WorldWideScience

Sample records for transfected major histocompatibility

  1. The Major Histocompatibility Complex in Transplantation

    Directory of Open Access Journals (Sweden)

    Marco Antonio Ayala García

    2012-01-01

    Full Text Available The transplant of organs is one of the greatest therapeutic achievements of the twentieth century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the principal target of the immune response is the MHC (major histocompatibility complex molecules expressed on the surface of donor cells. However, we should not forget that the innate and adaptive immunities are closely interrelated and should be viewed as complementary and cooperating. When a human transplant is performed, HLA (human leukocyte antigens molecules from a donor are recognized by the recipient's immune system triggering an alloimmune response Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. This paper will present MHC, the innate and adaptive immunities, and clinical HLA testing.

  2. The Major Histocompatibility Complex in Transplantation

    Science.gov (United States)

    Ayala García, Marco Antonio; González Yebra, Beatriz; López Flores, Andrea Liliana; Guaní Guerra, Eduardo

    2012-01-01

    The transplant of organs is one of the greatest therapeutic achievements of the twentieth century. In organ transplantation, the adaptive immunity is considered the main response exerted to the transplanted tissue, since the principal target of the immune response is the MHC (major histocompatibility complex) molecules expressed on the surface of donor cells. However, we should not forget that the innate and adaptive immunities are closely interrelated and should be viewed as complementary and cooperating. When a human transplant is performed, HLA (human leukocyte antigens) molecules from a donor are recognized by the recipient's immune system triggering an alloimmune response Matching of donor and recipient for MHC antigens has been shown to have a significant positive effect on graft acceptance. This paper will present MHC, the innate and adaptive immunities, and clinical HLA testing. PMID:22778908

  3. Major histocompatibility complex genomics and human disease.

    Science.gov (United States)

    Trowsdale, John; Knight, Julian C

    2013-01-01

    Over several decades, various forms of genomic analysis of the human major histocompatibility complex (MHC) have been extremely successful in picking up many disease associations. This is to be expected, as the MHC region is one of the most gene-dense and polymorphic stretches of human DNA. It also encodes proteins critical to immunity, including several controlling antigen processing and presentation. Single-nucleotide polymorphism genotyping and human leukocyte antigen (HLA) imputation now permit the screening of large sample sets, a technique further facilitated by high-throughput sequencing. These methods promise to yield more precise contributions of MHC variants to disease. However, interpretation of MHC-disease associations in terms of the functions of variants has been problematic. Most studies confirm the paramount importance of class I and class II molecules, which are key to resistance to infection. Infection is likely driving the extreme variation of these genes across the human population, but this has been difficult to demonstrate. In contrast, many associations with autoimmune conditions have been shown to be specific to certain class I and class II alleles. Interestingly, conditions other than infections and autoimmunity are also associated with the MHC, including some cancers and neuropathies. These associations could be indirect, owing, for example, to the infectious history of a particular individual and selective pressures operating at the population level.

  4. Identification of genetic variation in the major histocompatibility ...

    African Journals Online (AJOL)

    The major histocompatibility complex (MHC) in sheep, Ovar-Mhc, remains poorly characterized relative to other domestic animals. However, its basic structure is similar to that of other mammals, comprising class I, II and III regions. In this study, the Ovine MHC class II DRB1 and DRB3 genes were amplified by polymerase ...

  5. Major Histocompatibility complex-DMB allelic diversity in old and ...

    African Journals Online (AJOL)

    Finally, a cluster grouping human and gorilla DMB cDNA sequences is obtained using a dendrogram (for the MHC genes, i.e.: C4d trees); this is in contrast to others' results that obtain a human/chimpanzee cluster using different DNA sequences. Keywords: MHC (Major Histocompatibility Complex), MHC-DMB, HLA-DMB, ...

  6. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, Anders Elm; Skov, S; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...

  7. Invariant chain can function as a chaperone protein for class II major histocompatibility complex molecules.

    OpenAIRE

    Anderson, M S; Miller, J

    1992-01-01

    During biosynthesis, class II major histocompatibility complex molecules are intimately associated with invariant chain (Ii). The Ii-class II association has been shown to block peptide-class II binding and to affect the ultimate conformation of class II expressed on the cell surface. To assess the biochemical basis for the effects of Ii on class II, we have analyzed the biosynthesis of class II in EL4 cells transfected with I-Ad with and without Ii. In these studies, we found that Ii had a p...

  8. Modulation of the major histocompatibility complex class II-associated peptide repertoire by human histocompatibility leukocyte antigen (HLA)-DO

    NARCIS (Netherlands)

    van Ham, M.; van Lith, M.; Lillemeier, B.; Tjin, E.; Grüneberg, U.; Rahman, D.; Pastoors, L.; van Meijgaarden, K.; Roucard, C.; Trowsdale, J.; Ottenhoff, T.; Pappin, D.; Neefjes, J.

    2000-01-01

    Antigen presentation by major histocompatibility complex class II molecules is essential for antibody production and T cell activation. For most class II alleles, peptide binding depends on the catalytic action of human histocompatibility leukocyte antigens (HLA)-DM. HLA-DO is selectively expressed

  9. Signal transduction by the major histocompatibility complex class I molecule

    DEFF Research Database (Denmark)

    Pedersen, A E; Skov, Svend; Bregenholt, S

    1999-01-01

    Ligation of cell surface major histocompatibility class I (MHC-I) proteins by antibodies, or by their native counter receptor, the CD8 molecule, mediates transduction of signals into the cells. MHC-I-mediated signaling can lead to both increased and decreased activity of the MHC-I-expressing cell...... and functioning, MHC-I molecules might be of importance for the maintenance of cellular homeostasis not only within the immune system, but also in the interplay between the immune system and other organ systems....

  10. Major histocompatibility complex I proteins in brain development and plasticity

    Science.gov (United States)

    Elmer, Bradford M.; McAllister, A. Kimberley

    2012-01-01

    Proper development of the central nervous system (CNS) requires the establishment of appropriate connections between neurons. Recent work suggests that this process is controlled by a balance between synaptogenic molecules and proteins that negatively regulate synapse formation and plasticity. Surprisingly, many of these newly identified synapse-limiting molecules are classic “immune” proteins. In particular, major histocompatibility complex class I (MHCI) molecules regulate neurite outgrowth, the establishment and function of cortical connections, activity-dependent refinement in the visual system, and long-term and homeostatic plasticity. This review summarizes our current understanding of MHCI expression and function in the CNS, as well as the potential mechanisms used by MHCI to regulate brain development and plasticity. PMID:22939644

  11. Phage display of peptide / major histocompatibility class I complexes

    DEFF Research Database (Denmark)

    Vest Hansen, N; Ostergaard Pedersen, L; Stryhn, A

    2001-01-01

    Major histocompatibility complex class I (MHC-I) molecules sample peptides from the intracellular environment and present them to cytotoxic T cells (CTL). To establish a selection system, and, thereby, enable a library approach to identify the specificities involved (that of the MHC-I for peptides...... and subsequently that ot the T cell receptor for peptide-MHC-I complex), we have fused a single chain peptide-MHC-I complex to the phage minor coat protein, gpIII, and displayed it on filamentous phage. Expression of peptide-MHC-I complexes was shown with relevant conformation-specific monoclonal antibodies and......, more importantly, with a unique "T cell receptor-like" (i. e. peptide-specific, MHC-I-restricted) antibody. Thus, properly assembled and folded peptide-MHC-I complexes can be displayed on filamentous phage. Despite the successful display, interaction with T cells could not be demonstrated....

  12. Analysis of Major Histocompatibility Complex (MHC) Immunopeptidomes Using Mass Spectrometry.

    Science.gov (United States)

    Caron, Etienne; Kowalewski, Daniel J; Chiek Koh, Ching; Sturm, Theo; Schuster, Heiko; Aebersold, Ruedi

    2015-12-01

    The myriad of peptides presented at the cell surface by class I and class II major histocompatibility complex (MHC) molecules are referred to as the immunopeptidome and are of great importance for basic and translational science. For basic science, the immunopeptidome is a critical component for understanding the immune system; for translational science, exact knowledge of the immunopeptidome can directly fuel and guide the development of next-generation vaccines and immunotherapies against autoimmunity, infectious diseases, and cancers. In this mini-review, we summarize established isolation techniques as well as emerging mass spectrometry-based platforms (i.e. SWATH-MS) to identify and quantify MHC-associated peptides. We also highlight selected biological applications and discuss important current technical limitations that need to be solved to accelerate the development of this field. © 2015 by The American Society for Biochemistry and Molecular Biology, Inc.

  13. Major histocompatibility complex class I binding predictions as a tool in epitope discovery

    DEFF Research Database (Denmark)

    Lundegaard, Claus; Lund, Ole; Buus, Søren

    2010-01-01

    Over the last decade, in silico models of the major histocompatibility complex (MHC) class I pathway have developed significantly. Before, peptide binding could only be reliably modelled for a few major human or mouse histocompatibility molecules; now, high-accuracy predictions are available...

  14. Molecular Genotype Identification of Different Chickens: Major Histocompatibility Complex

    Directory of Open Access Journals (Sweden)

    Hongzhi Wang

    2014-09-01

    Full Text Available Chicken is a main poultry in China. Molecular breeding for disease resistance plays an important role in the control of diseases, especially infectious diseases. Choice of genes for disease resistance is the key technology of molecular breeding. The major histocompatibility complex (MHC is of great interest to poultry breeding scientists for its extraordinary polymorphism and close relation with traits of resistance against infectious diseases. The MHC-B haplotype plays an important role in the study of disease resistance in chicken. The traditional chicken MHC-B haplotype is commonly defined by serologic reactions of erythrocytes and the majority of studies have been conducted in Leghorn and broiler but study about other chicken breeds is little. In this study, firstly, the microsatellite marker LEI0258 which is located within the MHC was sequenced by using target sequence capture assay in different chicken breeds, and then according to the number of repeated structures and polymorphic sequences in microsatellite, sequence information for the region defined by LEI0258 was obtained for different haplotypes. Afterwards, we identified the relation between MHC-B haplotypes and disease resistance. Collectively, these observed results provided the reference data for disease-resistant breeding association with blood type and for further study of MHC gene function in poultry.

