WorldWideScience

Sample records for transfer enhancement due

  1. Experimental study of heat transfer enhancement due to the surface vibrations in a flexible double pipe heat exchanger

    Science.gov (United States)

    Hosseinian, A.; Meghdadi Isfahani, A. H.

    2018-04-01

    In this study, the heat transfer enhancement due to the surface vibration for a double pipe heat exchanger, made of PVDF, is investigated. In order to create forced vibrations (3-9 m/s2, 100 Hz) on the outer surface of the heat exchanger electro-dynamic vibrators are used. Experiments were performed at inner Reynolds numbers ranging from 2533 to 9960. The effects of volume flow rate and temperature on heat transfer performance are evaluated. Results demonstrated that heat transfer coefficient increases by increasing vibration level and mass flow rate. The most increase in heat transfer coefficient is 97% which is obtained for the highest vibration level (9 m/s2) in the experiment range.

  2. Numerical study of heat transfer enhancement due to the use of fractal-shaped design for impingement cooling

    Directory of Open Access Journals (Sweden)

    Cai Lin

    2017-01-01

    Full Text Available This paper describes a numerical analysis of a heat transfer enhancement technique that introduces fractal-shaped design for impingement cooling. Based on the gas turbine combustion chamber cooling, a fractal-shaped nozzle is designed for the constant flow area in a single impingement cooling model. The incompressible Reynolds-averaged Navier-Stokes equations are applied to the system using CFD software. The numerical results are compared with the experiment results for array impingement cooling.

  3. Heat transfer enhancement

    International Nuclear Information System (INIS)

    Hasatani, Masanobu; Itaya, Yoshinori

    1985-01-01

    In order to develop energy-saving techniques and new energy techniques, and also most advanced techniques by making industrial equipment with high performance, heat transfer performance frequently becomes an important problem. In addition, the improvement of conventional heat transfer techniques and the device of new heat transfer techniques are often required. It is most proper that chemical engineers engage in the research and development for enhancing heat transfer. The research and development for enhancing heat transfer are important to heighten heat exchange efficiency or to cool equipment for preventing overheat in high temperature heat transfer system. In this paper, the techniques of enhancing radiative heat transfer and the improvement of radiative heat transfer characteristics are reported. Radiative heat transfer is proportional to fourth power of absolute temperature, and it does not require any heat transfer medium, but efficient heat-radiation converters are necessary. As the techniques of enhancing radiative heat transfer, the increase of emission and absorption areas, the installation of emissive structures and the improvement of radiative characteristics are discussed. (Kako, I.)

  4. Enhanced Condensation Heat Transfer

    Science.gov (United States)

    Rose, John Winston

    The paper gives some personal observations on various aspects of enhanced condensation heat transfer. The topics discussed are external condensation (horizontal low-finned tubes and wire-wrapped tubes), internal condensation (microfin tubes and microchannels) and Marangoni condensation of binary mixtures.

  5. Coherently Enhanced Wireless Power Transfer

    OpenAIRE

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alu, Andrea

    2017-01-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load, which is not easily implemented in near-field WPT. Here, we introduce the concept of coherently enhanced wireless power transfer. We show that a principle similar to the on...

  6. Heat transfer enhancement using 2MHz ultrasound.

    Science.gov (United States)

    Bulliard-Sauret, Odin; Ferrouillat, Sebastien; Vignal, Laure; Memponteil, Alain; Gondrexon, Nicolas

    2017-11-01

    The present work focuses on possible heat transfer enhancement from a heating plate towards tap water in forced convection by means of 2MHz ultrasound. The thermal approach allows to observe the increase of local convective heat transfer coefficients in the presence of ultrasound and to deduce a correlation between ultrasound power and Nusselt number. Heat transfer coefficient under ultrasound remains constant while heat transfer coefficient under silent conditions increases with Reynolds number from 900 up to 5000. Therefore, heat transfer enhancement factor ranges from 25% up to 90% for the same energy conditions (supplied ultrasonic power=110W and supplied thermal power=450W). In the same time cavitational activity due to 2MHz ultrasound emission was characterized from mechanical and chemical viewpoints without significant results. At least, Particle Image Velocimetry (PIV) measurements have been performed in order to investigate hydrodynamic modifications due to the presence of 2MHz ultrasound. It was therefore possible to propose a better understanding of heat transfer enhancement mechanism with high frequency ultrasound. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. Advances in heat transfer enhancement

    CERN Document Server

    Saha, Sujoy Kumar; Sundén, Bengt; Wu, Zan

    2016-01-01

    This Brief addresses the phenomena of heat transfer enhancement. A companion edition in the SpringerBrief Subseries on Thermal Engineering and Applied Science to three other monographs including “Critical Heat Flux in Flow Boiling in Microchannels,” this volume is idea for professionals, researchers, and graduate students concerned with electronic cooling.

  8. Coherently Enhanced Wireless Power Transfer

    Science.gov (United States)

    Krasnok, Alex; Baranov, Denis G.; Generalov, Andrey; Li, Sergey; Alù, Andrea

    2018-04-01

    Extraction of electromagnetic energy by an antenna from impinging external radiation is at the basis of wireless communications and wireless power transfer (WPT). The maximum of transferred energy is ensured when the antenna is conjugately matched, i.e., when it is resonant and it has an equal coupling with free space and its load. This condition, however, can be easily affected by changes in the environment, preventing optimal operation of a WPT system. Here, we introduce the concept of coherently enhanced WPT that allows us to bypass this difficulty and achieve dynamic control of power transfer. The approach relies on coherent excitation of the waveguide connected to the antenna load with a backward propagating signal of specific amplitude and phase. This signal creates a suitable interference pattern at the load resulting in a modification of the local wave impedance, which in turn enables conjugate matching and a largely increased amount of extracted energy. We develop a simple theoretical model describing this concept, demonstrate it with full-wave numerical simulations for the canonical example of a dipole antenna, and verify experimentally in both near-field and far-field regimes.

  9. Heat transfer enhancement with nanofluids

    CERN Document Server

    Bianco, Vincenzo; Nardini, Sergio; Vafai, Kambiz

    2015-01-01

    Properties of NanofluidSamuel Paolucci and Gianluca PolitiExact Solutions and Their Implications in Anomalous Heat TransferWenhao Li, Chen Yang and Akira NakayamaMechanisms and Models of Thermal Conductivity in NanofluidsSeung-Hyun Lee and Seok Pil JangExperimental Methods for the Characterization of Thermophysical Properties of NanofluidsSergio Bobbo and Laura FedeleNanofluid Forced ConvectionGilles RoyExperimental Study of Convective Heat Transfer in NanofluidsEhsan B. Haghighi, Adi T. Utomo, Andrzej W. Pacek and Björn E. PalmPerformance of Heat Exchangers Using NanofluidsBengt Sundén and Za

  10. Enhancement of heat transfer using nanofluids - An overview

    Energy Technology Data Exchange (ETDEWEB)

    Godson, Lazarus; Mohan Lal, D. [Refrigeration and Air-Conditioning Division, Department of Mechanical Engineering., College of Engineering, Anna University, Chennai 600 025, Tamil Nadu (India); Raja, B. [Indian Institute of Information Technology, Design and Manufacturing-Kancheepuram Indian Institute of Technology-Madras, Chennai 600 036, Tamil Nadu (India); Wongwises, S. [Fluid Mechanics, Thermal Engineering and Multiphase Flow (FUTURE), Dept. of Mechanical Engineering, King Mongkut' s University of Technology Thonburi, Bangmod, Bangkok 10140 (Thailand)

    2010-02-15

    A colloidal mixture of nano-sized particles in a base fluid, called nanofluids, tremendously enhances the heat transfer characteristics of the original fluid, and is ideally suited for practical applications due to its marvelous characteristics. This article addresses the unique features of nanofluids, such as enhancement of heat transfer, improvement in thermal conductivity, increase in surface volume ratio, Brownian motion, thermophoresis, etc. In addition, the article summarizes the recent research in experimental and theoretical studies on forced and free convective heat transfer in nanofluids, their thermo-physical properties and their applications, and identifies the challenges and opportunities for future research. (author)

  11. Heat transfer enhancement on nucleate boiling

    International Nuclear Information System (INIS)

    Zhuang, M.; Guibai, L.

    1990-01-01

    This paper reports on enhancement of nucleate boiling heat transfer with additives that was investigated experimentally. More than fifteen kinds of additives were chosen and tested. Eight kinds of effective additives which can enhance nucleate boiling heat transfer were selected. Experimental results showed that boiling heat transfer coefficient of water was increased by 1 to 5 times and that of R-113 was increased by 1 to 4 times when trace amount additives were put in the two boiling liquids. There exist optimum concentrations for the additives, respectively, which can enhance nucleate boiling heat transfer rate best. In order to analyze the mechanism of the enhancement of boiling heat transfer with additives, the surface tension and the bubble departure diameter were measured. The nucleation sites were investigated by use of high-speed photograph. Experimental results showed that nucleation sites increase with additive amount increasing and get maximum. Increasing nucleation sites is one of the most important reason why nucleate boiling heat transfer can be enhanced with additives

  12. Indirect evaporative coolers with enhanced heat transfer

    Science.gov (United States)

    Kozubal, Eric; Woods, Jason; Judkoff, Ron

    2015-09-22

    A separator plate assembly for use in an indirect evaporative cooler (IEC) with an air-to-air heat exchanger. The assembly includes a separator plate with a first surface defining a dry channel and a second surface defining a wet channel. The assembly includes heat transfer enhancements provided on the first surface for increasing heat transfer rates. The heat transfer enhancements may include slit fins with bodies extending outward from the first surface of separator plate or may take other forms including vortex generators, offset strip fins, and wavy fins. In slit fin implementations, the separator plate has holes proximate to each of the slit fins, and the separator plate assembly may include a sealing layer applied to the second surface of the separator plate to block air flow through the holes. The sealing layer can be a thickness of adhesive, and a layer of wicking material is applied to the adhesive.

  13. Heat exchanger network retrofit optimization involving heat transfer enhancement

    International Nuclear Information System (INIS)

    Wang Yufei; Smith, Robin; Kim, Jin-Kuk

    2012-01-01

    Heat exchanger network retrofit plays an important role in energy saving in process industry. Many design methods for the retrofit of heat exchanger networks have been proposed during the last three decades. Conventional retrofit methods rely heavily on topology modifications which often result in a long retrofit duration and high initial costs. Moreover, the addition of extra surface area to the heat exchanger can prove difficult due to topology, safety and downtime constraints. Both of these problems can be avoided through the use of heat transfer enhancement in heat exchanger network retrofit. This paper presents a novel design approach to solve heat exchanger network retrofit problems based on heat transfer enhancement. An optimisation method based on simulated annealing has been developed to find the appropriate heat exchangers to be enhanced and to calculate the level of enhancement required. The physical insight of enhanced exchangers is also analysed. The new methodology allows several possible retrofit strategies using different retrofit methods be determined. Comparison of these retrofit strategies demonstrates that retrofit modification duration and payback time are reduced when heat transfer enhancement is utilised. Heat transfer enhancement can be also used as a substitute for increased heat exchanger network surface area to reduce retrofit investment costs.

  14. Microscale surface modifications for heat transfer enhancement.

    Science.gov (United States)

    Bostanci, Huseyin; Singh, Virendra; Kizito, John P; Rini, Daniel P; Seal, Sudipta; Chow, Louis C

    2013-10-09

    In this experimental study, two surface modification techniques were investigated for their effect on heat transfer enhancement. One of the methods employed the particle (grit) blasting to create microscale indentations, while the other used plasma spray coating to create microscale protrusions on Al 6061 (aluminum alloy 6061) samples. The test surfaces were characterized using scanning electron microscopy (SEM) and confocal scanning laser microscopy. Because of the surface modifications, the actual surface area was increased up to 2.8× compared to the projected base area, and the arithmetic mean roughness value (Ra) was determined to vary from 0.3 μm for the reference smooth surface to 19.5 μm for the modified surfaces. Selected samples with modified surfaces along with the reference smooth surface were then evaluated for their heat transfer performance in spray cooling tests. The cooling system had vapor-atomizing nozzles and used anhydrous ammonia as the coolant in order to achieve heat fluxes up to 500 W/cm(2) representing a thermal management setting for high power systems. Experimental results showed that the microscale surface modifications enhanced heat transfer coefficients up to 76% at 500 W/cm(2) compared to the smooth surface and demonstrated the benefits of these practical surface modification techniques to enhance two-phase heat transfer process.

  15. Heat and mass transfer enhancement in absorbing processes

    International Nuclear Information System (INIS)

    Hijikata, Kunio; Lee, S.K.

    1993-01-01

    The key to improving the performance of absorption-type heat machines lies in the enhancement of the mass transfer of the vapor into the absorbant solution, since the mass diffusivity in the solution is very small compared to the thermal diffusivity. The absorption process is influenced by many factors including physical properties of the fluids, the flow pattern and others, especially the velocity profile near the interface is the most important. From these stand points, the heat and mass transfer in the absorption was investigated by following three steps. First, an augmentation of the absorption to a liquid film flowing in groove was theoretically investigated, in which the interface between the vapor and liquid film is cooled by the grooved surfaces. Secondly, systematical experiments were carried out on several factors that affect the absorption process, which were the cooling wall temperature, the inlet solution subcooling, and the fin configuration. Finally, a numerical study of the heat and mass transfer enhancement due to flow agitation by the periodically grooved channel was conducted. That flow realized by fabricating ridges on the fin surface. A secondary flow due to these ridges is expected to enhance the heat and mass transfer. These results were compared with experimental ones. (orig.)

  16. Noise enhances information transfer in hierarchical networks.

    Science.gov (United States)

    Czaplicka, Agnieszka; Holyst, Janusz A; Sloot, Peter M A

    2013-01-01

    We study the influence of noise on information transmission in the form of packages shipped between nodes of hierarchical networks. Numerical simulations are performed for artificial tree networks, scale-free Ravasz-Barabási networks as well for a real network formed by email addresses of former Enron employees. Two types of noise are considered. One is related to packet dynamics and is responsible for a random part of packets paths. The second one originates from random changes in initial network topology. We find that the information transfer can be enhanced by the noise. The system possesses optimal performance when both kinds of noise are tuned to specific values, this corresponds to the Stochastic Resonance phenomenon. There is a non-trivial synergy present for both noisy components. We found also that hierarchical networks built of nodes of various degrees are more efficient in information transfer than trees with a fixed branching factor.

  17. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Science.gov (United States)

    Aad, Roy; Couteau, Christophe; Lérondel, Gilles

    2015-01-01

    We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET) on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented. PMID:28788025

  18. Enhancement of pool boiling heat transfer coefficients using carbon nanotubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2007-01-01

    In this study, the effect of carbon nanotubes (CNTs) on nucleate boiling heat transfer is investigated. Three refrigerants of R22, R123, R134a, and water were used as working fluids and 1.0 vol.% of CNTs was added to the working fluids to examine the effect of CNTs. Experimental apparatus was composed of a stainless steel vessel and a plain horizontal tube heated by a cartridge heater. All data were obtained at the pool temperature of 7 .deg. C for all refrigerants and 100 .deg. C for water in the heat flux range of 10∼80 kW/m 2 . Test results showed that CNTs increase nucleate boiling heat transfer coefficients for all fluids. Especially, large enhancement was observed at low heat fluxes of less than 30 kW/m 2 . With increasing heat flux, however, the enhancement was suppressed due to vigorous bubble generation. Fouling on the heat transfer surface was not observed during the course of this study. Optimum quantity and type of CNTs and their dispersion should be examined for their commercial application to enhance nucleate boiling heat transfer in many applications

  19. Chaotic advection and heat transfer enhancement in Stokes flows

    International Nuclear Information System (INIS)

    Lefevre, A.; Mota, J.P.B.; Rodrigo, A.J.S.; Saatdjian, E.

    2003-01-01

    The heat transfer rate from a solid boundary to a highly viscous fluid can be enhanced significantly by a phenomenon which is called chaotic advection or Lagrangian turbulence. Although the flow is laminar and dominated by viscous forces, some fluid particle trajectories are chaotic due either to a suitable boundary displacement protocol or to a change in geometry. As in turbulent flow, the heat transfer rate enhancement between the boundary and the fluid is intimately linked to the mixing of fluid in the system. Chaotic advection in real Stokes flows, i.e. flows governed by viscous forces and that can be constructed experimentally, is reviewed in this paper. An emphasis is made on recent new results on 3-D time-periodic open flows which are particularly important in industry

  20. Nanophotonics: Energy Transfer towards Enhanced Luminescent Chemosensing

    Directory of Open Access Journals (Sweden)

    Roy Aad

    2015-04-01

    Full Text Available We discuss a recently proposed novel photonic approach for enhancing the fluorescence of extremely thin chemosensing polymer layers. We present theoretical and experimental results demonstrating the concept of gain-assisted waveguided energy transfer (G-WET on a very thin polymer nanolayer spincoated on an active ZnO thin film. The G-WET approach is shown to result in an 8-fold increase in polymer fluorescence. We then extend the G-WET concept to nanostructured media. The benefits of using active nanostructured substrates on the sensitivity and fluorescence of chemosensing polymers are discussed. Preliminary theoretical results on enlarged sensing surface and photonic band-gap are presented.

  1. Electrohydrodynamic enhancement of in-tube convective condensation heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Sadek, H.; Robinson, A.J.; Ching, C.Y.; Shoukri, M. [McMaster University, Department of Mechanical Engineering, Hamilton, Ont. (Canada); Cotton, J.S. [Dana Corporation, Long Manufacturing Division, Oakville, Ont. (Canada)

    2006-05-15

    An experimental investigation of electrohydrodynamic (EHD) augmentation of heat transfer for in-tube condensation of flowing refrigerant HFC-134a has been performed in a horizontal, single-pass, counter-current heat exchanger with a rod electrode placed in the centre of the tube. The effects of varying the mass flux (55kg/m{sup 2}s=transfer coefficient was enhanced by a factor up to 3.2 times for applied voltage of 8kV. The pressure drop was increased by a factor 1.5 at the same conditions of the maximum heat transfer enhancement. The improved heat transfer performance and pressure drop penalty are due to flow regime transition from stratified flow to annular flow as has been deduced from the surface temperature profiles along the top and bottom surfaces of the tube. (author)

  2. Enhancing radiative energy transfer through thermal extraction

    Science.gov (United States)

    Tan, Yixuan; Liu, Baoan; Shen, Sheng; Yu, Zongfu

    2016-06-01

    Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a). In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics. Thermal extraction works by using a specially designed thermal extractor to convert and guide the near-field energy to the far field, as shown in Fig. 1b. The same blackbody as shown in Fig. 1a is placed closely below the thermal extractor with a spacing smaller than the thermal wavelength. The near-field coupling transfers radiative energy with a density greater than σT4. The thermal extractor, made from transparent and high-index or structured materials, does not emit or absorb any radiation. It transforms the near-field energy and sends it toward the far field. As a result, the total amount of far-field radiative heat dissipated by the same blackbody is greatly enhanced above SσT4, where S is the area of the emitter. This paper will review the progress in thermal

  3. Electromagnetically induced absorption due to transfer of coherence and to transfer of population

    International Nuclear Information System (INIS)

    Goren, C.; Rosenbluh, M.; Wilson-Gordon, A.D.; Friedmann, H.

    2003-01-01

    The absorption spectrum of a weak probe, interacting with a driven degenerate two-level atomic system, whose ground and excited hyperfine states are F g,e , can exhibit narrow peaks at line center. When the pump and probe polarizations are different, F e =F g +1 and F g >0, the electromagnetically induced absorption (EIA) peak has been shown to be due to the transfer of coherence (TOC) between the excited and ground states via spontaneous decay. We give a detailed explanation of why the TOC that leads to EIA (EIA-TOC) can only take place when ground-state population trapping does not occur, that is, when F e =F g +1. We also explain why EIA-TOC is observed in open systems. We show that EIA can also occur when the pump and probe polarizations are identical and F e =F g +1. This EIA is analogous to an effect that occurs in simple two-level systems when the collisional transfer of population (TOP) from the ground state to a reservoir is greater than that from the excited state. For a degenerate two-level system, the reservoir consists of the Zeeman sublevels of the ground hyperfine state, and of other nearby hyperfine states that do not interact with the pump. We will also discuss the four-wave mixing spectrum under the conditions where EIA-TOC and EIA-TOP occur

  4. Risks from GMOs due to horizontal gene transfer.

    Science.gov (United States)

    Keese, Paul

    2008-01-01

    Horizontal gene transfer (HGT) is the stable transfer of genetic material from one organism to another without reproduction or human intervention. Transfer occurs by the passage of donor genetic material across cellular boundaries, followed by heritable incorporation to the genome of the recipient organism. In addition to conjugation, transformation and transduction, other diverse mechanisms of DNA and RNA uptake occur in nature. The genome of almost every organism reveals the footprint of many ancient HGT events. Most commonly, HGT involves the transmission of genes on viruses or mobile genetic elements. HGT first became an issue of public concern in the 1970s through the natural spread of antibiotic resistance genes amongst pathogenic bacteria, and more recently with commercial production of genetically modified (GM) crops. However, the frequency of HGT from plants to other eukaryotes or prokaryotes is extremely low. The frequency of HGT to viruses is potentially greater, but is restricted by stringent selection pressures. In most cases the occurrence of HGT from GM crops to other organisms is expected to be lower than background rates. Therefore, HGT from GM plants poses negligible risks to human health or the environment.

  5. A numerical study of vorticity-enhanced heat transfer

    Science.gov (United States)

    Wang, Xiaolin; Alben, Silas

    2012-11-01

    The Glezer lab at Georgia Tech has found that vorticity produced by vibrated reeds can improve heat transfer in electronic hardware. Vortices enhance forced convection by boundary layer separation and thermal mixing in the bulk flow. In this work, we simulate the heat transfer process in a 3-dimensional plate-fin heat sink. We propose a simplified model by considering flow and temperature in a 2-D channel, and extend the model to the third dimension using a 1-D heat fin model. We simulate periodically steady-state solutions. We determine how the global Nusselt number is increased, depending on the vortices' strengths and spacings, in the parameter space of Reynolds and Peclet numbers. We find a surprising spatial oscillation of the local Nusselt number due to the vortices. Support from NSF-DMS grant 1022619 is acknowledged.

  6. A study on the flow field and local heat transfer performance due to geometric scaling of centrifugal fans

    International Nuclear Information System (INIS)

    Stafford, Jason; Walsh, Ed; Egan, Vanessa

    2011-01-01

    Highlights: ► Velocity field and local heat transfer trends of centrifugal fans. ► Time-averaged vortices are generated by flow separation. ► Local vortex and impingement regions are evident on surface heat transfer maps. ► Miniature centrifugal fans should be designed with an aspect ratio below 0.3. ► Theory under predicts heat transfer due to complex, unsteady outlet flow. - Abstract: Scaled versions of fan designs are often chosen to address thermal management issues in space constrained applications. Using velocity field and local heat transfer measurement techniques, the thermal performance characteristics of a range of geometrically scaled centrifugal fan designs have been investigated. Complex fluid flow structures and surface heat transfer trends due to centrifugal fans were found to be common over a wide range of fan aspect ratios (blade height to fan diameter). The limiting aspect ratio for heat transfer enhancement was 0.3, as larger aspect ratios were shown to result in a reduction in overall thermal performance. Over the range of fans examined, the low profile centrifugal designs produced significant enhancement in thermal performance when compared to that predicted using classical laminar flow theory. The limiting non-dimensional distance from the fan, where this enhancement is no longer apparent, has also been determined. Using the fundamental information inferred from local velocity field and heat transfer measurements, selection criteria can be determined for both low and high power practical applications where space restrictions exist.

  7. Enhancing radiative energy transfer through thermal extraction

    Directory of Open Access Journals (Sweden)

    Tan Yixuan

    2016-06-01

    Full Text Available Thermal radiation plays an increasingly important role in many emerging energy technologies, such as thermophotovoltaics, passive radiative cooling and wearable cooling clothes [1]. One of the fundamental constraints in thermal radiation is the Stefan-Boltzmann law, which limits the maximum power of far-field radiation to P0 = σT4S, where σ is the Boltzmann constant, S and T are the area and the temperature of the emitter, respectively (Fig. 1a. In order to overcome this limit, it has been shown that near-field radiations could have an energy density that is orders of magnitude greater than the Stefan-Boltzmann law [2-7]. Unfortunately, such near-field radiation transfer is spatially confined and cannot carry radiative heat to the far field. Recently, a new concept of thermal extraction was proposed [8] to enhance far-field thermal emission, which, conceptually, operates on a principle similar to oil immersion lenses and light extraction in light-emitting diodes using solid immersion lens to increase light output [62].Thermal extraction allows a blackbody to radiate more energy to the far field than the apparent limit of the Stefan-Boltzmann law without breaking the second law of thermodynamics.

  8. Review of PCMS and heat transfer enhancement methods applied ...

    African Journals Online (AJOL)

    Most available PCMs have low thermal conductivity making heat transfer enhancement necessary for power applications. The various methods of heat transfer enhancement in latent heat storage systems were also reviewed systematically. The review showed that three commercially - available PCMs are suitable in the ...

  9. Heat transfer enhancement with condensation by surface rotation

    Energy Technology Data Exchange (ETDEWEB)

    Vasiliev, L L; Khrolenok, V V [A.V. Luikov Heat and Mass Transfer Inst., Minsk (Belarus)

    1993-11-01

    Process intensification relies on many unit operations on enhanced heat transfer. One technique for the enhancement of condensation heat transfer is the use of surface rotation. This is particularly effective in reducing the condensate film thickness. The formulae and relationships given in this paper are concerned with rotating discs and tubes, and can be used for developing advanced heat exchanger concepts. (Author)

  10. Literature survey of heat transfer enhancement techniques in refrigeration applications

    Energy Technology Data Exchange (ETDEWEB)

    Jensen, M.K.; Shome, B. [Rensselaer Polytechnic Inst., Troy, NY (United States). Dept. of Mechanical Engineering, Aeronautical Engineering and Mechanics

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  11. Enhanced J/psi suppression due to gluon depletion

    OpenAIRE

    Hwa, R. C.; Pisut, J.; Pisutova, N.

    1997-01-01

    The nonlinear effect of gluon depletion in the collision of large nuclei can be large. It is due to multiple scatterings among comoving partons initiated by primary scattering of partons in the colliding nuclei. The effect can give rise to substantial suppression of $J/\\psi$ production in very large nuclei, even if the linear depletion effect is insignificant for the collisions of nuclei of smaller sizes. This mechanism offers a natural explanation of the enhanced suppression in the Pb-Pb dat...

  12. Mechanisms of convective and boiling heat transfer enhancement via ultrasonic vibration

    International Nuclear Information System (INIS)

    Kim, Yi Gu; Kim, Ho Young; Kang, Seoung Min; Kang, Byung Ha; Lee, Jin Ho

    2003-01-01

    This work experimentally studies the fundamental mechanisms by which the ultrasonic vibration enhances convection and pool boiling heat transfer. A thin platinum wire is used as both a heat source and a temperature sensor. A high speed video imaging system is employed to observe the behavior of cavitation and thermal bubbles. It is found that when the liquid temperature is below its boiling point, cavitation takes place due to ultrasonic vibration while cavitation disappears when the liquid reaches the boiling point. Moreover, when the gas dissolved in liquid is removed by pre-degassing, the cavitation arises only locally. Depending on the liquid temperature, heat transfer rates in convection, subcooled boiling and saturated boiling regimes are examined. In convection heat transfer regime, fully agitated cavitation is the most efficient heat transfer enhancement mechanism. Subcooled boiling is most enhanced when the local cavitation is induced after degassing. In saturated boiling regime, acoustic pressure is shown to be a dominant heat transfer enhancement mechanism

  13. Nanoparticle enhanced ionic liquid heat transfer fluids

    Science.gov (United States)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Gray, Joshua R.; Garcia-Diaz, Brenda L.

    2014-08-12

    A heat transfer fluid created from nanoparticles that are dispersed into an ionic liquid is provided. Small volumes of nanoparticles are created from e.g., metals or metal oxides and/or alloys of such materials are dispersed into ionic liquids to create a heat transfer fluid. The nanoparticles can be dispersed directly into the ionic liquid during nanoparticle formation or the nanoparticles can be formed and then, in a subsequent step, dispersed into the ionic liquid using e.g., agitation.

  14. A Review of Wettability Effect on Boiling Heat Transfer Enhancement

    International Nuclear Information System (INIS)

    Seo, Gwang Hyeok; Jeun, Gyoo Dong; Kim, Sung Joong

    2012-01-01

    Critical heat flux (CHF) and nucleate boiling heat transfer coefficient (NBHTC) are the key parameters characterizing pool boiling heat transfer. These variables are complicatedly related to thermal-hydraulic parameters of surface wettability, nucleation site density, bubble departure diameter and frequency, to mention a few. In essence, wettability effect on pool boiling heat transfer has been a major fuel to enhance the CHF. Often, however, the improved wettability effect hinders the nucleate boiling. Thus a comprehensive review of such wettability effect may enlighten a further study in this boiling heat transfer area. Phan et al. described surface wettability effects on boiling heat transfer

  15. Study on enhancement of heat transfer of RVACS

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi

    1989-01-01

    As for the enhancement of heat transfer on Reactor Vessel Auxiliary Cooling System (RVACS), utilization of high porosity porous bodies have been proposed by the last report. This report describe the experimental results to evaluate heat transfer performance of the porous bodies and to estimate the extrapolation to long heat transfer surface such as reactor scale. Following are typical results. (1) Usually the Heat Transfer coefficient at the lower reaches is smoller than that of the upper reaches. But Using with the high porosity porous bodies, the Heat Transfer coefficient at the lower reaches remains a constant value against distance from entrance point or a increase slightly compared to that of the upper reaches because of the effect of thermal radiation. (2) From the results of Heat Transfer coefficients against distance from the entrance point, the increasing ratio of enhancement of heat removal in the case of reactor scale is about 1.3. (author)

  16. Enhancing Convective Heat Transfer over a Surrogate Photovoltaic Panel

    Science.gov (United States)

    Fouladi, Fama

    This research is particularly focused on studying heat transfer enhancement of a photovoltaic (PV) panel by putting an obstacle at the panel's windward edge. The heat transfer enhancement is performed by disturbing the airflow over the surface and increasing the heat and momentum transfer. Different objects such as triangular, square, rectangular, and discrete rectangular ribs and partial grids were applied at the leading edge of a surrogate PV panel and flow and the heat transfer of the panel are investigated experimentally. This approach was selected to expand understanding of effect of these different objects on the flow and turbulence structures over a flat surface by analyzing the flow comprehensively. It is observed that, a transverse object at the plate's leading edge would cause some flow blockage in the streamwise direction, but at the same time creates some velocity in the normal and cross stream directions. In addition to that, the obstacle generates some turbulence over the surface which persists for a long downstream distance. Also, among all studied objects, discrete rectangular ribs demonstrate the highest heat transfer rate enhancement (maximum Nu/Nu0 of 1.5). However, ribs with larger gap ratios are observed to be more effective at enhancing the heat transfer augmentation at closer distances to the rib, while at larger downstream distances from the rib, discrete ribs with smaller gap ratios are more effective. Furthermore, this work attempted to recognize the most influential flow parameters on the heat transfer enhancement of the surface. It is seen that the flow structure over a surface downstream of an object (flow separation-reattachment behaviour) has a significant effect on the heat transfer enhancement trend. Also, turbulence intensities are the most dominant parameters in enhancing the heat transfer rate from the surface; however, flow velocity (mostly normal velocity) is also an important factor.

  17. Enhancement of heat and mass transfer by cavitation

    International Nuclear Information System (INIS)

    Zhang, Y N; Du, X Z; Xian, H Z; Zhang, Y N

    2015-01-01

    In this paper, a brief summary of effects of cavitation on the heat and mass transfer are given. The fundamental studies of cavitation bubbles, including its nonlinearity, rectified heat and mass diffusion, are initially introduced. Then selected topics of cavitation enhanced heat and mass transfer were discussed in details including whales stranding caused by active sonar activity, pool boiling heat transfer, oscillating heat pipe and high intensity focused ultrasound treatment

  18. Output Enhancement in the Transfer-Field Machine Using Rotor ...

    African Journals Online (AJOL)

    Output Enhancement in the Transfer-Field Machine Using Rotor Circuit Induced Currents. ... The output of a plain transfer-field machine would be much less than that of a conventional machine of comparable size and dimensions. The use of ... The same effects have their parallel for the asynchronous mode of operation.

  19. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    user

    enhancement of heat transfer with twisted tape inserts as compared to plain ... studies for heat transfer and pressure drop of laminar flow in horizontal tubes ... flow in rectangular and square plain ducts and ducts with twisted-tape inserts .... presence of the insert in the pipe causes resistance to flow and increases turbulence.

  20. Enhancing Transfer of Knowledge in Physics through Effective Teaching Strategies

    Science.gov (United States)

    Akinbobola, Akinyemi Olufunminiyi

    2015-01-01

    The study assessed the enhancement of transfer of knowledge in physics through the use of effective teaching strategies in Nigerian senior secondary schools. Non-randomized pretest-posttest control group design was adopted for the study. A total of 278 physics students took part in the study. Transfer of Knowledge Test in Physics (TKTP) with the…

  1. Characterizations of Nanofluid Heat Transfer Enhancements

    Science.gov (United States)

    2013-09-06

    nanoparticles are thought to play important roles. Dispersed nanoparticles and associated nanoparticle Brownian movements are purported to cause the enhancements...Dispersed nanoparticles and associated nanoparticle Brownian movements are purported to cause the enhancements by mixing mechanisms whereas aggregated...Engineering Data, 1994. 39(1): p. 186-190. 30. Einstein, A., Investigations on the theory of the brownian movement . 1915, E. P. Dutton and Company

  2. A study on the flow field and local heat transfer performance due to geometric scaling of centrifugal fans

    Energy Technology Data Exchange (ETDEWEB)

    Stafford, Jason, E-mail: jason.stafford@ul.ie [Stokes Institute, Mechanical, Aeronautical and Biomedical Engineering Department, University of Limerick, Limerick (Ireland); Walsh, Ed; Egan, Vanessa [Stokes Institute, Mechanical, Aeronautical and Biomedical Engineering Department, University of Limerick, Limerick (Ireland)

    2011-12-15

    Highlights: Black-Right-Pointing-Pointer Velocity field and local heat transfer trends of centrifugal fans. Black-Right-Pointing-Pointer Time-averaged vortices are generated by flow separation. Black-Right-Pointing-Pointer Local vortex and impingement regions are evident on surface heat transfer maps. Black-Right-Pointing-Pointer Miniature centrifugal fans should be designed with an aspect ratio below 0.3. Black-Right-Pointing-Pointer Theory under predicts heat transfer due to complex, unsteady outlet flow. - Abstract: Scaled versions of fan designs are often chosen to address thermal management issues in space constrained applications. Using velocity field and local heat transfer measurement techniques, the thermal performance characteristics of a range of geometrically scaled centrifugal fan designs have been investigated. Complex fluid flow structures and surface heat transfer trends due to centrifugal fans were found to be common over a wide range of fan aspect ratios (blade height to fan diameter). The limiting aspect ratio for heat transfer enhancement was 0.3, as larger aspect ratios were shown to result in a reduction in overall thermal performance. Over the range of fans examined, the low profile centrifugal designs produced significant enhancement in thermal performance when compared to that predicted using classical laminar flow theory. The limiting non-dimensional distance from the fan, where this enhancement is no longer apparent, has also been determined. Using the fundamental information inferred from local velocity field and heat transfer measurements, selection criteria can be determined for both low and high power practical applications where space restrictions exist.

  3. Large impact of reorganization energy on photovoltaic conversion due to interfacial charge-transfer transitions.

    Science.gov (United States)

    Fujisawa, Jun-ichi

    2015-05-14

    Interfacial charge-transfer (ICT) transitions are expected to be a novel charge-separation mechanism for efficient photovoltaic conversion featuring one-step charge separation without energy loss. Photovoltaic conversion due to ICT transitions has been investigated using several TiO2-organic hybrid materials that show organic-to-inorganic ICT transitions in the visible region. In applications of ICT transitions to photovoltaic conversion, there is a significant problem that rapid carrier recombination is caused by organic-inorganic electronic coupling that is necessary for the ICT transitions. In order to solve this problem, in this work, I have theoretically studied light-to-current conversions due to the ICT transitions on the basis of the Marcus theory with density functional theory (DFT) and time-dependent DFT (TD-DFT) calculations. An apparent correlation between the reported incident photon-to-current conversion efficiencies (IPCE) and calculated reorganization energies was clearly found, in which the IPCE increases with decreasing the reorganization energy consistent with the Marcus theory in the inverted region. This activation-energy dependence was systematically explained by the equation formulated by the Marcus theory based on a simple excited-state kinetic scheme. This result indicates that the reduction of the reorganization energy can suppress the carrier recombination and enhance the IPCE. The reorganization energy is predominantly governed by the structural change in the chemical-adsorption moiety between the ground and ICT excited states. This work provides crucial knowledge for efficient photovoltaic conversion due to ICT transitions.

  4. Field enhancement due to anomalous skin effect inside a target

    International Nuclear Information System (INIS)

    Ma, G.; Tan, W.

    1996-01-01

    A new method based on Fourier transformation to study the skin effects is presented. Using this method, the field amplitude in plasma is represented in terms of electric conductivity, and the normal and anomalous skin effects are described through one formula by omitting the plasma dispersion or not. The results are in agreement with other publications [e.g., J. P. Matte and K. Aguenaou, Phys. Rev. A 45, 2558 (1992)] for equivalent parameters. But for deeper positions inside a target, which have not been studied by others, it is found that the field amplitude is considerably enhanced due to an anomalous skin effect, even for constant collision frequency. In addition, the skin absorptions and some calculations on an anomalous skin effect for different collision frequencies are also presented. copyright 1996 American Institute of Physics

  5. Enhanced two phase flow in heat transfer systems

    Science.gov (United States)

    Tegrotenhuis, Ward E; Humble, Paul H; Lavender, Curt A; Caldwell, Dustin D

    2013-12-03

    A family of structures and designs for use in devices such as heat exchangers so as to allow for enhanced performance in heat exchangers smaller and lighter weight than other existing devices. These structures provide flow paths for liquid and vapor and are generally open. In some embodiments of the invention, these structures can also provide secondary heat transfer as well. In an evaporate heat exchanger, the inclusion of these structures and devices enhance the heat transfer coefficient of the evaporation phase change process with comparable or lower pressure drop.

  6. The thermodynamics of enhanced heat transfer: a model study

    International Nuclear Information System (INIS)

    Hovhannisyan, Karen; Allahverdyan, Armen E

    2010-01-01

    Situations where a spontaneous process of energy or matter transfer is enhanced by an external device are widespread in nature (the human sweating system, enzyme catalysis, facilitated diffusion across biomembranes, industrial heat-exchangers and so on). The thermodynamics of such processes remains, however, open. Here we study enhanced heat transfer by using a model junction immersed between two thermal baths at different temperatures T h and T c (T h > T c ). The transferred heat power is enhanced via controlling the junction by means of external time-dependent fields. Provided that the spontaneous heat flow process is optimized over the junction Hamiltonian, any enhancement of this spontaneous process demands consumption and subsequent dissipation of work. The efficiency of the enhancement is defined via the increment in the heat power divided by the amount of work done. We show that this efficiency is bounded from above by T c /(T h − T c ). Formally this is identical to the Carnot bound for the efficiency of ordinary refrigerators which transfer heat from cold to hot bodies. It also shares some (but not all) physical features of the Carnot bound

  7. Enhancing SERS by Means of Supramolecular Charge Transfer

    Science.gov (United States)

    Wong, Eric; Flood, Amar; Morales, Alfredo

    2009-01-01

    In a proposed method of sensing small quantities of molecules of interest, surface enhanced Raman scattering (SERS) spectroscopy would be further enhanced by means of intermolecular or supramolecular charge transfer. There is a very large potential market for sensors based on this method for rapid detection of chemical and biological hazards. In SERS, the Raman signals (vibrational spectra) of target molecules become enhanced by factors of the order of 108 when those molecules are in the vicinities of nanostructured substrate surfaces that have been engineered to have plasmon resonances that enhance local electric fields. SERS, as reported in several prior NASA Tech Briefs articles and elsewhere, has remained a research tool and has not yet been developed into a practical technique for sensing of target molecules: this is because the short range (5 to 20 nm) of the field enhancement necessitates engineering of receptor molecules to attract target molecules to the nanostructured substrate surfaces and to enable reliable identification of the target molecules in the presence of interferants. Intermolecular charge-transfer complexes have been used in fluorescence-, photoluminescence-, and electrochemistry-based techniques for sensing target molecules, but, until now, have not been considered for use in SERS-based sensing. The basic idea of the proposed method is to engineer receptor molecules that would be attached to nanostructured SERS substrates and that would interact with the target molecules to form receptor-target supramolecular charge-transfer complexes wherein the charge transfer could be photoexcited.

  8. Enhancement of the Performance of a Transfer Field Electric ...

    African Journals Online (AJOL)

    This paper reports the enhancement of the output power and power factor of a transfer field machine operating in the asynchronous mode by direct capacitance injection into the auxiliary winding of the machine, which is electrically isolated from the main winding but magnetically coupled to it. It is shown that by proper ...

  9. Heat transfer enhancement in heat exchangers by longitudinal vortex generators

    International Nuclear Information System (INIS)

    Guntermann, T.; Fiebig, M.; Mitra, N.K.

    1990-01-01

    In this paper heat transfer enhancement and flow losses are computed for the interaction of a laminar channel flow with a pair of counterrotating longitudinal vortices generated by a pair of delta-winglets punched out of the channel wall. The geometry simulates an element of a fin-plate or fin-tube heat exchanger. The structure of the vortex flow and temperature distribution, the local heat transfer coefficients and the local flow losses are discussed for a sample case. For a Reynolds number of Re d = 1000 and a vortex generator angle of attack of β = 25 degrees heat transfer is enhanced locally by more than 300% and in the mean by 50%. These values increase further with Re and β

  10. Enhancement in secondary particulate matter production due to mountain trapping

    Science.gov (United States)

    Yao, Teng; Fung, J. C. H.; Ma, H.; Lau, A. K. H.; Chan, P. W.; Yu, J. Z.; Xue, J.

    2014-10-01

    As China's largest economic development zone, the Pearl River Delta (PRD) is subject to particulate matter (PM) and visibility deterioration problems. Due to high PM concentration, haze days impacting ambient visibility have occurred frequently in this region. Besides visibility impairment, PM pollution also causes a negative impact on public health. These negative impacts have heightened the need to improve our understanding of the PM pollution of the PRD region. One major cause of the PRD pollution problem is cold front passages in the winter; however, the mechanism of pollution formation stays unclear. In this study, the Comprehensive Air Quality Model (CAMx) is utilized to investigate the detailed PM production and transport mechanisms in the PRD. Simulated concentrations of PM2.5 species, which have a good correlation with observation, show that sulfate and nitrate are the dominant pollutants among different PM2.5 species. Before the cold front passage a large amount of gas-phase and particle-phase pollutants are transported to the mountainous regions in the north of the PRD, and become trapped by the terrain. Over the mountain regions, cloud driven by upwelling flow promotes aqueous-phase reactions including oxidations of PM precursors such as SO2 and NO2. By this process, production of secondary PM is enhanced. When the cold front continues to advance further south, PM is transported to the PRD cities, and suppressed into a thin layer near the ground by a low planetary boundary layer (PBL). Thus high PM concentration episodes take place in the PRD cities. After examining production and transportation pathways, this study presents that the complex terrain configuration would block pollutant dispersion, provide cloudy environment, and advance secondary PM production. Previous studies have pointed out that pollution emitted from outside this region largely influences the air quality in the PRD; however, this study shows that pollutants from the outside could be

  11. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals

    Science.gov (United States)

    Sun, Qi; Mundoor, Haridas; Ribot, Josep; Singh, Vivek; Smalyukh, Ivan; Nagpal, Prashant

    2014-03-01

    Upconversion of infrared radiation into visible light has been investigated for applications in biological imaging and photovoltaics. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb3+) , and slow rate of energy transfer (to Er3+ states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increases the rate of resonant energy transfer from Yb3+ to Er3+ ions by 6 fold. While we do observe strong metal mediated quenching (14 fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared, and hence enhances the nanocrystal UPL. This strong columbic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  12. Plasmon-enhanced energy transfer for improved upconversion of infrared radiation in doped-lanthanide nanocrystals.

    Science.gov (United States)

    Sun, Qi-C; Mundoor, Haridas; Ribot, Josep C; Singh, Vivek; Smalyukh, Ivan I; Nagpal, Prashant

    2014-01-08

    Upconversion of infrared radiation into visible light has been investigated for applications in photovoltaics and biological imaging. However, low conversion efficiency due to small absorption cross-section for infrared light (Yb(3+)), and slow rate of energy transfer (to Er(3+) states) has prevented application of upconversion photoluminescence (UPL) for diffuse sunlight or imaging tissue samples. Here, we utilize resonant surface plasmon polaritons (SPP) waves to enhance UPL in doped-lanthanide nanocrystals. Our analysis indicates that SPP waves not only enhance the electromagnetic field, and hence weak Purcell effect, but also increase the rate of resonant energy transfer from Yb(3+) to Er(3+) ions by 6 fold. While we do observe strong metal mediated quenching (14-fold) of green fluorescence on flat metal surfaces, the nanostructured metal is resonant in the infrared and hence enhances the nanocrystal UPL. This strong Coulombic effect on energy transfer can have important implications for other fluorescent and excitonic systems too.

  13. Nonlinear behavior of micro bubbles under ultrasound due to heat transfer

    International Nuclear Information System (INIS)

    Lim, Chan Soo; Kwak, Ho Young; Kim, Jeong Eun; Lee, Jae Young

    2009-01-01

    We investigated the nonlinear behavior of a microbubble under ultrasound, taking into account the heat transfer inside the bubble and through the bubble wall. The polytropic relation, which has been used for the process of pressure change depending on the volume variation of ideal gases, cannot properly treat heat transfer involving the oscillating bubble under ultrasound. In this study, a set of solutions of the Navier-Stokes equations for the gas inside the bubble along with an analytical treatment of the Navier-Stokes equations for the liquid adjacent to the bubble wall was used to treat properly the heat transfer process for the oscillating bubble under ultrasound. Entropy generation due to finite heat transfer, which induces the lost work during bubble evolution, reduces the collapsing process and considerably affects the nonlinear behavior of the bubble

  14. Heat transfer between immiscible liquids enhanced by gas bubbling

    International Nuclear Information System (INIS)

    Greene, G.A.; Schwarz, C.E.; Klages, J.; Klein, J.

    1982-08-01

    The phenomena of core-concrete interactions impact upon containment integrity of light water reactors (LWR) following postulated complete meltdown of the core by containment pressurization, production of combustible gases, and basemat penetration. Experiments have been performed with non-reactor materials to investigate one aspect of this problem, heat transfer between overlying immiscible liquids whose interface is disturbed by a transverse non-condensable gas flux emanating from below. Hydrodynamic studies have been performed to test a criterion for onset of entrainment due to bubbling through the interface and subsequent heat transfer studies were performed to assess the effect of bubbling on interfacial heat transfer rates, both with and without bubble induced entrainment. Non-entraining interfacial heat transfer data with mercury-water/oil fluid pairs were observed to be bounded from below within a factor of two to three by the Szekeley surface renewal heat transfer model. However heat transfer data for fluid pairs which are found to entrain (water-oil), believed to be characteristic of molten reactor core-concrete conditions, were measured to be up to two orders of magnitude greater than surface renewal predictions and are calculated by a simple entrainment heat transfer model

  15. Heat Transfer Enhancement in Turbulent Flows by Blocked Surfaces

    Directory of Open Access Journals (Sweden)

    Onur YEMENİCİ

    2013-04-01

    Full Text Available In this study, the heat transfer analyses over flat and blocked surfaces were carried out in turbulent flow under the influence of the block height. A constant-temperature hot wire anemometer was used to the velocity and turbulent intensity measurements, while temperature values were measured by copper-constantan thermocouples. The average Stanton numbers for block heights of 15 and 25 mm were higher than those of flat surface by %38 and %84, respectively. The results showed that the presence of the blocks increased the heat transfer and the enhancement rose with block heights

  16. Radiative heat transfer between nanoparticles enhanced by intermediate particle

    Directory of Open Access Journals (Sweden)

    Yanhong Wang

    2016-02-01

    Full Text Available Radiative heat transfer between two polar nanostructures at different temperatures can be enhanced by resonant tunneling of surface polaritons. Here we show that the heat transfer between two nanoparticles is strongly varied by the interactions with a third nanoparticle. By controlling the size of the third particle, the time scale of thermalization toward the thermal bath temperature can be modified over 5 orders of magnitude. This effect provides control of temperature distribution in nanoparticle aggregation and facilitates thermal management at nanoscale.

  17. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    Energy Technology Data Exchange (ETDEWEB)

    Li, Cheng, E-mail: 510395453@qq.com [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China); Li, Le [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Junming [Tsinghua University, Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Thermal Engineering, Beijing 100084 (China); Zhang, Yajun [Tsinghua University, Institute of Nuclear and New Energy Technology, 100084 Beijing (China); Li, Zhihui [State Nuclear Power Technology Research & Development Center, 102209 Beijing (China)

    2017-03-15

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  18. Analysis of the passive heat removal enhancement for AP1000 containment due to the partially wetted coverage

    International Nuclear Information System (INIS)

    Li, Cheng; Li, Le; Li, Junming; Zhang, Yajun; Li, Zhihui

    2017-01-01

    Highlights: • Heat removal by steam condensation, thermal conduction and evaporation is the most important scheme for AP1000 PCCS. Traditionally, studies on containment wall condensation and evaporation have been widely made, while it lacks studies on the shell two-dimension (2-D) thermal conduction. Currently, based on the known heat and mass transfer correlations and the phenomenon from water wetted coverage test, the physical model for 2-D thermal conduction is given and numerical simulation is then made. By discussions, it forms the following highlights. • The partially wetted surface can enhance the whole heat transfer process (including inner condensation, wall thermal conduction and outside cooling) and the maximum enhancement factor can be as large as 63%. There is an enhancement peak at around dry strip fraction a = 90%. When L is less than 0.03 m, its influence on heat transfer is small and the enhancement is mainly affected by dry coverage. However, for larger L, both α and L contribute much to larger enhancement. • Location at the spring line is often used for safety analysis and the dry strip fraction there for AP1000 is mainly at 10%–80%. Accordingly, further analysis is made on L (0.03 < L < 0.3) and a fitting expression is given for α = 10%–80%. It could be used to improve the corresponding software and it could also be used for containment scaling-down criteria analysis. - Abstract: AP1000 containment uses the water film evaporation, coupled with containment inner condensation, to remove the core decay heat. However, water film cannot fully cover heat transfer surface and dry-wetted strips appear. As a result, heat transfer within the containment shell is a two-dimension thermal conduction. Current work numerically studied the AP1000 heat removal enhancement due to the partially wetted coverage phenomenon. It used the evaporation and condensation boundary conditions and Fluent software to calculate the local heat fluxes and their

  19. Field enhanced luminescence of irradiated organics due to electron tunnelling

    International Nuclear Information System (INIS)

    Charlesby, A.

    1981-01-01

    Many organic materials, following exposure to high energy radiation at low temperatures, continue to emit light for long periods. One possible mechanism is that electrons trapped near their parent cations can tunnel back over long times depending on trap depth and distance. This luminescence can be greatly enhanced by the post-radiation application of an external electric field. Calculations on the kinetics of recombination by tunnelling for various trap depths and distances are extended to allow for the effect of an electrical field subsequently applied. The quantitative results lead to two methods of assessing trap depth, depending on immediate light enhancement and on its subsequent decay. The effect of field reversal is also explained. (author)

  20. Magnetic nanofluid properties as the heat transfer enhancement agent

    Directory of Open Access Journals (Sweden)

    Roszko Aleksandra

    2016-01-01

    Full Text Available The main purpose of this paper was to investigate an influence of various parameters on the heat transfer processes with strong magnetic field utilization. Two positions of experimental enclosure in magnetic environment, two methods of preparation and three different concentrations of nanoparticles (0.0112, 0.056 and 0.112 vol.% were taken into account together with the magnetic field strength. Analysed nanofluids consisted of distilled water (diamagnetic and Cu/CuO particles (paramagnetic of 40–60 nm size. The nanofluids components had different magnetic properties what caused complex interaction of forces’ system. The heat transfer data and fluid flow structure demonstrated the influence of magnetic field on the convective phenomena. The most visible consequence of magnetic field application was the heat transfer enhancement and flow reorganization under applied conditions.

  1. Solar wind energy transfer to the earth magnetosphere due to the magnetic junction in the magnetopause

    International Nuclear Information System (INIS)

    Gonzalez, A.L.C. de; Gonzalez-Alarcon, W.D.; Jardim, M.V.A.

    1983-01-01

    An expression for the energy transfer due to magnetopause reconnection, as well as related expressions for the convection and parallel electric fields, are presented. These expressions are derived from a reconnection model centered at the magnetopause nose, and that considers the presence of the clefts. The expression for the convection - electric field - related energy transfer reduces to the substorm parameter epsilon for the special case of equal magnetosheath and geomagnetic field amplitudes. This result suggests that the reconnection electric field is transmitted along a tilted reconnection line, but that the convection field is only related to the 'dawn to dusk' component of the reconnection - electric field. (Author) [pt

  2. Mass transfer coefficient in disturbed flow due to orifice for flow accelerated corrosion in nuclear power plant

    International Nuclear Information System (INIS)

    Prasad, Mahendra; Gaikwad, Avinash J.; Sridharan, Arunkumar; Parida, Smrutiranjan

    2015-01-01

    The flow of fluid in pipes cause corrosion wherein the inner surface of pipe becomes progressively thinner and susceptible to failure. This form of corrosion dependent on flow dynamics is called Flow Accelerated Corrosion (FAC) and has been observed in Nuclear Power Plants (NPPs). Mass transfer coefficient (MTC) is related to extent of wall thinning and it changes from its value in a straight pipe (with same fluid parameters) for flow in orifices, bends, junctions etc. due to gross disturbance of the velocity profile. This paper presents two-dimensional computational fluid dynamics (CFD) simulations for an orifice configuration in a straight pipe. Turbulent model K- ω with shear stress transport and transition flow was the model used for simulation studies. The mass transfer boundary layer (MTBL) thickness δ mtbl is related to the Schmidt number (Sc) and hydrodynamic boundary layer thickness δ h , as δ mtbl ~ δh/(Sc 1/3 ). MTBL is significantly smaller than δ h and hence boundary layer meshing was carried out deep into δ mtbl . Uniform velocity profile was applied at the inlet. Post orifice fluid shows large recirculating flows on the upper and lower wall. At various locations after orifice, mass transfer coefficient is calculated and compared with the value in straight pipe with fully developed turbulent flow. The MTC due to the orifice increases and it is correlated with enhanced FAC in region after orifice. (author)

  3. SAR in human head model due to resonant wireless power transfer system.

    Science.gov (United States)

    Zhang, Chao; Liu, Guoqiang; Li, Yanhong; Song, Xianjin

    2016-04-29

    Efficient mid-range wireless power transfer between transmitter and the receiver has been achieved based on the magnetic resonant coupling method. The influence of electromagnetic field on the human body due to resonant wireless power transfer system (RWPT) should be taken into account during the design process of the system. To analyze the transfer performance of the RWPT system and the change rules of the specific absorption rate (SAR) in the human head model due to the RWPT system. The circuit-field coupling method for a RWPT system with consideration of the displacement current was presented. The relationship between the spiral coil parameters and transfer performance was studied. The SAR in the human head model was calculated under two different exposure conditions. A system with output power higher than 10 W at 0.2 m distance operating at a frequency of approximately 1 MHz was designed. The FEM simulation results show the peak SAR value is below the safety limit which appeared when the human head model is in front of the transmitter. The simulation results agreed well with the experimental results, which verified the validity of the analysis and design.

  4. Impairment of Heat Transfer in the Passive Cooling System due to Mixed Convection

    Energy Technology Data Exchange (ETDEWEB)

    Chae Myeong Seon; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of); Kim, Jong Hwan [KAERI, Daejeon (Korea, Republic of)

    2016-05-15

    In the passive cooling devices, the buoyant flows are induced. However the local Nusselt number of natural convective flow can be partly impaired due to the development of the mixed convective flows. This paper discusses impairment of heat transfer in the passive cooling system in relation to the development of mixed convection. The present work describes the preliminary plan to explore the phenomena experimentally. This paper is to discuss and make the plan to experiment the impairment of heat transfer in the passive cooling system due to mixed convection. In the sufficiently high passive cooling devices, the natural convection flow behavior can be mixed convection. The local Nusselt number distribution exhibits the non-monotonic behavior as axial position, since the buoyancy-aided with mixed convection was appeared. This is the part of the experimental work.

  5. A study on heat transfer enhancement using flow channel inserts for thermoelectric power generation

    International Nuclear Information System (INIS)

    Lesage, Frédéric J.; Sempels, Éric V.; Lalande-Bertrand, Nathaniel

    2013-01-01

    Highlights: • Thermal enhancement in a thermoelectric liquid generator is tested. • Thermal enhancement is brought upon by flow impeding inserts. • CFD simulations attribute thermal enhancement to velocity field alterations. • Thermoelectric power enhancement is measured and discussed. • Power enhancement relative to adverse pressure drop is investigated. - Abstract: Thermoelectric power production has many potential applications that range from microelectronics heat management to large scale industrial waste-heat recovery. A low thermoelectric conversion efficiency of the current state of the art prevents wide spread use of thermoelectric modules. The difficulties lie in material conversion efficiency, module design, and thermal system management. The present study investigates thermoelectric power improvement due to heat transfer enhancement at the channel walls of a liquid-to-liquid thermoelectric generator brought upon by flow turbulating inserts. Care is taken to measure the adverse pressure drop due to the presence of flow impeding obstacles in order to measure the net thermoelectric power enhancement relative to an absence of inserts. The results illustrate the power enhancement performance of three different geometric forms fitted into the channels of a thermoelectric generator. Spiral inserts are shown to offer a minimal improvement in thermoelectric power production whereas inserts with protruding panels are shown to be the most effective. Measurements of the thermal enhancement factor which represents the ratio of heat flux into heat flux out of a channel and numerical simulations of the internal flow velocity field attribute the thermal enhancement resulting in the thermoelectric power improvement to thermal and velocity field synergy

  6. Gravitationally Driven Wicking for Enhanced Condensation Heat Transfer.

    Science.gov (United States)

    Preston, Daniel J; Wilke, Kyle L; Lu, Zhengmao; Cruz, Samuel S; Zhao, Yajing; Becerra, Laura L; Wang, Evelyn N

    2018-04-17

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Filmwise condensation is prevalent in typical industrial-scale systems, where the condensed fluid forms a thin liquid film due to the high surface energy associated with many industrial materials. Conversely, dropwise condensation, where the condensate forms discrete liquid droplets which grow, coalesce, and shed, results in an improvement in heat transfer performance of an order of magnitude compared to filmwise condensation. However, current state-of-the-art dropwise technology relies on functional hydrophobic coatings, for example, long chain fatty acids or polymers, which are often not robust and therefore undesirable in industrial conditions. In addition, low surface tension fluid condensates, such as hydrocarbons, pose a unique challenge because common hydrophobic condenser coatings used to shed water (with a surface tension of 73 mN/m) often do not repel fluids with lower surface tensions (condensation heat transfer using gravitationally driven flow through a porous metal wick, which takes advantage of the condensate's affinity to wet the surface and also eliminates the need for condensate-phobic coatings. The condensate-filled wick has a lower thermal resistance than the fluid film observed during filmwise condensation, resulting in an improved heat transfer coefficient of up to an order of magnitude and comparable to that observed during dropwise condensation. The improved heat transfer realized by this design presents the opportunity for significant energy savings in natural gas processing, thermal management, heating and cooling, and power generation.

  7. Enhanced heat transfer with corrugated flow channel in anode side of direct methanol fuel cells

    International Nuclear Information System (INIS)

    Heidary, H.; Abbassi, A.; Kermani, M.J.

    2013-01-01

    Highlights: • Effect of corrugated flow channel on the heat exchange of DMFC is studied. • Corrugated boundary (except rectangular type) increase heat transfer up to 90%. • Average heat transfer in rectangular-corrugated boundary is less than straight one. • In Re > 60, wavy shape boundary has highest heat transfer. • In Re < 60, triangular shape boundary has highest heat transfer. - Abstract: In this paper, heat transfer and flow field analysis in anode side of direct methanol fuel cells (DMFCs) is numerically studied. To enhance the heat exchange between bottom cold wall and core flow, bottom wall of fluid delivery channel is considered as corrugated boundary instead of straight (flat) one. Four different shapes of corrugated boundary are recommended here: rectangular shape, trapezoidal shape, triangular shape and wavy (sinusoidal) shape. The top wall of the channel (catalyst layer boundary) is taken as hot boundary, because reaction occurs in catalyst layer and the bottom wall of the channel is considered as cold boundary due to coolant existence. The governing equations are numerically solved in the domain by the control volume approach based on the SIMPLE technique (1972). A wide spectrum of numerical studies is performed over a range of various shape boundaries, Reynolds number, triangle block number, and the triangle block amplitude. The performed parametric studies show that corrugated channel with trapezoidal, triangular and wavy shape enhances the heat exchange up to 90%. With these boundaries, cooling purpose of reacting flow in anode side of DMFCs would be better than straight one. Also, from the analogy between the heat and mass transfer problems, it is expected that the consumption of reacting species within the catalyst layer of DMFCs enhance. The present work provides helpful guidelines to the bipolar plate manufacturers of DMFCs to considerably enhance heat transfer and performance of the anode side of DMFC

  8. Enhanced diffusion due to electrons, protons and quenching

    International Nuclear Information System (INIS)

    Schuele, W.

    1987-01-01

    Results of investigations of radiation enhanced diffusion in copper -30% zinc alloys using 17.65 MeV protons are reported and compared with results obtained for 2 MeV electrons. The activation energy of diffusion decreases considerably from 0.35 eV to 0.26 eV for displacement rates increasing from 3x10 -12 dpa.s -1 to 1.2x10 -8 dpa.s -1 , i.e. the migration activation energy of interstitials decreases for this dpa.s -1 range from 0.70 eV to 0.52 eV. Results of electron irradiations obtained for 0.050 and 0.10 mm thick specimens are compared. It is found that the diffusion rates increase considerably in the presence of dislocations and that the diffusion rates decrease for very low electron fluxes and high irradiation temperatures in the 0.050 mm thick specimens in comparison to the rates obtained in 0.10 mm thick specimens. A value of 0.95 eV was determined for the activation energy of the ordering rate after quenching from 250 0 C in water. This was attributed to the migration activation energy of vacancies

  9. Enhancement of heat transfer in HPLWR fuel assemblies

    International Nuclear Information System (INIS)

    Bastron, A.; Hofmeister, J.; Meyer, L.; Schulenberg, T.

    2005-01-01

    A study on different methods for enhancement of heat transfer in fuel assemblies for a High Performance Light Water Reactor has been performed to indicate the potential for a further increase of core outlet temperature at given cladding temperatures, or for reduction of peak cladding temperatures at the envisaged core outlet temperature. As a result, the introduction of an artificial surface roughness or the use of a staircase type grid spacer should increase the heat transfer coefficient of the coolant at the cladding surface by more than a factor of two, which will reduce the peak cladding temperature by at least 50 degC. The paper provides further details for realization of these measures. (author)

  10. Scaling of heat transfer augmentation due to mechanical distortions in hypervelocity boundary layers

    Science.gov (United States)

    Flaherty, W.; Austin, J. M.

    2013-10-01

    We examine the response of hypervelocity boundary layers to global mechanical distortions due to concave surface curvature. Surface heat transfer and visual boundary layer thickness data are obtained for a suite of models with different concave surface geometries. Results are compared to predictions using existing approximate methods. Near the leading edge, good agreement is observed, but at larger pressure gradients, predictions diverge significantly from the experimental data. Up to a factor of five underprediction is reported in regions with greatest distortion. Curve fits to the experimental data are compared with surface equations. We demonstrate that reasonable estimates of the laminar heat flux augmentation may be obtained as a function of the local turning angle for all model geometries, even at the conditions of greatest distortion. This scaling may be explained by the application of Lees similarity. As a means of introducing additional local distortions, vortex generators are used to impose streamwise structures into the boundary layer. The response of the large scale vortices to an adverse pressure gradient is investigated. Surface streak evolution is visualized over the different surface geometries using fast response pressure sensitive paint. For a flat plate baseline case, heat transfer augmentation at similar levels to turbulent flow is measured. For the concave geometries, increases in heat transfer by factors up to 2.6 are measured over the laminar values. The scaling of heat transfer with turning angle that is identified for the laminar boundary layer response is found to be robust even in the presence of the imposed vortex structures.

  11. Entropy generation due to external fluid flow and heat transfer from a cylinder between parallel planes

    Directory of Open Access Journals (Sweden)

    Melhem Omar A.

    2017-01-01

    Full Text Available In the present study, second law analysis is introduced for circular cylinder confined between parallel planes. An analytical approach is adopted to study the effects of block age, Reynolds and Prandtl numbers on the entropy generation due to the laminar flow and heat transfer. Four different fluids are considered in the present analysis for comparison purposes. Heat transfer for the cylinder at an isothermal boundary condition is incorporated. In general, the entropy generation rate decreases as the blockage ratio decreases. In addition, the entropy generation rate increases with increasing Reynolds and Prandtl numbers. At a fixed Reynolds number, the effect of block age becomes more notice able for higher Prandtl number fluid. Similarly, for the same fluid, the effect of block age becomes more no tice able as the Reynolds number increases.

  12. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon

    2017-03-13

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required for complete absorption of solar light. Here we show a new strategy to enhance light absorption in CQD solar cells by nanostructuring the CQD film itself at the back interface. We use two-dimensional finite-difference time-domain (FDTD) simulations to study quantitatively the light absorption enhancement in nanostructured back interfaces in CQD solar cells. We implement this experimentally by demonstrating a nanoimprint-transfer-patterning (NTP) process for the fabrication of nanostructured CQD solids with highly ordered patterns. We show that this approach enables a boost in the power conversion efficiency in CQD solar cells primarily due to an increase in short-circuit current density as a result of enhanced absorption through light-trapping.

  13. Evaluation of heat transfer enhancement in air-heating collectors

    Energy Technology Data Exchange (ETDEWEB)

    Mattox, D. L.

    1979-06-01

    The present research effort was initiated for the purpose of increasing the thermal efficiency of air heating solar collectors through identification and development of optimum design and operation criteria for solar absorber-to-air heat exchangers. Initially this effort took the form of a solar collector systems analysis to evaluate the impact of various techniques for enhancing the heat transfer between the absorber and air stream on overall thermal performance of the entire solar collector. This systems analysis resulted in the selection of solar collector designs providing ducted cooling air on the absorber shaded side as a base line. A transient heat transfer analysis of a complete solar air heating collector was used to demonstrate that an optimum absorber-to-air heat exchanger design could be provided with several interrupted fin configurations. Additional analyses were performed to establish that the maximum solar collector thermal performance to required pumping power was realized for a Reynolds number range of 1000 to 2000. This Reynolds number range was used to establish a theoretical design limit curve for maximum thermal performance versus required pumping power for all interrupted fin designs as published in the open literature. Heat and momentum transfer empirical relationships were defined for scaling the state-of-the-art high conductance fin designs identified from a compact configuration to the less compact designs needed for solar collectors.

  14. Heat transfer enhancement of free surface MHD-flow by a protrusion wall

    International Nuclear Information System (INIS)

    Hulin Huang; Bo Li

    2010-01-01

    Due to the magnetohydrodynamic (MHD) effect on the flow, which degrades heat transfer coefficients by pulsation suppression of external magnetic field on the flow, a hemispherical protrusion wall is applied to free surface MHD-flow system as a heat transfer enhancement, because the hemispherical protrusion wall has some excellent characteristics including high heat transfer coefficients, low friction factors and high overall thermal performances. So, the characteristics of the fluid flow and heat transfer of the free surface MHD-flow with hemispherical protrusion wall are simulated numerically and the influence of some parameters, such as protrusion height δ/D, and Hartmann number, are also discussed in this paper. It is found that, in the range of Hartmann number 30 ≤ Ha ≤ 70, the protrusion wall assemblies can achieve heat transfer enhancements (Nu/Nu 0 ) of about 1.3-2.3 relative to the smooth channel, while the friction loss (f/f 0 ) increases by about 1.34-1.45. Thus, the high Nusselt number can be obtained when the protrusion wall with a radically lower friction loss increase, which may help get much higher overall thermal performances.

  15. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    International Nuclear Information System (INIS)

    Rahman, M M; Zhen, T; Kadir, A K

    2013-01-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  16. Numerical simulation of fluid flow and heat transfer in enhanced copper tube

    Science.gov (United States)

    Rahman, M. M.; Zhen, T.; Kadir, A. K.

