data. This paper deals with the detailed CFD modelling and analysis. (author)
Roque, Matheus; Lattes, Karinna; Serra, Sandra; Solà, Ivan; Geber, Selmo; Carreras, Ramón; Checa, Miguel Angel
2013-01-01
To examine the available evidence to assess if cryopreservation of all embryos and subsequent frozen embryo transfer (FET) results in better outcomes compared with fresh transfer. Systematic review and meta-analysis. Centers for reproductive care. Infertility patient(s). An exhaustive electronic literature search in MEDLINE, EMBASE, and the Cochrane Library was performed through December 2011. We included randomized clinical trials comparing outcomes of IVF cycles between fresh and frozen embryo transfers. The outcomes of interest were ongoing pregnancy rate, clinical pregnancy rate, and miscarriage. We included three trials accounting for 633 cycles in women aged 27-33 years. Data analysis showed that FET resulted in significantly higher ongoing pregnancy rates and clinical pregnancy rates. Our results suggest that there is evidence that IVF outcomes may be improved by performing FET compared with fresh embryo transfer. This could be explained by a better embryo-endometrium synchrony achieved with endometrium preparation cycles. Copyright © 2013 American Society for Reproductive Medicine. Published by Elsevier Inc. All rights reserved.
Functionalized polymer film surfaces via surface-initiated atom transfer radical polymerization
International Nuclear Information System (INIS)
Hu, Y.; Li, J.S.; Yang, W.T.; Xu, F.J.
2013-01-01
The ability to manipulate and control the surface properties of polymer films, without altering the substrate properties, is crucial to their wide-spread applications. In this work, a simple one-step method for the direct immobilization of benzyl chloride groups (as the effective atom transfer radical polymerization (ATRP) initiators) on the polymer films was developed via benzophenone-induced coupling of 4-vinylbenzyl chloride (VBC). Polyethylene (PE) and nylon films were selected as examples of polymer films to illustrate the functionalization of film surfaces via surface-initiated ATRP. Functional polymer brushes of (2-dimethylamino)ethyl methacrylate, sodium 4-styrenesulfonate, 2-hydroxyethyl methacrylate and glycidyl methacrylate, as well as their block copolymer brushes, have been prepared via surface-initiated ATRP from the VBC-coupled PE or nylon film surfaces. With the development of a simple approach to the covalent immobilization of ATRP initiators on polymer film surfaces and the inherent versatility of surface-initiated ATRP, the surface functionality of polymer films can be precisely tailored. - Highlights: ► Atom transfer radical polymerization initiators were simply immobilized. ► Different functional polymer brushes were readily prepared. ► Their block copolymer brushes were also readily prepared
Efficient nonlinear registration of 3D images using high order co-ordinate transfer functions.
Barber, D C
1999-01-01
There is an increasing interest in image registration for a variety of medical imaging applications. Image registration is achieved through the use of a co-ordinate transfer function (CTF) which maps voxels in one image to voxels in the other image, including in the general case changes in mapped voxel intensity. If images of the same subject are to be registered the co-ordinate transfer function needs to implement a spatial transformation consisting of a displacement and a rigid rotation. In order to achieve registration a common approach is to choose a suitable quality-of-registration measure and devise a method for the efficient generation of the parameters of the CTF which minimize this measure. For registration of images from different subjects more complex transforms are required. In general function minimization is too slow to allow the use of CTFs with more than a small number of parameters. However, provided the images are from the same modality and the CTF can be expanded in terms of an appropriate set of basis functions this paper will show how relatively complex CTFs can be used for registration. The use of increasingly complex CTFs to minimize the within group standard deviation of a set of normal single photon emission tomography brain images is used to demonstrate the improved registration of images from different subjects using CTFs of increasing complexity.
Modulation transfer function cascade model for a sampled IR imaging system.
de Luca, L; Cardone, G
1991-05-01
The performance of the infrared scanning radiometer (IRSR) is strongly stressed in convective heat transfer applications where high spatial frequencies in the signal that describes the thermal image are present. The need to characterize more deeply the system spatial resolution has led to the formulation of a cascade model for the evaluation of the actual modulation transfer function of a sampled IR imaging system. The model can yield both the aliasing band and the averaged modulation response for a general sampling subsystem. For a line scan imaging system, which is the case of a typical IRSR, a rule of thumb that states whether the combined sampling-imaging system is either imaging-dependent or sampling-dependent is proposed. The model is tested by comparing it with other noncascade models as well as by ad hoc measurements performed on a commercial digitized IRSR.
Auxiliary functions of the LISA laser link: ranging, clock noise transfer and data communication
International Nuclear Information System (INIS)
Heinzel, Gerhard; Esteban, Juan Jose; Barke, Simon; Otto, Markus; Wang Yan; Garcia, Antonio F; Danzmann, Karsten
2011-01-01
The Laser Interferometer Space Antenna (LISA) is required to reduce two important noise sources by post-processing on the ground using time-delay interferometry (TDI): phase noise of the on-board reference clocks and laser frequency noise. To achieve the desired suppression, the TDI algorithm needs measurements of the differential clock noise between any two spacecraft and inter-spacecraft ranging measurements with at least 1 m accuracy, which is beyond the precision of ground-based measurements for deep space missions. Therefore, we need on-board measurements by transmitting clock noise and ranging information between the spacecraft as auxiliary functions of the laser link. This paper reports our current experimental results in clock noise transfer and ranging for noise subtraction via post-processing as well as additional data transfer.
FGWAS: Functional genome wide association analysis.
Huang, Chao; Thompson, Paul; Wang, Yalin; Yu, Yang; Zhang, Jingwen; Kong, Dehan; Colen, Rivka R; Knickmeyer, Rebecca C; Zhu, Hongtu
2017-10-01
Functional phenotypes (e.g., subcortical surface representation), which commonly arise in imaging genetic studies, have been used to detect putative genes for complexly inherited neuropsychiatric and neurodegenerative disorders. However, existing statistical methods largely ignore the functional features (e.g., functional smoothness and correlation). The aim of this paper is to develop a functional genome-wide association analysis (FGWAS) framework to efficiently carry out whole-genome analyses of functional phenotypes. FGWAS consists of three components: a multivariate varying coefficient model, a global sure independence screening procedure, and a test procedure. Compared with the standard multivariate regression model, the multivariate varying coefficient model explicitly models the functional features of functional phenotypes through the integration of smooth coefficient functions and functional principal component analysis. Statistically, compared with existing methods for genome-wide association studies (GWAS), FGWAS can substantially boost the detection power for discovering important genetic variants influencing brain structure and function. Simulation studies show that FGWAS outperforms existing GWAS methods for searching sparse signals in an extremely large search space, while controlling for the family-wise error rate. We have successfully applied FGWAS to large-scale analysis of data from the Alzheimer's Disease Neuroimaging Initiative for 708 subjects, 30,000 vertices on the left and right hippocampal surfaces, and 501,584 SNPs. Copyright © 2017 Elsevier Inc. All rights reserved.
Upper-limb biomechanical analysis of wheelchair transfer techniques in two toilet configurations.
Tsai, Chung-Ying; Boninger, Michael L; Bass, Sarah R; Koontz, Alicia M
2018-06-01
Using proper technique is important for minimizing upper limb kinetics during wheelchair transfers. The objective of the study was to 1) evaluate the transfer techniques used during toilet transfers and 2) determine the impact of technique on upper limb joint loading for two different toilet configurations. Twenty-six manual wheelchair users (23 men and 3 women) performed transfers in a side and front wheelchair-toilet orientation while their habitual transfer techniques were evaluated using the Transfer Assessment Instrument. A motion analysis system and force sensors were used to record biomechanical data during the transfers. More than 20% of the participants failed to complete five transfer skills in the side setup compared to three skills in the front setup. Higher quality skills overall were associated with lower peak forces and moments in both toilet configurations (-0.68 perform these skills correctly (p ≤ 0.04). In the front setup, positioning the wheelchair within three inches of the transfer target was associated with reduced peak trailing forces and moments across all three upper limb joints (p = 0.02). Transfer skills training, making toilet seats level with the wheelchair seat, positioning the wheelchair closer to the toilet and mounting grab bars in a more ideal location for persons who do sitting pivot transfers may facilitate better quality toilet transfers. Published by Elsevier Ltd.
Damage analysis: damage function development and application
International Nuclear Information System (INIS)
Simons, R.L.; Odette, G.R.
1975-01-01
The derivation and application of damage functions, including recent developments for the U.S. LMFBR and CTR programs, is reviewed. A primary application of damage functions is in predicting component life expectancies; i.e., the fluence required in a service spectrum to attain a specified design property change. An important part of the analysis is the estimation of the uncertainty in such fluence limit predictions. The status of standardizing the procedures for the derivation and application of damage functions is discussed. Improvements in several areas of damage function development are needed before standardization can be completed. These include increasing the quantity and quality of the data used in the analysis, determining the limitations of the analysis due to the presence of multiple damage mechanisms, and finally, testing of damage function predictions against data obtained from material surveillance programs in operating thermal and fast reactors. 23 references. (auth)
Directory of Open Access Journals (Sweden)
William E Grose
Full Text Available The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9. Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes.
International Nuclear Information System (INIS)
Rukolaine, Sergey A.
2010-01-01
Optimal shape design problems of steady-state radiative heat transfer are considered. The optimal shape design problem (in the three-dimensional space) is formulated as an inverse one, i.e., in the form of an operator equation of the first kind with respect to a surface to be optimized. The operator equation is reduced to a minimization problem via a least-squares objective functional. The minimization problem has to be solved numerically. Gradient minimization methods need the gradient of a functional to be minimized. In this paper the shape gradient of the least-squares objective functional is derived with the help of the shape sensitivity analysis and adjoint problem method. In practice a surface to be optimized may be (or, most likely, is to be) given in a parametric form by a finite number of parameters. In this case the objective functional is, in fact, a function in a finite-dimensional space and the shape gradient becomes an ordinary gradient. The gradient of the objective functional, in the case that the surface to be optimized is given in a finite-parametric form, is derived from the shape gradient. A particular case, that a surface to be optimized is a 'two-dimensional' polyhedral one, is considered. The technique, developed in the paper, is applied to a synthetic problem of designing a 'two-dimensional' radiant enclosure.
Quantum functional analysis non-coordinate approach
Helemskii, A Ya
2010-01-01
This book contains a systematic presentation of quantum functional analysis, a mathematical subject also known as operator space theory. Created in the 1980s, it nowadays is one of the most prominent areas of functional analysis, both as a field of active research and as a source of numerous important applications. The approach taken in this book differs significantly from the standard approach used in studying operator space theory. Instead of viewing "quantized coefficients" as matrices in a fixed basis, in this book they are interpreted as finite rank operators in a fixed Hilbert space. This allows the author to replace matrix computations with algebraic techniques of module theory and tensor products, thus achieving a more invariant approach to the subject. The book can be used by graduate students and research mathematicians interested in functional analysis and related areas of mathematics and mathematical physics. Prerequisites include standard courses in abstract algebra and functional analysis.
International Nuclear Information System (INIS)
Grimm, K.N.; Meneghetti, D.
1989-01-01
Reactivity transfer functions are important in determining the reactivity history during a power transient. Overall nodal transfer functions have been calculated for different subassembly types in the Experimental Breeder Reactor II (EBR-II). Steady-state calculations for temperature changes and, hence, reactivities for power changes have been separated into power and power-to-flow-dependent terms. Axial nodal transfer functions separated into power and power-to-flow-dependent components are reported in this paper for a typical EBR-II fuel pin. This provides an improved understanding of the time dependence of these components in transient situations
Do pattern recognition skills transfer across sports? A preliminary analysis.
Smeeton, Nicholas J; Ward, Paul; Williams, A Mark
2004-02-01
The ability to recognize patterns of play is fundamental to performance in team sports. While typically assumed to be domain-specific, pattern recognition skills may transfer from one sport to another if similarities exist in the perceptual features and their relations and/or the strategies used to encode and retrieve relevant information. A transfer paradigm was employed to compare skilled and less skilled soccer, field hockey and volleyball players' pattern recognition skills. Participants viewed structured and unstructured action sequences from each sport, half of which were randomly represented with clips not previously seen. The task was to identify previously viewed action sequences quickly and accurately. Transfer of pattern recognition skill was dependent on the participant's skill, sport practised, nature of the task and degree of structure. The skilled soccer and hockey players were quicker than the skilled volleyball players at recognizing structured soccer and hockey action sequences. Performance differences were not observed on the structured volleyball trials between the skilled soccer, field hockey and volleyball players. The skilled field hockey and soccer players were able to transfer perceptual information or strategies between their respective sports. The less skilled participants' results were less clear. Implications for domain-specific expertise, transfer and diversity across domains are discussed.
Bencomo, Jose Antonio Fagundez
The main goal of this study was to relate physical changes in image quality measured by Modulation Transfer Function (MTF) to diagnostic accuracy. One Hundred and Fifty Kodak Min-R screen/film combination conventional craniocaudal mammograms obtained with the Pfizer Microfocus Mammographic system were selected from the files of the Department of Radiology, at M.D. Anderson Hospital and Tumor Institute. The mammograms included 88 cases with a variety of benign diagnosis and 62 cases with a variety of malignant biopsy diagnosis. The average age of the patient population was 55 years old. 70 cases presented calcifications with 30 cases having calcifications smaller than 0.5mm. 46 cases presented irregular bordered masses larger than 1 cm. 30 cases presented smooth bordered masses with 20 larger than 1 cm. Four separated copies of the original images were made each having a different change in the MTF using a defocusing technique whereby copies of the original were obtained by light exposure through different thicknesses (spacing) of transparent film base. The mammograms were randomized, and evaluated by three experienced mammographers for the degree of visibility of various anatomical breast structures and pathological lesions (masses and calicifications), subjective image quality, and mammographic interpretation. 3,000 separate evaluations were anayzed by several statistical techniques including Receiver Operating Characteristic curve analysis, McNemar test for differences between proportions and the Landis et al. method of agreement weighted kappa for ordinal categorical data. Results from the statistical analysis show: (1) There were no statistical significant differences in the diagnostic accuracy of the observers when diagnosing from mammograms with the same MTF. (2) There were no statistically significant differences in diagnostic accuracy for each observer when diagnosing from mammograms with the different MTF's used in the study. (3) There statistical
Energy Technology Data Exchange (ETDEWEB)
Freycenon, J [Commissariat a l' Energie Atomique, Saclay (France). Centre d' Etudes Nucleaires
1964-07-01
This study deals with the harmonic analysis of the instantaneous counting rate of a pulse train. This arises from using a fission chamber for reactivity to power transfer function measurements by oscillation methods in reactors. The systematical errors due to the sampling process are computed. The integration carried out when sampling the signal modifies the formulae of the Nyquist theorem on spectrum folding. The statistical errors due to the noise are analysed: it is shown that the bandwidth of the spectral window applied to the noise frequency spectrum is equal to the inverse of the time duration of the experiment. A dead time of 25 per cent of the sampling time does not increase appreciably the bandwidth. A new method is proposed afterwards yielding very approximate results of the Fourier analysis during the experiment. The systematical errors arising from the measuring process are determined, and it is shown that the bandwidth of the corresponding spectral window is still given by the inverse of the time duration of the experiment. (author) [French] Cette etude se rapporte a l'analyse harmonique de la valeur instantanee du taux de comptage d'une suite d'impulsions. On rencontre ce probleme dans l'utilisation de chambres a fission pour les mesures de fonction de transfert reactivite-puissance par la methode d'oscillation dans les piles. On calcule l'erreur systematique due au processus d'echantillonnage ou l'integration operee modifie les formules classiques de recouvrement du spectre. On analyse ensuite les erreurs statistiques dues au bruit de fond. On montre que la largeur de bande de la fenetre spectrale appliquee au spectre de puissance du bruit est donnee par l'inverse du temps de mesure. Un temps mort de 25 pour cent du temps de prelevement n'accroit pas sensiblement cette largeur de bande. On propose ensuite un procede simple qui permet d'obtenir, en cours d'experience, des resultats tres approches de l'analyse de Fourier. On determine les erreurs
Symbolic transfer entropy-based premature signal analysis
International Nuclear Information System (INIS)
Wang Jun; Yu Zheng-Feng
2012-01-01
In this paper, we use symbolic transfer entropy to study the coupling strength between premature signals. Numerical experiments show that three types of signal couplings are in the same direction. Among them, normal signal coupling is the strongest, followed by that of premature ventricular contractions, and that of atrial premature beats is the weakest. The T test shows that the entropies of the three signals are distinct. Symbolic transfer entropy requires less data, can distinguish the three types of signals and has very good computational efficiency. (interdisciplinary physics and related areas of science and technology)
Nonlinear transfer function encodes synchronization in a neural network from the mammalian brain.