  15. The Major Histocompatibility Complex in Bovines: A Review

    Science.gov (United States)

    Behl, Jyotsna Dhingra; Verma, N. K.; Tyagi, Neha; Mishra, Priyanka; Behl, Rahul; Joshi, B. K.

    2012-01-01

    Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign. PMID:23738132

  16. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    International Nuclear Information System (INIS)

    Sargent, C.A.; Dunham, I.; Campbell, R.D.; Trowsdale, J.

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases

  17. Human major histocompatibility complex contains genes for the major heat shock protein HSP70

    Energy Technology Data Exchange (ETDEWEB)

    Sargent, C.A.; Dunham, I.; Campbell, R.D. (Medical Research Council Immunochemistry Unit , Oxford (England)); Trowsdale, J. (Imperial Cancer Research Fund, London (England))

    1989-03-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, as well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, the authors have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis factor genes. The HSP70 loci are 12 kilobases apart and lie 92 kilobases telomeric of the C2 gene. As HSP70 proteins have been linked with a protective role during and after cellular stress, and HSP70 analogues are often presented as antigens in bacterial and protozoal infections, this finding may have major implications with regard to the major histocompatibility complex and associated diseases.

  18. Skeletal muscle major histocompatibility complex class I and II expression differences in adult and juvenile dermatomyositis.

    Science.gov (United States)

    Shinjo, Samuel Katsuyuki; Sallum, Adriana Maluf Elias; Silva, Clovis Artur; Marie, Suely Kazue Nagahashi

    2012-08-01

    To analyze major histocompatibility complex expression in the muscle fibers of juvenile and adult dermatomyositis. In total, 28 untreated adult dermatomyositis patients, 28 juvenile dermatomyositis patients (Bohan and Peter's criteria) and a control group consisting of four dystrophic and five Pompe's disease patients were analyzed. Routine histological and immunohistochemical (major histocompatibility complex I and II, StreptoABComplex/HRP, Dakopatts) analyses were performed on serial frozen muscle sections. Inflammatory cells, fiber damage, perifascicular atrophy and increased connective tissue were analyzed relative to the expression of major histocompatibility complexes I and II, which were assessed as negatively or positively stained fibers in 10 fields (200X). The mean ages at disease onset were 42.0±15.9 and 7.3±3.4 years in adult and juvenile dermatomyositis, respectively, and the symptom durations before muscle biopsy were similar in both groups. No significant differences were observed regarding gender, ethnicity and frequency of organ involvement, except for higher creatine kinase and lactate dehydrogenase levels in adult dermatomyositis (pmajor histocompatibility complex I (96.4% vs. 50.0%, pmajor histocompatibility complex II expression (14.3% vs. 53.6%, p=0.004) was observed in juvenile dermatomyositis. Fiber damage (p=0.006) and increased connective tissue (pmajor histocompatibility complex I was an important finding for the diagnosis of both groups, particularly for juvenile dermatomyositis, whereas there was lower levels of expression of major histocompatibility complex II than major histocompatibility complex I. This finding was particularly apparent in juvenile dermatomyositis.

  19. Transmembrane signaling through major histocompatibility complex (MHC) encoded molecules

    International Nuclear Information System (INIS)

    Newell, M.K.

    1987-01-01

    The importance of the major histocompatibility complex (MHC) encoded molecules has traditionally been ascribed to the role these molecules play as restriction elements for T lymphocytes. This is, in order for T cell activation to occur the T cell must recognize antigen in association with MHC molecules. More controversial, however, is the potential role MHC molecules play as signal transducing receptors/acceptors to the B lymphocyte. In other words, do class II MHC molecules (Ia antigens) actively transduce a signal to the B cell which drives its differentiation into an antibody secreting cell? Two approaches to this question are described. The first involves biochemical characterization of those molecules which consistently copurify with I-A/sup k/ by two dimensional gel electrophoresis. The second approach utilizes two types of analyses: first, an examination of the biochemical changes which occur in the cell as a result of Ia ligation; and second, analysis of changes in the B cell's physiological response as a result of Ia perturbation. Molecules were examined which may couple the antigen binding event in the B lymphocyte to the antigen driven signal transduction cascade which ultimately leads to immunoglobulin secretion. In these experiments, cells were labelled with [ 32 P] and stimulated cells with phorbol myristate acetate. The membrane form of immunoglobulin was then isolated from detergent lysates of whole cells and passed over an anti-k affinity column. The eluates were analyzed by SDS-PAGE

  20. Birdsong signals individual diversity at the major histocompatibility complex.

    Science.gov (United States)

    Slade, J W G; Watson, M J; MacDougall-Shackleton, E A

    2017-11-01

    The major histocompatibility complex (MHC) plays a key role in vertebrate immunity, and pathogen-mediated selection often favours certain allelic combinations. Assessing potential mates' MHC profiles may provide receivers with genetic benefits (identifying MHC-compatible mates and producing optimally diverse offspring) and/or material benefits (identifying optimally diverse mates capable of high parental investment). Oscine songbirds learn songs during early life, such that song repertoire content can reflect population of origin while song complexity can reflect early life condition. Thus birdsong may advertise the singer's genetic dissimilarity to others in the population (and, presumably, compatibility with potential mates), or individual genetic diversity (and thus condition-dependent material benefits). We tested whether song repertoire content and/or complexity signal MHC class IIβ dissimilarity and/or diversity in male song sparrows ( Melospiza melodia ). Pairwise dissimilarity in repertoire content did not predict MHC dissimilarity between males, suggesting that locally rare songs do not signal rare MHC profiles. Thus, geographical variation in song may not facilitate MHC-mediated inbreeding or outbreeding. Larger repertoires were associated with intermediate MHC diversity, suggesting intermediate rather than maximal MHC diversity is optimal. This could reflect trade-offs between resisting infection and autoimmune disorders. Song complexity may advertise optimal MHC diversity, a trait affecting disease resistance and capacity for parental care. © 2017 The Author(s).

  1. Major Histocompatibility Complex (MHC) Markers in Conservation Biology

    Science.gov (United States)

    Ujvari, Beata; Belov, Katherine

    2011-01-01

    Human impacts through habitat destruction, introduction of invasive species and climate change are increasing the number of species threatened with extinction. Decreases in population size simultaneously lead to reductions in genetic diversity, ultimately reducing the ability of populations to adapt to a changing environment. In this way, loss of genetic polymorphism is linked with extinction risk. Recent advances in sequencing technologies mean that obtaining measures of genetic diversity at functionally important genes is within reach for conservation programs. A key region of the genome that should be targeted for population genetic studies is the Major Histocompatibility Complex (MHC). MHC genes, found in all jawed vertebrates, are the most polymorphic genes in vertebrate genomes. They play key roles in immune function via immune-recognition and -surveillance and host-parasite interaction. Therefore, measuring levels of polymorphism at these genes can provide indirect measures of the immunological fitness of populations. The MHC has also been linked with mate-choice and pregnancy outcomes and has application for improving mating success in captive breeding programs. The recent discovery that genetic diversity at MHC genes may protect against the spread of contagious cancers provides an added impetus for managing and protecting MHC diversity in wild populations. Here we review the field and focus on the successful applications of MHC-typing for conservation management. We emphasize the importance of using MHC markers when planning and executing wildlife rescue and conservation programs but stress that this should not be done to the detriment of genome-wide diversity. PMID:21954351

  2. Major histocompatibility complex-linked social signalling affects female fertility.

    Science.gov (United States)

    Burger, D; Thomas, S; Aepli, H; Dreyer, M; Fabre, G; Marti, E; Sieme, H; Robinson, M R; Wedekind, C

    2017-12-06

    Genes of the major histocompatibility complex (MHC) have been shown to influence social signalling and mate preferences in many species, including humans. First observations suggest that MHC signalling may also affect female fertility. To test this hypothesis, we exposed 191 female horses ( Equus caballus ) to either an MHC-similar or an MHC-dissimilar stimulus male around the time of ovulation and conception. A within-subject experimental design controlled for non-MHC-linked male characteristics, and instrumental insemination with semen of other males ( n = 106) controlled for potential confounding effects of semen or embryo characteristics. We found that females were more likely to become pregnant if exposed to an MHC-dissimilar than to an MHC-similar male, while overall genetic distance to the stimulus males (based on microsatellite markers on 20 chromosomes) had no effect. Our results demonstrate that early pregnancy failures can be due to maternal life-history decisions (cryptic female choice) influenced by MHC-linked social signalling. © 2017 The Author(s).

  3. Exploration of the Conformational Dynamics of Major Histocompatibility Complex Molecules.

    Science.gov (United States)

    Yanaka, Saeko; Sugase, Kenji

    2017-01-01

    Major histocompatibility complex (MHC) molecules are loaded with a wide variety of self- and non-self-peptides in their binding grooves and present these to T cell receptors (TCRs) in order to activate the adaptive immune system. A large number of crystal structures of different MHC alleles with different bound peptides have been determined, and they have been found to be quite similar to one another regardless of the bound peptide sequence. The structures do not change markedly even when forming complexes with TCRs. Nonetheless, the degree of TCR activation does differ markedly depending on the peptide presented by the MHC. Recent structural studies in solution rather than as crystals have suggested that the conformational dynamics of MHC molecules may be responsible for the MHC stability differences. Furthermore, it was shown that the conformational dynamics of MHC molecules is important for peptide loading and presentation to TCR. Here, we describe the static and dynamic structures of MHC molecules and appropriate methods to analyze them. We focus particularly on nuclear magnetic resonance (NMR), one of the most powerful tools to study dynamic properties of proteins. The number of such studies in the literature is limited, but in this review, we show that NMR is valuable for elucidating the structural dynamics of MHC molecules.