    2013-06-01

    Inner grooved tube is enhanced with grooves by increasing the inner surface area. Due to its high efficiency of heat transfer, it is used widely in power generation, air conditioning and many other applications. Heat exchanger is one of the example that uses inner grooved tube to enhance rate heat transfer. Precision in production of inner grooved copper tube is very important because it affects the tube's performance due to various tube parameters. Therefore, it is necessary to carry out analysis in optimizing tube performance prior to production in order to avoid unnecessary loss. The analysis can be carried out either through experimentation or numerical simulation. However, experimental study is too costly and takes longer time in gathering necessary information. Therefore, numerical simulation is conducted instead of experimental research. Firstly, the model of inner grooved tube was generated using SOLIDWORKS. Then it was imported into GAMBIT for healing, followed by meshing, boundary types and zones settings. Next, simulation was done in FLUENT where all the boundary conditions are set. The simulation results were observed and compared with published experimental results. It showed that heat transfer enhancement in range of 649.66% to 917.22% of inner grooved tube compared to plain tube.

  17. Convective heat transfer of supercritical CO_2 in a rock fracture for enhanced geothermal systems

    International Nuclear Information System (INIS)

    Zhang, Le; Jiang, Peixue; Wang, Zhenchuan; Xu, Ruina

    2017-01-01

    Highlights: • Contrasting experiments between a rough and a smooth fracture were performed. • A numerical model of rough fracture was reconstructed based on CT scanning data. • Heat transfer in rough fracture was affected by channeling and disturbance effects. - Abstract: Convective heat transfer characteristics of supercritical pressure fluid in a rock fracture are important for building an accurate heat transfer model of enhanced geothermal systems. This paper presents experimental investigations of laminar convection heat transfer of supercritical pressure CO_2 in an artificial smooth parallel-plate fracture and a rough and tortuous fracture that was created using the Brazilian technique. Hot rock with a relatively high initial temperature reserves more heat, which can ensure a larger heat extraction rate for a longer time when cold fluid flows through the fracture. Compared with the smooth parallel-plate fracture, CO_2 flowing through the rough and tortuous fracture with an equivalent hydraulic aperture extracted less heat from the hot rock due to the less efficient heat exchange in a rough fracture caused by channeling effect. This was illustrated by numerical simulation results of the reconstructed fracture based on micro-computed tomography scan data. The overall Nusselt number obtained from the numerical results was larger in a rough fracture with a larger Reynolds number due to disturbance effect on the boundary layer development. The heat transfer performance in a rough fracture is therefore influenced by interactions of the channeling and disturbance effects caused by the tortuous flow path.

  18. Assessing the Risk of Secondary Transfer Via Fingerprint Brush Contamination Using Enhanced Sensitivity DNA Analysis Methods.

    Science.gov (United States)

    Bolivar, Paula-Andrea; Tracey, Martin; McCord, Bruce

    2016-01-01

    Experiments were performed to determine the extent of cross-contamination of DNA resulting from secondary transfer due to fingerprint brushes used on multiple items of evidence. Analysis of both standard and low copy number (LCN) STR was performed. Two different procedures were used to enhance sensitivity, post-PCR cleanup and increased cycle number. Under standard STR typing procedures, some additional alleles were produced that were not present in the controls or blanks; however, there was insufficient data to include the contaminant donor as a contributor. Inclusion of the contaminant donor did occur for one sample using post-PCR cleanup. Detection of the contaminant donor occurred for every replicate of the 31 cycle amplifications; however, using LCN interpretation recommendations for consensus profiles, only one sample would include the contaminant donor. Our results indicate that detection of secondary transfer of DNA can occur through fingerprint brush contamination and is enhanced using LCN-DNA methods. © 2015 American Academy of Forensic Sciences.

  19. Heat transfer enhancement in energy storage in spherical capsules filled with paraffin wax and metal beads

    International Nuclear Information System (INIS)

    Ettouney, Hisham; Alatiqi, Imad; Al-Sahali, Mohammad; Al-Hajirie, Khalida

    2006-01-01

    Energy storage is an attractive option to conserve limited energy resources, where more than 50% of the generated industrial energy is discarded in cooling water and stack gases. This study focuses on the evaluation of heat transfer enhancement in phase change energy storage units. The experiments are performed using spherical capsules filled with paraffin wax and metal beads. The experiments are conducted by inserting a single spherical capsule filled with wax and metal beads in a stream of hot/cold air. Experimental measurements include the temperature field within the spherical capsule and in the air stream. To determine the enhancement effects of the metal beads, the measured data is correlated against those for a spherical capsule filled with pure wax. Data analysis shows a reduction of 15% in the melting and solidification times upon increasing the number and diameter of the metal beads. This reduction is caused by a similar decrease in the thermal load of the sphere due to replacement of the wax by metal beads. The small size of the spherical capsule limits the enhancement effects; this is evident upon comparison of the heat transfer in a larger size, double pipe energy storage unit, where 2% of the wax volume is replaced with metal inserts, result in a three fold reduction in the melting/solidification time and a similar enhancement in the heat transfer rate

  20. See-saw enhancement of neutrino mixing due to the right-handed phases

    International Nuclear Information System (INIS)

    Tanimoto, M.

    1994-11-01

    We study the see-saw enhancement mechanism in presence of the right-handed phases of the Dirac neutrino mass matrix and the Majorana mass matrix. The enhancement condition given by Smirnov is modified. We point out that the see-saw enhancement could be obtained due to the right-handed phases even if the Majorana matrix is proportional to the unit matrix. We show a realistic Dirac mass matrix which causes the see-saw enhancement. (author)

  1. Heat transfer enhancement in nanofluids. A numerical approach

    International Nuclear Information System (INIS)

    Fariñas Alvariño, P; Sáiz Jabardo, J M; Arce, A; Llamas Galdo, M I

    2012-01-01

    The aim of the reported investigation is to asses the effect of brownian and thermophoretic diffusion in nanofluids convective heat transfer. In order to capture these effects, a new equation for particles distribution had to be consider. Momentum and energy equations have been reformulated in order to include brownian and thermophretic diffusion. These modes of diffusion have been suggested extensively in the literature but their effect on momentum and energy transport has not yet been numerically analyzed. In order to obtain a solution for the modified set of governing equations, a new CFD solver had to be devised. The new solver has been applied to a case study involving hydrodynamic and thermally developing laminar flow regime in a pipe. Pure base fluid solutions have been used to asses the accuracy of the model. Numerical nanofluid solutions compare reasonably well with both experimental results obtained elsewhere and the Churchill and Ozoe correlation. The observed heat transfer enhancement by the nanofluid has been attributed to its transport properties rather than to another transport mechanism.

  2. Towards convective heat transfer enhancement: surface modification, characterization and measurement techniques

    NARCIS (Netherlands)

    Taha, T.J.; Thakur, D.B.; van der Meer, Theodorus H.

    2012-01-01

    In this work, heat transfer surface modification and heat transfer measurement technique is developed. Heat transfer investigation was aimed to study the effect of carbon nano fibers (extremely high thermal conductive material) on the enhancement level in heat transfer. Synthesis of these carbon

  3. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    International Nuclear Information System (INIS)

    Kondoh, H.; Mishima, Y.; Hiratsuka, J.; Iwakura, M.

    2000-01-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with 10 B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of 10 B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  4. In vivo tyrosinase mini-gene transfer enhances killing effect of BNCT on amelanotic melanoma

    Energy Technology Data Exchange (ETDEWEB)

    Kondoh, H.; Mishima, Y. [Mishima Institute for Dermatological Research, Kobe, Hyogo (Japan); Hiratsuka, J. [Kawasaki Medical School, Dept. of Radiation Oncology, Kurashiki, Okayama (Japan); Iwakura, M. [Kobe Univ. (Japan). School of Medicine

    2000-10-01

    Using accentuated melanogenesis principally occurring within melanoma cells, we have successfully treated human malignant melanoma (Mm) with {sup 10}B-BPA BNCT. Despite this success, there are still remaining issues for poorly melanogenic Mm and further non-pigment cell tumors. We found the selective accumulation of {sup 10}B-BPA to Mm is primarily due to the complex formation of BPA and melanin-monomers activity synthesized within Mm cells. Then, we succeeded in transferring the tyrosinase gene into amelanotic to substantially produce melanin monomers. These cells has demonstrated increased boron accumulation and enhanced killing effect of BNCT. Further, transfection of TRP-2 (DOPAchrome tautomerase) gene into poorly eumelanotic and slightly phenomelanotic Mm cells in culture cell systems also led to increased BPA accumulation. Thereafter, we studied in vivo gene transfer. We transferred the tyrosinase mini-gene by intra-tumor injection into poorly melanotic Mm proliferating subcutaneously in hamster skin, and performed BNCT. Compared to control tumors, gene-transferred tumors showed increased BPA accumulation leading to enhanced killing effect. (author)

  5. Chemical potential pinning due to equilibrium electron transfer at metal/C60-doped polymer interfaces

    Science.gov (United States)

    Heller, C. M.; Campbell, I. H.; Smith, D. L.; Barashkov, N. N.; Ferraris, J. P.

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C60-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C60 molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C60-doped poly[2-methoxy, 5-(2'-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C60-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C60 molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C60 and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C60 in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV.

  6. Modeling of Heat Transfer and Ablation of Refractory Material Due to Rocket Plume Impingement

    Science.gov (United States)

    Harris, Michael F.; Vu, Bruce T.

    2012-01-01

    CR Tech's Thermal Desktop-SINDA/FLUINT software was used in the thermal analysis of a flame deflector design for Launch Complex 39B at Kennedy Space Center, Florida. The analysis of the flame deflector takes into account heat transfer due to plume impingement from expected vehicles to be launched at KSC. The heat flux from the plume was computed using computational fluid dynamics provided by Ames Research Center in Moffet Field, California. The results from the CFD solutions were mapped onto a 3-D Thermal Desktop model of the flame deflector using the boundary condition mapping capabilities in Thermal Desktop. The ablation subroutine in SINDA/FLUINT was then used to model the ablation of the refractory material.

  7. Evaluation of heat transfer tube failure propagation due to sodium-water reaction in steam generator

    International Nuclear Information System (INIS)

    Nei, Hiromichi

    1978-01-01

    An evaluation was made of heat transfer tube failure propagation due to sodium-water reaction wastage in a sodium heated steam generator, by comparing an empirically derived wastage equation with leak detector responses. The experimental data agreed well with the wastage equation even for different values of distance-to-nozzle diameter ratio, though the formula had been based on wastage data obtained for only one given distance. The time taken for failure propagation was estimated for a prototype steam generator, and compared with the responses characteristics of acoustic detectors and level gages. It was found that there exists a range of leak rate between 0.5 and 100 g/sec, where the level gage can play a useful role in leak detection. The acoustic detector can be expected to respond more rapidly than the cover gas pressure gage, if noise is kept below ten times the value observed in an experimental facility, SWAT-2. (auth.)

  8. Enhancing charge transfer kinetics by nanoscale catalytic cermet interlayer.

    Science.gov (United States)

    An, Jihwan; Kim, Young-Beom; Gür, Turgut M; Prinz, Fritz B

    2012-12-01

    Enhancing the density of catalytic sites is crucial for improving the performance of energy conversion devices. This work demonstrates the kinetic role of 2 nm thin YSZ/Pt cermet layers on enhancing the oxygen reduction kinetics for low temperature solid oxide fuel cells. Cermet layers were deposited between the porous Pt cathode and the dense YSZ electrolyte wafer using atomic layer deposition (ALD). Not only the catalytic role of the cermet layer itself but the mixing effect in the cermet was explored. For cells with unmixed and fully mixed cermet interlayers, the maximum power density was enhanced by a factor of 1.5 and 1.8 at 400 °C, and by 2.3 and 2.7 at 450 °C, respectively, when compared to control cells with no cermet interlayer. The observed enhancement in cell performance is believed to be due to the increased triple phase boundary (TPB) density in the cermet interlayer. We also believe that the sustained kinetics for the fully mixed cermet layer sample stems from better thermal stability of Pt islands separated by the ALD YSZ matrix, which helped to maintain the high-density TPBs even at elevated temperature.

  9. An abnormally slow proton transfer reaction in a simple HBO derivative due to ultrafast intramolecular-charge transfer events.

    Science.gov (United States)

    Alarcos, Noemí; Gutierrez, Mario; Liras, Marta; Sánchez, Félix; Douhal, Abderrazzak

    2015-07-07

    We report on the steady-state, picosecond and femtosecond time-resolved studies of a charge and proton transfer dye 6-amino-2-(2'-hydroxyphenyl)benzoxazole (6A-HBO) and its methylated derivative 6-amino-2-(2'-methoxyphenyl)benzoxazole (6A-MBO), in different solvents. With femtosecond resolution and comparison with the photobehaviour of 6A-MBO, we demonstrate for 6A-HBO in solution, the photoproduction of an intramolecular charge-transfer (ICT) process at S1 taking place in ∼140 fs or shorter, followed by solvent relaxation in the charge transferred species. The generated structure (syn-enol charge transfer conformer) experiences an excited-state intramolecular proton-transfer (ESIPT) reaction to produce a keto-type tautomer. This subsequent proton motion occurs in 1.2 ps (n-heptane), 14 ps (DCM) and 35 ps (MeOH). In MeOH, it is assisted by the solvent molecules and occurs through tunneling for which we got a large kinetic isotope effect (KIE) of about 13. For the 6A-DBO (deuterated sample in CD3OD) the global proton-transfer reaction takes place in 200 ps, showing a remarkable slow KIE regime. The slow ESIPT reaction in DCM (14 ps), not through tunnelling as it is not sensitive to OH/OD exchange, has however to overcome an energy barrier using intramolecular as well as solvent coordinates. The rich ESIPT dynamics of 6A-HBO in the used solutions is governed by an ICT reaction, triggered by the amino group, and it is solvent dependent. Thus, the charge injection to a 6A-HBO molecular frame makes the ICT species more stable, and the phenol group less acidic, slowing down the subsequent ESIPT reaction. Our findings bring new insights into the coupling between ICT and ESIPT reactions on the potential-energy surfaces of several barriers.

  10. HEAT TRANSFER ENHANCEMENT USING ALUMINA NANOFLUID IN CIRCULAR MICRO CHANNEL

    Directory of Open Access Journals (Sweden)

    K. S. ARJUN

    2017-01-01

    Full Text Available In this study, thermal and flow behavior models for circular microchannel using water and its nanofluids with alumina as a coolant fluid in single phase flow have been developed. A finite volume-based CFD technique is used and models are solved by using Fluent Solver. The 2D axis symmetric geometry with structured mesh and 100 x 18 nodes are used for single phase flow with Al2O3 nanoparticles of 23 nm average diameter. Viscous laminar and standard k-ε models are used to predict the steady temperature in laminar and turbulent zone. The heat transfer enhancement upto 83% in laminar and turbulent zones are obtained with the Re ranging from 5 to 11980 and particle volume concentration from 0 to 5%. Even though the pressure drop increases with increase in Re, it is comparatively less compared to the corresponding decrease in temperature. The increase in temperature depends on Re and Pe; but the temperature distribution is found to be independent of radial position even for very low Pe. Comparison with analytical results both in laminar and turbulent zone is provided to justify the assumptions introduced in the models and very close agreement is observed statistically. Nusselt number can well predict the analytical data.

  11. Assessment of Risk Due to Chemicals Transferred in a Watershed: A Case of an Aquifer Storage Transfer and Recovery Site

    Directory of Open Access Journals (Sweden)

    Hyon Wook Ji

    2016-06-01

    Full Text Available This paper presents an analysis of the potential risks of chemicals that can affect an aquifer storage transfer and recovery (ASTR site. ASTR is a water supply system that injects surface water into an aquifer and then extracts naturally filtered groundwater. The pilot site of the ASTR supplying drinking water is located downstream of the Nakdong River in South Korea. Hazard analysis and critical control points (HACCP was adopted to ensure suitable water quality in response to the deteriorated water quality of the Nakdong River. HACCP is a proactive management system for ensuring consistent confidence in food (or water. Hazard analysis, the first of the seven principles of HACCP, assesses physical, microbial, chemical, and radioactive hazards. This study focuses on the chemicals that are most likely to be involved in major hazardous events. Pollutant release and transfer register (PRTR data were used to analyze potential risks of chemicals. A PRTR is a national environmental database of potentially hazardous chemicals. Potential risk analysis considers the total amount of chemicals transferred off-site for treatment or disposal. Fifty-five cities and the top 10 chemicals released in the Nakdong River basin were investigated. Potential risk was defined as a function of total transfers, the relative distance, and toxicity. The top 10 cities with high potential risks were identified, and the city with the highest potential risk turned out to be Ulju.

  12. Enhancing heat transfer in microchannel heat sinks using converging flow passages

    International Nuclear Information System (INIS)

    Dehghan, Maziar; Daneshipour, Mahdi; Valipour, Mohammad Sadegh; Rafee, Roohollah; Saedodin, Seyfolah

    2015-01-01

    Highlights: • The fluid flow and conjugate heat transfer in microchannel heat sinks are studied. • The Poiseuille and Nusselt numbers are presented for width-tapered MCHS. • Converging walls are found to enhance the thermal performance of MCHS. • The optimum performance of MCHS for fixed inlet and outlet pressures is discussed. • For the optimum configuration, the pumping power is reduced up to 75%. - Abstract: Constrained fluid flow and conjugate heat transfer in microchannel heat sinks (MCHS) with converging channels are investigated using the finite volume method (FVM) in the laminar regime. The maximum pressure of the MCHS loop is assumed to be limited due to constructional or operational conditions. Results show that the Poiseuille number increases with increased tapering, while the required pumping power decreases. Meanwhile, the Nusselt number increases with tapering as well as the convection heat transfer coefficient. The MCHS having the optimum heat transfer performance is found to have a width-tapered ratio equal to 0.5. For this tapering configuration and at the maximum pressure constraint of 3000 Pa, the pumping power reduces by a factor of 4 while the overall heat removal rate is kept fixed in comparison with a straight channel

  13. Analysis of Enhancement in Available Power Transfer Capacity by STATCOM Integrated SMES by Numerical Simulation Studies

    DEFF Research Database (Denmark)

    Saraswathi, Ananthavel; Sanjeevikumar, Padmanaban; Shanmugham, Sutha

    2016-01-01

    Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses...... on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM) and superconducting magnetic energy storage (SMES) which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC). STATCOMis...... power electronic voltage source converter (VSC) which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow...

  14. Analysis of the characteristics of heat transfer enhancement in steam condensers

    International Nuclear Information System (INIS)

    Yan Changqi; Sun Zhongning

    2001-01-01

    The influence of main factors on overall heat transfer was analyzed, and the effects of fouling factors on heat transfer characteristics in steam condenser were clarified. It was proposed that the tube outside enhancement is the most important attribute, when outside heat transfer coefficient increased there will be a big increase in condenser efficiency. The characteristics of heat transfer enhancement by spirally indented tube were investigated. It was proposed that condenser heat transfer efficiency will be raised when the low fin tube or the spirally indented tube with special treated surface were used

  15. Investigation of enhanced condensation heat transfer outside vertical titanium circularly-grooved tube

    International Nuclear Information System (INIS)

    Zhaorigetu; Huang Weitang; Lv Xiangbo; Liu Feng

    2005-01-01

    The investigation of enhanced condensation heat transfer had been conducted on the outside vertical Titanium circularly-grooved tube. The experimental result indicates that the Titanium circularly-grooved tube is fairly efficient in enhancing the heat transfer. Within the experimental scope, the total heat transfer coefficient of the optimum circularly-grooved tube is 1.12 to 1.36 times of that of the Titanium smooth tube. Through regression analysis on the experimental data, the experimental correlations for the inside heat transfer coefficient, the condensation heat transfer coefficient on film condensation and the friction coefficient were achieved. (authors)

  16. Heat Transfer Enhancement By Three-Dimensional Surface Roughness Technique In Nuclear Fuel Rod Bundles

    Science.gov (United States)

    Najeeb, Umair

    This thesis experimentally investigates the enhancement of single-phase heat transfer, frictional loss and pressure drop characteristics in a Single Heater Element Loop Tester (SHELT). The heater element simulates a single fuel rod for Pressurized Nuclear reactor. In this experimental investigation, the effect of the outer surface roughness of a simulated nuclear rod bundle was studied. The outer surface of a simulated fuel rod was created with a three-dimensional (Diamond-shaped blocks) surface roughness. The angle of corrugation for each diamond was 45 degrees. The length of each side of a diamond block is 1 mm. The depth of each diamond block was 0.3 mm. The pitch of the pattern was 1.614 mm. The simulated fuel rod had an outside diameter of 9.5 mm and wall thickness of 1.5 mm and was placed in a test-section made of 38.1 mm inner diameter, wall thickness 6.35 mm aluminum pipe. The Simulated fuel rod was made of Nickel 200 and Inconel 625 materials. The fuel rod was connected to 10 KW DC power supply. The Inconel 625 material of the rod with an electrical resistance of 32.3 kO was used to generate heat inside the test-section. The heat energy dissipated from the Inconel tube due to the flow of electrical current flows into the working fluid across the rod at constant heat flux conditions. The DI water was employed as working fluid for this experimental investigation. The temperature and pressure readings for both smooth and rough regions of the fuel rod were recorded and compared later to find enhancement in heat transfer coefficient and increment in the pressure drops. Tests were conducted for Reynold's Numbers ranging from 10e4 to 10e5. Enhancement in heat transfer coefficient at all Re was recorded. The maximum heat transfer co-efficient enhancement recorded was 86% at Re = 4.18e5. It was also observed that the pressure drop and friction factor increased by 14.7% due to the increased surface roughness.

  17. Contactless ultrasonic energy transfer for wireless systems: acoustic-piezoelectric structure interaction modeling and performance enhancement

    International Nuclear Information System (INIS)

    Shahab, S; Erturk, A

    2014-01-01

    There are several applications of wireless electronic components with little or no ambient energy available to harvest, yet wireless battery charging for such systems is still of great interest. Example applications range from biomedical implants to sensors located in hazardous environments. Energy transfer based on the propagation of acoustic waves at ultrasonic frequencies is a recently explored alternative that offers increased transmitter-receiver distance, reduced loss and the elimination of electromagnetic fields. As this research area receives growing attention, there is an increased need for fully coupled model development to quantify the energy transfer characteristics, with a focus on the transmitter, receiver, medium, geometric and material parameters. We present multiphysics modeling and case studies of the contactless ultrasonic energy transfer for wireless electronic components submerged in fluid. The source is a pulsating sphere, and the receiver is a piezoelectric bar operating in the 33-mode of piezoelectricity with a fundamental resonance frequency above the audible frequency range. The goal is to quantify the electrical power delivered to the load (connected to the receiver) in terms of the source strength. Both the analytical and finite element models have been developed for the resulting acoustic-piezoelectric structure interaction problem. Resistive and resistive–inductive electrical loading cases are presented, and optimality conditions are discussed. Broadband power transfer is achieved by optimal resistive-reactive load tuning for performance enhancement and frequency-wise robustness. Significant enhancement of the power output is reported due to the use of a hard piezoelectric receiver (PZT-8) instead of a soft counterpart (PZT-5H) as a result of reduced material damping. The analytical multiphysics modeling approach given in this work can be used to predict and optimize the coupled system dynamics with very good accuracy and

  18. Academic Technology Transfer: Tracking, Measuring and Enhancing Its Impact

    Science.gov (United States)

    Fraser, John

    2010-01-01

    Since the 1980 passage of the US Bayh-Dole Act, academic technology transfer has gained profile globally as a key component of knowledge-driven economic development. Research universities are seen as key contributors. In this article, focusing on the USA and drawing on over twenty years of experience in the field of academic technology transfer in…

  19. Reversal by EGTA of the enhanced secretory responsiveness of mast cells due to treatment with ouabain

    DEFF Research Database (Denmark)

    Johansen, Torben; Knudsen, T; Bertelsen, Niels Haldor

    1990-01-01

    The effect of EGTA on the enhancement by ouabain of compound 48/80-induced secretion from mast cells was compared with the effect on the Na(+)-K+ pump activity. The time-dependent secretory enhancement by ouabain was blocked by addition of EGTA to the cell suspension concomitantly with the addition...... of ouabain, and EGTA caused a large increase in the pump activity. Addition of 10 microM EGTA to ouabain-treated cells stopped but did not reverse the enhancement. The experiments show that the effect of ouabain was due to changes in a calcium pool utilized in compound 48/80-induced secretion following...

  20. Energy transfer induced Eu{sup 3+} photoluminescence enhancement in tellurite glass

    Energy Technology Data Exchange (ETDEWEB)

    Stambouli, W. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Elhouichet, H., E-mail: habib.elhouichet@fst.rnu.tn [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Departement de Physique, Faculte des Sciences de Tunis, Universite de Tunis-ElManar ElManar 2092, Tunis (Tunisia); Gelloz, B. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan); Ferid, M. [Laboratoire des Materiaux Mineraux et leurs Applications, Centre National de Recherches en Sciences des Materiaux, B.P. 95, Hammam-Lif 2050 (Tunisia); Koshida, N. [Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, 184-8588 Tokyo (Japan)

    2012-01-15

    In this work, structural, thermal and optical properties of Eu{sup 3+} doped TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass were investigated. The differential scanning calorimetry (DSC) measurements reveal an important stability factor {Delta}T=143.52 K, which indicates the good thermal and mechanical stabilities of tellurite glass. From the absorption spectrum, the optical band gap was found to be direct with E{sub g}=3.23 eV. The temperature dependences of photoluminescence (PL) properties of Eu-doped and Eu-Tb codoped tellurite glass are investigated. As the temperature increases from 7 to 300 K, both the PL intensity and the PL lifetime relative to the {sup 5}D{sub 2}{yields}{sup 7}F{sub 0} are nearly constant below 230 K and then an enhancement takes place. This anomalous feature is attributed to the thermally activated carrier transfer process from charged intrinsic defects states to Eu{sup 3+} energy levels. By co-doping tellurite glasses with Eu and Tb, a strong Eu{sup 3+} PL enhancement is shown due to excitation transfer from Tb{sup 3+} and intrinsic defects to Eu ions. - Highlights: > TeO{sub 2}-La{sub 2}O{sub 3}-TiO{sub 2} glass doped Eu{sup 3+} with good thermal stability elaborated. > PL evolution of Eu{sup 3+} with temperature shows a non-conventional behavior. > Thermally activated carrier transfer from intrinsic defects states to Eu{sup 3+} shown. > Strong Eu{sup 3+} PL enhancement is shown in Eu-Tb codoped glass.

  1. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Directory of Open Access Journals (Sweden)

    Benoît Lacroix

    Full Text Available VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  2. Extracellular VirB5 enhances T-DNA transfer from Agrobacterium to the host plant.

    Science.gov (United States)

    Lacroix, Benoît; Citovsky, Vitaly

    2011-01-01

    VirB5 is a type 4 secretion system protein of Agrobacterium located on the surface of the bacterial cell. This localization pattern suggests a function for VirB5 which is beyond its known role in biogenesis and/or stabilization of the T-pilus and which may involve early interactions between Agrobacterium and the host cell. Here, we identify VirB5 as the first Agrobacterium virulence protein that can enhance infectivity extracellularly. Specifically, we show that elevating the amounts of the extracellular VirB5--by exogenous addition of the purified protein, its overexpression in the bacterium, or transgenic expression in and secretion out of the host cell--enhances the efficiency the Agrobacterium-mediated T-DNA transfer, as measured by transient expression of genes contained on the transferred T-DNA molecule. Importantly, the exogenous VirB5 enhanced transient T-DNA expression in sugar beet, a major crop recalcitrant to genetic manipulation. Increasing the pool of the extracellular VirB5 did not complement an Agrobacterium virB5 mutant, suggesting a dual function for VirB5: in the bacterium and at the bacterium-host cell interface. Consistent with this idea, VirB5 expressed in the host cell, but not secreted, had no effect on the transformation efficiency. That the increase in T-DNA expression promoted by the exogenous VirB5 was not due to its effects on bacterial growth, virulence gene induction, bacterial attachment to plant tissue, or host cell defense response suggests that VirB5 participates in the early steps of the T-DNA transfer to the plant cell.

  3. Electromagnetic Energy Absorption due to Wireless Energy Transfer: A Brief Review

    Directory of Open Access Journals (Sweden)

    Syafiq A.

    2016-01-01

    Full Text Available This paper reviews an implementation of evaluating compliance of wireless power transfer systems with respect to human electromagnetic exposure limits. Methods for both numerical analysis and measurements are discussed. The objective is to evaluate the rate of which energy is absorbed by the human body when exposed to a wireless energy transfer, although it can be referred to the absorption of other forms of energy by tissue. An exposure assessment of a representative wireless power transfer system, under a limited set of operating conditions, is provided in order to estimate the maximum SAR levels. The aim of this review is to conclude the possible side effect to the human body when utilizing wireless charging in daily life so that an early severe action can be taken when using wireless transfer.

  4. Experimental study on method for heat transfer enhancement using a porous material

    International Nuclear Information System (INIS)

    Shimura, Takuya; Takeda, Tetsuaki

    2011-01-01

    There are several methods for enhancement of heat transfer; for example, there are attaching various fins on the heat transfer surface, processing the surface roughly, and so on. When cooling high temperature circular or rectangular channels by forced convection of gas, there are several methods for enhancement of heat transfer such as attaching radial or spiral fins on the channel surface or inserting twisted tape in the channel. In the case of the gas heating type steam reformer, disk type fins are attached on the outside surface of the reformer tube, and the tube is inserted into the guide tube to increase an amount of heat transferred from the high temperature gas. However, it has to take into consideration the deterioration of the structure strength by attaching the fins on the tube surface with the design of the steam reformer. The objective of this study is to clarify performances of a method for heat transfer enhancement using porous material with high porosity. The experiment has been performed using an apparatus which simulated the passage structure of the steam reformer to obtain characteristics of heat transfer and pressure drop. From the results obtained in this experiment, the heat transfer rate by this method showed a good performance in the laminar flow region. It was also found that the method for heat transfer enhancement using porous material with high porosity is further improved under the high temperature condition as compared with the other methods for heat transfer enhancement. (author)

  5. Heat transfer enhancement of phase change materials by fins under simultaneous charging and discharging

    International Nuclear Information System (INIS)

    Joybari, Mahmood Mastani; Haghighat, Fariborz; Seddegh, Saeid; Al-Abidi, Abduljalil A.

    2017-01-01

    Highlights: • CFD simulation of a finned triplex tube heat exchanger with PCM under simultaneous charging and discharging. • Developed fin configurations for SCD, compatible with natural convection. • More fins enhanced the heat transfer as long as natural convection was not suppressed. • Longer fins enhanced the heat transfer as long as natural convection was not suppressed. • The effect of fin thickness was negligible, similar to non-SCD conditions. - Abstract: Due to the inherent intermittency of renewable energy sources such as solar, latent heat thermal energy storage in phase change materials (PCMs) has received considerable attention. Among several techniques to enhance PCMs’ thermal conductivity, the majority of studies have focused on fin integration due to its simplicity, ease of manufacturing, and low cost. In this study, utilization of extended surfaces (by longitudinal fins) was investigated by development of a numerical model to study the performance of a triplex tube heat exchanger (TTHX) equipped with a PCM under simultaneous charging and discharging (SCD). Governing equations were developed and numerically solved using ANSYS Fluent v16.2. Three conventional fin geometries and six developed fin configurations were compared based on the temperature, liquid fraction, and natural convection behavior under both SCD and non-SCD conditions. The intensity of natural convection was investigated for different fins for the inside heating/outside cooling scenario based on the solid–liquid interface evolution over time. The results indicated that since the buoyancy forces induce upward melted PCM motion, the inner hot tube requires fins on its lower half, while the outer cold one should be extended from its upper half. It was concluded that the case with 3 hot tube fins and 1 cold tube fin is most compatible with natural convection and provides the best performance under SCD conditions.

  6. Lifetime-Enhanced Transport in Silicon due to Spin and Valley Blockade

    NARCIS (Netherlands)

    Lansbergen, G.P.; Rahman, R.; Verduijn, J.; Tettamanzi, G.C.; Collaert, N.; Biesemans, S.; Klimeck, G.; Hollenberg, L.C.L.; Rogge, S.

    2011-01-01

    We report the observation of lifetime-enhanced transport (LET) based on perpendicular valleys in silicon by transport spectroscopy measurements of a two-electron system in a silicon transistor. The LET is manifested as a peculiar current step in the stability diagram due to a forbidden transition

  7. Enhancement of heat transfer using varying width twisted tape inserts

    African Journals Online (AJOL)

    International Journal of Engineering, Science and Technology ... experimental investigations of the augmentation of turbulent flow heat transfer in a horizontal tube by means of varying width twisted tape inserts with air as the working fluid.

  8. Experimental Investigation of Pool Boiling Heat Transfer Enhancement in Microgravity in the Presence of Electric Fields

    Science.gov (United States)

    Herman, Cila

    1996-01-01

    Boiling is an effective mode of heat transfer since high heat flux levels are possible driven by relatively small temperature differences. The high heat transfer coefficients associated with boiling have made the use of these processes increasingly attractive to aerospace engineering. Applications of this type include compact evaporators in the thermal control of aircraft avionics and spacecraft environments, heat pipes, and use of boiling to cool electronic equipment. In spite of its efficiency, cooling based on liquid-vapor phase change processes has not yet found wide application in aerospace engineering due to specific problems associated with the low gravity environment. After a heated surface has reached the superheat required for the initiation of nucleate boiling, bubbles will start forming at nucleation sites along the solid interface by evaporation of the liquid. Bubbles in contact with the wall will continue growing by this mechanism until they detach. In terrestrial conditions, bubble detachment is determined by the competition between body forces (e.g. buoyancy) and surface tension forces that act to anchor the bubble along the three phase contact line. For a given body force potential and a balance of tensions along the three phase contact line, bubbles must reach a critical size before the body force can cause them to detach from the wall. In a low gravity environment the critical bubble size for detachment is much larger than under terrestrial conditions, since buoyancy is a less effective means of bubble removal. Active techniques of heat transfer enhancement in single phase and phase change processes by utilizing electric fields have been the subject of intensive research during recent years. The field of electrohydrodynamics (EHD) deals with the interactions between electric fields, flow fields and temperature fields. Previous studies indicate that in terrestrial applications nucleate boiling heat transfer can be increased by a factor of 50 as

  9. Permanently reconfigured metamaterials due to terahertz induced mass transfer of gold

    DEFF Research Database (Denmark)

    Strikwerda, Andrew; Zalkovskij, Maksim; Iwaszczuk, Krzysztof

    2015-01-01

    We present a new technique for permanent metamaterial reconfiguration via optically induced mass transfer of gold. This mass transfer, which can be explained by field-emission induced electromigration, causes a geometric change in the metamaterial sample. Since a metamaterial's electromagnetic...... response is dictated by its geometry, this structural change massively alters the metamaterial's behavior. We show this by optically forming a conducting pathway between two closely spaced dipole antennas, thereby changing the resonance frequency by a factor of two. After discussing the physics...... of the process, we conclude by presenting an optical fuse that can be used as a sacrificial element to protect sensitive components, demonstrating the applicability of optically induced mass transfer for device design. (C)2015 Optical Society of America...

  10. Heat Transfer Enhancement in Separated and Vortex Flows

    Energy Technology Data Exchange (ETDEWEB)

    Richard J. Goldstein

    2004-05-27

    This document summarizes the research performance done at the Heat Transfer Laboratory of the University of Minnesota on heat transfer and energy separation in separated and vortex flow supported by DOE in the period September 1, 1998--August 31, 2003. Unsteady and complicated flow structures in separated or vortex flows are the main reason for a poor understanding of heat transfer under such conditions. The research from the University of Minnesota focused on the following important aspects of understanding such flows: (1) Heat/mass transfer from a circular cylinder; (2) study of energy separation and heat transfer in free jet flows and shear layers; and (3) study of energy separation on the surface and in the wake of a cylinder in crossflow. The current study used three different experimental setups to accomplish these goals. A wind tunnel and a liquid tunnel using water and mixtures of ethylene glycol and water, is used for the study of prandtl number effect with uniform heat flux from the circular cylinder. A high velocity air jet is used to study energy separation in free jets. A high speed wind tunnel, same as used for the first part, is utilized for energy separation effects on the surface and in the wake of the circular cylinder. The final outcome of this study is a substantial advancement in this research area.

  11. BROWNIAN HEAT TRANSFER ENHANCEMENT IN THE TURBULENT REGIME

    Directory of Open Access Journals (Sweden)

    Suresh Chandrasekhar

    2016-08-01

    Full Text Available The paper presents convection heat transfer of a turbulent flow Al2O3/water nanofluid in a circular duct. The duct is a under constant and uniform heat flux. The paper computationally investigates the system’s thermal behavior in a wide range of Reynolds number and also volume concentration up to 6%. To obtain the nanofluid thermophysical properties, the Hamilton-Crosser model along with the Brownian motion effect are utilized. Then the thermal performance of the system with the nanofluid is compared to the conventional systems which use water as the working fluid. The results indicate that the use of nanofluid of 6% improves the heat transfer rate up to 36.8% with respect to pure water. Therefore, using the Al2O3/water nanofluid instead of water can be a great choice when better heat transfer is needed.

  12. Toe Tissue Transfer for Reconstruction of Damaged Digits due to Electrical Burns

    Directory of Open Access Journals (Sweden)

    Hyung-Do Kim

    2012-03-01

    Full Text Available Background Electrical burns are one of the most devastating types of injuries, and can becharacterized by the conduction of electric current through the deeper soft tissue such asvessels, nerves, muscles, and bones. For that reason, the extent of an electric burn is veryfrequently underestimated on initial impression.Methods From July 1999 to June 2006, we performed 15 cases of toe tissue transfer for thereconstruction of finger defects caused by electrical burns. We performed preoperative rangeof motion exercise, early excision, and coverage of the digital defect with toe tissue transfer.Results We obtained satisfactory results in both functional and aesthetic aspects in all 15cases without specific complications. Static two-point discrimination results in the transferredtoe cases ranged from 8 to 11 mm, with an average of 9.5 mm. The mean range of motionof the transferred toe was 20° to 36° in the distal interphalangeal joint, 16° to 45° in theproximal interphalangeal joint, and 15° to 35° in the metacarpophalangeal joint. All of thepatients were relatively satisfied with the function and appearance of their new digits.Conclusions The strategic management of electrical injury to the hands can be both challengingand complex. Because the optimal surgical method is free tissue transfer, maintenance ofvascular integrity among various physiological changes works as a determining factor for thepostoperative outcome following the reconstruction.

  13. A stochastic model of depolarization enhancement due to large energy spread in electron storage rings

    International Nuclear Information System (INIS)

    Buon, J.

    1988-10-01

    A new semiclassical and stochastic model of spin diffusion is used to obtain numerical predictions for depolarization enhancement due to beam energy spread. It confirms the results of previous models for the synchrotron sidebands of isolated spin resonances. A satisfactory agreement is obtained with the width of a synchrotron satellite observed at SPEAR. For HERA and LEP, at Z 0 energy, the depolarization enhancement is of the order of a few units and increases very rapidly with the energy spread. Large reduction of polarization degree is expected in these rings

  14. Experimental studies on radiation heat transfer enhancement on a standard muffle furnace

    Directory of Open Access Journals (Sweden)

    Minea Alina Adriana

    2013-01-01

    Full Text Available One of the sources of increased industrial energy consumption is the heating equipment, e.g., furnaces. Their domain of use is very wide and due to its abundance of applications it is key equipment in modern civilization. The present experimental investigations are related to reducing energy consumptions and started from the geometry of a classic manufactured furnace. During this experimental study, different cases have been carefully chosen in order to compare and measure the effects of applying different enhancement methods of the radiation heat transfer processes. The main objective work was to evaluate the behavior of a heated enclosure, when different radiant panels were introduced. The experimental investigation showed that their efficiency was influenced by their position inside the heating area. In conclusion, changing the inner geometry by introducing radiant panels inside the heated chamber leads to important time savings in the heating process.

  15. In Vitro Drug Transfer Due to Drug Retention in Human Epidermis Pretreated with Application of Marketed Estradiol Transdermal Systems.

    Science.gov (United States)

    Krishnaiah, Yellela S R; Pavurala, Naresh; Yang, Yang; Manda, Prashanth; Katragadda, Usha; Yang, Yongsheng; Shah, Rakhi; Fang, Guodong; Khan, Mansoor A

    2017-08-01

    Study objective was to assess skin-to-skin drug transfer potential that may occur due to drug retention in human epidermis (DRE) pretreated with application of estradiol transdermal drug delivery systems (TDDS) and other estradiol transdermal dosage forms (gels and sprays). TDDS (products-A, B, and C) with varying formulation design and composition, and other estradiol transdermal products (gel and spray) were applied to heat separated human epidermis (HSE) and subjected to in vitro drug permeation study. Amounts of DRE were quantified after 24 h. The DRE with product-B was significantly (P  0.05) amounts of DRE. A separate in vitro permeation study was carried out to determine amounts of drug transferred from drug-retaining epidermis to untreated HSE. The amounts of drug transferred, due to DRE after 8 h, with product-C were significantly (P drug transfer due to the DRE after labeled period of using estradiol TDDS, though the clinical relevance of these findings is yet to be determined.

  16. Energy conservation via heat transfer enhancement. Quarterly progress report, January 1-March 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Bergles, A.E.; Junkhan, G.H.; Webb, R.L.

    1979-06-01

    This report for the first quarter of 1979 summarizes visits and contacts relative to the theory and practice of heat transfer enhancement. The Technical Literature File and Manufacturers' File were expanded, and the initial Patent Technology Information File was completed. Application studies on enhancement of waste heat recuperators and laminar internal flow heat transfer are described. A comprehensive bibliography on laminar flow enhancement is included. The Technology study on performance of internally finned tubes is complete. New data for the heat transfer and friction characteristics of internally finned tubes will be analyzed to develop rationally based correlations. An assessment of natural convection from rough surfaces was performed. Major effort was directed toward planning of the Research Workshop on Energy Conservation Through Enhanced Heat Transfer. The Workshop, scheduled for May 24 and May 25, 1979 in Chicago, will be co-sponsored by NSF.

  17. Heat transfer enhancement in a turbulent natural convection boundary layer along a vertical flat plate

    International Nuclear Information System (INIS)

    Tsuji, Toshihiro; Kajitani, Tsuyoshi; Nishino, Tatsuhiko

    2007-01-01

    An experimental study on heat transfer enhancement for a turbulent natural convection boundary layer in air along a vertical flat plate has been performed by inserting a long flat plate in the spanwise direction (simple heat transfer promoter) and short flat plates aligned in the spanwise direction (split heat transfer promoter) with clearances into the near-wall region of the boundary layer. For a simple heat transfer promoter, the heat transfer coefficients increase by a peak value of approximately 37% in the downstream region of the promoter compared with those in the usual turbulent natural convection boundary layer. It is found from flow visualization and simultaneous measurements of the flow and thermal fields with hot- and cold-wires that such increase of heat transfer coefficients is mainly caused by the deflection of flows toward the outer region of the boundary layer and the invasion of low-temperature fluids from the outer region to the near-wall region with large-scale vortex motions riding out the promoter. However, heat transfer coefficients for a split heat transfer promoter exhibit an increase in peak value of approximately 60% in the downstream region of the promoter. Flow visualization and PIV measurements show that such remarkable heat transfer enhancement is attributed to longitudinal vortices generated by flows passing through the clearances of the promoter in addition to large-scale vortex motions riding out the promoter. Consequently, it is concluded that heat transfer enhancement of the turbulent natural convection boundary layer can be substantially achieved in a wide area of the turbulent natural convection boundary layer by employing multiple column split heat transfer promoters. It may be expected that the heat transfer enhancement in excess of approximately 40% can be accomplished by inserting such promoters

  18. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    Science.gov (United States)

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  19. CO2 Mass transfer model for carbonic anhydrase-enhanced aqueous MDEA solutions

    DEFF Research Database (Denmark)

    Gladis, Arne Berthold; Deslauriers, Maria Gundersen; Neerup, Randi

    2018-01-01

    In this study a CO2 mass transfer model was developed for carbonic anhydrase-enhanced MDEA solutions based on a mechanistic kinetic enzyme model. Four different enzyme models were compared in their ability to predict the liquid side mass transfer coefficient at temperatures in the range of 298...

  20. Orbital Kondo effect due to assisted hopping: Superconductivity, mass enhancement in Cooper oxides with apical oxygen

    International Nuclear Information System (INIS)

    Zawadowski, A.; Penc, K.; Zimanyi, G.

    1991-07-01

    Orbital Kondo effect is treated in a model, where additional to the conduction band there are localized orbitals with energy not very far from the Fermi energy. If the hopping between the conduction band and the localized heavy orbitals depends on the occupation of the conduction band orbital then orbital Kondo correlation occurs. The assisted hopping vertex is enhanced due to the Coulomb interaction between the heavy orbital and the conduction band. The enhanced hopping results in mass enhancement and attractive interaction in the conduction band. The superconductivity transition temperature is calculated. The models of this type can be applied to the high-T c superconductors where the non-bonding oxygen orbitals of the apical oxygens play the role of heavy orbitals. For an essential range of the parameters the T c obtained is about 100K. (author). 22 refs, 9 figs

  1. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    International Nuclear Information System (INIS)

    Hurwitz, M; Margalit, D; Williams, C; Tso, T; Lee, S; Rosen, E

    2016-01-01

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li 2 Si 2 O 5 ), zirconium dioxide (ZrO 2 ), and gold alloy. Small thin squares (2×2×0.15 cm 3 ) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO 2 , and 9% for Li 2 Si 2 O 5 . This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  2. SU-F-T-426: Measurement of Dose Enhancement Due to Backscatter From Modern Dental Materials

    Energy Technology Data Exchange (ETDEWEB)

    Hurwitz, M; Margalit, D; Williams, C [Brigham and Women’s Hospital / Harvard Medical School, Boston, MA (United States); Tso, T; Lee, S; Rosen, E [Harvard School of Dental Medicine, Boston, MA (United States)

    2016-06-15

    Purpose: High-density materials used in dental restoration can cause significant localized dose enhancement due to electron backscatter in head-and-neck radiotherapy, increasing the risk of mucositis. The materials used in prosthetic dentistry have evolved in the last decades from metal alloys to ceramics. We aim to determine the dose enhancement caused by backscatter from currently-used dental materials. Methods: Measurements were performed for three different dental materials: lithium disilicate (Li{sub 2}Si{sub 2}O{sub 5}), zirconium dioxide (ZrO{sub 2}), and gold alloy. Small thin squares (2×2×0.15 cm{sup 3}) of the material were fabricated, and placed into a phantom composed of tissue-equivalent material. The phantom was irradiated with a single 6 MV photon field. A thin-window parallel-plate ion chamber was used to measure the dose at varying distances from the proximal interface between the material and the plastic. Results: The dose enhancement at the interface between the high-density and tissue-equivalent materials, relative to a homogeneous phantom, was 54% for the gold alloy, 31% for ZrO{sub 2}, and 9% for Li{sub 2}Si{sub 2}O{sub 5}. This enhancement decreased rapidly with distance from the interface, falling to 11%, 5%, and 0.5%, respectively, 2 mm from the interface. Comparisons with the modeling of this effect in treatment planning systems are performed. Conclusion: While dose enhancement due to dental restoration is smaller with ceramic materials than with metal alloys, it can still be significant. A spacer of about 2–3 mm would be effective in reducing this enhancement, even for metal alloys.

  3. Adoptive transfer of immune enhancement of experimental ulcerative colitis.

    OpenAIRE

    Onderdonk, A B; Steeves, R M; Cisneros, R L; Bronson, R T

    1984-01-01

    Previous experiments with the carrageenan model for ulcerative colitis have shown that the inflammatory response in guinea pigs can be enhanced by immunization with and subsequent feeding of Bacteroides vulgatus to experimental animals. The present studies showed that only certain strains of B. vulgatus are capable of provoking immune enhancement of ulcerative colitis. Animals were fed carrageenan and various strains of viable B. vulgatus after immunization with a strain of B. vulgatus isolat...

  4. Enhancement of combined heat and mass transfer in a vertical-tube heat and mass exchanger

    International Nuclear Information System (INIS)

    Webb, R.L.; Perez-Blanco, H.

    1986-01-01

    This paper studies enhancement of heat and mass transfer between a countercurrent, gravity-drained water film and air flowing in a vertical tube. The enhancement technique employed is spaced, transverse wires placed in the air boundary layer, near the air--water interface. Heat transfer correlations for turbulent, single-phase heat transfer in pipes having wall-attached spaced ribs are used to select the preferred wire diameter, and to predict the gas phase heat and mass transfer coefficients. Tests were run with two different radial placements of the rib roughness: (1) at the free surface of the liquid film, and (2) the base of the roughness displaced 0.51 mm into the air flow. The authors hypothesize that the best heat/mass transfer and friction performance will be obtained with the roughness at the surface of the water film. Experiments conducted with both roughness placements show that the authors' hypothesis is correct. The measured heat/mass transfer enhancement agreed very closely with the predicted values. A unique feature of the enhancement concept is that it does not require surface wetting of the enhancement device to provide enhancement

  5. Assessment of risk due to vehicle accident for the plutonium solution transfer from H-area to F-area

    International Nuclear Information System (INIS)

    Sarrack, A.G.

    1996-09-01

    Transporting radioactive material onsite (intrasite transfers) via truck or train must be performed in a safe manner. Adequate safety is assured for each transfer, as documented in the corresponding Onsite Safety Assessment (OSA). One aspect of the OSA is to show that the package to be used for the transfer meets onsite acceptance criteria. The activity being analyzed in this report is the movement of plutonium solution with greater than 20 curies, all reasonable mitigative controls will be implemented to minimize the likelihood of an accidental release, and a probabilistic analysis will be used to evaluate the risk associated with the move. The purpose of this report is to document the evaluation of risk due to vehicle accident associated with transporting plutonium solution from H-area to F-area. Included in the report is a list of the required mitigative controls which reduce the predicted accident and release frequencies to those reported in the summary

  6. Dominance of Plasmonic Resonant Energy Transfer over Direct Electron Transfer in Substantially Enhanced Water Oxidation Activity of BiVO4 by Shape-Controlled Au Nanoparticles.

    Science.gov (United States)

    Lee, Mi Gyoung; Moon, Cheon Woo; Park, Hoonkee; Sohn, Woonbae; Kang, Sung Bum; Lee, Sanghan; Choi, Kyoung Jin; Jang, Ho Won

    2017-10-01

    The performance of plasmonic Au nanostructure/metal oxide heterointerface shows great promise in enhancing photoactivity, due to its ability to confine light to the small volume inside the semiconductor and modify the interfacial electronic band structure. While the shape control of Au nanoparticles (NPs) is crucial for moderate bandgap semiconductors, because plasmonic resonance by interband excitations overlaps above the absorption edge of semiconductors, its critical role in water splitting is still not fully understood. Here, first, the plasmonic effects of shape-controlled Au NPs on bismuth vanadate (BiVO 4 ) are studied, and a largely enhanced photoactivity of BiVO 4 is reported by introducing the octahedral Au NPs. The octahedral Au NP/BiVO 4 achieves 2.4 mA cm -2 at the 1.23 V versus reversible hydrogen electrode, which is the threefold enhancement compared to BiVO 4 . It is the highest value among the previously reported plasmonic Au NPs/BiVO 4 . Improved photoactivity is attributed to the localized surface plasmon resonance; direct electron transfer (DET), plasmonic resonant energy transfer (PRET). The PRET can be stressed over DET when considering the moderate bandgap semiconductor. Enhanced water oxidation induced by the shape-controlled Au NPs is applicable to moderate semiconductors, and shows a systematic study to explore new efficient plasmonic solar water splitting cells. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    OpenAIRE

    Ali Hafiz Muhammad; Azhar Muhammad Danish; Saleem Musab; Saeed Qazi Samie; Saieed Ahmed

    2015-01-01

    The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12%) were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % vol...

  8. Assessing the transfer of risk due to transportation of agricultural products.

    Science.gov (United States)

    Li, Pei-Chiun; Shih, Hsiu-Ching; Ma, Hwong-Wen

    2015-02-01

    Health risk assessment (HRA) is the process used to estimate adverse health effects on humans. The importance and sensitivity of food chains to HRA have been observed, but the impact of the transportation of food has generally been ignored. This study developed an exposure assessment to demonstrate the significance of the transportation of agricultural products in HRA. The associated case study estimated the health risks derived from various sources of arsenic emissions in Taiwan. Two assessment scenarios, self-sufficiency and transportation of agricultural products, were compared to calculate risk transfer ratios that show the impact of agriculture transportation. The risk transfer ratios found by the study range from 0.22 to 42.10, indicating that the quantity of transportation of agricultural products is the critical factor. High air deposition and high agricultural production are the two main contributors to the effect of the transportation of agricultural products on HRA. Risk reduction measures could be applied to high-pollution areas as well as to areas with high agricultural productivity to reduce ingestion risks to residents. Certain areas that are sensitive to the transportation of agricultural products may incur more risks if emissions increase in agriculturally productive counties. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Three-Dimensional Superhydrophobic Nanowire Networks for Enhancing Condensation Heat Transfer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Ronggui [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Wen, Rongfu [University of Colorado; Xu, Shanshan [University of Colorado; Ma, Xuehu [Dalian University of Technology; Lee, Yung-Cheng [University of Colorado

    2017-12-18

    Spontaneous droplet jumping on nanostructured surfaces can potentially enhance condensation heat transfer by accelerating droplet removal. However, uncontrolled nucleation in the micro-defects of nanostructured superhydrophobic surfaces could lead to the formation of large pinned droplets, which greatly degrades the performance. Here, we experimentally demonstrate for the first time stable and efficient jumping droplet condensation on a superhydrophobic surface with three-dimensional (3D) copper nanowire networks. Due to the formation of interconnections among nanowires, the micro-defects are eliminated while the spacing between nanowires is reduced, which results in the formation of highly mobile droplets. By preventing flooding on 3D nanowire networks, we experimentally demonstrate a 100% higher heat flux compared with that on the state-of-the-art hydrophobic surface over a wide range of subcooling (up to 28 K). The remarkable water repellency of 3D nanowire networks can be applied to a broad range of water-harvesting and phase-change heat transfer applications.

  10. Experimental Study of Heat Transfer Enhancements from Array of Alternate Rectangular Dwarf Fins at Different Inclinations

    Science.gov (United States)

    Awasarmol, Umesh Vandeorao; Pise, Ashok T.

    2018-02-01

    The main objective of this experimental work is to investigate and compare heat transfer enhancement of alternate dwarf fin array at different angles of inclination. In this study, the steady state heat transfer from the full length fin arrays and alternate dwarf fin arrays are measured in natural convection and radiation environment. Largest increase in the Nusselt number was achieved with alternate dwarf fin at angle of orientation 90°, which shows about 28% enhanced heat transfer coefficient as opposed to the full-length fin array with 25% saving in material. In case of non-black FAB, contribution of radiation heat transfer is found to be very small nearly within 1% of the heater input. After coating lamp black contribution of radiation heat transfer is found to increase to about 3-4% of the heater input in the range of temperatures considered in this study.

  11. Enhancement of heat transfer coefficient multi-metallic nanofluid with ANFIS modeling for thermophysical properties

    Directory of Open Access Journals (Sweden)

    Balla Hyder H.

    2015-01-01

    Full Text Available Cu and Zn-water nanofluid is a suspension of the Cu and Zn nanoparticles with the size 50 nm in the water base fluid for different volume fractions to enhance its Thermophysical properties. The determination and measuring the enhancement of Thermophysical properties depends on many limitations. Nanoparticles were suspended in a base fluid to prepare a nanofluid. A coated transient hot wire apparatus was calibrated after the building of the all systems. The vibro-viscometer was used to measure the dynamic viscosity. The measured dynamic viscosity and thermal conductivity with all parameters affected on the measurements such as base fluids thermal conductivity, volume factions, and the temperatures of the base fluid were used as input to the Artificial Neural Fuzzy inference system to modeling both dynamic viscosity and thermal conductivity of the nanofluids. Then, the ANFIS modeling equations were used to calculate the enhancement in heat transfer coefficient using CFD software. The heat transfer coefficient was determined for flowing flow in a circular pipe at constant heat flux. It was found that the thermal conductivity of the nanofluid was highly affected by the volume fraction of nanoparticles. A comparison of the thermal conductivity ratio for different volume fractions was undertaken. The heat transfer coefficient of nanofluid was found to be higher than its base fluid. Comparisons of convective heat transfer coefficients for Cu and Zn nanofluids with the other correlation for the nanofluids heat transfer enhancement are presented. Moreover, the flow demonstrates anomalous enhancement in heat transfer nanofluids.

  12. Enhancement of transport properties of a Brownian particle due to quantum effects: Smoluchowski limit

    International Nuclear Information System (INIS)

    Shit, Anindita; Chattopadhyay, Sudip; Chaudhuri, Jyotipratim Ray

    2012-01-01

    Graphical abstract: By invoking physically motivated coordinate transformation into quantum Smoluchowski equation, we have presented a transparent treatment for the determination of the effective diffusion coefficient and current of a quantum Brownian particle. Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects. Highlights:: ► Transport of a quantum Brownian particle in a periodic potential has been addressed. ► Governing quantum Smoluchowski equation (QSE) includes state dependent diffusion. ► A coordinate transformation is used to recast QSE with constant diffusion. ► Transport properties increases in comparison to the corresponding classical result. ► This enhancement is purely a quantum effect. - Abstract: The transport property of a quantum Brownian particle that interacts strongly with a bath (in which a typical damping constant by far exceeds a characteristic frequency of the isolated system) under the influence of a tilted periodic potential has been studied by solving quantum Smoluchowski equation (QSE). By invoking physically motivated coordinate transformation into QSE, we have presented a transparent treatment for the determination of the effective diffusion coefficient of a quantum Brownian particle and the current (the average stationary velocity). Substantial enhancement in the efficiency of the diffusive transport is envisaged due to the quantum correction effects only if the bath temperature hovers around an appropriate range of intermediate values. Our findings also confirm the results obtained in the classical cases.

  13. Flat Graphene-Enhanced Electron Transfer Involved in Redox Reactions.

    Science.gov (United States)

    Pan, Meilan; Zhang, Yanyang; Shan, Chao; Zhang, Xiaolin; Gao, Guandao; Pan, Bingcai

    2017-08-01

    Graphene is easily warped in the out-of-plane direction because of its high in-plane Young's modulus, and exploring the influence of wrinkled graphene on its properties is essential for the design of graphene-based materials for environmental applications. Herein, we prepared wrinkled graphene (WGN-1 and WGN-2) by thermal treatment and compared their electrochemical properties with those of flat graphene nanosheets (FGN). FGN exhibit activities that are much better than those of wrinkled graphene nanosheets (WGN), not only in the electrochemical oxidation of methylene blue (MB) but also in the electrochemical reduction of nitrobenzene (NB). Transformation ratios of MB and NB in FGN, WGN-1, and WGN-2 were 97.5, 80.1, and 57.9% and 94.6, 92.1, and 81.2%, respectively. Electrochemical impedance spectroscopy and the surface resistance of the graphene samples increased in the following order: FGN reaction charges transfer faster across the reaction interfaces and along the surface of FGN than that of WGN, and wrinkles restrict reaction charge transfer and reduce the reaction rates. This study reveals that the morphology of the graphene (flat or wrinkle) greatly affects redox reaction activities and may have important implications for the design of novel graphene-based nanostructures and for our understanding of graphene wrinkle-dependent redox reactions in environmental processes.

  14. Nuclear polarization potential due to particle transfer in heavy-ion collisions

    International Nuclear Information System (INIS)

    Landowne, S.; Dasso, C.H.; Winther, A.; Pollarolo, G.

    1986-01-01

    The effective interaction which determines the elastic scattering of heavy composite systems consists of a ''bare'' real potential V, noramally identified with the folding model, a renormalization term or ''polarization potential'' ΔV and an imaginary ''absorptive potential'' iW. The latter contributions originate from the couplings to intrinsic degrees of freedom. While iW is a conspicuous feature of all optical model analyses, the related term ΔV has received relatively little attention until recently. The microscopic structure of ΔV + iW is examined using second-order semi-classical perturbation theory. Focus is on the long-range part of ΔV which is governed by single-particle transfer reactions between the colliding systems

  15. Nuclear polarization potential due to particle transfer in heavy-ion collisions

    International Nuclear Information System (INIS)

    Landowne, S.; Dasso, C.H.; Winther, A.; Pollarolo, G.

    1986-01-01

    The effective interaction which determines the elastic scattering of heavy composite systems consists of a bare real potential V, normally identified with the folding model, a renormalization term or polarization potential ΔV and an imaginary absorptive potential iW. The latter contributions originate from the couplings to intrinsic degrees of freedom. While iW is a conspicuous feature of all optical model analyses, the related term ΔV has received relatively little attention until recently. Here the authors examine the microscopic structure of ΔV + IW using second-order semi-classical perturbation theory. In particular, they focus on the long-range part of ΔV which is governed by single-particle transfer reactions between the colliding systems

  16. Modelling and Order of Acoustic Transfer Functions Due to Reflections from Augmented Objects

    Directory of Open Access Journals (Sweden)

    Diemer de Vries

    2007-01-01

    Full Text Available It is commonly accepted that the sound reflections from real physical objects are much more complicated than what usually is and can be modelled by room acoustics modelling software. The main reason for this limitation is the level of detail inherent in the physical object in terms of its geometrical and acoustic properties. In the present paper, the complexity of the sound reflections from a corridor wall is investigated by modelling the corresponding acoustic transfer functions at several receiver positions in front of the wall. The complexity for different wall configurations has been examined and the changes have been achieved by altering its acoustic image. The results show that for a homogenous flat wall, the complexity is significant and for a wall including various smaller objects, the complexity is highly dependent on the position of the receiver with respect to the objects.

  17. Passive heat transfer enhancement in 3D corrugated tube

    DEFF Research Database (Denmark)

    Navickaité, Kristina; Engelbrecht, Kurt; Bahl, Christian

    transfer and fluid flow with a constant wall temperature and total pressure drop. The governing equations for these problems were solved using the Finite Element Method. The results of numerical modelling show significant increase in NTU for double corrugated tubes compared to a circular tube. The friction......An innovative hydraulic design was studied for corrugated tube geometry for a heat exchanger. An ellipse based double corrugation was used as a concept of the geometry. The hydraulic diameter (Dh) is maintained over the tube length while the shape of the cross section varies continuously along...... the flow direction. 38 corrugated tubes with a Dh of 5 mm were studied numerically with corrugation heights from 0.23 to 0.69 mm and corrugation periods from 5 to 50 mm for laminar flow with water. Computational fluid dynamics (CFD) is used as a tool to study the effect of corrugation geometry on heat...

  18. Heat transfer enhancement of NBI vacuum pump cryopanels

    International Nuclear Information System (INIS)

    Ochoa Guaman, Santiago; Hanke, Stefan; Day, Christian

    2013-01-01

    Highlights: ► Cryopanel is optimized minimizing its maximal temperature rise and heat capacity. ► Copper coating on the cryopanels is necessary to reach a high thermal efficiency. ► The copper coating is achieved using an electroplating technique. ► A thermal shield for the cryopump 4 K manifold would reduce heat leaks down to 10%. ► The manufacturability and operation of the thermal shield is discussed. -- Abstract: Huge cryogenic pumps are installed inside neutral beam injectors in order to manage the typically very large gas flows. This paper deals with the aspect of passive cooling in NBI cryopump design development and discusses design considerations in two example areas. One is the design of cryopanels consisting of a pipe, centrally supplied with cryogenic helium, and a welded fin, passively cooled, to provide the necessary pumping surface below a given maximum temperature. The results of several parametric simulations in ANSYS are presented using different copper thicknesses and cryopanel geometries to discuss the thermal capability (heat transfer characteristics and heat capacities) of a number of design variants. The optimum design solution is based on copper-coated fins, using an electroplating technique, and thereby improving the heat transfer of the cryopanels while attaining an overall reduction in weight. The other area is the sound design of the manifold shielding system with a weld contact between copper and stainless steel. Weld samples were manufactured and investigated to raise awareness of the demands and risks during manufacturing and to demonstrate that readily applicable weld procedures exist

  19. Analysis of enhancement in available power transfer capacity by STATCOM integrated SMES by numerical simulation studies

    Directory of Open Access Journals (Sweden)

    Saraswathi Ananthavel

    2016-06-01

    Full Text Available Power system researches are mainly focused in enhancing the available power capacities of the existing transmission lines. But still, no prominent solutions have been made due to several factors that affect the transmission lines which include the length, aging of the cables and losses on generation, transmission and distribution etc. This paper exploited the integration of static synchronous compensator (STATCOM and superconducting magnetic energy storage (SMES which is then connected to existing power transmission line for enhancing the available power transfer capacity (ATC. STATCOM is power electronic voltage source converter (VSC which is connected to the transmission system for shunt reactive power and harmonics compensation. SMES is a renowned clean energy storage technology. Feasibility of the proposed power system can control the real as well as reactive power flow independently between the transmission lines and STATCOM-(SMES units. Complete proposed power system is implemented in numerical simulation software (Matlab/Simulink and its performance is validated based on obtained investigation results.

  20. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    Energy Technology Data Exchange (ETDEWEB)

    Fukuda, K. [Kobe Univ. of Mercantile Marine (Japan); Shiotsu, M.; Sakurai, A. [Kyoto Univ. (Japan)

    1995-09-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q{sub max}, on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q{sub o}e{sup t/T}, with periods, {tau}, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q{sub max}. Two main mechanisms of q{sub max} exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q{sub max} for long period range belonging to the former mechanism becomes longer and the q{sub max}mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q{sub max} for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling.

  1. Transient pool boiling heat transfer due to increasing heat inputs in subcooled water at high pressures

    International Nuclear Information System (INIS)

    Fukuda, K.; Shiotsu, M.; Sakurai, A.

    1995-01-01

    Understanding of transient boiling phenomenon caused by increasing heat inputs in subcooled water at high pressures is necessary to predict correctly a severe accident due to a power burst in a water-cooled nuclear reactor. Transient maximum heat fluxes, q max , on a 1.2 mm diameter horizontal cylinder in a pool of saturated and subcooled water for exponential heat inputs, q o e t/T , with periods, τ, ranging from about 2 ms to 20 s at pressures from atmospheric up to 2063 kPa for water subcoolings from 0 to about 80 K were measured to obtain the extended data base to investigate the effect of high subcoolings on steady-state and transient maximum heat fluxes, q max . Two main mechanisms of q max exist depending on the exponential periods at low subcoolings. One is due to the time lag of the hydrodynamic instability which starts at steady-state maximum heat flux on fully developed nucleate boiling (FDNB), and the other is due to the heterogenous spontaneous nucleations (HSN) in flooded cavities which coexist with vapor bubbles growing up from active cavities. The shortest period corresponding to the maximum q max for long period range belonging to the former mechanism becomes longer and the q max mechanism for long period range shifts to that due the HSN on FDNB with the increase of subcooling and pressure. The longest period corresponding to the minimum q max for the short period range belonging to the latter mechanism becomes shorter with the increase in saturated pressure. On the contrary, the longest period becomes longer with the increase in subcooling at high pressures. Correlations for steady-state and transient maximum heat fluxes were presented for a wide range of pressure and subcooling

  2. Study on enhancement of heat transfer of reactor vessel auxiliary cooling system of fast breeder reactor

    International Nuclear Information System (INIS)

    Nishi, Yoshihisa; Kinoshita, Izumi; Ueda, Nobuyuki; Furuya, Masahiro

    1996-01-01

    A reactor vessel auxiliary cooling system (RVACS), which is one of the decay heat removal systems of the fast breeder reactor (FBR), has passive safety as well as high reliability. However, the heat removal capability is relatively small, because its heat exchange is dependent on the natural convection of the air. The objectives of this report are to propose a heat transfer medium to enhance the heat transfer and to confirm the heat transfer performance of this system by experimental and analytical studies. From these studies, the following main results were obtained. (1) A porous plate with 5 mm thickness, 5 mm pore diameter, 92% porosity, was found to have the highest enhancement of heat transfer. (2) The heat transfer enhancement was demonstrated by large scale heat transfer experiments. Also, the heat transfer correlations, which can be used in the plant transient analyses, were derived from the experimental results. (3) Analysing the transient conditions of conventional pool-type FBR by means of the system analysis code, the applicable range of this system was assumed from the capability of the RVACS with porous plates. As a result, this type of RVACS was found to be applicable to conventional pool-type FBRs with capacity of about 500 MWe or less. (author)

  3. Heat transfer due to electroconvulsive therapy: Influence of anisotropic thermal and electrical skull conductivity.

    Science.gov (United States)

    Menezes de Oliveira, Marilia; Wen, Peng; Ahfock, Tony

    2016-09-01

    This paper focuses on electroconvulsive therapy (ECT) and head models to investigate temperature profiles arising when anisotropic thermal and electrical conductivities are considered in the skull layer. The aim was to numerically investigate the threshold for which this therapy operates safely to the brain, from the thermal point of view. A six-layer spherical head model consisting of scalp, fat, skull, cerebro-spinal fluid, grey matter and white matter was developed. Later on, a realistic human head model was also implemented. These models were built up using the packages from COMSOL Inc. and Simpleware Ltd. In these models, three of the most common electrode montages used in ECT were applied. Anisotropic conductivities were derived using volume constraint and included in both spherical and realistic head models. The bio-heat transferring problem governed by Laplace equation was solved numerically. The results show that both the tensor eigenvalues of electrical conductivity and the electrode montage affect the maximum temperature, but thermal anisotropy does not have a significant influence. Temperature increases occur mainly in the scalp and fat, and no harm is caused to the brain by the current applied during ECT. The work assures the thermal safety of ECT and also provides a numerical method to investigate other non-invasive therapies. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  4. Overpressure generation by load transfer following shale framework weakening due to smectite diagenesis

    Science.gov (United States)

    Lahann, R.W.; Swarbrick, R.E.