Menendez de la Prida, L; Sanchez-Andres, J V
1999-09-01
Synchronization is one of the mechanisms by which the brain encodes information. The observed synchronization of neuronal activity has, however, several levels of fluctuations, which presumably regulate local features of specific areas. This means that biological neural networks should have an intrinsic mechanism able to synchronize the neuronal activity but also to preserve the firing capability of individual cells. Here, we investigate the input-output relationship of a biological neural network from developing mammalian brain, i.e., the hippocampus. We show that the probability of occurrence of synchronous output activity (which consists in stereotyped population bursts recorded throughout the hippocampus) is encoded by a sigmoidal transfer function of the input frequency. Under this scope, low-frequency inputs will not produce any coherent output while high-frequency inputs will determine a synchronous pattern of output activity (population bursts). We analyze the effect of the network size (N) on the parameters of the transfer function (threshold and slope). We found that sigmoidal functions realistically simulate the synchronous output activity of hippocampal neural networks. This outcome is particularly important in the application of results from neural network models to neurobiology.
Cumulant generating function formula of heat transfer in ballistic systems with lead-lead coupling
Li, Huanan; Agarwalla, Bijay Kumar; Wang, Jian-Sheng
2012-10-01
Based on a two-time observation protocol, we consider heat transfer in a given time interval tM in a lead-junction-lead system taking coupling between the leads into account. In view of the two-time observation, consistency conditions are carefully verified in our specific family of quantum histories. Furthermore, its implication is briefly explored. Then using the nonequilibrium Green's function method, we obtain an exact formula for the cumulant generating function for heat transfer between the two leads, valid in both transient and steady-state regimes. Also, a compact formula for the cumulant generating function in the long-time limit is derived, for which the Gallavotti-Cohen fluctuation symmetry is explicitly verified. In addition, we briefly discuss Di Ventra's repartitioning trick regarding whether the repartitioning procedure of the total Hamiltonian affects the nonequilibrium steady-state current fluctuation. All kinds of properties of nonequilibrium current fluctuations, such as the fluctuation theorem in different time regimes, could be readily given according to these exact formulas.
An analytical wall-function for turbulent flows and heat transfer over rough walls
International Nuclear Information System (INIS)
Suga, K.; Craft, T.J.; Iacovides, H.
2006-01-01
This paper reports the development of a refined wall-function strategy for the modelling of turbulent forced convection heat transfer over smooth and rough surfaces. In order to include the effects of fine-grain surface roughness, the present study extends a more fundamental work by Craft et al. [Craft, T.J., Gerasimov, A.V., Iacovides, H., Launder, B.E., 2002. Progress in the generalisation of wall-function treatment. Int. J. Heat Fluid Flow 23, 148-160] on the development of advanced wall-functions of general applicability. The presently proposed model is validated through comparisons with data available for internal flows through channels and for external flows over flat and curved plates with both smooth and rough surfaces. Then, its further validation in separating flows over a sand dune and a sand-roughened ramp is discussed. The validation results suggest that the presently proposed form can be successfully applied to a wide range of attached and separated turbulent flows with heat transfer over smooth and fine-grain rough surfaces
Resist-based measurement of contrast transfer function in a 0.3-NA microfield optic
International Nuclear Information System (INIS)
Cain, Jason P.; Naulleau, Patrick; Spanos, Costas J.
2005-01-01
Although extreme ultraviolet (EUV) lithography offers the possibility of very high-resolution patterning, the projection optics must be of extremely high quality in order to meet this potential. One key metric of the projection optic quality is the contrast transfer function (CTF), which is a measure of the aerial image contrast as a function of pitch. A static microfield exposure tool based on the 0.3-NA MET optic and operating at a wavelength of 13.5 nm has been installed at the Advanced Light Source, a synchrotron facility at the Lawrence Berkeley National Laboratory. This tool provides a platform for a wide variety of research into EUV lithography. In this work we present resist-based measurements of the contrast transfer function for the MET optic. These measurements are based upon line/space patterns printed in several different EUV photoresists. The experimental results are compared with the CTF in aerial-image simulations using the aberrations measured in the projection optic using interferometry. In addition, the CTF measurements are conducted for both bright-field and dark-field mask patterns. Finally, the orientation dependence of the CTF is measured in order to evaluate the effect of non-rotationally symmetric lens aberrations. These measurements provide valuable information in interpreting the results of other experiments performed using the MET and similar systems
International Nuclear Information System (INIS)
Tromp, R.M.; Schramm, S.M.
2013-01-01
The Contrast Transfer Function (CTF) describes the manner in which the electron microscope modifies the object exit wave function as a result of objective lens aberrations. For optimum resolution in C 3 -corrected microscopes it is well established that a small negative value of C 3 , offset by positive values of C 5 and defocus C 1 results in the most optimal instrument resolution, and optimization of the CTF has been the subject of several studies. Here we describe a simple design procedure for the CTF that results in a most even transfer of information below the resolution limit. We address not only the resolution of the instrument, but also the stability of the CTF in the presence of small disturbances in C 1 and C 3 . We show that resolution can be traded for stability in a rational and transparent fashion. These topics are discussed quantitatively for both weak-phase and strong-phase (or amplitude) objects. The results apply equally to instruments at high electron energy (TEM) and at very low electron energy (LEEM), as the basic optical properties of the imaging lenses are essentially identical. - Highlights: ► An optimized Contrast Transfer Function for aberration corrected electron microscopes is proposed. ► Based on the properties of the CTF near optimum settings, we address its stability. ► Over some range of parameters resolution can be traded for stability. ► These issues are addressed for weak-phase objects, as well as strong-phase and amplitude object. ► We compare our results with CTF settings previously proposed
Functional Requirement Analysis and Function Allocation for APR 1400
International Nuclear Information System (INIS)
Nuraslinda, Anuar; Florah, Kamanja; Noloyiso, Mtoko and others
2013-01-01
This paper intends to fulfill the FRA and FA of the HFE as required in Chapter 4 of NUREG-0711 rev. 3 for APR1400 to satisfy both plant safety and power generation objectives. This paper aims to evaluate the FRA and FA for APR1400. The allocation of function is done at the system level for all processes for both the power generation and safety goals, following the NUREG/CR-3331 guideline. As a conclusion, this paper has successfully implemented the requirements and methodology specified in NUREG-0711 for APR 1400. The Functional Requirement Analysis (FRA) and Function Allocation (FA) are required by the regulation in the Human Factors Engineering (HFE) program. The FRA defines the functions, processes, and system for plant safety and power generation. The FA allocates the functions to human operator, automation, or a combination of two. The FRA and FA for APR1400 have been performed in the very early stage of development but only for the plant safety. However, the analysis did not include the goal of power generation and also did not fully satisfy the latest revision of NUREG-0711
Theory of lidar method for measurement of the modulation transfer function of water layers.
Dolin, Lev S
2013-01-10
We develop a method to evaluate the modulation transfer function (MTF) of a water layer from the characteristics of lidar signal backscattered by water volume. We propose several designs of a lidar system for remote measurement of the MTF and the procedure to determine optical properties of water using the measured MTF. We discuss a laser system for sea-bottom imaging that accounts for the influence of water slab on the image structure and allows for correction of image distortions caused by light scattering in water. © 2013 Optical Society of America
Directory of Open Access Journals (Sweden)
Chao Gao
2016-01-01
Full Text Available This paper investigates the modulation transfer function of a Gaussian beam propagating through a horizontal path in weak-fluctuation non-Kolmogorov turbulence. Mathematical expressions are obtained based on the generalized modified atmospheric spectrum, which includes the spectral power law value of non-Kolmogorov turbulence, the finite inner and outer scales of turbulence, and other optical parameters of the Gaussian beam. The numerical results indicate that the atmospheric turbulence would produce less negative effects on the wireless optical communication system with an increase in the inner scale of turbulence. Additionally, the increased outer scale of turbulence makes a Gaussian beam influenced more seriously by the atmospheric turbulence.
Energy Technology Data Exchange (ETDEWEB)
Birch, Gabriel Carisle [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Griffin, John Clark [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)
2015-01-01
The horizontal television lines (HTVL) metric has been the primary quantity used by division 6000 related to camera resolution for high consequence security systems. This document shows HTVL measurements are fundamen- tally insufficient as a metric to determine camera resolution, and propose a quantitative, standards based methodology by measuring the camera system modulation transfer function (MTF), the most common and accepted metric of res- olution in the optical science community. Because HTVL calculations are easily misinterpreted or poorly defined, we present several scenarios in which HTVL is frequently reported, and discuss their problems. The MTF metric is discussed, and scenarios are presented with calculations showing the application of such a metric.
The Macroeconomy as a Network of Money-Flow Transfer Functions
Directory of Open Access Journals (Sweden)
Trond Andresen
1998-10-01
Full Text Available An introduction on A.W. Phillips’ "hydraulic" macroeconomic models is given. His (and others economists’ notion that a macroeconomy may reasonably be considered to have dynamics corresponding to a first order time lag transfer function, is justified in this paper by aggregation of individual micro agents. In connection with this economic application, we derive and discuss a theorem and some rules for general networks of time lagged blocks. Numerical simulations of networks of agents are undertaken, supporting the validity of the first order time lag aggregate model. Finally, an application is presented—a model of financial accumulation and possible collapse.
International Nuclear Information System (INIS)
Kostic, Lj.
1973-01-01
Specially constructed fast reactivity oscillator was stimulating the zero power reactor by a stimulus which caused pseudo-random reactivity changes. Measuring system included stochastic oscillator BCR-1 supplied by pseudo-random pulses from noise generator GBS-16, instrumental tape-recorder, system for data acquisition and digital computer ZUSE-Z-23. For measuring the spatially dependent transfer function, reactor response was measured at a number of different positions of stochastic oscillator and ionization chamber. In order to keep the reactor system linear, experiment was limited to small reactivity fluctuations. Experimental results were compared to theoretical ones
Full-Scale Turbofan-Engine Turbine-Transfer Function Determination Using Three Internal Sensors
Hultgren, Lennart S.
2012-01-01
Noise-source separation techniques, using three engine-internal sensors, are applied to existing static-engine test data to determine the turbine transfer function for the currently subdominant combustion noise. The results are used to assess the combustion-noise prediction capability of the Aircraft Noise Prediction Program (ANOPP) and an improvement to the combustion-noise module GECOR is suggested. The work was carried out in response to the NASA Fundamental Aeronautics Subsonic Fixed Wing Program s Reduced-Perceived-Noise Technical Challenge.
Kelbert, A.; Blum, C.
2015-12-01
Magnetotelluric Transfer Functions (MT TFs) represent most of the information about Earth electrical conductivity found in the raw electromagnetic data, providing inputs for further inversion and interpretation. To be useful for scientific interpretation, they must also contain carefully recorded metadata. Making these data available in a discoverable and citable fashion would provide the most benefit to the scientific community, but such a development requires that the metadata is not only present in the file but is also searchable. The most commonly used MT TF format to date, the historical Society of Exploration Geophysicists Electromagnetic Data Interchange Standard 1987 (EDI), no longer supports some of the needs of modern magnetotellurics, most notably accurate error bars recording. Moreover, the inherent heterogeneity of EDI's and other historic MT TF formats has mostly kept the community away from healthy data sharing practices. Recently, the MT team at Oregon State University in collaboration with IRIS Data Management Center developed a new, XML-based format for MT transfer functions, and an online system for long-term storage, discovery and sharing of MT TF data worldwide (IRIS SPUD; www.iris.edu/spud/emtf). The system provides a query page where all of the MT transfer functions collected within the USArray MT experiment and other field campaigns can be searched for and downloaded; an automatic on-the-fly conversion to the historic EDI format is also included. To facilitate conversion to the new, more comprehensive and sustainable, XML format for MT TFs, and to streamline inclusion of historic data into the online database, we developed a set of open source format conversion tools, which can be used for rotation of MT TFs as well as a general XML EDI converter (https://seiscode.iris.washington.edu/projects/emtf-fcu). Here, we report on the newly established collaboration between the USGS Geomagnetism Program and the Oregon State University to gather and
Energy Technology Data Exchange (ETDEWEB)
Leibfried, T. [Siemens Transformatorenwerk, Nuernberg (Germany); Feser, K. [Stuttgart Univ. (Germany). Inst. fuer Energieuebertragung und Hochspannungstechnik
1998-01-12
A new method of automated processing of transfer functions from impulse measurements in the test laboratory or from on-site measurements is presented. Using this method a computer is able to provide a preliminary decision whether a transformer failure occurred or not, without needing support by staff. (orig.) [Deutsch] Die Verfasser beschreiben eine neue Methode zur automatisierten Auswertung von Uebertragungsfunktionen von Leistungstransformatoren. Die Uebertragungsfunktion kann dabei entweder aus den bei der Stossspannungspruefung oder bei Vor-Ort-Messungen aufgezeichneten transienten Signalen berechnet werden. Mit dieser Methode kann der Rechner eine Vorentscheidung ueber einen eventuell vorhandenen Defekt im Transformator liefern, ohne dass dazu das Eingreifen von Fachpersonal notwendig ist. (orig.)
Online monitoring of dispersion functions and transfer matrices at the SLC
International Nuclear Information System (INIS)
Emma, P.; Fieguth, T.H.; Lohse, T.; Burchat, P.R.; Panvini, R.S.
1989-03-01
The symmetries of the chromatic correction sections in the SLC Final Focus System allow a high-resolution determination of the pulse-to-pulse energy fluctuations by exploiting the information from beam position monitors (BPMs) in regions of large dispersion. By correlating this signal with other BPMs, one can infer the dispersion function as well as spatial components of transfer matrices anywhere in the arcs and the Final Focus System without interrupting normal machine operation. We present results from data recorded during either periods of stable operation or periods when the linac energy was intentionally varied. 6 refs., 7 figs
Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura
2015-08-11
The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.