  4. Haplessly hoping: macaque major histocompatibility complex made easy.

    Science.gov (United States)

    Wiseman, Roger W; Karl, Julie A; Bohn, Patrick S; Nimityongskul, Francesca A; Starrett, Gabriel J; O'Connor, David H

    2013-01-01

    Major histocompatibility complex (MHC) gene products control the repertoire of T cell responses that an individual may create against pathogens and foreign tissues. This text will review the current understanding of MHC genetics in nonhuman primates, with a focus on Mauritian-origin cynomolgus macaques (Macaca fascicularis) and Indian-origin rhesus macaques (Macaca mulatta). These closely related macaque species provide important experimental models for studies of infectious disease pathogenesis, vaccine development, and transplantation research. Recent advances resulting from the application of several cost effective, high-throughput approaches, with deep sequencing technologies have revolutionized our ability to perform MHC genotyping of large macaque cohorts. Pyrosequencing of cDNA amplicons with a Roche/454 GS Junior instrument, provides excellent resolution of MHC class I allelic variants with semi-quantitative estimates of relative levels of transcript abundance. Introduction of the Illumina MiSeq platform significantly increased the sample throughput, since the sample loading workflow is considerably less labor intensive, and each instrument run yields approximately 100-fold more sequence data. Extension of these sequencing methods from cDNA to genomic DNA amplicons further streamlines the experimental workflow and opened opportunities for retrospective MHC genotyping of banked DNA samples. To facilitate the reporting of MHC genotypes, and comparisons between groups of macaques, this text also introduces an intuitive series of abbreviated rhesus MHC haplotype designations based on a major Mamu-A or Mamu-B transcript characteristic for ancestral allele combinations. The authors believe that the use of MHC-defined macaques promises to improve the reproducibility, and predictability of results from pre-clinical studies for translation to humans.

  5. Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates

    Czech Academy of Sciences Publication Activity Database

    Winternitz, Jamie Caroline; Abbate, J. L.

    2015-01-01

    Roč. 6, 13 May (2015), s. 73-88 ISSN 1179-7274 Institutional support : RVO:68081766 Keywords : major histocompatibility complex * sexual selection * olfaction * facial attraction * parasite resistance * inbreeding avoidance Subject RIV: EB - Genetics ; Molecular Biology

  6. Human major histocompatibility complex contains genes for the major heat shock protein HSP70.

    OpenAIRE

    Sargent, C A; Dunham, I; Trowsdale, J; Campbell, R D

    1989-01-01

    Little is known as to why a large number of human diseases are influenced by the major histocompatibility complex. In some cases, a direct involvement of the products of the polymorphic class I and class II, aas well as the less variable products of the class III, genes has been proposed. During characterization of the class III region for the presence of additional loci, we have located a duplicated locus encoding the major heat shock protein HSP70 between the complement and tumor necrosis f...

  7. The role of major histocompatibility complex class I chain-related gene A antibodies in organ transplantation.

    Science.gov (United States)

    Zou, Yizhou; Stastny, Peter

    2009-08-01

    Major histocompatibility complex class I chain-related gene A (MICA) antigens are expressed on the endothelium, they are polymorphic and have been shown to be recognized by antibodies produced by transplant recipients. Methods for detection of these antibodies have become available. In the 15th International Histocompatibility Workshop, a study for MICA antibody testing and of MICA genotyping was organized. Antibodies against MICA antigens have been determined either using cells transfected with MICA alleles or recombinant MICA antigens. MICA epitopes were characterized by empirical study of human sera and by correlation with MICA polymorphic amino acids. Sera were absorbed with cells transfected with MICA alleles and site-directed mutagenesis was employed to analyze complex sera. A number of clinical studies have shown associations of antibodies against MICA with decreased survival of kidney transplants and in one investigation with acute rejection in recipients of heart allografts. In addition to the HLA antigens, which elicit a strong immune response against allografted organs, the MICA antigens may be recognized as foreign and induce the production of MICA-specific antibodies. Antibodies against MICA have been associated with a decrease in the survival of organ allografts. The results suggest the MICA antigens are transplantation antigens that can induce an immune response associated with graft failure.

  8. MOLECULAR GENETICS OF THE SWINE MAJOR HISTOCOMPATIBILITY COMPLEX, THE SLA COMPLEX

    Science.gov (United States)

    The swine major histocompatibility complex (MHC) or swine leukocyte antigen (SLA) complex is one of the most gene-dense regions in the swine genome. It consists of three major gene clusters, the SLA class I, class III and class II regions, that span ~1.1, 0.7 and 0.5 Mb, respectively, making the swi...

  9. Regulation of major histocompatibility complex class II gene expression in trophoblast cells

    Directory of Open Access Journals (Sweden)

    Choi Jason C

    2004-07-01

    Full Text Available Abstract Trophoblast cells are unique because they are one of the few mammalian cell types that do not express major histocompatibility complex (MHC class II antigens, either constitutively or after exposure to IFN-γ. The absence of MHC class II antigen expression on trophoblast cells has been postulated to be one of the essential mechanisms by which the semi-allogeneic fetus evades immune rejection reactions by the maternal immune system. Consistent with this hypothesis, trophoblast cells from the placentas of women suffering from chronic inflammation of unknown etiology and spontaneous recurrent miscarriages have been reported to aberrantly express MHC class II antigens. The lack of MHC class II antigen expression on trophoblast cells is due to silencing of expression of the class II transactivator (CIITA, a transacting factor that is essential for constitutive and IFN-γ-inducible MHC class II gene transcription. Transfection of trophoblast cells with CIITA expression vectors activates both MHC class II and class Ia antigen expression, which confers on trophoblast cells both the ability to activate helper T cells, and sensitivity to lysis by cytotoxic T lymphocytes. Collectively, these studies strongly suggest that stringent silencing of CIITA (and therefore MHC class II gene expression in trophoblast cells is critical for the prevention of immune rejection responses against the fetus by the maternal immune system. The focus of this review is to summarize studies examining the novel mechanisms by which CIITA is silenced in trophoblast cells. The elucidation of the silencing of CIITA in trophoblast cells may shed light on how the semi-allogeneic fetus evades immune rejection by the maternal immune system during pregnancy.

  10. The bovine class II major histocompatibility complex : serological definition and further characterization of class II haplotypes

    NARCIS (Netherlands)

    Nilsson, P.R.

    1994-01-01

    In this thesis an analysis of the major histocompatibility complex (MHC) class II in cattle is reported, with emphasis on the development of class II serology. First, the production of class II alloantisera, and the serological definition of bovine MHC class II polymorphism is described.

  11. Natural selection acts on Atlantic salmon major histocompatibility (MH) variability in the wild

    NARCIS (Netherlands)

    Eyto, de E.; McGinnity, P.; Consuegra, S.; Coughlan, J.; Tufto, J.; Farrell, K.; Megens, H.J.W.C.; Jordan, W.; Cross, T.; Stet, R.J.M.

    2007-01-01

    Pathogen-driven balancing selection is thought to maintain polymorphism in major histocompatibility (MH) genes. However, there have been few empirical demonstrations of selection acting on MH loci in natural populations. To determine whether natural selection on MH genes has fitness consequences for

  12. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    Science.gov (United States)

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules, which are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating cytotoxic lymphocytes (CTLs). The polymorp...

  13. Transmembrane Helices Are an Overlooked Source of Major Histocompatibility Complex Class I Epitopes

    NARCIS (Netherlands)

    Bianchi, F.; Textor, J.C.; Bogaart, G. van den

    2017-01-01

    About a fourth of the human proteome is anchored by transmembrane helices (TMHs) to lipid membranes. TMHs require multiple hydrophobic residues for spanning membranes, and this shows a striking resemblance with the requirements for peptide binding to major histocompatibility complex (MHC) class I.

  14. CD1 and major histocompatibility complex II molecules follow a different course during dendritic cell maturation

    NARCIS (Netherlands)

    van der Wel, Nicole N.; Sugita, Masahiko; Fluitsma, Donna M.; Cao, Xaiochun; Schreibelt, Gerty; Brenner, Michael B.; Peters, Peter J.

    2003-01-01

    The maturation of dendritic cells is accompanied by the redistribution of major histocompatibility complex (MHC) class II molecules from the lysosomal MHC class IT compartment to the plasma membrane to mediate presentation of peptide antigens. Besides MHC molecules, dendritic cells also express CD1

  15. NetMHCcons: a consensus method for the major histocompatibility complex class I predictions

    DEFF Research Database (Denmark)

    Karosiene, Edita; Lundegaard, Claus; Lund, Ole

    2012-01-01

    A key role in cell-mediated immunity is dedicated to the major histocompatibility complex (MHC) molecules that bind peptides for presentation on the cell surface. Several in silico methods capable of predicting peptide binding to MHC class I have been developed. The accuracy of these methods...

  16. Major Histocompatibility Complex and Background Genes in Chickens Influence Susceptibility to High Pathogenicity Avian Influenza Virus

    Science.gov (United States)

    The chicken’s major histocompatibility complex (MHC) haplotype has profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both line...

  17. Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    Science.gov (United States)

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-11-01

    Recent genome-wide association studies (GWAS) have identified over 50 significant loci containing common variants associated with coronary artery disease. However, these variants explain only 26% of the genetic heritability of the disease, suggesting that many more variants remain to be discovered. Here, we examined the genetic basis underlying the marked difference between SM/J-Apoe -/- and BALB/cJ-Apoe -/- mice in atherosclerotic lesion formation. 206 female F 2 mice generated from an intercross between the two Apoe -/- strains were fed 12 weeks of western diet. Atherosclerotic lesion sizes in the aortic root were measured and 149 genetic markers genotyped across the entire genome. A significant locus, named Ath49 (LOD score: 4.18), for atherosclerosis was mapped to the H2 complex [mouse major histocompatibility complex (MHC)] on chromosome 17. Bioinformatic analysis identified 12 probable candidate genes, including Tnfrsf21, Adgrf1, Adgrf5, Mep1a, and Pla2g7. Corresponding human genomic regions of Ath49 showed significant association with coronary heart disease. Five suggestive loci on chromosomes 1, 4, 5, and 8 for atherosclerosis were also identified. Atherosclerotic lesion sizes were significantly correlated with HDL but not with non-HDL cholesterol, triglyceride or glucose levels in the F 2 cohort. We have identified the MHC as a major genetic determinant of atherosclerosis, highlighting the importance of inflammation in atherogenesis. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  18. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis.