    2011-01-01

    Basin model studies which have addressed the importance of smectite conversion to illite as a source of overpressure in the Gulf of Mexico have principally relied on a single-shale compaction model and treated the smectite reaction as only a fluid-source term. Recent fluid pressure interpretation and shale petrology studies indicate that conversion of bound water to mobile water, dissolution of load-bearing grains, and increased preferred orientation change the compaction properties of the shale. This results in substantial changes in effective stress and fluid pressure. The resulting fluid pressure can be 1500-3000psi higher than pressures interpreted from models based on shallow compaction trends. Shale diagenesis changes the mineralogy, volume, and orientation of the load-bearing grains in the shale as well as the volume of bound water. This process creates a weaker (more compactable) grain framework. When these changes occur without fluid export from the shale, some of the stress is transferred from the grains onto the fluid. Observed relationships between shale density and calculated effective stress in Gulf of Mexico shelf wells confirm these changes in shale properties with depth. Further, the density-effective stress changes cannot be explained by fluid-expansion or fluid-source processes or by prediagenesis compaction, but are consistent with a dynamic diagenetic modification of the shale mineralogy, texture, and compaction properties during burial. These findings support the incorporation of diagenetic modification of compaction properties as part of the fluid pressure interpretation process. ?? 2011 Blackwell Publishing Ltd.

  5. Source biases in midlatitude magnetotelluric transfer functions due to Pc3-4 geomagnetic pulsations

    Science.gov (United States)

    Murphy, Benjamin S.; Egbert, Gary D.

    2018-01-01

    The magnetotelluric (MT) method for imaging the electrical conductivity structure of the Earth is based on the assumption that source magnetic fields can be considered quasi-uniform, such that the spatial scale of the inducing source is much larger than the intrinsic length scale of the electromagnetic induction process (the skin depth). Here, we show using EarthScope MT data that short spatial scale source magnetic fields from geomagnetic pulsations (Pc's) can violate this fundamental assumption. Over resistive regions of the Earth, the skin depth can be comparable to the short meridional range of Pc3-4 disturbances that are generated by geomagnetic field-line resonances (FLRs). In such cases, Pc's can introduce narrow-band bias in MT transfer function estimates at FLR eigenperiods ( 10-100 s). Although it appears unlikely that these biases will be a significant problem for data inversions, further study is necessary to understand the conditions under which they may distort inverse solutions.[Figure not available: see fulltext.

  6. Enhancement of Transistor-to-Transistor Variability Due to Total Dose Effects in 65-nm MOSFETs

    CERN Document Server

    Gerardin, S; Cornale, D; Ding, L; Mattiazzo, S; Paccagnella, A; Faccio, F; Michelis, S

    2015-01-01

    We studied device-to-device variations as a function of total dose in MOSFETs, using specially designed test structures and procedures aimed at maximizing matching between transistors. Degradation in nMOSFETs is less severe than in pMOSFETs and does not show any clear increase in sample-to-sample variability due to the exposure. At doses smaller than 1 Mrad( SiO2) variability in pMOSFETs is also practically unaffected, whereas at very high doses-in excess of tens of Mrad( SiO2)-variability in the on-current is enhanced in a way not correlated to pre-rad variability. The phenomenon is likely due to the impact of random dopant fluctuations on total ionizing dose effects.

  7. Mass Transfer Limited Enhanced Bioremediation at Dnapl Source Zones: a Numerical Study

    Science.gov (United States)

    Kokkinaki, A.; Sleep, B. E.

    2011-12-01

    The success of enhanced bioremediation of dense non-aqueous phase liquids (DNAPLs) relies on accelerating contaminant mass transfer from the organic to the aqueous phase, thus enhancing the depletion of DNAPL source zones compared to natural dissolution. This is achieved by promoting biological activity that reduces the contaminant's aqueous phase concentration. Although laboratory studies have demonstrated that high reaction rates are attainable by specialized microbial cultures in DNAPL source zones, field applications of the technology report lower reaction rates and prolonged remediation times. One possible explanation for this phenomenon is that the reaction rates are limited by the rate at which the contaminant partitions from the DNAPL to the aqueous phase. In such cases, slow mass transfer to the aqueous phase reduces the bioavailability of the contaminant and consequently decreases the potential source zone depletion enhancement. In this work, the effect of rate limited mass transfer on bio-enhanced dissolution of DNAPL chlorinated ethenes is investigated through a numerical study. A multi-phase, multi-component groundwater transport model is employed to simulate DNAPL mass depletion for a range of source zone scenarios. Rate limited mass transfer is modeled by a linear driving force model, employing a thermodynamic approach for the calculation of the DNAPL - water interfacial area. Metabolic reductive dechlorination is modeled by Monod kinetics, considering microbial growth and self-inhibition. The model was utilized to identify conditions in which mass transfer, rather than reaction, is the limiting process, as indicated by the bioavailability number. In such cases, reaction is slower than expected, and further increase in the reaction rate does not enhance mass depletion. Mass transfer rate limitations were shown to affect both dechlorination and microbial growth kinetics. The complex dynamics between mass transfer, DNAPL transport and distribution, and

  8. Investigation of grid-enhanced two-phase convective heat transfer in the dispersed flow film boiling regime

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2013-01-01

    Highlights: • Experiments were done in the RBHT facility to study the droplet flow in rod bundle. • The presence of a droplet field was found to greatly enhance heat transfer. • A second-stage augmentation was observed downstream of a spacer grid. • This augmentation is due to the breakup of liquid ligaments downstream of the grid. - Abstract: A two-phase dispersed droplet flow investigation of the grid-enhanced heat transfer augmentation has been done using steam cooling with droplet injection experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. The RBHT facility is a vertical, full length, 7 × 7-rod bundle heat transfer facility having 45 electrically heated fuel rod simulators of 9.5 mm (0.374-in.) diameter on a 12.6 mm (0.496-in.) pitch which simulates a portion of a PWR fuel assembly. The facility operates at low pressure, up to 4 bars (60 psia) and has over 500 channels of instrumentation including heater rod thermocouples, spacer grid thermocouples, closely-spaced differential pressure cells along the test section, several fluid temperature measurements within the rod bundle flow area, inlet and exit flows, absolute pressure, and the bundle power. A series of carefully controlled and well instrumented steam cooling with droplet injection experiments were performed over a range of Reynolds numbers and droplet injection flow rates. The experimental results were analyzed to obtain the axial variation of the local heat transfer coefficients along the rod bundle. At the spacer grid location, the flow was found to be substantially disrupted, with the hydrodynamic and thermal boundary layers undergoing redevelopment. Owing to this flow restructuring, the heat transfer downstream of a grid spacer was found to be augmented above the fully developed flow heat transfer as a result of flow disruption induced by the grid. Furthermore, the presence of a droplet field further enhanced the heat transfer as compared to single

  9. Condensation heat transfer coefficients of flammable refrigerants on various enhanced tubes

    International Nuclear Information System (INIS)

    Park, Ki Jung; Jung, Dong Soo

    2005-01-01

    In this study, external condensation Heat Transfer Coefficients (HTCs) of six flammable refrigerants of propylene (R1270), propane (R290), isobutane (R600a), butane (R600), dimethylether (RE170), and HFC32 were measured at the vapor temperature of 39 .deg. C on a 1023 fpm low fin and turbo-C tubes. All data were taken under the heat flux of 32∼116 and 42∼142 kW/m 2 for the low fin and turbo-C tubes respectively. Flammable refrigerants' data obtained on enhanced tubes showed a typical trend that external condensation HTCs decrease with increasing wall subcooling. HFC32 and DME showed up to 30% higher HTCs than those of HCFC22 due to their excellent thermophysical properties. Propylene, propane, isobutane, and butane showed similar or lower HTCs than those of HCFC22. Beatty and Katz' correlation predicted the HTCs of the flammable refrigerants obtained on a low fin tube within a mean deviation of 7.3%. Turbo-C tube showed the best performance due to its 3 dimensional surface geometry for fast removal of condensate

  10. Gene Transfer Enhancement by Alkylcarboxylation of Poly(propylenimine

    Directory of Open Access Journals (Sweden)

    Maryam Hashemi

    2013-01-01

    Full Text Available Abstract Among synthetic carriers, dendrimers with the more flexible structure have attracted a great deal of researchers’ attention in the field of gene delivery. Followed by the promising results upon hydrophobic modification on polymeric structures in our laboratory, alkylcarboxylated poly (propylenimine-based carriers were synthesized by nucleophilic substitution of amines with alkyl moieties and were further characterized for their physicochemical and biological characteristics for plasmid DNA delivery. Although not noticeably effective gene transfer activity for hexanoate- and hexadecanoate-modified series was observed, but alkylation by decanoic acid significantly improved the transfection efficiency of the final constructs up to 60 fold in comparison with unmodified poly(propylenimine (PPI. PPI modified by 10-bromodecanoic acid at 50% grafting, showed significantly higher gene expression at c/p ratio of 2 compared to Superfect as positive control.  Overall, modification of PPI with 50% primary amines grafting with 10-bromodecanoic acid could increase the transfection efficiency which is occurred at lower c/p ratio when compared to Superfect, i.e. less amount of modified vector is required to exhibit the same efficiency as Superfect. Therefore, the obtained constructs seem to be safer carriers for long-term gene therapy applications.

  11. Experimental study on condensation heat transfer enhancement and pressure drop penalty factors in four microfin tubes

    Energy Technology Data Exchange (ETDEWEB)

    Han, D [Korea University, Seoul (Korea). Institute of Advanced Machinery Design; Lee, Kyu-Jung [Korea University, Seoul (Korea). Dept. of Mechanical Engineering

    2005-08-01

    Heat transfer and pressure drop characteristics of four microfin tubes were experimentally investigated for condensation of refrigerants R134a, R22, and R410A in four different test sections. The microfin tubes examined during this study consisted of 8.92, 6.46, 5.1, and 4 mm maximum inside diameter. The effect of mass flux, vapor quality, and refrigerants on condensation was investigated in terms of the heat transfer enhancement factor and the pressure drop penalty factor. The pressure drop penalty factor and the heat transfer enhancement factor showed a similar tendency for each tube at given vapor quality and mass flux. Based on the experimental data and the heat-momentum analogy, correlations for the condensation heat transfer coefficients in an annular flow regime and the frictional pressure drops are proposed. (author)

  12. Enhancement of light absorption in polyazomethines due to plasmon excitation on randomly distributed metal nanoparticles

    Science.gov (United States)

    Wróbel, P.; Antosiewicz, T. J.; Stefaniuk, T.; Ciesielski, A.; Iwan, A.; Wronkowska, A. A.; Wronkowski, A.; Szoplik, T.

    2015-05-01

    In photovoltaic devices, metal nanoparticles embedded in a semiconductor layer allow the enhancement of solar-toelectric energy conversion efficiency due to enhanced light absorption via a prolonged optical path, enhanced electric fields near the metallic inclusions, direct injection of hot electrons, or local heating. Here we pursue the first two avenues. In the first, light scattered at an angle beyond the critical angle for reflection is coupled into the semiconductor layer and confined within such planar waveguide up to possible exciton generation. In the second, light is trapped by the excitation of localized surface plasmons on metal nanoparticles leading to enhanced near-field plasmon-exciton coupling at the peak of the plasmon resonance. We report on results of a numerical experiment on light absorption in polymer- (fullerene derivative) blends, using the 3D FDTD method, where exact optical parameters of the materials involved are taken from our recent measurements. In simulations we investigate light absorption in randomly distributed metal nanoparticles dispersed in polyazomethine-(fullerene derivative) blends, which serve as active layers in bulkheterojunction polymer solar cells. In the study Ag and Al nanoparticles of different diameters and fill factors are diffused in two air-stable aromatic polyazomethines with different chemical structures (abbreviated S9POF and S15POF) mixed with phenyl-C61-butyric acid methyl ester (PCBM) or [6,6]-phenyl-C71-butyric acid methyl ester (PC71BM). The mixtures are spin coated on a 100 nm thick Al layer deposited on a fused silica substrate. Optical constants of the active layers are taken from spectroscopic ellipsometry and reflectance measurements using a rotating analyzer type ellipsometer with auto-retarder performed in the wavelength range from 225 nm to 2200 nm. The permittivities of Ag and Al particles of diameters from 20 to 60 nm are assumed to be equal to those measured on 100 to 200 nm thick metal films.

  13. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Science.gov (United States)

    Xie, Huaqing; Li, Yang; Yu, Wei

    2010-05-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2O 3, ZnO, TiO 2, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2O 3, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  14. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    International Nuclear Information System (INIS)

    Xie Huaqing; Li Yang; Yu Wei

    2010-01-01

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al 2 O 3 , ZnO, TiO 2 , and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al 2 O 3 , and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  15. Intriguingly high convective heat transfer enhancement of nanofluid coolants in laminar flows

    Energy Technology Data Exchange (ETDEWEB)

    Xie Huaqing, E-mail: hqxie@eed.sspu.c [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China); Li Yang; Yu Wei [School of Urban Development and Environmental Engineering, Shanghai Second Polytechnic University, Shanghai 201209 (China)

    2010-05-31

    We reported on investigation of the convective heat transfer enhancement of nanofluids as coolants in laminar flows inside a circular copper tube with constant wall temperature. Nanofluids containing Al{sub 2}O{sub 3}, ZnO, TiO{sub 2}, and MgO nanoparticles were prepared with a mixture of 55 vol.% distilled water and 45 vol.% ethylene glycol as base fluid. It was found that the heat transfer behaviors of the nanofluids were highly depended on the volume fraction, average size, species of the suspended nanoparticles and the flow conditions. MgO, Al{sub 2}O{sub 3}, and ZnO nanofluids exhibited superior enhancements of heat transfer coefficient, with the highest enhancement up to 252% at a Reynolds number of 1000 for MgO nanofluid. Our results demonstrated that these oxide nanofluids might be promising alternatives for conventional coolants.

  16. Comparative evaluation of three heat transfer enhancement strategies in a grooved channel

    Energy Technology Data Exchange (ETDEWEB)

    Herman, C.; Kang, E. [Dept. of Mechanical Engineering, Johns Hopkins Univ., Baltimore, MD (United States)

    2001-09-01

    Results of a comparative evaluation of three heat transfer enhancement strategies for forced convection cooling of a parallel plate channel populated with heated blocks, representing electronic components mounted on printed circuit boards, are reported. Heat transfer in the reference geometry, the asymmetrically heated parallel plate channel, is compared with that for the basic grooved channel, and the same geometry enhanced by cylinders and vanes placed above the downstream edge of each heated block. In addition to conventional heat transfer and pressure drop measurements, holographic interferometry combined with high-speed cinematography was used to visualize the unsteady temperature fields in the self-sustained oscillatory flow. The locations of increased heat transfer within one channel periodicity depend on the enhancement technique applied, and were identified by analyzing the unsteady temperature distributions visualized by holographic interferometry. This approach allowed gaining insight into the mechanisms responsible for heat transfer enhancement. Experiments were conducted at moderate flow velocities in the laminar, transitional and turbulent flow regimes. Reynolds numbers were varied in the range Re = 200-6500, corresponding to flow velocities from 0.076 to 2.36 m/s. Flow oscillations were first observed between Re = 1050 and 1320 for the basic grooved channel, and around Re = 350 and 450 for the grooved channels equipped with cylinders and vanes, respectively. At Reynolds numbers above the onset of oscillations and in the transitional flow regime, heat transfer rates in the investigated grooved channels exceeded the performance of the reference geometry, the asymmetrically heated parallel plate channel. Heat transfer in the grooved channels enhanced with cylinders and vanes showed an increase by a factor of 1.2-1.8 and 1.5-3.5, respectively, when compared to data obtained for the basic grooved channel; however, the accompanying pressure drop penalties

  17. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    Science.gov (United States)

    Oei, Adam C.; Patterson, Michael D.

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis. PMID:25713551

  18. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks.

    Science.gov (United States)

    Oei, Adam C; Patterson, Michael D

    2015-01-01

    Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well-understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for 20 h. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat) with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch) with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis.

  19. Enhancing perceptual and attentional skills requires common demands between the action video games and transfer tasks

    Directory of Open Access Journals (Sweden)

    Adam C Oei

    2015-02-01

    Full Text Available Despite increasing evidence that shows action video game play improves perceptual and cognitive skills, the mechanisms of transfer are not well understood. In line with previous work, we suggest that transfer is dependent upon common demands between the game and transfer task. In the current study, participants played one of four action games with varying speed, visual, and attentional demands for twenty hours. We examined whether training enhanced performance for attentional blink, selective attention, attending to multiple items, visual search and auditory detection. Non-gamers who played the game (Modern Combat with the highest demands showed transfer to tasks of attentional blink and attending to multiple items. The game (MGS Touch with fewer attentional demands also decreased attentional blink, but to a lesser degree. Other games failed to show transfer, despite having many action game characteristics but at a reduced intensity. The results support the common demands hypothesis

  20. Enhanced MicroChannel Heat Transfer in Macro-Geometry using Conventional Fabrication Approach

    Science.gov (United States)

    Ooi, KT; Goh, AL

    2016-09-01

    This paper presents studies on passive, single-phase, enhanced microchannel heat transfer in conventionally sized geometry. The intention is to allow economical, simple and readily available conventional fabrication techniques to be used for fabricating macro-scale heat exchangers with microchannel heat transfer capability. A concentric annular gap between a 20 mm diameter channel and an 19.4 mm diameter insert forms a microchannel where heat transfer occurs. Results show that the heat transfer coefficient of more than 50 kW/m·K can be obtained for Re≈4,000, at hydraulic diameter of 0.6 mm. The pressure drop values of the system are kept below 3.3 bars. The present study re-confirms the feasibility of fabricating macro-heat exchangers with microchannel heat transfer capability.

  1. Comparison of tubeside condensation and evaporation characteristics of smooth and enhanced heat transfer 1EHT tubes

    International Nuclear Information System (INIS)

    Kukulka, David J.; Smith, Rick; Li, Wei

    2015-01-01

    Results are presented here from an experimental investigation that was performed to evaluate the inside condensation and evaporation heat transfer of R410A, R22 and R32 that took place in a 12.7 mm (0.5 in) O.D. horizontal copper tube at low mass fluxes. Tubes considered in this evaluation consisted of a smooth tube (inner diameter 11.43 mm) and a newly developed enhanced surface Vipertex™ 1EHT tube. Heat transfer enhancement is an important factor in obtaining energy efficiency improvements in a variety of heat transfer applications. Utilization of enhanced heat transfer tubes is often utilized in the development of high performance air conditioning and refrigeration systems. Vipertex™ has designed and produced these surfaces through three dimensional material surface modifications which produces flow optimized, enhanced heat transfer tubes that increase heat transfer. Heat transfer enhancement plays an important role in improving energy efficiencies and developing high performance thermal systems. This study details the evaluation of the in-tube evaporation and condensation that takes place in these tubes over a wide range of conditions. The test apparatus utilized included a straight horizontal test section with an active length heated by water circulated in the surrounding annulus. Constant heat flux was maintained and refrigerant quality varied. In-tube evaporation measurements of R22, R32 and R410A are reported for evaporation at 10 °C with mass flow rates in the range of 15–40 kg h"−"1. Single phase measurements are reported for mass flow rates from 15 kg h"−"1 to 80 kg h"−"1. Condensation tests were conducted at a saturation temperature of 47 °C, with an inlet quality of 0.8 and an outlet quality of 0.1. In a comparison to smooth tubes, the average heat transfer coefficients for the Vipertex 1EHT tube exceeded those of a smooth tube. Average evaporation and condensation heat transfer coefficients for R22, R32 and R410A in the 1EHT

  2. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Yasuyuki; Okamoto, Koji; Madarame, Haruki; Takamasa, Tomoji

    2003-01-01

    For nuclear reactor systems, the critical heat flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60 Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and critical heat flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2 mm in thickness, 3 mm in height, and 60 mm in length. Oxidation of the surface was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60 Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800 kGy 60 Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases will surface wettability in the same manner as shown by Liaw and Dhir's results. (author)

  3. Improvement of boiling heat transfer by radiation induced boiling enhancement

    International Nuclear Information System (INIS)

    Imai, Y.; Okamoto, K.; Madarame, H.; Takamasa, T.

    2003-01-01

    For nuclear reactor systems, the Critical Heat Flux (CHF) data is very important because it limits reactor efficiency. Improvement of CHF requires that the cooling liquid can contact the heating surface, or a high-wettability, highly hydrophilic heating surface, even if a vapor bubble layer is generated on the surface. In our previous study, we confirmed that the surface wettability changed significantly or that highly hydrophilic conditions were achieved, after irradiation of 60Co gamma ray, by the Radiation Induced Surface Activation (RISA) phenomenon. To delineate the effect of RISA on boiling phenomena, surface wettability in a high-temperature environment and Critical Heat Flux (CHF) of metal oxides irradiated by gamma rays were investigated. A CHF experiment in the pool boiling condition was carried out under atmospheric pressure. The heating test section made of titanium was 0.2mm in thickness, 3mm in height, and 60mm in length. Oxidation of the surfaces was carried out by plasma jetting for 40 seconds. The test section was irradiated by 60Co gamma ray with predetermined radiation intensity and period. The CHF of oxidized titanium was improved up to 100 percent after 800kGy 60Co gamma ray irradiation. We call this effect Radiation Induced Boiling Enhancement (RIBE). Before we conducted the CHF experiment, contact angles of the test pieces were measured to show the relationship between wettability and CHF. The CHF in the present experiment increases with surface wettability in the same manner as shown by Liaw and Dhir's results

  4. Anisotropic metamaterial for efficiency enhancement of mid-range wireless power transfer under coil misalignment

    International Nuclear Information System (INIS)

    Ranaweera, A L A K; Moscoso, Carlos Arriola; Lee, Jong-Wook

    2015-01-01

    In a wireless power transfer (WPT) system, misalignment between transmitter and receiver coils is one of the key factors affecting efficiency. Recently, metamaterials have shown great potential to enhance electromagnetic propagation in various environments. In this work, we apply a metamaterial to enhance the WPT in a more general environment where misalignment is considered. Using an anisotropic metamaterial, we obtain a significant efficiency enhancement. Therefore, we propose that the metamaterial is an effective means to mitigate the decreased efficiency caused by misalignment. In addition, we investigate the effect of coil misalignment on the threshold distance beyond which the metamaterial enhances the performance of WPT. (paper)

  5. Heat transfer enhancement of car radiator using aqua based magnesium oxide nanofluids

    Directory of Open Access Journals (Sweden)

    Ali Hafiz Muhammad

    2015-01-01

    Full Text Available The focus of this research paper is on the application of water based MgO nanofluids for thermal management of a car radiator. Nanofluids of different volumetric concentrations (i.e. 0.06%, 0.09% and 0.12% were prepared and then experimentally tested for their heat transfer performance in a car radiator. All concentrations showed enhancement in heat transfer compared to the pure base fluid. A peak heat transfer enhancement of 31% was obtained at 0.12 % volumetric concentration of MgO in basefluid. The fluid flow rate was kept in a range of 8-16 liter per minute. Lower flow rates resulted in greater heat transfer rates as compared to heat transfer rates at higher flow rates for the same volumetric concentration. Heat transfer rates were found weakly dependent on the inlet fluid temperature. An increase of 8°C in inlet temperature showed only a 6% increase in heat transfer rate.

  6. Enhanced biennial variability in the Pacific due to Atlantic capacitor effect.

    Science.gov (United States)

    Wang, Lei; Yu, Jin-Yi; Paek, Houk

    2017-03-20

    The El Niño-Southern Oscillation (ENSO) and the variability in the Pacific subtropical highs (PSHs) have major impacts on social and ecological systems. Here we present an Atlantic capacitor effect mechanism to suggest that the Atlantic is a key pacemaker of the biennial variability in the Pacific including that in ENSO and the PSHs during recent decades. The 'charging' (that is, ENSO imprinting the North Tropical Atlantic (NTA) sea surface temperature (SST) via an atmospheric bridge mechanism) and 'discharging' (that is, the NTA SST triggering the following ENSO via a subtropical teleconnection mechanism) processes alternate, generating the biennial rhythmic changes in the Pacific. Since the early 1990s, a warmer Atlantic due to the positive phase of Atlantic multidecadal oscillation and global warming trend has provided more favourable background state for the Atlantic capacitor effect, giving rise to enhanced biennial variability in the Pacific that may increase the occurrence frequency of severe natural hazard events.

  7. Enhancement of First Wall Damage in Iter Type Tokamak due to Lenr Effects

    Science.gov (United States)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    In recent experiments with pulsed periodic high current (J ~ 300-500 mA/cm2) D2-glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at Ed = 1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies) The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials.

  8. Enhancement of first wall damage in ITER type tokamak due to LENR effects

    International Nuclear Information System (INIS)

    Lipson, Andrei G.; Miley, George H.; Momota, Hiromu

    2006-01-01

    In recent experiments with pulsed periodic high current (J - 300-500 mA/cm 2 ) D 2 -glow discharge at deuteron energies as low as 0.8-2.45 keV a large DD-reaction yield has been obtained. Thick target yield measurement show unusually high DD-reaction enhancement (at E d =1 keV the yield is about nine orders of magnitude larger than that deduced from standard Bosch and Halle extrapolation of DD-reaction cross-section to lower energies). The results obtained in these LENR experiments with glow discharge suggest nonnegligible edge plasma effects in the ITER TOKAMAK that were previously ignored. In the case of the ITER DT plasma core, we here estimate the DT reaction yield at the metal edge due to plasma ion bombardment of the first wall and/or divertor materials. (author)

  9. Simulation of enhanced deposition due to magnetic field alignment of ellipsoidal particles in a lung bifurcation.

    Science.gov (United States)

    Martinez, R C; Roshchenko, A; Minev, P; Finlay, W H

    2013-02-01

    Aerosolized chemotherapy has been recognized as a potential treatment for lung cancer. The challenge of providing sufficient therapeutic effects without reaching dose-limiting toxicity levels hinders the development of aerosolized chemotherapy. This could be mitigated by increasing drug-delivery efficiency with a noninvasive drug-targeting delivery method. The purpose of this study is to use direct numerical simulations to study the resulting local enhancement of deposition due to magnetic field alignment of high aspect ratio particles. High aspect ratio particles were approximated by a rigid ellipsoid with a minor diameter of 0.5 μm and fluid particle density ratio of 1,000. Particle trajectories were calculated by solving the coupled fluid particle equations using an in-house micro-macro grid finite element algorithm based on a previously developed fictitious domain approach. Particle trajectories were simulated in a morphologically realistic geometry modeling a symmetrical terminal bronchiole bifurcation. Flow conditions were steady inspiratory air flow due to typical breathing at 18 L/min. Deposition efficiency was estimated for two different cases: [1] particles aligned with the streamlines and [2] particles with fixed angular orientation simulating the magnetic field alignment of our previous in vitro study. The local enhancement factor defined as the ratio between deposition efficiency of Case [1] and Case [2] was found to be 1.43 and 3.46 for particles with an aspect ratio of 6 and 20, respectively. Results indicate that externally forcing local alignment of high aspect ratio particles can increase local deposition considerably.

  10. Is the enhancement of memory due to reward driven by value or salience?

    Science.gov (United States)

    Madan, Christopher R; Spetch, Marcia L

    2012-02-01

    Past research using two levels of reward has shown that the higher-value items are remembered better than lower-value items and this enhancement is assumed to be driven by an effect of reward value. In the present study, multiple levels of reward were used to test the influence of reward salience on memory. Using a value-learning procedure, words were associated with reward values, and then memory for these words was later tested with free recall. Critically, multiple reward levels were used, allowing us to test two specific hypotheses whereby rewards can influence memory: (a) higher value items are remembered better than lower value items (reward value hypothesis), and (b) highest and lowest value items are remembered best and intermediate-value items are remembered worst (following a U-shaped relationship between value and memory; reward salience hypothesis). In two experiments we observed a U-shaped relationship between reward value and memory, supporting the notion that memory is enhanced due to reward salience, and not purely through reward value. Copyright © 2011 Elsevier B.V. All rights reserved.

  11. Enhanced ionic conductivity in composite materials due to interfacial space charge layers

    International Nuclear Information System (INIS)

    Dudney, N.J.

    1985-01-01

    The ionic conductivity of a number of salts (e.g., β-AgI, LiI, CuCl, HgI 2 , etc.) can be enhanced by one to three orders of magnitude with the addition of fine particles of an insoluble and nonconducting material such as Al 2 O 3 or SiO 2 . Typically the conductivity increases with addition of the inert particles and reaches a peak at 10-40 vol % of the particles. The mechanism responsible for the enhanced conductivity of the composite is not understood at this time. Some claim that this effect is due to an increased concentration of charge carriers in a diffuse space charge layer near the charged surface of the particle. The goal of the present study is to test this proposed mechanism by calculating the maximum space charge layer effect and then using this result to estimate the conductivity of a composite with a random distribution of Al 2 O 3 particles. Also, the conductivity of composite systems has been investigated assuming an ordered distribution of particles which are surrounded by a high conductivity layer

  12. Heat transfer enhancement for fin-tube heat exchanger using vortex generators

    International Nuclear Information System (INIS)

    Yoo, Seong Yeon; Park, Dong Seong; Chung, Min Ho; Lee, Sang Yun

    2002-01-01

    Vortex generators are fabricated on the fin surface of a fin-tube heat exchanger to augment the convective heat transfer. In addition to horseshoe vortices formed naturally around the tube of the fin-tube heat exchanger, longitudinal vortices are artificially created on the fin surface by vortex generators. The purpose of this study is to investigate the local heat transfer phenomena in the fin-tube heat exchangers with and without vortex generators, and to evaluate the effect of vortices on the heat transfer enhancement. Naphthalene sublimation technique is employed to measure local mass transfer coefficients, then analogy equation between heat and mass transfer is used to calculate heat transfer coefficients. Experiments are performed for the model of fin-circular tube heat exchangers with and without vortex generators, and of fin-flat tube heat exchangers with and without vortex generators. Average heat transfer coefficients of fin-flat tube heat exchanger without vortex generator are much lower than those of fin-circular tube heat exchanger. On the other hand, fin-flat tube heat exchanger with vortex generators has much higher heat transfer value than conventional fin-circular tube heat exchanger. At the same time, pressure losses for four types of heat exchanger is measured and compared

  13. Promotion of multi-electron transfer for enhanced photocatalysis: A review focused on oxygen reduction reaction

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Changhua [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); College of Chemistry and Biology, Beihua University, Jilin 132013 (China); Zhang, Xintong, E-mail: xtzhang@nenu.edu.cn [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China); Liu, Yichun [Centre for Advanced Optoelectronic Functional Materials Research, and Key Laboratory for UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, Changchun 130024 (China)

    2015-12-15

    Highlights: • Oxygen reduction reaction (ORR) in photocatalysis process is focused. • Multi-electron transfer ORR is reviewed. • This review provides a guide to access to enhanced photocatalysis via multi-electron transfer. - Abstract: Semiconductor photocatalysis has attracted significant interest for solar light induced environmental remediation and solar fuel generation. As is well known, photocatalytic performance is determined by three steps: photoexcitation, separation and transport of photogenerated charge carriers, and surface reactions. To achieve higher efficiency, significant efforts have been made on improvement of efficiency of above first two steps, which have been well documented in recent review articles. In contrast, this review intends to focus on strategies moving onto the third step of improvement for enhanced photocatalysis wherein active oxygen species including superoxide radical, hydrogen peroxide, hydroxyl radical are in situ detected. Particularly, surface electron-transfer reduction of oxygen over single component photocatalysts is reviewed and systems enabling multi-electron transfer induced oxygen reduction reaction (ORR) are highlighted. It is expected this review could provide a guideline for readers to better understand the critical role of ORR over photocatalyst in charge carrier separation and transfer and obtain reliable results for enhanced aerobic photocatalysis.

  14. School Development in Practice. A Competence Development Model for Enhancing Transfer?

    DEFF Research Database (Denmark)

    Aarkrog, Vibe

    of four one day courses and in between the four courses the schools should accomplish developmental work at the school, supported by a team of consultants. Consequently, SIP is expected to enhance transfer of knowledge into actions. Based on a description of SIP and the paper highlights some challenges...

  15. Enhanced heat transfer performances of molten salt receiver with spirally grooved pipe

    International Nuclear Information System (INIS)

    Lu, Jianfeng; Ding, Jing; Yu, Tao; Shen, Xiangyang

    2015-01-01

    The enhanced heat transfer performances of solar receiver with spirally grooved pipe were theoretically investigated. The physical model of heat absorption process was proposed using the general heat transfer correlation of molten salt in smooth and spirally grooved pipe. According to the calculation results, the convective heat transfer inside the receiver can remarkably enhance the heat absorption process, and the absorption efficiency increased with the flow velocity and groove height, while the wall temperature dropped. As the groove height increased, the heat losses of convection and radiation dropped with the decrease of wall temperature, and the average absorption efficiency of the heat receiver can be increased. Compared with the heat receiver with smooth pipe, the heat absorption efficiency of heat receiver with spirally grooved pipe e/d = 0.0475 can rise for 0.7%, and the maximum bulk fluid temperature can be increased for 31.1 °C. As a conclusion, spirally grooved pipe can be a very effective way for heat absorption enhancement of solar receiver, and it can also increase the operating temperature of molten salt. - Highlights: • Spirally grooved tube is a very effective way for solar receiver enhancement. • Heat absorption model of receiver is proposed with general heat transfer correlation. • Spirally groove tube increases absorption efficiency and reduces wall temperature. • Operating temperature of molten salt remarkably increases with groove height. • Heat absorption performance is promoted for first and second thermodynamics laws

  16. Significance of Thermal Fluvial Incision and Bedrock Transfer due to Ice Advection on Greenland Ice Sheet Topography

    Science.gov (United States)

    Crozier, J. A.; Karlstrom, L.; Yang, K.

    2017-12-01

    Ice sheet surface topography reflects a complicated combination of processes that act directly upon the surface and that are products of ice advection. Using recently-available high resolution ice velocity, imagery, ice surface elevation, and bedrock elevation data sets, we seek to determine the domain of significance of two important processes - thermal fluvial incision and transfer of bedrock topography through the ice sheet - on controlling surface topography in the ablation zone. Evaluating such controls is important for understanding how melting of the GIS surface during the melt season may be directly imprinted in topography through supraglacial drainage networks, and indirectly imprinted through its contribution to basal sliding that affects bedrock transfer. We use methods developed by (Karlstrom and Yang, 2016) to identify supraglacial stream networks on the GIS, and use high resolution surface digital elevation models as well as gridded ice velocity and melt rate models to quantify surface processes. We implement a numerically efficient Fourier domain bedrock transfer function (Gudmundsson, 2003) to predict surface topography due to ice advection over bedrock topography obtained from radar. Despite a number of simplifying assumptions, the bedrock transfer function predicts the observed ice sheet surface in most regions of the GIS with ˜90% accuracy, regardless of the presence or absence of supraglacial drainage networks. This supports the hypothesis that bedrock is the most significant driver of ice surface topography on wavelengths similar to ice thickness. Ice surface topographic asymmetry on the GIS is common, with slopes in the direction of ice flow steeper than those faced opposite to ice flow, consistent with bedrock transfer theory. At smaller wavelengths, topography consistent with fluvial erosion by surface hydrologic features is evident. We quantify the effect of ice advection versus fluvial thermal erosion on supraglacial longitudinal stream

  17. Polymer-free graphene transfer for enhanced reliability of graphene field-effect transistors

    International Nuclear Information System (INIS)

    Park, Hamin; Park, Ick-Joon; Jung, Dae Yool; Lee, Khang June; Yang, Sang Yoon; Choi, Sung-Yool

    2016-01-01

    We propose a polymer-free graphene transfer technique for chemical vapor deposition-grown graphene to ensure the intrinsic electrical properties of graphene for reliable transistor applications. The use of a metal catalyst as a supporting layer avoids contamination from the polymer material and graphene films become free of polymer residue after the transfer process. Atomic force microscopy and Raman spectroscopy indicate that the polymer-free transferred graphene shows closer properties to intrinsic graphene properties. The reliability of graphene field-effect transistors (GFETs) was investigated through the analysis of the negative gate bias-stress-induced instability. This work reveals the effect of polymer residues on the reliability of GFETs, and that the developed new polymer-free transfer method enhances the reliability. (letter)

  18. Impinging jets - a short review on strategies for heat transfer enhancement

    Science.gov (United States)

    Nastase, Ilinca; Bode, Florin

    2018-02-01

    In industrial applications, heat and mass transfer can be considerably increased using impinging jets. A large number of flow phenomena will be generated by the impinging flow, such as: large scale structures, large curvature involving strong shear and normal stresses, stagnation in the wall boundary layers, heat transfer with the impinged wall, small scale turbulent mixing. All these phenomena are highly unsteady and even if nowadays a substantial number of studies in the literature are dedicated, the impinging jets are still not fully understood due to the highly unsteady nature and more over due to great difficulty of performing detailed numerical and experimental investigations.

  19. Experimental investigation on enhanced heat transfer of vertical condensers with trisection helical baffles

    International Nuclear Information System (INIS)

    Wu, Jiafeng; Zhou, Jiahao; Chen, Yaping; Wang, Mingchao; Dong, Cong; Guo, Ya

    2016-01-01

    Highlights: • Trisection helical baffles are introduced for vertical condenser enhancement. • Condensation in short-section and intermediate drainage is applied in new schemes. • Helical baffles with liquid dam and drainage gaps can promote condenser performance. • Dual-thread baffle scheme is superior to that of single-thread one by about 19%. • Condensation enhancement ratio of helical schemes is 1.5–2.5 over segment one. - Abstract: The vertical condensers have advantages of small occupation area, convenient in assemble or dismantle tube bundle and simple structure etc. However, the low heat transfer performance limits their applications. To enhance the heat transfer, a novel type of vertical condensers was designed by introducing trisection helical baffles with liquid dams and gaps for facilitating condensate drainage. Four configurations of vertical condensers with trisection helical baffle are experimentally studied and compared to a traditional segment baffle condenser. The enhancement ratio of trisection helical baffle schemes is about 1.5–2.5 and the heat transfer coefficient of the dual-thread trisection helical baffle scheme is superior to that of the single-thread one by about 19%. Assistant by the theoretical study, the experimental data is simulated and the condensation enhancement mechanisms by applying trisection helical baffle in vertical condenser are summarized as condensate drainage, short tube construct and reduce steam dead zone functions of the helical baffles.

  20. Enhancement and Tunability of Near-Field Radiative Heat Transfer Mediated by Surface Plasmon Polaritons in Thin Plasmonic Films

    Directory of Open Access Journals (Sweden)

    Svetlana V. Boriskina

    2015-06-01

    Full Text Available The properties of thermal radiation exchange between hot and cold objects can be strongly modified if they interact in the near field where electromagnetic coupling occurs across gaps narrower than the dominant wavelength of thermal radiation. Using a rigorous fluctuational electrodynamics approach, we predict that ultra-thin films of plasmonic materials can be used to dramatically enhance near-field heat transfer. The total spectrally integrated film-to-film heat transfer is over an order of magnitude larger than between the same materials in bulk form and also exceeds the levels achievable with polar dielectrics such as SiC. We attribute this enhancement to the significant spectral broadening of radiative heat transfer due to coupling between surface plasmon polaritons (SPPs on both sides of each thin film. We show that the radiative heat flux spectrum can be further shaped by the choice of the substrate onto which the thin film is deposited. In particular, substrates supporting surface phonon polaritons (SPhP strongly modify the heat flux spectrum owing to the interactions between SPPs on thin films and SPhPs of the substrate. The use of thin film phase change materials on polar dielectric substrates allows for dynamic switching of the heat flux spectrum between SPP-mediated and SPhP-mediated peaks.

  1. Enhanced Global Monsoon in Present Warm Period Due to Natural and Anthropogenic Forcings

    Directory of Open Access Journals (Sweden)

    Jing Chai

    2018-04-01

    Full Text Available In this study, we investigate global monsoon precipitation (GMP changes between the Present Warm Period (PWP, 1900–2000 and the Little Ice Age (LIA, 1250–1850 by performing millennium sensitivity simulations using the Community Earth System Model version 1.0 (CESM1. Three millennium simulations are carried out under time-varying solar, volcanic and greenhouse gas (GHG forcing, respectively, from 501 to 2000 AD. Compared to the global-mean surface temperature of the cold LIA, the global warming in the PWP caused by high GHG concentration is about 0.42 °C, by strong solar radiation is 0.14 °C, and by decreased volcanic activity is 0.07 °C. The GMP increases in these three types of global warming are comparable, being 0.12, 0.058, and 0.055 mm day−1, respectively. For one degree of global warming, the GMP increase induced by strong GHG forcing is 2.2% °C−1, by strong solar radiation is 2.8% °C−1, and by decreased volcanic forcing is 5.5% °C−1, which means that volcanic forcing is most effective in terms of changing the GMP among these three external forcing factors. Under volcanic inactivity-related global warming, both monsoon moisture and circulation are enhanced, and the enhanced circulation mainly occurs in the Northern Hemisphere (NH. The circulation, however, is weakened in the other two cases, and the GMP intensification is mainly caused by increased moisture. Due to large NH volcanic aerosol concentration in the LIA, the inter-hemispheric thermal contrast of PWP global warming tends to enhance NH monsoon circulation. Compared to the GHG forcing, solar radiation tends to warm low-latitude regions and cause a greater monsoon moisture increase, resulting in a stronger GMP increase. The finding in this study is important for predicting the GMP in future anthropogenic global warming when a change in natural solar or volcanic activity occurs.

  2. Simple expressions of the nuclear relaxation rate enhancement due to quadrupole nuclei in slowly tumbling molecules

    Energy Technology Data Exchange (ETDEWEB)

    Fries, Pascal H., E-mail: pascal-h.fries@cea.fr [Université Grenoble Alpes, INAC-SCIB, RICC, F-38000 Grenoble (France); CEA, INAC-SCIB, RICC, F-38000 Grenoble (France); Belorizky, Elie [Université Grenoble Alpes, LIPHY, F-38000 Grenoble (France); CEA, Leti-Clinatec, F-38000 Grenoble (France)

    2015-07-28

    For slowly tumbling entities or quasi-rigid lattices, we derive very simple analytical expressions of the quadrupole relaxation enhancement (QRE) of the longitudinal relaxation rate R{sub 1} of nuclear spins I due to their intramolecular magnetic dipolar coupling with quadrupole nuclei of arbitrary spins S ≥ 1. These expressions are obtained by using the adiabatic approximation for evaluating the time evolution operator of the quantum states of the quadrupole nuclei S. They are valid when the gyromagnetic ratio of the spin S is much smaller than that of the spin I. The theory predicts quadrupole resonant peaks in the dispersion curve of R{sub 1} vs magnetic field. The number, positions, relative intensities, Lorentzian shapes, and widths of these peaks are explained in terms of the following properties: the magnitude of the quadrupole Hamiltonian and the asymmetry parameter of the electric field gradient (EFG) acting on the spin S, the S-I inter-spin orientation with respect to the EFG principal axes, the rotational correlation time of the entity carrying the S–I pair, and/or the proper relaxation time of the spin S. The theory is first applied to protein amide protons undergoing dipolar coupling with fast-relaxing quadrupole {sup 14}N nuclei and mediating the QRE to the observed bulk water protons. The theoretical QRE agrees well with its experimental counterpart for various systems such as bovine pancreatic trypsin inhibitor and cartilages. The anomalous behaviour of the relaxation rate of protons in synthetic aluminium silicate imogolite nano-tubes due to the QRE of {sup 27}Al (S = 5/2) nuclei is also explained.

  3. Enhancement of natural radiation and population exposures due to the activity of large steelworks

    Energy Technology Data Exchange (ETDEWEB)

    Niewiadomski, T; Godek, J; Jasinska, M; Wasiolek, P [Institute of Nuclear Physics, Krakow (Poland)

    1984-09-01

    Radionuclide releases and resulting population exposures from large industrial plants have recently become a subject of some public concern. Methods for assessing these effects were developed and, as an example, a complex of large steelworks located in the vicinity of the city of Krakow was investigated. The following critical pathways were considered: atmospheric release, and use of fly ash for production of building materials. For assessing annual average radionuclide concentrations in air and in soil around the works, a computer program was developed while other mathematical methods were applied to the assessment of maximum individual effective dose equivalent commitments (EDEC) due to inhalation, ingestion, and external gamma radiation. In order to acquire data for calculations many samples of raw materials, coal, ash, and dust were analysed as to their radionuclide concentration. The total individual EDEC at the place of maximum immission was estimated to be about 100 ..mu..Sv a/sup -1/ (i.e., about 6% of the natural exposure in this region), this being mainly due to ingestion (ca. 65 ..mu..Sv a/sup -1/) and to gamma radiation (ca. 30 ..mu..Sv a/sup -1/). The enhancement of dose rates over the ponds and of radioactivity concentration of liquid discharges from the ponds was found to be negligible. Dose rates in houses built entirely of fly ash were estimated to be higher than those in red-brick houses by not more than 0.2 ..mu..Sv a/sup -1/. The collective EDEC from the operational discharge of the steelworks is less than 11 man Sv a/sup -1/ and that of use of fly-ash prefabricated elements will be in the future less than 45 man Sv a/sup -1/.

  4. Resonant creep enhancement in austenitic stainless steels due to pulsed irradiation at low doses

    International Nuclear Information System (INIS)

    Kishimoto, N.; Amekura, H.; Saito, T.

    1994-01-01

    Steady-state irradiation creep of austenitic stainless steels has been extensively studied as one of the most important design parameters in fusion reactors. The steady-state irradiation creep has been evaluated using in-pile and light-ion experiments. Those creep compliances of various austenitic steels range in the vicinity of ε/Gσ = 10 -6 ∼10 -5 (dpa sm-bullet MPa) -1 , depending on chemical composition etc. The mechanism of steady-state irradiation creep has been elucidated, essentially in terms of stress-induced preferential absorption of point defects into dislocations, and their climb motion. From this standpoint, low doses such as 10 -3 ∼10 -1 dpa would not give rise to any serious creep, and the irradiation creep may not be a critical issue for the low-dose fusion devices including ITER. It is, however, possible that pulsed irradiation causes different creep behaviors from the steady-state one due to dynamic unbalance of interstitials and vacancies. The authors have actually observed anomalous creep enhancement due to pulsed irradiation in austenitic stainless steels. The resonant behavior of creep indicates that pulsed irradiation may cause significant deformation in austenitic steels even at such low doses and slow pulsing rates, especially for the SA-materials. The first-wall materials in plasma operation of ∼10 2 s may suffer from unexpected transient creep, even in the near-term fusion deices, such as ITER. Though this effect might be a transient effect for a relatively short period, it should be taken into account that the pulsed irradiation makes influences on stress relaxation of the fusion components and on the irradiation fatigue. The mechanism and the relevant behaviors of pulse-induced creep will be discussed in terms of a point-defect model based on the resonant interstitial enrichment

  5. Chemical potential pinning due to equilibrium electron transfer at metal/C{sub 60}-doped polymer interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Heller, C.M.; Campbell, I.H.; Smith, D.L. [Los Alamos National Laboratory, Los Alamos, New Mexico 87545 (United States); Barashkov, N.N.; Ferraris, J.P. [The University of Texas at Dallas, Richardson, Texas 75080 (United States)

    1997-04-01

    We report electroabsorption measurements of the built-in electrostatic potential in metal/C{sub 60}-doped polymer/metal structures to investigate chemical potential pinning due to equilibrium electron transfer from a metal contact to the electron acceptor energy level of C{sub 60} molecules in the polymer film. The built-in potentials of a series of structures employing thin films of both undoped and C{sub 60}-doped poly[2-methoxy, 5-(2{sup {prime}}-ethyl-hexyloxy)-1,4-phenylene vinylene] (MEH-PPV) were measured. For undoped MEH-PPV, which has an energy gap of about 2.4 eV, the maximum built-in potential is about 2.1 eV, whereas for C{sub 60}-doped MEH-PPV the maximum built-in potential decreases to 1.5 eV. Electron transfer to the C{sub 60} molecules close to the metal interface pins the chemical potential of the metal contact near the electron acceptor energy level of C{sub 60} and decreases the built-in potential of the structure. From the systematic dependence of the built-in potential on the metal work function we find that the electron acceptor energy level of C{sub 60} in MEH-PPV is about 1.7 eV above the hole polaron energy level of MEH-PPV. {copyright} {ital 1997 American Institute of Physics.}

  6. Enhanced Single Seed Trait Predictions in Soybean (Glycine max) and Robust Calibration Model Transfer with Near-Infrared Reflectance Spectroscopy.

    Science.gov (United States)

    Hacisalihoglu, Gokhan; Gustin, Jeffery L; Louisma, Jean; Armstrong, Paul; Peter, Gary F; Walker, Alejandro R; Settles, A Mark

    2016-02-10

    Single seed near-infrared reflectance (NIR) spectroscopy predicts soybean (Glycine max) seed quality traits of moisture, oil, and protein. We tested the accuracy of transferring calibrations between different single seed NIR analyzers of the same design by collecting NIR spectra and analytical trait data for globally diverse soybean germplasm. X-ray microcomputed tomography (μCT) was used to collect seed density and shape traits to enhance the number of soybean traits that can be predicted from single seed NIR. Partial least-squares (PLS) regression gave accurate predictive models for oil, weight, volume, protein, and maximal cross-sectional area of the seed. PLS models for width, length, and density were not predictive. Although principal component analysis (PCA) of the NIR spectra showed that black seed coat color had significant signal, excluding black seeds from the calibrations did not impact model accuracies. Calibrations for oil and protein developed in this study as well as earlier calibrations for a separate NIR analyzer of the same design were used to test the ability to transfer PLS regressions between platforms. PLS models built from data collected on one NIR analyzer had minimal differences in accuracy when applied to spectra collected from a sister device. Model transfer was more robust when spectra were trimmed from 910 to 1679 nm to 955-1635 nm due to divergence of edge wavelengths between the two devices. The ability to transfer calibrations between similar single seed NIR spectrometers facilitates broader adoption of this high-throughput, nondestructive, seed phenotyping technology.

  7. Numerical study of unsteady MHD oblique stagnation point flow and heat transfer due to an oscillating stream

    Science.gov (United States)

    Javed, T.; Ghaffari, A.; Ahmad, H.

    2016-05-01

    The unsteady stagnation point flow impinging obliquely on a flat plate in presence of a uniform applied magnetic field due to an oscillating stream has been studied. The governing partial differential equations are transformed into dimensionless form and the stream function is expressed in terms of Hiemenz and tangential components. The dimensionless partial differential equations are solved numerically by using well-known implicit finite difference scheme named as Keller-box method. The obtained results are compared with those available in the literature. It is observed that the results are in excellent agreement with the previous studies. The effects of pertinent parameters involved in the problem namely magnetic parameter, Prandtl number and impinging angle on flow and heat transfer characteristics are illustrated through graphs. It is observed that the influence of magnetic field strength increases the fluid velocity and by the increase of obliqueness parameter, the skin friction increases.

  8. Thermophoretic diffusion and nonlinear radiative heat transfer due to a contracting cylinder in a nanofluid with generalized slip condition

    Directory of Open Access Journals (Sweden)

    Z. Abbas

    Full Text Available An analysis is carried out to study the generalized slip condition and MHD flow of a nanofluid due to a contracting cylinder in the presence of non-linear radiative heat transfer using Buongiorno’s model. The Navier-Stokes along with energy and nanoparticle concentration equations is transformed to highly nonlinear ordinary differential equations using similarity transformations. These similar differential equations are then solved numerically by employing a shooting technique with Runge–Kutta–Fehlberg method. Dual solutions exist for a particular range of the unsteadiness parameter. The physical influence of the several important fluid parameters on the flow velocity, temperature and nanoparticle volume fraction is discussed and shown through graphs and table in detail. The present study indicates that as increase of Brownian motion parameter and slip velocity is to decrease the nanoparticle volume fraction. Keywords: Nanofluid, Contracting cylinder, Nonlinear thermal radiation, Generalized slip condition, Numerical solution

  9. Micro-structured rough surfaces by laser etching for heat transfer enhancement on flush mounted heat sinks

    International Nuclear Information System (INIS)

    Ventola, L; Scaltrito, L; Ferrero, S; Chiavazzo, E; Asinari, P; Maccioni, G

    2014-01-01

    The aim of this work is to improve heat transfer performances of flush mounted heat sinks used in electronic cooling. To do this we patterned 1.23 cm 2 heat sinks surfaces by microstructured roughnesses built by laser etching manufacturing technique, and experimentally measured the convective heat transfer enhancements due to different patterns. Each roughness differs from the others with regards to the number and the size of the micro-fins (e.g. the micro- fin length ranges from 200 to 1100 μm). Experimental tests were carried out in forced air cooling regime. In particular fully turbulent flows (heating edge based Reynolds number ranging from 3000 to 17000) were explored. Convective heat transfer coefficient of the best micro-structured heat sink is found to be roughly two times compared to the smooth heat sinks one. In addition, surface area roughly doubles with regard to smooth heat sinks, due to the presence of micro-fins. Consequently, patterned heat sinks thermal transmittance [W/K] is found to be roughly four times the smooth heat sinks one. We hope this work may open the way for huge boost in the technology of electronic cooling by innovative manufacturing techniques.

  10. Temperature resolution enhancing of commercially available THz passive cameras due to computer processing of images

    Science.gov (United States)

    Trofimov, Vyacheslav A.; Trofimov, Vladislav V.; Kuchik, Igor E.

    2014-06-01

    As it is well-known, application of the passive THz camera for the security problems is very promising way. It allows seeing concealed object without contact with a person and this camera is non-dangerous for a person. Efficiency of using the passive THz camera depends on its temperature resolution. This characteristic specifies possibilities of the detection of concealed object: minimal size of the object, maximal distance of the detection, image detail. One of probable ways for a quality image enhancing consists in computer processing of image. Using computer processing of the THz image of objects concealed on the human body, one may improve it many times. Consequently, the instrumental resolution of such device may be increased without any additional engineering efforts. We demonstrate new possibilities for seeing the clothes details, which raw images, produced by the THz cameras, do not allow to see. We achieve good quality of the image due to applying various spatial filters with the aim to demonstrate independence of processed images on math operations. This result demonstrates a feasibility of objects seeing. We consider images produced by THz passive cameras manufactured by Microsemi Corp., and ThruVision Corp., and Capital Normal University (Beijing, China).

  11. Saturation of a toroidal Alfvén eigenmode due to enhanced damping of nonlinear sidebands

    Science.gov (United States)

    Todo, Y.; Berk, H. L.; Breizman, B. N.

    2012-09-01

    This paper examines nonlinear magneto-hydrodynamic effects on the energetic particle driven toroidal Alfvén eigenmode (TAE) for lower dissipation coefficients and with higher numerical resolution than in the previous simulations (Todo et al 2010 Nucl. Fusion 50 084016). The investigation is focused on a TAE mode with toroidal mode number n = 4. It is demonstrated that the mechanism of mode saturation involves generation of zonal (n = 0) and higher-n (n ⩾ 8) sidebands, and that the sidebands effectively increase the mode damping rate via continuum damping. The n = 0 sideband includes the zonal flow peaks at the TAE gap locations. It is also found that the n = 0 poloidal flow represents a balance between the nonlinear driving force from the n = 4 components and the equilibrium plasma response to the n = 0 fluctuations. The spatial profile of the n = 8 sideband peaks at the n = 8 Alfvén continuum, indicating enhanced dissipation due to continuum damping.

  12. Heat Transfer Enhancement During Water and Hydrocarbon Condensation on Lubricant Infused Surfaces.

    Science.gov (United States)

    Preston, Daniel J; Lu, Zhengmao; Song, Youngsup; Zhao, Yajing; Wilke, Kyle L; Antao, Dion S; Louis, Marcel; Wang, Evelyn N

    2018-01-11

    Vapor condensation is routinely used as an effective means of transferring heat or separating fluids. Dropwise condensation, where discrete droplets form on the condenser surface, offers a potential improvement in heat transfer of up to an order of magnitude compared to filmwise condensation, where a liquid film covers the surface. Low surface tension fluid condensates such as hydrocarbons pose a unique challenge since typical hydrophobic condenser coatings used to promote dropwise condensation of water often do not repel fluids with lower surface tensions. Recent work has shown that lubricant infused surfaces (LIS) can promote droplet formation of hydrocarbons. In this work, we confirm the effectiveness of LIS in promoting dropwise condensation by providing experimental measurements of heat transfer performance during hydrocarbon condensation on a LIS, which enhances heat transfer by ≈450% compared to an uncoated surface. We also explored improvement through removal of noncondensable gases and highlighted a failure mechanism whereby shedding droplets depleted the lubricant over time. Enhanced condensation heat transfer for low surface tension fluids on LIS presents the opportunity for significant energy savings in natural gas processing as well as improvements in thermal management, heating and cooling, and power generation.

  13. Single-phase heat transfer enhancement in micro/minichannels using nanofluids: Theory and applications

    International Nuclear Information System (INIS)

    Hussien, Ahmed A.; Abdullah, Mohd Z.; Al-Nimr, Moh’d A.

    2016-01-01

    Highlights: • Review recent experimental and numerical studies on heat transfer in micro/minichannels and nanofluids. • Display the new applications of using nanofluids and micro/minichannels to enhance thermal performance. • Explain the factors affecting the thermal conductivity enhancement ratio of nanofluids. • The challenges of using the mini/microchannels and nanofluids. - Abstract: New cooling techniques are being explored for the dissipation of heat fluxes. Many recent studies on heat transfer in micro/minichannels (M/MCs) with nanofluids have focused on combining the advantages of both, for the purpose of obtaining higher single-phase enhancement of heat transfer. Developing of many applications such as cooling electronic device, solar cell, and automotive technology is highly demanded now a day to obtain high efficiency and reduce the operating cost. This review article summarizes recent studies, with a focus on two main topics: The first part contains the main concepts such as scaling effects of M/MCs, physical properties and convective heat transfer. The second part displays the main recent applications of M/MCs with nanofluids with the challenges to be widely used. The purpose of this article to provide exhaustive and comprehensive review of updated works published in this new area, with general conclusions.

  14. Surface plasmon enhanced interfacial electron transfer and resonance Raman, surface-enhanced resonance Raman studies of cytochrome C mutants

    Energy Technology Data Exchange (ETDEWEB)

    Zheng, Junwei [Iowa State Univ., Ames, IA (United States)

    1999-11-08

    Surface plasmon resonance was utilized to enhance the electron transfer at silver/solution interfaces. Photoelectrochemical reductions of nitrite, nitrate, and CO2 were studied on electrochemically roughened silver electrode surfaces. The dependence of the photocurrent on photon energy, applied potential and concentration of nitrite demonstrates that the photoelectrochemical reduction proceeds via photoemission process followed by the capture of hydrated electrons. The excitation of plasmon resonances in nanosized metal structures resulted in the enhancement of the photoemission process. In the case of photoelectrocatalytic reduction of CO2, large photoelectrocatalytic effect for the reduction of CO2 was observed in the presence of surface adsorbed methylviologen, which functions as a mediator for the photoexcited electron transfer from silver metal to CO2 in solution. Photoinduced reduction of microperoxidase-11 adsorbed on roughened silver electrode was also observed and attributed to the direct photoejection of free electrons of silver metal. Surface plasmon assisted electron transfer at nanostructured silver particle surfaces was further determined by EPR method.

  15. Co-Transport of Polycyclic Aromatic Hydrocarbons by Motile Microorganisms Leads to Enhanced Mass Transfer under Diffusive Conditions

    DEFF Research Database (Denmark)

    Gilbert, Dorthea; Jakobsen, Hans H.; Winding, Anne

    2014-01-01

    as sink and source for polycyclic aromatic hydrocarbons (PAHs). This resulted in stable concentration gradients in water (>24 h). Adding the model organism Tetrahymena pyriformis to the experimental system enhanced PAH mass transfer up to hundred-fold (benzo[a]pyrene). Increasing mass transfer enhancement...

  16. Thermophysical Properties of Nanoparticle-Enhanced Ionic Liquids (NEILs) Heat-Transfer Fluids

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Visser, Ann E.; Bridges, Nicholas J.; Amoroso, Jake W.

    2013-06-20

    An experimental investigation was completed on nanoparticle enhanced ionic liquid heat transfer fluids as an alternative to conventional organic based heat transfer fluids (HTFs). These nanoparticle-based HTFs have the potential to deliver higher thermal conductivity than the base fluid without a significant increase in viscosity at elevated temperatures. The effect of nanoparticle morphology and chemistry on thermophysical properties was examined. Whisker shaped nanomaterials were found to have the largest thermal conductivity temperature dependence and were also less likely to agglomerate in the base fluid than spherical shaped nanomaterials.

  17. Ülkemizde Transfer Fiyatlandırmasının Yol Açtığı Tahmini Kurumlar Vergisi Kaybı(The Estimated Corporate Tax Loss Due To Transfer Pricing In Our Country

    Directory of Open Access Journals (Sweden)

    Serdar PEHLİVAN

    2010-01-01

    Full Text Available States, though in order to grasp taxable income have created legal infrastructure; with the reason of lack of efficient tax audit, they have been exposed to important tax losses due to transfer pricing.The amount of tax losses due to over invoiced imports and under invoiced exports that are determined as estimation; has shown that tax audit had not been efficient in transfer pricing. In order to minimize corporate tax losses that occured due to transfer pricing, it is required to take precautionary measures oriented in increasing efficiency in tax audit

  18. Quantitative analysis of the improvement in high zoom maritime tracking due to real-time image enhancement

    CSIR Research Space (South Africa)

    Bachoo, AK

    2011-04-01

    Full Text Available This work aims to evaluate the improvement in the performance of tracking small maritime targets due to real-time enhancement of the video streams from high zoom cameras on pan-tilt pedestal. Due to atmospheric conditions these images can frequently...

  19. Fetal muscle gene transfer is not enhanced by an RGD capsid modification to high-capacity adenoviral vectors.

    Science.gov (United States)

    Bilbao, R; Reay, D P; Hughes, T; Biermann, V; Volpers, C; Goldberg, L; Bergelson, J; Kochanek, S; Clemens, P R

    2003-10-01

    High levels of alpha(v) integrin expression by fetal muscle suggested that vector re-targeting to integrins could enhance adenoviral vector-mediated transduction, thereby increasing safety and efficacy of muscle gene transfer in utero. High-capacity adenoviral (HC-Ad) vectors modified by an Arg-Gly-Asp (RGD) peptide motif in the HI loop of the adenoviral fiber (RGD-HC-Ad) have demonstrated efficient gene transfer through binding to alpha(v) integrins. To test integrin targeting of HC-Ad vectors for fetal muscle gene transfer, we compared unmodified and RGD-modified HC-Ad vectors. In vivo, unmodified HC-Ad vector transduced fetal mouse muscle with four-fold higher efficiency compared to RGD-HC-Ad vector. Confirming that the difference was due to muscle cell autonomous factors and not mechanical barriers, transduction of primary myogenic cells isolated from murine fetal muscle in vitro demonstrated a three-fold better transduction by HC-Ad vector than by RGD-HC-Ad vector. We hypothesized that the high expression level of coxsackievirus and adenovirus receptor (CAR), demonstrated in fetal muscle cells both in vitro and in vivo, was the crucial variable influencing the relative transduction efficiencies of HC-Ad and RGD-HC-Ad vectors. To explore this further, we studied transduction by HC-Ad and RGD-HC-Ad vectors in paired cell lines that expressed alpha(v) integrins and differed only by the presence or absence of CAR expression. The results increase our understanding of factors that will be important for retargeting HC-Ad vectors to enhance gene transfer to fetal muscle.

  20. Enhanced heat transfer in partially open square cavities with thin fin by using electric field

    International Nuclear Information System (INIS)

    Kasayapanand, N.; Kiatsiriroat, T.

    2009-01-01

    Numerical modeling of the electric field effect on the natural convection in the partially open square cavities with thin fin attached is investigated. The interactions among electric, flow, and temperature fields are analyzed by using a computational fluid dynamics technique. It is found that the flow and heat transfer enhancements are a decreasing function of the Rayleigh number. Moreover, the volume flow rate and heat transfer coefficient are substantially improved by electrohydrodynamic especially at low aperture size, high aperture position, and high inclined angle. Surprisingly, the maximum convective heat transfer is obtained at the minimum electrical energy consumption by placing electrodes at a suitable position. The optimum electrode arrangements for both single fin and multiple fins are also achieved

  1. Available transfer capability evaluation and enhancement using various FACTS controllers: Special focus on system security

    Directory of Open Access Journals (Sweden)

    M. Venkateswara Rao

    2016-03-01

    Full Text Available Nowadays, because of the deregulation of the power industry the continuous increase of the load increases the necessity of calculation of available transfer capability (ATC of a system to analyze the system security. With this calculation, the scheduling of generator can be decided to decrease the system severity. Further, constructing new transmission lines, new substations are very cost effective to meet the increasing load and to increase the transfer capability. Hence, an alternative way to increase the transfer capability is use of flexible ac transmission system (FACTS controllers. In this paper, SSSC, STACOM and UPFC are considered to show the effect of these controllers in enhancing system ATC. For this, a novel current based modeling and optimal location strategy of these controllers are presented. The proposed methodology is tested on standard IEEE-30 bus and IEEE-57 bus test systems with supporting numerical and graphical results.

  2. Investigation on heat transfer enhancement and pressure loss of double swirl chambers cooling

    Directory of Open Access Journals (Sweden)

    Gang Lin

    2013-09-01

    Full Text Available By merging two standard swirl chambers, an alternative cooling configuration named double swirl chambers (DSC has been developed. In the DSC cooling configuration, the main physical phenomena of the swirl flow in swirl chamber and the advantages of swirl flow in heat transfer augmentation are maintained. Additionally, three new physical phenomena can be found in DSC cooling configuration, which result in a further improvement of the heat transfer: (1 impingement effect has been observed, (2 internal heat exchange has been enhanced between fluids in two swirls, and (3 “∞” shape swirl has been generated because of cross effect between two chambers, which improves the mixing of the fluids. Because of all these improvements, the DSC cooling configuration leads to a higher globally-averaged thermal performance parameter (Nu¯¯/Nu∞/(f/f01/3 than standard swirl chamber. In particular, at the inlet region, the augmentation of the heat transfer is nearly 7.5 times larger than the fully developed non-swirl turbulent flow and the circumferentially averaged Nusselt number coefficient is 41% larger than the standard swirl chamber. Within the present work, a further investigation on the DSC cooling configuration has been focused on the influence of geometry parameters e.g. merging ratio of chambers and aspect ratio of inlet duct on the cooling performance. The results show a very large influence of these geometry parameters in heat transfer enhancement and pressure drop ratio. Compared with the basic configuration of DSC cooling, the improved configuration with 20% to 23% merging ratio shows the highest globally-averaged thermal performance parameter. With the same cross section area in tangential inlet ducts, the DSC cooling channel with larger aspect ratio shows larger heat transfer enhancement and at the same time reduced pressure drop ratio, which results in a better globally-averaged thermal performance parameter.

  3. Charge Transfer Effect on Raman and Surface Enhanced Raman Spectroscopy of Furfural Molecules.

    Science.gov (United States)

    Wan, Fu; Shi, Haiyang; Chen, Weigen; Gu, Zhaoliang; Du, Lingling; Wang, Pinyi; Wang, Jianxin; Huang, Yingzhou

    2017-08-02

    The detection of furfural in transformer oil through surface enhanced Raman spectroscopy (SERS) is one of the most promising online monitoring techniques in the process of transformer aging. In this work, the Raman of individual furfural molecules and SERS of furfural-M x (M = Ag, Au, Cu) complexes are investigated through density functional theory (DFT). In the Raman spectrum of individual furfural molecules, the vibration mode of each Raman peak is figured out, and the deviation from experimental data is analyzed by surface charge distribution. In the SERS of furfural-M x complexes, the influence of atom number and species on SERS chemical enhancement factors (EFs) are studied, and are further analyzed by charge transfer effect. Our studies strengthen the understanding of charge transfer effect in the SERS of furfural molecules, which is important in the online monitoring of the transformer aging process through SERS.

  4. Enhancement of molecular NMR signal induced by polarization transfer from laser-polarized 129Xe

    International Nuclear Information System (INIS)

    Sun Xianping

    2001-01-01

    There is a large non-equilibrium nuclear polarization and a longer relaxation time in the laser-polarized 129 Xe produced by means of optical pumping and spin exchange. The characteristics of the laser-polarized 129 Xe permit the transfer of the polarization to enhance the atomic nuclear spin in liquid, solid and surface of solid molecules. Therefore, the sensitivity in nuclear magnetic resonance measurements for the molecules is enhanced and applications in the investigations of materials and surface sciences are expanded. The progress in the investigations of materials and surface sciences are expanded. The progress in the investigations of the polarization transfer between laser-polarized 129 Xe and the atomic nuclei in the molecules, the relative physics and the measurement of some parameters are introduced

  5. Enhancing heat capacity of colloidal suspension using nanoscale encapsulated phase-change materials for heat transfer.

    Science.gov (United States)

    Hong, Yan; Ding, Shujiang; Wu, Wei; Hu, Jianjun; Voevodin, Andrey A; Gschwender, Lois; Snyder, Ed; Chow, Louis; Su, Ming

    2010-06-01

    This paper describes a new method to enhance the heat-transfer property of a single-phase liquid by adding encapsulated phase-change nanoparticles (nano-PCMs), which absorb thermal energy during solid-liquid phase changes. Silica-encapsulated indium nanoparticles and polymer-encapsulated paraffin (wax) nanoparticles have been made using colloid method, and suspended into poly-alpha-olefin (PAO) and water for potential high- and low-temperature applications, respectively. The shells prevent leakage and agglomeration of molten phase-change materials, and enhance the dielectric properties of indium nanoparticles. The heat-transfer coefficients of PAO containing indium nanoparticles (30% by mass) and water containing paraffin nanoparticles (10% by mass) are 1.6 and 1.75 times higher than those of corresponding single-phase fluids. The structural integrity of encapsulation allows repeated use of such nanoparticles for many cycles in high heat generating devices.