Zalvidea; Colautti; Sicre
2000-05-01
An analysis of the Strehl ratio and the optical transfer function as imaging quality parameters of optical elements with enhanced focal length is carried out by employing the Wigner distribution function. To this end, we use four different pupil functions: a full circular aperture, a hyper-Gaussian aperture, a quartic phase plate, and a logarithmic phase mask. A comparison is performed between the quality parameters and test images formed by these pupil functions at different defocus distances.
Directory of Open Access Journals (Sweden)
SOTNER, R.
2015-02-01
Full Text Available Modified current differencing unit (MCDU and its simple filtering application are introduced in this paper. Modification of the well-known current differencing unit consists in weighted difference of both input currents controlled by adjustable current gain, controllable intrinsic resistance of both current input terminals, and availability of additional voltage terminal(s. Definition of MCDU therefore requires four adjustable parameters (B1, B2, Rp, Rn. A presented active element offers and combines benefits of electronically controllable current conveyor of second generation and current differencing unit and allows synthesis of interesting adjustable applications, which are not available by classical approaches based on simple elements. MCDU brings variability of the transfer function into the structure. It provides several transfer types without necessity of input or output node change by simple electronic tuning. A presented structure represents so-called reconnection-less reconfigurable current-mode filter for realization of all-pass, inverting high-pass, low-pass and direct transfer response. Behavioral model of the MCDU was prepared and carefully tested in filtering application. Spice simulations and measurements confirmed theoretical assumptions.
Dack, Charlotte; Reed, Phil; McHugh, Louise
2010-11-01
The aim of the four present experiments was to explore how different schedules of reinforcement influence schedule-induced behavior, their impact on evaluative ratings given to conditioned stimuli associated with each schedule through evaluative conditioning, and the transfer of these evaluations through derived stimulus networks. Experiment 1 compared two contrasting response reinforcement rules (variable ratio [VR], variable interval [VI]). Experiment 2 varied the response to reinforcement rule between two schedules but equated the outcome to response rate (differential reinforcement of high rate [DRH] vs. VR). Experiment 3 compared molar and molecular aspects of contingencies of reinforcement (tandem VIVR vs. tandem VRVI). Finally, Experiment 4 employed schedules that induced low rates of responding to determine whether, under these circumstances, responses were more sensitive to the molecular aspects of a schedule (differential reinforcement of low rate [DRL] vs. VI). The findings suggest that the transfer of evaluative functions is determined mainly by differences in response rate between the schedules and the molar aspects of the schedules. However, when neither schedule was based on a strong response reinforcement rule, the transfer of evaluative judgments came under the control of the molecular aspects of the schedule.
Combining UV photodissociation with electron transfer for peptide structure analysis
Czech Academy of Sciences Publication Activity Database
Shaffer, C. J.; Marek, Aleš; Pepin, R.; Slováková, K.; Tureček, F.
2015-01-01
Roč. 50, č. 3 (2015), s. 470-475 ISSN 1076-5174 Institutional support: RVO:61388963 Keywords : electron transfer dissociation * laser photodissociation * peptide ions * cation radical * chromophores * isomer distinction Subject RIV: CE - Biochemistry Impact factor: 2.541, year: 2015
Mass transfer analysis for terephthalic acid biodegradation by ...
African Journals Online (AJOL)
Biodegradation of terephthalic acid (TA) by polyvinyl alcohol (PVA)-alginate immobilized Pseudomonas sp. was carried out in a packed-bed reactor. The effect of inlet TA concentration on biodegradation was investigated at 30°C, pH 7 and flow rate of 20 ml/min. The effects of flow rate on mass transfer and biodegradation ...
Computational heat transfer analysis and combined ANN–GA
Indian Academy of Sciences (India)
The heat transfer augmentation is studied for different parameters such as inner radius, outer radius, height of the fins and number of pin fins. The base plate is supplied with a constant heat flux in the range of 20–500W. The base plate dimensions are kept constant. The base plate temperature is predicted using Artificial ...
Analysis of slip flow heat transfer between two unsymmetrically
Indian Academy of Sciences (India)
This paper presents an analytical investigation to study the heat transfer and fluid flow characteristics in the slip flow region for hydrodynamically and thermally fully developed flow between parallel plates.Both upper and lower plates are subjected to asymmetric heat flux boundary conditions. The effect of first ordervelocity ...
Transfer of Training: Adding Insight through Social Network Analysis
Van den Bossche, Piet; Segers, Mien
2013-01-01
This article reviews studies which apply a social network perspective to examine transfer of training. The theory behind social networks focuses on the interpersonal mechanisms and social structures that exist among interacting units such as people within an organization. A premise of this perspective is that individual's behaviors and outcomes…
Building Technology Transfer Capacity in Turkish Universities: A Critical Analysis
Ranga, Marina; Temel, Serdal; Ar, Ilker Murat; Yesilay, Rustem Baris; Sukan, Fazilet Vardar
2016-01-01
University technology transfer has been receiving significant government funding since 2012. Results of this major investment are now expected by the Turkish government and society, not only in terms of better teaching and research performance, but also of new jobs, new products and services, enhanced regional development and contribution to…
Directory of Open Access Journals (Sweden)
Pichai Aree
2005-07-01
Full Text Available The transfer-function block-diagram model of single-machine infinite-bus power system has been a popular analytical tool amongst power engineers for explaining and assessing synchronous generator dynamic behaviors. In previous studies, the effects of local load together with damper circuit on generator damping have not yet been addressed because neither of them was integrated into this model. Since the model only accounts for the generator main field circuit, it may not always yield a realistic damping assessment due to lack of damper circuit representation. This paper presents an extended transfer-function block-diagram model, which includes one of the q-axis damper circuits as well as local load. This allows a more realistic investigation of the local load effect on the generator damping. The extended model is applied to assess thegenerator dynamic performance. The results show that the damping power components mostly derived from the q-axis damper and the field circuits can be improved according to the local load. The frequency response method is employed to carry out the fundamental analysis.
Zoladz, Tom; Patel, Sandeep; Lee, Erik; Karon, Dave
2011-01-01
An advanced methodology for extracting the hydraulic dynamic pump transfer matrix (Yp) for a cavitating liquid rocket engine turbopump inducer+impeller has been developed. The transfer function is required for integrated vehicle pogo stability analysis as well as optimization of local inducer pumping stability. Laboratory pulsed subscale waterflow test of the J-2X oxygen turbo pump is introduced and our new extraction method applied to the data collected. From accurate measures of pump inlet and discharge perturbational mass flows and pressures, and one-dimensional flow models that represents complete waterflow loop physics, we are able to derive Yp and hence extract the characteristic pump parameters: compliance, pump gain, impedance, mass flow gain. Detailed modeling is necessary to accurately translate instrument plane measurements to the pump inlet and discharge and extract Yp. We present the MSFC Dynamic Lump Parameter Fluid Model Framework and describe critical dynamic component details. We report on fit minimization techniques, cost (fitness) function derivation, and resulting model fits to our experimental data are presented. Comparisons are made to alternate techniques for spatially translating measurement stations to actual pump inlet and discharge.
Satbhai, N G; Doi, K; Hattori, Y; Sakamoto, S
2016-02-01
Between 2002 and 2011, 81 patients with a traumatic total brachial plexus injury underwent reconstruction by double free muscle transfer (DFMT, 47 cases), single muscle transfer (SMT, 16 cases) or nerve transfers (NT, 18 cases). They were evaluated for functional outcome and quality of life (QoL) using the Disability of Arm, Shoulder and Hand questionnaire, both pre- and post-operatively. The three groups were compared and followed-up for at least 24 months. The mean shoulder abduction and flexion were comparable in all groups, but external rotation was significantly better in the DFMT group as were range and quantitative power of elbow flexion. Patients who had undergone DFMT had reasonable total active finger movement and hook grip strength. All groups showed improvement in function at a level greater than a minimum clinically important difference. The DFMT group showed the greatest improvement. Patients in the DFMT group had a better functional outcome and QoL recovery than those in the NT and SMT groups. Double free muscle transfer procedure is capable of restoring maximum function in patients of total brachial plexus palsy. ©2016 The British Editorial Society of Bone & Joint Surgery.
Directory of Open Access Journals (Sweden)
Tibor eAuer
2015-10-01
Full Text Available This study investigated the level of self-regulation of the somato-motor cortices (SMC attained by an extended functional MRI (fMRI neurofeedback training. Sixteen healthy subjects performed 12 real-time functional magnetic resonance imaging (rt-fMRI neurofeedback training sessions within 4 weeks, involving motor imagery of the dominant right as well as the non-dominant left hand. Target regions of interests in the SMC were individually localized prior to the training by overt finger movements. The feedback signal was defined as the difference between fMRI activation in the contra- and ipsilateral SMC and visually presented to the subjects. Training efficiency was determined by an off-line GLM analysis determining the fMRI percent signal changes in the somato-motor cortex (SMC target areas accomplished during the neurofeedback training. Transfer success was assessed by comparing the pre- and post-training transfer task, i.e. the neurofeedback paradigm without the presentation of the feedback signal. Group results show a distinct increase in feedback performance in the transfer task for the trained group compared to a matched untrained control group, as well as an increase in the time course of the training, indicating an efficient training and a successful transfer. Individual analysis revealed that the training efficiency was not only highly correlated to the transfer success but also predictive. Trainings with at least 12 efficient training runs were associated with a successful transfer outcome. A group analysis of the hemispheric contributions to the feedback performance showed that it is mainly driven by increased fMRI activation in the contralateral SMC, although some individuals relied on ipsilateral deactivation. Training and transfer results showed no difference between left and right hand imagery, with a slight indication of more ipsilateral deactivation in the early right hand trainings.
Functional analysis of the exploratory studies facility
International Nuclear Information System (INIS)
Duffy, M.A.; Mozhi, T.A.; Kumar, P.N.; Senderling, M.S.; Lemeshewsky, W.A.
1993-01-01
The 'Physical System Requirements - Exploratory Studies Facility' (PSR-ESF) was developed as part of an improved management structure and procedure initiative by the OCRWM for managing the disposal of spent nuclear fuel and high-level radioactive wastes. This paper discusses the development of the PSR-EF document. Based on a functional analysis approach, this document includes results in the form of boundary diagrams, function hierarchy trees, function description tables containing a compilation of requirements, architecture tree and tables, and functional flow diagrams. The approach used ensures the flowdown and traceability of relevant requirements for the ESF design process
International Nuclear Information System (INIS)
Fetterly, Kenneth A.; Hangiandreou, Nicholas J.; Schueler, Beth A.; Ritenour, E. Russell
2002-01-01
The purpose of this work was to develop methods to measure the presampled two-dimensional modulation transfer function (2D MTF) of digital imaging systems. A custom x-ray 'point source' phantom was created by machining 256 holes with diameter 0.107 mm through a 0.5-mm-thick copper plate. The phantom was imaged several times, resulting in many images of individual x-ray 'spots'. The center of each spot (with respect to the pixel matrix) was determined to subpixel accuracy by fitting each spot to a 2D Gaussian function. The subpixel spot center locations were used to create a 5x oversampled system point spread function (PSF), which characterizes the optical and electrical properties of the system and is independent of the pixel sampling of the original image. The modulus of the Fourier transform of the PSF was calculated. Next, the Fourier function was normalized to the zero frequency value. Finally, the Fourier transform function was divided by the first-order Bessel function that defined the frequency content of the holes, resulting in the presampled 2D MTF. The presampled 2D MTF of a 0.1 mm pixel pitch computed radiography system and 0.2 mm pixel pitch flat panel digital imaging system that utilized a cesium iodide scintillator was measured. Comparison of the axial components of the 2D MTF to one-dimensional MTF measurements acquired using an edge device method demonstrated that the two methods produced consistent results
Directory of Open Access Journals (Sweden)
Guo-Jun Kang
2016-11-01
Full Text Available The electronic geometries and optical properties of two D-π-A type zinc porphyrin dyes (NCH3-YD2 and TPhe-YD were systematically investigated by density functional theory (DFT and time-dependent density functional theory (TD-DFT to reveal the origin of significantly altered charge transfer enhancement by changing the electron donor of the famous porphyrin-based sensitizer YD2-o-C8. The molecular geometries and photophysical properties of dyes before and after binding to the TiO2 cluster were fully investigated. From the analyses of natural bond orbital (NBO, extended charge decomposition analysis (ECDA, and electron density variations (Δρ between the excited state and ground state, it was found that the introduction of N(CH32 and 1,1,2-triphenylethene groups enhanced the intramolecular charge-transfer (ICT character compared to YD2-o-C8. The absorption wavelength and transition possess character were significantly influenced by N(CH32 and 1,1,2-triphenylethene groups. NCH3-YD2 with N(CH32 groups in the donor part is an effective way to improve the interactions between the dyes and TiO2 surface, light having efficiency (LHE, and free energy change (ΔGinject, which is expected to be an efficient dye for use in dye-sensitized solar cells (DSSCs.
Development of platform to compare different wall heat transfer packages for system analysis codes
International Nuclear Information System (INIS)
Kim, Min-Gil; Lee, Won Woong; Lee, Jeong Ik; Shin, Sung Gil
2016-01-01
System thermal hydraulic (STH) analysis code is used for analyzing and evaluating the safety of a designed nuclear system. The system thermal hydraulic analysis code typically solves mass, momentum and energy conservation equations for multiple phases with sets of selected empirical constitutive equations to close the problem. Several STH codes are utilized in academia, industry and regulators, such as MARS-KS, SPACE, RELAP5, COBRA-TF, TRACE, and so on. Each system thermal hydraulic code consists of different sets of governing equations and correlations. However, the packages and sets of correlations of each code are not compared quantitatively yet. Wall heat transfer mode transition maps of SPACE and MARS-KS have a little difference for the transition from wall nucleate heat transfer mode to wall film heat transfer mode. Both codes have the same heat transfer packages and correlations in most region except for wall film heat transfer mode. Most of heat transfer coefficients calculated for the range of selected variables of SPACE are the same with those of MARS-KS. For the intervals between 500K and 540K of wall temperature, MARS-KS selects the wall film heat transfer mode and Bromley correlation but SPACE select the wall nucleate heat transfer mode and Chen correlation. This is because the transition from nucleate boiling to film boiling of MARS-KS is earlier than SPACE. More detailed analysis of the heat transfer package and flow regime package will be followed in the near future
Safety analysis of patient transfers and handling tasks.
Vieira, Er; Kumar, S
2009-10-01
Low-back disorders are related to biomechanical demands, and nurses are among the professionals with the highest rates. Quantification of risk factors is important for safety assessment and reduction of low-back disorders. This study aimed to quantify physical demands of frequent nursing tasks and provide evidence-based recommendations to increase low-back safety. Thirty-six volunteer female nurses participated in a cross-sectional study of nine nursing tasks. Lumbar range of motion (ROM) and motion during nursing tasks were measured. Compression and shear forces at L5/S1, ligament strain and percentage of population without sufficient torso strength to perform 14 phases of nine nursing tasks were estimated. Peak flexions during trolley-to-bed, bed-to-chair and chair-to-bed transfers reached the maximum flexion ROM of the nurses. Average lumbar flexion during trolley-to-bed transfers was >50% of flexion ROM, being higher than during all other tasks. Mean (SD) compression at L5/S1 (4754 N (437 N)) and population without sufficient torso strength (37% (9%)) were highest during the pushing phase of bed-to-trolley transfers. Shear force (487 N (40 N)) and ligament strain (14% (5%)) were highest during the pulling phase of trolley-to-bed transfers. Nursing tasks impose high biomechanical demands on the lumbar spine. Excessive lumbar flexion and forces are critical aspects of manual transfers requiring most of the nurses' capabilities. Evidence-based recommendations to improve low-back safety in common nursing tasks were provided. Fitness to work, job modifications and training programs can now be designed and assessed based on the results.