    OpenAIRE

    Dunham, I; Sargent, C A; Trowsdale, J; Campbell, R D

    1987-01-01

    Pulsed-field gel electrophoresis and "cosmid walking" have been used to establish a molecular map of the human major histocompatibility complex (MHC). We have isolated approximately equal to 230 kilobases (kb) of genomic DNA in overlapping cosmid clones covering the genes for the second and fourth components of complement (C2 and C4, respectively), factor B, and steroid 21-hydroxylase, and approximately equal to 82 kb of genomic DNA surrounding the genes for the tumor necrosis factors alpha a...

  19. Genetics of graft-versus-host disease: the major histocompatibility complex.

    Science.gov (United States)

    Petersdorf, Effie W

    2013-01-01

    Graft-versus-host disease (GVHD) is a potentially life-threatening complication of allogeneic hematopoietic cell transplantation. Many genes are presumed to be involved in GVHD, but the best characterized genetic system is that of the human major histocompatibility complex (MHC) located on chromosome 6. Among the hundreds of genes located within the MHC region, the best known and characterized are the classical HLA genes, HLA-A, C, B, DRB1, DQB1, and DPB1. They play a fundamental role in T cell immune responses, and HLA-A, C, and B also function as ligands for the natural killer cell immunoglobulin-like receptors involved in innate immunity. This review highlights the state-of-the art in the field of histocompatibility and immunogenetics of the MHC with respect to genetic risk factors for GVHD. Copyright © 2012 Elsevier Ltd. All rights reserved.

  20. Restriction fragment polymorphisms in the major histocompatibility complex of diabetic BB rats

    DEFF Research Database (Denmark)

    Kastern, W.; Dyrberg, T.; Scholler, J.

    1984-01-01

    DNA isolated from diabetic BB (BB/Hagedorn) rats was examined for restriction fragment length differences within the major histocompatibility complex (MHC) as compared with nondiabetic (W-subline) BB rats. Polymorphisms were detected using a mouse class I MHC gene as probe. Specifically, a 2-kb Bam......HI fragment was present in all the nondiabetic rats examined, but absent in the diabetic rats. Similar polymorphisms were observed with various other restriction enzymes, particularly XbaI, HindII, and SacI. There were no polymorphisms detected using either a human DR-alpha (class II antigen heavy chain...

  1. Major histocompatibility complex-controlled protective influences on experimental autoimmune encephalomyelitis are peptide specific

    DEFF Research Database (Denmark)

    Issazadeh-Navikas, Shohreh; Kjellén, P; Olsson, T

    1997-01-01

    The myelin basic protein (MBP) peptide 63-88-induced experimental autoimmune encephalomyelitis (EAE) and its associated T cell cytokine profile are influenced by the rat major histocompatibility complex (MHC). There is an allele-specific protective influence of the MHC class I region, whereas......-101 peptide, except in LEW.1N (RT1 pi) rats which were relatively resistant. Only this strain responded with additional Th2-like and transforming growth factor-beta responses to the peptide in vitro. In vivo depletion of CD8+ cells aggravated the disease in this strain. We conclude that both MHC-controlled...

  2. Major histocompatibility complex (MHC) molecules: their common characteristics and relations with diseases

    OpenAIRE

    Başak Yalçın

    2013-01-01

    Major histocompatibility complex (MHC) molecules or human leukocyte antigens (HLA) are the cell surface molecules responsible from antigen presentation and activation of T cells. At the same time MHC molecules determine direction of T cell response. Unlike T cells, antigen specificity of MHC molecules is not high and they can not differenciate self and non-self antigens from each other. MHC molecules are classified as MHC I (HLA- A, B, C) and MHC II (HLA-DP, DR, DQ) molecules which are struct...

  3. Structural requirements and biological significance of interactions between peptides and the major histocompatibility complex

    DEFF Research Database (Denmark)

    Grey, H M; Buus, S; Colon, S

    1989-01-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions...... that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and T-cell repertoire in determining the capacity of an individual to respond to an antigen? By analysing...

  4. MaHCO: an ontology of the major histocompatibility complex for immunoinformatic applications and text mining.

    Science.gov (United States)

    DeLuca, David S; Beisswanger, Elena; Wermter, Joachim; Horn, Peter A; Hahn, Udo; Blasczyk, Rainer

    2009-08-15

    The high level of polymorphism associated with the major histocompatibility complex (MHC) poses a challenge to organizing associated bioinformatic data, particularly in the area of hematopoietic stem cell transplantation. Thus, this area of research has great potential to profit from the ongoing development of biomedical ontologies, which offer structure and definition to MHC-data related communication and portability issues. We introduce the design considerations, methodological foundations and implementational issues underlying MaHCO, an ontology which represents the alleles and encoded molecules of the major histocompatibility complex. Importantly for human immunogenetics, it includes a detailed level of human leukocyte antigen (HLA) classification. We then present an ontology browser, search interfaces for immunogenetic fact and document retrieval, and the specification of an annotation language for semantic metadata, based on MaHCO. These use cases are intended to demonstrate the utility of ontology-driven bioinformatics in the field of immunogenetics. The MaHCO Ontology is available via the BioPortal: http://www.bioontology.org/tools/portal/bioportal.html, and at: http://purl.org/stemnet/.

  5. Passive Immunotherapy for Retroviral Disease: Influence of Major Histocompatibility Complex Type and T-Cell Responsiveness

    Science.gov (United States)

    Hasenkrug, Kim J.; Brooks, Diane M.; Chesebro, Bruce

    1995-11-01

    Administration of virus-specific antibodies is known to be an effective early treatment for some viral infections. Such immunotherapy probably acts by antibody-mediated neutralization of viral infectivity and is often thought to function independently of T-cell-mediated immune responses. In the present experiments, we studied passive antibody therapy using Friend murine leukemia virus complex as a model for an immunosuppressive retroviral disease in adult mice. The results showed that antibody therapy could induce recovery from a well-established retroviral infection. However, the success of therapy was dependent on the presence of both CD4^+ and CD8^+ T lymphocytes. Thus, cell-mediated responses were required for recovery from infection even in the presence of therapeutic levels of antibody. The major histocompatibility type of the mice was also an important factor determining the relative success of antibody therapy in this system, but it was less critical for low-dose than for high-dose infections. Our results imply that limited T-cell responsiveness as dictated by major histocompatibility genes and/or stage of disease may have contributed to previous immunotherapy failures in AIDS patients. Possible strategies to improve the efficacy of future therapies are discussed.

  6. Macrophage cell lines derived from major histocompatibility complex II-negative mice

    Science.gov (United States)

    Beharka, A. A.; Armstrong, J. W.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    Two bone-marrow-derived macrophage cell lines, C2D and C2Dt, were isolated from major histocompatibility class II negative knock-out mice. The C2D cell line was stabilized by continuous culture in colony-stimulating factor-1 and the C2Dt cell line was transformed with SV40 virus large T antigen. These cells exhibited phenotypic properties of macrophages including morphology and expression of Mac 1 and Mac 2 cell surface molecules. These cells also had comparable growth to the bone-marrow-derived macrophage cell line B6MP102. These new cell lines were not spontaneously cytotoxic and were only capable of modest killing of F5b tumor cells when stimulated with LPS and interferon-gamma, but not when stimulated with LPS alone or with staphylococcal exotoxin. C2D and C2Dt cells phagocytosed labeled Staphylococcus aureus similarly to B6MP102 cells but less well than C2D peritoneal macrophages. These cell lines secreted interleukin-6, but not tumor necrosis factor or nitric oxide in response to LPS or staphlococcal enterotoxins A or B C2D(t) cells were tumorigenic in C2D and C57BL/6J mice but C2D cells were not. These data suggest that macrophage cell lines can be established from bone marrow cells of major histocompatibility complex II-negative mice.

  7. MH2c: Characterization of major histocompatibility α-helices - an information criterion approach

    Science.gov (United States)

    Hischenhuber, B.; Frommlet, F.; Schreiner, W.; Knapp, B.

    2012-07-01

    Major histocompatibility proteins share a common overall structure or peptide binding groove. Two binding groove domains, on the same chain for major histocompatibility class I or on two different chains for major histocompatibility class II, contribute to that structure that consists of two α-helices (“wall”) and a sheet of eight anti-parallel beta strands (“floor”). Apart from the peptide presented in the groove, the major histocompatibility α-helices play a central role for the interaction with the T cell receptor. This study presents a generalized mathematical approach for the characterization of these helices. We employed polynomials of degree 1 to 7 and splines with 1 to 2 nodes based on polynomials of degree 1 to 7 on the α-helices projected on their principal components. We evaluated all models with a corrected Akaike Information Criterion to determine which model represents the α-helices in the best way without overfitting the data. This method is applicable for both the stationary and the dynamic characterization of α-helices. By deriving differential geometric parameters from these models one obtains a reliable method to characterize and compare α-helices for a broad range of applications. Catalogue identifier: AELX_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AELX_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 327 565 No. of bytes in distributed program, including test data, etc.: 17 433 656 Distribution format: tar.gz Programming language: Matlab Computer: Personal computer architectures Operating system: Windows, Linux, Mac (all systems on which Matlab can be installed) RAM: Depends on the trajectory size, min. 1 GB (Matlab) Classification: 2.1, 4.9, 4.14 External routines: Curve Fitting Toolbox and Statistic Toolbox of

  8. Activation of Stat-3 is involved in the induction of apoptosis after ligation of major histocompatibility complex class I molecules on human Jurkat T cells

    DEFF Research Database (Denmark)

    Skov, S; Nielsen, M; Bregenholt, S

    1998-01-01

    Activation of Janus tyrosine kinases (Jak) and Signal transducers and activators of transcription (Stat) after ligation of major histocompatibility complex class I (MHC-I) was explored in Jurkat T cells. Cross-linking of MHC-I mediated tyrosine phosphorylation of Tyk2, but not Jak1, Jak2, and Jak3......-probe derived from the interferon-gamma activated site (GAS) in the c-fos promoter, a common DNA sequence for Stat protein binding. An association between hSIE and Stat-3 after MHC-I ligation was directly demonstrated by precipitating Stat-3 from nuclear extracts with biotinylated hSIE probe and avidin......-coupled agarose. To investigate the function of the activated Stat-3, Jurkat T cells were transiently transfected with a Stat-3 isoform lacking the transactivating domain. This dominant-negative acting Stat-3 isoform significantly inhibited apoptosis induced by ligation of MHC-I. In conclusion, our data suggest...