  6. Enhancement of proton transfer in ion channels by membrane phosphate headgroups.

    Science.gov (United States)

    Wyatt, Debra L; de Godoy, Carlos Marcelo G; Cukierman, Samuel

    2009-05-14

    The transfer of protons (H+) in gramicidin (gA) channels is markedly distinct in monoglyceride and phospholipid membranes. In this study, the molecular groups that account for those differences were investigated using a new methodology. The rates of H+ transfer were measured in single gA channels reconstituted in membranes made of plain ceramides or sphingomyelins and compared to those in monoglyceride and phospholipid bilayers. Single-channel conductances to protons (gH) were significantly larger in sphingomyelin than in ceramide membranes. A novel and unsuspected finding was that H+ transfer was heavily attenuated or completely blocked in ceramide (but not in sphingomyelin) membranes in low-ionic-strength solutions. It is reasoned that H-bond dynamics at low ionic strengths between membrane ceramides and gA makes channels dysfunctional. The rate of H+ transfer in gA channels in ceramide membranes is significantly higher than that in monoglyceride bilayers. This suggests that solvation of the hydrophobic surface of gA channels by two acyl chains in ceramides stabilizes the gA channels and the water wire inside the pore, leading to an enhancement of H+ transfer in relation to that occurring in monoglyceride membranes. gH values in gA channels are similar in ceramide and monoglyceride bilayers and in sphingomyelin and phospholipid membranes. It is concluded that phospho headgroups in membranes have significant effects on the rate of H+ transfer at the membrane gA channel/solution interfaces, enhancing the entry and exit rates of protons in channels.

  7. Enhance heat transfer in the channel with V-shaped wavy lower plate using liquid nanofluids

    Directory of Open Access Journals (Sweden)

    Azher M. Abed

    2015-03-01

    Full Text Available The heat transfer and flow characteristics in corrugated with V-shape lower plate using nanofluids are numerically studied. The computations are performed on uniform heat flux over a range of Reynolds number (Re 8000–20,000. The governing equations are numerically solved in the domain by a finite volume method (FVM using the k–ε standard turbulent model. Studies are carried out for different types of nanoparticles Al2O3,CuO, SiO2 and ZnO with different volume fractions in the range of 0–4%. Three different types of base fluid (water, glycerin, ethylene glycol are also examined. Results indicated that the average Nusselt number for nanofluids is greater than that of the base liquid. The SiO2 nanofluid yields the best heat transfer enhancement among all other type of nanofluids. Heat transfer enhancement increase with increases the volumetric concentration, but it is accompanied by increasing pressure drop values. Moreover, the average Nusselt number increases with an increase in Reynolds number and volume concentration. The SiO2–glycerin nanofluid has the highest Nusselt number compared with other base fluids. The present study shows that these V-shaped wavy channels have advantages by using nanofluids and thus serve as promising candidates for incorporation into efficient heat transfer devices.

  8. Three-dimensional numerical study of heat transfer enhancement in separated flows

    Science.gov (United States)

    Kumar, Saurav; Vengadesan, S.

    2017-11-01

    The flow separation appears in a wide range of heat transfer applications and causes poor heat transfer performance. It motivates the study of heat transfer enhancement in laminar as well as turbulent flows over a backward facing step by means of an adiabatic fin mounted on the top wall. Recently, we have studied steady, 2-D numerical simulations in laminar flow and investigated the effect of fin length, location, and orientation. It revealed that the addition of fin causes enhancement of heat transfer and it is very effective to control the flow and thermal behavior. The fin is most effective and sensitive when it is placed exactly above the step. A slight displacement of the fin in upstream of the step causes the complete change of flow and thermal behavior. Based on the obtained 2-D results it is interesting to investigate the side wall effect in three-dimensional simulations. The comparison of two-dimensional and three-dimensional numerical simulations with the available experimental results will be presented. Special attention has to be given to capture unsteadiness in the flow and thermal field.

  9. Microscale Enhancement of Heat and Mass Transfer for Hydrogen Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Drost, Kevin [Oregon State Univ., Corvallis, OR (United States); Jovanovic, Goran [Oregon State Univ., Corvallis, OR (United States); Paul, Brian [Oregon State Univ., Corvallis, OR (United States)

    2015-09-30

    The document summarized the technical progress associated with OSU’s involvement in the Hydrogen Storage Engineering Center of Excellence. OSU focused on the development of microscale enhancement technologies for improving heat and mass transfer in automotive hydrogen storage systems. OSU’s key contributions included the development of an extremely compact microchannel combustion system for discharging hydrogen storage systems and a thermal management system for adsorption based hydrogen storage using microchannel cooling (the Modular Adsorption Tank Insert or MATI).

  10. Enhancement of heat transfer. The performance of micro-fin tubes

    International Nuclear Information System (INIS)

    Muzzio, A.

    2001-01-01

    Micro-fin tubes are characterised by numerous, very small integral fins that spiral down the inner surface. A very interesting feature of their performance in flow boiling and condensation is a large heat transfer enhancement accompanied by a low pressure drop penalty. This paper presents a general overview of micro-fin tubes and of their performance in evaporation, condensation and single-phase flow [it

  11. Experimental investigation on flow and heat transfer for cooling flush-mounted ribbons in a channel: Application of an EHD active enhancement method

    Directory of Open Access Journals (Sweden)

    Alami Nia Amin

    2016-01-01

    Full Text Available In the present study, the heat transfer enhancement of a bundle of flush-mounted ribbons placed on the floor of a rectangular duct was investigated experimentally. The flush-mounted ribbons act as heat sources and the cooling happens with air. The air flow was two-dimensional, steady, viscous and incompressible under either laminar (500 ≤ ReDh < 2000 and turbulent (2000 ≤ Re Dh ≤ 4500 conditions. The hydrodynamics and heat transfer behavior of the air flow was studied by means of an active method with application of corona wind. The state of the art of this work revolves around an experimental investigation of an EHD1 active method and heat transfer enhancement from the surfaces of the flush- mounted ribbons. Due to the intricacies of the required experiment, a special apparatus needed to be designed and constructed.

  12. Passive noise control by enhancing aeroacoustic interference due to structural discontinuities in close proximity

    Science.gov (United States)

    Leung, R. C. K.; So, R. M. C.; Tang, S. K.; Wang, X. Q.

    2011-07-01

    In-duct devices are commonly installed in flow ducts for various flow management purposes. The structural construction of these devices indispensably creates disruption to smooth flow through duct passages so they exist as structural discontinuities in duct flow. The presence of these discontinuities provides additional possibility of noise generation. In real practice, in-duct devices do not exist alone in any duct system. Even though each in-duct device would generate its own noise, it might be possible that these devices could be properly arranged so as to strengthen the interference between individual noise; thus giving rise to an overall reduction of noise radiation in the in-duct far field. This concept of passive noise control is investigated by considering different configurations of two structural discontinuities of simple form (i.e., a cavity) in tandem in an unconfined flow and in opposing setting within a flow duct. It is known that noise generated by a cavity in unconfined domain (unconfined cavity) is strongly dependent on flow-resonant behavior within the cavity so the interference it produces is merely aeroacoustic. The objective of the present study is to verify the concept of passive noise reduction through enhancement of aeroacoustic interference due to two cavities by considering laminar flow only. A two-dimensional approach is adopted for the direct aeroacoustic calculations using a direct numerical simulation (DNS) technique. The position and geometries of the cavities and the Mach number are varied; the resultant aeroacoustic behavior and acoustic power are calculated. The numerical results are compared with a single cavity case to highlight the effect of introducing additional cavities to the aeroacoustic problem. Resonant flow oscillations occur when two unconfined cavities are very close and the associated acoustic field is very intense with no noise reduction possible. However, for duct aeroacoustics, it is found that a 7.9 db reduction

  13. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    International Nuclear Information System (INIS)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT + colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references

  14. Ionizing and ultraviolet radiation enhances the efficiency of DNA mediated gene transfer in vitro

    Energy Technology Data Exchange (ETDEWEB)

    Perez, C.F.

    1984-08-01

    The enhancement effects of ionizing and non-ionizing radiation on the efficiency of DNA mediated gene transfer were studied. Confluent Rat-2 cells were transfected with purified SV40 viral DNA, irradiated with either X-rays or ultraviolet, trypsinized, plated, and assayed for the formation of foci on Rat-2 monolayers. Both ionizing and ultraviolet radiation enhanced the frequency of A-gene transformants/survivor compared to unirradiated transfected cells. These enhancements were non-linear and dose dependent. A recombinant plasmid, pOT-TK5, was constructed that contained the SV40 virus A-gene and the Herpes Simplex virus (HSV) thymidine kinase (TK) gene. Confluent Rat-2 cells transfected with pOT-TK5 DNA and then immediately irradiated with either X-rays or 330 MeV/amu argon particles at the Berkeley Bevalac showed a higher frequency of HAT/sup +/ colonies/survivor than unirradiated transfected cells. Rat-2 cells transfected with the plasmid, pTK2, containing only the HSV TK-gene were enhanced for TK-transformation by both X-rays and ultraviolet radiation. The results demonstrate that radiation enhancement of the efficiency of DNA mediated gene transfer is not explained by increased nuclear uptake of the transfected DNA. Radiation increases the competence of the transfected cell population for genetic transformation. Three models for this increased competence are presented. The targeted integration model, the inducible recombination model, the partition model, and the utilization of DNA mediated gene transfer for DNA repair studies are discussed. 465 references.

  15. SU-F-T-24: Impact of Source Position and Dose Distribution Due to Curvature of HDR Transfer Tubes

    Energy Technology Data Exchange (ETDEWEB)

    Khan, A; Yue, N [Rutgers University, New Brunswick, NJ (United States)

    2016-06-15

    Purpose: Brachytherapy is a highly targeted from of radiotherapy. While this may lead to ideal dose distributions on the treatment planning system, a small error in source location can lead to change in the dose distribution. The purpose of this study is to quantify the impact on source position error due to curvature of the transfer tubes and the impact this may have on the dose distribution. Methods: Since the source travels along the midline of the tube, an estimate of the positioning error for various angles of curvature was determined using geometric properties of the tube. Based on the range of values a specific shift was chosen to alter the treatment plans for a number of cervical cancer patients who had undergone HDR brachytherapy boost using tandem and ovoids. Impact of dose to target and organs at risk were determined and checked against guidelines outlined by radiation oncologist. Results: The estimate of the positioning error was 2mm short of the expected position (the curved tube can only cause the source to not reach as far as with a flat tube). Quantitative impact on the dose distribution is still in the process of being analyzed. Conclusion: The accepted positioning tolerance for the source position of a HDR brachytherapy unit is plus or minus 1mm. If there is an additional 2mm discrepancy due to tube curvature, this can result in a source being 1mm to 3mm short of the expected location. While we do always attempt to keep the tubes straight, in some cases such as with tandem and ovoids, the tandem connector does not extend as far out from the patient so the ovoid tubes always contain some degree of curvature. The dose impact of this may be significant.

  16. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance

    Science.gov (United States)

    Sadeghi, S.; Hamidi, S. M.

    2018-04-01

    Enhanced Faraday rotation in a new type of magneto-plasmonic structure with the capability of Fano resonance, has been reported theoretically. A magneto-plasmonic structure composed of a gold corrugated layer deposited on a magneto-optically active layer was studied by means of Lumerical software based on finite-difference time-domain. In our proposed structure, plasmonic Fano resonance and localized surface plasmon have induced enhancement in magneto-optical Faraday rotation. It is shown that the influence of geometrical parameters in gold layer offers a desirable platform for engineering spectral position of Fano resonance and enhancement of Faraday rotation.

  17. Enhancement of the incoherent scattering plasma lines due to precipitating protons and secondary electrons

    International Nuclear Information System (INIS)

    Bjoernaa, N.; Havnes, O.; Jensen, J.O.; Trulsen, J.

    1982-01-01

    Precipitating protons in the energy range 1-100 keV are regularly present in the auroral ionosphere. These protons will produce enhancements in the intensity of the upshifted plasma line of the incoherently scattered spectrum. Similarly, secondary electrons produced by the precipitating protons give rise to enhanced plasma line intensities. For a quantitative discussion of these effects an experimentally measured proton flux is adapted and the corresponding secondary electron flux calculated. These particle fluxes are then applied in connection with the EISCAT radar facility. Both fluxes give rise to enhancements of the order of 20. It is possible to separate between proton and electron contributions to the enhanced plasma lines for scattering heights above the source region of secondary electrons. (Auth.)

  18. Enhancement of D-T reaction rate due to D-T contact

    International Nuclear Information System (INIS)

    Hitoki, Shigehisa; Ogasawara, Masatada; Aono, Osamu.

    1979-09-01

    The reaction rate that is appropriate for magnetized nonuniform plasma is numerically calculated to investigate the enhancement of the D-T reaction rate. Spatial separation of the guiding center distributions of D and T enhances the reaction rate. Cases of several guiding center configurations are investigated. The largest enhancement is obtained, when both guiding center distributions are delta-functions which are separated by a length that corresponds to the Gamow peak energy. As compared with the case of no separation of D and T, the maximum enhancing factors obtained are 2.3 for total reaction rate and 1.6 for local reaction rate. Cases of the guiding center distributions with finite widths are also investigated. (author)

  19. Transfer

    DEFF Research Database (Denmark)

    Wahlgren, Bjarne; Aarkrog, Vibe

    Bogen er den første samlede indføring i transfer på dansk. Transfer kan anvendes som praksis-filosofikum. Den giver en systematisk indsigt til den studerende, der spørger: Hvordan kan teoretisk viden bruges til at reflektere over handlinger i situationer, der passer til min fremtidige arbejdsplads?...

  20. Heat transfer enhancement in a tube using circular cross sectional rings separated from wall

    International Nuclear Information System (INIS)

    Ozceyhan, Veysel; Gunes, Sibel; Buyukalaca, Orhan; Altuntop, Necdet

    2008-01-01

    A numerical study was undertaken for investigating the heat transfer enhancement in a tube with the circular cross sectional rings. The rings were inserted near the tube wall. Five different spacings between the rings were considered as p = d/2, p = d, p = 3d/2, p = 2d and p = 3d. Uniform heat flux was applied to the external surface of the tube and air was selected as working fluid. Numerical calculations were performed with FLUENT 6.1.22 code, in the range of Reynolds number 4475-43725. The results obtained from a smooth tube were compared with those from the studies in literature in order to validate the numerical method. Consequently, the variation of Nusselt number, friction factor and overall enhancement ratios for the tube with rings were presented and the best overall enhancement of 18% was achieved for Re = 15,600 for which the spacing between the rings is 3d

  1. Wettability Investigations and Wet Transfer Enhancement of Large-Area CVD-Graphene on Aluminum Nitride.

    Science.gov (United States)

    Knapp, Marius; Hoffmann, René; Cimalla, Volker; Ambacher, Oliver

    2017-08-18

    The two-dimensional and virtually massless character of graphene attracts great interest for radio frequency devices, such as surface and bulk acoustic wave resonators. Due to its good electric conductivity, graphene might be an alternative as a virtually massless electrode by improving resonator performance regarding mass-loading effects . We report on an optimization of the commonly used wet transfer technique for large-area graphene, grown via chemical vapor deposition, onto aluminum nitride (AlN), which is mainly used as an active, piezoelectric material for acoustic devices. Today, graphene wet transfer is well-engineered for silicon dioxide (SiO₂). Investigations on AlN substrates reveal highly different surface properties compared to SiO₂ regarding wettability, which strongly influences the quality of transferred graphene monolayers. Both physical and chemical effects of a plasma treatment of AlN surfaces change wettability and avoid large-scale cracks in the transferred graphene sheet during desiccation. Spatially-resolved Raman spectroscopy reveals a strong strain and doping dependence on AlN plasma pretreatments correlating with the electrical conductivity of graphene. In our work, we achieved transferred crack-free large-area (40 × 40 mm²) graphene monolayers with sheet resistances down to 350 Ω/sq. These achievements make graphene more powerful as an eco-friendly and cheaper replacement for conventional electrode materials used in radio frequency resonator devices.

  2. Enhancement of heat transfer from a continuously moving porous fin exposed in convective–radiative environment

    International Nuclear Information System (INIS)

    Bhanja, Dipankar; Kundu, Balaram; Aziz, Abdul

    2014-01-01

    Highlights: • Analytical model for thermal analysis of moving porous fins. • Heat transfer from the fin surface due to convection and radiation. • For practical design aspects, optimization analysis was carried out. • Comparative study was made between the solid and porous moving fins. • Porous moving fin has more heat transfer ability than the stationary fin. - Abstract: In the present article, an exercise has been devoted to establish an analytical model for the determination of temperature distribution, fin efficiency and optimum design parameters of a porous moving fin which is losing heat by simultaneous convection and radiation to its surroundings. For the adaptation of this consideration, the governing equation becomes highly nonlinear. An analytical technique called Adomian decomposition method (ADM) is proposed for the solution methodology. The accuracy of the analytic solution is validated by using a numeric scheme called finite difference method. The results indicate that the numerical data and analytical approach are in agreement with each other. As the present study is an analytic, it is extended to the analysis for determination of optimum dimensions of said fin by satisfying either the maximization of rate of heat transfer for a given fin volume or by the minimization of fin volume for a desired heat transfer rate. The study is further extended to the porous fin in stationary condition and it is found that porous fin in moving condition transfers more heat than stationary condition. Investigation has also been made on solid moving fin to compare the outcomes of these parameters

  3. Transfer of test-enhanced learning: Meta-analytic review and synthesis.

    Science.gov (United States)

    Pan, Steven C; Rickard, Timothy C

    2018-05-07

    Attempting recall of information from memory, as occurs when taking a practice test, is one of the most potent training techniques known to learning science. However, does testing yield learning that transfers to different contexts? In the present article, we report the findings of the first comprehensive meta-analytic review into that question. Our review encompassed 192 transfer effect sizes extracted from 122 experiments and 67 published and unpublished articles (N = 10,382) that together comprise more than 40 years of research. A random-effects model revealed that testing can yield transferrable learning as measured relative to a nontesting reexposure control condition (d = 0.40, 95% CI [0.31, 0.50]). That transfer of learning is greatest across test formats, to application and inference questions, to problems involving medical diagnoses, and to mediator and related word cues; it is weakest to rearranged stimulus-response items, to untested materials seen during initial study, and to problems involving worked examples. Moderator analyses further indicated that response congruency and elaborated retrieval practice, as well as initial test performance, strongly influence the likelihood of positive transfer. In two assessments for publication bias using PET-PEESE and various selection methods, the moderator effect sizes were minimally affected. However, the intercept predictions were substantially reduced, often indicating no positive transfer when none of the aforementioned moderators are present. Overall, our results motivate a three-factor framework for transfer of test-enhanced learning and have practical implications for the effective use of practice testing in educational and other training contexts. (PsycINFO Database Record (c) 2018 APA, all rights reserved).

  4. Addison's disease due to adrenal tuberculosis: Contrast-enhanced CT features and clinical duration correlation

    International Nuclear Information System (INIS)

    Guo Yingkun; Yang Zhigang; Li Yuan; Ma Ensen; Deng Yuping; Min Pengqiu; Yin Longlin; Hu Jian; Zhang Xiaochun; Chen Tianwu

    2007-01-01

    Purpose: To describe CT morphology of untreated adrenal tuberculosis during the different stages of the natural history of the disease and to evaluate the diagnostic implications of CT features. Materials and methods: We retrospectively evaluated CT features in 42 patients with documented adrenal tuberculosis for the location, size, morphology, and enhancement patterns shown on CT images. The clinical duration were correlated with the CT features. Results: Of the 42 patients with untreated adrenal tuberculosis, bilaterally enlarged adrenal glands were revealed in 38 cases (91%), unilaterally enlarged in 3 cases (7%), and normal size in 1 case (2%). Of the 41 cases (98%) with enlargement, mass-like enlargement was seen in 20 cases (49%) and enlargement with preserved contours in 21 cases (51%). Peripheral rim enhancement presented in 22 cases (52%) on contrast-enhanced CT. Non-enhanced CT scan revealed calcification in 21 cases (50%). As the duration of Addison's disease increased, the presence of calcification and contour preservation increased concomitantly (p < 0.001), whereas peripheral rim enhancement and mass-like enlargement decreased concomitantly on CT images (p < 0.001). Conclusion: CT may be helpful in diagnosing adrenal tuberculosis when clinically suspected, and CT features are correlated to the clinical duration of Addison's disease

  5. Enhancement of turbulent flow heat transfer in a tube with modified twisted tapes

    Energy Technology Data Exchange (ETDEWEB)

    Lei, Y.G.; Zhao, C.H.; Song, C.F. [College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan (China)

    2012-12-15

    Numerical simulations were performed to study the fluid flow and heat transfer in a tube with staggered twisted tapes with central holes. In the range of Reynolds numbers between 6000 and 28 000, the modified twisted tapes increased the Nusselt number by 76.2 {proportional_to} 149.7 % and the friction factor by 380.2 {proportional_to} 443.8 % compared to the smooth tube. Compared to the typical twisted tapes, the modified twisted tapes produced an acceleration flow through the triangle regions leading to the enhancement of heat transfer, and the holes in the modified tapes reduced the severe pressure loss. It was found that the modified twisted tapes decreased the friction factor by 8.0 {proportional_to} 16.1 % and enhanced the heat transfer by 34.1 {proportional_to} 46.8 % in comparison with the typical tapes. These results indicated that the performance ratio values of the tube with modified twisted tapes were higher than 1.0 in the range of Reynolds numbers studied. The computed performance ratios of the tube with modified twisted tapes were much higher than those of the tube with typical twisted tapes. This means that the integrated performance of the tube with staggered twisted tapes with central holes is superior to that of the tube with typical twisted tapes. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  6. Enhancement of mass transfer by ultrasound: Application to adsorbent regeneration and food drying/dehydration.

    Science.gov (United States)

    Yao, Ye

    2016-07-01

    The physical mechanisms of heat and mass transfer enhancement by ultrasound have been identified by people. Basically, the effect of 'cavitation' induced by ultrasound is the main reason for the enhancement of heat and mass transfer in a liquid environment, and the acoustic streaming and vibration are the main reasons for that in a gaseous environment. The adsorbent regeneration and food drying/dehydration are typical heat and mass transfer process, and the intensification of the two processes by ultrasound is of complete feasibility. This paper makes an overview on recent studies regarding applications of power ultrasound to adsorbent regeneration and food drying/dehydration. The concerned adsorbents include desiccant materials (typically like silica gel) for air dehumidification and other ones (typically active carbon and polymeric resin) for water treatment. The applications of ultrasound in the regeneration of these adsorbents have been proved to be energy saving. The concerned foods are mostly fruits and vegetables. Although the ultrasonic treatment may cause food degradation or nutrient loss, it can greatly reduce the food processing time and decrease drying temperature. From the literature, it can be seen that the ultrasonic conditions (i.e., acoustic frequency and power levels) are always focused on during the study of ultrasonic applications. The increasing number of relevant studies argues that ultrasound is a very promising technology applied to the adsorbent regeneration and food drying/dehydration. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. Effects of properties variations of Al2O3-EG-water nanofluid on natural convection heat transfer in a two-dimensional enclosure: Enhancement or deterioration?

    Science.gov (United States)

    Khorasanizadeh, H.; Fakhari, M. M.; Ghaffari, S. P.

    2015-05-01

    Heat transfer enhancement or deterioration of variable properties Al2O3-EG-water nanofluid natural convection in a differentially heated rectangular cavity has been investigated numerically. A finite volume approach has been utilized to solve the governing equations for a Newtonian fluid. The influences of the pertinent parameters such as Rayleigh number, Ra, in the range of 103-107 and nanoparticles volume fraction from 0 to 0.04 have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra = 103, for which conduction heat transfer is dominant, the average Nusselt number increases as nanoparticles volume fraction increases, but contradictory with the constant properties cases it decreases for higher Ra values. This reduction, which is associated with the increased viscosity, is more severe at Ra = 104 and the least deterioration in heat transfer occurs for Ra = 107. This is due to the fact that the Brownian motion enhances as Ra increases; thus at Ra = 107 the improved conductivity becomes more important than viscosity enhancement. To clarify the contradictory reports existing in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, a scale analysis performed showed that unlike methods of evaluating the base fluid Ra have led to such differences.

  8. Plant nodulation inducers enhance horizontal gene transfer of Azorhizobium caulinodans symbiosis island.

    Science.gov (United States)

    Ling, Jun; Wang, Hui; Wu, Ping; Li, Tao; Tang, Yu; Naseer, Nawar; Zheng, Huiming; Masson-Boivin, Catherine; Zhong, Zengtao; Zhu, Jun

    2016-11-29

    Horizontal gene transfer (HGT) of genomic islands is a driving force of bacterial evolution. Many pathogens and symbionts use this mechanism to spread mobile genetic elements that carry genes important for interaction with their eukaryotic hosts. However, the role of the host in this process remains unclear. Here, we show that plant compounds inducing the nodulation process in the rhizobium-legume mutualistic symbiosis also enhance the transfer of symbiosis islands. We demonstrate that the symbiosis island of the Sesbania rostrata symbiont, Azorhizobium caulinodans, is an 87.6-kb integrative and conjugative element (ICE Ac ) that is able to excise, form a circular DNA, and conjugatively transfer to a specific site of gly-tRNA gene of other rhizobial genera, expanding their host range. The HGT frequency was significantly increased in the rhizosphere. An ICE Ac -located LysR-family transcriptional regulatory protein AhaR triggered the HGT process in response to plant flavonoids that induce the expression of nodulation genes through another LysR-type protein, NodD. Our study suggests that rhizobia may sense rhizosphere environments and transfer their symbiosis gene contents to other genera of rhizobia, thereby broadening rhizobial host-range specificity.

  9. Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect

    KAUST Repository

    Bisig, André

    2017-01-04

    We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.

  10. Enhancement of Continuous Variable Entanglement in Four-Wave Mixing due to Atomic Memory Effects

    International Nuclear Information System (INIS)

    Yu-Zhu, Zhu; Xiang-Ming, Hu; Fei, Wang; Jing-Yan, Li

    2010-01-01

    We explore the effects of atomic memory on quantum correlations of two-mode light fields from four-wave mixing. A three-level atomic system in Λ configuration is considered, in which the atomic relaxation times are comparable to or longer than the cavity relaxation times and thus there exists the atomic memory. The quantum correlation spectrum in the output is calculated without the adiabatic elimination of atomic variables. It is shown that the continuous variable entanglement is enhanced over a wide range of the normalized detuning in the intermediate and bad cavity cases compared with the good cavity case. In some situations more significant enhancement occurs at sidebands

  11. Enhanced Nonadiabaticity in Vortex Cores due to the Emergent Hall Effect

    KAUST Repository

    Bisig, André ; Akosa, Collins Ashu; Moon, Jung-Hwan; Rhensius, Jan; Moutafis, Christoforos; von Bieren, Arndt; Heidler, Jakoba; Kiliani, Gillian; Kammerer, Matthias; Curcic, Michael; Weigand, Markus; Tyliszczak, Tolek; Van Waeyenberge, Bartel; Stoll, Hermann; Schü tz, Gisela; Lee, Kyung-Jin; Manchon, Aurelien; Klä ui, Mathias

    2017-01-01

    We present a combined theoretical and experimental study, investigating the origin of the enhanced nonadiabaticity of magnetic vortex cores. Scanning transmission x-ray microscopy is used to image the vortex core gyration dynamically to measure the nonadiabaticity with high precision, including a high confidence upper bound. We show theoretically, that the large nonadiabaticity parameter observed experimentally can be explained by the presence of local spin currents arising from a texture induced emergent Hall effect. This study demonstrates that the magnetic damping α and nonadiabaticity parameter β are very sensitive to the topology of the magnetic textures, resulting in an enhanced ratio (β/α>1) in magnetic vortex cores or Skyrmions.

  12. Local processing enhancements associated with superior observational drawing are due to enhanced perceptual functioning, not weak central coherence.

    Science.gov (United States)

    Chamberlain, Rebecca; McManus, I C; Riley, Howard; Rankin, Qona; Brunswick, Nicola

    2013-01-01

    Individuals with drawing talent have previously been shown to exhibit enhanced local visual processing ability. The aim of the current study was to assess whether local processing biases associated with drawing ability result from a reduced ability to cohere local stimuli into global forms, or an increased ability to disregard global aspects of an image. Local and global visual processing ability was assessed in art students and controls using the Group Embedded Figures Task, Navon shape stimuli, the Block Design Task and the Autism Spectrum Quotient, whilst controlling for nonverbal IQ and artistic ability. Local processing biases associated with drawing appear to arise from an enhancement of local processing alongside successful filtering of global information, rather than a reduction in global processing. The relationship between local processing and drawing ability is independent of individual differences in nonverbal IQ and artistic ability. These findings have implications for bottom-up and attentional theories of observational drawing, as well as explanations of special skills in autism.

  13. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo.

    Science.gov (United States)

    Hirt, Helmut; Greenwood-Quaintance, Kerryl E; Karau, Melissa J; Till, Lisa M; Kashyap, Purna C; Patel, Robin; Dunny, Gary M

    2018-02-13

    not examine how the enterococcal sex pheromone response impacts the efficiency of transfer. Our study demonstrates for the first time pheromone-enhanced, high-frequency plasmid transfer of E. faecalis plasmid pCF10 in a mouse model in the absence of antibiotic or bacteriocin selection. Pheromone production by recipients dramatically increased plasmid transfer in germfree mice colonized initially with recipients, followed by donors. The presence of a coresident community of common gut microbes did not significantly reduce in vivo plasmid transfer between enterococcal donors and recipients. In mice colonized with enterococcal recipients, we detected plasmid transfer in the intestinal tract within 5 h of addition of donors, before transconjugants could be cultured from feces. Surprisingly, pCF10 carriage provided a competitive fitness advantage unrelated to antibiotic resistance or bacteriocin production. Copyright © 2018 Hirt et al.

  14. Enhanced Shear-induced Platelet Aggregation Due to Low-temperature Storage

    Science.gov (United States)

    2013-07-01

    Grewal PK, Wandall HH, Josefsson EC, Sorensen AL, Larson G, Marth JD, Hartwig JH, Hoffmeister KM. Dual roles for hepatic lectin receptors in the clearance ...PLT aggregation due to low temperature storage may be a beneficial strategy to prevent severe bleeding in trauma . P latelets (PLTs) are transfused to...prevent bleed- ing due to thrombocytopenia associated with hematologic malignancies or to manage severe blood loss during surgery or trauma . PLTs are

  15. Heat transfer enhancement induced by electrically generated convection in a plane layer of dielectric liquid

    International Nuclear Information System (INIS)

    Traoré, P; Wu, J; Romat, H; Louste, C; Perez, A; Koulova, D

    2012-01-01

    The electro-thermo-convective motion in a plane horizontal dielectric liquid layer subjected to simultaneous action of electric field and thermal gradient is numerically investigated. We consider the case of a strong unipolar charge injection C = 10 from above or below. Therefore in this context, we only take into account the Coulomb force, disregarding the dielectric one. The effect of the electric field on the heat transfer is analyzed through the characterization of the time history of the Nusselt number as well as its evolution according to the characteristic dimensionless electric parameter T. It is demonstrated that the electric effects dominate the buoyancy ones resulting in an electrically induced convection which significantly enhance the heat transfer.

  16. Heat transfer enhancement in a convective field by applying ionic wind

    International Nuclear Information System (INIS)

    Tada, Y.; Takimoto, A.; Hayashi, Y.

    1991-01-01

    This paper reports that this study has been conducted to pursue the heat transfer enhancement in a convective field by applying electric field. Firstly, aimed at thinning boundary layer, swirl motions were caused by utilizing the ionic wind in a channel flow with parallel wire-electrode arrangement. Secondly, ionic wind was induced at right angle to the primary flow at regular intervals by using cross wire-electrode arrangement. Thirdly, to utilize the dynamical effect of adding particles under the Coulomb force, electric field was applied to gas-solid suspensions flow field. On the basis of these results, fundamental characteristics of the combined flow structure and the heat transfer in the EHD field were clarified, and the possibility of the practical application will be insighted

  17. Resonant enhanced parallel-T topology for weak coupling wireless power transfer pickup applications

    Directory of Open Access Journals (Sweden)

    Yao Guo

    2015-07-01

    Full Text Available For the wireless power transfer (WPT system, the transfer performance and the coupling coefficient are contradictory. In this paper, a novel parallel-T resonant topology consists of a traditional parallel circuit and a T-matching network for secondary side is proposed. With this method, a boosted voltage can be output to the load, since this topology has a resonant enhancement effect, and high Q value can be obtained at a low resonant frequency and low coil inductance. This feature makes it more suitable for weak coupling WPT applications. Besides, the proposed topology shows good frequency stability and adaptability to variations of load. Experimental results show that the output voltage gain improves by 757% compared with traditional series circuit, and reaches 85% total efficiency when the coupling coefficient is 0.046.

  18. Heat transfer enhancement in cross-flow heat exchanger using vortex generator

    International Nuclear Information System (INIS)

    Yoo, S. Y.; Kwon, H. K.; Kim, B. C.; Park, D. S.; Lee, S. S.

    2003-01-01

    Fouling is very serious problem in heat exchanger because it rapidly deteriorates the performance of heat exchanger. Cross-flow heat exchanger with vortex generators is developed, which enhance heat transfer and reduce fouling. In the present heat exchanger, shell and baffle are removed from the conventional shell-and-tube heat exchanger. The naphthalene sublimation technique is employed to measure the local heat transfer coefficients. The experiments are performed for single circular tube, staggered array tube bank and in-line array tube bank with and without vortex generators. Local and average Nusselt numbers of single tube and tube bank with vortex generator are investigated and compared to those of without vortex generator

  19. Natural convection heat transfer enhancement using Microencapsulated Phase-Change-Material slurries

    International Nuclear Information System (INIS)

    Kubo, Shinji; Akino, Norio; Tanaka, Amane; Nakano, Fumihiko; Nagashima, Akira.

    1997-01-01

    The present study investigates natural convection heat transfer from a heated cylinder cooled by a water slurry of Microencapsulated Phase Change Material (MCPCM). A normal paraffin hydrocarbon with carbon number of 18 and melting point of 27.9degC, is microencapsulated by Melamine resin into particles of which average diameter is 9.5μm and specific weight is same as water. The slurry of the MCPCM and water is put into a test apparatus, which is a rectangular enclosure with a heated horizontal cylinder. As the concentrations of PCM in the slurry are changed in 1,3 and 5%, the heat transfer coefficients of the cylinder are larger than that of water as working fluid, by 3,20 and 35% enhancements respectively. (author)

  20. Enhancement of pool boiling heat transfer in water using sintered copper microporous coatings

    Energy Technology Data Exchange (ETDEWEB)

    Jun, Seong Chul; KIm, Jin Sub; You, Seung M. [Dept. of Mechanical Engineering, The University of Texas at Dallas, Richardson (United States); Son, Dong Gun; KIm, Hwan Yeol [Korea Atomic Energy Research Institute, Daejeon (Korea, Republic of)

    2016-08-15

    Pool boiling heat transfer of water saturated at atmospheric pressure was investigated experimentally on Cu surfaces with high-temperature, thermally-conductive, microporous coatings (HTCMC). The coatings were created by sintering Cu powders on Cu surfaces in a nitrogen gas environment. A parametric study of the effects of particle size and coating thickness was conducted using three average particle sizes (APSs) of 10 μm, 25 μm, and 67 μm and various coating thicknesses. It was found that nucleate boiling heat transfer (NBHT) and critical heat flux (CHF) were enhanced significantly for sintered microporous coatings. This is believed to have resulted from the random porous structures that appear to include reentrant type cavities. The maximum NBHT coefficient was measured to be approximately 400 kW/m2k with APS 67 μm and 296 μm coating thicknesses. This value is approximately eight times higher than that of a plain Cu surface. The maximum CHF observed was 2.1 MW/m2 at APS 67 μm and 428 μm coating thicknesses, which is approximately double the CHF of a plain Cu surface. The enhancement of NBHT and CHF appeared to increase as the particle size increased in the tested range. However, two larger particle sizes (25 μm and 67 μm) showed a similar level of enhancement.

  1. Examining factors affecting beginning teachers' transfer of learning of ICT-enhanced learning activities in their teaching practice

    NARCIS (Netherlands)

    Agyei, D.D.; Voogt, J.

    2014-01-01

    This study examined 100 beginning teachers’ transfer of learning when utilising Information Communication Technology-enhanced activity-based learning activities. The beginning teachers had participated in a professional development program that was characterised by ‘learning technology by

  2. An experimental investigation of heat transfer enhancement in minichannel: Combination of nanofluid and micro fin structure techniques

    DEFF Research Database (Denmark)

    Zhang, Ji; Diao, Yanhua; Zhao, Yaohua

    2017-01-01

    This work experimentally studied the single-phase heat transfer and pressure drop characteristics by using two heat transfer enhancement techniques (micro fin structure and nanofluids) in multiport minichannel flat tube (MMFT). MMFT consisted of numerous parallel rectangular minichannels...... and is widely used in industry as the heat transfer unit of a heat exchanger. Firstly, the enhanced heat transfer performances by individually using one enhancement technique were investigated by testing Nusselt number, friction factor and performance evaluation criterion (PEC). In this section, five MMFTs...... with different micro fin numbers (N = 0, 1, 2, 3 and 4) and nanofluids with three volume concentrations (φ = 0.005%, 0.01% and 0.1%) were used as test sections and working fluids respectively. Secondly, the experiments using two combined enhancement technique were performed. By using conjunctively two...

  3. Enhancement of nuclear heat transfer in a typical pressurized water reactor by new spacer grids

    International Nuclear Information System (INIS)

    Nazifi, M.; Nematollahi, M.

    2007-01-01

    The fuel element geometry typically used in nuclear reactor is rod bundle whose rod-to-rod clearance is maintained by grid spacer. The heat generated in the rod by nuclear reaction is removed by coolant, usually in turbulent flow. The coolant moves axially through the subchannels. Fuel spacer grid affects the coolant flow distribution in a fuel rod bundle, and so spacer geometry has a strong influence on a bundle's thermal-hydraulic characteristics such as critical heat flux and pressure drop. An understanding of the detailed structure of the turbulent flow and heat transfer in the rod bundle, used especially as nuclear fuel elements, is of major interest to the nuclear power industry for their safe and reliable operation. The flow mixing devices on grid spacer would enhance the mixing rate between sub-channels and promote the turbulence in subchannel. The present study evaluates the effects of mixing vane shape on flow structure and heat transfer downstream of mixing vane in a sub-channel of fuel assembly, by obtaining velocity and pressure fields, turbulent intensity, flow mixing factors, heat transfer coefficient and friction factor using three-dimensional RANS analysis. Six new shapes mixing vane designed by the authors, are simulated numerically to evaluate the performance in enhancing the heat transfer, in comparison with commercialized split vane. Standard K-epsilon model are used as a turbulence closure model and periodic and symmetry condition are set as boundary conditions. The capability of the model to predict the coolant flow distribution inside rod bundles is shown and discussed on the base of comparison with experimental data for a variety of geometrical and Reynolds number conditions. It is conformed that the turbulence in the sub-channel was significantly promoted by spacer and mixing devices but rapidly decreased to a fully developed level approximately 10 time of hydraulic diameter downstream of the top of spacer. Ring type mixer showed a high

  4. Dissolved organic carbon enhances the mass transfer of hydrophobic organic compounds from Nonaqueous Phase Liquids (NAPLs) into the aqueous phase

    NARCIS (Netherlands)

    Smith, K.E.C.; Thullner, M.; Wick, L.Y.; Harms, H.

    2011-01-01

    The hypothesis that dissolved organic carbon (DOC) enhances the mass transfer of hydrophobic organic compounds from nonaqueous phase liquids (NAPLs) into the aqueous phase above that attributable to dissolved molecular diffusion alone was tested. In controlled experiments, mass transfer rates of

  5. Heat Transfer Enhancement by Finned Heat Sinks with Micro-structured Roughness

    Science.gov (United States)

    Ventola, L.; Chiavazzo, E.; Calignano, F.; Manfredi, D.; Asinari, P.

    2014-04-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness Ra from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  6. Enhanced Gene Transfer with Fusogenic Liposomes Containing Vesicular Stomatitis Virus G Glycoprotein

    Science.gov (United States)

    Abe, Akihiro; Miyanohara, Atsushi; Friedmann, Theodore

    1998-01-01

    Exposure of Lipofectin-DNA complexes to the partially purified G glycoprotein of the vesicular stomatitis virus envelope (VSV-G) results in loss of serum-mediated inhibition and in enhanced efficiency of gene transfer. Sucrose density gradient sedimentation analysis indicated that the VSV-G associates physically with the DNA-lipid complex to produce a VSV-G liposome. The ability to incorporate surrogate viral or cellular envelope components such as VSV-G into liposomes may allow more-efficient and possibly targeted gene delivery by lipofection, both in vitro and in vivo. PMID:9621082

  7. Heat transfer enhancement by finned heat sinks with micro-structured roughness

    International Nuclear Information System (INIS)

    Ventola, L; Chiavazzo, E; Asinari, P; Calignano, F; Manfredi, D

    2014-01-01

    We investigated the benefits of micro-structured roughness on heat transfer performance of heat sinks, cooled by forced air. Heat sinks in aluminum alloy by direct metal laser sintering (DMLS) manufacturing technique were fabricated; values of the average surface roughness R a from 1 to 25 microns (standard milling leads to roughness around 1 micron) under turbulent regimes (Reynolds number based on heating edge from 3000 to 17000) have been explored. An enhancement of 50% in thermal performances with regards to standard manufacturing was observed. This may open the way for huge boost in the technology of electronic cooling by DMLS.

  8. Heat transfer enhancement of a modularised thermoelectric power generator for passenger vehicles

    International Nuclear Information System (INIS)

    Li, Bo; Huang, Kuo; Yan, Yuying; Li, Yong; Twaha, Ssennoga; Zhu, Jie

    2017-01-01

    Highlights: •Shape-adapted thermoelectric module for highly compact heat recovery exchanger assembly. •Heat pipe-assisted heat transfer enhancement method for better power output. •Highest power output ratio to the total volume of heat recovery exchanger. •Cascaded thermoelectric system can be scaled and extended for various power output. •Self-clamping design of thermoelectric module can solve the thermomechanical imbalances. -- Abstract: Transport represents over a quarter of Europe's greenhouse gas emissions and is the leading cause of air pollution in cities. It has not seen the same gradual decline in emissions as other sectors. Recently, the thermoelectric power generation (TEG) technology emerges as an alternative solution to the emission reduction challenge in this area. In this paper, we present an innovative pathway to an improved heat supply into the concentric shape-adapted TEG modules, integrating the heat pipe technologies. It relies on a phase changing approach which enhances the heat flux through the TEG surface. In order to improve the heat transfer for higher efficiency, in our work, the heat pipes are configured in the radial direction of the exhaust streams. The analysis shows that the power output is adequate for the limited space under the chassis of the passenger car. Much effort can also be applied to obtain enhanced convective heat transfer by adjusting the heat pipes at the dual sides of the concentric TEG modules. Heat enhancement at the hot side of the TEG has an effective impact on the total power out of the TEG modules. However, such improvements can be offset by the adjustment made from the coolant side. Predictably, the whole temperature profile of TEG system is subject to the durability and operational limitations of each component. Furthermore, the results highlight the importance of heat transfer versus the TEG power generation under two possible configurations in the passenger car. The highest power output per

  9. Enhanced Global Signal of Neutral Hydrogen Due to Excess Radiation at Cosmic Dawn

    Science.gov (United States)

    Feng, Chang; Holder, Gilbert

    2018-05-01

    We revisit the global 21 cm signal calculation incorporating a possible radio background at early times, and find that the global 21 cm signal shows a much stronger absorption feature, which could enhance detection prospects for future 21 cm experiments. In light of recent reports of a possible low-frequency excess radio background, we propose that detailed 21 cm calculations should include a possible early radio background.

  10. Enhanced recall of disgusting relative to frightening photographs is not due to organisation.

    Science.gov (United States)

    Chapman, Hanah A

    2017-10-25

    Previous research has shown that disgusting photographs are better remembered than frightening photographs, even when the two image types have equivalent valence and arousal. However, this work did not control for potential differences in organisation between the disgusting and frightening stimuli that could account for enhanced memory for disgusting photographs. The current research therefore tested whether differences in recall between disgusting and frightening photographs persist when differences in organisation are eliminated. Using a set of disgusting and frightening photographs matched for interrelatedness, Study 1 found that participants recalled more disgusting photographs than frightening photographs. This effect was mediated by increased attention to the disgusting photographs. Study 2 used Latent Semantic Analysis to further interrogate the relatedness of the photographs, providing converging evidence that organisation does not account for enhanced recall of disgusting photographs. Taken together, these results suggest that dimensional models of emotion cannot fully account for emotion's effects on episodic memory. Instead, disgust appears to enhance recall via a distinctive, attention-mediated mechanism.

  11. Enhancing mass transfer and ethanol production in syngas fermentation of Clostridium carboxidivorans P7 through a monolithic biofilm reactor

    International Nuclear Information System (INIS)

    Shen, Yanwen; Brown, Robert; Wen, Zhiyou

    2014-01-01

    Highlights: • Syngas fermentation process is limited by gas-to-liquid mass transfer. • A novel monolithic biofilm reactor (MBR) for efficient mass transfer was developed. • MBR with slug flow resulted in higher k L a than bubble column reactor (BCR). • MBR enhanced ethanol productivity by 53% compared to BCR. • MBR was demonstrated as a promising reactor configuration for syngas fermentation. - Abstract: Syngas fermentation is a promising process for producing fuels and chemicals from lignocellulosic biomass. Currently syngas fermentation faces several engineering challenges, with gas-to-liquid mass transfer limitation representing the major bottleneck. The aim of this work is to evaluate the performance of a monolithic biofilm reactor (MBR) as a novel reactor configuration for syngas fermentation. The volumetric mass transfer coefficient (k L a) of the MBR was evaluated in abiotic conditions within a wide range of gas flow rates (i.e., gas velocity in monolithic channels) and liquid flow rates (i.e., liquid velocity in the channels). The k L a values of the MBR were higher than those of a controlled bubble column reactor (BCR) in certain conditions, due to the slug flow pattern in the monolithic channels. A continuous syngas fermentation using Clostridium carboxidivorans P7 was conducted in the MBR system under varying operational conditions, with the variables including syngas flow rate, liquid recirculation between the monolithic column and reservoir, and dilution rate. It was found that the syngas fermentation performance – measured by such parameters as syngas utilization efficiency, ethanol concentration and productivity, and ratio of ethanol to acetic acid – depended not only on the mass transfer efficiency but also on the biofouling or abrading of the biofilm attached on the monolithic channel wall. At a condition of 300 mL/min of syngas flow rate, 500 mL/min of liquid flow rate, and 0.48 day −1 of dilution rate, the MBR produced much higher

  12. Numerical study on boiling heat transfer enhancement in a microchannel heat exchanger

    International Nuclear Information System (INIS)

    Jeon, Jin Ho; Suh, Young Ho; Son, Gi Hun

    2008-01-01

    Flow boiling in a microchannel heat exchanger has received attention as an effective heat removal mechanism for high power-density microelectronics. Despite extensive experimental studied, the bubble dynamics coupled with boiling heat transfer in a microchannel heat exchanger is still not well understood due to the technological difficulties in obtaining detailed measurements of microscale two-phase flows. In this study, complete numerical simulations are performed to further clarify the dynamics of flow boiling in a microchannel heat exchanger. The level set method for tracking the liquid-vapor interface is modified to include the effects of phase change and contact angle and to treat an immersed solid surface. Based on the numerical results, the effects of modified channel shape on the bubble growth and heat transfer are quantified

  13. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  14. The detection of climate change due to the enhanced greenhouse effect

    International Nuclear Information System (INIS)

    Schiffer, R.A.; Unninayar, S.

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record

  15. Enhanced magnetoresistance in the binary semimetal NbAs2 due to improved crystal quality

    Science.gov (United States)

    Yokoi, K.; Murakawa, H.; Komada, M.; Kida, T.; Hagiwara, M.; Sakai, H.; Hanasaki, N.

    2018-02-01

    We have observed an extremely large magnetoresistance exceeding 1.9 million at 1.7 K at 40 T for a single crystal of the binary semimetal NbAs2. The magnetoresistive behavior for this compound is quantitatively reproduced by a semiclassical two-carrier model in which the significant enhancement of magnetoresistance is attributed to the almost full compensation of the hole and electron densities (0.994 6 ×105cm2 /V .s ). Our results indicate that binary semimetals with higher carrier densities have a great potential for exhibiting a further divergent increase in magnetoresistance merely through an improvement in crystal quality.

  16. Modified field enhancement and extinction by plasmonic nanowire dimers due to nonlocal response

    DEFF Research Database (Denmark)

    Toscano, Giuseppe; Raza, Søren; Jauho, Antti-Pekka

    2012-01-01

    We study the effect of nonlocal optical response on the optical properties of metallic nanowires, by numerically implementing the hydrodynamical Drude model for arbitrary nanowire geometries. We first demonstrate the accuracy of our frequency-domain finite-element implementation by benchmarking...... it in a wide frequency range against analytical results for the extinction cross section of a cylindrical plasmonic nanowire. Our main results concern more complex geometries, namely cylindrical and bow-tie nanowire dimers that can strongly enhance optical fields. For both types of dimers we find that nonlocal...

  17. Enhanced O2 Loss at Mars Due to an Ambipolar Electric Field from Electron Heating

    Science.gov (United States)

    Ergun, R. E.; Andersson, L. A.; Fowler, C. M.; Woodson, A. K.; Weber, T. D.; Delory, G. T.; Andrews, D. J.; Eriksson, A. I.; Mcenulty, T.; Morooka, M. W.; hide

    2016-01-01

    Recent results from the MAVEN Langmuir Probe and Waves (LPW) instrument suggest higher than predicted electron temperatures (T sub e) in Mars dayside ionosphere above approx. 180 km in altitude. Correspondingly, measurements from Neutral Gas and Ion Mass Spectrometer (NGIMS) indicate significant abundances of O2+ up to approx. 500 km in altitude, suggesting that O2+ may be a principal ion loss mechanism of oxygen. In this article, we investigate the effects of the higher T(sub e) (which results from electron heating) and ion heating on ion outflow and loss. Numerical solutions show that plasma processes including ion heating and higher T(sub e) may greatly increase O2+ loss at Mars. In particular, enhanced T(sub e) in Mars ionosphere just above the exobase creates a substantial ambipolar electric field with a potential (e) of several k(sub b)T(sub e), which draws ions out of the region allowing for enhanced escape. With active solar wind, electron and ion heating, direct O2+ loss could match or exceed loss via dissociative recombination of O2+. These results suggest that direct loss of O2+ may have played a significant role in the loss of oxygen at Mars over time.

  18. Pool-Boiling Heat-Transfer Enhancement on Cylindrical Surfaces with Hybrid Wettable Patterns.

    Science.gov (United States)

    Kumar C S, Sujith; Chang, Yao Wen; Chen, Ping-Hei

    2017-04-10

    In this study, pool-boiling heat-transfer experiments were performed to investigate the effect of the number of interlines and the orientation of the hybrid wettable pattern. Hybrid wettable patterns were produced by coating superhydrophilic SiO2 on a masked, hydrophobic, cylindrical copper surface. Using de-ionized (DI) water as the working fluid, pool-boiling heat-transfer studies were conducted on the different surface-treated copper cylinders of a 25-mm diameter and a 40-mm length. The experimental results showed that the number of interlines and the orientation of the hybrid wettable pattern influenced the wall superheat and the HTC. By increasing the number of interlines, the HTC was enhanced when compared to the plain surface. Images obtained from the charge-coupled device (CCD) camera indicated that more bubbles formed on the interlines as compared to other parts. The hybrid wettable pattern with the lowermost section being hydrophobic gave the best heat-transfer coefficient (HTC). The experimental results indicated that the bubble dynamics of the surface is an important factor that determines the nucleate boiling.

  19. Heat transfer enhancement with elliptical tube under turbulent flow TiO2-water nanofluid

    Directory of Open Access Journals (Sweden)

    Hussein Adnan M.

    2016-01-01

    Full Text Available Heat transfer and friction characteristics were numerically investigated, employing elliptical tube to increase the heat transfer rate with a minimum increase of pressure drop. The flow rate of the tube was in a range of Reynolds number between 10000 and 100000. FLUENT software is used to solve the governing equation of CFD (continuity, momentum and energy by means of a finite volume method (FVM. The electrical heater is connected around the elliptical tube to apply uniform heat flux (3000 W/m2 as a boundary condition. Four different volume concentrations in the range of 0.25% to 1% and different TiO2 nanoparticle diameters in the range of 27 nm to 50 nm, dispersed in water are utilized. The CFD numerical results indicate that the elliptical tube can enhance heat transfer and friction factor by approximately 9% and 6% than the circular tube respectively. The results show that the Nusselt number and friction factor increase with decreasing diameters but increasing volume concentrations of nanoparticles.

  20. Numerical Study of Heat Transfer Enhancement in Heat Exchanger Using AL2O3 Nanofluids

    Directory of Open Access Journals (Sweden)

    Hussein Talal Dhaiban

    2016-04-01

    Full Text Available In this study, the flow and heat transfer characteristics of Al2O3-water nanofluids for a range of the Reynolds number of 3000, 4500, 6000 and 7500 with a range of volume concentration of 1%, 2%, 3% and 4% are studied numerically. The test rig consists of cold liquid loop, hot liquid loop and the test section which is counter flow double pipe heat exchanger with 1m length. The inner tube is made of smooth copper with diameter of 15mm. The outer tube is made of smooth copper with diameter of 50mm. The hot liquid flows through the outer tube and the cold liquid (or nanofluid flow through the inner tube. The boundary condition of this study is thermally insulated the outer wall with uniform velocity at (0.2, 0.3, 0.4 and 0.5 m/s at the cold loop and constant velocity at (0.5 m/s at the hot loop. The results show that the heat transfer coefficient and Nusselt number increased by increasing Reynolds number and particle concentration. Numerical results indicate that the maximum enhancement in Nusselt number and heat transfer coefficient were 9.5% and 13.5% respectively at Reynolds number of 7100 and particles volume fraction of 4%. Results of nanofluids also showed a good agreement with the available empirical correlation at particles volume fractions of 1%, 2% and 3%, but at volume fractions of 4% a slight deviation is obtained.

  1. Development of surface wettability characteristics for enhancing pool boiling heat transfer

    International Nuclear Information System (INIS)

    Kim, Moo Hwan; Jo, Hang Jin

    2010-05-01

    For several centuries, many boiling experiments have been conducted. Based on literature survey, the characteristic of heating surface in boiling condition played as an important role which mainly influenced to boiling performance. Among many surface factor, the fact that wettability effect is significant to not only the enhancement of critical heat flux(CHF) but also the nucleate boiling heat transfer is also supported by other kinds of boiling experiments. In this regard, the excellent boiling performance (a high CHF and heat transfer performance) in pool boiling could be achieved through some favorable surface modification which satisfies the optimized wettability condition. To find the optimized boiling condition, we design the special heaters to examine how two materials, which have different wettability (e.g. hydrophilic and hydrophobic), affect the boiling phenomena. The special heaters have hydrophobic dots on hydrophilic surface. The contact angle of hydrophobic surface is 120 .deg. to water at the room temperature. The contact angle of hydrophilic surface is 60 .deg. at same conditions. To conduct the experiment with new surface condition, we developed new fabrication method and design the pool boiling experimental apparatus. Through this facility, we can the higher CHF on pattern surface than that on hydrophobic surface, and the higher boiling heat transfer performance on pattern surface than that on hydrophilic surface. Based on this experimental results, we concluded that we proposed new heating surface condition and surface fabrication method to realize the best boiling condition by modified heating surface condition

  2. Heat transfer enhancement of automobile radiator using H2O–CuO nanofluid

    Directory of Open Access Journals (Sweden)

    M. Sabeel Khan

    2017-04-01

    Full Text Available In this article, we study heat transfer enhancement of water based nanofluids with application to automotive radiators. In this respect, we consider here three types of different nanoparticles viz. copper oxide (CuO, Titanium dioxide (TiO2 and Aluminum oxide (Al2O3. The dynamics of the flow in a radiator is governed by set of partial differential equations (PDEs along with boundary conditions which are formulated. Suitable similarity transformations are utilized to convert the PDEs into their respective system of coupled nonlinear ordinary differential equations (ODEs. The boundary value problem is solved using Shooting method embedded with Runge-Kutta-Fehlberg (RK-5 numerical scheme. Effects of different physical parameters are studied on profiles of velocity and temperature fields at boundary. In addition, influence of nanoparticle concentration factor on the local coefficient of skin-friction and Nusselt number is analyzed. We conclude that water based nanofluids with copper oxide nano-particles have a much higher heat transfer rate than the Al2O3-water and TiO2-water nanofluids. Moreover, larger the concentration of the CuO nanoparticles in the base fluid higher is the heat transfer rate of CuO-water nanofluid.

  3. Nerve transfers for restoration of upper extremity motor function in a child with upper extremity motor deficits due to transverse myelitis: case report.

    Science.gov (United States)

    Dorsi, Michael J; Belzberg, Allan J

    2012-01-01

    Transverse myelitis (TM) may result in permanent neurologic dysfunction. Nerve transfers have been developed to restore function after peripheral nerve injury. Here, we present a case report of a child with permanent right upper extremity weakness due to TM that underwent nerve transfers. The following procedures were performed: double fascicle transfer from median nerve and ulnar nerve to the brachialis and biceps branches of the musculocutaneous nerve, spinal accessory to suprascapular nerve, and medial cord to axillary nerve end-to-side neurorraphy. At 22 months, the patient demonstrated excellent recovery of elbow flexion with minimal improvement in shoulder abduction. We propose that the treatment of permanent deficits from TM represents a novel indication for nerve transfers in a subset of patients. Copyright © 2011 Wiley Periodicals, Inc.

  4. TRANSFER

    African Journals Online (AJOL)

    This paper reports on further studies on long range energy transfer between curcumine as donor and another thiazine dye, thionine, which is closely related to methylene blue as energy harvester (Figure 1). Since thionine is known to have a higher quantum yield of singlet oxygen sensitization than methylene blue [8], it is ...

  5. Mixed convection heat transfer enhancement in a cubic lid-driven cavity containing a rotating cylinder through the introduction of artificial roughness on the heated wall

    Science.gov (United States)

    Kareem, Ali Khaleel; Gao, Shian

    2018-02-01

    The aim of the present numerical investigation is to comprehensively analyse and understand the heat transfer enhancement process using a roughened, heated bottom wall with two artificial rib types (R-s and R-c) due to unsteady mixed convection heat transfer in a 3D moving top wall enclosure that has a central rotating cylinder, and to compare these cases with the smooth bottom wall case. These different cases (roughened and smooth bottom walls) are considered at various clockwise and anticlockwise rotational speeds, -5 ≤ Ω ≤ 5, and Reynolds numbers of 5000 and 10 000. The top and bottom walls of the lid-driven cavity are differentially heated, whilst the remaining cavity walls are assumed to be stationary and adiabatic. A standard k-ɛ model for the Unsteady Reynolds-Averaged Navier-Stokes equations is used to deal with the turbulent flow. The heat transfer improvement is carefully considered and analysed through the detailed examinations of the flow and thermal fields, the turbulent kinetic energy, the mean velocity profiles, the wall shear stresses, and the local and average Nusselt numbers. It has been concluded that artificial roughness can strongly affect the thermal fields and fluid flow patterns. Ultimately, the heat transfer rate has been dramatically increased by involving the introduced artificial rips. Increasing the cylinder rotational speed or Reynolds number can enhance the heat transfer process, especially when the wall roughness exists.

  6. Investigation of Heat Transfer Enhancement or Deterioration of Variable Properties Al2O3-EG-water Nanofluid in Buoyancy Driven Convection

    Directory of Open Access Journals (Sweden)

    H. Khorasanizadeh

    2014-01-01

    Full Text Available In this study, the natural convection heat transfer of variable properties Al2O3-EG-water nanofluid in a differentially heated rectangular cavity has been investigated numerically. The governing equations, for a Newtonian fluid, have been solved numerically with a finite volume approach. The influences of the pertinent parameters such as Ra in the range of 103-107 and volume fraction of nanoparticles from 0 to 0.04 on heat transfer characteristics have been studied. The results verified by making overall comparison with some existing experimental results have shown that for Ra=103, for which conduction heat transfer is dominant, the average Nusselt number increases as volume fraction of nanoparticles increases, but for higher Ra numbers in contradiction with the constant properties cases it decreases. This reduction, which is associated with increased viscosity, is more severe at Ra of 104 compared to higher Ra numbers such that the least deterioration in heat transfer occurs for Ra=107. This is due to the fact that as Ra increases, the Brownian motion enhances; thus conductivity improves and becomes more important than viscosity increase. An scale analysis, performed to clarify the contradictory reports in the literature on the natural convection heat transfer enhancement or deterioration of nanofluids, showed that different kinds of evaluating the base fluid Rayleigh number has led to such a difference.

  7. Hydrotropic effect and thermodynamic analysis on the solubility and mass transfer coefficient enhancement of ethylbenzene

    International Nuclear Information System (INIS)

    Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra

    2013-01-01

    Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L"−"1) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K_s, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined

  8. Hydrotropic effect and thermodynamic analysis on the solubility and mass transfer coefficient enhancement of ethylbenzene

    Energy Technology Data Exchange (ETDEWEB)

    Morais, Antony Bertie; Jayakumar, Chinnakannu; Gandhi, Nagarajan Nagendra [Anna University, Chennai (India)

    2013-04-15

    Concentrated aqueous solutions of a large number of hydrotropic agents, urea, nicotinamide, and sodium salicylate, have been employed to enhance the aqueous solubilities of poorly water soluble organic compounds. The influence of a wide range of hydrotrope concentrations (0-3.0mol·L{sup −1}) and different system temperatures (303-333 K) on the solubility of ethylbenzene has been studied. The solubility of ethylbenzene increases with increase in hydrotrope concentration and also with system temperature. Consequent to the increase in the solubility of ethylbenzene, the mass transfer coefficient was also found to increase with increase in hydrotrope concentration at 303 K. The enhancement factor, which is the ratio of the value in the presence and absence of a hydrotrope, is reported for both solubility and mass transfer coefficient of ethylbenzene. The Setschenow constant, K{sub s}, a measure of the effectiveness of a hydrotrope, was determined for each case. To ascertain the hydrotropic aggregation behavior of ethylbenzene, thermodynamic parameters such as Gibb’s free energy, enthalpy, and entropy of ethylbenzene were determined.

  9. Perspectives of heat transfer enhancement in nuclear reactors toward nanofluids applications

    International Nuclear Information System (INIS)

    Rocha, Marcelo S.; Cabral, Eduardo L.L.; Sabundjian, Gaiane

    2013-01-01

    Nanofluids are colloidal suspensions of nanoparticles in a base fluid with interesting physical properties and large potential for heat transfer enhancement in thermal systems among other applications. There are an increasing number of nanofluids investigations concerning many aspects of synthesis and fabrication technologies, physical properties, and special applications. Results demonstrate that physical properties like high thermal conductivities and high critical heat flux (CHF) of some nanofluids classifies them as potential working fluids for high heat flux transportation in special systems, including thermal management of microelectronic devices (MEMS) and nuclear reactors. Understanding the importance of such investigations for the knowledge development of nuclear engineering a new research is being conducted at the Nuclear Engineering Center (CEN) of the Nuclear and Energy Research Institute (IPEN/CNEN-SP) to analyze the application potentiality of some nanofluids in nuclear systems for heat transfer enhancement under ionizing radiation influence. In this work a revision of theoretical and experimental studies of nanofluids is performed and its potentiality for using in future generations of nuclear reactors is highlighted showing the status of the research at present. (author)

  10. Modulating indium doped tin oxide electrode properties for laccase electron transfer enhancement

    Energy Technology Data Exchange (ETDEWEB)

    Diaconu, Mirela [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Chira, Ana [National Institute for Biological Sciences, Centre of Bioanalysis, 296 Spl. Independentei, Bucharest 060031 (Romania); Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania); Radu, Lucian, E-mail: gl_radu@chim.upb.ro [Politehnica University of Bucharest, Faculty of Applied Chemistry and Materials Science, 1-7 Polizu Str., 011061 (Romania)

    2014-08-28

    Indium doped tin oxide (ITO) electrodes were functionalized with gold nanoparticles (GNPs) and cysteamine monolayer to enhance the heterogeneous electron transfer process of laccase from Trametes versicolor. The assembly of GNP on ITO support was performed through generation of H{sup +} species at the electrode surface by hydroquinone electrooxidation at 0.9 V vs Ag/AgCl. Uniform distribution of gold nanoparticle aggregates on electrode surfaces was confirmed by atomic force microscopy. The size of GNP aggregates was in the range of 200–500 nm. The enhanced charge transfer at the GNP functionalized ITO electrodes was observed by cyclic voltammetry (CV) and electrochemical impedance spectroscopy. Electrocatalytic behavior of laccase immobilized on ITO modified electrode toward oxygen reduction reaction was evaluated using CV in the presence of 2,2′-azino-bis 3-ethylbenzothiazoline-6-sulfuric acid (ABTS). The obtained sigmoidal-shaped voltammograms for ABTS reduction in oxygen saturated buffer solution are characteristic for a catalytic process. The intensity of catalytic current increased linearly with mediator concentration up to 6.2 × 10{sup −4} M. The registered voltammogram in the absence of ABTS mediator clearly showed a significant faradaic current which is the evidence of the interfacial oxygen reduction. - Highlights: • Assembly of gold nanoparticles on indium tin oxide support at positive potentials • Electrochemical and morphological evaluation of the gold nanoparticle layer assembly • Bioelectrocatalytic oxygen reduction on laccase modified electrode.

  11. Convective heat transfer enhancement using Carbon nanofibers (CNFs): influence of amorphous carbon layer on heat transfer performance

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2013-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nano structures was achieved using catalytic

  12. Enhancement of conductivity due to local disorder in a one-dimensional conductor

    International Nuclear Information System (INIS)

    Morifuji, Masato; Maeda, Yusuke

    2011-01-01

    We theoretically investigate electron transport in a one-dimensional conductor with a locally disordered potential by using the non-equilibrium Green’s function theory. It is found that, by changing the energy of a site in a one-dimensional atomic chain, the electron conductivity can be larger when the modulated site energy is smaller than that of the other sites. This contradicts the conventional picture that an electron is scattered by the disorder of the potential, because such a scattering process usually causes resistivity. We show that the enhancement of conductivity that seems contradictory to the conventional picture of electron motion is explained by the change of energy of quasi bound states in the conductor. (paper)

  13. Modelling modal shift due to the enhanced level of bus service

    Directory of Open Access Journals (Sweden)

    P. Vedagiri

    2009-06-01

    Full Text Available This study is concerned with the estimation of the probable shift of auto-rickshaw (three wheeled motorized para-transit vehicle users to the bus due to an increase in its level of service after providing exclusive bus lanes on Indian city roads carrying heterogeneous traffic. The quantum of an increase in the level of bus service due to the introduction of an exclusive bus lane was determined using a recently developed simulation model of heterogeneous traffic flow. The data on other factors (variables that might cause modal shift from the auto-rickshaw to the bus was collected conducting a home-interview survey based on the stated preference approach. A binary logit model of mode-choice was then calibrated using the collected data and the model was also validated using a holdout sample. A mode-choice probability curve to depict the possible shift of auto-rickshaw users to the bus is developed taking difference in the travel times of two-modes as the basis to serve as a user friendly tool to analyze the possible modal shift for a wide range of the values of the involved variables.

  14. Enhancement of the thermoelectric figure of merit in a quantum dot due to external ac field

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Qiao, E-mail: cqhy1127@yahoo.com.cn [Department of Maths and Physics, Hunan Institute of Engineering, Xiangtan 411104 (China); Wang, Zhi-yong, E-mail: wzyong@cqut.edu.cn [School of Optoelectronic Information, Chongqing University of Technology, Chongqing 400054 (China); Xie, Zhong-Xiang [Department of Mathematics and Physics, Hunan Institute of Technology, Hengyang 421002 (China)

    2013-08-15

    We investigate the figure of merit of a quantum dot (QD) system irradiated with an external microwave filed by nonequilibrium Green's function (NGF) technique. Results show that the frequency of microwave field influence the figure of merit ZT significantly. At low temperature, a sharp peak can be observed in the figure of merit ZT as the frequency of ac field increases. As the frequency varies, several zero points and resonant peaks emerge in the figure of merit ZT. By adjusting the frequency of the microwave field, we can obtain high ZT. The figure of merit ZT increases with the decreasing of linewidth function Γ. In addition, Wiedemann–Franz law does not hold, particularly in the low frequency region due to multi-photon emission and absorption. Some novel thermoelectric properties are also found in two-level QD system.