International Nuclear Information System (INIS)
Yashchuk, Valeriy V.; McKinney, Wayne R.; Takacs, Peter Z.
2008-01-01
We suggest and describe the use of a binary pseudo-random grating as a standard test surface for calibration of the modulation transfer function of microscopes. Results from calibration of a MicromapTM-570 interferometric microscope are presented.
Spectral theory and nonlinear functional analysis
Lopez-Gomez, Julian
2001-01-01
This Research Note addresses several pivotal problems in spectral theory and nonlinear functional analysis in connection with the analysis of the structure of the set of zeroes of a general class of nonlinear operators. It features the construction of an optimal algebraic/analytic invariant for calculating the Leray-Schauder degree, new methods for solving nonlinear equations in Banach spaces, and general properties of components of solutions sets presented with minimal use of topological tools. The author also gives several applications of the abstract theory to reaction diffusion equations and systems.The results presented cover a thirty-year period and include recent, unpublished findings of the author and his coworkers. Appealing to a broad audience, Spectral Theory and Nonlinear Functional Analysis contains many important contributions to linear algebra, linear and nonlinear functional analysis, and topology and opens the door for further advances.
Effect of pressure on the transfer functions of premixed methane and propane swirl flames
Di Sabatino, Francesco
2018-04-24
This paper reports on the effect of pressure on the response of methane–air and propane–air swirl flames to acoustic excitation of the flow. These effects are analyzed on the basis of the flame transfer function (FTF) formalism, experimentally determined from velocity and global OH* chemiluminescence measurements at pressures up to 5 bar. In parallel, phase-locked images of OH* chemiluminescence are collected and analyzed in order to determine the associated flame dynamics. Flame transfer functions and visual flame dynamics at atmospheric pressure are found to be similar to previous studies with comparable experimental conditions. Regardless of pressure, propane flames exhibit a much larger FTF gain than methane flames. For both fuels, the effect of pressure primarily is to modify the gain response at the local maximum of the FTF, at a Strouhal number around 0.5 (176 Hz). For methane flames, this gain maximum increases monotonically with pressure, while for propane flames it increases from 1 to 3 bar and decreases from 3 to 5 bar. At this frequency and regardless of pressure, the flame motion is driven by flame vortex roll-up, suggesting that pressure affects the FTF by modifying the interaction of the flame with the vortex detached from the injector rim during a forcing period. The complex heat transfer, fluid dynamics, and combustion coupling in this configuration does not allow keeping the vortex properties constant when pressure is increased. However, the different trends of the FTF gain observed for methane and propane fuels with increasing pressure imply that intrinsic flame properties and fuel chemistry, and their variation with pressure, play an important role in controlling the response of these flames to acoustic forcing.
Simultaneous identification of transfer functions and combustion noise of a turbulent flame
Merk, M.; Jaensch, S.; Silva, C.; Polifke, W.
2018-05-01
The Large Eddy Simulation/System Identification (LES/SI) approach allows to deduce a flame transfer function (FTF) from LES of turbulent reacting flow: Time series of fluctuations of reference velocity and global heat release rate resulting from broad-band excitation of a simulated turbulent flame are post-processed via SI techniques to derive a low order model of the flame dynamics, from which the FTF is readily deduced. The current work investigates an extension of the established LES/SI approach: In addition to estimation of the FTF, a low order model for the combustion noise source is deduced from the same time series data. By incorporating such a noise model into a linear thermoacoustic model, it is possible to predict the overall level as well as the spectral distribution of sound pressure in confined combustion systems that do not exhibit self-excited thermoacoustic instability. A variety of model structures for estimation of a noise model are tested in the present study. The suitability and quality of these model structures are compared against each other, their sensitivity regarding certain time series properties is studied. The influence of time series length, signal-to-noise ratio as well as acoustic reflection coefficient of the boundary conditions on the identification are examined. It is shown that the Box-Jenkins model structure is superior to simpler approaches for the simultaneous identification of models that describe the FTF as well as the combustion noise source. Subsequent to the question of the most adequate model structure, the choice of optimal model order is addressed, as in particular the optimal parametrization of the noise model is not obvious. Akaike's Information Criterion and a model residual analysis are applied to draw qualitative and quantitative conclusions on the most suitable model order. All investigations are based on a surrogate data model, which allows a Monte Carlo study across a large parameter space with modest
Rinfray, Corentin; Izzet, Guillaume; Pinson, Jean; Gam Derouich, Sarra; Ganem, Jean-Jacques; Combellas, Catherine; Kanoufi, Frédéric; Proust, Anna
2013-10-04
Polyoxometalates (POMs) are attractive candidates for the rational design of multi-level charge-storage materials because they display reversible multi-step reduction processes in a narrow range of potentials. The functionalization of POMs allows for their integration in hybrid complementary metal oxide semiconductor (CMOS)/molecular devices, provided that fine control of their immobilisation on various substrates can be achieved. Owing to the wide applicability of the diazonium route to surface modification, a functionalized Keggin-type POM [PW11 O39 {Ge(p-C6 H4 -CC-C6 H4 -${{\\rm N}{{+\\hfill \\atop 2\\hfill}}}$)}](3-) bearing a pending diazonium group was prepared and subsequently covalently anchored onto a glassy carbon electrode. Electron transfer with the immobilised POM was thoroughly investigated and compared to that of the free POM in solution. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
DEFF Research Database (Denmark)
Plessen, Kerstin J; Lundervold, Arvid; Grüner, Renate
2007-01-01
on the right ear stimulus in the dichotic listening situation is thought to involve the same prefrontal attentional and executive functions that are involved in the suppression of tics, whereas, performance when focusing attention on the left ear stimulus additionally involves a callosal transfer...... to shift attention normally when instructed to focus on the right ear stimulus. When instructed to focus attention on the left ear stimulus, however, performance deteriorated in the TS group. Correlations with CC area further supported the hypothesized presence of deviant callosal functioning in the TS......We tested the hypothesis that children with Tourette syndrome (TS) would exhibit aberrant brain lateralization compared to a healthy control (HC) group in an attention-modulation version of a verbal dichotic listening task using consonant-vowel syllables. The modulation of attention to focus...
Interactive definition of transfer functions in volume rendering based on image markers
International Nuclear Information System (INIS)
Teistler, Michael; Nowinski, Wieslaw L.; Breiman, Richard S.; Liong, Sauw Ming; Ho, Liang Yoong; Shahab, Atif
2007-01-01
Objectives A user interface for transfer function (TF) definition in volume rendering (VR) was developed that allows the user to intuitively assign color and opacity to the original image intensities. This software may surpass solutions currently deployed in clinical practice by simplifying the use of TFs beyond predefined settings that are not always applicable. Materials and methods The TF definition is usually a cumbersome task that requires the user to manipulate graphical representations of the TF (e.g. trapezoids). A new method that allows the user to place markers at points of interest directly on CT and MRI images or orthogonal reformations was developed based on two-dimensional region growing and a few user-definable marker-related parameters. For each user defined image marker, a segment of the transfer function is computed. The resulting TF can also be applied to the slice image views. Results were judged subjectively. Results Each individualized TF can be defined interactively in a few simple steps. For every user interaction, immediate visual feedback is given. Clinicians who tested the application appreciated being able to directly work on familiar slice images to generate the desired 3D views. Conclusion Interactive TF definition can increase the actual utility of VR, help to understand the role of the TF with its variations, and increase the acceptance of VR as a clinical tool. (orig.)
Directory of Open Access Journals (Sweden)
Tai-Yin Chiu
Full Text Available The ability to engineer synthetic systems in the biochemical context is constantly being improved and has a profound societal impact. Linear system design is one of the most pervasive methods applied in control tasks, and its biochemical realization has been proposed by Oishi and Klavins and advanced further in recent years. However, several technical issues remain unsolved. Specifically, the design process is not fully automated from specification at the transfer function level, systems once designed often lack dynamic adaptivity to environmental changes, matching rate constants of reactions is not always possible, and implementation may be approximative and greatly deviate from the specifications. Building upon the work of Oishi and Klavins, this paper overcomes these issues by introducing a design flow that transforms a transfer-function specification of a linear system into a set of chemical reactions, whose input-output response precisely conforms to the specification. This system is implementable using the DNA strand displacement technique. The underlying configurability is embedded into primitive components and template modules, and thus the entire system is adaptive. Simulation of DNA strand displacement implementation confirmed the feasibility and superiority of the proposed synthesis flow.
Capmany, J; Gasulla, Ivana
2007-08-20
Although a considerable number of multimode fiber (MMF) links operate in a wavelength region around 850 nm where chromatic dispersion of a given modal group mu is described adequately by the second derivative beta(mu) (2) of the propagation constant beta(mu)(omega), there is also an increasing interest in MMF links transmitting in the second spectral window (@1300nm) where this second derivative vanishes being thus necessary to consider the third derivative beta(mu) (3) in the evaluation of the transfer function of the multimode fiber link. We present in this paper, for the first time to our knowledge, an analytical model for the transfer function of a multimode fiber (MMF) optic link taken into account the impact of third-order dispersion. The model extends the operation of a previously reported one for second-order dispersion. Our results show that the performance of broadband radio over fiber transmission through middle-reach distances can be improved by working at the minimum-dispersion wavelength as long as low-linewidth lasers are employed.
International Nuclear Information System (INIS)
Poulíčková, Aloisie; Hájková, Petra; Kintrová, Kateřina; Bat'ková, Romana; Czudková, Markéta; Hájek, Michal
2013-01-01
Central European mountain bogs, among the most valuable and threatened of habitats, were exposed to intensive human impact during the 20th century. We reconstructed the subrecent water chemistry and water-table depths using diatom based transfer functions calibrated from modern sampling. Herbarium Sphagnum specimens collected during the period 1918–1998 were used as a source of historic diatom samples. We classified samples into hummocks and hollows according to the identity of dominant Sphagnum species, to reduce bias caused by uneven sampling of particular microhabitats. Our results provide clear evidence for bog pollution by grazing during the period 1918–1947 and by undocumented aerial liming in the early 90-ies. We advocate use of herbarized epibryon as a source of information on subrecent conditions in recently polluted mires. -- Highlights: •We reconstruct the subrecent ecological variables using transfer functions. •Calibration was based on long-term averages and modern diatom sampling. •Herbarized bryophytes were used as a source of historic diatom samples. •Bogs were influenced by grazing in the period 1918–1947. •We provide clear evidence of bog pollution by aerial liming in early 90-ies. -- We provide clear evidence that the recent pH/calcium gradient appeared ca 20 years ago owing to aerial liming of forests
A Clustering-Based Automatic Transfer Function Design for Volume Visualization
Directory of Open Access Journals (Sweden)
Tianjin Zhang
2016-01-01
Full Text Available The two-dimensional transfer functions (TFs designed based on intensity-gradient magnitude (IGM histogram are effective tools for the visualization and exploration of 3D volume data. However, traditional design methods usually depend on multiple times of trial-and-error. We propose a novel method for the automatic generation of transfer functions by performing the affinity propagation (AP clustering algorithm on the IGM histogram. Compared with previous clustering algorithms that were employed in volume visualization, the AP clustering algorithm has much faster convergence speed and can achieve more accurate clustering results. In order to obtain meaningful clustering results, we introduce two similarity measurements: IGM similarity and spatial similarity. These two similarity measurements can effectively bring the voxels of the same tissue together and differentiate the voxels of different tissues so that the generated TFs can assign different optical properties to different tissues. Before performing the clustering algorithm on the IGM histogram, we propose to remove noisy voxels based on the spatial information of voxels. Our method does not require users to input the number of clusters, and the classification and visualization process is automatic and efficient. Experiments on various datasets demonstrate the effectiveness of the proposed method.
Heat Transfer Analysis of Thermal Protection Structures for Hypersonic Vehicles
Zhou, Chen; Wang, Zhijin; Hou, Tianjiao
2017-11-01
This research aims to develop an analytical approach to study the heat transfer problem of thermal protection systems (TPS) for hypersonic vehicles. Laplace transform and integral method are used to describe the temperature distribution through the TPS subject to aerodynamic heating during flight. Time-dependent incident heat flux is also taken into account. Two different cases with heat flux and radiation boundary conditions are studied and discussed. The results are compared with those obtained by finite element analyses and show a good agreement. Although temperature profiles of such problems can be readily accessed via numerical simulations, analytical solutions give a greater insight into the physical essence of the heat transfer problem. Furthermore, with the analytical approach, rapid thermal analyses and even thermal optimization can be achieved during the preliminary TPS design.
Transfer pricing: a bibliometric analysis of the international literature
Directory of Open Access Journals (Sweden)
Joice Denise Schäfer
2015-12-01
Full Text Available The decentralization of decision-making to ensure faster and more efficient process control has become commonplace among companies in the current market. The performance of responsibility centers is periodically assessed and a decisive factor in this assessment is the correct definition of transfer prices for products and services. Thus, the aim of the present study is to search for and analyze studies conducted from 2000 onwards regarding transfer pricing as a tool for performance assessment using a process known as ProKnow-C (Knowledge Development Process – Constructivist, whose objective is to build knowledge from a constructivist perspective based on a researcher’s interests and limitations. The result was a bibliographic profile of 14 articles. The bibliographic profile was analyzed in order to identify the scientific recognition of the articles, authors referenced and the most prominent journals in terms of publications on the topic under study.
Ab Initio Analysis of Auger-Assisted Electron Transfer.
Hyeon-Deuk, Kim; Kim, Joonghan; Prezhdo, Oleg V
2015-01-15
Quantum confinement in nanoscale materials allows Auger-type electron-hole energy exchange. We show by direct time-domain atomistic simulation and analytic theory that Auger processes give rise to a new mechanism of charge transfer (CT) on the nanoscale. Auger-assisted CT eliminates the renown Marcus inverted regime, rationalizing recent experiments on CT from quantum dots to molecular adsorbates. The ab initio simulation reveals a complex interplay of the electron-hole and charge-phonon channels of energy exchange, demonstrating a variety of CT scenarios. The developed Marcus rate theory for Auger-assisted CT describes, without adjustable parameters, the experimental plateau of the CT rate in the region of large donor-acceptor energy gap. The analytic theory and atomistic insights apply broadly to charge and energy transfer in nanoscale systems.