  9. T-cell activation. V. Anti-major histocompatibility complex class I antibody-induced activation and clonal abortion in Jurkat T-leukaemic cells

    DEFF Research Database (Denmark)

    Claesson, M H; Dissing, S; Tscherning, T

    1993-01-01

    respectively, as well as three transfectant clones reconstituted with the appropriate TcR/CD3 cDNA. For activation, the cells were exposed to anti-TcR/CD3, anti-CD2 and anti-major histocompatibility complex (anti-MHC) class I monoclonal antibodies (mAb) respectively. Cellular activation by these mAb leading...... to an increased IL-2 secretion was preceded by a rise in [Ca2+]i and was relatively dependent on the expression of the a TcR/CD3 complex. In contrast, anti-MHC class I mAb-induced clonal abortion in Jurkat T cells may occur without previous fluctuations in [Ca2+]i and appeared to be independent of TcR/CD3...

  10. Quantitative online prediction of peptide binding to the major histocompatibility complex.

    Science.gov (United States)

    Hattotuwagama, Channa K; Guan, Pingping; Doytchinova, Irini A; Zygouri, Christianna; Flower, Darren R

    2004-01-01

    With its implications for vaccine discovery, the accurate prediction of T cell epitopes is one of the key aspirations of computational vaccinology. We have developed a robust multivariate statistical method, based on partial least squares, for the quantitative prediction of peptide binding to major histocompatibility complexes (MHC), the principal checkpoint on the antigen presentation pathway. As a service to the immunobiology community, we have made a Perl implementation of the method available via a World Wide Web server. We call this server MHCPred. Access to the server is freely available from the URL: http://www.jenner.ac.uk/MHCPred. We have exemplified our method with a model for peptides binding to the common human MHC molecule HLA-B*3501.

  11. Expression of major histocompatibility complex class II and costimulatory molecules in oral carcinomas in vitro.

    Science.gov (United States)

    Villarroel-Dorrego, Mariana; Speight, Paul M; Barrett, A William

    2005-01-01

    Recognition in the 1980 s that keratinocytes can express class II molecules of the Major Histocompatibility Complex (MHC) first raised the possibility that these cells might have an immunological function, and may even act as antigen presenting cells (APC). For effective T lymphocyte activation, APC require, in addition to MHC II, appropriate costimulatory signals. The aim of this study was to determine the expression of MHC class II and the co-stimulatory molecules CD40, CD80 and CD86 in keratinocytes derived from healthy oral mucosa and oral carcinomas. Using flow cytometry, it was confirmed that oral keratinocytes, switch on, expression of MHC class II molecules after stimulation with IFNgamma in vitro. All keratinocyte lines expressed CD40 constitutively; by contrast, CD80 and CD86 were universally absent. Loss of CD80 and CD86 may be one means whereby tumours escape immunological surveillance.

  12. Porcine major histocompatibility complex (MHC) class I molecules and analysis of their peptide-binding specificities

    DEFF Research Database (Denmark)

    Pedersen, Lasse Eggers; Harndahl, Mikkel; Rasmussen, Michael

    2011-01-01

    In all vertebrate animals, CD8+ cytotoxic T lymphocytes (CTLs) are controlled by major histocompatibility complex class I (MHC-I) molecules. These are highly polymorphic peptide receptors selecting and presenting endogenously derived epitopes to circulating CTLs. The polymorphism of the MHC...... effectively individualizes the immune response of each member of the species. We have recently developed efficient methods to generate recombinant human MHC-I (also known as human leukocyte antigen class I, HLA-I) molecules, accompanying peptide-binding assays and predictors, and HLA tetramers for specific...... CTL staining and manipulation. This has enabled a complete mapping of all HLA-I specificities (“the Human MHC Project”). Here, we demonstrate that these approaches can be applied to other species. We systematically transferred domains of the frequently expressed swine MHC-I molecule, SLA-1*0401, onto...

  13. Humans with chimpanzee-like major histocompatibility complex-specificities control HIV-1 infection

    DEFF Research Database (Denmark)

    Hoof, Ilka; Kesmir, Can; Lund, Ole

    2008-01-01

    Background: Major histocompatibility complex (MHC) class I molecules allow immune surveillance by presenting a snapshot of the intracellular state of a cell to circulating cytotoxic T lymphocytes. The MHC class I alleles of an HIV-1 infected individual strongly influence the level of viremia...... in their MHC class I repertoire. Methods: We compared the specificity of groups of human MHC molecules associated with different levels of viremia in HIV-1 infected individuals with those of chimpanzee. Results and conclusion: We demonstrate that human MHC with control of HIV-1 viral load share binding motifs...... with chimpanzee MHC. Moreover, we find that chimpanzee and human MHC associated with low viral load are predicted to elicit broader Gag-specific immune responses than human MHC associated with high viral load, thus supporting earlier findings that Gag-specific immune responses are essential for HIV-1 control....

  14. Efficient assembly of recombinant major histocompatibility complex class I molecules with preformed disulfide bonds

    DEFF Research Database (Denmark)

    Ostergaard Pedersen, L; Nissen, Mogens Holst; Hansen, N J

    2001-01-01

    The expression of major histocompatibility class I (MHC-I) crucially depends upon the binding of appropriate peptides. MHC-I from natural sources are therefore always preoccupied with peptides complicating their purification and analysis. Here, we present an efficient solution to this problem....... Recombinant MHC-I heavy chains were produced in Escherichia coli and subsequently purified under denaturing conditions. In contrast to common practice, the molecules were not reduced during the purification. The oxidized MHC-I heavy chain isoforms were highly active with respect to peptide binding....... This suggests that de novo folding of denatured MHC-I molecules proceed efficiently if directed by preformed disulfide bond(s). Importantly, these molecules express serological epitopes and stain specific T cells; and they bind peptides specifically. Several denatured MHC-I heavy chains were analyzed and shown...

  15. The porcine Major Histocompatibility Complex and related paralogous regions: a review

    Directory of Open Access Journals (Sweden)

    Vaiman Marcel

    2000-03-01

    Full Text Available Abstract The physical alignment of the entire region of the pig major histocompatibility complex (MHC has been almost completed. In swine, the MHC is called the SLA (swine leukocyte antigen and most of its class I region has been sequenced. Over one hundred genes have been characterised, including the classical class I and class I-related genes, as well as the class II gene families. These results in swine provide new evidence for the striking conservation during the evolution of a general MHC framework, and are consistent with the location of the class I genes on segments referred to as permissive places within the MHC class I region. Recent results confirm the involvement of the SLA region in numerous quantitative traits.

  16. Class I major histocompatibility complex anchor substitutions alter the conformation of T cell receptor contacts.

    Science.gov (United States)

    Sharma, A K; Kuhns, J J; Yan, S; Friedline, R H; Long, B; Tisch, R; Collins, E J

    2001-06-15

    An immunogenic peptide (GP2) derived from HER-2/neu binds to HLA-A2.1 very poorly. Some altered-peptide ligands (APL) of GP2 have increased binding affinity and generate improved cytotoxic T lymphocyte recognition of GP2-presenting tumor cells, but most do not. Increases in binding affinity of single-substitution APL are not additive in double-substitution APL. A common first assumption about peptide binding to class I major histocompatibility complex is that each residue binds independently. In addition, immunologists interested in immunotherapy frequently assume that anchor substitutions do not affect T cell receptor contact residues. However, the crystal structures of two GP2 APL show that the central residues change position depending on the identity of the anchor residue(s). Thus, it is clear that subtle changes in the identity of anchor residues may have significant effects on the positions of the T cell receptor contact residues.

  17. Multiple major histocompatibility complex class I genes in Asian anurans: Ontogeny and phylogeny.

    Science.gov (United States)

    Didinger, Chelsea; Eimes, John A; Lillie, Mette; Waldman, Bruce

    2017-05-01

    Amphibians, as the first terrestrial vertebrates, offer a window into early major histocompatibility complex (MHC) evolution. We characterized the MHC class I of two Korean amphibians, the Asiatic toad (Bufo gargarizans) and the Japanese tree frog (Hyla japonica). We found at least four transcribed MHC class I (MHC I) loci, the highest number confirmed in any anuran to date. Furthermore, we identified MHC I transcripts in terrestrial adults, and possibly in aquatic larvae, of both species. We conducted a phylogenetic analysis based on MHC I sequence data and found that B. gargarizans and H. japonica cluster together in the superfamily Nobleobatrachia. We further identified three supertypes shared by the two species. Our results reveal substantial variation in the number of MHC I loci in anurans and suggest that certain supertypes have particular physiochemical properties that may confer pathogen resistance. Copyright © 2016 Elsevier Ltd. All rights reserved.

  18. Characterisation of four major histocompatibility complex class II genes of the koala (Phascolarctos cinereus).

    Science.gov (United States)

    Lau, Quintin; Jobbins, Sarah E; Belov, Katherine; Higgins, Damien P

    2013-01-01

    Major histocompatibility complex (MHC) class II molecules have an integral role in the adaptive immune response, as they bind and present antigenic peptides to T helper lymphocytes. In this study of koalas, species-specific primers were designed to amplify exon 2 of the MHC class II DA and DB genes, which contain much of the peptide-binding regions of the α and β chains. A total of two DA α1 domain variants and eight DA β1 (DAB), three DB α1 and five DB β1 variants were amplified from 20 koalas from two free-living populations from South East Queensland and the Port Macquarie region in northern New South Wales. We detected greater variation in the β1 than in the α1 domains as well as evidence of positive selection in DAB. The present study provides a springboard to future investigation of the role of MHC in disease susceptibility in koalas.