  15. Enhancement of shear strength and ductility for reinforced concrete wide beams due to web reinforcement

    Directory of Open Access Journals (Sweden)

    M. Said

    2013-12-01

    Full Text Available The shear behavior of reinforced concrete wide beams was investigated. The experimental program consisted of nine beams of 29 MPa concrete strength tested with a shear span-depth ratio equal to 3.0. One of the tested beams had no web reinforcement as a control specimen. The flexure mode of failure was secured for all of the specimens to allow for shear mode of failure. The key parameters covered in this investigation are the effect of the existence, spacing, amount and yield stress of the vertical stirrups on the shear capacity and ductility of the tested wide beams. The study shows that the contribution of web reinforcement to the shear capacity is significant and directly proportional to the amount and spacing of the shear reinforcement. The increase in the shear capacity ranged from 32% to 132% for the range of the tested beams compared with the control beam. High grade steel was more effective in the contribution of the shear strength of wide beams. Also, test results demonstrate that the shear reinforcement significantly enhances the ductility of the wide beams. In addition, shear resistances at failure recorded in this study are compared to the analytical strengths calculated according to the current Egyptian Code and the available international codes. The current study highlights the need to include the contribution of shear reinforcement in the Egyptian Code requirements for shear capacity of wide beams.

  16. Enhanced valley splitting in monolayer WSe2 due to magnetic exchange field.

    Science.gov (United States)

    Zhao, Chuan; Norden, Tenzin; Zhang, Peiyao; Zhao, Puqin; Cheng, Yingchun; Sun, Fan; Parry, James P; Taheri, Payam; Wang, Jieqiong; Yang, Yihang; Scrace, Thomas; Kang, Kaifei; Yang, Sen; Miao, Guo-Xing; Sabirianov, Renat; Kioseoglou, George; Huang, Wei; Petrou, Athos; Zeng, Hao

    2017-08-01

    Exploiting the valley degree of freedom to store and manipulate information provides a novel paradigm for future electronics. A monolayer transition-metal dichalcogenide (TMDC) with a broken inversion symmetry possesses two degenerate yet inequivalent valleys, which offers unique opportunities for valley control through the helicity of light. Lifting the valley degeneracy by Zeeman splitting has been demonstrated recently, which may enable valley control by a magnetic field. However, the realized valley splitting is modest (∼0.2 meV T -1 ). Here we show greatly enhanced valley spitting in monolayer WSe 2 , utilizing the interfacial magnetic exchange field (MEF) from a ferromagnetic EuS substrate. A valley splitting of 2.5 meV is demonstrated at 1 T by magnetoreflectance measurements and corresponds to an effective exchange field of ∼12 T. Moreover, the splitting follows the magnetization of EuS, a hallmark of the MEF. Utilizing the MEF of a magnetic insulator can induce magnetic order and valley and spin polarization in TMDCs, which may enable valleytronic and quantum-computing applications.

  17. Enhanced bending failure strain in biological glass fibers due to internal lamellar architecture.

    Science.gov (United States)

    Monn, Michael A; Kesari, Haneesh

    2017-12-01

    The remarkable mechanical properties of biological structures, like tooth and bone, are often a consequence of their architecture. The tree ring-like layers that comprise the skeletal elements of the marine sponge Euplectella aspergillum are a quintessential example of the intricate architectures prevalent in biological structures. These skeletal elements, known as spicules, are hair-like fibers that consist of a concentric array of silica cylinders separated by thin, organic layers. Thousands of spicules act like roots to anchor the sponge to the sea floor. While spicules have been the subject of several structure-property investigations, those studies have mostly focused on the relationship between the spicule's layered architecture and toughness properties. In contrast, we hypothesize that the spicule's layered architecture enhances its bending failure strain, thereby allowing it to provide a better anchorage to the sea floor. We test our hypothesis by performing three-point bending tests on E. aspergillum spicules, measuring their bending failure strains, and comparing them to those of spicules from a related sponge, Tethya aurantia. The T. aurantia spicules have a similar chemical composition to E. aspergillum spicules but have no architecture. Thus, any difference between the bending failure strains of the two types of spicules can be attributed to the E. aspergillum spicules' layered architecture. We found that the bending failure strains of the E. aspergillum spicules were roughly 2.4 times larger than those of the T. aurantia spicules. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Enhanced light absorption due to the mixing state of black carbon in fresh biomass burning emissions

    Science.gov (United States)

    Wang, Qiyuan; Cao, Junji; Han, Yongming; Tian, Jie; Zhang, Yue; Pongpiachan, Siwatt; Zhang, Yonggang; Li, Li; Niu, Xinyi; Shen, Zhenxing; Zhao, Zhuzi; Tipmanee, Danai; Bunsomboonsakul, Suratta; Chen, Yang; Sun, Jian

    2018-05-01

    A lack of information on the radiative effects of refractory black carbon (rBC) emitted from biomass burning is a significant gap in our understanding of climate change. A custom-made combustion chamber was used to simulate the open burning of crop residues and investigate the impacts of rBC size and mixing state on the particles' optical properties. Average rBC mass median diameters ranged from 141 to 162 nm for the rBC produced from different types of crop residues. The number fraction of thickly-coated rBC varied from 53 to 64%, suggesting that a majority of the freshly emitted rBC were internally mixed. By comparing the result of observed mass absorption cross-section to that calculated with Mie theory, large light absorption enhancement factors (1.7-1.9) were found for coated particles relative to uncoated cores. These effects were strongly positively correlated with the percentage of coated particles but independent of rBC core size. We suggest that rBC from open biomass burning may have strong impact on air pollution and radiative forcing immediately after their production.

  19. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein ubiquinone oxidoreductase (ETF QO)

    Science.gov (United States)

    Fielding, Alistair J.; Usselman, Robert J.; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E.; Eaton, Gareth R.; Eaton, Sandra S.

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S] 2+,1+ cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S] + cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S] + between 8 and 18 K and for semiquinone between 25 and 65 K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S] + were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S] + and obtain point-dipole interspin distances of 18.6 ± 1 Å for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  20. Excitation decay due to incoherent energy transfer : A comparative study by means of an exact density expansion

    NARCIS (Netherlands)

    Knoester, J.; Himbergen, J.E. Van

    1984-01-01

    In this paper we consider a system of identical, randomly distributed donors, between which incoherent energy transfer takes place, described by coupled rate equations. It is proved, that the well-known diagrammatic series expansion of Gochanour, Andersen, and Fayer for the self-energy, while not an

  1. Fructose effect to enhance liver glycogen deposition is due to inhibition of glycogenolysis

    International Nuclear Information System (INIS)

    Youn, J.; Kaslow, H.; Bergman, R.

    1987-01-01

    The effect of fructose on glycogen degradation was examined by measuring flux of [ 14 C] from prelabeled glycogen in perfused rat livers. During 2 h refeeding of fasted rats hepatic glycogen was labeled by injection of [U 14 C] galactose (0.1 mg and 0.02 μCi/g of body weight). Refed livers were perfused for 30 min with glucose only (10 mM) and for 60 min with glucose (10 mM) without (n=5) or with fructose (1, 2, 10 mM; n=5 for each). With fructose, label production immediately declined and remained suppressed through the end of perfusion (P < 0.05). Suppression was dose-dependent: steady state label production was suppressed 45, 64, and 72% by 1, 2, and 10 mM fructose (P < 0.0001), without significant changes in glycogen synthase or phosphorylase. These results suggest the existence of allosteric inhibition of phosphorylase in the presence of fructose. Fructose 1-phosphate (F1P) accumulated in proportion to fructose (0.11 +/- 0.01 without fructose, 0.86 +/- 0.03, 1.81 +/- 0.18, and 8.23 +/- 0.6 μmoles/g of liver with 1, 2, and 10 mM fructose. Maximum inhibition of phosphorylase was 82%; FIP concentration for half inhibition was 0.57 μmoles/g of liver, well within the concentration of F1P attained in refeeding. Fructose enhances net glycogen synthesis in liver by suppressing glycogenolysis and the suppression is presumably caused by allosteric inhibition of phosphorylase by F1P

  2. Detection of enhancement in number densities of background galaxies due to magnification by massive galaxy clusters

    Energy Technology Data Exchange (ETDEWEB)

    Chiu, I.; Dietrich, J. P.; Mohr, J.; Applegate, D. E.; Benson, B. A.; Bleem, L. E.; Bayliss, M. B.; Bocquet, S.; Carlstrom, J. E.; Capasso, R.; Desai, S.; Gangkofner, C.; Gonzalez, A. H.; Gupta, N.; Hennig, C.; Hoekstra, H.; von der Linden, A.; Liu, J.; McDonald, M.; Reichardt, C. L.; Saro, A.; Schrabback, T.; Strazzullo, V.; Stubbs, C. W.; Zenteno, A.

    2016-02-18

    We present a detection of the enhancement in the number densities of background galaxies induced from lensing magnification and use it to test the Sunyaev-Zel'dovich effect (SZE-) inferred masses in a sample of 19 galaxy clusters with median redshift z similar or equal to 0.42 selected from the South Pole Telescope SPT-SZ survey. These clusters are observed by the Megacam on the Magellan Clay Telescope though gri filters. Two background galaxy populations are selected for this study through their photometric colours; they have median redshifts zmedian similar or equal to 0.9 (low-z background) and z(median) similar or equal to 1.8 (high-z background). Stacking these populations, we detect the magnification bias effect at 3.3 sigma and 1.3 sigma for the low-and high-z backgrounds, respectively. We fit Navarro, Frenk and White models simultaneously to all observed magnification bias profiles to estimate the multiplicative factor. that describes the ratio of the weak lensing mass to the mass inferred from the SZE observable-mass relation. We further quantify systematic uncertainties in. resulting from the photometric noise and bias, the cluster galaxy contamination and the estimations of the background properties. The resulting. for the combined background populations with 1 sigma uncertainties is 0.83 +/- 0.24(stat) +/- 0.074(sys), indicating good consistency between the lensing and the SZE-inferred masses. We use our best-fitting eta to predict the weak lensing shear profiles and compare these predictions with observations, showing agreement between the magnification and shear mass constraints. This work demonstrates the promise of using the magnification as a complementary method to estimate cluster masses in large surveys.

  3. Double-mode Two-photon Absorption and Enhanced Photon Antibunching Due to Interference

    Science.gov (United States)

    Bandilla, A.; Ritze, H.-H.

    Inspired by results of interfering signal and idler from a nondegenerate parametric amplifier we investigate the photon statistics of the resulting field after interference of two components subjected to double-mode two-photon absorption. This absorption process leads to a strong correlation of the participating modes, which can be used to generate fields with photon antibunching in interference experiments. In addition the photon number can be made small, which produces enhanced antibunching.Translated AbstractZwei-Photonen-Absorption aus zwei Moden und durch Interferenz verstärktes photon antibunchingDie quantenmechanische Betrachtung der Interferenz führt zu neuen Ergebnissen, wenn Felder ohne klassisches Analogon betrachtet werden. Insbesondere ergibt sich durch die Reduktion der Photonenzahl durch Interferenz eine effektive Verstärkung des Photon Antibunching, wie von den Verfassern in vorhergehenden Arbeiten gezeigt wurde. Die vorliegende Untersuchung betrachtet die Interferenz von zwei korrelierten Moden, wobei die Korrelation durch Zwei-Photonen-Absorption aus den beiden Moden zustande kommt. In jeder einzelnen Mode ergibt sich lediglich ein gewisses Bunching, wenn man mit kohärentem Licht in beiden Moden beginnt. Es wird die Interferenz der Feldstärke-Komponenten in bestimmten Polarisationsrichtungen untersucht. Zur Vereinfachung wird in den betrachteten Moden die gleiche Anfangsphotonenzahl vorausgesetzt und der Analysator auf minimale Transmittanz gebracht. Das eigentliche Signal entsteht dann durch Einführung einer endlichen Phasenverschiebung zwischen den beiden Moden. Dieses Signal zeigt Antibunching und kann in seiner Intensität beliebig variiert werden, was wegen des (1/n)-Charakters des Antibunching zu seiner Verstärkung führt. Ferner wird gezeigt, daß die zunächst für zwei linear polarisierte Moden durchgeführte Rechnung auf zwei zirkulare Moden sowie auf zwei gegenläufige Strahlen bei der dopplerfreien Zwei-Quanten-Absorption

  4. Numerical modelling of heat transfer in a cavity due to liquid jet impingement for liquid supported stretch blow moulding

    Science.gov (United States)

    Smyth, Trevor; Menary, Gary; Geron, Marco

    2018-05-01

    Impingement of a liquid jet in a polymer cavity has been modelled numerically in this study. Liquid supported stretch blow moulding is a nascent polymer forming process using liquid as the forming medium to produce plastic bottles. The process derives from the conventional stretch blow moulding process which uses compressed air to deform the preform. Heat transfer away from the preform greatly increases when a liquid instead of a gas is flowing over a solid; in the blow moulding process the temperature of the preform is tightly controlled to achieve optimum forming conditions. A model was developed with Computational Fluid Dynamics code ANSYS Fluent which allows the extent of heat transfer between the incoming liquid and the solid preform to be determined in the initial transient stage, where a liquid jet enters an air filled preform. With this data, an approximation of the extent of cooling through the preform wall can be determined.

  5. Heat transfer improvement due to the imposition of non-uniform wall heating for in-tube laminar forced convection

    International Nuclear Information System (INIS)

    Hajmohammadi, M.R.; Poozesh, S.; Rahmani, M.; Campo, A.

    2013-01-01

    This paper explores the bearing that a non-uniform distribution of heat flux used as a wall boundary condition exerts on the heat transfer improvement in a round pipe. Because the overall heat load is considered fixed, the heat transfer improvement is viewed through a reduction in the maximum temperature (‘hot spot’) by imposing optimal distribution of heat flux. Two cases are studied in detail 1) fully developed and 2) developing flow. Peak temperatures in the heated pipe wall are calculated via an analytical approach for the fully developed case, while a numerical simulation based on CFD is employed for the developing case. By relaxing the heat flux distribution on the pipe wall, the numerical results imply that the optimum distribution of heat flux, which minimizes the peak temperatures corresponds with the ‘descending’ distribution. Given that the foregoing approach is quite different from the ‘ascending’ heat flux distribution recommended in the literature by means of the entropy generation minimization (EGM) method, it is inferred that the optimization of heat transfer and fluid flow, in comparison with the thermodynamic optimization, may bring forth quite different guidelines for the designs of thermal systems under the same constraints and circumstances. -- Highlights: • Considered the bearing of non-uniform distribution of heat flux on the hot spots. • Determined the optimal distribution of heat flux that minimizes the hot spots. • Results are compared with those obtained by EGM method

  6. Enhanced Ozone Production at Low Temperatures due to Ethanol (E85)

    Science.gov (United States)

    Ginnebaugh, D. L.; Livingstone, P. L.; Jacobson, M. Z.

    2009-12-01

    The increased use of ethanol in transportation fuels warrants an investigation of its consequences. An important component of such an investigation is the temperature-dependence of ethanol and gasoline exhaust chemistry. We use the near-explicit Master Chemical Mechanism (MCM, version 3.1, LEEDS University) with the SMVGEAR II chemical ordinary differential solver to provide the speed necessary to simulate explicit chemistry to examine such effects. The MCM has over 13,500 organic reactions and 4,600 species. SMVGEAR II is a sparse-matrix Gear solver that reduces the computation time significantly while maintaining any specified accuracy. Although for this study we use a box model, we determined that the speed of the MCM with the SMVGEAR solver will allow the MCM to be modeled in 3-dimensions. We also verified the accuracy of the model with comparisons to smog chamber data. We use species-resolved tailpipe emissions data for E85 (15% gasoline, 85% ethanol fuel blend) and gasoline vehicles to compare the impact of each on ozone and carcinogenic organic gases as a function of ambient temperature and background concentrations, using Los Angeles in 2020 as a base case. We use two different emissions sets - one is a compilation of data taken at near 24 C and the other from data taken at -7 C - to determine how atmospheric chemistry and emissions are affected by temperature. We include diurnal effects by examining 2 day and 5 day scenarios. We find that for both emission data sets, the average ozone concentrations through the range of temperatures tested are higher with E85 than with gasoline by 8 parts per billion volume (ppbv) at higher temperatures to 55 ppbv at low temperatures and low sunlight (winter conditions) for an area with a high nitrogen oxides (NOx) to non-methane organic gases (NMOG) ratio. The results suggest that E85's effect on health through ozone formation becomes increasingly more significant relative to gasoline as temperatures decreased due to the

  7. Enhanced mass removal due to phase explosion during high irradiance nanosecond laser ablation of silicon

    Energy Technology Data Exchange (ETDEWEB)

    Yoo, Jong Hyun [Univ. of California, Berkeley, CA (United States)

    2000-05-01

    The morphology of craters resulting from high irradiance laser ablation of silicon was measured using a white light interferometry microscope. The craters show a dramatic increase in their depth and volume at a certain irradiance, indicating a change in the primary mechanism for mass removal. Laser shadowgraph imaging was used to characterize and differentiate the mass ejection processes for laser irradiances above and below the threshold value. Time-resolved images show distinct features of the mass ejected at irradiances above the threshold value including the presence of micron-sized particulates; this begins at approximately 300 ~ 400 ns after the start of laser heating. The analysis of the phenomena was carried out by using two models: a thermal evaporation model and a phase explosion model. Estimation of the crater depth due to the thermally evaporated mass led to a large underestimation of the crater depth for irradiances above the threshold. Above the threshold irradiance, the possibility of phase explosion was analyzed. Two important results are the thickness of the superheated liquid layer that is close to the critical temperature and the time for vapor bubbles that are generated in the superheated liquid to achieve a critical size. After reaching the critical size, vapor bubbles can grow spontaneously resulting in a violent ejection of liquid droplets from the superheated volume. The effects of an induced transparency, i.e. of liquid silicon turning into an optically transparent liquid dielectric medium, are also introduced. The estimated time for a bubble to reach the critical size is in agreement with the delay time measured for the initiation of large mass ejection. Also, the thickness of the superheated liquid layer that is close to the critical temperature at the time of the beginning of the large mass ejection is representative of the crater depth at the threshold irradiance. These results suggest that phase explosion is a plausible thermal

  8. Optimization of Wireless Power Transfer Systems Enhanced by Passive Elements and Metasurfaces

    Science.gov (United States)

    Lang, Hans-Dieter; Sarris, Costas D.

    2017-10-01

    This paper presents a rigorous optimization technique for wireless power transfer (WPT) systems enhanced by passive elements, ranging from simple reflectors and intermedi- ate relays all the way to general electromagnetic guiding and focusing structures, such as metasurfaces and metamaterials. At its core is a convex semidefinite relaxation formulation of the otherwise nonconvex optimization problem, of which tightness and optimality can be confirmed by a simple test of its solutions. The resulting method is rigorous, versatile, and general -- it does not rely on any assumptions. As shown in various examples, it is able to efficiently and reliably optimize such WPT systems in order to find their physical limitations on performance, optimal operating parameters and inspect their working principles, even for a large number of active transmitters and passive elements.

  9. Ordered macroporous platinum electrode and enhanced mass transfer in fuel cells using inverse opal structure.

    Science.gov (United States)

    Kim, Ok-Hee; Cho, Yong-Hun; Kang, Soon Hyung; Park, Hee-Young; Kim, Minhyoung; Lim, Ju Wan; Chung, Dong Young; Lee, Myeong Jae; Choe, Heeman; Sung, Yung-Eun

    2013-01-01

    Three-dimensional, ordered macroporous materials such as inverse opal structures are attractive materials for various applications in electrochemical devices because of the benefits derived from their periodic structures: relatively large surface areas, large voidage, low tortuosity and interconnected macropores. However, a direct application of an inverse opal structure in membrane electrode assemblies has been considered impractical because of the limitations in fabrication routes including an unsuitable substrate. Here we report the demonstration of a single cell that maintains an inverse opal structure entirely within a membrane electrode assembly. Compared with the conventional catalyst slurry, an ink-based assembly, this modified assembly has a robust and integrated configuration of catalyst layers; therefore, the loss of catalyst particles can be minimized. Furthermore, the inverse-opal-structure electrode maintains an effective porosity, an enhanced performance, as well as an improved mass transfer and more effective water management, owing to its morphological advantages.

  10. Numerical assessment and comparison of heat transfer characteristics of supercritical water in bare tubes and tubes with heat transfer enhancing appendages

    International Nuclear Information System (INIS)

    Farah, Amjad; Harvel, Glenn; Pioro, Igor

    2015-01-01

    Computational Fluid Dynamics (CFD) is a numerical approach to model fluids in multidimensional space using the Navier-Stokes equations and databases of fluid properties to arrive at a full simulation of a fluid dynamics and heat transfer system. A numerical study on heat transfer to supercritical water (SCW) flowing in a vertical tube is carried out using the ANSYS FLUENT code and employing the SST k-ω turbulence model. The 3D mesh consists of a 1/8 section (45deg radially) of a bare tube. The numerical results on wall temperature distributions under normal and deteriorated heat transfer conditions are compared to experimental results. The same geometry is then simulated with an orifice to study the effect of geometrical perturbation on the flow and heat transfer characteristics of SCW. The orifice is placed areas to test the effect on normal, deteriorated and enhanced heat transfer regimes. The flow effects and heat transfer characteristics will be studied around the appendages to arrive at a fundamental understanding of the phenomena related to supercritical water turbulence. (author)

  11. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  12. Enhancement in electron and ion temperatures due to solar flares as measured by SROSS-C2 satellite

    Directory of Open Access Journals (Sweden)

    D. K. Sharma

    2004-06-01

    Full Text Available The observations on the ionospheric electron and ion temperatures (Te and Ti measured by the RPA payload aboard the SROSS-C2 satellite have been used to study the effect of solar flares on ionospheric heating. The data on solar flare has been obtained from the National Geophysical Data Center (NGDC Boulder, Colorado (USA. It has been found that the electron and ion temperatures have a consistent enhancement during the solar flares on the dayside Earth's ionosphere. The estimated enhancement for the average electron temperature is from 1.3 to 1.9 times whereas for ion temperature it is from 1.2 to 1.4 times to the normal days average temperature. The enhancement of ionospheric temperatures due to solar flares is correlated with the diurnal variation of normal days' ionospheric temperatures. The solar flare does not have any significant effect on the nightside ionosphere. A comparison with the temperature obtained from the IRI-95 model also shows a similar enhancement.

  13. Heat Transfer Enhancement Studies in a Circular Tube Fitted with Right-Left Helical Inserts with Spacer

    OpenAIRE

    P. K. Nagarajan; P. Sivashanmugam

    2011-01-01

    Experimental investigation of heat transfer and friction factor characteristics of circular tube fitted with 300 right-left helical screw inserts with 100 mm spacer of different twist ratio has been presented for laminar and turbulent flow.. The experimental data obtained were compared with those obtained from plain tube published data. The heat transfer coefficient enhancement for 300 RL inserts with 100 mm spacer is quite comparable with for 300 R-L inserts. Performance evalu...

  14. Numerical Heat Transfer Studies of a Latent Heat Storage System Containing Nano-Enhanced Phase Change Material

    Directory of Open Access Journals (Sweden)

    S F Hosseinizadeh

    2011-01-01

    Full Text Available The heat transfer enhancement in the latent heat thermal energy storage system through dispersion of nanoparticle is reported. The resulting nanoparticle-enhanced phase change materials (NEPCM exhibit enhanced thermal conductivity in comparison to the base material. The effects of nanoparticle volume fraction and some other parameters such as natural convection are studied in terms of solid fraction and the shape of the solid-liquid phase front. It has been found that higher nanoparticle volume fraction result in a larger solid fraction. The present results illustrate that the suspended nanoparticles substantially increase the heat transfer rate and also the nanofluid heat transfer rate increases with an increase in the nanoparticles volume fraction. The increase of the heat release rate of the NEPCM shows its great potential for diverse thermal energy storage application.

  15. Nuclear overhauser enhancement mediated chemical exchange saturation transfer imaging at 7 Tesla in glioblastoma patients.

    Directory of Open Access Journals (Sweden)

    Daniel Paech

    Full Text Available BACKGROUND AND PURPOSE: Nuclear Overhauser Enhancement (NOE mediated chemical exchange saturation transfer (CEST is a novel magnetic resonance imaging (MRI technique on the basis of saturation transfer between exchanging protons of tissue proteins and bulk water. The purpose of this study was to evaluate and compare the information provided by three dimensional NOE mediated CEST at 7 Tesla (7T and standard MRI in glioblastoma patients. PATIENTS AND METHODS: Twelve patients with newly diagnosed histologically proven glioblastoma were enrolled in this prospective ethics committee-approved study. NOE mediated CEST contrast was acquired with a modified three-dimensional gradient-echo sequence and asymmetry analysis was conducted at 3.3 ppm (B1 = 0.7 µT to calculate the magnetization transfer ratio asymmetry (MTR(asym. Contrast enhanced T1 (CE-T1 and T2-weighted images were acquired at 3T and used for data co-registration and comparison. RESULTS: Mean NOE mediated CEST signal based on MTR(asym values over all patients was significantly increased (p<0.001 in CE-T1 tumor (-1.99 ± 1.22%, tumor necrosis (-1.36 ± 1.30% and peritumoral CEST hyperintensities (PTCH within T2 edema margins (-3.56 ± 1.24% compared to contralateral normal appearing white matter (-8.38 ± 1.19%. In CE-T1 tumor (p = 0.015 and tumor necrosis (p<0.001 mean MTR(asym values were significantly higher than in PTCH. Extent of the surrounding tumor hyperintensity was smaller in eight out of 12 patients on CEST than on T2-weighted images, while four displayed at equal size. In all patients, isolated high intensity regions (0.40 ± 2.21% displayed on CEST within the CE-T1 tumor that were not discernible on CE-T1 or T2-weighted images. CONCLUSION: NOE mediated CEST Imaging at 7 T provides additional information on the structure of peritumoral hyperintensities in glioblastoma and displays isolated high intensity regions within the CE-T1 tumor that cannot be acquired on CE-T1 or T2

  16. Enhancement of fatigue crack growth rates in pressure boundary materials due to light-water-reactor environments

    International Nuclear Information System (INIS)

    VanDerSluys, W.A.; Emanuelson, R.H.

    1988-01-01

    The high level of reliability required of the primary-coolant pressure boundary in a nuclear reactor system leads to a continuing interest in the interaction among the coolant, pressure boundary materials, and service loadings. One area of concern involves the possible enhancement of the growth rate of fatigue cracks due to the coolant. Advances have occurred recently toward a better understanding of the variables influencing the material/environment interactions and methods of addressing this interaction. Sulfur now appears to be one of the principal agents responsible for the observed enhancement of the fatigue crack growth rates in light-water-reactor (LWR) environments. This paper presents the results of investigations on the effect of sulfur in the steel, bulk water environment, and at the crack tip

  17. Energy transfer in plasmonic systems

    International Nuclear Information System (INIS)

    Pustovit, Vitaliy N; Urbas, Augustine M; Shahbazyan, Tigran V

    2014-01-01

    We present our results on energy transfer between donor and acceptor molecules or quantum dots near a plasmonic nanoparticle. In such systems, the Förster resonance energy transfer is strongly modified due to plasmon-mediated coupling between donors and acceptors. The transfer efficiency is determined by a competition between transfer, radiation and dissipation that depends sensitively on system parameters. When donor and accepror spectral bands overlap with dipole surface plasmon resonance, the dominant transfer mechanism is through plasmon-enhanced radiative coupling. When transfer takes place from an ensemble of donors to an acceptor, a cooperative amplification of energy transfer takes place in a wide range of system parameters. (paper)

  18. Enhancement of heterogeneous electron transfer dynamics tuning single-walled carbon nanotube forest height and density

    International Nuclear Information System (INIS)

    Lamberti, Francesco; Ferraro, Davide; Giomo, Monica; Elvassore, Nicola

    2013-01-01

    Electrochemical sensors are growing in number and importance. Surface modifications could enhance charge transfer properties occurring at the interfaces and carbon nanoassemblies is one of the most used strategy to improve sensitivity to measurements. However, well defined protocols of surface modification are needed in order to fabricate electrochemically effective nanostructured sensors. Therefore, we aim at investigating the electrochemical properties of single-walled carbon nanotube (SWCNT) forests as a function of height and nanotube surface density. Height of the forests is accurately controlled tuning the oxidation temperatures in the range of 293–313 K of SWCNTs. The surface density of carbon nanotubes was adjusted developing cysteamine/2-mercaptoethanol (CYS/ME) self-assembled monolayers (SAMs) on gold surfaces at different ratios (1:0, 1:3, 1:10, 1:100, 0:1). Apparent electron transfer rate was analyzed with electrochemical impedance spectroscopy (EIS) and experimental data show that transfer rate constant, k app , increases from 1 × 10 −4 cm/s to 6 × 10 −4 cm/s rising oxidation temperatures (i.e. lowering forest height); therefore forests with reduced height show higher electron transfer rate without significant difference in electrodic reversibility. On the other hand, tuning SWCNT surface density, forests obtained with no ME show optimal Δ peak value of 0.087 ± 0.015 V and highest k app value of 9.15 × 10 −3 cm/s. Surprisingly, electrochemical surface area analysis shows that samples with lower amount of cysteamine have an active surface area three times bigger than samples with 1:3 CYS/ME ratio. Low electrochemical efficiency associated with high active surface may be related to unwanted SWCNT bundles adsorbed on the surface for 1:10 and 1:100 CYS/ME ratio samples as confirmed by AFM morphological characterization. Further investigation shows that a transition from a semi-infinite planar diffusion mechanism to a radial diffusion one takes

  19. RNA interference screen to identify pathways that enhance or reduce nonviral gene transfer during lipofection.

    Science.gov (United States)

    Barker, Gregory A; Diamond, Scott L

    2008-09-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In confirmation tests with single siRNAs, 18 of the 130 hits showed enhanced lipofection with two or more individual siRNAs in the absence of cytotoxicity. Of these confirmed gene targets, we identified five leading candidates, two of which are isoforms of the regulatory subunit of protein phosphatase 2A (PP2A). The best candidate siRNA targeted the PPP2R2C gene and produced a 65% increase in luminescence from lipofection, with a quantitative PCR-validated knockdown of approximately 76%. Flow cytometric analysis confirmed that the silencing of the PPP2R2C gene resulted in an improvement of 10% in transfection efficiency, thereby demonstrating an increase in the number of transfected cells. These results show that an RNA interference (RNAi) high-throughput screen (HTS) can be applied to nonviral gene transfer. We have also demonstrated that siRNAs can be co-delivered with lipofected DNA to increase the transfection efficiency in vitro.

  20. Polarized electrode enhances biological direct interspecies electron transfer for methane production in upflow anaerobic bioelectrochemical reactor.

    Science.gov (United States)

    Feng, Qing; Song, Young-Chae; Yoo, Kyuseon; Kuppanan, Nanthakumar; Subudhi, Sanjukta; Lal, Banwari

    2018-08-01

    The influence of polarized electrodes on the methane production, which depends on the sludge concentration, was investigated in upflow anaerobic bioelectrochemical (UABE) reactor. When the polarized electrode was placed in the bottom zone with a high sludge concentration, the methane production was 5.34 L/L.d, which was 53% higher than upflow anaerobic sludge blanket (UASB) reactor. However, the methane production was reduced to 4.34 L/L.d by placing the electrode in the upper zone of the UABE reactor with lower sludge concentration. In the UABE reactor, the methane production was mainly improved by the enhanced biological direct interspecies electron transfer (bDIET) pathway, and the methane production via the electrode was a minor fraction of less than 4% of total methane production. The polarized electrodes that placed in the bottom zone with a high sludge concentration enhance the bDIET for methane production in the UABE reactor and greatly improve the methane production. Copyright © 2018. Published by Elsevier Ltd.

  1. A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility

    International Nuclear Information System (INIS)

    Bi, Zicheng; Kan, Tianze; Mi, Chunting Chris; Zhang, Yiming; Zhao, Zhengming; Keoleian, Gregory A.

    2016-01-01

    Highlights: • Reviewed technology advances and sustainability performance of WPT for EVs. • Identified the technical bottlenecks for improving system performance. • Highlighted system performance of case studies and real-world demonstrations. • Evaluated energy, environmental, economic, and societal impacts of WPT deployment. • Defined WPT challenges and opportunities for enhancing future sustainable mobility. - Abstract: Wireless power transfer (WPT), which transmits power by an electromagnetic field across an intervening space, provides the prospect of new opportunities for electric vehicles (EVs) to enhance sustainable mobility. This review article evaluates WPT technology for EV applications from both technical and sustainability perspectives. The objectives of this review include: (1) to present the state-of-the-art technical progress and research bottlenecks in WPT development and applications in the transportation sector; (2) to characterize the demonstrations of the real-world deployment of WPT EV systems; and (3) to evaluate the sustainable performance and identify challenges and opportunities for improvement. From the technical perspective, progress on coil design, compensation topologies, and power electronics converters and control methods are reviewed with a focus on system performance. From the sustainability perspective, performance is defined in terms of energy, environmental, and economic metrics, and policy drivers and issues of health and safety are also examined.

  2. Light-Enhanced Antibacterial Activity of Graphene Oxide, Mainly via Accelerated Electron Transfer.

    Science.gov (United States)

    Chong, Yu; Ge, Cuicui; Fang, Ge; Wu, Renfei; Zhang, He; Chai, Zhifang; Chen, Chunying; Yin, Jun-Jie

    2017-09-05

    Before graphene derivatives can be exploited as next-generation antimicrobials, we must understand their behavior under environmental conditions. Here, we demonstrate how exposure to simulated sunlight significantly enhances the antibacterial activity of graphene oxide (GO) and reveal the underlying mechanism. Our measurements of reactive oxygen species (ROS) showed that only singlet oxygen ( 1 O 2 ) is generated by GO exposed to simulated sunlight, which contributes only slightly to the oxidation of antioxidant biomolecules. Unexpectedly, we find the main cause of oxidation is light-induced electron-hole pairs generated on the surface of GO. These light-induced electrons promote the reduction of GO, introducing additional carbon-centered free radicals that may also enhance the antibacterial activities of GO. We conclude that GO-mediated oxidative stress mainly is ROS-independent; simulated sunlight accelerates the transfer of electrons from antioxidant biomolecules to GO, thereby destroying bacterial antioxidant systems and causing the reduction of GO. Our insights will help support the development of graphene for antibacterial applications.

  3. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    International Nuclear Information System (INIS)

    Lu Qin; Niu Huanzhang; Zhu Guangyu; An Yanli; Qiu Dinghong; Teng Gaojun

    2007-01-01

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 μg)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 μg, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  4. Investigation of transfection efficacy with transcatheter arterial transporting transferring to enhance p53 gene

    Energy Technology Data Exchange (ETDEWEB)

    Qin, Lu; Huanzhang, Niu; Guangyu, Zhu; Yanli, An; Dinghong, Qiu; Gaojun, Teng [Radiologic Department, Zhongda Hospital, Southeast Univ., Nanjing (China)

    2007-02-15

    Objective: To investigate the function of transferrin-DNA complex, transported by transferrin(Tf) and trans-arterial injection via interventional approach be the duel-target-orientated delivery and the transferring into malignant cells to get more effective therapy. Methods: p53-LipofectAMINE ligand with different concentrations of Tf (0, 10, 25, 50, 100 {mu}g)transfected the 4 strains including LM6,Hep3B,YY and L02 in vitro to evaluate the gene transfection efficiency through western blot. Then, after setting up the VX2 hepatocarcinoma models, we delivered the Tf-p53-LipofectAMlNE complex into the hepatic arteries via interventional techniques to analyse the transfection efficiency in vivo. Results: Tf, within the range of l0 100 {mu}g, could increase gene transfection efficiency mediated by liposome, and the efficiency increases with the raise of Tf concentration. Combination with interventional technique to inject Tf-DNA complex into tumor arteries, gene transfection efficiency was enhanced in rabbit models. Conclusion: Tf can enhance gene-liposome transfection efficiency, furthermore with combination of interventional catheter technique, there would be a potential duel-target-orientated gene therapy method. (authors)

  5. Experimental validation of energy parameters in parabolic trough collector with plain absorber and analysis of heat transfer enhancement techniques

    Science.gov (United States)

    Bilal, F. R.; Arunachala, U. C.; Sandeep, H. M.

    2018-01-01

    The quantum of heat loss from the receiver of the Parabolic Trough Collector is considerable which results in lower thermal efficiency of the system. Hence heat transfer augmentation is essential which can be attained by various techniques. An analytical model to evaluate the system with bare receiver performance was developed using MATLAB. The experimental validation of the model resulted in less than 5.5% error in exit temperature using both water and thermic oil as heat transfer fluid. Further, heat transfer enhancement techniques were incorporated in the model which included the use of twisted tape inserts, nanofluid, and a combination of both for further enhancement. It was observed that the use of evacuated glass cover in the existing setup would increase the useful heat gain up to 5.3%. Fe3O4/H2O nanofluid showed a maximum enhancement of 56% in the Nusselt number for the volume concentration of 0.6% at highest Reynolds number. Similarly, twisted tape turbulators (with twist ratio of 2) taken alone with water exhibited 59% improvement in Nusselt number. Combining both the heat transfer augmentation techniques at their best values revealed the Nusselt number enhancement up to 87%. It is concluded that, use of twisted tape with water is the best method for heat transfer augmentation since it gives the maximum effective thermal efficiency amongst all for the range of Re considered. The first section in your paper

  6. Polarization transfer in x-ray transitions due to photoionization in highly charged copper-like ions

    Science.gov (United States)

    Ma, Kun; Chen, Zhan-Bin; Xie, Lu-You; Dong, Chen-Zhong

    2018-02-01

    Using the density matrix theory and the multi-configuration Dirac-Fock method, the 3{d}3/2 subshell photoionization of highly charged ions is studied, together with their subsequent radiative decay. The effects of polarization transfer on the linear polarization and angular distribution of the 3{d}94{s}2{}2{D}3/2\\to 3{d}104p{}2{P}1/2 characteristic line photoemission for selected Cu-like Zn+, Ba27+, {{{W}}}45+, and {{{U}}}63+ ions are investigated. Our results show that the polarization transfer, arising from the originally polarized incident light, may lead to a considerable change in the alignment parameters and the polarization properties of the radiation, the character of which is highly sensitive to the initial photon polarization, yet virtually independent of the photon energy. These characteristics are very similar to those of the electron bremsstrahlung process reported by Märtin et al (2012 Phys. Rev. Lett. 108 264801). The present results are compared with available experimental results and show a good quantitative agreement.

  7. Eden-Hybinette and Pectoralis Major Transfer for Recurrent Shoulder Instability Due to Failed Latarjet and Chronic Subscapularis Rupture.

    Science.gov (United States)

    Li, Xinning; Cusano, Antonio; Eichinger, Josef

    2017-01-01

    Shoulder dislocations are a common injury, with anterior shoulder dislocation among male patients being the most common presentation. A patient with recurrent shoulder instability, anterior-superior escape, and chronic subscapularis tendon rupture following multiple shoulder stabilization surgeries presents the surgeon with a complex and challenging case. This report describes a 40-year-old man with an extensive left shoulder history that included a failed Latarjet procedure, an irreparable, chronic subscapularis tear with grade 4 Goutallier fatty infiltration, and associated anterior-superior escape. Given his marked dysfunction, weakness, pain, and recurrent instability in the absence of glenohumeral arthritis, he underwent an open Eden-Hybinette procedure (iliac crest autograft), a pectoralis major transfer, and an anterior capsule repair. The patient returned to his previous work activities without limitations. To the authors' knowledge, this is the first report describing a combination of anterior glenoid bone grafting with a full pectoralis major muscle transfer for a patient with chronic subscapularis rupture and anterior-superior escape after a failed Latarjet procedure with minimum glenoid bone loss. Furthermore, the authors provide a biomechanical rationale for the reconstruction used for this problem. [Orthopedics. 2017; 40(1):e182-e187.]. Copyright 2016, SLACK Incorporated.

  8. Emittance growth of an electron beam in a periodic channel due to transfer of longitudinal energy to transverse energy

    International Nuclear Information System (INIS)

    Carlsten, B.E.

    1998-01-01

    Most discussions about emittance growth and halo production for an intense electron beam in a periodic focusing channel assume that the total transverse energy is constant (or, in other words, that the transverse and longitudinal Hamiltonians are separable). Previous analyses that include variations in the total transverse energy are typically based on a transverse-longitudinal coupling that is either from two-dimensional space-charge modes or particle-particle Coulomb collisions. With the space-charge modes, the energy exchange between the transverse and longitudinal directions is periodic, and of constant magnitude. The total energy transfer for the case of the Coulomb collisions is negligible. This limited increase of energy in the transverse direction from these other effects will limit the amount of transverse emittance growth possible. In this paper, the authors investigate a mechanism in which there is a continual transfer of energy from the longitudinal direction to the transverse direction, leading to essentially unlimited potential transverse emittance growth. This mechanism is caused by an asymmetry of the beam's betatron motion within the periodic focusing elements. This analysis is based on thermodynamic principles. This mechanism exists for both solenoids and quadrupole focusing, although only solenoid focusing is studied here

  9. Enhanced non-radiative energy transfer in hybrid III-nitride structures

    International Nuclear Information System (INIS)

    Smith, R. M.; Athanasiou, M.; Bai, J.; Liu, B.; Wang, T.

    2015-01-01

    The effect of surface states has been investigated in hybrid organic/inorganic white light emitting structures that employ high efficiency, nearfield non-radiative energy transfer (NRET) coupling. The structures utilize blue emitting InGaN/GaN multiple quantum well (MQW) nanorod arrays to minimize the separation with a yellow emitting F8BT coating. Surface states due to the exposed III-nitride surfaces of the nanostructures are found to reduce the NRET coupling rate. The surface states are passivated by deposition of a silicon nitride layer on the III-nitride nanorod surface leading to reduced surface recombination. A low thickness surface passivation is shown to increase the NRET coupling rate by 4 times compared to an un-passivated hybrid structure. A model is proposed to explain the increased NRET rate for the passivated hybrid structures based on the reduction in surface electron depletion of the passivated InGaN/GaN MQW nanorods surfaces

  10. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    International Nuclear Information System (INIS)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue; Pang, Daxin; Ouyang, Hongsheng

    2011-01-01

    Highlights: → Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. → The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. → A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 μg/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  11. Vitamin C enhances in vitro and in vivo development of porcine somatic cell nuclear transfer embryos

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Yongye; Tang, Xiaochun; Xie, Wanhua; Zhou, Yan; Li, Dong; Zhou, Yang; Zhu, Jianguo; Yuan, Ting; Lai, Liangxue [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Pang, Daxin, E-mail: pdx@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China); Ouyang, Hongsheng, E-mail: ouyh@jlu.edu.cn [Jilin Province Key Laboratory of Animal Embryo Engineering, College of Animal Science and Veterinary Medicine, Jilin University, 5333 Xi An DaLu, Changchun 130062 (China)

    2011-07-29

    Highlights: {yields} Report for the first time that vitamin C has a beneficial effect on the development of porcine SCNT embryos. {yields} The level of acH4K5 and Oct4 expression at blastocyst-stage was up-regulated after treatment. {yields} A higher rate of gestation and increased number of piglets born were harvested in the treated group. -- Abstract: The reprogramming of differentiated cells into a totipotent embryonic state through somatic cell nuclear transfer (SCNT) is still an inefficient process. Previous studies revealed that the generation of induced pluripotent stem (iPS) cells from mouse and human fibroblasts could be significantly enhanced with vitamin C treatment. Here, we investigated the effects of vitamin C, to our knowledge for the first time, on the in vitro and in vivo development of porcine SCNT embryos. The rate of blastocyst development in SCNT embryos treated with 50 {mu}g/mL vitamin C 15 h after activation (36.0%) was significantly higher than that of untreated SCNT embryos (11.5%). The enhanced in vitro development rate of vitamin C-treated embryos was associated with an increased acetylation level of histone H4 lysine 5 and higher Oct4, Sox2 and Klf4 expression levels in blastocysts, as determined by real-time PCR. In addition, treatment with vitamin C resulted in an increased pregnancy rate in pigs. These findings suggest that treatment with vitamin C is beneficial for enhancement of the in vitro and in vivo development of porcine SCNT embryos.

  12. Experimental study on the convective heat transfer enhancement in single-phase steam flow by a support grid

    International Nuclear Information System (INIS)

    Kim, Byoung Jae; Kim, Kihwan; Kim, Dong-Eok; Youn, Young-Jung; Park, Jong-Kuk; Moon, Sang-Ki; Song, Chul-Hwa

    2014-01-01

    Highlights: • The convective heat transfer enhancement by support grids is investigated. • Experiments were performed in a square array 2 × 2 rod bundle. • The enhancement was affected not only by the blockage ratio also by the Reynolds number. • For low Reynolds numbers, the enhancement depends on the Reynolds number (Re). • For high Reynolds numbers, the enhancement is nearly independent of Re. - Abstract: Single-phase flow occurs in the fuel rod bundle of a pressurized water reactor, during the normal operation period or at the early stage of the reflood phase in a loss-of-coolant accident scenario. In the former period, the flow is single-phase water flow, but in the latter case, the flow is single-phase steam flow. Support grids are required to maintain a proper geometry configuration of fuel rods within nuclear fuel assemblies. This study was conducted to elucidate the effects of support grids on the convective heat transfer in single-phase steam flow. Experiments were made in a square array 2 × 2 rod bundle. The four electrically-heating rods were maintained by support grids with mixing vanes creating a swirl flow. Two types of support grids were considered in this study. The two types are geometrically similar except the blockage ratio by different mixing vane angles. For all test runs, 2 kW power was supplied to each rod. The working fluid was superheated steam with Re = 2,301–39,594. The axial profile of the rod surface temperatures was measured, and the convective heat transfer enhancement by the presence of the support grids was examined. The peak heat transfer enhancement was a function of not only the blockage ratio but also the Reynolds number. Given the same blockage ratio, the heat transfer enhancement was sensitive to the Reynolds number in laminar flow, whereas it was nearly independent of the Reynolds number in turbulent flow

  13. Development of heat transfer enhancement techniques for external cooling of an advanced reactor vessel

    Science.gov (United States)

    Yang, Jun

    Nucleate boiling is a well-recognized means for passively removing high heat loads (up to ˜106 W/m2) generated by a molten reactor core under severe accident conditions while maintaining relatively low reactor vessel temperature (Critical Heat Flux (CHF), becomes the key to the success of external passive cooling of reactor vessel undergoing core disrupture accidents. In the present study, two boiling heat transfer enhancement methods have been proposed, experimentally investigated and theoretically modelled. The first method involves the use of a suitable surface coating to enhance downward-facing boiling rate and CHF limit so as to substantially increase the possibility of reactor vessel surviving high thermal load attack. The second method involves the use of an enhanced vessel/insulation design to facilitate the process of steam venting through the annular channel formed between the reactor vessel and the insulation structure, which in turn would further enhance both the boiling rate and CHF limit. Among the various available surface coating techniques, metallic micro-porous layer surface coating has been identified as an appropriate coating material for use in External Reactor Vessel Cooling (ERVC) based on the overall consideration of enhanced performance, durability, the ease of manufacturing and application. Since no previous research work had explored the feasibility of applying such a metallic micro-porous layer surface coating on a large, downward facing and curved surface such as the bottom head of a reactor vessel, a series of characterization tests and experiments were performed in the present study to determine a suitable coating material composition and application method. Using the optimized metallic micro-porous surface coatings, quenching and steady-state boiling experiments were conducted in the Sub-scale Boundary Layer Boiling (SBLB) test facility at Penn State to investigate the nucleate boiling and CHF enhancement effects of the surface

  14. Estimation of tumour dose enhancement due to gold nanoparticles during typical radiation treatments: a preliminary Monte Carlo study

    International Nuclear Information System (INIS)

    Cho, S H

    2005-01-01

    A recent mice study demonstrated that gold nanoparticles could be safely administered and used to enhance the tumour dose during radiation therapy. The use of gold nanoparticles seems more promising than earlier methods because of the high atomic number of gold and because nanoparticles can more easily penetrate the tumour vasculature. However, to date, possible dose enhancement due to the use of gold nanoparticles has not been well quantified, especially for common radiation treatment situations. Therefore, the current preliminary study estimated this dose enhancement by Monte Carlo calculations for several phantom test cases representing radiation treatments with the following modalities: 140 kVp x-rays, 4 and 6 MV photon beams, and 192 Ir gamma rays. The current study considered three levels of gold concentration within the tumour, two of which are based on the aforementioned mice study, and assumed either no gold or a single gold concentration level outside the tumour. The dose enhancement over the tumour volume considered for the 140 kVp x-ray case can be at least a factor of 2 at an achievable gold concentration of 7 mg Au/g tumour assuming no gold outside the tumour. The tumour dose enhancement for the cases involving the 4 and 6 MV photon beams based on the same assumption ranged from about 1% to 7%, depending on the amount of gold within the tumour and photon beam qualities. For the 192 Ir cases, the dose enhancement within the tumour region ranged from 5% to 31%, depending on radial distance and gold concentration level within the tumour. For the 7 mg Au/g tumour cases, the loading of gold into surrounding normal tissue at 2 mg Au/g resulted in an increase in the normal tissue dose, up to 30%, negligible, and about 2% for the 140 kVp x-rays, 6 MV photon beam, and 192 Ir gamma rays, respectively, while the magnitude of dose enhancement within the tumour was essentially unchanged. (note)

  15. Factors enhancing Agrobacterium tumefaciens-mediated gene transfer in peanut (Arachis hypogaea L.)

    Science.gov (United States)

    Egnin, M.; Mora, A.; Prakash, C. S.; Mortley, D. G. (Principal Investigator)

    1998-01-01

    Parameters enhancing Agrobacterium-mediated transfer of foreign genes to peanut (Arachis hypogaea L.) cells were investigated. An intron-containing beta-glucuronidase uidA (gusA) gene under the transcriptional control of CaMV 35S promoter served as a reporter. Transformation frequency was evaluated by scoring the number of sectors expressing GUS activity on leaf and epicotyl explants. The 'Valencia Select' market type cv. New Mexico was more amenable to Agrobacterium transformation than the 'runner' market type cultivars tested (Florunner, Georgia Runner, Sunrunner, or South Runner). The disarmed Agrobacterium tumefaciens strain EHA101 was superior in facilitating the transfer of uidA gene to peanut cells compared to the disarmed strain C58. Rinsing of explants in half-strength Murashige-Skoog (MS) media prior to infection by Agrobacterium significantly increased the transformation efficiency. The use of cocultivation media containing high auxin [1.0 or 2.5 mg/l (4.53 micromolar or 11.31 micromolar) 2,4-D] and low cytokinin [0.25 or 0.5 mg/l (1.0 micromolar or 2.0 micromolar) BA] promoted higher transformation than either hormone-free or thidiazuron-containing medium. The polarity of the epicotyl during cocultivation was important; explants incubated in an inverted (vertically) manner followed by a vertically upright position resulted in improved transformation and shoot regeneration frequencies. Preculture of explants in MS basal medium or with 2.5 mg thidiazuron per l prior to infection drastically decreased the number of transformed zones. The optimized protocol was used to obtain transient transformation frequencies ranging from 12% to 36% for leaf explants, 15% to 42% for epicotyls. Initial evidence of transformation was obtained by polymerase chain reaction and subsequently confirmed by Southern analysis of regenerated plants.

  16. Bortezomib Enhances the Antitumor Effects of Interferon-β Gene Transfer on Melanoma Cells.

    Science.gov (United States)

    Rossi, Ursula A; Finocchiaro, Liliana M E; Glikin, Gerardo C

    2017-01-01

    Malignant melanoma is a fast growing form of skin cancer with increasing global incidence. Clinically, canine malignant melanoma and human melanoma share comparable treatment-resistances, metastatic phenotypes and site selectivity. Both interferon-β (IFNβ) and bortezomib (BTZ) display inhibitory activities on melanoma cells. Here, we evaluated the cytotoxic effects of the combination of BTZ and IFNβ gene lipofection on cultured melanoma cell lines. Cell viability determined by the acid phosphatase method, cell migration mesasured by the wound healing assay, DNA fragmentation and cell cycle by flow cytometry after propidium iodide staining and reactive oxygen species (ROS) production by H2DCF-DA fluorescence. Four canine mucosal (Ak, Br, Bk and Ol) and two human dermal (A375 and SB2) melanoma cell lines were assayed. BTZ sub-pharmacological concentrations (5 nM) enhanced the cytotoxic effects of IFNβ transgene expression on melanoma cells monolayers and spheroids. The combination was also more effective than the single treatments when assayed for clonogenic survival and cell migration. The combined treatment produced a significant raise of apoptosis evidenced by DNA fragmentation as compared to either BTZ or IFNβ gene lipofection single treatments. Furthermore, BTZ significantly increased the intracellular ROS generation induced by IFNβ gene transfer in melanoma cells, an effect that was reversed by the addition of the ROS inhibitor N-acetyl-L-cystein. The present work encourages further studies about the potential of the combination of interferon gene transfer with proteasome inhibitors as a new combined therapy for malignant melanoma, both in veterinary and/or human clinical settings. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  17. Interactive dual-volume rendering visualization with real-time fusion and transfer function enhancement

    Science.gov (United States)

    Macready, Hugh; Kim, Jinman; Feng, David; Cai, Weidong

    2006-03-01

    Dual-modality imaging scanners combining functional PET and anatomical CT constitute a challenge in volumetric visualization that can be limited by the high computational demand and expense. This study aims at providing physicians with multi-dimensional visualization tools, in order to navigate and manipulate the data running on a consumer PC. We have maximized the utilization of pixel-shader architecture of the low-cost graphic hardware and the texture-based volume rendering to provide visualization tools with high degree of interactivity. All the software was developed using OpenGL and Silicon Graphics Inc. Volumizer, tested on a Pentium mobile CPU on a PC notebook with 64M graphic memory. We render the individual modalities separately, and performing real-time per-voxel fusion. We designed a novel "alpha-spike" transfer function to interactively identify structure of interest from volume rendering of PET/CT. This works by assigning a non-linear opacity to the voxels, thus, allowing the physician to selectively eliminate or reveal information from the PET/CT volumes. As the PET and CT are rendered independently, manipulations can be applied to individual volumes, for instance, the application of transfer function to CT to reveal the lung boundary while adjusting the fusion ration between the CT and PET to enhance the contrast of a tumour region, with the resultant manipulated data sets fused together in real-time as the adjustments are made. In addition to conventional navigation and manipulation tools, such as scaling, LUT, volume slicing, and others, our strategy permits efficient visualization of PET/CT volume rendering which can potentially aid in interpretation and diagnosis.

  18. Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning

    KAUST Repository

    Nurlaela, Ela; Wang, Hai; Shinagawa, Tatsuya; Flanagan, Sean; Ould-Chikh, Samy; Qureshi, Muhammad; Mics, Zoltan; Sautet, Philippe; Le Bahers, Tangui; Canovas, Enrique; Bonn, Mischa; Takanabe, Kazuhiro

    2016-01-01

    Understanding photophysical and electrocatalytic processes during photocatalysis in a powder suspension system is crucial for developing efficient solar energy conversion systems. We report a substantial enhancement by a factor of 3 in photocatalytic effi-ciency for the oxygen evolution reaction (OER) by adding trace amounts (~0.05 wt%) of noble metals (Rh or Ru) to a 2 wt% cobalt oxide-modified Ta3N5 photocatalyst particulate. The optimized system exhibited high quantum efficiencies (QEs) of up to 28 and 8.4% at 500 and 600 nm in 0.1 M Na2S2O8 at pH 14. By isolating the electrochemical components to generate doped cobalt oxide electrodes, the electrocatalytic activity of cobalt oxide when doped with Ru or Rh was improved compared with cobalt oxide, as evidenced by the onset shift for electrochemical OER. Density functional theory (DFT) calculation shows that the ef-fects of a second metal addition perturbs the electronic structure and redox properties in such a way that both hole transfer kinetics and electrocatalytic rates improve. Time resolved terahertz spectroscopy (TRTS) measurement provides evidence of long-lived electron populations (>1 ns; with mobilities μe ~0.1-3 cm2 V-1 s-1), which are not perturbed by the addition of CoOx-related phases. Furthermore, we find that Ta3N5 phases alone suffer ultrafast hole trapping (within 10 ps); the CoOx and M-CoOx decorations most likely induce a kinetic competition between hole transfer toward the CoOx-related phases and trapping in the Ta3N5 phase, which is consistent with the improved OER rates. The present work not only provides a novel way to improve electrocatalytic and photocatalytic performance but also gives additional tools and insight to understand the characteristics of photocatalysts that can be used in a suspension system.

  19. Enhanced kinetics of hole transfer and electrocatalysis during photocatalytic oxygen evolution by cocatalyst tuning

    KAUST Repository

    Nurlaela, Ela

    2016-05-23

    Understanding photophysical and electrocatalytic processes during photocatalysis in a powder suspension system is crucial for developing efficient solar energy conversion systems. We report a substantial enhancement by a factor of 3 in photocatalytic effi-ciency for the oxygen evolution reaction (OER) by adding trace amounts (~0.05 wt%) of noble metals (Rh or Ru) to a 2 wt% cobalt oxide-modified Ta3N5 photocatalyst particulate. The optimized system exhibited high quantum efficiencies (QEs) of up to 28 and 8.4% at 500 and 600 nm in 0.1 M Na2S2O8 at pH 14. By isolating the electrochemical components to generate doped cobalt oxide electrodes, the electrocatalytic activity of cobalt oxide when doped with Ru or Rh was improved compared with cobalt oxide, as evidenced by the onset shift for electrochemical OER. Density functional theory (DFT) calculation shows that the ef-fects of a second metal addition perturbs the electronic structure and redox properties in such a way that both hole transfer kinetics and electrocatalytic rates improve. Time resolved terahertz spectroscopy (TRTS) measurement provides evidence of long-lived electron populations (>1 ns; with mobilities μe ~0.1-3 cm2 V-1 s-1), which are not perturbed by the addition of CoOx-related phases. Furthermore, we find that Ta3N5 phases alone suffer ultrafast hole trapping (within 10 ps); the CoOx and M-CoOx decorations most likely induce a kinetic competition between hole transfer toward the CoOx-related phases and trapping in the Ta3N5 phase, which is consistent with the improved OER rates. The present work not only provides a novel way to improve electrocatalytic and photocatalytic performance but also gives additional tools and insight to understand the characteristics of photocatalysts that can be used in a suspension system.

  20. SU-E-T-279: Dose Enhancement Effect Due to Cerium Oxide Nanoparticles Employed as Radiation Protectants

    Energy Technology Data Exchange (ETDEWEB)

    Ouyang, Z; Altundal, Y; Sajo, E [Univ Massachusetts Lowell, Lowell, MA (United States); Ngwa, W [Univ Massachusetts Lowell, Lowell, MA (United States); Brigham and Women’s Hospital, Dana Farber Cancer Institute, Harvard Medical, Boston, MA (United States)

    2015-06-15

    Purpose: The goal of radiotherapy is to maximize radiation dose to diseased cells while minimizing radiation damage to normal tissues. In order to minimize damage to normal tissues, cerium oxide nanoparticles (nanoceria) are currently considered as a radioprotectant. However, some studies have reported concerns that nanoceria can also lead to radiotherapy dose enhancement due to the high atomic number of cerium, especially when used in conjunction with kV energy and brachytherapy sources. In this study, this concern is investigated to determine if the concentrations of nanoceria employed in in-vivo studies to confer radioprotection can engender a significant dose enhancement. Methods: Radiation with energies ranging from 50kVp to 140kVp is investigated in this work along with brachytherapy sources Pd-103 and I-125. A previously established theoretical model is used to calculate the dose enhancement factor (DEF). In this model, each cell is assumed to be a voxel of size (10 µm, 10 µm, 10 µm) with nanoceria homogeneously distributed among them. Electron energy loss formula of Cole is used to calculate energy (and hence dose) deposited by photoelectrons and Auger electrons in each tissue voxel due to irradiation of nanoceria. The DEF is defined as the ratio of the dose with and without nanoparticles. Results: DEF calculation results are smaller than 1.02 with dosages of nanoceria smaller than 0.645 mg/g, which is shown to be sufficiently protective by some previous in-vitro and in-vivo experiments. The brachytherapy sources show higher DEF’s than kVp radiations. DEF peaks are consistent with K shell and L shell energies of cerium, 40 keV and 6 keV, respectively. Conclusion: The results show that for sufficiently radioprotective concentrations of nanoceria, there will be minimal DEF when used in conjunction with clinically applicable kV energy radiotherapy sources or brachytherapy sources.

  1. Integrated CFD investigation of heat transfer enhancement using multi-tray core catcher in SFR

    International Nuclear Information System (INIS)

    Rakhi; Sharma, Anil Kumar; Velusamy, K.

    2017-01-01

    Highlights: • Heat transfer enhancement using multi-tray core catcher for SFR is investigated. • The capability of a single core collector tray is estimated. • Double and triple collector trays with innovative designs is discussed. • Provision of openings in the trays contributed to enhanced natural circulation. - Abstract: To render future SFR more robust and safe, certain BDBE have been considered in the recent years. A Core Disruptive Accident leading to a whole core meltdown scenario has gained the interest of researchers. Various design concepts and safety measures have been suggested and incorporated in design to address such a low probability scenario. A core catcher concept, in particular, has proved to be inevitable as an in-vessel core retention device in SFR for safe retention of core debris arising out after the severe accident. This study aims to analyse the cooling capability of the innovative design concept of core catcher to remove decay heat of degraded core after the accident. First, the capability of single collection tray is established and then the study is extended to two and three collection trays with different design concepts. Transient forms of governing equations of mass, momentum and energy conservations along with k-ε turbulence model are solved by finite volume based CFD solver. Boussinesq approximation is invoked to model buoyancy in sodium. The study shows that a single collection tray is capable of removing up to 20 MW decay heat load in a typical 500 MWe pool type SFR. Further, studies are carried out to improve the natural circulation of sodium around the source, in the lower plenum and to distribute core debris of the whole core to multiple collection trays. It is found that the double and triple collection trays can accommodate decay loads up to 29 MW. Provision of openings in the collection trays has proved to be effective in improving the heat transfer and sodium flow as well as in distributing the core debris to the

  2. Improvement in the photocurrent collection due to enhanced absorption of light by synthesizing staggered layers of silver nanoclusters in silicon

    International Nuclear Information System (INIS)

    Dhoubhadel, Mangal S.; Lakshantha, Wickramaarachchige J.; Rout, Bibhudutta; McDaniel, Floyd D.; Lightbourne, Sherard; D’Souza, Francis

    2015-01-01

    The quest for increased efficiency of solar cells has driven the research in synthesizing photovoltaic cells involving Si based materials. The efficiency of solar cells involving crystalline Si is stalled around 25% for the last decade. Recently Shi et al. had shown that light trapping can be enhanced by fabricating double layers of Ag nanoparticles in silicon based materials. The light trapping is critically important in a photo devices such as solar cells in order to increase light absorption and efficiency. In the present work, we report enhancement in the absorption of light in Ag ion implanted Si substrates. Multiple low energies Ag ions, ranging from ∼80 keV to ∼30 keV, with different fluences ranging from ∼1 × 10 16 to ∼1 × 10 17 atoms/cm 2 were sequentially implanted into commercially available Si (100) substrates followed by post-thermal annealing to create different sizes of Ag nanoclusters (NC) at different depths in the top 100 nm of the Si. The absorbance of light is increased in Ag implanted Si with a significant increase in the current collection in I-V (current-voltage) photo switching measurements. The experimental photovoltaic cells fabricated with the Ag-implanted Si samples were optically characterized under AM (air mass) 1.5 solar radiation conditions (∼1.0 kW/m 2 ). An enhancement in the charge collection were measured in the annealed samples, where prominent Ag NCs were formed in the Si matrix compared to the as-implanted samples with amorphous layers. We believe the enhancement of the photo-current density from the samples with Ag NC is due to the improvement of efficiency of charge collection of e − -h + pairs produced by the incident light

  3. Heat transfer enhancement in free convection flow of CNTs Maxwell nanofluids with four different types of molecular liquids.

    Science.gov (United States)

    Aman, Sidra; Khan, Ilyas; Ismail, Zulkhibri; Salleh, Mohd Zuki; Al-Mdallal, Qasem M

    2017-05-26

    This article investigates heat transfer enhancement in free convection flow of Maxwell nanofluids with carbon nanotubes (CNTs) over a vertically static plate with constant wall temperature. Two kinds of CNTs i.e. single walls carbon nanotubes (SWCNTs) and multiple walls carbon nanotubes (MWCNTs) are suspended in four different types of base liquids (Kerosene oil, Engine oil, water and ethylene glycol). Kerosene oil-based nanofluids are given a special consideration due to their higher thermal conductivities, unique properties and applications. The problem is modelled in terms of PDE's with initial and boundary conditions. Some relevant non-dimensional variables are inserted in order to transmute the governing problem into dimensionless form. The resulting problem is solved via Laplace transform technique and exact solutions for velocity, shear stress and temperature are acquired. These solutions are significantly controlled by the variations of parameters including the relaxation time, Prandtl number, Grashof number and nanoparticles volume fraction. Velocity and temperature increases with elevation in Grashof number while Shear stress minimizes with increasing Maxwell parameter. A comparison between SWCNTs and MWCNTs in each case is made. Moreover, a graph showing the comparison amongst four different types of nanofluids for both CNTs is also plotted.

  4. Signal enhancement due to high-Z nanofilm electrodes in parallel plate ionization chambers with variable microgaps.

    Science.gov (United States)

    Brivio, Davide; Sajo, Erno; Zygmanski, Piotr

    2017-12-01

    We developed a method for measuring signal enhancement produced by high-Z nanofilm electrodes in parallel plate ionization chambers with variable thickness microgaps. We used a laboratory-made variable gap parallel plate ionization chamber with nanofilm electrodes made of aluminum-aluminum (Al-Al) and aluminum-tantalum (Al-Ta). The electrodes were evaporated on 1 mm thick glass substrates. The interelectrode air gap was varied from 3 μm to 1 cm. The gap size was measured using a digital micrometer and it was confirmed by capacitance measurements. The electric field in the chamber was kept between 0.1 kV/cm and 1 kV/cm for all the gap sizes by applying appropriate compensating voltages. The chamber was exposed to 120 kVp X-rays. The current was measured using a commercial data acquisition system with temporal resolution of 600 Hz. In addition, radiation transport simulations were carried out to characterize the dose, D(x), high-energy electron current, J(x), and deposited charge, Q(x), as a function of distance, x, from the electrodes. A deterministic method was selected over Monte Carlo due to its ability to produce results with 10 nm spatial resolution without stochastic uncertainties. Experimental signal enhancement ratio, SER(G) which we defined as the ratio of signal for Al-air-Ta to signal for Al-air-Al for each gap size, was compared to computations. The individual contributions of dose, electron current, and charge deposition to the signal enhancement were determined. Experimental signals matched computed data for all gap sizes after accounting for several contributions to the signal: (a) charge carrier generated via ionization due to the energy deposited in the air gap, D(x); (b) high-energy electron current, J(x), leaking from high-Z electrode (Ta) toward low-Z electrode (Al); (c) deposited charge in the air gap, Q(x); and (d) the decreased collection efficiency for large gaps (>~500 μm). Q(x) accounts for the electrons below 100 eV, which are

  5. On the Fully-Developed Heat Transfer Enhancing Flow Field in Sinusoidally, Spirally Corrugated Tubes Using Computational Fluid Dynamics

    DEFF Research Database (Denmark)

    Hærvig, Jakob; Sørensen, Kim; Condra, Thomas Joseph

    2017-01-01

    A numerical study has been carried out to investigate heat transfer enhancing flow field in 28 geometrically different sinusoidally, spirally corrugated tubes. To vary the corrugation, the height of corrugation e/D and the length between two successive corrugated sections p/D are varied in the ra...

  6. Supercapacitive Biosolar Cell Driven by Direct Electron Transfer between Photosynthetic Membranes and CNT Networks with Enhanced Performance

    DEFF Research Database (Denmark)

    Pankratov, Dmitry; Pankratova, Galina; Dyachkova, Tatiana P.

    2017-01-01

    enabled a 1.5-fold enhancement in photocurrent density. This system offers more advantages including a reduced charge-transfer resistance, a lower open-circuit potential, and an improved cell stability. More remarkably, the average power density of the optimized cells was 250 times higher than...

  7. Strategies to enhance the excitation energy-transfer efficiency in a light-harvesting system using the intra-molecular charge transfer character of carotenoids

    Energy Technology Data Exchange (ETDEWEB)

    Yukihira, Nao [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Sugai, Yuko [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Fujiwara, Masazumi [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan; Kosumi, Daisuke [Institute of Pulsed Power Science; Kumamoto University; Kumamoto; Japan; Iha, Masahiko [South Product Co. Ltd.; Uruma-shi; Japan; Sakaguchi, Kazuhiko [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Katsumura, Shigeo [Department of Chemistry; Graduate School of Science; Osaka City University; Osaka 558-8585; Japan; Gardiner, Alastair T. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Cogdell, Richard J. [Glasgow Biomedical Research Centre; University of Glasgow; 126 University Place; Glasgow, G12 8QQ; UK; Hashimoto, Hideki [Department of Applied Chemistry for Environment; School of Science and Technology; Kwansei Gakuin University; Sanda; Japan

    2017-01-01

    Fucoxanthin is a carotenoid that is mainly found in light-harvesting complexes from brown algae and diatoms. Due to the presence of a carbonyl group attached to polyene chains in polar environments, excitation produces an excited intra-molecular charge transfer. This intra-molecular charge transfer state plays a key role in the highly efficient (~95%) energy-transfer from fucoxanthin to chlorophyllain the light-harvesting complexes from brown algae. In purple bacterial light-harvesting systems the efficiency of excitation energy-transfer from carotenoids to bacteriochlorophylls depends on the extent of conjugation of the carotenoids. In this study we were successful, for the first time, in incorporating fucoxanthin into a light-harvesting complex 1 from the purple photosynthetic bacterium,Rhodospirillum rubrumG9+ (a carotenoidless strain). Femtosecond pump-probe spectroscopy was applied to this reconstituted light-harvesting complex in order to determine the efficiency of excitation energy-transfer from fucoxanthin to bacteriochlorophyllawhen they are bound to the light-harvesting 1 apo-proteins.