Cook, Ellyn J.; van der Kaars, Sander
2006-10-01
We review attempts to derive quantitative climatic estimates from Australian pollen data, including the climatic envelope, climatic indicator and modern analogue approaches, and outline the need to pursue alternatives for use as input to, or validation of, simulations by models of past, present and future climate patterns. To this end, we have constructed and tested modern pollen-climate transfer functions for mainland southeastern Australia and Tasmania using the existing southeastern Australian pollen database and for northern Australia using a new pollen database we are developing. After testing for statistical significance, 11 parameters were selected for mainland southeastern Australia, seven for Tasmania and six for northern Australia. The functions are based on weighted-averaging partial least squares regression and their predictive ability evaluated against modern observational climate data using leave-one-out cross-validation. Functions for summer, annual and winter rainfall and temperatures are most robust for southeastern Australia, while in Tasmania functions for minimum temperature of the coldest period, mean winter and mean annual temperature are the most reliable. In northern Australia, annual and summer rainfall and annual and summer moisture indexes are the strongest. The validation of all functions means all can be applied to Quaternary pollen records from these three areas with confidence. Copyright
Boström, Gustaf; Conradsson, Mia; Rosendahl, Erik; Nordström, Peter; Gustafson, Yngve; Littbrand, Håkan
2014-01-01
This study examined associations between depressive symptoms and functional capacity, overall dependency in personal activities of daily living (ADLs), and dependency in individual ADL tasks, respectively, in people with a high mean age, large range of functional capacity, and wide spectrum of dependency in ADLs. Cross-sectional data from three studies were used. A total of 392 individuals living in community and residential care facilities were included. Mean age was 86.2 years, 72% were women, 75% were dependent in ADLs, 42% had depression, and 39% had dementia. Depressive symptoms were assessed with the 15-item Geriatric Depression Scale (GDS-15), functional capacity with the Berg Balance Scale (BBS), and ADLs with the Barthel ADL Index. Multiple linear regression analyses with comprehensive adjustments were performed between GDS-15 and BBS, GDS-15 and Barthel ADL Index, and GDS-15 and each individual ADL task, separately. GDS-15 score was associated with BBS score (unstandardized b =-0.03, P=0.008), but not with Barthel ADL Index score (unstandardized b =-0.07, P=0.068). No significant interaction effects of sex, dementia, or living conditions were found in these associations. Among individual ADL tasks, dependency in transfer (unstandardized b =-1.03, P=0.007) and dressing (unstandardized b =-0.70, P=0.035) were associated with depressive symptoms. Functional capacity seems to be independently associated with depressive symptoms in older people living in community and residential care facilities, whereas overall ADL performance may not be associated. Dependency in the individual ADL tasks of transfer and dressing appear to be independently associated with depressive symptoms and may be an important focus of future interdisciplinary multifactorial intervention studies.
Blocking layer modeling for temperature analysis of electron transfer ...
African Journals Online (AJOL)
In this article, we simulate thermal effects on the electron transfer rate from three quantum dots CdSe, CdS and CdTe to three metal oxides TiO2, SnO2 and ZnO2 in the presence of four blocking layers ZnS, ZnO, TiO2 and Al2O3, in a porous quantum dot sensitized solar cell (QDSSC) structure, using Marcus theory.
Magnetic error analysis of recycler pbar injection transfer line
Energy Technology Data Exchange (ETDEWEB)
Yang, M.J.; /Fermilab
2007-06-01
Detailed study of Fermilab Recycler Ring anti-proton injection line became feasible with its BPM system upgrade, though the beamline has been in existence and operational since year 2000. Previous attempts were not fruitful due to limitations in the BPM system. Among the objectives are the assessment of beamline optics and the presence of error fields. In particular the field region of the permanent Lambertson magnets at both ends of R22 transfer line will be scrutinized.
Heat Transfer treatment in computer codes for safety analysis
International Nuclear Information System (INIS)
Jerele, A.; Gregoric, M.
1984-01-01
Increased number of operating nuclear power plants has stressed importance of nuclear safety evaluation. For this reason, accordingly to regulatory commission request, safety analyses with computer codes are preformed. In this paper part of this thermohydraulic models dealing with wall-to-fluid heat transfer correlations in computer codes TRAC=PF1, RELAP4/MOD5, RELAP5/MOD1 and COBRA-IV is discussed. (author)
Multilevel sparse functional principal component analysis.
Di, Chongzhi; Crainiceanu, Ciprian M; Jank, Wolfgang S
2014-01-29
We consider analysis of sparsely sampled multilevel functional data, where the basic observational unit is a function and data have a natural hierarchy of basic units. An example is when functions are recorded at multiple visits for each subject. Multilevel functional principal component analysis (MFPCA; Di et al. 2009) was proposed for such data when functions are densely recorded. Here we consider the case when functions are sparsely sampled and may contain only a few observations per function. We exploit the multilevel structure of covariance operators and achieve data reduction by principal component decompositions at both between and within subject levels. We address inherent methodological differences in the sparse sampling context to: 1) estimate the covariance operators; 2) estimate the functional principal component scores; 3) predict the underlying curves. Through simulations the proposed method is able to discover dominating modes of variations and reconstruct underlying curves well even in sparse settings. Our approach is illustrated by two applications, the Sleep Heart Health Study and eBay auctions.
Gegenfurtner, Andreas
2013-01-01
This longitudinal study examined the multidimensionality of motivation to transfer training. Based on self-determination theory, expectancy theory, and the theory of planned behaviour, motivation to transfer was conceptualized in three dimensions: autonomous motivation to transfer, controlled motivation to transfer, and intention to transfer.…
Mass transfer models analysis for the structured packings
International Nuclear Information System (INIS)
Suastegui R, A.O.
1997-01-01
The models that have been developing, to understand the mechanism of the mass transfer through the structured packings, present limitations for their application, existing then uncertainty in order to use them in the chemical industrial processes. In this study the main parameters used in the mass transfer are: the hydrodynamic of the bed of the column, the geometry of the bed, physical-chemical properties of the mixture and the flow regime of the operation between the flows liquid-gas. The sensibility of each one of these parameters generate an arduous work to develop right proposals and good interpretation of the phenomenon. With the purpose of showing the importance of these parameters mentioned in the mass transfer, this work is analyzed the process of absorption for the system water-air, using the models to the structured packings in packed columns. The models selected were developed by Bravo and collaborators in 1985 and 1992, in order to determine the parameters previous mentioned for the system water-air, using a structured packing built in the National Institute of Nuclear Research. In this work is showed the results of the models application and their discussion. (Author)
Preliminary analysis of the effect of the grid spacers on the reflood heat transfer
International Nuclear Information System (INIS)
Sugimoto, Jun; Murao, Yoshio
1982-02-01
The results are described about the preliminary analysis of the effect of the grid spacers on the heat transfer during reflood phase of a PWR LOCA. Experiments at JAERI and other facilities showed substantial heat transfer enhancement near the grid spacers. The heat transfer enhancement decreases with the distance from the grid spacers in the downstream region of the grid spacers. Several mechanisms are discussed about the heat transfer enhancement near the grid spacers. A model of a coalescence of the water droplets downstream the spacers is proposed based on the review of the experimental data. The heat transfer correlation for the saturated film boiling is utilized to quantify the heat transfer augmentation by the grid spacers. (author)
Energy Technology Data Exchange (ETDEWEB)
Hatami, M., E-mail: m.hatami@tue.nl [Esfarayen University of Technology, Mechanical Engineering Department, Esfarayen, North Khorasan (Iran, Islamic Republic of); Jing, Dengwei; Song, Dongxing [International Research Center for Renewable Energy, State Key Laboratory of Multiphase Flow in Power Engineering, Xi’an Jiaotong University, Xi' an 710049 (China); Sheikholeslami, M.; Ganji, D.D. [Department of Mechanical Engineering, Babol University of Technology, Babol (Iran, Islamic Republic of)
2015-12-15
In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number.
International Nuclear Information System (INIS)
Hatami, M.; Jing, Dengwei; Song, Dongxing; Sheikholeslami, M.; Ganji, D.D.
2015-01-01
In this study, effect of variable magnetic field on nanofluid flow and heat transfer analysis between two parallel disks is investigated. By using the appropriate transformation for the velocity, temperature and concentration, the basic equations governing the flow, heat and mass transfer were reduced to a set of ordinary differential equations. These equations subjected to the associated boundary conditions were solved analytically using Homotopy perturbation method. The analytical investigation is carried out for different governing parameters namely: squeeze number, suction parameter, Hartmann number, Brownian motion parameter, thermophrotic parameter and Lewis number. Results show that Nusselt number has direct relationship with Brownian motion parameter and thermophrotic parameter but it is a decreasing function of squeeze number, suction parameter, Hartmann number and Lewis number. - Highlights: • Heat and mass transfer of nanofluids between parallel plates investigated. • A variable magnetic field is applied on the plates. • Governing equations are solved analytically. • Effects of physical parameters are discussed on the Nusselt number
SURFACE TEXTURE ANALYSIS FOR FUNCTIONALITY CONTROL
DEFF Research Database (Denmark)
De Chiffre, Leonardo; Andreasen, Jan Lasson; Tosello, Guido
This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This docume...... contains a short description of each case story, 3-D roughness parameters analysis and relation with the product’s functionality.......This document is used in connection with three exercises of 3 hours duration as a part of the course VISION ONLINE – One week course on Precision & Nanometrology. The exercises concern surface texture analysis for functionality control, in connection with three different case stories. This document...
Functional data analysis of sleeping energy expenditure.
Lee, Jong Soo; Zakeri, Issa F; Butte, Nancy F
2017-01-01
Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of SEE and to discriminate SEE between obese and non-obese children. Minute-by-minute SEE in 109 children, ages 5-18, was measured in room respiration calorimeters. A smoothing spline method was applied to the calorimetric data to extract the true smoothing function for each subject. Functional principal component analysis was used to capture the important modes of variation of the functional data and to identify differences in SEE patterns. Combinations of functional principal component analysis and classifier algorithm were used to classify SEE. Smoothing effectively removed instrumentation noise inherent in the room calorimeter data, providing more accurate data for analysis of the dynamics of SEE. SEE exhibited declining but subtly undulating patterns throughout the night. Mean SEE was markedly higher in obese than non-obese children, as expected due to their greater body mass. SEE was higher among the obese than non-obese children (p0.1, after post hoc testing). Functional principal component scores for the first two components explained 77.8% of the variance in SEE and also differed between groups (p = 0.037). Logistic regression, support vector machine or random forest classification methods were able to distinguish weight-adjusted SEE between obese and non-obese participants with good classification rates (62-64%). Our results implicate other factors, yet to be uncovered, that affect the weight-adjusted SEE of obese and non-obese children. Functional data analysis revealed differences in the structure of SEE between obese and non-obese children that may contribute to disruption of metabolic homeostasis.
Heat transfer monitoring by means of the hot wire technique and finite element analysis software.
Hernández Wong, J; Suarez, V; Guarachi, J; Calderón, A; Rojas-Trigos, J B; Juárez, A G; Marín, E
2014-01-01
It is reported the study of the radial heat transfer in a homogeneous and isotropic substance with a heat linear source in its axial axis. For this purpose, the hot wire characterization technique has been used, in order to obtain the temperature distribution as a function of radial distance from the axial axis and time exposure. Also, the solution of the transient heat transport equation for this problem was obtained under appropriate boundary conditions, by means of finite element technique. A comparison between experimental, conventional theoretical model and numerical simulated results is done to demonstrate the utility of the finite element analysis simulation methodology in the investigation of the thermal response of substances. Copyright © 2013 Elsevier Ltd. All rights reserved.
Energy Technology Data Exchange (ETDEWEB)
Chung, Y. S.; Moon, J. H.; Kim, S. H.; Sun, G. M.; Baek, S. Y.; Kim, H. R.; Kim, Y. J
2008-03-15
A pneumatic transfer irradiation system (PTS) is one of the most important facilities used during neutron irradiation of a target material for instrumental neutron activation analysis (INAA) in a research reactor. In particular, a fast pneumatic transfer system is essential for the measurement of a short half-life nuclide and a delayed neutron counting system. The pneumatic transfer irradiation system (PTS no.2) involving a manual system and an automatic system for delayed neutron activation analysis (DNAA) were reconstructed with new designs of a functional improvement at the HANARO research reactor in 2006. In this technical report, the conception, design, operation and control of PTS no.2 was described. Also the experimental results and the characteristic parameters measured by a mock-up test, a functional operation test and an irradiation test of these systems, such as the transfer time of irradiation capsule, automatic operation control by personal computer, delayed neutron counting system, the different neutron flux, the temperature of the irradiation position with an irradiation time, the radiation dose rate when the rabbit is returned, etc. are reported to provide a user information as well as a reactor's management and safety.
Energy Technology Data Exchange (ETDEWEB)
Ito, Katsuyoshi [Kawasaki Medical School, Department of Diagnostic Radiology, Kurashiki, Okayama (Japan); Kurashiki Daiichi Hospital, Department of Radiology, Kurashiki, Okayama (Japan); Hayashida, Minoru; Izumitani, Shogo; Fujimine, Tomoko; Onishi, Takeo; Genba, Katsuhiro [Kurashiki Daiichi Hospital, Department of Radiology, Kurashiki, Okayama (Japan)
2013-08-15
To evaluate the feasibility of using magnetisation transfer (MT) MRI of the kidney at 3.0 T to assess renal function. Forty-four patients who underwent abdominal MRI on a 3.0-T system including gradient-echo (GRE) sequences with and without MT pulse were included. In each patient, MT ratio (MTR) of the renal cortex and medulla was measured by using regions of interest (ROIs) placed on the MTR map image. Regression analysis showed good correlation between estimated glomerular filtration rate (eGFR) and MTR of the renal cortex (r = -0.645, P < 0.0001). Among 44 patients, 22 were categorised as the normal renal function group and 22 were classified as the decreased eGFR group. The mean MTR of the renal cortex in patients with decreased eGFR (mean MTR, 30.7 {+-} 3.2 %) was significantly higher (P < 0.0001) than that in patients with normal renal function (mean MTR, 25.3 {+-} 2.2 %), although the mean MTRs of the renal medulla in the two groups were not significantly different. There was good correlation between eGFR and MTR of the renal cortex derived from MT MRI at 3.0 T. This technique may have the potential to evaluate the degree of renal function non-invasively in patients with renal impairment. (orig.)
International Nuclear Information System (INIS)
Ito, Katsuyoshi; Hayashida, Minoru; Izumitani, Shogo; Fujimine, Tomoko; Onishi, Takeo; Genba, Katsuhiro
2013-01-01
To evaluate the feasibility of using magnetisation transfer (MT) MRI of the kidney at 3.0 T to assess renal function. Forty-four patients who underwent abdominal MRI on a 3.0-T system including gradient-echo (GRE) sequences with and without MT pulse were included. In each patient, MT ratio (MTR) of the renal cortex and medulla was measured by using regions of interest (ROIs) placed on the MTR map image. Regression analysis showed good correlation between estimated glomerular filtration rate (eGFR) and MTR of the renal cortex (r = -0.645, P < 0.0001). Among 44 patients, 22 were categorised as the normal renal function group and 22 were classified as the decreased eGFR group. The mean MTR of the renal cortex in patients with decreased eGFR (mean MTR, 30.7 ± 3.2 %) was significantly higher (P < 0.0001) than that in patients with normal renal function (mean MTR, 25.3 ± 2.2 %), although the mean MTRs of the renal medulla in the two groups were not significantly different. There was good correlation between eGFR and MTR of the renal cortex derived from MT MRI at 3.0 T. This technique may have the potential to evaluate the degree of renal function non-invasively in patients with renal impairment. (orig.)
A finite volume procedure for fluid flow, heat transfer and solid-body stress analysis
Jagad, P. I.; Puranik, B. P.; Date, A. W.
2018-01-01
A unified cell-centered unstructured mesh finite volume procedure is presented for fluid flow, heat transfer and solid-body stress analysis. An in-house procedure (A. W. Date, Solution of Transport Equations on Unstructured Meshes with Cell
Numerical analysis of fluid flow and heat transfer in a helical ...