  19. Characterisation of major histocompatibility complex class I transcripts in an Australian dragon lizard.

    Science.gov (United States)

    Hacking, Jessica; Bertozzi, Terry; Moussalli, Adnan; Bradford, Tessa; Gardner, Michael

    2018-07-01

    Characterisation of squamate major histocompatibility complex (MHC) genes has lagged behind other taxonomic groups. MHC genes encode cell-surface glycoproteins that present self- and pathogen-derived peptides to T cells and play a critical role in pathogen recognition. Here we characterise MHC class I transcripts for an agamid lizard (Ctenophorus decresii) and investigate the evolution of MHC class I in Iguanian lizards. An iterative assembly strategy was used to identify six full-length C. decresii MHC class I transcripts, which were validated as likely to encode classical class I MHC molecules. Evidence for exon shuffling recombination was uncovered for C. decresii transcripts and Bayesian phylogenetic analysis of Iguanian MHC class I sequences revealed a pattern expected under a birth-and-death mode of evolution. This work provides a stepping stone towards further research on the agamid MHC class I region. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Transmembrane Helices Are an Overlooked Source of Major Histocompatibility Complex Class I Epitopes

    Science.gov (United States)

    Bianchi, Frans; Textor, Johannes; van den Bogaart, Geert

    2017-01-01

    About a fourth of the human proteome is anchored by transmembrane helices (TMHs) to lipid membranes. TMHs require multiple hydrophobic residues for spanning membranes, and this shows a striking resemblance with the requirements for peptide binding to major histocompatibility complex (MHC) class I. It, therefore, comes as no surprise that bioinformatics analysis predicts an over-representation of TMHs among strong MHC class I (MHC-I) binders. Published peptide elution studies confirm that TMHs are indeed presented by MHC-I. This raises the question how membrane proteins are processed for MHC-I (cross-)presentation, with current research focusing on soluble antigens. The presentation of membrane-buried peptides is likely important in health and disease, as TMHs are considerably conserved and their presentation might prevent escape mutations by pathogens. Therefore, it could contribute to the disease correlations described for many human leukocyte antigen haplotypes. PMID:28959259

  1. Divergent selection on locally adapted major histocompatibility complex immune genes experimentally proven in the field

    Science.gov (United States)

    Eizaguirre, Christophe; Lenz, Tobias L; Kalbe, Martin; Milinski, Manfred

    2012-01-01

    Although crucial for the understanding of adaptive evolution, genetically resolved examples of local adaptation are rare. To maximize survival and reproduction in their local environment, hosts should resist their local parasites and pathogens. The major histocompatibility complex (MHC) with its key function in parasite resistance represents an ideal candidate to investigate parasite-mediated local adaptation. Using replicated field mesocosms, stocked with second-generation lab-bred three-spined stickleback hybrids of a lake and a river population, we show local adaptation of MHC genotypes to population-specific parasites, independently of the genetic background. Increased allele divergence of lake MHC genotypes allows lake fish to fight the broad range of lake parasites, whereas more specific river genotypes confer selective advantages against the less diverse river parasites. Hybrids with local MHC genotype gained more body weight and thus higher fitness than those with foreign MHC in either habitat, suggesting the evolutionary significance of locally adapted MHC genotypes. PMID:22583762

  2. The major histocompatibility complex: a model for understanding graft-versus-host disease.

    Science.gov (United States)

    Petersdorf, Effie W

    2013-09-12

    Acute graft-versus-host disease (GVHD) afflicts as much as 80% of all patients who receive an unrelated donor hematopoietic cell transplant (HCT) for the treatment of blood disorders, even with optimal donor HLA matching and use of prophylactic immunosuppressive agents. Of patients who develop acute GVHD, many are at risk for chronic GVHD and bear the burden of considerable morbidity and lowered quality of life years after transplantation. The immunogenetic basis of GVHD has been the subject of intensive investigation, with the classic HLA genetic loci being the best-characterized determinants. Recent information on the major histocompatibility complex (MHC) region of chromosome 6 as an important source of untyped genetic variation has shed light on novel GVHD determinants. These data open new paradigms for understanding the genetic basis of GVHD.

  3. Data on genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice.

    Science.gov (United States)

    Grainger, Andrew T; Jones, Michael B; Li, Jing; Chen, Mei-Hua; Manichaikul, Ani; Shi, Weibin

    2016-12-01

    The data presented here are related to the research article, entitled Genetic analysis of atherosclerosis identifies a major susceptibility locus in the major histocompatibility complex of mice, published in Atherosclerosis 2016;254:124 (A.T. Grainger, M.B. Jones, J. Li, M.H. Chen, A. Manichaikul, W. Shi, 2016) [1]. The supporting materials include original genotypic and phenotypic data obtained from 206 female F2 mice derived from an intercross between BALB and SMJ inbred mice. The F2 mice were fed 12 weeks of Western diet, starting at 6 weeks of age. Atherosclerotic lesion size in the aortic root of each mouse is the sum of the top 8 lesion areas. The data is provided in the format required for determining QTLs using two independent programs, J/QTL and PLINK.

  4. The Use of Peptide–Major-Histocompatibility-Complex Multimers in Type 1 Diabetes Mellitus

    Science.gov (United States)

    Gojanovich, Greg S; Murray, Sabrina L; Buntzman, Adam S; Young, Ellen F; Vincent, Benjamin G; Hess, Paul R; DVM

    2012-01-01

    Major histocompatibility complex (MHC) class I and MHC class II molecules present short peptides that are derived from endogenous and exogenous proteins, respectively, to cognate T-cell receptors (TCRs) on the surface of T cells. The exquisite specificity with which T cells recognize particular peptide–major-histocompatibility-complex (pMHC) combinations has permitted development of soluble pMHC multimers that bind exclusively to selected T-cell populations. Because the pathogenesis of type 1 diabetes mellitus (T1DM) is driven largely by islet-reactive T-cell activity that causes β-cell death, these reagents are useful tools for studying and, potentially, for treating this disease. When coupled to fluorophores or paramagnetic nanoparticles, pMHC multimers have been used to visualize the expansion and islet invasion of T-cell effectors during diabetogenesis. Administration of pMHC multimers to mice has been shown to modulate T-cell responses by signaling through the TCR or by delivering a toxic moiety that deletes the targeted T cell. In the nonobese diabetic mouse model of T1DM, a pMHC-I tetramer coupled to a potent ribosome-inactivating toxin caused long-term elimination of a specific diabetogenic cluster of differentiation 8+ T-cell population from the pancreatic islets and delayed the onset of diabetes. This review will provide an overview of the development and use of pMHC multimers, particularly in T1DM, and describe the therapeutic promise these reagents have as an antigen-specific means of ameliorating deleterious T-cell responses in this autoimmune disease. PMID:22768881

  5. Structure and expression of major histocompatibility complex-binding protein 2, a 275-kDa zinc finger protein that binds to an enhancer of major histocompatibility complex class I genes

    NARCIS (Netherlands)

    Veer, L.J. van 't; Lutz, P.M.; Isselbacher, K.J.; Bernards, R.A.

    1992-01-01

    We have isolated a cDNA encoding a transcription factor that binds to the enhancer of major histocompatibility complex (MHC) class I genes. MHC-binding protein 2 (MBP-2) is a 275-kDa protein, containing two sets of widely separated zinc fingers and a stretch of highly acidic amino acids, a

  6. Major histocompatibility complex linked databases and prediction tools for designing vaccines.

    Science.gov (United States)

    Singh, Satarudra Prakash; Mishra, Bhartendu Nath

    2016-03-01

    Presently, the major histocompatibility complex (MHC) is receiving considerable interest owing to its remarkable role in antigen presentation and vaccine design. The specific databases and prediction approaches related to MHC sequences, structures and binding/nonbinding peptides have been aggressively developed in the past two decades with their own benchmarks and standards. Before using these databases and prediction tools, it is important to analyze why and how the tools are constructed along with their strengths and limitations. The current review presents insights into web-based immunological bioinformatics resources that include searchable databases of MHC sequences, epitopes and prediction tools that are linked to MHC based vaccine design, including population coverage analysis. In T cell epitope forecasts, MHC class I binding predictions are very accurate for most of the identified MHC alleles. However, these predictions could be further improved by integrating proteasome cleavage (in conjugation with transporter associated with antigen processing (TAP) binding) prediction, as well as T cell receptor binding prediction. On the other hand, MHC class II restricted epitope predictions display relatively low accuracy compared to MHC class I. To date, pan-specific tools have been developed, which not only deliver significantly improved predictions in terms of accuracy, but also in terms of the coverage of MHC alleles and supertypes. In addition, structural modeling and simulation systems for peptide-MHC complexes enable the molecular-level investigation of immune processes. Finally, epitope prediction tools, and their assessments and guidelines, have been presented to immunologist for the design of novel vaccine and diagnostics. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  7. Allogeneic major histocompatibility complex-mismatched equine bone marrow-derived mesenchymal stem cells are targeted for death by cytotoxic anti-major histocompatibility complex antibodies.