  8. Investigation of various cavity configurations for metamaterial-enhanced field-localizing wireless power transfer

    Science.gov (United States)

    Bui, Huu Nguyen; Pham, Thanh Son; Ngo, Viet; Lee, Jong-Wook

    2017-09-01

    Controlling power to an unintended area is an important issue for enabling wireless power transfer (WPT) systems. The control allows us to enhance efficiency as well as suppress unnecessary flux leakage. The flux leakage from WPT can be reduced effectively via selective field localization. To realize field localization, we propose the use of cavities formed on a single metamaterial slab that acts as a defected metasurface. The cavity is formed by strong field confinement using a hybridization bandgap (HBG), which is created by wave interaction with a two-dimensional array of local resonators on the metasurface. This approach using an HBG demonstrates strong field localization around the cavity regions. Motivated by this result, we further investigate various cavity configurations for different sizes of the transmitter (Tx) and receiver (Rx) resonators. Experiments show that the area of field localization increases with the number of cavities, confirming the successful control of different cavity configurations on the metasurface. Transmission measurements of different cavities show that the number of cavities is an important parameter for efficiency, and excess cavities do not enhance the efficiency but increase unnecessary power leakage. Thus, there exists an optimum number of cavities for a given size ratio between the Tx and Rx resonators. For a 6:1 size ratio, this approach achieves efficiency improvements of 3.69× and 1.59× compared to free space and a uniform metasurface, respectively. For 10:1 and 10:2 size ratios, the efficiency improvements are 3.26× and 1.98× compared to free space and a uniform metasurface, respectively.

  9. Molecular Engineering for Enhanced Charge Transfer in Thin-Film Photoanode.

    Science.gov (United States)

    Kim, Jeong Soo; Kim, Byung-Man; Kim, Un-Young; Shin, HyeonOh; Nam, Jung Seung; Roh, Deok-Ho; Park, Jun-Hyeok; Kwon, Tae-Hyuk

    2017-10-11

    We developed three types of dithieno[3,2-b;2',3'-d]thiophene (DTT)-based organic sensitizers for high-performance thin photoactive TiO 2 films and investigated the simple but powerful molecular engineering of different types of bonding between the triarylamine electron donor and the conjugated DTT π-bridge by the introduction of single, double, and triple bonds. As a result, with only 1.3 μm transparent and 2.5-μm TiO 2 scattering layers, the triple-bond sensitizer (T-DAHTDTT) shows the highest power conversion efficiency (η = 8.4%; V OC = 0.73 V, J SC = 15.4 mA·cm -2 , and FF = 0.75) in an iodine electrolyte system under one solar illumination (AM 1.5, 1000 W·m -2 ), followed by the single-bond sensitizer (S-DAHTDTT) (η = 7.6%) and the double-bond sensitizer (D-DAHTDTT) (η = 6.4%). We suggest that the superior performance of T-DAHTDTT comes from enhanced intramolecular charge transfer (ICT) induced by the triple bond. Consequently, T-DAHTDTT exhibits the most active photoelectron injection and charge transport on a TiO 2 film during operation, which leads to the highest photocurrent density among the systems studied. We analyzed these correlations mainly in terms of charge injection efficiency, level of photocharge storage, and charge-transport kinetics. This study suggests that the molecular engineering of a triple bond between the electron donor and the π-bridge of a sensitizer increases the performance of dye-sensitized solar cell (DSC) with a thin photoactive film by enhancing not only J SC through improved ICT but also V OC through the evenly distributed sensitizer surface coverage.

  10. Pressure loss characteristics of LSTF steam generator heat-transfer tubes. Pressure loss increase due to tube internal instruments

    International Nuclear Information System (INIS)

    Suzuki, Mitsuhiro

    1994-11-01

    The steam generator of the Large-Scale Test Facility (LSTF) includes 141 heat-transfer U-tubes with different lengths. Six U-tubes among them are furnished with 15 or 17 probe-type instruments (conduction probe with a thermocouple; CPT) protuberant into the primary side of the U-tubes. Other 135 U-tubes are not instrumented. This results in different hydraulic conditions between the instrumented and non-instrumented U-tubes with the same length. A series of pressure loss characteristics tests was conducted at a test apparatus simulating both types of U-tube. The following pressure loss coefficient (K CPT ) was reduced as a function of Reynolds number (Re) from these tests under single-phase water flow conditions. K CPT =0.16 5600≤Re≤52820, K CPT =60.66xRe -0.688 2420≤Re≤5600, K CPT =2.664x10 6 Re -2.06 1371≤Re≤2420. The maximum uncertainty is 22%. By using these results, the total pressure loss coefficients of full length U-tubes were estimated. It is clarified that the total pressure loss of the shortest instrumented U-tube is equivalent to that of the middle-length non-instrumented U-tube and also that a middle-length instrumented U-tube is equivalent to the longest non-instrumented U-tube. Concludingly. it is important to take account of the CPT pressure loss mentioned above in estimation of fluid behavior at the non-instrumented U-tubes either by using the LSTF experiment data from the CPT-installed U-tubes or by using any analytical codes. (author)

  11. Numerical investigation of heat transfer enhancement in ribbed channel for the first wall of DFLL-TBM in ITER

    International Nuclear Information System (INIS)

    Jin Qiang; Liu Songlin; Li Min; Wang Weihua

    2012-01-01

    As an important component of Dual Functional Lithium Lead-Test Blanket Module (DFLL-TBM), the first wall (FW) must withstand and remove the heat flux from the plasma (q″ = 0.3 MW/m 2 ) and high nuclear power deposited in the structure at normal plasma operation scenario of ITER. In this paper the transverse ribs arranged along the plasma facing inner wall surface were used to enhance the heat transfer capability. After the validation compared with empirical correlations the Standard k–ω model was employed to do the numerical simulation using FLUENT code to investigate the heat transfer efficiency and flow performance of coolant in the ribbed channel preliminarily. The perforation on the bottom of rib was proposed near the lower heat transfer area (LHTA) to improve the heat transfer performance according to results of analyses.

  12. Accuracy in the quantification of chemical exchange saturation transfer (CEST) and relayed nuclear Overhauser enhancement (rNOE) saturation transfer effects.

    Science.gov (United States)

    Zhang, Xiao-Yong; Wang, Feng; Li, Hua; Xu, Junzhong; Gochberg, Daniel F; Gore, John C; Zu, Zhongliang

    2017-07-01

    Accurate quantification of chemical exchange saturation transfer (CEST) effects, including dipole-dipole mediated relayed nuclear Overhauser enhancement (rNOE) saturation transfer, is important for applications and studies of molecular concentration and transfer rate (and thereby pH or temperature). Although several quantification methods, such as Lorentzian difference (LD) analysis, multiple-pool Lorentzian fits, and the three-point method, have been extensively used in several preclinical and clinical applications, the accuracy of these methods has not been evaluated. Here we simulated multiple-pool Z spectra containing the pools that contribute to the main CEST and rNOE saturation transfer signals in the brain, numerically fit them using the different methods, and then compared their derived CEST metrics with the known solute concentrations and exchange rates. Our results show that the LD analysis overestimates contributions from amide proton transfer (APT) and intermediate exchanging amine protons; the three-point method significantly underestimates both APT and rNOE saturation transfer at -3.5 ppm (NOE(-3.5)). The multiple-pool Lorentzian fit is more accurate than the other two methods, but only at lower irradiation powers (≤1 μT at 9.4 T) within the range of our simulations. At higher irradiation powers, this method is also inaccurate because of the presence of a fast exchanging CEST signal that has a non-Lorentzian lineshape. Quantitative parameters derived from in vivo images of rodent brain tumor obtained using an irradiation power of 1 μT were also compared. Our results demonstrate that all three quantification methods show similar contrasts between tumor and contralateral normal tissue for both APT and the NOE(-3.5). However, the quantified values of the three methods are significantly different. Our work provides insight into the fitting accuracy obtainable in a complex tissue model and provides guidelines for evaluating other newly developed

  13. Performance of double -pass solar collector with CPC and fins for heat transfer enhancement

    Science.gov (United States)

    Alfegi, Ebrahim M. A.; Abosbaia, Alhadi A. S.; Mezughi, Khaled M. A.; Sopian, Kamaruzzaman

    2013-06-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  14. Enhancing Cellular Coverage Quality by Virtual Access Point and Wireless Power Transfer

    Directory of Open Access Journals (Sweden)

    Jinsong Gui

    2018-01-01

    Full Text Available The ultradensification deploying for cellular networks is a direct and effective method for the improvement of network capacity. However, the benefit is achieved at the cost of network infrastructure investment and operating overheads, especially when there is big gap between peak-hour Internet traffic and average one. Therefore, we put forward the concept of virtual cellular coverage area, where wireless terminals with high-end configuration are motivated to enhance cellular coverage quality by both providing RF energy compensation and rewarding free traffic access to Internet. This problem is formulated as the Stackelberg game based on three-party circular decision, where a Macro BS (MBS acts as the leader to offer a charging power to Energy Transferring Relays (ETRs, and the ETRs and their associating Virtual Access Points (VAPs act as the followers to make their decisions, respectively. According to the feedback from the followers, the leader may readjust its strategy. The circular decision is repeated until the powers converge. Also, the better response algorithm for each game player is proposed to iteratively achieve the Stackelberg-Nash Equilibrium (SNE. Theoretical analysis proves the convergence of the proposed game scheme, and simulation results demonstrate its effectiveness.

  15. Performance of double –pass solar collector with CPC and fins for heat transfer enhancement

    International Nuclear Information System (INIS)

    Alfegi, Ebrahim M A; Abosbaia, Alhadi A S; Mezughi, Khaled M A; Sopian, Kamaruzzaman

    2013-01-01

    The temperature of photovoltaic modules increases when it absorbs solar radiation, causing a decrease in efficiency. This undesirable effect can be partially avoided by applying a heat recovery unit with fluid circulation (air or water) with the photovoltaic module. Such unit is called photovoltaic / thermal collector (pv/t) or hybrid (pv/t). In this unit, photovoltaic cells were pasted directly on the flat plate absorber. An experimental study of a solar air heater with photovoltaic cell located at the absorber with fins and compound parabolic collector for heat transfer enhancement and increasing the number of reflection on the cells have been conducted. The performance of the photovoltaic, thermal, and combined pv/t collector over range of operating conditions and the results was discussed. Results at solar irradiance of 500 W/m 2 show that the combined pv/t efficiency is increasing from 37.28 % to 81.41 % at mass flow rates various from 0.029 to 0.436 kg/s.

  16. Microfluidic Transduction Harnesses Mass Transport Principles to Enhance Gene Transfer Efficiency.

    Science.gov (United States)

    Tran, Reginald; Myers, David R; Denning, Gabriela; Shields, Jordan E; Lytle, Allison M; Alrowais, Hommood; Qiu, Yongzhi; Sakurai, Yumiko; Li, William C; Brand, Oliver; Le Doux, Joseph M; Spencer, H Trent; Doering, Christopher B; Lam, Wilbur A

    2017-10-04

    Ex vivo gene therapy using lentiviral vectors (LVs) is a proven approach to treat and potentially cure many hematologic disorders and malignancies but remains stymied by cumbersome, cost-prohibitive, and scale-limited production processes that cannot meet the demands of current clinical protocols for widespread clinical utilization. However, limitations in LV manufacture coupled with inefficient transduction protocols requiring significant excess amounts of vector currently limit widespread implementation. Herein, we describe a microfluidic, mass transport-based approach that overcomes the diffusion limitations of current transduction platforms to enhance LV gene transfer kinetics and efficiency. This novel ex vivo LV transduction platform is flexible in design, easy to use, scalable, and compatible with standard cell transduction reagents and LV preparations. Using hematopoietic cell lines, primary human T cells, primary hematopoietic stem and progenitor cells (HSPCs) of both murine (Sca-1 + ) and human (CD34 + ) origin, microfluidic transduction using clinically processed LVs occurs up to 5-fold faster and requires as little as one-twentieth of LV. As an in vivo validation of the microfluidic-based transduction technology, HSPC gene therapy was performed in hemophilia A mice using limiting amounts of LV. Compared to the standard static well-based transduction protocols, only animals transplanted with microfluidic-transduced cells displayed clotting levels restored to normal. Copyright © 2017 The Author(s). Published by Elsevier Inc. All rights reserved.

  17. The use of twisted tapes for the enhancement of heat transfer outside tube bundles

    International Nuclear Information System (INIS)

    Mansur, Sergio-Said

    1993-01-01

    A numerical and experimental investigation of the thermohydraulics of tubular heat exchangers equipped with twisted tapes outside the tubes was carried out. Experimental data for the pressure drop and flow velocity as well as flow visualization data were obtained using a simulated exchanger made of plexiglas. A porous medium type of model allowed for the numerical evaluation of the heat transfer and pressure drop in this unique geometry exchanger. The model was used on the TRIO computer code, developed by the Commissariat a l'Energie Atomique, CEA - France. The experimental data allowed for the evaluation of the flow distribution throughout the exchanger and for the determination of parameters entering the numerical model. The appropriateness of the latter for the macroscopic description of the flow was confirmed by extensive comparison with the experimental data. A comparative analysis of different types of configurations of this exchanger revealed satisfactory performance levels for the exchanger presently investigated. Finally, the flow visualization data were used to qualitatively infer the main aspects of the turbulent diffusion along the tube bundle. The twisted tapes were observed to enhance the fluid mixing process, thus providing for a more effective diffusion of momentum, mass and energy. (author) [fr

  18. Heat transfer enhancement of Al_2O_3-EG nanofluid in a car radiator with wire coil inserts

    International Nuclear Information System (INIS)

    Goudarzi, K.; Jamali, H.

    2017-01-01

    Highlights: • The purpose of this paper is heat transfer enhancement in a car radiator. • The simultaneous impacts of nanofluid EG/Al_2O_3 with wire coil inserts are studied. • Results show that the thermal performance enhancement up to 14%. • With increasing speed of cooling fan, Nusselt number at Reynolds numbers increased. - Abstract: In this experimental study, Aluminums Oxide (Al_2O_3) in Ethylene Glycol (EG) as nanofluid was used for heat transfer enhancement in car radiator together with wire coil inserts. Two wire coils inserts with different geometry and nanofluids with volume concentrations of 0.08%, 0.5% and 1% were investigated. The results indicated that the use of coils inserts enhanced heat transfer rates up to 9%. In addition, the simultaneous use of the coils inserts with the nanofluid with concentration of 0.08%, 0.5% and 1% resulted the thermal performance enhancement up to 5% as compared to the use of coils inserts alone.

  19. Conductive scanning probe microscopy of the semicontinuous gold film and its SERS enhancement toward two-step photo-induced charge transfer and effect of the supportive layer

    Science.gov (United States)

    Sinthiptharakoon, K.; Sapcharoenkun, C.; Nuntawong, N.; Duong, B.; Wutikhun, T.; Treetong, A.; Meemuk, B.; Kasamechonchung, P.; Klamchuen, A.

    2018-05-01

    The semicontinuous gold film, enabling various electronic applications including development of surface-enhanced Raman scattering (SERS) substrate, is investigated using conductive atomic force microscopy (CAFM) and Kelvin probe force microscopy (KPFM) to reveal and investigate local electronic characteristics potentially associated with SERS generation of the film material. Although the gold film fully covers the underlying silicon surface, CAFM results reveal that local conductivity of the film is not continuous with insulating nanoislands appearing throughout the surface due to incomplete film percolation. Our analysis also suggests the two-step photo-induced charge transfer (CT) play the dominant role in the enhancement of SERS intensity with strong contribution from free electrons of the silicon support. Silicon-to-gold charge transport is illustrated by KPFM results showing that Fermi level of the gold film is slightly inhomogeneous and far below the silicon conduction band. We propose that inhomogeneity of the film workfunction affecting chemical charge transfer between gold and Raman probe molecule is associated with the SERS intensity varying across the surface. These findings provide deeper understanding of charge transfer mechanism for SERS which can help in design and development of the semicontinuous gold film-based SERS substrate and other electronic applications.

  20. Heat transfer enhancement by additive in vertical falling film absorption of H2O/LiBr

    International Nuclear Information System (INIS)

    Cheng Wenlong; Houda, Kouichi; Chen Zeshao; Akisawa, Atsushi; Hu Peng; Kashiwagi, Takao

    2004-01-01

    The enhancement effects of additive on vertical falling film of water into aqueous lithium bromide (LiBr) were studied by an experimental method. Based on the Navier-Stokes equations of falling film absorption, a new dimensionless parameter, surface renewal number Rn, was introduced, and a semi-empirical equation of enhancement factor of additive was obtained. It was shown that the absorption Marangoni number Ma, the surface Marangoni number M aA , and the surface renewal number Rn enhance the heat transfer of absorption, however the adsorption number Π and the Reynolds number Re weaken the heat transfer of absorption. It was proved that the semi-empirical equation agreed well with the experimental results by introduction of the parameters related to surface tension characters presented by the authors into the equation

  1. Pulse electromagnetic fields enhance extracellular electron transfer in magnetic bioelectrochemical systems.

    Science.gov (United States)

    Zhou, Huihui; Liu, Bingfeng; Wang, Qisong; Sun, Jianmin; Xie, Guojun; Ren, Nanqi; Ren, Zhiyong Jason; Xing, Defeng

    2017-01-01

    Microbial extracellular electron transfer (EET) is essential in driving the microbial interspecies interaction and redox reactions in bioelectrochemical systems (BESs). Magnetite (Fe 3 O 4 ) and magnetic fields (MFs) were recently reported to promote microbial EET, but the mechanisms of MFs stimulation of EET and current generation in BESs are not known. This study investigates the behavior of current generation and EET in a state-of-the-art pulse electromagnetic field (PEMF)-assisted magnetic BES (PEMF-MBES), which was equipped with magnetic carbon particle (Fe 3 O 4 @N-mC)-coated electrodes. Illumina Miseq sequencing of 16S rRNA gene amplicons was also conducted to reveal the changes of microbial communities and interactions on the anode in response to magnetic field. PEMF had significant influences on current generation. When reactors were operated in microbial fuel cell (MFC) mode with pulse electromagnetic field (PEMF-MMFCs), power densities increased by 25.3-36.0% compared with no PEMF control MFCs (PEMF-OFF-MMFCs). More interestingly, when PEMF was removed, the power density dropped by 25.7%, while when PEMF was reintroduced, the value was restored to the previous level. Illumina sequencing of 16S rRNA gene amplicon and principal component analysis (PCA) based on operational taxonomic units (OTUs) indicate that PEMFs led to the shifts in microbial community and changes in species evenness that decreased biofilm microbial diversity. Geobacter spp. were found dominant in all anode biofilms, but the relative abundance in PEMF-MMFCs (86.1-90.0%) was higher than in PEMF-OFF-MMFCs (82.5-82.7%), indicating that the magnetic field enriched Geobacter on the anode. The current generation of Geobacter -inoculated microbial electrolysis cells (MECs) presented the same change regularity, the accordingly increase or decrease corresponding with switch of PEMF, which confirmed the reversible stimulation of PEMFs on microbial electron transfer. The pulse electromagnetic

  2. Aquatic to terrestrial transfer of sediment associated persistent organic pollutants is enhanced by bioamplification processes.

    Science.gov (United States)

    Daley, Jennifer M; Corkum, Lynda D; Drouillard, Ken G

    2011-09-01

    Ephemeral emergent insects, such as mayflies (Hexagenia spp.), are commonly used as biomonitors of persistent organic pollutants (POPs) and provide a vector for aquatic-terrestrial contaminant transfer. Mayflies bioaccumulate sediment-associated contaminants by bioconcentration and biomagnification during the aquatic stage and concentrate POP residues postemergence due to bioamplification, which occurs as a result of weight and lipid loss without contaminant loss. The present study quantified polychlorinated biphenyl (PCB) bioamplification in male and female emergent mayflies at three sites. Male mayflies used 36 to 68% of their lipids during emergence, with the exception of caged males that were prevented from flight. Females did not lose lipid content between pre-emergent nymph and emerged life stages. Mass balance indicated no PCB elimination between life stages. The mean PCB bioamplification factor, expressed as the ratio of lipid-equivalent PCB concentrations across life stages, was 2.05 ± 0.38 for male imagos/nymphs and 1.91 ± 0.18 for male imago/subimago life stages. For females, bioamplification factors were close to unity. Wildlife consumers of imago stages of emergent mayflies can potentially increase their total daily intake of PCBs by 36% depending on the sex-ratio composition of their diet relative to animals that feed predominantly on nymph or subimago stages during mass emergence events. Copyright © 2011 SETAC.

  3. Absorption enhancement in type-II coupled quantum rings due to existence of quasi-bound states

    Science.gov (United States)

    Hsieh, Chi-Ti; Lin, Shih-Yen; Chang, Shu-Wei

    2018-02-01

    The absorption of type-II nanostructures is often weaker than type-I counterpart due to spatially separated electrons and holes. We model the bound-to-continuum absorption of type-II quantum rings (QRs) using a multiband source-radiation approach using the retarded Green function in the cylindrical coordinate system. The selection rules due to the circular symmetry for allowed transitions of absorption are utilized. The bound-tocontinuum absorptions of type-II GaSb coupled and uncoupled QRs embedded in GaAs matrix are compared here. The GaSb QRs act as energy barriers for electrons but potential wells for holes. For the coupled QR structure, the region sandwiched between two QRs forms a potential reservoir of quasi-bound electrons. Electrons in these states, though look like bound ones, would ultimately tunnel out of the reservoir through barriers. Multiband perfectly-matched layers are introduced to model the tunneling of quasi-bound states into open space. Resonance peaks are observed on the absorption spectra of type-II coupled QRs due to the formation of quasi-bound states in conduction bands, but no resonance exist in the uncoupled QR. The tunneling time of these metastable states can be extracted from the resonance and is in the order of ten femtoseconds. Absorption of coupled QRs is significantly enhanced as compared to that of uncoupled ones in certain spectral windows of interest. These features may improve the performance of photon detectors and photovoltaic devices based on type-II semiconductor nanostructures.

  4. Enhanced energy transfer by near-field coupling of a nanostructured metamaterial with a graphene-covered plate

    International Nuclear Information System (INIS)

    Chang, Jui-Yung; Yang, Yue; Wang, Liping

    2016-01-01

    Coupled surface plasmon/phonon polaritons and hyperbolic modes are known to enhance radiative transfer across nanometer vacuum gaps but usually require identical materials. It becomes crucial to achieve strong near-field energy transfer between dissimilar materials for applications like near-field thermophotovoltaic and thermal rectification. In this work, we theoretically demonstrate enhanced near-field radiative transfer between a nanostructured metamaterial emitter and a graphene-covered planar receiver. Strong near-field coupling with two orders of magnitude enhancement in the spectral heat flux is achieved at the gap distance of 20 nm. By carefully selecting the graphene chemical potential and doping levels of silicon nanohole emitter and silicon plate receiver, the total near-field radiative heat flux can reach about 500 times higher than the far-field blackbody limit between 400 K and 300 K. The physical mechanism is elucidated by the near-field surface plasmon coupling with fluctuational electrodynamics and dispersion relations. The effects of graphene chemical potential, emitter and receiver doping levels, and vacuum gap distance on the near-field coupling and radiative energy transfer are analyzed in detail. - Highlights: • Near-field radiative transfer between a metamaterial and a graphene-covered plate is studied. • Effective medium theory with uniaxial optics is employed to model nanohole metamaterials. • Enhancement by 2 orders is found between dissimilar materials with graphene coating. • Extraordinary coupling of the nanostructured emitter with graphene is elucidated. • Effects of doping level of silicon and graphene chemical potential are investigated.

  5. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  6. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    International Nuclear Information System (INIS)

    Goodarzi, Mohsen; Amooie, Hossein

    2016-01-01

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  7. Radiative heat transfer enhancement using geometric and spectral control for achieving high-efficiency solar-thermophotovoltaic systems

    Science.gov (United States)

    Kohiyama, Asaka; Shimizu, Makoto; Yugami, Hiroo

    2018-04-01

    We numerically investigate radiative heat transfer enhancement using spectral and geometric control of the absorber/emitter. A high extraction of the radiative heat transfer from the emitter as well as minimization of the optical losses from the absorber leads to high extraction and solar thermophotovoltaic (STPV) system efficiency. The important points for high-efficiency STPV design are discussed for the low and high area ratio of the absorber/emitter. The obtained general guideline will support the design of various types of STPV systems.

  8. A Lipid Transfer Protein Increases the Glutathione Content and Enhances Arabidopsis Resistance to a Trichothecene Mycotoxin.

    Directory of Open Access Journals (Sweden)

    John E McLaughlin

    Full Text Available Fusarium head blight (FHB or scab is one of the most important plant diseases worldwide, affecting wheat, barley and other small grains. Trichothecene mycotoxins such as deoxynivalenol (DON accumulate in the grain, presenting a food safety risk and health hazard to humans and animals. Despite considerable breeding efforts, highly resistant wheat or barley cultivars are not available. We screened an activation tagged Arabidopsis thaliana population for resistance to trichothecin (Tcin, a type B trichothecene in the same class as DON. Here we show that one of the resistant lines identified, trichothecene resistant 1 (trr1 contains a T-DNA insertion upstream of two nonspecific lipid transfer protein (nsLTP genes, AtLTP4.4 and AtLTP4.5. Expression of both nsLTP genes was induced in trr1 over 10-fold relative to wild type. Overexpression of AtLTP4.4 provided greater resistance to Tcin than AtLTP4.5 in Arabidopsis thaliana and in Saccharomyces cerevisiae relative to wild type or vector transformed lines, suggesting a conserved protection mechanism. Tcin treatment increased reactive oxygen species (ROS production in Arabidopsis and ROS stain was associated with the chloroplast, the cell wall and the apoplast. ROS levels were attenuated in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls. Exogenous addition of glutathione and other antioxidants enhanced resistance of Arabidopsis to Tcin while the addition of buthionine sulfoximine, an inhibitor of glutathione synthesis, increased sensitivity, suggesting that resistance was mediated by glutathione. Total glutathione content was significantly higher in Arabidopsis and in yeast overexpressing AtLTP4.4 relative to the controls, highlighting the importance of AtLTP4.4 in maintaining the redox state. These results demonstrate that trichothecenes cause ROS accumulation and overexpression of AtLTP4.4 protects against trichothecene-induced oxidative stress by increasing the glutathione

  9. Renal transplant failure due to urologic complications: Comparison of static fluid with contrast-enhanced magnetic resonance urography

    Energy Technology Data Exchange (ETDEWEB)

    Blondin, D. [University Hospital Duesseldorf, Institute of Diagnostic Radiology, Moorenstr. 5, D-40225 Duesseldorf (Germany)], E-mail: blondin@med.uni-duesseldorf.de; Koester, A.; Andersen, K.; Kurz, K.D.; Moedder, U.; Cohnen, M. [University Hospital Duesseldorf, Institute of Diagnostic Radiology, Moorenstr. 5, D-40225 Duesseldorf (Germany)

    2009-02-15

    Purpose: Postrenal reasons of renal transplant failure can be assessed by magnetic resonance urography. This study was designed to retrospectively compare the diagnostic accuracy of static fluid (T2-)MRU compared to contrast enhanced (CE-)MRU in patients with renal transplant failure. Material and methods: Thirty-five consecutive patients (14 female, 21 men; mean age 48.6 years) with renal transplant failure and sonographically detected hydronephrosis were examined both with T2-MRU as well as CE-MRU resulting in 39 MRU examinations. MRU was performed both using T2-weighted HASTE-sequence (T2-MRU) as well as Gadolinium-enhanced 3D-FLASH-sequence (CE-MRU) on a 1.5-T clinical MRI scanner (Magnetom Vision, Siemens Medical Solutions). Subjective image quality of resulting maximum intensity projection was assessed in consensus by two readers blinded to the final diagnosis, using a five point scale. MRU findings were correlated to sonography, operative results or clinical follow up. Results: CE-MRU yielded a sensitivity of 85.7% (T2-MRU 76.2%), and a specificity of 83.3% (T2-MRU: 73.7%), however statistical significance was not reached. The subjective image quality was significantly better in CE-MRU. Conclusions: Only concerning subjective image quality CE-MRU proved superior to T2-MRU. Yet, there was no significant difference in diagnostic accuracy between T2- and CE-MRU. Thinking of incipient nephrogenic systemic fibrosis, T2-MRU can be used as reliable alternative in patients with decreased renal transplant function due to urological complications.

  10. Renal transplant failure due to urologic complications: Comparison of static fluid with contrast-enhanced magnetic resonance urography

    International Nuclear Information System (INIS)

    Blondin, D.; Koester, A.; Andersen, K.; Kurz, K.D.; Moedder, U.; Cohnen, M.

    2009-01-01

    Purpose: Postrenal reasons of renal transplant failure can be assessed by magnetic resonance urography. This study was designed to retrospectively compare the diagnostic accuracy of static fluid (T2-)MRU compared to contrast enhanced (CE-)MRU in patients with renal transplant failure. Material and methods: Thirty-five consecutive patients (14 female, 21 men; mean age 48.6 years) with renal transplant failure and sonographically detected hydronephrosis were examined both with T2-MRU as well as CE-MRU resulting in 39 MRU examinations. MRU was performed both using T2-weighted HASTE-sequence (T2-MRU) as well as Gadolinium-enhanced 3D-FLASH-sequence (CE-MRU) on a 1.5-T clinical MRI scanner (Magnetom Vision, Siemens Medical Solutions). Subjective image quality of resulting maximum intensity projection was assessed in consensus by two readers blinded to the final diagnosis, using a five point scale. MRU findings were correlated to sonography, operative results or clinical follow up. Results: CE-MRU yielded a sensitivity of 85.7% (T2-MRU 76.2%), and a specificity of 83.3% (T2-MRU: 73.7%), however statistical significance was not reached. The subjective image quality was significantly better in CE-MRU. Conclusions: Only concerning subjective image quality CE-MRU proved superior to T2-MRU. Yet, there was no significant difference in diagnostic accuracy between T2- and CE-MRU. Thinking of incipient nephrogenic systemic fibrosis, T2-MRU can be used as reliable alternative in patients with decreased renal transplant function due to urological complications

  11. Improving Sensorimotor Adaptation Following Long Duration Space Flight by Enhancing Vestibular Information Transfer

    Science.gov (United States)

    Mulavara, A. P.; Kofman, I. S.; De Dios, Y. E; Galvan, R.; Goel, R.; Miller, C.; Peters, B.; Cohen, H. S.; Jeevarajan, J.; Reschke, M.; hide

    2014-01-01

    Crewmember adapted to the microgravity state may need to egress the vehicle within a few minutes for safety and operational reasons after gravitational transitions. The transition from one sensorimotor state to another consists of two main mechanisms: strategic and plastic-adaptive and have been demonstrated in astronauts returning after long duration space flight. Strategic modifications represent "early adaptation" - immediate and transitory changes in control that are employed to deal with short-term changes in the environment. If these modifications are prolonged then plastic-adaptive changes are evoked that modify central nervous system function, automating new behavioral responses. More importantly, this longer term adaptive recovery mechanism was significantly associated with their strategic ability to recover on the first day after return to Earth G. We are developing a method based on stochastic resonance to enhance information transfer by improving the brain's ability to detect vestibular signals (Vestibular Stochastic Resonance, VSR) especially when combined with balance training exercises such as sensorimotor adaptability (SA) training for rapid improvement in functional skill, for standing and mobility. This countermeasure to improve detection of vestibular signals is a stimulus delivery system that is wearable/portable providing low imperceptible levels of white noise based binaural bipolar electrical stimulation of the vestibular system (stochastic vestibular stimulation). To determine efficacy of vestibular stimulation on physiological and perceptual responses during otolith-canal conflicts and dynamic perturbations we have conducted a series of studies: We have shown that imperceptible binaural bipolar electrical stimulation of the vestibular system across the mastoids enhances balance performance in the mediolateral (ML) plane while standing on an unstable surface. We have followed up on the previous study showing VSR stimulation improved balance

  12. Numerical investigation of heat transfer enhancement by carbon nano fibers deposited on a flat plate

    NARCIS (Netherlands)

    Pelevic, Nikola; van der Meer, Theo

    2013-01-01

    Numerical simulations of flow and heat transfer have been performed for flow over a plate surface covered with carbon nano fibers (CNFs). The CNFs influence on fluid flow and heat transfer has been investigated. Firstly, a stochastic model for CNFs deposition has been explained. Secondly, the

  13. Indirect involvement of armorphous carbon layer on convective heat transfer enhancement using carbon nanofibers

    NARCIS (Netherlands)

    Taha, T.J.; Lefferts, Leonardus; van der Meer, Theodorus H.

    2015-01-01

    In this work, an experimental heat transfer investigation was carried out to investigate the combined influence of both amorphous carbon (a-C) layer thickness and carbon nanofibers (CNFs) on the convective heat transfer behavior. Synthesis of these carbon nanostructures was achieved using catalytic

  14. Excited state proton transfer in strongly enhanced GFP (sGFP2)

    NARCIS (Netherlands)

    van Oort, B.F.; ter Veer, M.J.T.; Groot, M.L.; van Stokkum, I.H.M.

    2012-01-01

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study

  15. Numerical Study of the Rib Arrangements for Enhancing Heat Transfer in a Two-pass Channel of Large Aspect Ratio

    Energy Technology Data Exchange (ETDEWEB)

    Han, Sol; Choi, Seok Min; Sohn, Ho-Seong; Cho, Hyung Hee [Yonsei Univ., Seoul (Korea, Republic of)

    2017-03-15

    The present study investigated the effect of the rib arrangement and a guide vane for enhancing internal cooling of the blade. Two types of rib arrangements were used in the first and second passage in parallel. Aspect ratio of the channel was 5 and a fixed Reynolds number based on hydraulic diameter was 10,000. The attack angle of rib was 60°, rib pitch-to-height ratio (p/e) was 10, and the rib height-to-hydraulic-diameter ratio (e/D{sub n}) was 0.075. The effect of an interaction between Dean vortices and the secondary vortices from the first passage was observed. Overall, the attack angle of rib in the first passage was dominant factor to heat transfer and flow patterns in turning region. Also, the channel with a guide vane showed enhanced heat transfer at the tip surface with reducing flow separation and recirculation.

  16. Combining brain stimulation and video game to promote long-term transfer of learning and cognitive enhancement.

    Science.gov (United States)

    Looi, Chung Yen; Duta, Mihaela; Brem, Anna-Katharine; Huber, Stefan; Nuerk, Hans-Christoph; Cohen Kadosh, Roi

    2016-02-23

    Cognitive training offers the potential for individualised learning, prevention of cognitive decline, and rehabilitation. However, key research challenges include ecological validity (training design), transfer of learning and long-term effects. Given that cognitive training and neuromodulation affect neuroplasticity, their combination could promote greater, synergistic effects. We investigated whether combining transcranial direct current stimulation (tDCS) with cognitive training could further enhance cognitive performance compared to training alone, and promote transfer within a short period of time. Healthy adults received real or sham tDCS over their dorsolateral prefrontal cortices during two 30-minute mathematics training sessions involving body movements. To examine the role of training, an active control group received tDCS during a non-mathematical task. Those who received real tDCS performed significantly better in the game than the sham group, and showed transfer effects to working memory, a related but non-numerical cognitive domain. This transfer effect was absent in active and sham control groups. Furthermore, training gains were more pronounced amongst those with lower baseline cognitive abilities, suggesting the potential for reducing cognitive inequalities. All effects associated with real tDCS remained 2 months post-training. Our study demonstrates the potential benefit of this approach for long-term enhancement of human learning and cognition.

  17. Enhancement of Condensation Heat Transfer Rate of the Air-Steam Mixture on a Passive Condenser System Using Annular Fins

    Directory of Open Access Journals (Sweden)

    Yeong-Jun Jang

    2017-11-01

    Full Text Available This paper presents an experimental investigation on the enhancement of the heat transfer rate of steam condensation on the external surfaces of a vertical tube with annular fins. A cylindrical condenser tube, which is 40 mm in outer diameter and 1000 mm in length, with annular disks of uniform cross-sectional area is fabricated in the manner of ensuring perfect contact between the base surface and fins. A total of 13 annular fins of 80 mm diameter were installed along the tube height in order to increase the effective heat transfer area by 85%. Through a series of condensation tests for the air-steam mixture under natural convection conditions, the heat transfer data was measured in the pressure range of between 2 and 5 bar, and the air mass fraction from 0.3 to 0.7. The rates of heat transfer of the finned tube are compared to those that are measured on a bare tube to demonstrate the enhanced performance by extended surfaces. In addition, based on the experimental results and the characteristics of steam condensation, the applicability of finned tubes to a large condenser system with a bundle layout is evaluated.

  18. On the development of a grid-enhanced single-phase convective heat transfer correlation

    International Nuclear Information System (INIS)

    Miller, D.J.; Cheung, F.B.; Bajorek, S.M.

    2011-01-01

    A new single-phase convective heat transfer augmentation correlation has been developed using single phase steam cooling experimental data obtained from the Penn State/NRC Rod Bundle Heat Transfer (RBHT) facility. Experimental data obtained from the RBHT single phase steam cooling tests have been evaluated and new findings identified. Previous rod bundle tests showed the importance of spacer grid on the local heat transfer, and that the augmentation in heat transfer downstream of a grid decays exponentially. The RBHT data also shows that the Reynolds number affects the rate at which this augmentation decays. The new correlation includes the strong dependence of heat transfer on both the Reynolds number and the grid blockage ratio. While the effects of both parameters were clearly evident in the RBHT experimental data, existing correlations do not account for the Reynolds number effect. The developed correlation incorporates Reynolds number in the decay curve of heat transfer. The newly developed correlation adequately accounts for the dependence of the heat transfer augmentation decay rate on the local flow Reynolds number. (author)

  19. Excited state proton transfer in strongly enhanced GFP (sGFP2).

    Science.gov (United States)

    van Oort, Bart; ter Veer, Mirelle J T; Groot, Marie Louise; van Stokkum, Ivo H M

    2012-07-07

    Proton transfer is an elementary process in biology. Green fluorescent protein (GFP) has served as an important model system to elucidate the mechanistic details of this reaction, because in GFP proton transfer can be induced by light absorption. We have used pump-dump-probe spectroscopy to study how proton transfer through the 'proton-wire' around the chromophore is affected by a combination of mutations in a modern GFP variety (sGFP2). The results indicate that in H(2)O, after absorption of a photon, a proton is transferred (A* → I*) in 5 ps, and back-transferred from a ground state intermediate (I → A) in 0.3 ns, similar to time constants found with GFPuv, although sGFP2 shows less heterogeneous proton transfer. This suggests that the mutations left the proton-transfer largely unchanged, indicating the robustness of the proton-wire. We used pump-dump-probe spectroscopy in combination with target analysis to probe suitability of the sGFP2 fluorophore for super-resolution microscopy.

  20. Heat transfer enhancement through control of added perturbation velocity in flow field

    International Nuclear Information System (INIS)

    Wang, Jiansheng; Wu, Cui; Li, Kangning

    2013-01-01

    Highlights: ► Three strategies which restrain the flow drag in heat transfer are proposed. ► Added perturbation induces quasi-streamwise vortices around controlled zone. ► The flow and heat transfer features depend on induced quasi-streamwise vortices. ► Vertical strategy has the best synthesis performance of three control strategies. ► Synthesis performance with control strategy is superior to that without strategy. - Abstract: The characteristics of heat transfer and flow, through an added perturbation velocity, in a rectangle channel, are investigated by Large Eddy Simulation (LES). The downstream, vertical, and upstream control strategy, which can suppress the lift of low speed streaks in the process of improving the performance of heat transfer, are adopted in numerical investigation. Taking both heat transfer and flow properties into consideration, the synthesis performance of heat transfer and flow of three control strategies are evaluated. The numerical results show that the flow structure in boundary layer has been varied obviously for the effect of perturbation velocity and induced quasi-streamwise vortices emerging around the controlled zone. The results indicate that the vertical control strategy has the best synthesis performance of the three control strategies, which also has the least skin frication coefficient. The upstream and downstream strategies can improve the heat transfer performance, but the skin frication coefficient is higher than that with vertical control strategy

  1. output enhancement in the transfer-field machine using rotor circuit

    African Journals Online (AJOL)

    Dr Obe

    1984-09-01

    Sep 1, 1984 ... Electrical Engineering Department University of Nigeria, Nsukka. (Manuscript received March 1981). ABSTRACT. The output of a plain transfer-field machine would be much less than that of a .... by non-magnetic barriers: The.

  2. ADMultiImg: a novel missing modality transfer learning based CAD system for diagnosis of MCI due to AD using incomplete multi-modality imaging data

    Science.gov (United States)

    Liu, Xiaonan; Chen, Kewei; Wu, Teresa; Weidman, David; Lure, Fleming; Li, Jing

    2018-02-01

    Alzheimer's Disease (AD) is the most common cause of dementia and currently has no cure. Treatments targeting early stages of AD such as Mild Cognitive Impairment (MCI) may be most effective to deaccelerate AD, thus attracting increasing attention. However, MCI has substantial heterogeneity in that it can be caused by various underlying conditions, not only AD. To detect MCI due to AD, NIA-AA published updated consensus criteria in 2011, in which the use of multi-modality images was highlighted as one of the most promising methods. It is of great interest to develop a CAD system based on automatic, quantitative analysis of multi-modality images and machine learning algorithms to help physicians more adequately diagnose MCI due to AD. The challenge, however, is that multi-modality images are not universally available for many patients due to cost, access, safety, and lack of consent. We developed a novel Missing Modality Transfer Learning (MMTL) algorithm capable of utilizing whatever imaging modalities are available for an MCI patient to diagnose the patient's likelihood of MCI due to AD. Furthermore, we integrated MMTL with radiomics steps including image processing, feature extraction, and feature screening, and a post-processing for uncertainty quantification (UQ), and developed a CAD system called "ADMultiImg" to assist clinical diagnosis of MCI due to AD using multi-modality images together with patient demographic and genetic information. Tested on ADNI date, our system can generate a diagnosis with high accuracy even for patients with only partially available image modalities (AUC=0.94), and therefore may have broad clinical utility.

  3. Death losses due to stillbirth, neonatal death and diseases in cloned cattle derived from somatic cell nuclear transfer and their progeny: a result of nationwide survey in Japan.

    Science.gov (United States)

    Watanabe, Shinya; Nagai, Takashi

    2009-06-01

    To obtain the data concerning death losses due to stillbirth, neonatal death and diseases in cloned cattle derived from somatic cell nuclear transfer (SCNT) and their progeny produced by Japanese institutions, a nationwide survey was carried out in July-August, 2006. As a result, lifetime data concerning 482 SCNT cattle (97.5% of cattle produced in the country at that time) and 202 progeny of SCNT cattle were accumulated and the death loss of these cattle was analyzed. Although 1/3 of delivered SCNT calves died during the perinatal period due to stillbirth and neonatal death, incidence of death loss due to diseases in SCNT cattle surviving more than 200 days after birth seems to be the same as these in conventionally bred cattle. In contrast, progeny of SCNT cattle showed the same level in death loss as observed in conventionally bred cattle throughout their lifetime. These results suggest that robust health would be expected in SCNT cattle surviving to adulthood and their progeny.

  4. Charge transfer between biogenic jarosite derived Fe3+and TiO2 enhances visible light photocatalytic activity of TiO2.

    Science.gov (United States)

    Chowdhury, Mahabubur; Shoko, Sipiwe; Cummings, Fransciuos; Fester, Veruscha; Ojumu, Tunde Victor

    2017-04-01

    In this work, we have shown that mining waste derived Fe 3+ can be used to enhance the photocatalytic activity of TiO 2 . This will allow us to harness a waste product from the mines, and utilize it to enhance TiO 2 photocatalytic waste water treatment efficiency. An organic linker mediated route was utilized to create a composite of TiO 2 and biogenic jarosite. Evidence of FeOTi bonding in the TiO 2 /jarosite composite was apparent from the FTIR, EFTEM, EELS and ELNEFS analysis. The as prepared material showed enhanced photocatalytic activity compared to pristine TiO 2 , biogenic jarosite and mechanically mixed sample of jarosite and TiO 2 under both simulated and natural solar irradiation. The prepared material can reduce the electrical energy consumption by 4 times compared to pristine P25 for degradation of organic pollutant in water. The material also showed good recyclability. Results obtained from sedimentation experiments showed that the larger sized jarosite material provided the surface to TiO 2 nanoparticles, which increases the settling rate of the materials. This allowed simple and efficient recovery of the catalyst from the reaction system after completion of photocatalysis. Enhanced photocatalytic activity of the composite material was due to effective charge transfer between TiO 2 and jarosite derived Fe 3+ as was shown from the EELS and ELNEFS. Generation of OH was supported by photoluminesence (PL) experiments. Copyright © 2016. Published by Elsevier B.V.

  5. Experimental investigation of certain internal condensing and boiling flows: Their sensitivity to pressure fluctuations and heat transfer enhancements

    Science.gov (United States)

    Kivisalu, Michael Toomas

    Space-based (satellite, scientific probe, space station, etc.) and millimeter -- to -- micro-scale (such as are used in high power electronics cooling, weapons cooling in aircraft, etc.) condensers and boilers are shear/pressure driven. They are of increasing interest to system engineers for thermal management because flow boilers and flow condensers offer both high fluid flow-rate-specific heat transfer capacity and very low thermal resistance between the fluid and the heat exchange surface, so large amounts of heat may be removed using reasonably-sized devices without the need for excessive temperature differences. However, flow stability issues and degredation of performance of shear/pressure driven condensers and boilers due to non-desireable flow morphology over large portions of their lengths have mostly prevented their use in these applications. This research is part of an ongoing investigation seeking to close the gap between science and engineering by analyzing two key innovations which could help address these problems. First, it is recommended that the condenser and boiler be operated in an innovative flow configuration which provides a non-participating core vapor stream to stabilize the annular flow regime throughout the device length, accomplished in an energy-efficient manner by means of ducted vapor re-circulation. This is demonstrated experimentally.. Second, suitable pulsations applied to the vapor entering the condenser or boiler (from the re-circulating vapor stream) greatly reduce the thermal resistance of the already effective annular flow regime. For experiments reported here, application of pulsations increased time-averaged heat-flux up to 900 % at a location within the flow condenser and up to 200 % at a location within the flow boiler, measured at the heat-exchange surface. Traditional fully condensing flows, reported here for comparison purposes, show similar heat-flux enhancements due to imposed pulsations over a range of frequencies

  6. Amplification of Surface-Enhanced Raman Scattering Due to Substrate-Mediated Localized Surface Plasmons in Gold Nanodimers

    KAUST Repository

    Yue, Weisheng

    2017-03-28

    Surface-enhanced Raman scattering (SERS) is ubiquitous in chemical and biochemical sensing, imaging and identification. Maximizing SERS enhancement is a continuous effort focused on the design of appropriate SERS substrates. Here we show that significant improvement in a SERS signal can be achieved with substrates combining localized surface plasmon resonances and a nonresonant plasmonic substrate. By introducing a continuous gold (Au) film underneath Au nanodimers antenna arrays, an over 10-fold increase in SERS enhancement is demonstrated. Triangular, rectangle and disc dimers were studied, with bowtie antenna providing highest SERS enhancement. Simulations of electromagnetic field distributions of the Au nanodimers on the Au film support the observed enhancement dependences. The hybridization of localized plasmonic modes with the image modes in a metal film provides a straightforward way to improve SERS enhancement in designer SERS substrate.

  7. Enhancing Data Transfer Performance Utilizing a DTN between Cloud Service Providers

    Directory of Open Access Journals (Sweden)

    Wontaek Hong

    2018-04-01

    Full Text Available The rapid transfer of massive data in the cloud environment is required to prepare for unexpected situations like disaster recovery. With regard to this requirement, we propose a new approach to transferring cloud virtual machine images rapidly in the cloud environment utilizing dedicated Data Transfer Nodes (DTNs. The overall procedure is composed of local/remote copy processes and a DTN-to-DTN transfer process. These processes are coordinated and executed based on a fork system call in the proposed algorithm. In addition, we especially focus on the local copy process between a cloud controller and DTNs and improve data transfer performance through the well-tuned mount techniques in Network File System (NFS-based connections. Several experiments have been performed considering the combination of synchronous/asynchronous modes and the network buffer size. We show the results of throughput in all the experiment cases and compare them. Consequently, the best throughput in write operations has been obtained in the case of an NFS server in a DTN and an NFS client in a cloud controller running entirely in the asynchronous mode.

  8. Contribution to the heat transfer analysis of substitute refrigerants in evaporator tubes with smooth or enhanced tube surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kattan, N

    1997-12-31

    The substitution of CFC refrigerants in refrigeration systems, heat pumps and organic Rankine cycles for heat recovery, requests a good knowledge of heat transfer properties of substitute fluids. A new test facility has been built at the Laboratory for Industrial Energy Systems (LENI) to contribute to this international effort. It consists of two sets of concentric tubes allowing either annular or inside tube convective boiling with a counter current water flow heating to be studied. A new data base including heat transfer coefficients and pressure drop measurements for four new refrigerants (R123, R134A, R402A and R404A) and three older refrigerants (R11, R12 and R502) has been collected. Flow boiling measurements covered a broad range of mass velocities, vapor qualities and heat fluxes. Some of the tests included plain tubes and others enhanced surface tubes (microfilms from Wieland) in horizontal and vertical orientations. An improved Wilson plot technique, that covers both the transition and turbulent flow regimes of the water flowing in the annular channel for the inside tube boiling tests, is proposed to overcome the severe limitations of conventional Wilson plots, to improve accuracy and to facilitate data processing. Mean flow boiling heat transfer coefficients were measured for R12 and R134A evaporating inside a horizontal plain tube and for R11 and R123 evaporating inside a horizontal plain tube. Local flow boiling heat transfer coefficients were measured for : R134A, R123, R404A and R502 evaporating inside a horizontal plain tube, for R134A and R123 evaporating inside a horizontal microfin tube and for R134 evaporating inside a vertical microfin tube. In addition microfin heat transfer augmentation relative to plain tube test data was investigated. The measured heat transfer coefficients were compared to different existing inside tube flow boiling correlations. (author) figs., tabs., refs.

  9. Enhancement of melting heat transfer of ice slurries by an injection flow in a rectangular cross sectional horizontal duct

    International Nuclear Information System (INIS)

    Fujii, Kota; Yamada, Masahiko

    2013-01-01

    Ice slurries are now commonly used as cold thermal storage materials, and have the potential to be applied to other engineering fields such as quenching metals to control properties, emergency cooling systems, and preservation of food and biomaterials at low temperatures. Although ice slurries have been widely utilized because of their high thermal storage densities, previous studies have revealed that the latent heat of ice particles is not completely released on melting because of insufficient contact between the ice particles and a heated surface. In this study, an injection flow that was bifurcated from the main flow of an ice slurry was employed to promote melting heat transfer of ice particles on a horizontal heated surface. The effects of injection angle and injection flow rate on local heat transfer coefficients and heat transfer coefficient ratios were determined experimentally. The results show that from two to three times higher heat transfer coefficients can be obtained by using large injection flow rates and injection angles. However, low injection angles improved the utilization rate of the latent heat of ice near the injection point by approximately a factor of two compared to that without injection. -- Highlights: • Melting of ice slurries were enhanced by the injection under constant total flow rate. • Contribution of ice particles and their latent heat to heat transfer was investigated. • Effect of velocity ratio of injection to that of main flow was examined. • Effect of the angle of injection flow to the main flow was also examined. • Appropriate conditions for the use of latent heat of ice and heat transfer did not coincide

  10. Enhancement of Heat and Mass Transfer in Mechanically Contstrained Ultra Thin Films

    Energy Technology Data Exchange (ETDEWEB)

    Kevin Drost; Jim Liburdy; Brian Paul; Richard Peterson

    2005-01-01

    Oregon State University (OSU) and the Pacific Northwest National Laboratory (PNNL) were funded by the U.S. Department of Energy to conduct research focused on resolving the key technical issues that limited the deployment of efficient and extremely compact microtechnology based heat actuated absorption heat pumps and gas absorbers. Success in demonstrating these technologies will reduce the main barriers to the deployment of a technology that can significantly reduce energy consumption in the building, automotive and industrial sectors while providing a technology that can improve our ability to sequester CO{sub 2}. The proposed research cost $939,477. $539,477 of the proposed amount funded research conducted at OSU while the balance ($400,000) was used at PNNL. The project lasted 42 months and started in April 2001. Recent developments at the Pacific Northwest National Laboratory and Oregon State University suggest that the performance of absorption and desorption systems can be significantly enhanced by the use of an ultra-thin film gas/liquid contactor. This device employs microtechnology-based structures to mechanically constrain the gas/liquid interface. This technology can be used to form very thin liquid films with a film thickness less then 100 microns while still allowing gas/liquid contact. When the resistance to mass transfer in gas desorption and absorption is dominated by diffusion in the liquid phase the use of extremely thin films (<100 microns) for desorption and absorption can radically reduce the size of a gas desorber or absorber. The development of compact absorbers and desorbers enables the deployment of small heat-actuated absorption heat pumps for distributed space heating and cooling applications, heat-actuated automotive air conditioning, manportable cooling, gas absorption units for the chemical process industry and the development of high capacity CO{sub 2} absorption devices for CO{sub 2} collection and sequestration. The energy

  11. Enterococcus faecalis Sex Pheromone cCF10 Enhances Conjugative Plasmid Transfer In Vivo

    Directory of Open Access Journals (Sweden)

    Helmut Hirt

    2018-02-01

    Full Text Available Cell-cell communication mediated by peptide pheromones (cCF10 [CF] is essential for high-frequency plasmid transfer in vitro in Enterococcus faecalis. To examine the role of pheromone signaling in vivo, we established either a CF-producing (CF+ recipient or a recipient producing a biologically inactive variant of CF (CF− recipient in a germfree mouse model 3 days before donor inoculation and determined transfer frequencies of the pheromone-inducible plasmid pCF10. Plasmid transfer was detected in the upper and middle sections of the intestinal tract 5 h after donor inoculation and was highly efficient in the absence of antibiotic selection. The transconjugant/donor ratio reached a maximum level approaching 1 on day 4 in the upper intestinal tract. Plasmid transfer was significantly lower with the CF− recipient. While rescue of the CF− mating defect by coculture with CF+ recipients is easily accomplished in vitro, no extracellular complementation occurred in vivo. This suggests that most pheromone signaling in the gut occurs between recipient and donor cells in very close proximity. Plasmid-bearing cells (donors plus transconjugants steadily increased in the population from 0.1% after donor inoculation to about 10% at the conclusion of the experiments. This suggests a selective advantage of pCF10 carriage distinct from antibiotic resistance or bacteriocin production. Our results demonstrate that pheromone signaling is required for efficient pCF10 transfer in vivo. In the absence of CF+ recipients, a low level of transfer to CF− recipients occurred in the gut. This may result from low-level host-mediated induction of the donors in the gastrointestinal (GI tract, similar to that previously observed in serum.

  12. Enhancement in heat transfer of a ferrofluid in a differentially heated square cavity through the use of permanent magnets

    Science.gov (United States)

    Joubert, J. C.; Sharifpur, M.; Solomon, A. Brusly; Meyer, J. P.

    2017-12-01

    The natural convection heat transfer of a magnetic nanofluid in a differentially heated cavity is investigated with and without an applied external magnetic field. The effects of volume fraction, magnetic field configuration, and magnetic field strength are investigated. Spherical Fe2O3 nanoparticles with a diameter of 15-20 nm are used in the nanofluids. Volume fractions ranging between 0.05% and 0.3% are tested for the case with no magnetic field, while only a volume fraction of 0.1% was tested in an externally applied magnetic field. The experiments were conducted for a range of Rayleigh numbers in 1.7 × 108 < Ra < 4.2 × 108. The viscosity of the nanofluid was determined experimentally. An empirical correlation for the viscosity was determined, and the stability of various nanofluids was investigated. Using heat transfer data obtained from the cavity, the average heat transfer coefficient and average Nusselt number for the nanofluids are determined. It was found that a volume fraction of 0.1% showed a maximum increase of 5.63% to the Nu at the maximum Ra. For the magnetic field study, it was found that the best-performing magnetic field enhanced the heat transfer behaviour by an additional 2.81% in Nu at Ra = 3.8 × 108.

  13. Numerical study of the enhancement of heat transfer for hybrid CuO-Cu Nanofluids flowing in a circular pipe.

    Science.gov (United States)

    Balla, Hyder H; Abdullah, Shahrir; Mohdfaizal, Wan; Zulkifli, Rozli; Sopian, Kamaruzaman

    2013-01-01

    A numerical simulation model for laminar flow of nanofluids in a pipe with constant heat flux on the wall was built to study the effect of the Reynolds number on convective heat transfer and pressure loss. The investigation was performed for hybrid nanofluids consisting of CuO-Cu nanoparticles and compared with CuO and Cu in which the nanoparticles have a spherical shape with size 50, 50, 50nm respectively. The nanofluids were prepared, following which the thermal conductivity and dynamic viscosity were measured for a range of temperatures (10 -60°C). The numerical results obtained were compared with the existing well-established correlation. The prediction of the Nusselt number for nanofluids agrees well with the Shah correlation. The comparison of heat transfer coefficients for CuO, Cu and CuO-Cu presented an increase in thermal conductivity of the nanofluid as the convective heat transfer coefficient increased. It was found that the pressure loss increases with an increase in the Reynolds number, nanoparticle density and particle volume fraction. However, the flow demonstrates enhancement in heat transfer which becomes greater with an increase in the Reynolds number for the nanofluid flow.

  14. Numerical Analysis of Heat transfer Enhancement in a double pipe heat exchanger with a holed twisted tape

    Directory of Open Access Journals (Sweden)

    Kumar Akarsh

    2018-01-01

    Full Text Available In the present study numerical analysis of enhancement in heat transfer characteristics in a double pipe heat exchanger is studied using a holed twisted tape.The twisted tape with a constant twist ratio is inserted in a double pipe heat exchanger. Holes of diameter 1mm, 3 mm and 5 mm were drilled at regular pitch throughout the length of the tape. Numerical modeling of a double pipe heat exchanger with the holed twisted tape was constructed considering hot fluid flowing in the inner pipe and cold fluid through the annulus.Simulation was done for varied mass flow rates of hot fluid in the turbulent condition keeping the mass flow rate of cold fluid being constant. Thermal properties like Outlet temperatures, Nusselt number, overall heat transfer coefficient, heat transfer rate and pressure drop were determined for all the cases. Results indicated that normaltwisted tape without holes performed better than the bare tube. In the tested range of mass flow rates the average Nusselt number and heat transfer rate were increased by 85% and 34% respectively. Performance of Twisted tape with holes was slightly reduced than the normal twisted tape and it deteriorated further for higher values hole diameter. Pressure drop was found to be higher for the holed twisted tape than the normal tape.

  15. Heat transfer enhancement and pumping power optimization using CuO-water nanofluid through rectangular corrugated pipe

    Science.gov (United States)

    Salehin, Musfequs; Ehsan, Mohammad Monjurul; Islam, A. K. M. Sadrul

    2017-06-01

    Heat transfer enhancement by corrugation in fluid domain is a popular method. The rate of improvement is more when it is used highly thermal conductive fluid as heating or cooling medium. In this present study, heat transfer augmentation was investigated numerically by implementing corrugation in the fluid domain and nanofluid as the base fluid in the turbulent forced convection regime. Finite volume method (FVM) was applied to solve the continuity, momentum and energy equations. All the numerical simulations were considered for single phase flow. A rectangle corrugated pipe with 5000 W/m2 constant heat flux subjected to the corrugated wall was considered as the fluid domain. In the range of Reynolds number 15000 to 40000, thermo-physical and hydrodynamic behavior was investigated by using CuO-water nanofluid from 1% to 5% volume fraction as the base fluid through the corrugated fluid domain. Corrugation justification was performed by changing the amplitude of the corrugation and the corrugation wave length for obtaining the increased heat transfer rate with minimum pumping power. For using CuO-water nanofluid, augmentation was also found more in the rectangle corrugated pipe both in heat transfer and pumping power requirement with the increase of Reynolds number and the volume fraction of nanofluid. For the increased pumping power, optimization of pumping power by using nanofluid was also performed for economic finding.

  16. Enhanced surface transfer doping of diamond by V{sub 2}O{sub 5} with improved thermal stability

    Energy Technology Data Exchange (ETDEWEB)

    Crawford, Kevin G., E-mail: k.crawford.2@research.gla.ac.uk; Moran, David A. J. [School of Engineering, University of Glasgow, Glasgow G12 8LT (United Kingdom); Cao, Liang [High Magnetic Field Laboratory, Chinese Academy of Sciences, 350 Shushanhu Road, Hefei 230031, Anhui (China); Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore); Qi, Dongchen, E-mail: d.qi@latrobe.edu.au [Department of Chemistry and Physics, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086 (Australia); Tallaire, Alexandre [LSPM-CNRS, Université Paris 13, Villetaneuse 93430 (France); Limiti, E.; Verona, C. [Department of Industrial Engineering, “Tor Vergata” University, Rome 00173 (Italy); Wee, Andrew T. S. [Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore, Singapore 117542 (Singapore)

    2016-01-25

    Surface transfer doping of hydrogen-terminated diamond has been achieved utilising V{sub 2}O{sub 5} as a surface electron accepting material. Contact between the oxide and diamond surface promotes the transfer of electrons from the diamond into the V{sub 2}O{sub 5} as revealed by the synchrotron-based high resolution photoemission spectroscopy. Electrical characterization by Hall measurement performed before and after V{sub 2}O{sub 5} deposition shows an increase in hole carrier concentration in the diamond from 3.0 × 10{sup 12} to 1.8 × 10{sup 13 }cm{sup −2} at room temperature. High temperature Hall measurements performed up to 300 °C in atmosphere reveal greatly enhanced thermal stability of the hole channel produced using V{sub 2}O{sub 5} in comparison with an air-induced surface conduction channel. Transfer doping of hydrogen-terminated diamond using high electron affinity oxides such as V{sub 2}O{sub 5} is a promising approach for achieving thermally stable, high performance diamond based devices in comparison with air-induced surface transfer doping.

  17. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    OpenAIRE

    Xueping Du; Dongtai Han; Qiangmin Zhu

    2018-01-01

    To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to e...

  18. Intramolecular electron transfer in ascorbate oxidase is enhanced in the presence of oxygen

    DEFF Research Database (Denmark)

    Farver, O; Wherland, S; Pecht, I

    1994-01-01

    Intramolecular electron transfer from the type 1 copper center to the type 3 copper(II) pair is induced in the multi-copper enzyme, ascorbate oxidase, following pulse radiolytic reduction of the type 1 Cu(II) ion. In the presence of a slight excess of dioxygen over ascorbate oxidase, interaction...... between the trinuclear copper center and O2 is observed even with singly reduced ascorbate oxidase molecules. Under these conditions, the rate constant for intramolecular electron transfer from type 1 Cu(I) to type 3 Cu(II) increases 5-fold to 1100 +/- 300 s-1 (20 degrees C, pH 5.8) as compared...

  19. Enhanced Performance of Dye-Sensitized Solar Cells with Nanostructure Graphene Electron Transfer Layer

    Directory of Open Access Journals (Sweden)

    Chih-Hung Hsu

    2014-01-01

    Full Text Available The utilization of nanostructure graphene thin films as electron transfer layer in dye-sensitized solar cells (DSSCs was demonstrated. The effect of a nanostructure graphene thin film in DSSC structure was examined. The nanostructure graphene thin films provides a great electron transfer channel for the photogenerated electrons from TiO2 to indium tin oxide (ITO glass. Obvious improvements in short-circuit current density of the DSSCs were observed by using the graphene electron transport layer modified photoelectrode. The graphene electron transport layer reduces effectively the back reaction in the interface between the ITO transparent conductive film and the electrolyte in the DSSC.

  20. Magnetic nanoparticles stimulation to enhance liquid-liquid two-phase mass transfer under static and rotating magnetic fields

    Energy Technology Data Exchange (ETDEWEB)

    Azimi, Neda; Rahimi, Masoud, E-mail: masoudrahimi@yahoo.com

    2017-01-15

    Rotating magnetic field (RMF) was applied on a micromixer to break the laminar flow and induce chaotic flow to enhance mass transfer between two-immiscible organic and aqueous phases. The results of RMF were compared to those of static magnetic field (SMF). For this purpose, experiments were carried out in a T-micromixer at equal volumetric flow rates of organic and aqueous phases. Fe{sub 3}O{sub 4} nanoparticles were synthesized by co-precipitation technique and they were dissolved in organic phase. Results obtained from RMF and SMF were compared in terms of overall volumetric mass transfer coefficient (K{sub L}a) and extraction efficiency (E) at various Reynolds numbers. Generally, RMF showed higher effect in mass transfer characteristics enhancement compared with SMF. The influence of rotational speeds of magnets (ω) in RMF was investigated, and measurable enhancements of K{sub L}a and E were observed. In RMF, the effect of magnetic field induction (B) was investigated. The results reveal that at constant concentration of nanoparticles, by increasing of B, mass transfer characteristics will be enhanced. The effect of various nanoparticles concentrations (ϕ) within 0.002–0.01 (w/v) on K{sub L}a and E at maximum induction of RMF (B=76 mT) was evaluated. Maximum values of K{sub L}a (2.1±0.001) and E (0.884±0.001) were achieved for the layout of RMF (B=76 mT), ω=16 rad/s and MNPs concentration of 0.008–0.01 (w/v). - Highlights: • Magnetic nanoparticles used for mixing of two immiscible liquids in a micromixer. • Extraction efficiency of rotating magnetic field (RMF) is compared with static one. • In RMF, the effect of the angular speed on KLa and E enhancement is reported. • In RMF, at a selected magnet distance effect of nanoparticle concentration is reported.

  1. Highly Enhanced Electromechanical Stability of Large-Area Graphene with Increased Interfacial Adhesion Energy by Electrothermal-Direct Transfer for Transparent Electrodes.

    Science.gov (United States)

    Kim, Jangheon; Kim, Gi Gyu; Kim, Soohyun; Jung, Wonsuk

    2016-09-07

    Graphene, a two-dimensional sheet of carbon atoms in a hexagonal lattice structure, has been extensively investigated for research and industrial applications as a promising material with outstanding electrical, mechanical, and chemical properties. To fabricate graphene-based devices, graphene transfer to the target substrate with a clean and minimally defective surface is the first step. However, graphene transfer technologies require improvement in terms of uniform transfer with a clean, nonfolded and nontorn area, amount of defects, and electromechanical reliability of the transferred graphene. More specifically, uniform transfer of a large area is a key challenge when graphene is repetitively transferred onto pretransferred layers because the adhesion energy between graphene layers is too low to ensure uniform transfer, although uniform multilayers of graphene have exhibited enhanced electrical and optical properties. In this work, we developed a newly suggested electrothermal-direct (ETD) transfer method for large-area high quality monolayer graphene with less defects and an absence of folding or tearing of the area at the surface. This method delivers uniform multilayer transfer of graphene by repetitive monolayer transfer steps based on high adhesion energy between graphene layers and the target substrate. To investigate the highly enhanced electromechanical stability, we conducted mechanical elastic bending experiments and reliability tests in a highly humid environment. This ETD-transferred graphene is expected to replace commercial transparent electrodes with ETD graphene-based transparent electrodes and devices such as a touch panels with outstanding electromechanical stability.

  2. Enhanced signal dispersion in saturation transfer difference experiments by conversion to a 1D-STD-homodecoupled spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Martin-Pastor, Manuel; Vega-Vazquez, Marino [Universidade de Santiago de Compostela, Laboratorio Integral de Dinamica e Estructura de Biomoleculas Jose R. Carracido, Unidade de Resonancia Magnetica, Edificio CACTUS, RIAIDT (Spain); Capua, Antonia De [Seconda Universita degli Studi di Napoli, Dipartimento di Scienze Ambientali (Italy); Canales, Angeles [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain); Andre, Sabine; Gabius, Hans-Joachim [Ludwig-Maximilians-Universitaet, Institut fuer Physiologische Chemie, Tieraerztliche Fakultaet (Germany); Jimenez-Barbero, Jesus [Centro de Investigaciones Biologicas, CSIC, Departamento de Estructura y funcion de proteinas (Spain)], E-mail: JJbarbero@cib.csic.es

    2006-10-15

    The saturation transfer difference (STD) experiment is a rich source of information on topological aspects of ligand binding to a receptor. The epitope mapping is based on a magnetization transfer after signal saturation from the receptor to the ligand, where interproton distances permit this process. Signal overlap in the STD spectrum can cause difficulties to correctly assign and/or quantitate the measured enhancements. To address this issue we report here a modified version of the routine experiment and a processing scheme that provides a 1D-STD homodecoupled spectrum (i.e. an experiment in which all STD signals appear as singlets) with line widths similar to those in original STD spectrum. These refinements contribute to alleviate problems of signal overlap. The experiment is based on 2D-J-resolved spectroscopy, one of the fastest 2D experiments under conventional data sampling in the indirect dimension, and provides excellent sensitivity, a key factor for the difference experiments.