African Journals Online (AJOL)
DR OKE
International Journal of Engineering, Science and Technology ... Numerical analysis of fluid flow and heat transfer in a helical rectangular .... by comparing the results of a conical spiral tube bundle modeled using the same software with that of.
Analysis of wall-function approaches using two-equation turbulence models
Energy Technology Data Exchange (ETDEWEB)
Albets-Chico, X.; Perez-Segarra, C.D.; Oliva, A. [Centre Tecnologic de Transferencia de Calor, Universitat Politecnica de Catalunya (UPC), ETSEIAT, C/ Colom, 11, 08222 Terrassa (Barcelona) (Spain); Bredberg, J. [Multi-physics/CFD Epsilon, HighTech AB Lindholmspiren 9, SE-41756 Gothenburg (Sweden)
2008-09-15
This paper focuses the attention on the drawbacks and abilities of wall-function techniques through an analysis of well-known wall-functions from literature. Besides this, some deeper analysis of these tools by means of physical and numerical considerations are carried out in order to improve their limitations when they are applied to predict heat transfer and fluid flow. Accuracy, grid-sensitivity, numerical behaviour and verification of numerical simulations are key aspects in this paper. The main purpose is to obtain tools which are able to predict both fluid flow and heat transfer with low CPU time consumption, reduced grid-sensitivity and a relatively good accuracy. (author)
Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong
2006-03-01
Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.
Bershtein, Shimon; Serohijos, Adrian W R; Bhattacharyya, Sanchari; Manhart, Michael; Choi, Jeong-Mo; Mu, Wanmeng; Zhou, Jingwen; Shakhnovich, Eugene I
2015-10-01
Horizontal gene transfer (HGT) plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR), with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90%) in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM), correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the intracellular
Directory of Open Access Journals (Sweden)
Shimon Bershtein
2015-10-01
Full Text Available Horizontal gene transfer (HGT plays a central role in bacterial evolution, yet the molecular and cellular constraints on functional integration of the foreign genes are poorly understood. Here we performed inter-species replacement of the chromosomal folA gene, encoding an essential metabolic enzyme dihydrofolate reductase (DHFR, with orthologs from 35 other mesophilic bacteria. The orthologous inter-species replacements caused a marked drop (in the range 10-90% in bacterial growth rate despite the fact that most orthologous DHFRs are as stable as E.coli DHFR at 37°C and are more catalytically active than E. coli DHFR. Although phylogenetic distance between E. coli and orthologous DHFRs as well as their individual molecular properties correlate poorly with growth rates, the product of the intracellular DHFR abundance and catalytic activity (kcat/KM, correlates strongly with growth rates, indicating that the drop in DHFR abundance constitutes the major fitness barrier to HGT. Serial propagation of the orthologous strains for ~600 generations dramatically improved growth rates by largely alleviating the fitness barriers. Whole genome sequencing and global proteome quantification revealed that the evolved strains with the largest fitness improvements have accumulated mutations that inactivated the ATP-dependent Lon protease, causing an increase in the intracellular DHFR abundance. In one case DHFR abundance increased further due to mutations accumulated in folA promoter, but only after the lon inactivating mutations were fixed in the population. Thus, by apparently distinguishing between self and non-self proteins, protein homeostasis imposes an immediate and global barrier to the functional integration of foreign genes by decreasing the intracellular abundance of their products. Once this barrier is alleviated, more fine-tuned evolution occurs to adjust the function/expression of the transferred proteins to the constraints imposed by the
HEMS inter-facility transfer: a case-mix analysis.
Di Rocco, Damien; Pasquier, Mathieu; Albrecht, Eric; Carron, Pierre-Nicolas; Dami, Fabrice
2018-05-16
Helicopter emergency medical services (HEMS) are popular rescue systems despite inconsistent evidence in the scientific literature to support their use for primary interventions, as well as for inter-facility transfer (IFT). There is little research about IFT by HEMS, hence questions remain about the appropriateness of this method of transport. The aim of this study was to describe a case-mix of operational and medical characteristics for IFT activity of a sole HEMS base, and identify indicators of over-triage. This is a retrospective study on HEMS IFT over 36 months, from January 1st 2013 to December 31st 2015. Medical and operational data from the database of the Emergency Department of Lausanne University Hospital, which provides the emergency physicians for this helicopter base, were reviewed. It included distance and time of flight transport, type of care during flight, and estimated distance of transport if conducted by ground. There were 2194 HEMS missions including 979 IFT (44.6%). Most transfers involved adults (> 17 years old; 799 patients, 81.6%). Forty patients (4.1%) were classified as having benefitted from resuscitation or life-saving measures performed in flight, 615 (62.8%) from emergency treatment and 324 (33.1%) from simple clinical examination. The median distance by air between hospitals was 35.4 km. The estimated median distance by road was 47.7 km. The median duration time from origin to destination by air was 12 min. This case-mix of IFTs by HEMS presents a high severity. There are many signs in favour of over-triage. We propose indicators to help choosing whether HEMS is the most appropriate mean of transport to perform the transfer regarding patient condition, geography, and medical competences available aboard ground ambulances; this may reduce over-triage.
Theoretical analysis of polarized structure functions
International Nuclear Information System (INIS)
Altarelli, G.; ); Ball, R.D.; Forte, S.; Ridolfi, G.
1998-01-01
We review the analysis of polarized structure function data using perturbative QCD and NLO We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involving in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature. (author)
Theoretical Analysis of Polarized Structure Functions
Altarelli, Guido; Forte, Stefano; Ridolfi, G
1998-01-01
We review the analysis of polarized structure function data using perturbative QCD at next-to-leading order. We use the most recent experimental data to obtain updated results for polarized parton distributions, first moments and the strong coupling. We also discuss several theoretical issues involved in this analysis and in the interpretation of its results. Finally, we compare our results with other similar analyses in the recent literature.
Dimensional analysis of boiling heat transfer burnout conditions
International Nuclear Information System (INIS)
El-Mitwally, E.S.; Raafat, N.M.; Darwish, M.A.
1979-01-01
The first criteria in boiling water systems design, such as boiling water reactors, is that no burnout in the core is allowed to exist under any conditions of the reactor operation either during steady state operation or during any of the several postulated accidental transients, such as sudden interruption of coolant flow in the reactor core (due to pump failure or blockage of fuel channel). The aim of the present work is to obtain a correlation for the critical heat flux based on a theoretical study where the mechanism of burn out and the related hydrodynamic and heat transfer equations are considered. 8 refs
Two-dimensional nonlinear transient heat transfer analysis of variable section pin fins
Energy Technology Data Exchange (ETDEWEB)
Malekzadeh, P. [Department of Mechanical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran); Rahideh, H. [Department of Chemical Engineering, School of Engineering, Persian Gulf University, Boushehr 75168 (Iran)
2009-04-15
The two-dimensional nonlinear transient heat transfer analysis of variable cross section pin-fins is studied using the incremental differential quadrature method (IDQM) as a simple, accurate, and computationally efficient numerical tool. The formulations are general so that it can easily be used for arbitrary continuously varying cross section pin fins with the spatial-temperature dependent thermal parameters. On all external surfaces of the pin fin, the convective-radiative condition is considered. The effects of two different types of boundary conditions at the base of pin fin are investigated: time and spatial dependent temperature, and the convection heat transfer. The thermal conductivity of the pin fin is assumed to vary as a linear function of the temperature. The accuracy of the method is demonstrated by comparing its results with those generated by finite difference method. It is shown that using few grid points, results in excellent agreements with those of FDM are obtained. Less computational efforts of the method with respect to finite difference method is shown. (author)
Swindles, Graeme T; Reczuga, Monika; Lamentowicz, Mariusz; Raby, Cassandra L; Turner, T Edward; Charman, Dan J; Gallego-Sala, Angela; Valderrama, Elvis; Williams, Christopher; Draper, Frederick; Honorio Coronado, Euridice N; Roucoux, Katherine H; Baker, Tim; Mullan, Donal J
2014-08-01
Tropical peatlands represent globally important carbon sinks with a unique biodiversity and are currently threatened by climate change and human activities. It is now imperative that proxy methods are developed to understand the ecohydrological dynamics of these systems and for testing peatland development models. Testate amoebae have been used as environmental indicators in ecological and palaeoecological studies of peatlands, primarily in ombrotrophic Sphagnum-dominated peatlands in the mid- and high-latitudes. We present the first ecological analysis of testate amoebae in a tropical peatland, a nutrient-poor domed bog in western (Peruvian) Amazonia. Litter samples were collected from different hydrological microforms (hummock to pool) along a transect from the edge to the interior of the peatland. We recorded 47 taxa from 21 genera. The most common taxa are Cryptodifflugia oviformis, Euglypha rotunda type, Phryganella acropodia, Pseudodifflugia fulva type and Trinema lineare. One species found only in the southern hemisphere, Argynnia spicata, is present. Arcella spp., Centropyxis aculeata and Lesqueresia spiralis are indicators of pools containing standing water. Canonical correspondence analysis and non-metric multidimensional scaling illustrate that water table depth is a significant control on the distribution of testate amoebae, similar to the results from mid- and high-latitude peatlands. A transfer function model for water table based on weighted averaging partial least-squares (WAPLS) regression is presented and performs well under cross-validation (r(2)(apparent)= 0.76, RMSE = 4.29; r(2)(jack)= 0.68, RMSEP =5.18). The transfer function was applied to a 1-m peat core, and sample-specific reconstruction errors were generated using bootstrapping. The reconstruction generally suggests near-surface water tables over the last 3,000 years, with a shift to drier conditions at c. cal. 1218-1273 AD.
Comparison of Estimation Techniques for Vibro-Acoustic Transfer Path Analysis
Directory of Open Access Journals (Sweden)
Paulo Eduardo França Padilha
2006-01-01
Full Text Available Vibro-acoustic Transfer Path Analysis (TPA is a tool to evaluate the contribution of different energy propagation paths between a source and a receiver, linked to each other by a number of connections. TPA is typically used to quantify and rank the relative importance of these paths in a given frequency band, determining the most significant one to the receiver. Basically, two quantities have to be determined for TPA: the operational forces at each transfer path and the Frequency Response Functions (FRF of these paths. The FRF are obtained either experimentally or analytically, and the influence of the mechanical impedance of the source can be taken into account or not. The operational forces can be directly obtained from measurements using force transducers or indirectly estimated from auxiliary response measurements. Two methods to obtain the operational forces indirectly – the Complex Stiffness Method (CSM and the Matrix Inversion Method (MIM – associated with two possible configurations to determine the FRF – including and excluding the source impedance – are presented and discussed in this paper. The effect of weak and strong coupling among the paths is also commented considering the techniques previously presented. The main conclusion is that, with the source removed, CSM gives more accurate results. On the other hand, with the source present, MIM is preferable. In the latter case, CSM should be used only if there is a high impedance mismatch between the source and the receiver. Both methods are not affected by a higher or lower degree of coupling among the transfer paths.
Hwang, Sang-Yeon; Kim, Jaewook; Kim, Woo Youn
2018-04-04
In theoretical charge-transfer research, calculation of the electronic coupling element is crucial for examining the degree of the electronic donor-acceptor interaction. The tunneling current (TC), representing the magnitudes and directions of electron flow, provides a way of evaluating electronic couplings, along with the ability of visualizing how electrons flow in systems. Here, we applied the TC theory to π-conjugated organic dimer systems, in the form of our fragment-orbital tunneling current (FOTC) method, which uses the frontier molecular-orbitals of system fragments as diabatic states. For a comprehensive test of FOTC, we assessed how reasonable the computed electronic couplings and the corresponding TC densities are for the hole- and electron-transfer databases HAB11 and HAB7. FOTC gave 12.5% mean relative unsigned error with regard to the high-level ab initio reference. The shown performance is comparable with that of fragment-orbital density functional theory, which gave the same error by 20.6% or 13.9% depending on the formulation. In the test of a set of nucleobase π stacks, we showed that the original TC expression is also applicable to nondegenerate cases under the condition that the overlap between the charge distributions of diabatic states is small enough to offset the energy difference. Lastly, we carried out visual analysis on the FOTC densities of thiophene dimers with different intermolecular alignments. The result depicts an intimate topological connection between the system geometry and electron flow. Our work provides quantitative and qualitative grounds for FOTC, showing it to be a versatile tool in characterization of molecular charge-transfer systems.
Reliability analysis of software based safety functions
International Nuclear Information System (INIS)
Pulkkinen, U.
1993-05-01
The methods applicable in the reliability analysis of software based safety functions are described in the report. Although the safety functions also include other components, the main emphasis in the report is on the reliability analysis of software. The check list type qualitative reliability analysis methods, such as failure mode and effects analysis (FMEA), are described, as well as the software fault tree analysis. The safety analysis based on the Petri nets is discussed. The most essential concepts and models of quantitative software reliability analysis are described. The most common software metrics and their combined use with software reliability models are discussed. The application of software reliability models in PSA is evaluated; it is observed that the recent software reliability models do not produce the estimates needed in PSA directly. As a result from the study some recommendations and conclusions are drawn. The need of formal methods in the analysis and development of software based systems, the applicability of qualitative reliability engineering methods in connection to PSA and the need to make more precise the requirements for software based systems and their analyses in the regulatory guides should be mentioned. (orig.). (46 refs., 13 figs., 1 tab.)
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
2011-01-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids. PMID:21711932
Directory of Open Access Journals (Sweden)
JUNG-SIK CHOI
2014-06-01
Full Text Available In this study, we proposed a newly designed sulfuric acid transfer system for the sulfur-iodine (SI thermochemical cycle. The proposed sulfuric acid transfer system was evaluated using a computational fluid dynamics (CFD analysis for investigating thermodynamic/hydrodynamic characteristics and material properties. This analysis was conducted to obtain reliable continuous operation parameters; in particular, a thermal analysis was performed on the bellows box and bellows at amplitudes and various frequencies (0.1, 0.5, and 1.0 Hz. However, the high temperatures and strongly corrosive operating conditions of the current sulfuric acid system present challenges with respect to the structural materials of the transfer system. To resolve this issue, we designed a novel transfer system using polytetrafluoroethylene (PTFE, Teflon® as a bellows material for the transfer of sulfuric acid. We also carried out a CFD analysis of the design. The CFD results indicated that the maximum applicable temperature of PTFE is about 533 K (260 °C, even though its melting point is around 600 K. This result implies that the PTFE is a potential material for the sulfuric acid transfer system. The CFD simulations also confirmed that the sulfuric acid transfer system was designed properly for this particular investigation.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
Sergis, Antonis; Hardalupas, Yannis
2011-05-01
This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
Anomalous heat transfer modes of nanofluids: a review based on statistical analysis
Directory of Open Access Journals (Sweden)
Sergis Antonis
2011-01-01
Full Text Available Abstract This paper contains the results of a concise statistical review analysis of a large amount of publications regarding the anomalous heat transfer modes of nanofluids. The application of nanofluids as coolants is a novel practise with no established physical foundations explaining the observed anomalous heat transfer. As a consequence, traditional methods of performing a literature review may not be adequate in presenting objectively the results representing the bulk of the available literature. The current literature review analysis aims to resolve the problems faced by researchers in the past by employing an unbiased statistical analysis to present and reveal the current trends and general belief of the scientific community regarding the anomalous heat transfer modes of nanofluids. The thermal performance analysis indicated that statistically there exists a variable enhancement for conduction, convection/mixed heat transfer, pool boiling heat transfer and critical heat flux modes. The most popular proposed mechanisms in the literature to explain heat transfer in nanofluids are revealed, as well as possible trends between nanofluid properties and thermal performance. The review also suggests future experimentation to provide more conclusive answers to the control mechanisms and influential parameters of heat transfer in nanofluids.