    Science.gov (United States)

    Berglund, A K; Schnabel, L V

    2017-07-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Controversy exists, however, over whether major histocompatibility complex (MHC)-mismatched MSCs are recognised by the recipient immune system and targeted for death by a cytotoxic antibody response. To determine if cytotoxic anti-MHC antibodies generated in vivo following MHC-mismatched MSC injections are capable of initiating complement-dependent cytotoxicity of MSCs. Experimental controlled study. Antisera previously collected at Days 0, 7, 14 and 21 post-injection from 4 horses injected with donor MHC-mismatched equine leucocyte antigen (ELA)-A2 haplotype MSCs and one control horse injected with donor MHC-matched ELA-A2 MSCs were utilised in this study. Antisera were incubated with ELA-A2 MSCs before adding complement in microcytotoxicity assays and cell death was analysed via eosin dye exclusion. ELA-A2 peripheral blood leucocytes (PBLs) were used in the assays as a positive control. Antisera from all 4 horses injected with MHC-mismatched MSCs contained antibodies that caused the death of ELA-A2 haplotype MSCs in the microcytotoxicity assays. In 2 of the 4 horses, antibodies were present as early as Day 7 post-injection. MSC death was consistently equivalent to that of ELA-A2 haplotype PBL death at all time points and antisera dilutions. Antisera from the control horse that was injected with MHC-matched MSCs did not contain cytotoxic ELA-A2 antibodies at any of the time points examined. This study examined MSC death in vitro only and utilized antisera from a small number of horses. The cytotoxic antibody response induced in recipient horses following injection with donor MHC-mismatched MSCs is capable of killing donor MSCs in vitro. These results suggest that the use of allogeneic MHC-mismatched MSCs must be cautioned against, not only for potential adverse events, but also for reduced therapeutic efficacy due to targeted MSC death. © 2016 The

  8. Major histocompatibility (MH) class II ß gene polymorphism influences disease resistance of common carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Rakus, K.L.; Wiegertjes, G.F.; Jurecka, P.M.; Walker, P.D.; Pilarczyk, A.; Irnazarow, I.

    2009-01-01

    Genes of the major histocompatibility complex (MHC) are crucial elements of adaptive immunity. High polymorphism renders the MHC genes highly suitable for studies on association with disease resistance. In common carp (Cyprinus carpio L.), there are two paralogous groups of MH class II B genes,

  9. Application of PCR-RF-SSCP to study major histocompatibility class II B polymorphism in common carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Rakus, K.L.; Wiegertjes, G.F.; Adamek, M.; Bekh, V.; Stet, R.J.M.; Irnazarow, I.

    2008-01-01

    A variety of methods have been applied for the characterization of major histocompatibility (MH) polymorphism in fish. We optimized a technique designated polymerase chain reaction-restriction fragments-single strand conformation polymorphism (PCR-RF-SSCP) for screening a large number of individuals

  10. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might ...

  11. Overall major histocompatibility complex class I expression is not downregulated in cervix cancer, as detected by immunoelectron microscopy

    NARCIS (Netherlands)

    van Eijkeren, MA; Roovers, JP; Oorschot, [No Value; Geuze, HJ

    2004-01-01

    Downregulation of major histocompatibility complex (MHC) class I molecules in cervix cancer has been proposed as a mechanism for cancer cells to escape immunodetection. By means of light microscopic immunohistochemistry, it has been shown that in 20-70% of cervix cancers MHC class I is

  12. Susceptibility genes for lung diseases in the major histocompatibility complex revealed by lung expression quantitative trait loci analysis

    NARCIS (Netherlands)

    Lamontagne, Maxime; Joubert, Philippe; Timens, Wim; Postma, Dirkje S.; Hao, Ke; Nickle, David; Sin, Don D.; Pare, Peter D.; Laviolette, Michel; Bosse, Yohan

    The major histocompatibility complex (MHC) has been linked with hundreds of diseases [1]. The MHC is one of the most complex regions of the human genome, because of the high gene density, extended linkage disequilibrium (LD) and sequence diversity [2]. Recent genome-wide association studies (GWAS)

  13. A recombinant antibody with the antigen-specific, major histocompatibility complex-restricted specificity of T cells

    DEFF Research Database (Denmark)

    Andersen, P S; Stryhn, A; Hansen, B E

    1996-01-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might...... peptide/MHC complexes....

  14. The combination of major histocompatibility complex (MHC) and non-MHC genes influences murine lymphocytic choriomeningitis virus pathogenesis

    DEFF Research Database (Denmark)

    Eyler, Y L; Pfau, C J; Broomhall, K S

    1989-01-01

    with the recessive disease phenotype. In all cases, susceptibility was dominant. In backcross progeny obtained from matings of parental strains differing in both major histocompatibility complex (MHC) and non-MHC (SWR; C3H), 90% of the challenged mice died, indicating that at least three loci controlled...

  15. A quantitative assay to measure the interaction between immunogenic peptides and purified class I major histocompatibility complex molecules

    DEFF Research Database (Denmark)

    Olsen, A C; Pedersen, L O; Hansen, A S

    1994-01-01

    A direct and sensitive biochemical assay to measure the interaction in solution between peptides and affinity-purified major histocompatibility complex (MHC) class I molecules has been generated. Specific binding reflecting the known class I restriction of cytotoxic T cell responses was obtained...

  16. Proteolysis of the heavy chain of major histocompatibility complex class I antigens by complement component C1s

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1990-01-01

    The major histocompatibility complex (MHC) class I antigens contain a light chain, beta 2-microglobulin, non-covalently associated to the transmembrane heavy alpha-chain carrying the allotypic determinants. Since the C1q complement component is known to associate with beta 2-microglobulin, and we...

  17. Reproducible association with type 1 diabetes in the extended class I region of the major histocompatibility complex

    DEFF Research Database (Denmark)

    Viken, M.K.; Blomhoff, A.; Olsson, M.

    2009-01-01

    The high-risk human leukocyte antigen (HLA)-DRB1, DQA1 and DQB1 alleles cannot explain the entire type 1 diabetes (T1D) association observed within the extended major histocompatibility complex. We have earlier identified an association with D6S2223, located 2.3 Mb telomeric of HLA-A, on the DRB1...

  18. Major histocompatibility complex and host background genes in chickens influence resistance to high pathogenicity avian influenza virus

    Science.gov (United States)

    The chicken’s major histocompatibility complex (MHC) haplotype has a profound influence on the resistance or susceptibility to certain pathogens such as B21 MHC haplotype confers resistance to Marek’s disease (MD). However, non-MHC genes are also important in disease resistance. For example, both li...

  19. Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates

    Directory of Open Access Journals (Sweden)

    Winternitz JC

    2015-05-01

    Full Text Available Jamie C Winternitz,1,2,* Jessica L Abbate3,4,* 1Institute of Vertebrate Biology, Czech Academy of Sciences, v.v.i, Kvetná, Brno, Czech Republic; 2Institute of Botany, Czech Academy of Sciences, v.v.i, Lidická, Brno, Czech Republic; 3Institute of Ecology and Evolution, University of Bern, Bern, Switzerland; 4INRA-UMR 1062 CBGP (INRA, IRD, CIRAD, Montpellier SupAgro, Montferrier-sur-Lez, France*These authors contributed equally to this workAbstract: Compounds of the major histocompatibility complex (MHC are integral for effective vertebrate adaptive immune response, and are also implicated as cues for sexual selection. The evidence for this is supportive of MHC-based preference for diverse and dissimilar mating partners, in a range of vertebrates from fish to nonhuman primates. However, the evidence for a similar role of these genes and the evolutionary benefits of their diversity in human mate choice has been more controversial. Here, we review the results of 34 primary studies on MHC-mediated mate choice in humans and nonhuman primates in an effort to understand what processes may underscore, or belie, such differences. Both human and nonhuman primate studies show evidence of mate selection for MHC-dissimilarity and diversity, with fewer results in support of mate selection for optimal diversity or for specific “good gene”. In general, stronger support comes from female-choice studies as opposed to male-choice studies (though male preferences and choice are investigated less often. This review suggests that the majority of mate choice results from contemporary human studies are consistent with our evolutionary history, but also reveals that only in humans do we find evidence for preference for mates with similar MHC composition. Overall, we show that contextual nuances, namely, population structure, multiple sensory cues that signal different information, and hormonal influences may explain the conflicting results observed for the role of

  20. Major histocompatibility complex haplotypes and class II genes in non-Jewish patients with pemphigus vulgaris

    Energy Technology Data Exchange (ETDEWEB)

    Ahmed, A.R. (Harvard School of Dental Medicine, Boston, MA (United States) Center for Blood Research, Boston, MA (United States) American Red Cross Blood Services-Northeast Region, Dedham, MA (United States)); Wagner, R.; Khatri, K.; Notani, G.; Awdeh, Z.; Alper, C.A. (Center for Blood Research, Boston, MA (United States)); Yunis, E.J. (Center for Blood Research, Boston, MA (United States) American Red Cross Blood Services-Northeast Region, Dedham, MA (United States))

    1991-06-01

    Previous studies demonstrated that HLA-DR4 was markedly increased among Ashkenazi Jewish patients with pemphigus vulgaris (PV), almost entirely as the common Jewish extended haplotype (HLA-B38, SC21, DR4, DQw8) or as the haplotype HLA-B35, SC31, DR4, DQw8, and that HLA-DR4, DQw8 was distributed among patients in a manner consistent with dominant expression of a class II (D-region or D-region-linked) susceptibility gene. In the present study of major histocompatibility complex (MHC) halotypes in 25 non-Jewish PV patients, DR4, DQw8 was found in 12 of the patients and DRw6, DQw5 was found in 15. Only 3 patients had neither. The non-Jewish patients were of more Southern European extraction than our controls. This suggests that there are two major MHC susceptibility alleles in American patients with PV. The more ancient apparently arose on a haplotype in the Jews, HLA-B38(35), SC21(SC31), DR4, DQw8, and spread to other populations largely as D-region segments. The other arose in or near Italy on the haplotype HLA-Bw55, SB45, DRw14, DQw5 amd has also partially fragmented so that many patients carry only DRw14, DQw5. The available data do not permit the specific localization of either the DR4, DQw8-or the DRw14, DQw5-linked susceptibility genes.

  1. Expression of hepatitis C virus proteins does not interfere with major histocompatibility complex class I processing and presentation in vitro

    OpenAIRE

    Moradpour, Darius; Grabscheid, Benno; Kammer, Andreas R.; Schmidtke, Gunter; Gröttrup, Marcus; Blum, Hubert E.; Cerny, Andreas

    2001-01-01

    Hepatitis C virus (HCV) infection takes a chronic course in the majority of patients. The mechanisms underlying the evasion of the host immune response and viral persistence are poorly understood. In this context, we investigated interactions of HCV proteins with major histocompatibility complex (MHC) class I processing and presentation pathways using cell lines that allow the tetracycline-regulated expression of viral structural and nonstructural proteins. These well-characterized inducible ...