  3. Serial contrast-enhanced magnetic resonance and magnetization transfer in the study of patients with multiple sclerosis

    International Nuclear Information System (INIS)

    Rovira, A.; Alonso, J.; Cucurella, G.; Nos, C.; Tintore, M.; Pedraza, S.; Rio, J.; Montalban, X.

    1997-01-01

    To demonstrate the changes in the magnetization transfer ratio (MTR) of different demyelinating plaques, correlating them with the baseline values in T1-weighted contrast-enhanced magnetic resonance (MR) sequences in order to relate them more closely to the underlying disease. The study was based on 33 demyelinating plaques obtained from six patients clinically diagnosed as having remitting-recurring multiple sclerosis (MS). All the patients underwent two MR studies at a 3 to 5-month interval, including contrast-enhanced T1 and T2- weighted sequences and magnetization transfer images. The latter were used to calculate the MTR for each of the demyelinating plaques included in the study. The statistical analysis of the results obtained revealed statistically significant between initial MTR values and those of subsequent T1-weighted sequences. The MTR demonstrate significant differences between plaques according to contrast-enhanced T1-weigh tes sequences, probably indicating variable degrees of edema, demyelination and tissue destruction. These differences should be taken into account to enable the use of T1-weighted sequences to quantify the lesion load in MS patients. (Author) 35 refs

  4. CRISPR-cas-mediated phage resistance enhances horizontal gene transfer by transduction

    NARCIS (Netherlands)

    Watson, Bridget N.J.; Staals, Raymond H.J.; Fineran, Peter C.

    2018-01-01

    A powerful contributor to prokaryotic evolution is horizontal gene transfer (HGT) through transformation, conjugation, and transduction, which can be advantageous, neutral, or detrimental to fitness. Bacteria and archaea control HGT and phage infection through CRISPR-Cas (clustered regularly

  5. Enhanced intersystem crossing via a high energy charge transfer state in a perylenediimide-perylenemonoimide dyad

    NARCIS (Netherlands)

    Veldman, D.; Chopin-Cado, S.M.A; Meskers, S.C.J.; Janssen, R.A.J.

    2008-01-01

    The electronic relaxation processes of a photoexcited linear perylenediimide-perylenemonoimide (PDI-PMI) acceptor-donor dyad were studied. PDI-PMI serves as a model compound for donor-acceptor systems in photovoltaic devices and has been designed to have a high-energy PDI--PMI + charge transfer (CT)

  6. Enhancement of heat transfer by nanofluids and orientations of the equilateral triangular obstacle

    International Nuclear Information System (INIS)

    Bovand, M.; Rashidi, S.; Esfahani, J.A.

    2015-01-01

    Highlights: • The heat transfer is improved by nanofluids and orientations of the obstacle. • The role of solid volume fraction on the fluid flow and heat transfer is studied. • There is an upward drift in the vortices for the diagonal facing flow. • The maximum value of the average Nusselt number is for the vertex facing flow. - Abstract: This paper simulates the forced convective heat transfer of Al 2 O 3 –water nanofluid over an equilateral triangular obstacle. Computations are performed for different orientations of the triangular obstacle (side, vertex and diagonal facing flows). The ranges of Reynolds number (Re) and solid volume fractions of nanoparticles (φ) are 1 ⩽ Re ⩽ 200 and 0 ⩽ φ ⩽ 0.05, respectively. Two-dimensional unsteady conservation laws of mass, momentum, and energy equations have been solved using finite volume method. The effects of Reynolds number, solid volume fractions of nanoparticles and different orientations of the triangular obstacle on the flow and heat transfer characteristics are investigated in detail. Detailed results are presented for wake length, streamline, vorticity, temperature contours and time averaged Nusselt number. Finally, the value of time averaged Nusselt number has been investigated in three equations using least square method which the effects of solid volume fraction of nanoparticles and Reynolds numbers are taken into account. The calculated results revealed that the maximum effect of nanoparticles on heat transfer rate augmentation is for the side facing flow and the minimum is related to the vertex facing flow. Also, the required Reynolds numbers for wake formation decrease with increase in solid volume fraction

  7. Paddy-field contamination with 134Cs and 137Cs due to Fukushima Dai-ichi Nuclear Power Plant accident and soil-to-rice transfer coefficients

    International Nuclear Information System (INIS)

    Endo, Satoru; Kajimoto, Tsuyoshi; Shizuma, Kiyoshi

    2013-01-01

    The transfer coefficient (TF) from soil to rice plants of 134 Cs and 137 Cs in the form of radioactive deposition from the Fukushima Dai-ichi Nuclear Power Plant (FDNPP) accident in March 2011 was investigated in three rice paddy fields in Minami-Soma City. Rice crops were planted in the following May and harvested at the end of September. Soil cores of 30-cm depth were sampled from rice-planted paddy fields to measure 134 Cs and 137 Cs radioactivity at 5-cm intervals. 134 Cs and 137 Cs radioactivity was also measured in rice ears (rice with chaff), straws and roots. The rice ears were subdivided into chaff, brown rice, polished rice and rice bran, and the 134 Cs and 137 Cs radioactivity concentration of each plant part was measured to calculate the respective TF from the soil. The TF of roots was highest at 0.48 ± 0.10 in the field where the 40 K concentration in the soil core was relatively low, in comparison with TF values of 0.31 and 0.38 in other fields. Similar trends could be found for the TF of whole rice plants, excluding roots. The TF of rice ears was relatively low at 0.019–0.026. The TF of chaff, rice bran, brown rice and polished rice was estimated to be 0.049, 0.10–0.16, 0.013–0.017 and 0.005–0.013, respectively. - Highlights: ► We investigated the transfer coefficient of 134 Cs and 137 Cs from soil to rice plants in Minami-Soma City due to the Fukushima accident in 2011. ► The rice ears, straws, roots, chaff, brown rice, polished rice, rice bran and soil samples have been measured by Ge-detector. ► Transfer coefficient of chaff, rice bran, brown rice, and polished rice is estimated as 0.049, ranging from 0.10 to 0.16, 0.013 to 0.017, and 0.005 to 0.013, respectively.

  8. Quantifying solubility enhancement due to particle size reduction and crystal habit modification: case study of acetyl salicylic acid.

    Science.gov (United States)

    Hammond, Robert B; Pencheva, Klimentina; Roberts, Kevin J; Auffret, Tony

    2007-08-01

    The poor solubility of potential drug molecules is a significant problem in the design of pharmaceutical formulations. It is well known, however, that the solubility of crystalline materials is enhanced when the particle size is reduced to submicron levels and this factor can be expected to enhance drug product bioavailability. Direct estimation of solubility enhancement, as calculated via the Gibbs-Thompson relationship, demands reasonably accurate values for the particle/solution interfacial tension and, in particular, its anisotropy with respect to the crystal product's habit and morphology. In this article, an improved, more molecule-centered, approach is presented towards the calculation of solubility enhancement factors in which molecular modeling techniques are applied, and the effects associated with both crystal habit modification and solvent choice are examined. A case study for facetted, acetyl salicylic acid (aspirin) crystals in equilibrium with saturated aqueous ethanol solution reveals that their solubility will be enhanced in the range (7-58%) for a crystal size of 0.02 microm, with significantly higher enhancement for crystal morphologies in which the hydrophobic crystal faces are more predominant than the hydrophilic faces and for solvents in which the solubility is smaller. (c) 2007 Wiley-Liss, Inc. and the American Pharmacists Association.

  9. Heat transfer

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Heat transfer. Heat conduction in solid slab. Convective heat transfer. Non-linear temperature. variation due to flow. HEAT FLUX AT SURFACE. conduction/diffusion.

  10. Numerical simulations of heat transfer through fractured rock for an enhanced geothermal system development in Seokmodo, Korea

    Science.gov (United States)

    Shin, Jiyoun; Kim, Kyung-Ho; Hyun, Yunjung; Lee, Kang-Keun

    2010-05-01

    Estimating the expected capacity and efficiency of energy is a crucial issue in the construction of geothermal plant. It is the lasting temperature of extracted geothermal water that determines the effectiveness of enhanced geothermal systems (EGS), so the heat transfer processes in geothermal reservoirs under site-specific geologic conditions should be understood first. The construction of the first geothermal plant in Korea is under planning in Seokmodo, where a few flowing artesian wells showing relatively high water temperature of around 70°C were discovered lately. The site of interest is a part of the island region, consisting of the reclaimed land surrounded by the sea and small mountains. Geothermal gradient measures approximately 45°C/km and the geothermal water is as saline as seawater. Geologic structure in this region is characterized by the fractured granite. In this study, thermo-hydrological (TH) numerical simulations for the temperature evolution in a fractured geothermal reservoir under the supposed injection-extraction operating conditions were carried out using TOUGH2. Multiple porosity model which is useful to calculate the transient interporosity flow in TH coupled heat transfer problem was used in simulations. Several fracture planes which had been investigated in the field were assigned to have highly permeable properties in order to avoid the averaging approximation and describe the dominant flow through the fractures. This heterogeneous model showed the rise of relatively hot geothermal water in the densely fractured region. The temperature of the extracted geothermal water also increased slowly for 50 years due to the rising flow through the fractures. The most sensitive factor which affects the underground thermal distribution and temperature of geothermal water was permeability of the medium. Change in permeabilities of rock and fracture within the range of 1 order might cause such an extreme change in the temperature of geothermal

  11. High-Resolution Experimental Investigation of mass transfer enhancement by chemical oxidation from DNAPL entrapped in variable-aperture fractures

    Science.gov (United States)

    Arshadi, M.; Rajaram, H.; Detwiler, R. L.; Jones, T.

    2012-12-01

    Permanganate oxidation of DNAPL- contaminated fractured rock is an effective remediation technology. Permanganate ion reacts with dissolved DNAPL in a bi-molecular oxidation-reduction reaction. The consumption of dissolved DNAPL in this reaction results in increased concentration gradients away from the free-phase DNAPL, resulting in reaction-enhanced mass transfer, which accelerates contaminant removal. The specific objective of our research was to perform high-resolution non-intrusive experimental studies of permanganate oxidation in a 15.24 × 15.24 cm, transparent, analog, variable-aperture fracture with complex initial TCE entrapped phase geometry. Our experimental system uses light-transmission techniques to accurately measure both fracture aperture and the evolution of individual entrapped DNAPL blobs during the remediation experiments at high resolution (pixel size : 6.2×10-3 cm). Three experiments were performed with different flow rates and permanganate inflow concentrations to observe DNAPL-permanganate interactions across a broader range of conditions. Prior to initiating each experiment, the aperture field within the fracture was measured. The oxidation experiment was initiated by TCE injection into the water saturated fracture till the TCE reached the outflow end, followed by water re-injection through the fracture. The flowing water mobilized some TCE. We continued injection of water till TCE mobilization ceased, leaving behind the residual TCE entrapped within the variable-aperture fracture. Subsequently, permanganate injection through the fracture resulted in propagation of a fingered reaction front into the fracture. We developed image processing algorithms to analyze the evolution of DNAPL phase geometry over the duration of the experiment. The permanganate consumption rate varied significantly within the fracture due to the complex flow and DNAPL concentration fields. Precipitated MnO2 was clearly evident on the downstream side of DNAPL blobs

  12. Ancient horizontal gene transfer from bacteria enhances biosynthetic capabilities of fungi.

    Directory of Open Access Journals (Sweden)

    Imke Schmitt

    Full Text Available Polyketides are natural products with a wide range of biological functions and pharmaceutical applications. Discovery and utilization of polyketides can be facilitated by understanding the evolutionary processes that gave rise to the biosynthetic machinery and the natural product potential of extant organisms. Gene duplication and subfunctionalization, as well as horizontal gene transfer are proposed mechanisms in the evolution of biosynthetic gene clusters. To explain the amount of homology in some polyketide synthases in unrelated organisms such as bacteria and fungi, interkingdom horizontal gene transfer has been evoked as the most likely evolutionary scenario. However, the origin of the genes and the direction of the transfer remained elusive.We used comparative phylogenetics to infer the ancestor of a group of polyketide synthase genes involved in antibiotic and mycotoxin production. We aligned keto synthase domain sequences of all available fungal 6-methylsalicylic acid (6-MSA-type PKSs and their closest bacterial relatives. To assess the role of symbiotic fungi in the evolution of this gene we generated 24 6-MSA synthase sequence tags from lichen-forming fungi. Our results support an ancient horizontal gene transfer event from an actinobacterial source into ascomycete fungi, followed by gene duplication.Given that actinobacteria are unrivaled producers of biologically active compounds, such as antibiotics, it appears particularly promising to study biosynthetic genes of actinobacterial origin in fungi. The large number of 6-MSA-type PKS sequences found in lichen-forming fungi leads us hypothesize that the evolution of typical lichen compounds, such as orsellinic acid derivatives, was facilitated by the gain of this bacterial polyketide synthase.

  13. The Enhanced Intramolecular Energy Transfer and Strengthened ff Luminescence of a Stable Helical Eu Complex in Ionic Liquids

    Directory of Open Access Journals (Sweden)

    Yuki Hasegawa

    2018-01-01

    Full Text Available The luminescence of a Eu complex (EuL is enhanced by stabilization of the coordination structure in highly viscous ionic liquids. The EuL was found to maintain a stable single helical structure both in organic solvents and in the ionic liquids [BMIM][PF6] and [EMIM][PF6]. A colorless solution of EuL dissolved in [BMIM][PF6] exhibits bright red luminescence with a quantum yield of 32.3%, a value that is much higher than that in acetonitrile (12%. Estimated rate constants for the energy relaxation pathway indicate that the energy transfer efficiency is enhanced in [BMIM][PF6] as a result of the suppression of molecular fluctuations in the ligands. Additionally, a highly luminescent helical structure is preserved in [EMIM][PF6] up to 120 °C.

  14. Polarization-based enhancement of ocean color signal for estimating suspended particulate matter: radiative transfer simulations and laboratory measurements.

    Science.gov (United States)

    Liu, Jia; He, Xianqiang; Liu, Jiahang; Bai, Yan; Wang, Difeng; Chen, Tieqiao; Wang, Yihao; Zhu, Feng

    2017-04-17

    Absorption and scattering by molecules, aerosols and hydrosols, and the reflection and transmission over the sea surface can modify the original polarization state of sunlight. However, water-leaving radiance polarization, containing embedded water constituent information, has largely been neglected. Here, the efficiency of the parallel polarization radiance (PPR) for enhancing ocean color signal of suspended particulate matter is examined via vector radiative transfer simulations and laboratory experiments. The simulation results demonstrate that the PPR has a slightly higher ocean color signal at the top-of-atmosphere as compared with that of the total radiance. Moreover, both the simulations and laboratory measurements reveal that, compared with total radiance, PPR can effectively enhance the normalized ocean color signal for a large range of observation geometries, wavelengths, and suspended particle concentrations. Thus, PPR has great potential for improving the ocean color signal detection from satellite.

  15. Interfacial energies of aqueous mixtures and porous coverings for enhancing pool boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Melendez, Elva [CIICAp, Universidad Autonoma del Estado de Morelos, 62210 (Mexico); Reyes, Rene [Departamento de Ingenieria Quimica y Alimentos, Universidad de las Americas Puebla, Santa Catarina Martir Cholula, Puebla 72820 (Mexico)

    2006-08-15

    The interfacial energies effects on pool boiling were measured for combinations of aqueous ethanol mixtures and cationic surfactants. The mixture with 16% ethanol by weight had the lowest contact angle (associated to the highest wettability) and produced the highest convective heat transfer coefficient, h, among the aqueous ethanol mixtures. The surfactant sodium-lauryl-sulfate added at 100 ppm (its calculated critical micelle concentration CMC) to the 16% ethanol aqueous mixture produced an additional increment of the wettability of the mixture and of the h values; other concentrations of the surfactant reduced de contact angle and h values. The effect of these interfacial energies represents a mass-transfer contribution to pool boiling and the proposal of mixture effects both as increased spreadability and as micelle states. Several randomly constructed porous coverings, contributing to the breakage of vapor slugs around the heater, were tested; produced the highest h values for average pore diameters of 0.5 mm, and covering thickness of 0.972 mm. The synergistic effect on h of the interfacial energies of mixtures at their critical micelle concentration, and porous coverings was measured. Therefore, the independent driving forces combined in this study for increasing pool boiling heat transfer are (a) spreadability of the liquid on the solid; (b) the bubble's size reduction, achieved by micelle states; and (c) the bubble's breakage, induced by the porous coverings, for vapor flow not under pressure drop control. (author)

  16. Heat Transfer Enhancement of the Air-Cooling Tower with Rotating Wind Deflectors under Crosswind Conditions

    Directory of Open Access Journals (Sweden)

    Xueping Du

    2018-04-01

    Full Text Available To investigate the effect of wind deflectors on air flow and heat transfer performance of an air-cooling tower under crosswind conditions, an experimental system based on a surface condenser aluminum exchanger-type indirect air-cooling tower is established at a 1:100 proportional reduction. A 3-D computational fluid dynamics simulation model is built to study the air flow and temperature fields. The air flow rate into the cooling tower and the heat transfer rate of the radiators are used to evaluate cooling performance. Rotating wind deflectors are adopted to reduce the influence of crosswind on the cooling tower performance. The effects of the rotating wind deflectors on the thermal-hydraulic characteristics of the air-cooling tower under different environmental crosswind speeds are studied. Results indicate that the wind direction in the tower reverses as the rotating speed of the wind deflectors increases. The thermal performance of an air-cooling tower under crosswind conditions can be improved by using rotating wind deflectors. The heat transfer rate of a cooling tower with eight wind deflectors begins to increase when the rotating speed exceeds 2 r/min.

  17. A relativistic self-consistent model for studying enhancement of space charge limited emission due to counter-streaming ions

    Science.gov (United States)

    Lin, M. C.; Verboncoeur, J.

    2016-10-01

    A maximum electron current transmitted through a planar diode gap is limited by space charge of electrons dwelling across the gap region, the so called space charge limited (SCL) emission. By introducing a counter-streaming ion flow to neutralize the electron charge density, the SCL emission can be dramatically raised, so electron current transmission gets enhanced. In this work, we have developed a relativistic self-consistent model for studying the enhancement of maximum transmission by a counter-streaming ion current. The maximum enhancement is found when the ion effect is saturated, as shown analytically. The solutions in non-relativistic, intermediate, and ultra-relativistic regimes are obtained and verified with 1-D particle-in-cell simulations. This self-consistent model is general and can also serve as a comparison for verification of simulation codes, as well as extension to higher dimensions.

  18. Enhancement of the neutral-beam stopping cross section in fusion plasmas due to multistep collision processes

    International Nuclear Information System (INIS)

    Boley, C.D.; Janev, R.K.; Post, D.E.

    1983-10-01

    Multistep processes involving excited atomic states are found to produce a substantial increase in the stopping cross section for a neutral hydrogen beam injected into a plasma, and thus to reduce the beam penetration. For typical plasma and beam parameters of current large tokamak experiments, the stopping cross-sectional enhancement is found to vary from 25% to 50% depending on the beam energy, plasma density, and impurity level. For neutral hydrogen beams with energies greater than or equal to 500 keV, envisioned in tokamak amd mirror reactor designs, the enhancement can be as large as 80 to 90%

  19. Peripheral blood aspirates overexpressing IGF-I via rAAV gene transfer undergo enhanced chondrogenic differentiation processes.

    Science.gov (United States)

    Frisch, Janina; Orth, Patrick; Rey-Rico, Ana; Venkatesan, Jagadeesh Kumar; Schmitt, Gertrud; Madry, Henning; Kohn, Dieter; Cucchiarini, Magali

    2017-11-01

    Implantation of peripheral blood aspirates induced towards chondrogenic differentiation upon genetic modification in sites of articular cartilage injury may represent a powerful strategy to enhance cartilage repair. Such a single-step approach may be less invasive than procedures based on the use of isolated or concentrated MSCs, simplifying translational protocols in patients. In this study, we provide evidence showing the feasibility of overexpressing the mitogenic and pro-anabolic insulin-like growth factor I (IGF-I) in human peripheral blood aspirates via rAAV-mediated gene transfer, leading to enhanced proliferative and chondrogenic differentiation (proteoglycans, type-II collagen, SOX9) activities in the samples relative to control (reporter rAAV-lacZ) treatment over extended periods of time (at least 21 days, the longest time-point evaluated). Interestingly, IGF-I gene transfer also triggered hypertrophic, osteo- and adipogenic differentiation processes in the aspirates, suggesting that careful regulation of IGF-I expression may be necessary to contain these events in vivo. Still, the current results demonstrate the potential of targeting human peripheral blood aspirates via therapeutic rAAV transduction as a novel, convenient tool to treat articular cartilage injuries. © 2017 The Authors. Journal of Cellular and Molecular Medicine published by John Wiley & Sons Ltd and Foundation for Cellular and Molecular Medicine.

  20. Effectively enhanced load transfer by interfacial reactions in multi-walled carbon nanotube reinforced Al matrix composites

    International Nuclear Information System (INIS)

    Zhou, Weiwei; Yamaguchi, Tatsuya; Kikuchi, Keiko; Nomura, Naoyuki; Kawasaki, Akira

    2017-01-01

    The thermal expansion response of multi-walled carbon nanotube (MWCNT) reinforced Al matrix composites was employed to discuss the improvement of the load transfer at the interface between the MWCNTs and the Al matrix. An aluminum carbide (Al_4C_3) nanostructure at the end of the MWCNTs, incorporated in the Al matrix, was produced by appropriate heat-treatment. The stress contrast around the Al_4C_3 observed in the high-resolution transmission electron microscopy (HRTEM) image revealed the evidence of a trace of friction, which would lead to the enhancement of the anchor effect from the Al matrix. This anchor effect of Al_4C_3 may hinder the local interfacial slippage and constrain the deformation of the Al matrix. As a result, the thermal expansion behavior became linear and reversible under cyclic thermal load. It is concluded that the formation of Al_4C_3 could effectively enhance the load transfer in MWCNT/Al composites. The yield strength of MWCNT/Al composites was substantially increased under the appropriate quantity of Al_4C_3 produced at the MWCNT-Al interface by precisely controlled heat-treatment.

  1. Consideration of the Change of Material Emission Signatures due to Longterm Emissions for Enhancing VOC Source Identification

    DEFF Research Database (Denmark)

    Han, K. H.; Zhang, J. S.; Knudsen, Henrik Nellemose

    2011-01-01

    The objectives of this study were to characterize the changes of VOC material emission profiles over time and develop a method to account for such changes in order to enhance a source identification technique that is based on the measurements of mixed air samples and the emission signatures of in...

  2. Gene transfer preferentially selects MHC class I positive tumour cells and enhances tumour immunogenicity.

    Science.gov (United States)

    Hacker, Ulrich T; Schildhauer, Ines; Barroso, Margarita Céspedes; Kofler, David M; Gerner, Franz M; Mysliwietz, Josef; Buening, Hildegard; Hallek, Michael; King, Susan B S

    2006-05-01

    The modulated expression of MHC class I on tumour tissue is well documented. Although the effect of MHC class I expression on the tumorigenicity and immunogenicity of MHC class I negative tumour cell lines has been rigorously studied, less is known about the validity of gene transfer and selection in cell lines with a mixed MHC class I phenotype. To address this issue we identified a C26 cell subline that consists of distinct populations of MHC class I (H-2D/K) positive and negative cells. Transient transfection experiments using liposome-based transfer showed a lower transgene expression in MHC class I negative cells. In addition, MHC class I negative cells were more sensitive to antibiotic selection. This led to the generation of fully MHC class I positive cell lines. In contrast to C26 cells, all transfectants were rejected in vivo and induced protection against the parental tumour cells in rechallenge experiments. Tumour cell specificity of the immune response was demonstrated in in vitro cytokine secretion and cytotoxicity assays. Transfectants expressing CD40 ligand and hygromycin phosphotransferase were not more immunogenic than cells expressing hygromycin resistance alone. We suggest that the MHC class I positive phenotype of the C26 transfectants had a bearing on their immunogenicity, because selected MHC class I positive cells were more immunogenic than parental C26 cells and could induce specific anti-tumour immune responses. These data demonstrate that the generation of tumour cell transfectants can lead to the selection of subpopulations that show an altered phenotype compared to the parental cell line and display altered immunogenicity independent of selection marker genes or other immune modulatory genes. Our results show the importance of monitoring gene transfer in the whole tumour cell population, especially for the evaluation of in vivo therapies targeted to heterogeneous tumour cell populations.

  3. Enhanced phase contrast transfer using ptychography combined with a pre-specimen phase plate in a scanning transmission electron microscope

    Energy Technology Data Exchange (ETDEWEB)

    Yang, Hao; Ercius, Peter [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States); Nellist, Peter D. [Department of Materials, University of Oxford, Parks Road, Oxford OX1 3PH (United Kingdom); Ophus, Colin, E-mail: clophus@lbl.gov [Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, CA 94720 (United States)

    2016-12-15

    The ability to image light elements in both crystalline and noncrystalline materials at near atomic resolution with an enhanced contrast is highly advantageous to understand the structure and properties of a wide range of beam sensitive materials including biological specimens and molecular hetero-structures. This requires the imaging system to have an efficient phase contrast transfer at both low and high spatial frequencies. In this work we introduce a new phase contrast imaging method in a scanning transmission electron microscope (STEM) using a pre-specimen phase plate in the probe forming aperture, combined with a fast pixelated detector to record diffraction patterns at every probe position, and phase reconstruction using ptychography. The phase plate significantly enhances the contrast transfer of low spatial frequency information, and ptychography maximizes the extraction of the phase information at all spatial frequencies. In addition, the STEM probe with the presence of the phase plate retains its atomic resolution, allowing simultaneous incoherent Z-contrast imaging to be obtained along with the ptychographic phase image. An experimental image of Au nanoparticles on a carbon support shows high contrast for both materials. Multislice image simulations of a DNA molecule shows the capability of imaging soft matter at low dose conditions, which implies potential applications of low dose imaging of a wide range of beam sensitive materials. - Highlights: • This work demonstrates a phase contrast imaging method by combining a pre-specimen phase plate with ptychogrpahy. • This method is shown to have a high phase contrast transfer efficiency at both low and high spatial frequencies. • Unlike CTEM which uses a heavy defocus to gain contrast, the phase plate gives a linear phase contrast at zero defocus aberrations. • Image simulations of DNA suggest this method is highly attractive for imaging beam sensitive materials at a low dose.

  4. Enhancement of the water flow velocity through carbon nanotubes resulting from the radius dependence of the friction due to electron excitations

    Science.gov (United States)

    Sokoloff, J. B.

    2018-03-01

    Secchi et al. [Nature (London) 537, 210 (2016), 10.1038/nature19315] observed a large enhancement of the permeability and slip length in carbon nanotubes when the tube radius is of the order of 15 nm, but not in boron nitride nanotubes. It will be pointed out that none of the parameters that appear in the usual molecular dynamics treatments of water flow in carbon nanotubes have a length scale comparable to 15 nm, which could account for the observed flow velocity enhancement. It will be demonstrated here, however, that if the friction force between the water and the tube walls in carbon nanotubes is dominated by friction due to electron excitations in the tube walls, the enhanced flow can be accounted for by a reduction in the contribution to the friction due to electron excitations in the wall, resulting from the dependence of the electron energy band gap on the tube radius.

  5. Effect of the angle of attack of a rectangular wing on the heat transfer enhancement in channel flow at low Reynolds number

    Science.gov (United States)

    Khanjian, Assadour; Habchi, Charbel; Russeil, Serge; Bougeard, Daniel; Lemenand, Thierry

    2018-05-01

    Convective heat transfer enhancement can be achieved by generating secondary flow structures that are added to the main flow to intensify the fluid exchange between hot and cold regions. One method involves the use of vortex generators to produce streamwise and transverse vortices superimposed to the main flow. This study presents numerical computation results of laminar convection heat transfer in a rectangular channel whose bottom wall is equipped with one row of rectangular wing vortex generators. The governing equations are solved using finite volume method by considering steady state, laminar regime and incompressible flow. Three-dimensional numerical simulations are performed to study the effect of the angle of attack α of the wing on heat transfer and pressure drop. Different values are taken into consideration within the range 0° heat transfer enhancement, Nusselt number and the friction factor are studied on both local and global perspectives. Also, the location of the generated vortices within the channel is studied, as well as their effect on the heat transfer enhancement throughout the channel for all α values . Based on both local and global analysis, our results show that the angle of attack α has a direct impact on the heat transfer enhancement. By increasing its value, it leads to better enhancement until an optimal value is reached, beyond which the thermal performances decrease.

  6. Nanosecond laser texturing of uniformly and non-uniformly wettable micro structured metal surfaces for enhanced boiling heat transfer

    Energy Technology Data Exchange (ETDEWEB)

    Zupančič, Matevž, E-mail: matevz.zupancic@fs.uni-lj.si; Može, Matic; Gregorčič, Peter; Golobič, Iztok

    2017-03-31

    Highlights: • Surfaces with periodically changed wettability were produced by a ns marking laser. • Heat transfer was investigated on uniformly and non-uniformly wettable surfaces. • Microporous surfaces with non-uniform wettability enhance boiling heat transfer. • The most bubble nucleations were observed in the vicinity of the microcavities. • Results agree with the predictions of the nucleation criteria. - Abstract: Microstructured uniformly and non-uniformly wettable surfaces were created on 25-μm-thin stainless steel foils by laser texturing using a marking nanosecond Nd:YAG laser (λ = 1064 nm) and utilizing various laser fluences and scan line separations. High-speed photography and high-speed IR thermography were used to investigate nucleate boiling heat transfer on the microstructured surfaces. The most pronounced results were obtained on a surface with non-uniform microstructure and non-uniform wettability. The obtained results show up to a 110% higher heat transfer coefficients and 20–40 times higher nucleation site densities compared to the untextured surface. We show that the number of active nucleation sites is significantly increased in the vicinity of microcavities that appeared in areas with the smallest (10 μm) scan line separation. Furthermore, this confirms the predictions of nucleation criteria and proves that straightforward, cost-effective nanosecond laser texturing allows the production of cavities with diameters of up to a few micrometers and surfaces with non-uniform wettability. Additionally, this opens up important possibilities for a more deterministic control over the complex boiling process.

  7. Amino-Acid-Induced Preferential Orientation of Perovskite Crystals for Enhancing Interfacial Charge Transfer and Photovoltaic Performance.

    Science.gov (United States)

    Shih, Yen-Chen; Lan, Yu-Bing; Li, Chia-Shuo; Hsieh, Hsiao-Chi; Wang, Leeyih; Wu, Chih-I; Lin, King-Fu

    2017-06-01

    Interfacial engineering of perovskite solar cells (PSCs) is attracting intensive attention owing to the charge transfer efficiency at an interface, which greatly influences the photovoltaic performance. This study demonstrates the modification of a TiO 2 electron-transporting layer with various amino acids, which affects charge transfer efficiency at the TiO 2 /CH 3 NH 3 PbI 3 interface in PSC, among which the l-alanine-modified cell exhibits the best power conversion efficiency with 30% enhancement. This study also shows that the (110) plane of perovskite crystallites tends to align in the direction perpendicular to the amino-acid-modified TiO 2 as observed in grazing-incidence wide-angle X-ray scattering of thin CH 3 NH 3 PbI 3 perovskite film. Electrochemical impedance spectroscopy reveals less charge transfer resistance at the TiO 2 /CH 3 NH 3 PbI 3 interface after being modified with amino acids, which is also supported by the lower intensity of steady-state photoluminescence (PL) and the reduced PL lifetime of perovskite. In addition, based on the PL measurement with excitation from different side of the sample, amino-acid-modified samples show less surface trapping effect compared to the sample without modification, which may also facilitate charge transfer efficiency at the interface. The results suggest that appropriate orientation of perovskite crystallites at the interface and trap-passivation are the niche for better photovoltaic performance. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Lipid lowering and HDL raising gene transfer increase endothelial progenitor cells, enhance myocardial vascularity, and improve diastolic function.

    Directory of Open Access Journals (Sweden)

    Stephanie C Gordts

    Full Text Available BACKGROUND: Hypercholesterolemia and low high density lipoprotein (HDL cholesterol contribute to coronary heart disease but little is known about their direct effects on myocardial function. Low HDL and raised non-HDL cholesterol levels carried increased risk for heart failure development in the Framingham study, independent of any association with myocardial infarction. The objective of this study was to test the hypothesis that increased endothelial progenitor cell (EPC number and function after lipid lowering or HDL raising gene transfer in C57BL/6 low density lipoprotein receptor deficient (LDLr(-/- mice may be associated with an enhanced relative vascularity in the myocardium and an improved cardiac function. METHODOLOGY/PRINCIPAL FINDINGS: Lipid lowering and HDL raising gene transfer were performed using the E1E3E4-deleted LDLr expressing adenoviral vector AdLDLr and the human apolipoprotein A-I expressing vector AdA-I, respectively. AdLDLr transfer in C57BL/6 LDLr(-/- mice resulted in a 2.0-fold (p<0.05 increase of the circulating number of EPCs and in an improvement of EPC function as assessed by ex vivo EPC migration and EPC adhesion. Capillary density and relative vascularity in the myocardium were 28% (p<0.01 and 22% (p<0.05 higher, respectively, in AdLDLr mice compared to control mice. The peak rate of isovolumetric relaxation was increased by 12% (p<0.05 and the time constant of isovolumetric relaxation was decreased by 14% (p<0.05 after AdLDLr transfer. Similarly, HDL raising gene transfer increased EPC number and function and raised both capillary density and relative vascularity in the myocardium by 24% (p<0.05. The peak rate of isovolumetric relaxation was increased by 16% (p<0.05 in AdA-I mice compared to control mice. CONCLUSIONS/SIGNIFICANCE: Both lipid lowering and HDL raising gene transfer have beneficial effects on EPC biology, relative myocardial vascularity, and diastolic function. These findings raise concerns over the

  9. Numerical simulation of heat transfer process in solar enhanced natural draft dry cooling tower with radiation model

    International Nuclear Information System (INIS)

    Wang, Qiuhuan; Zhu, Jialing; Lu, Xinli

    2017-01-01

    Graphical abstract: A 3-D numerical model integrated with a discrete ordinate (DO) solar radiation model (considering solar radiation effect in the room of solar collector) was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of the SENDDCT. Our study shows that introducing such a radiation model can more accurately simulate the heat transfer process in the SENDDCT. Calculation results indicate that previous simulations overestimated solar energy obtained by the solar collector and underestimated the heat loss. The cooling performance is improved when the solar radiation intensity or ambient pressure is high. Air temperature and velocity increase with the increase of solar radiation intensity. But ambient pressure has inverse effects on the changes of air temperature and velocity. Under a condition that the solar load increases but the ambient pressure decreases, the increased rate of heat transferred in the heat exchanger is not obvious. Thus the performance of the SENDDCT not only depends on the solar radiation intensity but also depends on the ambient pressure. - Highlights: • A radiation model has been introduced to accurately simulate heat transfer process. • Heat transfer rate would be overestimated if the radiation model was not introduced. • The heat transfer rate is approximately proportional to solar radiation intensity. • The higher the solar radiation or ambient pressure, the better SENDDCT performance. - Abstract: Solar enhanced natural draft dry cooling tower (SENDDCT) is more efficient than natural draft dry cooling tower by utilizing solar radiation in arid region. A three-dimensional numerical model considering solar radiation effect was developed to investigate the influence of solar radiation intensity and ambient pressure on the efficiency and thermal characteristics of SENDDCT. The numerical simulation outcomes reveal that a model with consideration of

  10. Numerical study of mixed convection heat transfer enhancement in a channel with active flow modulation

    Science.gov (United States)

    Billah, Md. Mamun; Khan, Md Imran; Rahman, Mohammed Mizanur; Alam, Muntasir; Saha, Sumon; Hasan, Mohammad Nasim

    2017-06-01

    A numerical study of steady two dimensional mixed convention heat transfer phenomena in a rectangular channel with active flow modulation is carried out in this investigation. The flow in the channel is modulated via a rotating cylinder placed at the center of the channel. In this study the top wall of the channel is subjected to an isothermal low temperature while a discrete isoflux heater is positioned on the lower wall. The fluid flow under investigation is assumed to have a Prandtl number of 0.71 while the Reynolds No. and the Grashof No. are varied in wide range for four different situations such as: i) plain channel with no cylinder, ii) channel with stationary cylinder, iii) channel with clockwise rotating cylinder and iv) channel with counter clockwise rotating cylinder. The results obtained in this study are presented in terms of the distribution of streamlines, isotherms in the channel while the heat transfer process from the heat source is evaluated in terms of the local Nusselt number, average Nusselt number. The outcomes of this study also indicate that the results are strongly dependent on the type of configuration and direction of rotation of the cylinder and that the average Nusselt number value rises with an increase in Reynolds and Grashof numbers but the correlation between these parameters at higher values of Reynolds and Grashof numbers becomes weak.

  11. Efficiency Enhancement for an Inductive Wireless Power Transfer System by Optimizing the Impedance Matching Networks.

    Science.gov (United States)

    Miao, Zhidong; Liu, Dake; Gong, Chen

    2017-10-01

    Inductive wireless power transfer (IWPT) is a promising power technology for implantable biomedical devices, where the power consumption is low and the efficiency is the most important consideration. In this paper, we propose an optimization method of impedance matching networks (IMN) to maximize the IWPT efficiency. The IMN at the load side is designed to achieve the optimal load, and the IMN at the source side is designed to deliver the required amount of power (no-more-no-less) from the power source to the load. The theoretical analyses and design procedure are given. An IWPT system for an implantable glaucoma therapeutic prototype is designed as an example. Compared with the efficiency of the resonant IWPT system, the efficiency of our optimized system increases with a factor of 1.73. Besides, the efficiency of our optimized IWPT system is 1.97 times higher than that of the IWPT system optimized by the traditional maximum power transfer method. All the discussions indicate that the optimization method proposed in this paper could achieve a high efficiency and long working time when the system is powered by a battery.

  12. Enhanced α-Transfer population of the 2ms+ mixed-symmetry state in 52Ti

    Science.gov (United States)

    Ali, Fuad A.; Muecher, Dennis; Bildstein, Vinzenz; Greaves, Beau; Kilic, Ali. I.; Holt, Jason D.; Berner, Christian; Gernhaeuser, R.; Nowak, K.; Hellgartner, S.; Lutter, R.; Reichert, S.

    2017-09-01

    The residual nucleon-nucleon interaction plays a crucial role in nuclear structure physics. In spherical even-even nuclei the quadrupole interaction leads to so called proton-neutron mixed symmetry states, which are sensitive to the underlying subshell structure. We present new data using the MINIBALL germanium array. States in 52Ti were populated via the α-transfer reaction 48Ca(12C,8Be)52Ti using a 48Ca beam from the Maier-Leibnitz-Laboratory in Munich. In the frame work of IBM-2, Alonso et al. have shown that the population of the 2ms+ state is strictly forbidden for the alpha transfer from a doubly magic nucleus. In contrast, we measured a large relative cross section into the 22+ mixed-symmetry state in 52Ti relative to the 21+ state of 31.1(20) %. This value exceeds earlier measurements in the 140Ba nucleus, representing the case of a particular strong population of the 2ms,SUP>+ state. This points towards effects of core polarizations of 48Ca in the low-lying structure of 52Ti. We have performed ab-initio shell model calculations to understand the origin of the discovered discrepancies. Permanent Address: Department of Physics, College of Education, University of Sulaimani, P. O. Box 334, Sulaimani, Kurdistan Region, Iraq.

  13. External Control of Knowledge of Results: Learner Involvement Enhances Motor Skill Transfer.

    Science.gov (United States)

    Figueiredo, L S; Ugrinowitsch, H; Freire, A B; Shea, J B; Benda, R N

    2018-04-01

    Providing the learner control over aspects of practice has improved the process of motor skill acquisition, and self-controlled knowledge of results (KR) schedules have shown specific advantages over externally controlled ones. A possible explanation is that self-controlled KR schedules lead learners to more active task involvement, permitting deeper information processing. This study tested this explanatory hypothesis. Thirty undergraduate volunteers of both sexes, aged 18 to 35, all novices in the task, practiced transporting a tennis ball in a specified sequence within a time goal. We compared a high-involvement group (involvement yoked, IY), notified in advance about upcoming KR trials, to self-controlled KR (SC) and yoked KR (YK) groups. The experiment consisted of three phases: acquisition, retention, and transfer. We found both IY and SC groups to be superior to YK for transfer of learning. Postexperiment participant questionnaires confirmed a preference for receiving KR after learner-perceived good trials, even though performance on those trials did not differ from performance on trials without KR. Equivalent IY and SC performances provide support for the benefits of task involvement and deeper information processing when KR is self-controlled in motor skill acquisition.

  14. Enhancement of heat transfer for thermal energy storage application using stearic acid nanocomposite with multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Li, TingXian; Lee, Ju-Hyuk; Wang, RuZhu; Kang, Yong Tae

    2013-01-01

    A latent heat storage nanocomposite made of stearic acid (SA) and multi-walled carbon nanotube (MWCNT) is prepared for thermal energy storage application. The thermal properties of the SA/MWCNT nanocomposite are characterized by SEM (scanning electron microscopy) and DSC (differential scanning calorimeter) analysis techniques, and the effects of different volume fractions of MWCNT on the heat transfer enhancement and thermal performance of stearic acid are investigated during the charging and discharging phases. The SEM analysis shows that the additive of MWCNT is uniformly distributed in the phase change material of stearic acid, and the DSC analysis reveals that the melting point of SA/MWCNT nanocomposite shifts to a lower temperature during the charging phase and the freezing point shifts to a higher temperature during the discharging phase when compared with the pure stearic acid. The experimental results show that the addition of MWCNT can improve the thermal conductivity of stearic acid effectively, but it also weakens the natural convection of stearic acid in liquid state. In comparison with the pure stearic acid, the charging rate can be decreased by about 50% while the discharging rate can be improved by about 91% respectively by using the SA/5.0% MWCNT nanocomposite. It appears that the MWCNT is a promising candidate for enhancing the heat transfer performance of latent heat thermal energy storage system. - Highlights: • A nanocomposite made of stearic acid and multi-walled carbon nanotube is prepared for thermal energy storage application. • Effects of multi-walled carbon nanotube on the thermal performance of the nanocomposite are investigated. • Multi-walled carbon nanotube enhances the thermal conductivity but weakens the natural convection of stearic acid. • Discharging/charging rates of stearic acid are increased/decreased by using multi-walled carbon nanotube

  15. Enhanced mechanical properties of single walled carbon nanotube-borosilicate glass composite due to cushioning effect and localized plastic flow

    Directory of Open Access Journals (Sweden)

    Sujan Ghosh

    2011-12-01

    Full Text Available A borosilicate glass composite has been fabricated incorporating Single Wall Carbon Nanotubes (SWCNT in the glass matrix by melt-quench technique. Hardness and the fracture toughness of the composite, were found to increase moderately with respect to the base glass. Interestingly one can observe accumulation of SWCNT bundles around the crack zone though no such accumulation was observed in the crack free indentation zone. The enhanced hardness of the composite was discussed by correlating the cushioning as well as toughening behavior of the agglomerated SWCNT bundles. On the other hand enhanced plastic flow was proposed to be the prime reason for the accumulation of SWCNT bundles around the crack, which increases the toughness of the composite by reducing the crack length. Moreover to ascertain the enhanced plasticity of the composite than that of the glass we calculated the recovery resistance of glass and the composite where recovery resistance of composite was found to be higher than that of the glass.

  16. Experimental and numerical contribution to heat transfer enhancement in compact plate heat exchangers - 15563

    International Nuclear Information System (INIS)

    Vitillo, F.; Cachon, L.; Millan, P.

    2015-01-01

    In the framework of the CEA program to develop an industrial prototype of sodium-cooled fast reactor named (ASTRID), the present work aims at proposing an innovative compact heat exchanger technology, to provide solid technological basis for the utilization of a Brayton power conversion system. This allows avoiding the energetic sodium-water interaction that could potentially occur if a traditional Rankine cycle was used. The design of the gas-side (which determines the heat transfer resistance of the heat exchanger) of the sodium-gas heat exchanger has been the object of the present work. Compact technologies are necessary for the present application because of the low heat transfer capacity of the gas foreseen, i.e. nitrogen. The basic idea of this work is to design a channel were the fluid flow is as much as 3-dimensional as possible. In particular the proposed channel can be thought as the result of the superposition of 2 single PCHE wavy channels in phase opposition. The innovative channel geometry has to be studied numerically and experimentally to demonstrate its industrial interest and the final compact gain. To numerically provide a physically-consistent model, a new non-linear eddy viscosity named Anisotropic Shear Stress Transport (ASST) model has been developed and implemented into the available solver ANSYS FLUENT. It has been demonstrated that the ASST model can provide a valuable alternative to more complex models. Given the innovation of the proposed geometry, no test case has been found in the literature to be fully applicable to the present study. So, 3 experimental facilities have been used to acquire an extensive aerodynamic database. The Laser Doppler Velocimetry (LDV), Particle Image Velocimetry (PIV) and VHEGAS facilities have been built to investigate the innovative channel flow and heat transfer characteristics. The ASST model, used with a SGDH turbulent heat flux model, has been validate against the acquired thermal-hydraulic database

  17. Electron spin relaxation enhancement measurements of interspin distances in human, porcine, and Rhodobacter electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO).

    Science.gov (United States)

    Fielding, Alistair J; Usselman, Robert J; Watmough, Nicholas; Simkovic, Martin; Frerman, Frank E; Eaton, Gareth R; Eaton, Sandra S

    2008-02-01

    Electron transfer flavoprotein-ubiquinone oxidoreductase (ETF-QO) is a membrane-bound electron transfer protein that links primary flavoprotein dehydrogenases with the main respiratory chain. Human, porcine, and Rhodobacter sphaeroides ETF-QO each contain a single [4Fe-4S](2+,1+) cluster and one equivalent of FAD, which are diamagnetic in the isolated enzyme and become paramagnetic on reduction with the enzymatic electron donor or with dithionite. The anionic flavin semiquinone can be reduced further to diamagnetic hydroquinone. The redox potentials for the three redox couples are so similar that it is not possible to poise the proteins in a state where both the [4Fe-4S](+) cluster and the flavoquinone are fully in the paramagnetic form. Inversion recovery was used to measure the electron spin-lattice relaxation rates for the [4Fe-4S](+) between 8 and 18K and for semiquinone between 25 and 65K. At higher temperatures the spin-lattice relaxation rates for the [4Fe-4S](+) were calculated from the temperature-dependent contributions to the continuous wave linewidths. Although mixtures of the redox states are present, it was possible to analyze the enhancement of the electron spin relaxation of the FAD semiquinone signal due to dipolar interaction with the more rapidly relaxing [4Fe-4S](+) and obtain point-dipole interspin distances of 18.6+/-1A for the three proteins. The point-dipole distances are within experimental uncertainty of the value calculated based on the crystal structure of porcine ETF-QO when spin delocalization is taken into account. The results demonstrate that electron spin relaxation enhancement can be used to measure distances in redox poised proteins even when several redox states are present.

  18. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    CSIR Research Space (South Africa)

    De Villiers, JP

    2011-04-01

    Full Text Available Omnidirectional camera systems are used to supplement RADAR in tracking small craft close in to the ship in a maritime environment. They can simultaneously track multiple targets to provide a more complete situational awareness. Due to their wide...

  19. Enhancing Title Ix Due Process Standards in Campus Sexual Assault Adjudication: Considering the Roles of Distributive, Procedural, and Restorative Justice

    Science.gov (United States)

    Harper, Shannon; Maskaly, Jon; Kirkner, Anne; Lorenz, Katherine

    2017-01-01

    Title IX prohibits sex discrimination--including sexual assault--in higher education. The Department of Education Office for Civil Rights' 2011 "Dear Colleague Letter" outlines recommendations for campus sexual assault adjudication allowing a variety of procedures that fail to protect accused students' due process rights and victims'…

  20. Diphenylacrylonitrile-connected BODIPY dyes: fluorescence enhancement based on dark and AIE resonance energy transfer.

    Science.gov (United States)

    Lin, Liangbin; Lin, Xiaoru; Guo, Hongyu; Yang, Fafu

    2017-07-19

    This study focuses on the construction of novel diphenylacrylonitrile-connected BODIPY dyes with high fluorescence in both solution and an aggregated state by combining DRET and FRET processes in a single donor-acceptor system. The first BODIPY derivatives with one, two, or three AIE-active diphenylacrylonitrile groups were designed and synthesized in moderate yields. Strong fluorescence emissions were observed in the THF solution under excitation at the absorption wavelength of non-emissive diphenylacrylonitrile chromophores, implying the existence of the DRET process between the dark diphenylacrylonitrile donor and the emissive BODIPY acceptor. In the THF/H 2 O solution, the fluorescence intensity of the novel BODIPY derivatives gradually increased under excitation at the absorption wavelength of diphenylacrylonitrile chromophores, suggesting a FRET process between diphenylacrylonitrile and BODIPY moieties. A greater number of diphenylacrylonitrile units led to higher energy-transfer efficiencies. The pseudo-Stokes shift for both DRET and FRET processes was as large as 190 nm.

  1. Influence of cooling rate in planar thermally assisted magnetic random access memory: Improved writeability due to spin-transfer-torque influence

    International Nuclear Information System (INIS)

    Chavent, A.; Ducruet, C.; Portemont, C.; Creuzet, C.; Alvarez-Hérault, J.; Vila, L.; Sousa, R. C.; Prejbeanu, I. L.; Dieny, B.

    2015-01-01

    This paper investigates the effect of a controlled cooling rate on magnetic field reversal assisted by spin transfer torque (STT) in thermally assisted magnetic random access memory. By using a gradual linear decrease of the voltage at the end of the write pulse, the STT decays more slowly or at least at the same rate as the temperature. This condition is necessary to make sure that the storage layer magnetization remains in the desired written direction during cooling of the cell. The influence of the write current pulse decay rate was investigated on two exchange biased synthetic ferrimagnet (SyF) electrodes. For a NiFe based electrode, a significant improvement in writing reproducibility was observed using a gradual linear voltage transition. The write error rate decreases by a factor of 10 when increasing the write pulse fall-time from ∼3 ns to 70 ns. For comparison, a second CoFe/NiFe based electrode was also reversed by magnetic field assisted by STT. In this case, no difference between sharp and linear write pulse fall shape was observed. We attribute this observation to the higher thermal stability of the CoFe/NiFe electrode during cooling. In real-time measurements of the magnetization reversal, it was found that Ruderman-Kittel-Kasuya-Yosida (RKKY) coupling in the SyF electrode vanishes for the highest pulse voltages that were used due to the high temperature reached during write. As a result, during the cooling phase, the final state is reached through a spin-flop transition of the SyF storage layer

  2. Improvement of AD Biosynthesis Response to Enhanced Oxygen Transfer by Oxygen Vectors in Mycobacterium neoaurum TCCC 11979.

    Science.gov (United States)

    Su, Liqiu; Shen, Yanbing; Gao, Tian; Luo, Jianmei; Wang, Min

    2017-08-01

    In steroid biotransformation, soybean oil can improve the productivity of steroids by increasing substrate solubility and strengthen the cell membrane permeability. However, little is known of its role as oxygen carrier and its mechanism of promoting the steroid biotransformation. In this work, soybean oil used as oxygen vector for the enhancement of androst-4-ene-3,17-dione (AD) production by Mycobacterium neoaurum TCCC 11979 (MNR) was investigated. Upon the addition of 16% (v/v) soybean oil, the volumetric oxygen transfer coefficient (K L a) value increased by 44%, and the peak molar yield of AD (55.76%) was achieved. Analysis of intracellular cofactor levels showed high NAD + , ATP level, and a low NADH/NAD + ratio. Meanwhile, the two key enzymes of the tricarboxylic acid (TCA) cycle, namely, isocitrate dehydrogenase and α-ketoglutarate dehydrogenase, were upregulated after incubation with soybean oil. These enhancements induced by the increasing of oxygen supply showed positive effects on phytosterol (PS) bioconversion. Results could contribute to the understanding of effects of soybean oil as oxygen vector on steroid biotransformation and provided a convenient method for enhancing the efficiency of aerobic steroid biocatalysis.

  3. Nanoimprint-Transfer-Patterned Solids Enhance Light Absorption in Colloidal Quantum Dot Solar Cells

    KAUST Repository

    Kim, Younghoon; Bicanic, Kristopher; Tan, Hairen; Ouellette, Olivier; Sutherland, Brandon R.; Garcí a de Arquer, F. Pelayo; Jo, Jea Woong; Liu, Mengxia; Sun, Bin; Liu, Min; Hoogland, Sjoerd; Sargent, Edward H.

    2017-01-01

    Colloidal quantum dot (CQD) materials are of interest in thin-film solar cells due to their size-tunable bandgap and low-cost solution-processing. However, CQD solar cells suffer from inefficient charge extraction over the film thicknesses required

  4. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    Energy Technology Data Exchange (ETDEWEB)

    Sheikhnejad, Yahya; Hosseini, Reza, E-mail: hoseinir@aut.ac.ir; Saffar Avval, Majid

    2017-02-15

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field. - Highlights: • Porous media can improve the coefficient of heat transfer up to 2.2 fold. • Both porous media and Nano particles have undesired pressure drop effect. • Application of both porous media and magnetic field in ferrofluid flow will result in significant enhancement in heat transfer up to 2.4 fold. • Magnet bar effect is mainly restricted to approximately one fourth of the test section. • Diluted Ferrofluids 2%, results in over 1.4 fold enhancement in heat transfer coefficient.

  5. Radiation-enhanced short channel effects due to multi-dimensional influence from charge at trench isolation oxides

    International Nuclear Information System (INIS)

    Youk, G.U.; Khare, P.S.; Schrimpf, R.D.; Massengill, L.W.; Galloway, K.F.

    1999-01-01

    Radiation enhanced drain induced barrier lowering (DIBL) was experimentally observed and verified by 3-D simulations for submicron devices with trench isolation oxides. Submicron MOSFETs with shallow trench isolation were exposed to total-ionizing-dose radiation. Prior to irradiation, the devices exhibited near-ideal current-voltage characteristics, with no significant short-channel effects for as-drawn gate lengths of 0.4 microm. Following irradiation, the off-state leakage current increased significantly for total doses above about 650 krad(SiO 2 ). In addition, the irradiated devices exhibited DIBL that increased the drain current by 5--10x for a gate length of 0.4 microm (the nominal minimum gate length for this process) and much more for slightly shorter devices (0.35 microm). The increase in the off-state leakage current and the accompanying DIBL are shown to be associated with a parasitic field-effect transistor that is present at the edge of the shallow trench. Three-dimensional simulations are used to illustrate the effect. Simulations show that trapped charge at the trench sidewalls enhance the DIBL by depleting the edges of the channel. Radiation-induced charge may decrease the effectiveness of short-channel engineering

  6. Quantitative analysis of the improvement in omnidirectional maritime surveillance and tracking due to real-time image enhancement

    Science.gov (United States)

    de Villiers, Jason P.; Bachoo, Asheer K.; Nicolls, Fred C.; le Roux, Francois P. J.

    2011-05-01

    Tracking targets in a panoramic image is in many senses the inverse problem of tracking targets with a narrow field of view camera on a pan-tilt pedestal. In a narrow field of view camera tracking a moving target, the object is constant and the background is changing. A panoramic camera is able to model the entire scene, or background, and those areas it cannot model well are the potential targets and typically subtended far fewer pixels in the panoramic view compared to the narrow field of view. The outputs of an outward staring array of calibrated machine vision cameras are stitched into a single omnidirectional panorama and used to observe False Bay near Simon's Town, South Africa. A ground truth data-set was created by geo-aligning the camera array and placing a differential global position system receiver on a small target boat thus allowing its position in the array's field of view to be determined. Common tracking techniques including level-sets, Kalman filters and particle filters were implemented to run on the central processing unit of the tracking computer. Image enhancement techniques including multi-scale tone mapping, interpolated local histogram equalisation and several sharpening techniques were implemented on the graphics processing unit. An objective measurement of each tracking algorithm's robustness in the presence of sea-glint, low contrast visibility and sea clutter - such as white caps is performed on the raw recorded video data. These results are then compared to those obtained with the enhanced video data.

  7. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag_2Se quantum dots

    International Nuclear Information System (INIS)

    Martinez-Nuñez, C. E.; Cortez-Valadez, M.; Delgado-Beleño, Y.; Flores-López, N. S.; Román-Zamorano, J. F.; Flores-Valenzuela, J.; Flores-Acosta, M.

    2017-01-01

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag_2Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H_8Si_8Al_8O_1_2 represents the zeolite cavity unit, and small clusters of (Ag_2Se)_n represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  8. Differential and enhanced response to climate forcing in diarrheal disease due to rotavirus across a megacity of the developing world.

    Science.gov (United States)

    Martinez, Pamela P; King, Aaron A; Yunus, Mohammad; Faruque, A S G; Pascual, Mercedes

    2016-04-12

    The role of climate forcing in the population dynamics of infectious diseases has typically been revealed via retrospective analyses of incidence records aggregated across space and, in particular, over whole cities. Here, we focus on the transmission dynamics of rotavirus, the main diarrheal disease in infants and young children, within the megacity of Dhaka, Bangladesh. We identify two zones, the densely urbanized core and the more rural periphery, that respond differentially to flooding. Moreover, disease seasonality differs substantially between these regions, spanning variation comparable to the variation from tropical to temperate regions. By combining process-based models with an extensive disease surveillance record, we show that the response to climate forcing is mainly seasonal in the core, where a more endemic transmission resulting from an asymptomatic reservoir facilitates the response to the monsoons. The force of infection in this monsoon peak can be an order of magnitude larger than the force of infection in the more epidemic periphery, which exhibits little or no postmonsoon outbreak in a pattern typical of nearby rural areas. A typically smaller peak during the monsoon season nevertheless shows sensitivity to interannual variability in flooding. High human density in the core is one explanation for enhanced transmission during troughs and an associated seasonal monsoon response in this diarrheal disease, which unlike cholera, has not been widely viewed as climate-sensitive. Spatial demographic, socioeconomic, and environmental heterogeneity can create reservoirs of infection and enhance the sensitivity of disease systems to climate forcing, especially in the populated cities of the developing world.

  9. In situ surface-enhanced Raman spectroscopy effect in zeolite due to Ag{sub 2}Se quantum dots

    Energy Technology Data Exchange (ETDEWEB)

    Martinez-Nuñez, C. E. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Cortez-Valadez, M., E-mail: jose.cortez@unison.mx, E-mail: manuelcortez@live.com [Universidad de Sonora, CONACYT-Departamento de Investigación en Física (Mexico); Delgado-Beleño, Y.; Flores-López, N. S. [Universidad de Sonora, Departamento de Investigación en Física (Mexico); Román-Zamorano, J. F. [Centro de Investigación y Desarrollo Tecnológico en Electroquímica (Mexico); Flores-Valenzuela, J. [Universidad Autónoma de Sinaloa (Mexico); Flores-Acosta, M. [Universidad de Sonora, Departamento de Investigación en Física (Mexico)

    2017-02-15

    This study shows the presence of surface-enhanced Raman spectroscopy (SERS) effect caused by Ag{sub 2}Se quantum dots embedded in the zeolite matrix. The quantum dots that were synthesised and stabilised in the matrix of F9-NaX zeolite show a size of 5 nm and a quasi-spherical morphology. The calculated interplanar distances confirm the presence of quantum dots in cubic phase Im-m. We suppose that the in situ SERS effect in the material is caused by chemical-enhancement mechanism (CEM). The density functional theory (DFT) is undertaken to corroborate our hypothesis. The structure H{sub 8}Si{sub 8}Al{sub 8}O{sub 12} represents the zeolite cavity unit, and small clusters of (Ag{sub 2}Se){sub n} represent the quantum dots. Both structures interact in the cavity to obtain the local minimum of the potential energy surface, leading to new molecular orbitals. After the analysis of the predicted Raman spectrum, the Raman bands increase significantly, agreeing with the experimental results at low wavenumbers in F9-NaX zeolite.

  10. RNA Interference Screen to Identify Pathways That Enhance or Reduce Nonviral Gene Transfer During Lipofection

    OpenAIRE

    Barker, Gregory A; Diamond, Scott L

    2008-01-01

    Some barriers to DNA lipofection are well characterized; however, there is as yet no method of finding unknown pathways that impact the process. A druggable genome small-interfering RNA (siRNA) screen against 5,520 genes was tested for its effect on lipofection of human aortic endothelial cells (HAECs). We found 130 gene targets which, when silenced by pooled siRNAs (three siRNAs per gene), resulted in enhanced luminescence after lipofection (86 gene targets showed reduced expression). In con...

  11. Low-Temperature Enhanced Geothermal System using Carbon Dioxide as the Heat-Transfer Fluid

    Energy Technology Data Exchange (ETDEWEB)

    Eastman, Alan D. [GreenFire Energy, Emeryville, CA (United States)

    2014-07-24

    This report describes work toward a supercritical CO2-based EGS system at the St. Johns Dome in Eastern Arizona, including a comprehensive literature search on CO2-based geothermal technologies, background seismic study, geological information, and a study of the possible use of metal oxide heat carriers to enhance the heat capacity of sCO2. It also includes cost estimates for the project, and the reasons why the project would probably not be cost effective at the proposed location.

  12. Device and method for luminescence enhancement by resonant energy transfer from an absorptive thin film

    Science.gov (United States)

    Akselrod, Gleb M.; Bawendi, Moungi G.; Bulovic, Vladimir; Tischler, Jonathan R.; Tisdale, William A.; Walker, Brian J.

    2017-12-12

    Disclosed are a device and a method for the design and fabrication of the device for enhancing the brightness of luminescent molecules, nanostructures, and thin films. The device includes a mirror, a dielectric medium or spacer, an absorptive layer, and a luminescent layer. The absorptive layer is a continuous thin film of a strongly absorbing organic or inorganic material. The luminescent layer may be a continuous luminescent thin film or an arrangement of isolated luminescent species, e.g., organic or metal-organic dye molecules, semiconductor quantum dots, or other semiconductor nanostructures, supported on top of the absorptive layer.

  13. VESUVIO. A project to provide enhanced neutron scattering capabilities at the highest energy transfers

    International Nuclear Information System (INIS)

    Tomkinson, J.; Bowden, Z.A.; Mayers, J.; Norris, J.; Rhodes, N.J.; Colognesi, D.; Fielding, A.L.; Praitano, M.

    1999-01-01

    Complete text of publication follows. The VESUVIO project is financed within the TMR-Access to Large Scale Facility (RTD project) of the European Community. It will provide unique prototype instrumentation at the ISIS neutron source which will build on the success and experience of the eVS spectrometer in measuring single particle dynamics of a wide range of condensed matter systems. The instrumentation is designed for high momentum (20A -1 -1 ) and energy (ℎω>1eV) transfer inelastic neutron scattering studies of microscopic dynamical properties such as, single particle kinetic energies and momentum distributions. Specific objectives are: a) to optimize and construct a high efficiency, high area detector, 6 Li doped scintillator glasses are being tested; b) to construct a sample tank capable of operating with either a cold, or room temperature, filter analyzers; c) to develop new electronics and data acquisition to handle the high count-rates which will be generated in the azimuthal detectors. Some examples of applications performed during the first year of the project will be presented. (author)

  14. A study on optimal SFCL specification to enhance the transfer capability on Korean power system

    Energy Technology Data Exchange (ETDEWEB)

    Yoon, Minhan, E-mail: radiance0@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Lee, Hansang [School of Railway and Electrical Engineering, Kyungil University, Hayang-eup, Gyeongsan-si, Gyeongsangbuk-do 712-701 (Korea, Republic of); Cho, Yoonsung [Department of Electric and Energy Engineering, Catholic university of Daegu, Gyeongbuk 712-702 (Korea, Republic of); Jung, Seungmin [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of); Jang, Gilsoo, E-mail: gjang@korea.ac.kr [School of Electrical Engineering, Korea University, Anam-dong 5-ga, Seongbuk-gu, Seoul 136-713 (Korea, Republic of)

    2014-09-15

    Highlights: • The fault current problem is a severe issue in the Korean power system in the future. • The fault current contribution method has been used with the real Korean power system planning data. • The effectiveness of the SFCL application is verified using the proposed algorithm. - Abstract: The Korea Electric Power Corporation (KEPCO) power system has the characteristics of the load being concentrated in the Seoul metropolitan region and direct power transfer from generations located at distant points in the system thereby resulting in high levels of fault current in the metropolitan region during fault conditions. This fault current problem in the metropolitan region has been a critical issue during the past few years where the increase in the load elevates the fault current levels thereby requiring the replacement of numerous circuit breakers. In order to reduce the fault current levels in the system, the installation of superconductivity fault current limiter (SFCL) has been considered as a solution to reduce the fault current levels in the system. In this paper, an optimal SFCL specification is proposed, by using the fault current contribution method, for siting the optimal location of the SFCL to minimize the current injection into the fault point. The effectiveness of the SFCL application is being verified by simulations based on the KEPCO power system planning data where several installation points are examined for effective reduction of the fault current issue in the system.

  15. Enhancement of fatigue crack growth rates in pressure boundary materials due to light-water-reactor environments

    International Nuclear Information System (INIS)

    Van Der Sluys, W.A.; Emanuelson, R.H.

    1987-01-01

    Sulfur now appears to be one of the principal agents responsible for the observed enhancement of the fatigue crack growth rates in light-water-reactor (LWR) environments. This paper presents the results of investigations on the effect of sulfur in the steel, in the bulk water environment, and at the crack tip. A time-based format of data presentation is used in this paper along with the conventional crack growth rate based on cycle format. The time-based format is a useful method of data presentation. When presented in the conventional format, an apparent substantial amount of scatter in the data is eliminated and the data fall within a relatively narrow scatter band. This model permits extrapolation from the frequency and ΔK regions where experiments were conducted into previously unexplored regions. (orig./GL)

  16. Numerical analysis of the shifting slabs applied in a wireless power transfer system to enhance magnetic coupling

    Directory of Open Access Journals (Sweden)

    Yayun Dong

    2017-05-01

    Full Text Available Shifting medium is a kind of metamaterial, which can optically shift a space or an object a certain distance away from its original position. Based on the shifting medium, we propose a concise pair of shifting slabs covering the transmitting or receiving coil in a two-coil wireless power transfer system to decrease the equivalent distance between the coils. The electromagnetic parameters of the shifting slabs are calculated by transformation optics. Numerical simulations validate that the shifting slabs can approximately shift the electromagnetic fields generated by the covered coil; thus, the magnetic coupling and the efficiency of the system are enhanced while remaining the physical transmission distance unchanged. We also verify the advantages of the shifting slabs over the magnetic superlens. Finally, we provide two methods to fabricate shifting slabs based on split-ring resonators.

  17. Numerical analysis of the shifting slabs applied in a wireless power transfer system to enhance magnetic coupling

    Science.gov (United States)

    Dong, Yayun; Yang, Xijun; Jin, Nan; Li, Wenwen; Yao, Chen; Tang, Houjun

    2017-05-01

    Shifting medium is a kind of metamaterial, which can optically shift a space or an object a certain distance away from its original position. Based on the shifting medium, we propose a concise pair of shifting slabs covering the transmitting or receiving coil in a two-coil wireless power transfer system to decrease the equivalent distance between the coils. The electromagnetic parameters of the shifting slabs are calculated by transformation optics. Numerical simulations validate that the shifting slabs can approximately shift the electromagnetic fields generated by the covered coil; thus, the magnetic coupling and the efficiency of the system are enhanced while remaining the physical transmission distance unchanged. We also verify the advantages of the shifting slabs over the magnetic superlens. Finally, we provide two methods to fabricate shifting slabs based on split-ring resonators.

  18. Genetic incorporation of the protein transduction domain of Tat into Ad5 fiber enhances gene transfer efficacy

    Directory of Open Access Journals (Sweden)

    Siegal Gene P

    2007-10-01

    Full Text Available Abstract Background Human adenovirus serotype 5 (Ad5 has been widely explored as a gene delivery vector for a variety of diseases. Many target cells, however, express low levels of Ad5 native receptor, the Coxsackie-Adenovirus Receptor (CAR, and thus are resistant to Ad5 infection. The Protein Transduction Domain of the HIV Tat protein, namely PTDtat, has been shown to mediate protein transduction in a wide range of cells. We hypothesize that re-targeting Ad5 vector via the PTDtat motif would improve the efficacy of Ad5-mediated gene delivery. Results In this study, we genetically incorporated the PTDtat motif into the knob domain of Ad5 fiber, and rescued the resultant viral vector, Ad5.PTDtat. Our data showed the modification did not interfere with Ad5 binding to its native receptor CAR, suggesting Ad5 infection via the CAR pathway is retained. In addition, we found that Ad5.PTDtat exhibited enhanced gene transfer efficacy in all of the cell lines that we have tested, which included both low-CAR and high-CAR decorated cells. Competitive inhibition assays suggested the enhanced infectivity of Ad5.PTDtat was mediated by binding of the positively charged PTDtat peptide to the negatively charged epitopes on the cells' surface. Furthermore, we investigated in vivo gene delivery efficacy of Ad5.PTDtat using subcutaneous tumor models established with U118MG glioma cells, and found that Ad5.PTDtat exhibited enhanced gene transfer efficacy compared to unmodified Ad5 vector as analyzed by a non-invasive fluorescence imaging technique. Conclusion Genetic incorporation of the PTDtat motif into Ad5 fiber allowed Ad5 vectors to infect cells via an alternative PTDtat targeting motif while retaining the native CAR-mediated infection pathway. The enhanced infectivity was demonstrated in both cultured cells and in in vivo tumor models. Taken together, our study identifies a novel tropism expanded Ad5 vector that may be useful for clinical gene therapy

  19. Enhanced Electronic Properties of SnO2 via Electron Transfer from Graphene Quantum Dots for Efficient Perovskite Solar Cells.