International Nuclear Information System (INIS)
Olsen, A.; Skjerpe, P.
1989-01-01
This report describes a computer program which is useful in high resolution microscopy. The program is written in EBASIC and calculates the weak phase object contrast transfer function as function of instrumental and imaging parameters. The function is plotted on the PC graphics screen, and by a Print Screen command the function can be copied to the printer. The program runs on both the Hercules graphic card and the IBM CGA card. 2 figs
Adaptive Analysis of Functional MRI Data
International Nuclear Information System (INIS)
Friman, Ola
2003-01-01
Functional Magnetic Resonance Imaging (fMRI) is a recently developed neuro-imaging technique with capacity to map neural activity with high spatial precision. To locate active brain areas, the method utilizes local blood oxygenation changes which are reflected as small intensity changes in a special type of MR images. The ability to non-invasively map brain functions provides new opportunities to unravel the mysteries and advance the understanding of the human brain, as well as to perform pre-surgical examinations in order to optimize surgical interventions. This dissertation introduces new approaches for the analysis of fMRI data. The detection of active brain areas is a challenging problem due to high noise levels and artifacts present in the data. A fundamental tool in the developed methods is Canonical Correlation Analysis (CCA). CCA is used in two novel ways. First as a method with the ability to fully exploit the spatio-temporal nature of fMRI data for detecting active brain areas. Established analysis approaches mainly focus on the temporal dimension of the data and they are for this reason commonly referred to as being mass-univariate. The new CCA detection method encompasses and generalizes the traditional mass-univariate methods and can in this terminology be viewed as a mass-multivariate approach. The concept of spatial basis functions is introduced as a spatial counterpart of the temporal basis functions already in use in fMRI analysis. The spatial basis functions implicitly perform an adaptive spatial filtering of the fMRI images, which significantly improves detection performance. It is also shown how prior information can be incorporated into the analysis by imposing constraints on the temporal and spatial models and a constrained version of CCA is devised to this end. A general Principal Component Analysis technique for generating and constraining temporal and spatial subspace models is proposed to be used in combination with the constrained CCA
Three-Dimensional Heat Transfer Analysis of Metal Fasteners in Roofing Assemblies
Directory of Open Access Journals (Sweden)
Manan Singh
2016-11-01
Full Text Available Heat transfer analysis was performed on typical roofing assemblies using HEAT3, a three-dimensional heat transfer analysis software. The difference in heat transferred through the roofing assemblies considered is compared between two cases—without any steel fasteners and with steel fasteners. In the latter case, the metal roofing fasteners were arranged as per Factor Mutual Global (FMG approvals, in the field, perimeter, and corner zones of the roof. The temperature conditions used for the analysis represented summer and winter conditions for three separate Climate Zones (CZ namely Climate Zone 2 or CZ2 represented by Orlando, FL; CZ3 represented by Atlanta, GA; and CZ6 zone represented by St. Paul, MN. In all the climatic conditions, higher energy transfer was observed with increase in the number of metal fasteners attributed to high thermal conductivity of metals as compared to the insulation and other materials used in the roofing assembly. This difference in heat loss was also quantified in the form of percentage change in the overall or effective insulation of the roofing assembly for better understanding of the practical aspects. Besides, a comparison of 2D heat transfer analysis (using THERM software and 3D analysis using HEAT3 is also discussed proving the relevance of 3D over 2D heat transfer analysis.
System analysis for technology transfer readiness assessment of horticultural postharvest
Hayuningtyas, M.; Djatna, T.
2018-04-01
Availability of postharvest technology is becoming abundant, but only a few technologies are applicable and useful to a wider community purposes. Based on this problem it requires a significant readiness level of transfer technology approach. This system is reliable to access readiness a technology with level, from 1-9 and to minimize time of transfer technology in every level, time required technology from the selection process can be minimum. Problem was solved by using Relief method to determine ranking by weighting feasible criteria on postharvest technology in each level and PERT (Program Evaluation Review Technique) to schedule. The results from ranking process of post-harvest technology in the field of horticulture is able to pass level 7. That, technology can be developed to increase into pilot scale and minimize time required for technological readiness on PERT with optimistic time of 7,9 years. Readiness level 9 shows that technology has been tested on the actual conditions also tied with estimated production price compared to competitors. This system can be used to determine readiness of technology innovation that is derived from agricultural raw materials and passes certain stages.
Primary design and operation analysis of ITER air transfer system
International Nuclear Information System (INIS)
Wang Haitian; Li Ge; Qin Shijun
2010-01-01
Air transfer system (ATS) is a remote handling transfer, which can work in the nuclear radiation environment and can be driven by the electricity fully. Its motion power is provided by several servo motors. The remote control technology of ATS, which is China taking part in the plan of international Tokamak experimental reactor (ITER) and grasping this technology, is one of key technologies of ITER. The remote handling technology can lay the foundation for developing demonstration nuclear fusion power plant in China on self-reliance. Because there is gamma irradiation and hazard material in these ITER parts, all required maintenance of port plugs and inner components are been transmitted by ATS. The pick-up or drop-off these components are completed by means of a remotely controlled TCS system between the Vacuum Vessel and the Hot Cell through the bridge-gallery. Tokamak building includes three floors, including upper port, equatorial port and lower port, linked by a lift. According to each port level configuration and safety requirement, the radius of curvature with ATS trajectory is optimized, and a trajectory of each level is determined by positioned guidance beacons. At last, the results of computer aided design (CAD) show single trajectory guidance of ATS in each level is available. (authors)
Real-time digital signal recovery for a multi-pole low-pass transfer function system.
Lee, Jhinhwan
2017-08-01
In order to solve the problems of waveform distortion and signal delay by many physical and electrical systems with multi-pole linear low-pass transfer characteristics, a simple digital-signal-processing (DSP)-based method of real-time recovery of the original source waveform from the distorted output waveform is proposed. A mathematical analysis on the convolution kernel representation of the single-pole low-pass transfer function shows that the original source waveform can be accurately recovered in real time using a particular moving average algorithm applied on the input stream of the distorted waveform, which can also significantly reduce the overall delay time constant. This method is generalized for multi-pole low-pass systems and has noise characteristics of the inverse of the low-pass filter characteristics. This method can be applied to most sensors and amplifiers operating close to their frequency response limits to improve the overall performance of data acquisition systems and digital feedback control systems.
Functional data analysis of sleeping energy expenditure
Adequate sleep is crucial during childhood for metabolic health, and physical and cognitive development. Inadequate sleep can disrupt metabolic homeostasis and alter sleeping energy expenditure (SEE). Functional data analysis methods were applied to SEE data to elucidate the population structure of ...
XPS analysis of the effect of fillers on PTFE transfer film development in sliding contacts
Blanchet, T. A.; Kennedy, F. E.; Jayne, D. T.
1993-01-01
The development of transfer films atop steel counterfaces in contact with unfilled and bronze-filled PTFE has been studied using X-ray photoelectron spectroscopy. The sliding apparatus was contained within the vacuum of the analytical system, so the effects of the native oxide, hydrocarbon, and adsorbed gaseous surface layers of the steel upon the PTFE transfer behavior could be studied in situ. For both the filled and the unfilled PTFE, cleaner surfaces promoted greater amounts of transfer. Metal fluorides, which formed at the transfer film/counterface interface, were found solely in cases where the native oxide had been removed to expose the metallic surface prior to sliding. These fluorides also were found at clean metal/PTFE interfaces formed in the absence of frictional contact. A fraction of these fluorides resulted from irradiation damage inherent in XPS analysis. PTFE transfer films were found to build up with repeated sliding passes, by a process in which strands of transfer filled in the remaining counterface area. Under these reported test conditions, the transfer process is not expected to continue atop previously deposited transfer films. The bronze-filled composite generated greater amounts of transfer than the unfilled PTFE. The results are discussed relative to the observed increase in wear resistance imparted to PTFE by a broad range of inorganic fillers.
Proton transfer along water bridges in biological systems with density-functional tight-binding
Reiss, Krystle; Wise, Abigail; Mazzuca, James
2015-03-01
When examining the dynamics of charge transfer in high dimensional enzymatic systems, the cost of quantum mechanical treatment of electrons increases exponentially with the size of the system. As a semi-empirical method, density-functional tight-binding aids in shortening these calculation times, but can be inaccurate in the regime where bonds are being formed and broken. To address these inaccuracies with respect to proton transfer in an enzymatic system, DFTB is being used to calculate small model systems containing only a single amino acid residue donor, represented by an imidazole molecule, and a water acceptor. When DFTB calculations are compared to B3LYP geometry calculations of the donor molecule, we observe a bond angle error on the order of 1.2 degrees and a bond length error on the order of 0.011 Å. As we move forward with small donor-acceptor systems, comparisons between DFTB and B3LYP energy profiles will provide a better clue as to what extent improvements need to be made. To improve the accuracy of the DFTB calculations, the internuclear repulsion term may be altered. This would result in energy profiles that closely resemble those produced by higher-level theory. Alma College Provost's Office.
Directory of Open Access Journals (Sweden)
Anne-Sophie Dugast
Full Text Available Recent immune correlates analysis from the RV144 vaccine trial has renewed interest in the role of non-neutralizing antibodies in mediating protection from infection. While neutralizing antibodies have proven difficult to induce through vaccination, extra-neutralizing antibodies, such as those that mediate antibody-dependent cellular cytotoxicity (ADCC, are associated with long-term control of infection. However, while several non-neutralizing monoclonal antibodies have been tested for their protective efficacy in vivo, no studies to date have tested the protective activity of naturally produced polyclonal antibodies from individuals harboring potent ADCC activity. Because ADCC-inducing antibodies are highly enriched in elite controllers (EC, we passively transferred highly functional non-neutralizing polyclonal antibodies, purified from an EC, to assess the potential impact of polyclonal non-neutralizing antibodies on a stringent SHIV-SF162P3 challenge in rhesus monkeys. Passive transfer of a low-dose of ADCC inducing antibodies did not protect from infection following SHIV-SF162P3 challenge. Passively administered antibody titers and gp120-specific, but not gp41-specific, ADCC and antibody induced phagocytosis (ADCP were detected in the majority of the monkeys, but did not correlate with post infection viral control. Thus these data raise the possibility that gp120-specific ADCC activity alone may not be sufficient to control viremia post infection but that other specificities or Fc-effector profiles, alone or in combination, may have an impact on viral control and should be tested in future passive transfer experiments.
International Nuclear Information System (INIS)
Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin
2013-01-01
Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a
Energy Technology Data Exchange (ETDEWEB)
Cheng, Lei; Liu, Yi; Zhao, Hua; Zhang, Wen; Guo, Ying-Jun; Nie, Lin, E-mail: chengleiyx@126.com
2013-10-18
Highlights: •CDNF was successfully transfected by a lentiviral vector into the distal sciatic nerve. •CDNF improved S-100, NF200 expression and nerve regeneration after sciatic injury. •CDNF improved the remyelination and thickness of the regenerated sciatic nerve. •CDNF improved gastrocnemius muscle weight and sciatic functional recovery. -- Abstract: Peripheral nerve injury is often followed by incomplete and unsatisfactory functional recovery and may be associated with sensory and motor impairment of the affected limb. Therefore, a novel method is needed to improve the speed of recovery and the final functional outcome after peripheral nerve injuries. This report investigates the effect of lentiviral-mediated transfer of conserved dopamine neurotrophic factor (CDNF) on regeneration of the rat peripheral nerve in a transection model in vivo. We observed notable overexpression of CDNF protein in the distal sciatic nerve after recombinant CDNF lentiviral vector application. We evaluated sciatic nerve regeneration after surgery using light and electron microscopy and the functional recovery using the sciatic functional index and target muscle weight. HE staining revealed better ordered structured in the CDNF-treated group at 8 weeks post-surgery. Quantitative analysis of immunohistochemistry of NF200 and S-100 in the CDNF group revealed significant improvement of axonal and Schwann cell regeneration compared with the control groups at 4 weeks and 8 weeks after injury. The thickness of the myelination around the axons in the CDNF group was significantly higher than in the control groups at 8 weeks post-surgery. The CDNF group displayed higher muscle weights and significantly increased sciatic nerve index values. Our findings suggest that CDNF gene therapy could provide durable and stable CDNF protein concentration and has the potential to enhance peripheral nerve regeneration, morphological and functional recovery following nerve injury, which suggests a
Energy Technology Data Exchange (ETDEWEB)
Yoo, Jae Hwan; Yoon, Jun Kyu [Gachon Univ., Seongnam (Korea, Republic of)
2013-04-15
In this study, the characteristics of the heat transfer coefficient and pressure drop were numerically analyzed according to the axis ratio (A R), pitch, location of vortex generator, and bump phase of the tube surface about an elliptical fin-tube heat exchanger. The boundary condition for CAD analysis was decided as a tube surface temperature of 348 K and inlet air velocity of 1.5 m/s. RCM 7th turbulent model was chosen as the numerical analysis for the sensitivity level. The analysis results indicated that the A R and transverse pitch decreased whereas the heat transfer coefficient increased. On the other hand, there was little difference in the longitudinal pitch. Furthermore, the heat transfer rate was more favorable when the vortex generator was located in front of the tube. Also, the bump phase of the tube surface indicated that the pressure drop and heat transfer were more favorable with the circle type than with the serrated type.
Poulíčková, Aloisie; Hájková, Petra; Kintrová, Kateřina; Bat'ková, Romana; Czudková, Markéta; Hájek, Michal
2013-08-01
Central European mountain bogs, among the most valuable and threatened of habitats, were exposed to intensive human impact during the 20th century. We reconstructed the subrecent water chemistry and water-table depths using diatom based transfer functions calibrated from modern sampling. Herbarium Sphagnum specimens collected during the period 1918-1998 were used as a source of historic diatom samples. We classified samples into hummocks and hollows according to the identity of dominant Sphagnum species, to reduce bias caused by uneven sampling of particular microhabitats. Our results provide clear evidence for bog pollution by grazing during the period 1918-1947 and by undocumented aerial liming in the early 90-ies. We advocate use of herbarized epibryon as a source of information on subrecent conditions in recently polluted mires. Copyright © 2013 Elsevier Ltd. All rights reserved.
Optimized Signaling Method for High-Speed Transmission Channels with Higher Order Transfer Function
Ševčík, Břetislav; Brančík, Lubomír; Kubíček, Michal
2017-08-01
In this paper, the selected results from testing of optimized CMOS friendly signaling method for high-speed communications over cables and printed circuit boards (PCBs) are presented and discussed. The proposed signaling scheme uses modified concept of pulse width modulated (PWM) signal which enables to better equalize significant channel losses during data high-speed transmission. Thus, the very effective signaling method to overcome losses in transmission channels with higher order transfer function, typical for long cables and multilayer PCBs, is clearly analyzed in the time and frequency domain. Experimental results of the measurements include the performance comparison of conventional PWM scheme and clearly show the great potential of the modified signaling method for use in low power CMOS friendly equalization circuits, commonly considered in modern communication standards as PCI-Express, SATA or in Multi-gigabit SerDes interconnects.
Energy Technology Data Exchange (ETDEWEB)
Kim, Ki Won [Dept. of Radiology, Kyung Hee University Hospital at Gang-dong, Seoul (Korea, Republic of); Choi, Kwan Woo [Dept. of Radiology, Asan Medical Center, Seoul (Korea, Republic of); Jeong, Hoi Woun [Dept. of Radiological Technology, Baekseok Culture University, Cheonan (Korea, Republic of); Jang, Seo Goo [Dept. of Medical Science, Soonchunhyang University, Asan (Korea, Republic of); Kwon, Kyung Tae [Dept. of Radiological Technology, Dongnam Health University, Suwon (Korea, Republic of); Son, Soon Yong [Dept. of Radiological Technology, Wonkwang Health Science University, Iksan (Korea, Republic of); Son, Jin Hyun; Min, Jung Whan [Dept. of Radiological Technology, Shingu University, Sungnam (Korea, Republic of)
2016-06-15
In clinical computed tomography (CT), regular quality assurance (QA) has been required. This study is to evaluate the MTF for analyzing the spatial resolution using AAPM phantom in CT exam. The dual source somatom definition flash (siemens healthcare, forchheim, Germany), the brilliance 64 (philips medical system Netherlands) and aquilion 64 (toshiba medical system, Japan) were used in this study. The quantitative evaluation was performed using the image J (wayne rasband national institutes of health, USA) and chart method which is measurement of modulation transfer function (MTF). In MTF evaluation, the spatial frequencies corresponding to the 50% MTF for the CT systems were 0.58, 0.28, and 0.59 mm-1, respectively and the 10% MTF for the CT systems were 1.63, 0.89, and 1.21 mm-1, respectively. This study could evaluate the characteristic of spatial resolution of MTF using chart method, suggesting the quantitative evaluation method using the data.
Zhao, Hui; Li, Yingcai
2010-08-01
In a previous Letter [Opt. Lett. 33, 1171 (2008)], we proposed an improved logarithmic phase mask by making modifications to the original one designed by Sherif. However, further studies in another paper [Appl. Opt. 49, 229 (2010)] show that even when the Sherif mask and the improved one are optimized, their corresponding defocused modulation transfer functions (MTFs) are still not stable with respect to focus errors. So, by further modifying their phase profiles, we design another two logarithmic phase masks that exhibit more stable defocused MTF. However, with the defocus-induced phase effect considered, we find that the performance of the two masks proposed in this Letter is better than the Sherif mask, but worse than our previously proposed phase mask, according to the Hilbert space angle.
DEFF Research Database (Denmark)
Sivonen, Ville Pekka; Ellermeier, Wolfgang
2006-01-01
planes. Matches were obtained via a two-interval, adaptive forced-choice (2AFC) procedure for three center frequencies (0.4, 1 and 5 kHz) and two overall levels (45 and 65 dB SPL). The results showed that loudness is not constant over sound incidence angles, with directional sensitivity varying over......The effect of sound incidence angle on loudness was investigated using real sound sources positioned in an anechoic chamber. Eight normal-hearing listeners produced loudness matches between a frontal reference location and seven sources placed at other directions, both in the horizontal and median...... a range of up to 10 dB, exhibiting considerable frequency dependence, but only minor effects of overall level. The pattern of results varied substantially between subjects, but was largely accounted for by variations in individual head-related transfer functions. Modeling of binaural loudness based...
Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects
Directory of Open Access Journals (Sweden)
Diemer de Vries
2007-01-01
Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.
Chemical kinetic functional sensitivity analysis: Elementary sensitivities
International Nuclear Information System (INIS)
Demiralp, M.; Rabitz, H.
1981-01-01
Sensitivity analysis is considered for kinetics problems defined in the space--time domain. This extends an earlier temporal Green's function method to handle calculations of elementary functional sensitivities deltau/sub i//deltaα/sub j/ where u/sub i/ is the ith species concentration and α/sub j/ is the jth system parameter. The system parameters include rate constants, diffusion coefficients, initial conditions, boundary conditions, or any other well-defined variables in the kinetic equations. These parameters are generally considered to be functions of position and/or time. Derivation of the governing equations for the sensitivities and the Green's funciton are presented. The physical interpretation of the Green's function and sensitivities is given along with a discussion of the relation of this work to earlier research
Hand function evaluation: a factor analysis study.
Jarus, T; Poremba, R
1993-05-01
The purpose of this study was to investigate hand function evaluations. Factor analysis with varimax rotation was used to assess the fundamental characteristics of the items included in the Jebsen Hand Function Test and the Smith Hand Function Evaluation. The study sample consisted of 144 subjects without disabilities and 22 subjects with Colles fracture. Results suggest a four factor solution: Factor I--pinch movement; Factor II--grasp; Factor III--target accuracy; and Factor IV--activities of daily living. These categories differentiated the subjects without Colles fracture from the subjects with Colles fracture. A hand function evaluation consisting of these four factors would be useful. Such an evaluation that can be used for current clinical purposes is provided.
Yilbas, B. S.; Ibrahim, A.; Ali, H.; Khaled, M.; Laoui, T.
2018-06-01
Hydrophobic and optical transmittance characteristics of the functionalized silica particles on the glass surface prior and after transfer of graphene and graphene oxide films on the surface are examined. Nano-size silica particles are synthesized and functionalized via chemical grafting and deposited onto a glass surface. Graphene film, grown on copper substrate, was transferred onto the functionalized silica particles surface through direct fishing method. Graphene oxide layer was deposited onto the functionalized silica particles surface via spin coating technique. Morphological, hydrophobic, and optical characteristics of the functionalized silica particles deposited surface prior and after graphene and graphene oxide films transfer are examined using the analytical tools. It is found that the functionalized silica particles are agglomerated at the surface forming packed structures with few micro/nano size pores. This arrangement gives rise to water droplet contact angle and contact angle hysteresis in the order of 163° and 2°, respectively, and remains almost uniform over the entire surface. Transferring graphene and depositing graphene oxide films over the functionalized silica particles surface lowers the water droplet contact angle slightly (157-160°) and increases the contact angle hysteresis (4°). The addition of the graphene and graphene oxide films onto the surface of the deposited functionalized silica particles improves the optical transmittance.
Modulation transfer function estimation of optical lens system by adaptive neuro-fuzzy methodology
Petković, Dalibor; Shamshirband, Shahaboddin; Pavlović, Nenad T.; Anuar, Nor Badrul; Kiah, Miss Laiha Mat
2014-07-01
The quantitative assessment of image quality is an important consideration in any type of imaging system. The modulation transfer function (MTF) is a graphical description of the sharpness and contrast of an imaging system or of its individual components. The MTF is also known and spatial frequency response. The MTF curve has different meanings according to the corresponding frequency. The MTF of an optical system specifies the contrast transmitted by the system as a function of image size, and is determined by the inherent optical properties of the system. In this study, the adaptive neuro-fuzzy (ANFIS) estimator is designed and adapted to estimate MTF value of the actual optical system. Neural network in ANFIS adjusts parameters of membership function in the fuzzy logic of the fuzzy inference system. The back propagation learning algorithm is used for training this network. This intelligent estimator is implemented using Matlab/Simulink and the performances are investigated. The simulation results presented in this paper show the effectiveness of the developed method.
Accurate evaluation of modulation transfer function using the Fourier shift theorem
Kim, Yong Gwon; Ryu, Yeunchul
2017-12-01
Accurate determination of the line spread function (LSF) on the basis of the edge processing algorithm in X-ray imaging systems is one of the most basic procedures for evaluating the performance of such systems. Extensive research has been focused on algorithms for the precise or fast measurement of the LSF in digital X-ray systems. Most of the standard methods for evaluating the performance of an imaging system are based on a fully digitalized radiographic system or a film-based system. However, images obtained by computed radiography (CR), which converts a captured analog signal into a digital image through an analog-to-digital converting scanner, show the combined characteristics of analog and digital imaging systems. Fundamentally, the characteristics of digital imaging systems differ substantially from those of film imaging systems because of their different methods of acquiring and displaying image data. In addition, a system with both analog and digital component has characteristics that differ from those of both digital and analog systems. In this research, we present a new modulation transfer function (MTF) that mimics the existing MTF in terms of measurement but satisfies existing standard protocols through modification of the hypothesis contents. In the case of the LSF and the point spread function measured with a CR system, the developed edge algorithm shows better performance than the conventional methods. We also demonstrate the usefulness of this method in an actual measurement with a CR digital X-ray imaging system.
System and Method for Measuring the Transfer Function of a Guided Wave Device
Froggatt, Mark E. (Inventor); Erdogan, Turan (Inventor)
2002-01-01
A method/system are provided for measuring the NxN scalar transfer function elements for an N-port guided wave device. Optical energy of a selected wavelength is generated at a source and directed along N reference optical paths having N reference path lengths. Each reference optical path terminates in one of N detectors such that N reference signals are produced at the N detectors. The reference signals are indicative of amplitude, phase and frequency of the optical energy carried along the N reference optical paths. The optical energy from the source is also directed to the N-ports of the guided wave device and then on to each of the N detectors such that N measurement optical paths are defined between the source and each of the N detectors. A portion of the optical energy is modified in terms of at least one of the amplitude and phase to produce N modified signals at each of the N detectors. At each of the N detectors, each of the N modified signals is combined with a corresponding one of the N reference signals to produce corresponding N combined signals at each of the N detectors. A total of N(sup 2) measurement signals are generated by the N detectors. Each of the N(sup 2) measurement signals is sampled at a wave number increment (Delta)k so that N(sup 2) sampled signals are produced. The NxN transfer function elements are generated using the N(sup 2) sampled signals. Reference and measurement path length constraints are defined such that the N combined signals at each of the N detectors are spatially separated from one another in the time domain.
International Nuclear Information System (INIS)
Wang, Fuqiang; Tan, Jianyu; Wang, Zhiqiang
2014-01-01
Highlights: • Using local thermal non-equilibrium model to solve heat transfer of porous media. • CH 4 /H 2 O mixture is adopted as feeding gas of porous media receiver. • Radiative transfer equation between porous strut is solved by Rosseland approximation. • Transport and thermophysical models not included in Fluent are programmed by UDFs. • Variations of model on thermal performance of porous media receiver are studied. - Abstract: The local thermal non-equilibrium model is adopted to solve the steady state heat and mass transfer problems of porous media solar receiver. The fluid entrance surface is subjected to concentrated solar radiation, and CH 4 /H 2 O mixture is adopted as feeding gas. The radiative heat transfer equation between porous strut is solved by Rosseland approximation. The impacts of variation in transport and thermophysical characteristics model of gas mixture on thermal performance of porous media receiver are investigated. The transport and thermophysical characteristics models which are not included in software Fluent are programmed by user defined functions (UDFs). The numerical results indicate that models of momentum source term for porous media receiver have significant impact on pressure drop and static pressure distribution, and the radiative heat transfer cannot be omitted during the thermal performance analysis of porous media receiver
Directory of Open Access Journals (Sweden)
Yu Bai
2017-12-01
Full Text Available This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Bai, Yu; Jiang, Yuehua; Liu, Fawang; Zhang, Yan
2017-12-01
This paper investigates the incompressible fractional MHD Maxwell fluid due to a power function accelerating plate with the first order slip, and the numerical analysis on the flow and heat transfer of fractional Maxwell fluid has been done. Moreover the deformation motion of fluid micelle is simply analyzed. Nonlinear velocity equation are formulated with multi-term time fractional derivatives in the boundary layer governing equations, and convective heat transfer boundary condition and viscous dissipation are both taken into consideration. A newly finite difference scheme with L1-algorithm of governing equations are constructed, whose convergence is confirmed by the comparison with analytical solution. Numerical solutions for velocity and temperature show the effects of pertinent parameters on flow and heat transfer of fractional Maxwell fluid. It reveals that the fractional derivative weakens the effects of motion and heat conduction. The larger the Nusselt number is, the greater the heat transfer capacity of fluid becomes, and the temperature gradient at the wall becomes more significantly. The lower Reynolds number enhances the viscosity of the fluid because it is the ratio of the viscous force and the inertia force, which resists the flow and heat transfer.
Analysis of radiative heat transfer in the presence of obscurations
International Nuclear Information System (INIS)
Finkelstein, L.; Weissman, Y.
1981-05-01
Numerical simulation of radiative heat transfer problems in general axisymmetric geometry in the presence of an active gas is considered. Such simulation requires subdivision of the radiating surfaces into discrete elements, which are in the present case radiating rings. While the effect of a participating medium is easily taken into account by integration along the lines of vision between the surface elements, the calculation of the different obscurations poses the main difficulty. We have written a closed expression which formulates the problem exactly, and then developed a systematic and compact computational approach to the obscuration problem in complex configurations. The present procedure is particularly suited to computer calculations associated with engineering applications in the aircraft and furnace industries. (author)
Magnetization transfer analysis of cartilage repair tissue: a preliminary study
International Nuclear Information System (INIS)
Palmieri, F.; Keyzer, F. de; Maes, F.; Breuseghem, I. van
2006-01-01
To evaluate the magnetization transfer ratio (MTR) after two different cartilage repair procedures, and to compare these data with the MTR of normal cartilage. Twenty-seven patients with a proven cartilage defect were recruited: 13 were treated with autologous chondrocyte implantation (ACI) and 14 were treated with the microfracture technique (MFR). All patients underwent MRI examinations with MT-sequences before the surgical treatment, after 12 months (26 patients) and after 24 months (11 patients). Eleven patients received a complete follow-up study at all three time points (five of the ACI group and six of the MFR group). All images were transferred to a workstation to calculate MTR images. For every MT image set, different ROIs were delineated by two radiologists. Means were calculated per ROI type in the different time frames and in both groups of cartilage repair. The data were analyzed with unpaired t- and ANOVA tests, and by calculating Pearson's correlation coefficient. No significant differences were found in the MTR of fatty bone marrow, muscle and normal cartilage in the different time frames. There was a significant but small difference between the MTR of normal cartilage and the cartilage repair area after 12 months for both procedures. After 24 months, the MTR of ACI repaired cartilage (0.31±0.07) was not significantly different from normal cartilage MTR (0.34±0.05). The MTR of MFR repaired cartilage (0.28±0.02), still showed a significant difference from normal cartilage. The differences between damaged and repaired cartilage MTR are too small to enable MT-imaging to be a useful tool for postoperative follow-up of cartilage repair procedures. There is, however, an evolution towards normal MTR-values in the cartilage repair tissue (especially after ACI repair). (orig.)
Single phase-change analysis of two different PCMs filled in a heat transfer module
Energy Technology Data Exchange (ETDEWEB)
Lee, Dong Gyu; Kang, Chae Dong [Chonbuk National University, Jeonju (Korea, Republic of); Kim, Hyung Kuk [Hyundai Heavy Industries Co., Ulsan (Korea, Republic of)
2014-07-15
Phase change material(PCM) is tried to secondary heat source in solar heat pump system. A numerical study of the phase change dominant heat transfer is done with a heat transfer module, which consists of a water path(BRINE), heat transfer plates(HTP), and PCM layers of high-temperature one(HPCM, 78-79 .deg. C) and low-temperature one(LPCM, 28-29 .deg. C). There are five arrangements consisting of BRINE, HTP, HPCM, and LPCM layers in the heat transfer module. The time and heat transfer rate for PCM melting/solidification are compared between arrangements. And the numerical time without convection is compared to the experimental one for melting/solidification. From the numerical analysis, the time for melting/solidification is different to 10 hours, depending on the arrangement.