    Science.gov (United States)

    Xie, Jiangsheng; Huang, Kun; Yu, Xuegong; Yang, Zhengrui; Xiao, Ke; Qiang, Yaping; Zhu, Xiaodong; Xu, Lingbo; Wang, Peng; Cui, Can; Yang, Deren

    2017-09-26

    Tin dioxide (SnO 2 ) has been demonstrated as an effective electron-transporting layer (ETL) for attaining high-performance perovskite solar cells (PSCs). However, the numerous trap states in low-temperature solution processed SnO 2 will reduce the PSCs performance and result in serious hysteresis. Here, we report a strategy to improve the electronic properties in SnO 2 through a facile treatment of the films with adding a small amount of graphene quantum dots (GQDs). We demonstrate that the photogenerated electrons in GQDs can transfer to the conduction band of SnO 2 . The transferred electrons from the GQDs will effectively fill the electron traps as well as improve the conductivity of SnO 2 , which is beneficial for improving the electron extraction efficiency and reducing the recombination at the ETLs/perovskite interface. The device fabricated with SnO 2 :GQDs could reach an average power conversion efficiency (PCE) of 19.2 ± 1.0% and a highest steady-state PCE of 20.23% with very little hysteresis. Our study provides an effective way to enhance the performance of perovskite solar cells through improving the electronic properties of SnO 2 .

  20. A Quantitative Theoretical Framework For Protein-Induced Fluorescence Enhancement-Förster-Type Resonance Energy Transfer (PIFE-FRET).

    Science.gov (United States)

    Lerner, Eitan; Ploetz, Evelyn; Hohlbein, Johannes; Cordes, Thorben; Weiss, Shimon

    2016-07-07

    Single-molecule, protein-induced fluorescence enhancement (PIFE) serves as a molecular ruler at molecular distances inaccessible to other spectroscopic rulers such as Förster-type resonance energy transfer (FRET) or photoinduced electron transfer. In order to provide two simultaneous measurements of two distances on different molecular length scales for the analysis of macromolecular complexes, we and others recently combined measurements of PIFE and FRET (PIFE-FRET) on the single molecule level. PIFE relies on steric hindrance of the fluorophore Cy3, which is covalently attached to a biomolecule of interest, to rotate out of an excited-state trans isomer to the cis isomer through a 90° intermediate. In this work, we provide a theoretical framework that accounts for relevant photophysical and kinetic parameters of PIFE-FRET, show how this framework allows the extraction of the fold-decrease in isomerization mobility from experimental data, and show how these results provide information on changes in the accessible volume of Cy3. The utility of this model is then demonstrated for experimental results on PIFE-FRET measurement of different protein-DNA interactions. The proposed model and extracted parameters could serve as a benchmark to allow quantitative comparison of PIFE effects in different biological systems.

  1. Analysis of counter flow of corona wind for heat transfer enhancement

    Science.gov (United States)

    Shin, Dong Ho; Baek, Soo Hong; Ko, Han Seo

    2018-03-01

    A heat sink for cooling devices using the counter flow of a corona wind was developed in this study. Detailed information about the numerical investigations of forced convection using the corona wind was presented. The fins of the heat sink using the counter flow of a corona wind were also investigated. The corona wind generator with a wire-to-plate electrode arrangement was used for generating the counter flow to the fin. The compact and simple geometric characteristics of the corona wind generator facilitate the application of the heat sink using the counter flow, demonstrating the heat sink is effective for cooling electronic devices. Parametric studies were performed to analyze the effect of the counter flow on the fins. Also, the velocity and temperature were measured experimentally for the test mock-up of the heat sink with the corona wind generator to verify the numerical results. From a numerical study, the type of fin and its optimal height, length, and pitch were suggested for various heat fluxes. In addition, the correlations to calculate the mass of the developed heat sink and its cooling performance in terms of the heat transfer coefficient were derived. Finally, the cooling efficiencies corresponding to the mass, applied power, total size, and noise of the devices were compared with the existing commercial central processing unit (CPU) cooling devices with rotor fans. As a result, it was confirmed that the heat sink using the counter flow of the corona wind showed appropriate efficiencies for cooling electronic devices, and is a suitable replacement for the existing cooling device for high power electronics.

  2. Adoptive cell transfer after chemotherapy enhances survival in patients with resectable HNSCC.

    Science.gov (United States)

    Jiang, Pan; Zhang, Yan; J Archibald, Steve; Wang, Hua

    2015-09-01

    The aims of this study were to evaluate the therapeutic efficacy and to determine the immune factors for treatment success in patients with head and neck squamous cell carcinoma (HNSCC) treated with chemotherapy followed by adoptive cell transfer (ACT). A total of 43 HNSCC patients who received radical resection and chemotherapy were analysed in this study. Twenty-one of the patients were repeatedly treated with ACT after chemotherapy (ACT group), and the other twenty-two patients without ACT treatment were included as part of the control group. To investigate the immunological differences underlying these observations, we expanded and profiled improving cytokine-induced killer cells (iCIK) from peripheral blood mononuclear cells (PBMCs) with the timed addition of RetroNectin, OKT3 mAb, IFN γ and IL-2. The median of progression-free survival (PFS) and overall survival (OS) in the ACT group were significantly higher as compared to the control group (56 vs. 40; 58 vs. 45 months). In iCIK culture, there was a significant reduction in CD3+CD4+ T-cell proliferation and cytokines (IL-2, TNF) production from patients who received chemotherapy compared to patients without chemotherapy. Intra-arterial infusion of iCIK, in coordination with chemotherapy, considerably rescued iCIK culture from the suppression of systemic immunity induced by chemotherapy and induced tumour regression. Altogether, these findings suggest that ACT is an effective neo-adjuvant therapy for rescuing systemic immune suppression and improving survival time in patients with HNSCC. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. Experimental investigation on flow and heat transfer for cooling flush-mounted ribbons in a channel: Application of an EHD active enhancement method

    OpenAIRE

    Alami Nia Amin; Campo Antonio

    2016-01-01

    In the present study, the heat transfer enhancement of a bundle of flush-mounted ribbons placed on the floor of a rectangular duct was investigated experimentally. The flush-mounted ribbons act as heat sources and the cooling happens with air. The air flow was two-dimensional, steady, viscous and incompressible under either laminar (500 ≤ ReDh < 2000) and turbulent (2000 ≤ Re Dh ≤ 4500) conditions. The hydrodynamics and heat transfer behavior of the air flo...

  4. Estimation of dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiothearpy - A phantom dosimetric study with radiochromic film

    Directory of Open Access Journals (Sweden)

    Rajesh Ashok Kinhikar

    2014-01-01

    Full Text Available The objective of this study was to investigate the dose enhancement to soft tissue due to backscatter radiation near metal interfaces during head and neck radiotherapy. The influence of titanium-mandibular plate with the screws on radiation dose was tested on four real bones from mandible with the metal and screws fixed. Radiochromic films were used for dosimetry. The bone and metal were inserted through the film at the center symmetrically. This was then placed in a small jig (7 cm × 7 cm × 10 cm to hold the film vertically straight. The polymer granules (tissue-equivalent were placed around the film for homogeneous scatter medium. The film was irradiated with 6 MV X-rays for 200 monitor units in Trilogy linear accelerator for 10 cm × 10 cm field size with source to axis distance of 100 cm at 5 cm. A single film was also irradiated without any bone and metal interface for reference data. The absolute dose and the vertical dose profile were measured from the film. There was 10% dose enhancement due to the backscatter radiation just adjacent to the metal-bone interface for all the materials. The extent of the backscatter effect was up to 4 mm. There is significant higher dose enhancement in the soft tissue/skin due to the backscatter radiation from the metallic components in the treatment region.

  5. Convective heat transfer enhancement by diamond shaped micro-protruded patterns for heat sinks: Thermal fluid dynamic investigation and novel optimization methodology

    International Nuclear Information System (INIS)

    Ventola, Luigi; Dialameh, Masoud; Fasano, Matteo; Chiavazzo, Eliodoro; Asinari, Pietro

    2016-01-01

    Highlights: • A novel methodology for optimal design of patterned heat sink surfaces is proposed. • Heat transfer enhancement by patterned surfaces is measured experimentally. • Role of fluid dynamics and geometrical scales on heat transfer is clarified. - Abstract: In the present work, micro-protruded patterns on flush mounted heat sinks for convective heat transfer enhancement are investigated and a novel methodology for thermal optimization is proposed. Patterned heat sinks are experimentally characterized in fully turbulent regime, and the role played by geometrical parameters and fluid dynamic scales is discussed. A methodology specifically suited for micro-protruded pattern optimization is designed, leading to 73% enhancement in thermal performance respect to commercially available heat sinks, at fixed costs. This work is expected to introduce a new methodological approach for a more systematic and efficient development of solutions for electronics cooling.

  6. Medial temporal lobe-dependent repetition suppression and enhancement due to implicit versus explicit processing of individual repeated search displays

    Directory of Open Access Journals (Sweden)

    Thomas eGeyer

    2012-10-01

    Full Text Available Using visual search, functional magnetic resonance imaging (fMRI and patient studies have demonstrated that medial temporal lobe (MTL structures differentiate repeated from novel displays – even when observers are unaware of display repetitions. This suggests a role for MTL in both explicit and, importantly, implicit learning of repeated sensory information (Greene et al., 2007. However, recent behavioral studies suggest, by examining visual search and recognition performance concurrently, that observers have explicit knowledge of at least some of the repeated displays (Geyer et al., 2010. The aim of the present fMRI study was thus to contribute new evidence regarding the contribution of MTL structures to explicit versus implicit learning in visual search. It was found that MTL activation was increased for explicit and, respectively, decreased for implicit relative to baseline displays. These activation differences were most pronounced in left anterior parahippocampal cortex, especially when observers were highly trained on the repeated displays. The data are taken to suggest that explicit and implicit memory processes are linked within MTL structures, but expressed via functionally separable mechanisms (repetition enhancement vs. -suppression. They further show that repetition effects in visual search would have to be investigated at the display level.

  7. The New Phases due to Symmetry Protected Piecewise Berry Phases; Enhanced Pumping and Non-reciprocity in Trimer Lattices.

    Science.gov (United States)

    Liu, Xuele; Agarwal, G S

    2017-03-24

    Finding new phase of matter is a fundamental task in physics. Generally, various phases or states of matter (for instance solid/liquid/gas phases) have different symmetries, the phase transitions among them can be explained by Landau's symmetry breaking theory. The topological phases discovered in recent years show that different phases may have the same symmetry. The different topological phases are characterized by different integer values of the Berry phases. By studying one dimensional (1D) trimer lattices we report new phases beyond topological phases. The new phases that we find are characterized by piecewise continuous Berry phases with the discontinuity occurring at the transition point. With time-dependent changes in trimer lattices, we can generate two dimensional (2D) phases, which are characterized by the Berry phase of half period. This half-period Berry phase changes smoothly within one state of the system while changes discontinuously at the transition point. We further demonstrate the existence of adiabatic pumping for each phase and gain assisted enhanced pumping. The non reciprocity of the pumping process makes the system a good optical diode.

  8. Enhanced spin transfer torque effect for transverse domain walls in cylindrical nanowires

    Science.gov (United States)

    Franchin, Matteo; Knittel, Andreas; Albert, Maximilian; Chernyshenko, Dmitri S.; Fischbacher, Thomas; Prabhakar, Anil; Fangohr, Hans

    2011-09-01

    , the spin torque transfer term is acting exactly against the damping in the micromagnetic system, and thus the low current density is sufficient to accumulate enough energy quickly. These key insights may be crucial in furthering the development of novel memory technologies, such as the racetrack memory, that can be controlled through low current densities.

  9. Heat transfer enhanced microwave process for stabilization of liquid radioactive waste slurry. Final report

    International Nuclear Information System (INIS)

    White, T.L.

    1995-01-01

    The objectve of this CRADA is to combine a polymer process for encapsulation of liquid radioactive waste slurry developed by Monolith Technology, Inc. (MTI), with an in-drum microwave process for drying radioactive wastes developed by Oak Ridge National Laboratory (ORNL), for the purpose of achieving a fast, cost-effectve commercial process for solidification of liquid radioactive waste slurry. Tests performed so far show a four-fold increase in process throughput due to the direct microwave heating of the polymer/slurry mixture, compared to conventional edge-heating of the mixer. We measured a steady-state throughput of 33 ml/min for 1.4 kW of absorbed microwave power. The final waste form is a solid monolith with no free liquids and no free particulates

  10. 2008 Program for Invitation of Foreign Research Institutes to Jeonbuk Province and Enhancement of Technology Transfer

    International Nuclear Information System (INIS)

    Kim, Jin Kyu; Shin, J. W.; Yang, S. T.; Kim, S. W.; Song, B. S.; Cho, S. W.; Han, C. S.; Lee, G. J.

    2009-08-01

    This project was carried out to establish long-term tactical partnership with foreign research institutions for technology exchanges and facilities, and to develop cooperation projects for the core technology. Technical bases for inviting foreign R and D centers to Jeonbuk province has been established through consulting discussion and signing arrangement on cooperation between ARTI and the partner institute. Discussion in-depth on an R and D center of Russian IBMP in Jeonbuk has been made and an agendum for the R and D center was submitted to the 13th Korea-Russian Federation Joint Committee on Nuclear Cooperation. Based on consensus that technology exchange and enhanced collaboration would be reciprocally beneficial, the second ARTI-TARRI joint seminar is scheduled at Jeongeup in September 2009, when further discussion will be made on the subsidiary arrangement to KAERI-JAEA MOU. An consultant meeting was done in order to strengthen international cooperation and to get advice on attracting foreign R and D centers at the Provincial Office in May 2009. A fact finding visit to iThemba LABS in south Africa was made to conclude a Letter of Understanding (LOU) for cooperation in R and D of radioisotopes and radiopharmaceuticals. The established collaborative relationship with world-leading research institutes such as IBMP, TARRI and iThemba LABS can make a role for inviting in the near future foreign R and D centers to Jeonbuk Province, and surely give a tactical influence on radiation industries in the Jeonbuk Province

  11. Enhancement of downward-facing saturated boiling heat transfer by the cold spray technique

    Energy Technology Data Exchange (ETDEWEB)

    Sohag, Frauk A.; Beck, Faith R.; Mohanta, Lokanath; Cheung, Fan Bill; Segall, Albert E.; Eden, Timothy J.; Potter, John K. [Pennsylvania State University, University Park (United States)

    2017-02-15

    In-vessel retention by passive external reactor vessel cooling under severe accident conditions is a viable approach for retention of radioactive core melt within the reactor vessel. In this study, a new and versatile coating technique known as 'cold spray' that can readily be applied to operating and advanced reactors was developed to form a microporous coating on the outer surface of a simulated reactor lower head. Quenching experiments were performed under simulated in-vessel retention by passive external reactor vessel cooling conditions using test vessels with and without cold spray coatings. Quantitative measurements show that for all angular locations on the vessel outer surface, the local critical heat flux (CHF) values for the coated vessel were consistently higher than the corresponding CHF values for the bare vessel. However, it was also observed for both coated and uncoated surfaces that the local rate of boiling and local CHF limit vary appreciably along the outer surface of the test vessel. Nonetheless, results of this intriguing study clearly show that the use of cold spray coatings could enhance the local CHF limit for downward-facing boiling by > 88%.

  12. Multiscale mechanics of the lateral pressure effect on enhancing the load transfer between polymer coated CNTs.

    Science.gov (United States)

    Yazdandoost, Fatemeh; Mirzaeifar, Reza; Qin, Zhao; Buehler, Markus J

    2017-05-04

    While individual carbon nanotubes (CNTs) are known as one of the strongest fibers ever known, even the strongest fabricated macroscale CNT yarns and fibers are still significantly weaker than individual nanotubes. The loss in mechanical properties is mainly because the deformation mechanism of CNT fibers is highly governed by the weak shear strength corresponding to sliding of nanotubes on each other. Adding polymer coating to the bundles, and twisting the CNT yarns to enhance the intertube interactions are both efficient methods to improve the mechanical properties of macroscale yarns. Here, we perform molecular dynamics (MD) simulations to unravel the unknown deformation mechanism in the intertube polymer chains and also local deformations of the CNTs at the atomistic scale. Our results show that the lateral pressure can have both beneficial and adverse effects on shear strength of polymer coated CNTs, depending on the local deformations at the atomistic scale. In this paper we also introduce a bottom-up bridging strategy between a full atomistic model and a coarse-grained (CG) model. Our trained CG model is capable of incorporating the atomistic scale local deformations of each CNT to the larger scale collect behavior of bundles, which enables the model to accurately predict the effect of lateral pressure on larger CNT bundles and yarns. The developed multiscale CG model is implemented to study the effect of lateral pressure on the shear strength of straight polymer coated CNT yarns, and also the effect of twisting on the pull-out force of bundles in spun CNT yarns.

  13. Enhanced transfer of terrestrially derived carbon to the atmosphere in a flooding event

    Science.gov (United States)

    Bianchi, Thomas S.; Garcia-Tigreros, Fenix; Yvon-Lewis, Shari A.; Shields, Michael; Mills, Heath J.; Butman, David; Osburn, Christopher; Raymond, Peter A.; Shank, G. Christopher; DiMarco, Steven F.; Walker, Nan; Kiel Reese, Brandi; Mullins-Perry, Ruth; Quigg, Antonietta; Aiken, George R.; Grossman, Ethan L.

    2013-01-01

    Rising CO2 concentration in the atmosphere, global climate change, and the sustainability of the Earth's biosphere are great societal concerns for the 21st century. Global climate change has, in part, resulted in a higher frequency of flooding events, which allow for greater exchange between soil/plant litter and aquatic carbon pools. Here we demonstrate that the summer 2011 flood in the Mississippi River basin, caused by extreme precipitation events, resulted in a “flushing” of terrestrially derived dissolved organic carbon (TDOC) to the northern Gulf of Mexico. Data from the lower Atchafalaya and Mississippi rivers showed that the DOC flux to the northern Gulf of Mexico during this flood was significantly higher than in previous years. We also show that consumption of radiocarbon-modern TDOC by bacteria in floodwaters in the lower Atchafalaya River and along the adjacent shelf contributed to northern Gulf shelf waters changing from a net sink to a net source of CO2 to the atmosphere in June and August 2011. This work shows that enhanced flooding, which may or may not be caused by climate change, can result in rapid losses of stored carbon in soils to the atmosphere via processes in aquatic ecosystems.

  14. Enhanced photovoltaic performance of ultrathin Si solar cells via semiconductor nanocrystal sensitization: energy transfer vs. optical coupling effects.

    Science.gov (United States)

    Hoang, Son; Ashraf, Ahsan; Eisaman, Matthew D; Nykypanchuk, Dmytro; Nam, Chang-Yong

    2016-03-21

    Excitonic energy transfer (ET) offers exciting opportunities for advances in optoelectronic devices such as solar cells. While recent experimental attempts have demonstrated its potential in both organic and inorganic photovoltaics (PVs), what remains to be addressed is quantitative understanding of how different ET modes contribute to PV performance and how ET contribution is differentiated from the classical optical coupling (OC) effects. In this study, we implement an ET scheme using a PV device platform, comprising CdSe/ZnS nanocrystal energy donor and 500 nm-thick ultrathin Si acceptor layers, and present the quantitative mechanistic description of how different ET modes, distinguished from the OC effects, increase the light absorption and PV efficiency. We find that nanocrystal sensitization enhances the short circuit current of ultrathin Si solar cells by up to 35%, of which the efficient ET, primarily driven by a long-range radiative mode, contributes to 38% of the total current enhancement. These results not only confirm the positive impact of ET but also provide a guideline for rationally combining the ET and OC effects for improved light harvesting in PV and other optoelectronic devices.

  15. Bevacizumab and gefitinib enhanced whole-brain radiation therapy for brain metastases due to non-small-cell lung cancer

    Energy Technology Data Exchange (ETDEWEB)

    Yang, R.F.; Yu, B.; Zhang, R.Q.; Wang, X.H.; Li, C.; Wang, P.; Zhang, Y.; Han, B.; Gao, X.X.; Zhang, L. [Taian City Central Hospital, Taian, Shandong (China); Jiang, Z.M., E-mail: dmyh2436@126.com [Qianfoshan Hospital of Shandong Province, Shandong University, Ji’nan, Shandong (China)

    2018-02-01

    Non-small-cell lung cancer (NSCLC) patients who experience brain metastases are usually associated with poor prognostic outcomes. This retrospective study proposed to assess whether bevacizumab or gefitinib can be used to improve the effectiveness of whole brain radiotherapy (WBRT) in managing patients with brain metastases. A total of 218 NSCLC patients with multiple brain metastases were retrospectively included in this study and were randomly allocated to bevacizumab-gefitinibWBRT group (n=76), gefitinib-WBRT group (n=77) and WBRT group (n=75). Then, tumor responses were evaluated every 2 months based on Response Evaluation Criteria in Solid Tumors version 1.0. Karnofsky performance status and neurologic examination were documented every 6 months after the treatment. Compared to the standard WBRT, bevacizumab and gefitinib could significantly enhance response rate (RR) and disease control rate (DCR) of WBRT (Po0.001). At the same time, RR and DCR of patients who received bevacizumab-gefitinib-WBRT were higher than those who received gefitinib-WBRT. The overall survival (OS) rates and progression-free survival (PFS) rates also differed significantly among the bevacizumab-gefitinib-WBRT (48.6 and 29.8%), gefitinib-WBRT (36.7 and 29.6%) and WBRT (9.8 and 14.6%) groups (Po0.05). Although bevacizumabgefitinib-WBRT was slightly more toxic than gefitinib-WBRT, the toxicity was tolerable. As suggested by prolonged PFS and OS status, bevacizumab substantially improved the overall efficacy of WBRT in the management of patients with NSCLC. (author)

  16. Changes in the micro-circulation of skeletal muscle due to varied isometric exercise assessed by contrast-enhanced ultrasound

    International Nuclear Information System (INIS)

    Krix, Martin; Weber, Marc-Andre; Kauczor, Hans-Ulrich; Delorme, Stefan; Krakowski-Roosen, Holger

    2010-01-01

    Purpose: To quantitatively assess local muscle micro-circulation with real-time contrast-enhanced ultrasound (CEUS) during different exercises and compare the results with performed muscle work and global blood flow. Materials and methods: Sixteen low mechanical index CEUS examinations of the right lower leg flexors of healthy volunteers were performed using a continuous infusion of SonoVue (4.8 mL/300 s). Several muscle perfusion parameters were extracted from derived CEUS signal intensity time curves during different isometric exercises (10-50% of maximum individual strength for 20-30 s) and then correlated with the performed muscle work or force, and the whole lower leg blood flow which we measured simultaneously by venous occlusion plethysmography (VOP). Results: The shapes of the CEUS curve during and after exercise differed individually depending on the performed muscle work. The maximum blood volume MAX was observed only after exercise cessation and was significantly correlated with the performed muscle force (r = 0.77, p < 0.0001). The blood volume over exercise time was inversely correlated with the spent muscle work (r = -0.60, p = 0.006). CEUS and VOP measurements correlated only at rest and after the exercise. During exercise, mean CEUS local blood volume decreased (from 3.48 to 2.19 (∼mL)), while mean VOP global blood flow increased (mean, from 3.96 to 7.71 mL/100 mg/min). Conclusion: Real-time low-MI CEUS provides complementary information about the local muscle micro-circulation compared to established blood flow measures. CEUS may be used for a better understanding of muscle perfusion physiology and in the diagnosis of micro-circulation alterations such as in peripheral arterial occlusive disease or diabetic angiopathy.

  17. Enhancing Sm{sup 3+} red emission via energy transfer from Bi{sup 3+}→Sm{sup 3+} based on terbium bridge mechanism in Ca{sub 2}Al{sub 2}SiO{sub 7} phosphors

    Energy Technology Data Exchange (ETDEWEB)

    Li, Minhong; Wang, LiLi; Ran, Weiguang; Ren, Chunyan; Song, Zeling; Shi, Jinsheng, E-mail: jsshiqn@aliyun.com

    2017-04-15

    Currently, the key change for white-LED is to improve the luminescence efficiency of red phosphor. Sm{sup 3+} activated phosphor was considered due to suitable emission position of red light. However, the luminescence intensity in the red region is weak. For enhancing red-emitting of Sm{sup 3+}, Bi{sup 3+} and Tb{sup 3+} ions were introduced into Ca{sub 2}Al{sub 2}SiO{sub 7}:Sm{sup 3+} phosphors based on the concept of energy transfer. For Ca{sub 2}Al{sub 2}SiO{sub 7}:Bi{sup 3+}, Sm{sup 3+} samples, it can be observed that the energy transfer process was blocked. Hence, Tb{sup 3+} was introduced into Ca{sub 2}Al{sub 2}SiO{sub 7}:Bi{sup 3+}, Sm{sup 3+} samples to increase Sm{sup 3+} luminescence intensity based on Bi{sup 3+}→Tb{sup 3+}→Sm{sup 3+} energy transfer process. Compared with Sm{sup 3+} single-doped Ca{sub 2}Al{sub 2}SiO{sub 7} phosphor, the luminescence intensity of Sm{sup 3+} was enhanced by 2.6 times. It can be found that Tb{sup 3+} ions play a role of storing the energy or transfer bridge from Bi{sup 3+}→ Sm{sup 3+} by investigating the Ca{sub 2}Al{sub 2}SiO{sub 7}:Bi{sup 3+}, Tb{sup 3+} and Ca{sub 2}Al{sub 2}SiO{sub 7}:Tb{sup 3+}, Sm{sup 3+} energy transfer mechanism. All these results suggest that terbium branch mechanism plays an important role on enhancing activators luminescence intensity.

  18. Enhancement of oxygen transfer and nitrogen removal in a membrane separation bioreactor for domestic wastewater treatment.

    Science.gov (United States)

    Chiemchaisri, C; Yamamoto, K

    2005-01-01

    Biological nitrogen removal in a membrane separation bioreactor developed for on-site domestic wastewater treatment was investigated. The bioreactor employed hollow fiber membrane modules for solid-liquid separation so that the biomass could be completely retained within the system. Intermittent aeration was supplied with 90 minutes on and off cycle to achieve nitrification and denitrification reaction for nitrogen removal. High COD and nitrogen removal of more than 90% were achieved under a moderate temperature of 25 degrees C. As the temperature was stepwise decreased from 25 to 5 degrees C, COD removal in the system could be constantly maintained while nitrogen removal was deteriorated. Nevertheless, increasing aeration supply could enhance nitrification at low temperature with benefit from complete retention of nitrifying bacteria within the system by membrane separation. At low operating temperature range of 5 degrees C, nitrogen removal could be recovered to more than 85%. A mathematical model considering diffusion resistance of limiting substrate into the bio-particle is applied to describe nitrogen removal in a membrane separation bioreactor. The simulation suggested that limitation of the oxygen supply was the major cause of inhibition of nitrification during temperature decrease. Nevertheless, increasing aeration could promote oxygen diffusion into the bio-particle. Sufficient oxygen was supplied to the nitrifying bacteria and the nitrification could proceed. In the membrane separation bioreactor, biomass concentration under low temperature operation was allowed to increase by 2-3 times of that of moderate temperature to compensate for the loss of bacterial activities so that the temperature effect was masked.

  19. Excitation energy transfer in ruthenium (II)-porphyrin conjugates led to enhanced emission quantum yield and 1O2 generation

    International Nuclear Information System (INIS)

    Pan, Jie; Jiang, Lijun; Chan, Chi-Fai; Tsoi, Tik-Hung; Shiu, Kwok-Keung; Kwong, Daniel W.J.; Wong, Wing-Tak; Wong, Wai-Kwok; Wong, Ka-Leung

    2017-01-01

    Porphyrins are good photodynamic therapy (PDT) agents due to its flexibility for modifications to achieve tumor localization and photo-cytotoxicity against cancer. Yet they are not perfect. In a Ru(polypyridyl)-porphyrin system, the Ru(polypyridyl) moiety improves the water solubility and cell permeability. Consider the similar excited state energies between Ru(polypyridyl) and porphyrin moieties; a small perturbation (e.g. Zn(II) metalation) would lead to a marked change in the energy migration process. In this work, we have synthesized a series of porphyrins conjugated with Ru(polypyridyl) complexes using different linkers and investigated their photophysical properties, which included singlet oxygen quantum yield and their in vitro biological properties, resulting from linker variation and porphyrin modification by Zn(II) metalation. - Graphical abstract: Four amphiphilic ruthenium(II)-porphyrin complexes were prepared that display energy transfer conversion with zinc coordination, lysosome specific target, low dark toxicity and efficient photodynamic therapy.

  20. Chronic stress enhances synaptic plasticity due to disinhibition in the anterior cingulate cortex and induces hyper-locomotion in mice.

    Science.gov (United States)

    Ito, Hiroshi; Nagano, Masatoshi; Suzuki, Hidenori; Murakoshi, Takayuki

    2010-01-01

    The anterior cingulate cortex (ACC) is involved in the pathophysiology of a variety of mental disorders, many of which are exacerbated by stress. There are few studies, however, of stress-induced modification of synaptic function in the ACC that is relevant to emotional behavior. We investigated the effects of chronic restraint stress (CRS) on behavior and synaptic function in layers II/III of the ACC in mice. The duration of field excitatory postsynaptic potentials (fEPSPs) was longer in CRS mice than in control mice. The frequency of miniature inhibitory postsynaptic currents (mIPSCs) recorded by whole-cell patch-clamping was reduced in CRS mice, while miniature excitatory postsynaptic currents (mEPSCs) remained unchanged. Paired-pulse ratios (PPRs) of the fEPSP and evoked EPSC were larger in CRS. There was no difference in NMDA component of evoked EPSCs between the groups. Both long-term potentiation (LTP) and long-term depression of fEPSP were larger in CRS mice than in control mice. The differences between the groups in fEPSP duration, PPRs and LTP level were not observed when the GABA(A) receptor was blocked by bicuculline. Compared to control mice, CRS mice exhibited hyper-locomotive activity in an open field test, while no difference was observed between the groups in anxiety-like behavior in a light/dark choice test. CRS mice displayed decreased freezing behavior in fear conditioning tests compared to control mice. These findings suggest that CRS facilitates synaptic plasticity in the ACC via increased excitability due to disinhibition of GABA(A) receptor signalling, which may underlie induction of behavioral hyper-locomotive activity after CRS. Copyright 2009 Elsevier Ltd. All rights reserved.

  1. Demand elasticity increase for reducing social welfare losses due to transfer capacity restriction: A test case on Italian cross-border imports

    International Nuclear Information System (INIS)

    Bruno, Sergio; De Benedictis, Michele; La Scala, Massimo; Wangensteen, Ivar

    2006-01-01

    The paper is aimed at showing how demand-side policies for increasing inner demand elasticity could help in reducing market inefficiencies generated by transfer limits on interconnections, with a special regard to energy imports dependent countries. In order to develop the studies in a realistic environment, a model for the Italian electricity market has been developed. Test results show effects of variations in demand elasticity on the national social surplus and congestion costs. It will be shown how an increase of demand elasticity can counterbalance the need of additional transfer capacity in reducing cross-border congestions. (author)

  2. Transfer of Sr-90 in the environment to human bone, and radiation dose due to the atomic bomb and weapons testing

    International Nuclear Information System (INIS)

    Kawamura, H.; Shiraishi, K.; Igarashi, Y.; Sakurai, Y.

    1988-01-01

    The major source of artificial radioactivities in Japan has been the atmospheric nuclear weapons testing. Some results obtained for activities of Sr-90 in bone, particulary in Japanese, are mentioned, including trends in levels, distribution in bone, transfer from diet to bone and absorbed doses. Some litterature data on pathways of Sr-90 from environment to man are referred to, that is on contribution of different foods to the ingestion intake and transfer of Sr-90 from soil to crops. Recent topics of radioecological studies on soil-plant relationships are shortly introduced

  3. Reverse Estuarine Circulation Due to Local and Remote Wind Forcing, Enhanced by the Presence of Along-Coast Estuaries

    Science.gov (United States)

    Giddings, S. N.; MacCready, P.

    2017-12-01

    Estuarine exchange flow governs the interaction between oceans and estuaries and thus plays a large role in their biogeochemical processes. This study investigates the variability in estuarine exchange flow due to offshore oceanic conditions including upwelling/downwelling, and the presence of a river plume offshore (from a neighboring estuary). We address these processes via numerical simulations at the mouth of the Salish Sea, a large estuarine system in the Northeast Pacific. An analysis of the Total Exchange Flow indicates that during the upwelling season, the exchange flow is fairly consistent in magnitude and oriented in a positive (into the estuary at depth and out at the surface) direction. However, during periods of downwelling favorable winds, the exchange flow shows significantly more variability including multiple reversals, consistent with observations, and surface intrusions of the Columbia River plume which originates 250 km to the south. Numerical along-strait momentum budgets show that the exchange flow is forced dominantly by the pressure gradients, particularly the baroclinic. The pressure gradient is modified by Coriolis and sometimes advection, highlighting the importance of geostrophy and local adjustments. In experiments conducted without the offshore river plume, reversals still occur but are weaker, and the baroclinic pressure gradient plays a reduced role. These results suggest that estuaries along strong upwelling coastlines should experience significant modulation in the exchange flow during upwelling versus downwelling conditions. Additionally, they highlight the importance of nearby estuaries impacting one-another, not only in terms of connectivity, but also altering the exchange flow.Plain Language SummaryEstuarine systems provide extensive biological and ecological functions as well as contribute to human uses and economies. However, estuaries are susceptible to change and most estuaries have been significantly impacted, threatening

  4. A Broad G Protein-Coupled Receptor Internalization Assay that Combines SNAP-Tag Labeling, Diffusion-Enhanced Resonance Energy Transfer, and a Highly Emissive Terbium Cryptate.

    Science.gov (United States)

    Levoye, Angélique; Zwier, Jurriaan M; Jaracz-Ros, Agnieszka; Klipfel, Laurence; Cottet, Martin; Maurel, Damien; Bdioui, Sara; Balabanian, Karl; Prézeau, Laurent; Trinquet, Eric; Durroux, Thierry; Bachelerie, Françoise

    2015-01-01

    Although G protein-coupled receptor (GPCR) internalization has long been considered as a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive-induced GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET) between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z'-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS) of compounds that may modulate GPCRs internalization.

  5. A broad G protein-coupled receptor internalization assay that combines SNAP-tag labeling, diffusion-enhanced resonance energy transfer, and a highly emissive terbium cryptate acceptor

    Directory of Open Access Journals (Sweden)

    Angélique eLEVOYE

    2015-11-01

    Full Text Available Although G protein-coupled receptor (GPCR internalization has long been considered a major aspect of the desensitization process that tunes ligand responsiveness, internalization is also involved in receptor resensitization and signaling, as well as the ligand scavenging function of some atypical receptors. Internalization thus contributes to the diversity of GPCR-dependent signaling, and its dynamics and quantification in living cells has generated considerable interest. We developed a robust and sensitive assay to follow and quantify ligand-induced and constitutive GPCR internalization but also receptor recycling in living cells. This assay is based on diffusion-enhanced resonance energy transfer (DERET between cell surface GPCRs labeled with a luminescent terbium cryptate donor and a fluorescein acceptor present in the culture medium. GPCR internalization results in a quantifiable reduction of energy transfer. This method yields a high signal-to-noise ratio due to time-resolved measurements. For various GPCRs belonging to different classes, we demonstrated that constitutive and ligand-induced internalization could be monitored as a function of time and ligand concentration, thus allowing accurate quantitative determination of kinetics of receptor internalization but also half-maximal effective or inhibitory concentrations of compounds. In addition to its selectivity and sensitivity, we provided evidence that DERET-based internalization assay is particularly suitable for characterizing biased ligands. Furthermore, the determination of a Z’-factor value of 0.45 indicates the quality and suitability of DERET-based internalization assay for high-throughput screening (HTS of compounds that may modulate GPCRs internalization.

  6. Enhanced p53 gene transfer to human ovarian cancer cells using the cationic nonviral vector, DDC.

    Science.gov (United States)

    Kim, Chong-Kook; Choi, Eun-Jeong; Choi, Sung-Hee; Park, Jeong-Sook; Haider, Khawaja Hasnain; Ahn, Woong Shick

    2003-08-01

    Previously we have formulated a new cationic liposome, DDC, composed of dioleoyltrimethylamino propane (DOTAP), 1,2-dioeoyl-3-phosphophatidylethanolamine (DOPE), and cholesterol (Chol), and it efficiently delivered plasmid DNA into ovarian cancer cells. Mutations in the p53 tumor suppressor gene are the most common molecular genetic abnormalities to be described in ovarian cancer. However, there has been so far no report of nonviral vector-mediated p53 gene deliveries in ovarian cancer. In this study, wild-type p53 DNA was transfected into the ovarian cancer cells, using the DDC as a nonviral vector and the expression and activity of p53 gene were evaluated both in vitro and in vivo. DDC liposomes were prepared by mixing DOTAP:DOPE:Chol in a 1:0.7:0.3 molar ratio using the extrusion method. Plasmid DNA (pp53-EGFP) and DDC complexes were transfected into ovarian carcinoma cells (OVCAR-3 cells) and gene expression was determined by reverse transcription-polymerase chain reaction and Western blot analysis. The cellular growth inhibition and apoptosis of DDC-mediated p53 transfection were assessed by trypan blue exclusion assay and annexin-V staining, respectively. The OVCAR-3 cells treated with DDC/pp53-EGFP complexes were inoculated into female balb/c nude mice and tumor growth was observed. The transfection of liposome-complexed p53 gene resulted in a high level of wild-type p53 mRNA and protein expressions in OVCAR-3 cells. In vitro cell growth assay showed growth inhibition of cancer cells transfected with DDC/pp53-EGFP complexes compared with the control cells. The reestablishment of wild-type p53 function in ovarian cancer cells restored the apoptotic pathway. Following the inoculation of DDC/pp53-EGFP complexes, the volumes of tumors in nude mice were significantly reduced more than 60% compared to the control group. The DDC-mediated p53 DNA delivery may have the potential for clinical application as nonviral vector-mediated ovarian cancer therapy due to its

  7. EFFECTS ON THE PERFORMANCE DURING A MATCHING-TO-SAMPLE TASK DUE TO THE TYPE AND ORDER OF EXPOSITION TO THE TRANSFERENCE TESTS

    Directory of Open Access Journals (Sweden)

    CAMILO HURTADO-PARRADO

    2007-08-01

    Full Text Available This study evaluated the effects of manipulating the type and order of presentation of transference tests. Twenty eightundergraduate students divided in 4 groups were exposed to a second order matching to sample procedure. Theconditions of exposition were: ascending difficulty/complexity order of the tests, descending order and two randomlyassigned orders. Results are discussed in terms of percentages of effectiveness; additionally, the latency is proposed asan alternative measure sensitive to the level of difficulty of this kind of tasks. Findings showed heterogeneity in thevelocity of acquisition of the conditional discriminations during the training phase, even though the conditions of thetask were equal for all the subjects. The exposition to the ascending and descending order seemed to affect negativelythe effective behavioral adjustment, whereas one of the randomly assigned sequences seemed to be the best condition.The order of exposition to transference tests, in interaction with a history of early acquisition in the training phase,served to understand the findings of this study and to discuss the necessity of a systematical evaluation of the factors implied in the transference tests. It is suggested to assess the validity of different kind of transference tests and theconvenience of some of them to be use in the investigation of the phenomena related to the effective and variablebehavior.

  8. SU-E-T-235: Monte Carlo Analysis of the Dose Enhancement in the Scalp of Patients Due to Titanium Plate Backscatter During Post-Operative Radiotherapy

    International Nuclear Information System (INIS)

    Hardin, M; Elson, H; Lamba, M; Wolf, E; Warnick, R

    2014-01-01

    Purpose: To quantify the clinically observed dose enhancement adjacent to cranial titanium fixation plates during post-operative radiotherapy. Methods: Irradiation of a titanium burr hole cover was simulated using Monte Carlo code MCNPX for a 6 MV photon spectrum to investigate backscatter dose enhancement due to increased production of secondary electrons within the titanium plate. The simulated plate was placed 3 mm deep in a water phantom, and dose deposition was tallied for 0.2 mm thick cells adjacent to the entrance and exit sides of the plate. These results were compared to a simulation excluding the presence of the titanium to calculate relative dose enhancement on the entrance and exit sides of the plate. To verify simulated results, two titanium burr hole covers (Synthes, Inc. and Biomet, Inc.) were irradiated with 6 MV photons in a solid water phantom containing GafChromic MD-55 film. The phantom was irradiated on a Varian 21EX linear accelerator at multiple gantry angles (0–180 degrees) to analyze the angular dependence of the backscattered radiation. Relative dose enhancement was quantified using computer software. Results: Monte Carlo simulations indicate a relative difference of 26.4% and 7.1% on the entrance and exit sides of the plate respectively. Film dosimetry results using a similar geometry indicate a relative difference of 13% and -10% on the entrance and exit sides of the plate respectively. Relative dose enhancement on the entrance side of the plate decreased with increasing gantry angle from 0 to 180 degrees. Conclusion: Film and simulation results demonstrate an increase in dose to structures immediately adjacent to cranial titanium fixation plates. Increased beam obliquity has shown to alleviate dose enhancement to some extent. These results are consistent with clinically observed effects

  9. Effect of enhanced Renilla luciferase and fluorescent protein variants on the Foerster distance of Bioluminescence resonance energy transfer (BRET)

    Energy Technology Data Exchange (ETDEWEB)

    Dacres, Helen, E-mail: helen.dacres@csiro.au [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Michie, Michelle; Wang, Jian [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia); Pfleger, Kevin D.G. [Laboratory for Molecular Endocrinology-GPCRs, Western Australian Institute for Medical Research (WAIMR) and Centre for Medical Research, The University of Western Australia, Perth (Australia); Trowell, Stephen C. [CSIRO Food Futures Flagship and Ecosystem Sciences, Canberra (Australia)

    2012-08-31

    Highlights: Black-Right-Pointing-Pointer First experimental determination of Foerster distance (R{sub 0}) for enhanced BRET systems. Black-Right-Pointing-Pointer Effect of brighter BRET components RLuc2, RLuc8 and Venus was assessed. Black-Right-Pointing-Pointer Using brighter BRET components substantially increased (25%) R{sub 0} of the BRET{sup 1} system. Black-Right-Pointing-Pointer Using brighter BRET components marginally increased (2-9%) R{sub 0} of the BRET{sup 2} system. Black-Right-Pointing-Pointer Brighter BRET components improve the different weaknesses of BRET{sup 1} and BRET{sup 2} systems. -- Abstract: Bioluminescence resonance energy transfer (BRET) is an important tool for monitoring macromolecular interactions and is useful as a transduction technique for biosensor development. Foerster distance (R{sub 0}), the intermolecular separation characterized by 50% of the maximum possible energy transfer, is a critical BRET parameter. R{sub 0} provides a means of linking measured changes in BRET ratio to a physical dimension scale and allows estimation of the range of distances that can be measured by any donor-acceptor pair. The sensitivity of BRET assays has recently been improved by introduction of new BRET components, RLuc2, RLuc8 and Venus with improved quantum yields, stability and brightness. We determined R{sub 0} for BRET{sup 1} systems incorporating novel RLuc variants RLuc2 or RLuc8, in combination with Venus, as 5.68 or 5.55 nm respectively. These values were approximately 25% higher than the R{sub 0} of the original BRET{sup 1} system. R{sub 0} for BRET{sup 2} systems combining green fluorescent proteins (GFP{sup 2}) with RLuc2 or RLuc8 variants was 7.67 or 8.15 nm, i.e. only 2-9% greater than the original BRET{sup 2} system despite being {approx}30-fold brighter.

  10. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    Energy Technology Data Exchange (ETDEWEB)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J. [Department of Radiology, ' ' Aretaieion' ' Hospital,University of Athens Medical School, Athens (Greece); Voumvourakis, C.; Sfagos, C. [Department of Neurology, ' ' Eginiteion' ' Hospital, University of Athens Medical School, Athens (Greece)

    2004-03-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  11. Brain MR post-gadolinium contrast in multiple sclerosis: the role of magnetization transfer and image subtraction in detecting more enhancing lesions

    International Nuclear Information System (INIS)

    Gavra, M.M.; Gouliamos, A.D.; Vlahos, L.J.; Voumvourakis, C.; Sfagos, C.

    2004-01-01

    Our purpose was to evaluate the role of magnetization transfer and image subtraction in detecting more enhancing lesions in brain MR imaging of patients with multiple sclerosis (MS). Thirty-one MS patients underwent MR imaging of the brain with T1-weighted spin echo sequences without and with magnetization transfer (MT) using a 1.5 T imager. Both sequences were acquired before and after intravenous injection of a paramagnetic contrast agent. Subtraction images in T1-weighted sequences were obtained by subtracting the pre-contrast images from the post-contrast ones. A significant difference was found between the numbers of enhanced areas in post-gadolinium T1-weighted images without and with MT (p=0.020). The post-gadolinium T1-weighted images with MT allowed the detection of an increased (13) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. A significant difference was also found between the numbers of enhanced areas in post-gadolinium T1-weighted images without MT and subtraction images without MT (p=0.020). The subtraction images without MT allowed the detection of an increased (10) number of enhancing lesions compared with post-gadolinium T1-weighted images without MT. Magnetization transfer contrast and subtraction techniques appear to be the simplest and least time-consuming applications to improve the conspicuity and detection of contrast-enhancing lesions in patients with MS. (orig.)

  12. Photoluminescence Enhancement of Silole-Capped Silicon Quantum Dots Based on Förster Resonance Energy Transfer.

    Science.gov (United States)

    Kim, Seongwoong; Kim, Sungsoo; Ko, Young Chun; Sohn, Honglae

    2015-07-01

    Photoluminescent porous silicon were prepared by an electrochemical etch of n-type silicon under the illumination with a 300 W tungsten filament bulb for the duration of etch. The red photoluminescence emitting at 650 nm with an excitation wavelength of 450 nm is due to the quantum confinement of silicon quantum dots in porous silicon. HO-terminated red luminescent PS was obtained by an electrochemical treatment of fresh PS with the current of 150 mA for 60 seconds in water and sodium chloride. As-prepared PS was sonicated, fractured, and centrifuged in toluene solution to obtain photoluminescence silicon quantum dots. Dichlorotetraphenylsilole exhibiting an emission band at 520 nm was reacted with HO-terminated silicon quantum dots to give a silole-capped silicon quantum dots. The optical characterization of silole-derivatized silicon quantum dots was investigated by UV-vis and fluorescence spectrometer. The fluorescence emission efficiency of silole-capped silicon quantum dots was increased by about 2.5 times due to F6rster resonance energy transfer from silole moiety to silicon quantum dots.

  13. A Teacher Action Research Study: Enhancing Student Critical Thinking Knowledge, Skills, Dispositions, Application and Transfer in a Higher Education Technology Course

    Science.gov (United States)

    Phelan, Jack Gordon

    2012-01-01

    This study examined the effects of a critical thinking instructional intervention in a higher education technology course with the purpose of determining the extent to which the intervention enhanced student critical thinking knowledge, skills, dispositions, application and transfer abilities. Historically, critical thinking has been considered…

  14. Optimal selection of annulus radius ratio to enhance heat transfer with minimum entropy generation in developing laminar forced convection of water-Al2O3 nanofluid flow

    Institute of Scientific and Technical Information of China (English)

    Siavashi Majid; Jamali Mohammad

    2017-01-01

    Heat transfer and entropy generation of developing laminar forced convection flow of water-Al2O3 nanofluid in a concentric annulus with constant heat flux on the walls is investigated numerically. In order to determine entropy generation of fully developed flow, two approaches are employed and it is shown that only one of these methods can provide appropriate results for flow inside annuli. The effects of concentration of nanoparticles, Reynolds number and thermal boundaries on heat transfer enhancement and entropy generation of developing laminar flow inside annuli with different radius ratios and same cross sectional areas are studied. The results show that radius ratio is a very important decision parameter of an annular heat exchanger such that in each Re, there is an optimum radius ratio to maximize Nu and minimize entropy generation. Moreover, the effect of nanoparticles concentration on heat transfer enhancement and minimizing entropy generation is stronger at higher Reynolds.

  15. Trans-kingdom horizontal DNA transfer from bacteria to yeast is highly plastic due to natural polymorphisms in auxiliary nonessential recipient genes.

    Directory of Open Access Journals (Sweden)

    Kazuki Moriguchi

    Full Text Available With the rapid accumulation of genomic information from various eukaryotes in the last decade, genes proposed to have been derived from recent horizontal gene transfer (HGT events have been reported even in non-phagotrophic unicellular and multicellular organisms, but the molecular pathways underlying HGT remain to be explained. The development of in vitro HGT detection systems, which permit the molecular and genetic analyses of donor and recipient organisms and quantify HGT, are helpful in order to gain insight into mechanisms that may contribute to contemporary HGT events or may have contributed to past HGT events. We applied a horizontal DNA transfer system model based on conjugal gene transfer called trans-kingdom conjugation (TKC from the prokaryote Escherichia coli to the eukaryote Saccharomyces cerevisiae, and assessed whether and to what extent genetic variations in the eukaryotic recipient affect its receptivity to TKC. Strains from a collection of 4,823 knock-out mutants of S. cerevisiae MAT-α haploids were tested for their individual TKC receptivity. Two types of mutants, an ssd1 mutant and respiratory mutants, which are also found in experimental strains and in nature widely, were identified as highly receptive mutants. The TKC efficiency for spontaneously accrued petite (rho (-/0 mutants of the functional allele (SSD1-V strain showed increased receptivity. The TKC efficiency of the ssd1Δ mutant was 36% for bacterial conjugation, while that of the petite/ssd1Δ double mutants was even higher (220% in average compared to bacterial conjugation. This increased TKC receptivity was also observed when other conjugal transfer systems were applied and the donor bacterium was changed to Agrobacterium tumefaciens. These results support the idea that the genomes of certain eukaryotes have been exposed to exogenous DNA more frequently and continuously than previously thought.

  16. Strategies to overcome oxygen transfer limitations during hairy root cultivation of Azadiracta indica for enhanced azadirachtin production.

    Science.gov (United States)

    Srivastava, Smita; Srivastava, Ashok Kumar

    2012-07-01

    The vast untapped potential of hairy root cultures as a stable source of biologically active chemicals has focused the attention of scientific community toward its commercial exploitation. However, the major bottleneck remains its successful scale-up. Due to branching, the roots form an interlocked matrix that exhibits resistance to oxygen transfer. Thus, present work was undertaken to develop cultivation strategies like optimization of inlet gas composition (in terms of % (v/v) O(2) in air), air-flow rate and addition of oxygen vectors in the medium, to curb the oxygen transfer limitations during hairy root cultivation of Azadirachta indica for in vitro azadirachtin (a biopesticide) production. It was found that increasing the oxygen fraction in the inlet air (in the range, 20-100% (v/v) O(2) in air) increased the azadirachtin productivity by approximately threefold, to a maximum of 4.42 mg/L per day (at 100% (v/v) O(2) in air) with respect to 1.68 mg/L per day in control (air with no oxygen supplementation). Similarly, increasing the air-flow rate (in the range, 0.3-2 vvm) also increased the azadirachtin productivity to a maximum of 1.84 mg/L per day at 0.8 vvm of air-flow rate. On the contrary, addition of oxygen vectors (in the range, 1-4% (v/v); hydrogen peroxide, toluene, Tween 80, kerosene, silicone oil, and n-hexadecane), decreased the azadirachtin productivity with respect to control (1.76 mg/L per day).

  17. Experimental and numerical study on heat transfer enhancement of flat tube radiator using Al2O3 and CuO nanofluids

    Science.gov (United States)

    Alosious, Sobin; R, Sarath S.; Nair, Anjan R.; Krishnakumar, K.

    2017-12-01

    Forced convective heat transfer of Al2O3 and CuO nanofluids through flat tube automobile radiator were studied experimentally and numerically. Nanofluids of 0.05% volume concentrations were prepared with Al2O3 and CuO nanoparticles having diameter below 50 nm. The working fluid recirculates through an automobile flat tube radiator with constant inlet temperature of 90 °C. Experiments were conducted by using water and nanofluids by varying the Reynolds numbers from 136 to 816. The flat tube of the radiator with same dimensions were modeled and numerically studied the heat transfer. The model includes the thickness of tube wall and also considers the effect of fins in the radiator. Numerical studies were carried out for six different volume concentrations from 0.05% to 1% and Reynolds number varied between 136 and 816 for both nanofluids. The results show an enhancement in heat transfer coefficient and effectiveness of radiator with increase in Reynolds number and volume concentration. A maximum enhancement of 13.2% and 16.4% in inside heat transfer coefficient were obtained for 1% concentration of CuO and Al2O3 nanofluids respectively. However increasing the volume concentration causes an increase in viscosity and density, which leads to an increase in pumping power. For same heat rejection of water, the area of the radiator can be reduced by 2.1% and 2.9% by using 1% concentration of CuO and Al2O3 nanofluids respectively. The optimum values of volume concentration were found to be 0.4% to 0.8% in which heat transfer enhancement dominates pumping power increase. Al2O3 nanofluids gives the maximum heat transfer enhancement and stability compared to CuO nanofluids.

  18. Red emission enhancement from CaMoO4:Eu3+ by co-doping of Bi3+ for near UV/blue LED pumped white pcLEDs: Energy transfer studies

    Science.gov (United States)

    Wangkhem, Ranjoy; Yaba, Takhe; Shanta Singh, N.; Ningthoujam, R. S.

    2018-03-01

    CaMoO4:Eu3+ (3 at. %)/Bi3+ (x at. %) nanophosphors were synthesized hydrothermally. All the samples can be excited by 280, 320, 393, and 464 nm (blue) wavelengths for generation of red color emission. Enhancement in 5D0 → 7F2 (615 nm) emission (f-f transition) of Eu3+ is observed when Bi3+ is incorporated in CaMoO4:Eu3+. This is due to the efficient energy transfer from Bi3+ to Eu3+ ions. Introduction of Bi3+ in the system does not lead to the change of emission wavelength of Eu3+. However, Bi3+ incorporation in the system induces a shift in Mo-O charge transfer band absorption from 295 to 270 nm. This may be due to the increase in electronegativity between Mo and O bond in the presence of Bi3+ leading to change in crystal field environment of Mo6+ in MoO42-. At the optimal concentration of Bi3+, an enhancement in emission by a factor of ˜10 and 4.2 in the respective excitation at 393 (7F0 → 5L6) and 464 nm (7F0 → 5D2) is observed. The energy transfer efficiency from Bi3+ to Eu3+ increases from 75% to 96%. The energy transfer is observed to occur mainly via dipole-dipole interactions. Maximum quantum yield value of 55% is observed from annealed CaMoO4:Eu3+ (3 at. %) when sensitized with Bi3+ (15 at. %) under 464 nm excitation. From Commission International de I'Eclairage chromaticity coordinates, the color (red) saturation is observed to be nearly 100%.

  19. Vitamin C supplementation enhances compact morulae formation but reduces the hatching blastocyst rate of bovine somatic cell nuclear transfer embryos.

    Science.gov (United States)

    Li, Qian; Wang, Yong-Sheng; Wang, Li-Jun; Zhang, Hui; Li, Rui-Zhe; Cui, Chen-Chen; Li, Wen-Zhe; Zhang, Yong; Jin, Ya-Ping

    2014-08-01

    Vitamin C, an antioxidant that reduces reactive oxygen species (ROS) in cells, is capable of significantly improving the developmental competence of porcine and mouse somatic cell nuclear transfer (SCNT) embryos, both in vitro and in vivo. In the present study, the effects of vitamin C on the developmental competence of bovine SCNT embryos were investigated. The results indicated that vitamin C (40 μg/mL) positively affected the scavenging of intracellular ROS, cleavage rate at 24 h (76.67 vs. 68.26%, pvitamin C supplementation did not significantly affect the blastocyst formation rate and proportion of inner cell mass over total cells per blastocyst on day 7. Moreover, vitamin C supplementation obviously impaired the total cell numbers per blastocyst (97.20 ± 11.35 vs. 88.57 ± 10.43, pVitamin C supplementation preferentially improved the viability of bovine SCNT embryos prior to the blastocyst stage, but did not enhance the formation and quality of blastocysts in vitro. In conclusion, the effect of vitamin C on the development of bovine SCNT embryos is complex, and vitamin C is not a suitable antioxidant chemical for the in vitro culture of bovine SCNT embryos.

  20. Enhancement of gravimetric forced flow through system to determine sorption, swelling, and mass transfer characteristics of liquid sorbents

    Science.gov (United States)

    Dresp, G.; Petermann, M.; Fieback, T. M.

    2018-04-01

    An existing apparatus for forced flow through of liquid sorbents has been enhanced with an optically accessible system including a transparent crucible, high pressure viewing cell, and camera. With this optical system, the active surface area between gas and liquid can be determined in situ for the first time under industrial process conditions while maintaining the accuracy of a magnetic suspension balance. Additionally, occurring swelling and the resulting buoyancy changes can now be corrected, further improving the quality of the data. Validation measurements focusing on the sorption isotherms, swelling, and bubble geometry of 1-butyl-3-methylimidazolium tetrafluoroborate with nitrogen at 303 K and up to 17 MPa, as well as with carbon dioxide at 303 K, 323 K, and 373 K at up to 3.5 MPa were completed. Absorption of nitrogen resulted in no observable volume change, whereas absorption of carbon dioxide resulted in temperature independent swelling of up to 9.8%. The gas bubble's structure and behavior during its ascend through the liquid was optically tracked in situ. Combining these two data sets with the absorption kinetics forms the basis to determine the measuring system independent mass transfer coefficients, which are applicable in other laboratory scale and industrial processes.

  1. Heat transfer enhancement in triplex-tube latent thermal energy storage system with selected arrangements of fins

    Science.gov (United States)

    Zhao, Liang; Xing, Yuming; Liu, Xin; Rui, Zhoufeng

    2018-01-01

    The use of thermal energy storage systems can effectively reduce energy consumption and improve the system performance. One of the promising ways for thermal energy storage system is application of phase change materials (PCMs). In this study, a two-dimensional numerical model is presented to investigate the heat transfer enhancement during the melting/solidification process in a triplex tube heat exchanger (TTHX) by using fluent software. The thermal conduction and natural convection are all taken into account in the simulation of the melting/solidification process. As the volume fraction of fin is kept to be a constant, the influence of proposed fin arrangement on temporal profile of liquid fraction over the melting process is studied and reported. By rotating the unit with different angle, the simulation shows that the melting time varies a little, which means that the installation error can be reduced by the selected fin arrangement. The proposed fin arrangement also can effectively reduce time of the solidification of the PCM by investigating the solidification process. To summarize, this work presents a shape optimization for the improvement of the thermal energy storage system by considering both thermal energy charging and discharging process.

  2. Investigation of thermo-fluid behavior of mixed convection heat transfer of different dimples-protrusions wall patterns to heat transfer enhancement

    Science.gov (United States)

    Sobhani, M.; Behzadmehr, A.

    2018-05-01

    This study is a numerical investigation of the effect of improving heat transfer namely, modified rough (dimples and protrusions) surfaces on the mixed convective heat transfer of a turbulent flow in a horizontal tube. The effects of different dimples-protrusions arrangements on the improving the thermal performance of a rough tube are investigated at various Richardson numbers. Three dimensional governing equations are discretized by the finite-volume technique. Based on the obtained results the dimples-protrusions arrangements are modified to find a suitable configuration for which heat transfer coefficient and pressure drop to be balanced. Modified dimples-protrusions arrangements that shows higher performance is presented. Its average thermal performance 18% and 11% is higher than the other arrangements. In addition, the results show that roughening a smooth tube is more effective at the higher Richardson number.

  3. Natural convection in nano-fluids: Are the thermophoresis and Brownian motion effects significant in nano-fluid heat transfer enhancement?

    International Nuclear Information System (INIS)

    Haddad, Zoubida; Abu-Nada, Eiyad; Oztop, Hakan F.; Mataoui, Amina

    2012-01-01

    Natural convection heat transfer and fluid flow of CuO-Water nano-fluids is studied using the Rayleigh-Benard problem. A two component non-homogenous equilibrium model is used for the nano-fluid that incorporates the effects of Brownian motion and thermophoresis. Variable thermal conductivity and variable viscosity are taken into account in this work. Finite volume method is used to solve governing equations. Results are presented by streamlines, isotherms, nano-particle distribution, local and mean Nusselt numbers and nano-particle profiles at top and bottom side. Comparison of two cases as absence of Brownian and thermophoresis effects and presence of Brownian and thermophoresis effects showed that higher heat transfer is formed with the presence of Brownian and thermophoresis effect. In general, by considering the role of thermophoresis and Brownian motion, an enhancement in heat transfer is observed at any volume fraction of nano-particles. However, the enhancement is more pronounced at low volume fraction of nano-particles and the heat transfer decreases by increasing nano-particle volume fraction. On the other hand, by neglecting the role of thermophoresis and Brownian motion, deterioration in heat transfer is observed and this deterioration elevates by increasing the volume fraction of nano-particles. (authors)

  4. A two-hop wireless power transfer system with an efficiency-enhanced power receiver for motion-free capsule endoscopy inspection.

    Science.gov (United States)

    Sun, Tianjia; Xie, Xiang; Li, Guolin; Gu, Yingke; Deng, Yangdong; Wang, Zhihua

    2012-11-01

    This paper presents a wireless power transfer system for a motion-free capsule endoscopy inspection. Conventionally, a wireless power transmitter in a specifically designed jacket has to be connected to a strong power source with a long cable. To avoid the power cable and allow patients to walk freely in a room, this paper proposes a two-hop wireless power transfer system. First, power is transferred from a floor to a power relay in the patient's jacket via strong coupling. Next, power is delivered from the power relay to the capsule via loose coupling. Besides making patients much more conformable, the proposed techniques eliminate the sources of reliability issues arisen from the moving cable and connectors. In the capsule, it is critical to enhance the power conversion efficiency. This paper develops a switch-mode rectifier (rectifying efficiency of 93.6%) and a power combination circuit (enhances combining efficiency by 18%). Thanks to the two-hop transfer mechanism and the novel circuit techniques, this system is able to transfer an average power of 24 mW and a peak power of 90 mW from the floor to a 13 mm × 27 mm capsule over a distance of 1 m with the maximum dc-to-dc power efficiency of 3.04%.

  5. Enhancement of Electron Transfer Efficiency in Solar Cells Based on PbS QD/N719 Dye Cosensitizers

    Directory of Open Access Journals (Sweden)

    Yanyan Gao

    2012-01-01

    Full Text Available Cosensitized solar cells (CSSCs have recently become an active subject in the field of sensitized solar cells (SSCs due to their increasing electronic utilization. However, because of the dye molecules, layer must be single, dye-SSCs cannot be co-sensitized with two different dyes to form two different molecules layer. But it is possible to be cosensitized with quantum dots (QDs and dyes. Here we designed novel photoanode architecture, namely, PbS QDs and N719 dyes are used as co-sensitizers of the TiO2 mesoporous film. The experimental result shows that PbS QDs/N719 dyes co-sensitized structure can make PbS QDs and N719 dyes mutual improvement. Taking the advantage of PbS not only achieved higher transfer efficiency of photo-excited electron, but also achieved obviously wider range and higher intensity of absorption. The PbS QDs which have been deposited on the TiO2 film was coated by N719 dyes, which can effectively prevent PbS QDs from corroding by I-/I3-electrolyte and light. As we expected, the solar energy-conversion efficiency which is showed by CSSCs fabricated following these photoanodes is relatively higher than the PbS QDs or N719 dyes, single-sensitized solar cells under the illumination of one sun.

  6. Heat transfer enhancement of TiO2/water nanofluid in a heat exchanger tube equipped with overlapped dual twisted-tapes

    Directory of Open Access Journals (Sweden)

    S. Eiamsa-ard

    2015-09-01

    Full Text Available Titanium dioxide (TiO2 in water as nanofluid was employed for heat transfer enhancement together with overlapped dual twisted tapes (O-DTs. The study encompassed Reynolds numbers from 5400 to 15,200, O-DTs with overlapped twist ratios (yo/y of 1.5, 2.0 and 2.5 and nanofluids with TiO2 volume concentrations (ϕ of 0.07%, 0.14% and 0.21%. The experimental and numerical results indicated that O-DTs with smaller overlapped twisted ratio delivered a stronger swirl intensity and higher turbulent kinetic energy (TKE. The use of O-DTs at the smallest overlapped twist ratio of 1.5 enhanced heat transfer rates up to 89%, friction factor by 5.43 times and thermal performance up to 1.13 times as compared to those of plain tube. In addition, heat transfer increased as TiO2 volume concentration of nanofluid increased, owing to the increases of contact surface and thermal conductivity. The simultaneous use of the O-DTs having twist ratios 1.5 with the nanofluid with TiO2 volume concentration of 0.21% resulted in heat transfer enhancement around 9.9–11.2% and thermal performance improvement up to 4.5% as compared to the use of O-DTs alone. The empirical correlations of heat transfer rate (Nu, friction factor (f and thermal performance (η in a constant wall heat flux tube equipped O-DTs at different overlapped twist ratios (yo/y and volume concentrations of TiO2 nanoparticles (ϕ are also reported for heat transfer applications.

  7. Flow boiling heat transfer enhancement on copper surface using Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings

    Energy Technology Data Exchange (ETDEWEB)

    Sujith Kumar, C.S., E-mail: sujithdeepam@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Suresh, S., E-mail: ssuresh@nitt.edu [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Aneesh, C.R., E-mail: aneeshcr87@gmail.com [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Santhosh Kumar, M.C., E-mail: santhoshmc@nitt.edu [Department of Physics, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Praveen, A.S., E-mail: praveen_as_1215@yahoo.co.in [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015, Tamil Nadu (India); Raji, K., E-mail: raji.kochandra@gmail.com [School of Nano Science and Technology, National Institute of Technology, Calicut 673601, Kerala (India)

    2015-04-15

    Graphical abstract: - Highlights: • Fe–Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings were coated on the copper using spray pyrolysis. • Effect of Fe doping on porosity was determined using AFM. • Effect of Fe doping on hydrophilicity was determined. • Higher enhancement in CHF was obtained for 7.2 at% Fe doped coated sample. - Abstract: In the present work, flow boiling experiments were conducted to study the effect of spray pyrolyzed Fe doped Al{sub 2}O{sub 3}–TiO{sub 2} composite coatings over the copper heater blocks on critical heat flux (CHF) and boiling heat transfer coefficient. Heat transfer studies were conducted in a mini-channel of overall dimension 30 mm × 20 mm × 0.4 mm using de-mineralized water as the working fluid. Each coated sample was tested for two mass fluxes to explore the heat transfer performance. The effect of Fe addition on wettability and porosity of the coated surfaces were measured using the static contact angle metre and the atomic force microscope (AFM), and their effect on flow boiling heat transfer were investigated. A significant enhancement in CHF and boiling heat transfer coefficient were observed on all coated samples compared to sand blasted copper surface. A maximum enhancement of 52.39% and 44.11% in the CHF and heat transfer coefficient were observed for 7.2% Fe doped TiO{sub 2}–Al{sub 2}O{sub 3} for a mass flux of 88 kg/m{sup 2} s.

  8. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.

    Science.gov (United States)

    Jacob, Maik H; Dsouza, Roy N; Ghosh, Indrajit; Norouzy, Amir; Schwarzlose, Thomas; Nau, Werner M

    2013-01-10

    The structural and dynamic properties of a flexible peptidic chain codetermine its biological activity. These properties are imprinted in intrachain site-to-site distances as well as in diffusion coefficients of mutual site-to-site motion. Both distance distribution and diffusion determine the extent of Förster resonance energy transfer (FRET) between two chain sites labeled with a FRET donor and acceptor. Both could be obtained from time-resolved FRET measurements if their individual contributions to the FRET efficiency could be systematically varied. Because the FRET diffusion enhancement (FDE) depends on the donor-fluorescence lifetime, it has been proposed that the FDE can be reduced by shortening the donor lifetime through an external quencher. Benefiting from the high diffusion sensitivity of short-distance FRET, we tested this concept experimentally on a (Gly-Ser)(6) segment labeled with the donor/acceptor pair naphthylalanine/2,3-diazabicyclo[2.2.2]oct-2-ene (NAla/Dbo). Surprisingly, the very effective quencher potassium iodide (KI) had no effect at all on the average donor-acceptor distance, although the donor lifetime was shortened from ca. 36 ns in the absence of KI to ca. 3 ns in the presence of 30 mM KI. We show that the proposed approach had to fail because it is not the experimentally observed but the radiative donor lifetime that controls the FDE. Because of that, any FRET ensemble measurement can easily underestimate diffusion and might be misleading even if it employs the Haas-Steinberg diffusion equation (HSE). An extension of traditional FRET analysis allowed us to evaluate HSE simulations and to corroborate as well as generalize the experimental results. We demonstrate that diffusion-enhanced FRET depends on the radiative donor lifetime as it depends on the diffusion coefficient, a useful symmetry that can directly be applied to distinguish dynamic and structural effects of viscous cosolvents on the polymer chain. We demonstrate that the