  2. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC) Genes.

    Science.gov (United States)

    Ejsmond, Maciej Jan; Radwan, Jacek

    2015-11-01

    Major Histocompatibility Complex (MHC) genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens) of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS) are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process). Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  3. Correlation in chicken between the marker LEI0258 alleles and Major Histocompatibility Complex sequences

    DEFF Research Database (Denmark)

    Chazara, Olympe; Juul-Madsen, Helle Risdahl; Chang, Chi-Seng

    Background The LEI0258 marker is located within the B region of the chicken Major Histocompatibility Complex (MHC), and is surprisingly well associated with serology. Therefore, the correlation between the LEI0258 alleles and the MHC class I and the class II alleles at the level of sequences...... is worth investigating in chickens. Here we describe to which extent the LEI0258 alleles are associated with alleles of classical class I genes and non-classical class II genes, in reference animals as well as local breeds with unknown MHC haplotypes. Methods For the class I region, in an exploratory...... project, we studied 10 animals from 3 breeds: Rhode Island Red, White Leghorn and Fayoumi chickens, by cloning and sequencing B-F1 and B-F2 cDNA from exon 1 to 3’UTR. For the class II region, we reconstructed haplotypes of the 8.8 kb genomic region encompassing three non-classical class II genes: B-DMA, B...

  4. Characterisation of major histocompatibility complex class I genes in Japanese Ranidae frogs.

    Science.gov (United States)

    Lau, Quintin; Igawa, Takeshi; Komaki, Shohei; Satta, Yoko

    2016-11-01

    The major histocompatibility complex (MHC) is a key component of adaptive immunity in all jawed vertebrates, and understanding the evolutionary mechanisms that have shaped these genes in amphibians, one of the earliest terrestrial tetrapods, is important. We characterised MHC class I variation in three common Japanese Rana species (Rana japonica, Rana ornativentris and Rana tagoi tagoi) and identified a total of 60 variants from 21 individuals. We also found evolutionary signatures of gene duplication, recombination and balancing selection (including trans-species polymorphism), all of which drive increased MHC diversity. A unique feature of MHC class I from these three Ranidae species includes low synonymous differences per site (d S ) within species, which we attribute to a more recent diversification of these sequences or recent gene duplication. The resulting higher d N /d S ratio relative to other anurans studied could be related to stronger selection pressure at peptide binding sites. This is one of the first studies to investigate MHC in Japanese amphibians and permits further exploration of the polygenetic factors associated with resistance to infectious diseases.

  5. Contribution of chromosomal abnormalities and genes of the major histocompatibility complex to early pregnancy losses

    Directory of Open Access Journals (Sweden)

    Tkach I. R.

    2015-02-01

    Full Text Available Aim. The determination of chromosomal abnormalities in samples from early pregnancy losses and allelic polymorphism of HLA–DRB1 and DQA1 genes in couples with recurrent miscarriage. Methods. Banding cytogenetic and interphase mFISH analysis, DNA extraction by salting method, PCR, agarose gel electrophoresis. Results. Cytogenetic and molecular-cytogenetic investigations of SA material identified karyotype anomalies in 32.4 % of cases with prevalence of autosomal trisomy – 42.65 %, triploidy – 30.38 % and monosomy X – 19.11 %. Complex analysis of frequency and distribution of allelic variants of genes HLA-DRB1 and HLA-DQA1 allowed establishing the alleles DRB1*0301, DRB1*1101-1104 and DQA1*0501 to be aggressor alleles in women with recurrent pregnancy loss (RPL. The cumulative homology of allelic polymorphism of more than 50 % of HLA-DRB1 and HLA-DQA1 loci between partners increases the risk of RPL by almost four times. Conclusion. The detected chromosome aneuploidies in the samples from products of conception and the changes in the major histocompatibility complex genes can cause the failure of a couples reproductive function and can lead to an early fetal loss.

  6. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    International Nuclear Information System (INIS)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations

  7. Red Queen Processes Drive Positive Selection on Major Histocompatibility Complex (MHC Genes.

    Directory of Open Access Journals (Sweden)

    Maciej Jan Ejsmond

    2015-11-01

    Full Text Available Major Histocompatibility Complex (MHC genes code for proteins involved in the incitation of the adaptive immune response in vertebrates, which is achieved through binding oligopeptides (antigens of pathogenic origin. Across vertebrate species, substitutions of amino acids at sites responsible for the specificity of antigen binding (ABS are positively selected. This is attributed to pathogen-driven balancing selection, which is also thought to maintain the high polymorphism of MHC genes, and to cause the sharing of allelic lineages between species. However, the nature of this selection remains controversial. We used individual-based computer simulations to investigate the roles of two phenomena capable of maintaining MHC polymorphism: heterozygote advantage and host-pathogen arms race (Red Queen process. Our simulations revealed that levels of MHC polymorphism were high and driven mostly by the Red Queen process at a high pathogen mutation rate, but were low and driven mostly by heterozygote advantage when the pathogen mutation rate was low. We found that novel mutations at ABSs are strongly favored by the Red Queen process, but not by heterozygote advantage, regardless of the pathogen mutation rate. However, while the strong advantage of novel alleles increased the allele turnover rate, under a high pathogen mutation rate, allelic lineages persisted for a comparable length of time under Red Queen and under heterozygote advantage. Thus, when pathogens evolve quickly, the Red Queen is capable of explaining both positive selection and long coalescence times, but the tension between the novel allele advantage and persistence of alleles deserves further investigation.

  8. Major Histocompatibility Complex and Hematopoietic Stem Cell Transplantation: Beyond the Classical HLA Polymorphism

    Directory of Open Access Journals (Sweden)

    Alice Bertaina

    2018-02-01

    Full Text Available Allogeneic hematopoietic stem cell transplantation (HSCT represents a curative treatment for many patients with hematological malignant or non-malignant disorders. Evaluation of potential donors for HSCT includes a rigorous assessment of the human leukocyte antigens (HLA match status of family members, and the identification of suitable unrelated donors. Genes encoding transplantation antigens are placed both within and outside the major histocompatibility complex (MHC. The human MHC is located on the short arm of chromosome 6 and contains a series of genes encoding two distinct types of highly polymorphic cell surface glycoproteins. Donors for HSCT are routinely selected based on the level of matching for HLA-A, -B, -C, -DRB1, and -DQB1 loci. However, disease relapse, graft-versus-host-disease, and infection remain significant risk factors of morbidity and mortality. In the same breath, in high-risk patients, graft-versus-leukemia effects inherent in HLA mismatching play a substantial immunological role to limit the recurrence of post-transplant disease. The definition of a suitable donor is ever changing, shaped not only by current typing technology, but also by the specific transplant procedure. Indeed, a more complete understanding of permissible HLA mismatches and the role of Killer Immunoglobulin-like receptors’ genes increases the availability of HLA-haploidentical and unrelated donors.

  9. Diversity at the major histocompatibility complex Class II in the platypus, Ornithorhynchus anatinus.

    Science.gov (United States)

    Lillie, Mette; Woodward, Rachael E; Sanderson, Claire E; Eldridge, Mark D B; Belov, Katherine

    2012-07-01

    The platypus (Ornithorhynchus anatinus) is the sole survivor of a previously widely distributed and diverse lineage of ornithorhynchid monotremes. Its dependence on healthy water systems imposes an inherent sensitivity to habitat degradation and climate change. Here, we compare genetic diversity at the major histocompatibility complex (MHC) Class II-DZB gene and 3 MHC-associated microsatellite markers with diversity at 6 neutral microsatellite markers in 70 platypuses from across their range, including the mainland of Australia and the isolated populations of Tasmania, King Island, and Kangaroo Island. Overall, high DZB diversity was observed in the platypus, with 57 DZB β1 alleles characterized. Significant positive selection was detected within the DZB peptide-binding region, promoting variation in this domain. Low levels of genetic diversity were detected at all markers in the 2 island populations, King Island (endemic) and Kangaroo Island (introduced), with the King Island platypuses monomorphic at the DZB locus. Loss of MHC diversity on King Island is of concern, as the population may have compromised immunological fitness and reduced ability to resist changing environmental conditions.

  10. Enhanced Direct Major Histocompatibility Complex Class I Self-Antigen Presentation Induced by Chlamydia Infection.

    Science.gov (United States)

    Cram, Erik D; Simmons, Ryan S; Palmer, Amy L; Hildebrand, William H; Rockey, Daniel D; Dolan, Brian P

    2016-02-01

    The direct major histocompatibility complex (MHC) class I antigen presentation pathway ensures intracellular peptides are displayed at the cellular surface for recognition of infected or transformed cells by CD8(+) cytotoxic T lymphocytes. Chlamydia spp. are obligate intracellular bacteria and, as such, should be targeted by CD8(+) T cells. It is likely that Chlamydia spp. have evolved mechanisms to avoid the CD8(+) killer T cell responses by interfering with MHC class I antigen presentation. Using a model system of self-peptide presentation which allows for posttranslational control of the model protein's stability, we tested the ability of various Chlamydia species to alter direct MHC class I antigen presentation. Infection of the JY lymphoblastoid cell line limited the accumulation of a model host protein and increased presentation of the model-protein-derived peptides. Enhanced self-peptide presentation was detected only when presentation was restricted to defective ribosomal products, or DRiPs, and total MHC class I levels remained unaltered. Skewed antigen presentation was dependent on a bacterial synthesized component, as evidenced by reversal of the observed phenotype upon preventing bacterial transcription, translation, and the inhibition of bacterial lipooligosaccharide synthesis. These data suggest that Chlamydia spp. have evolved to alter the host antigen presentation machinery to favor presentation of defective and rapidly degraded forms of self-antigen, possibly as a mechanism to diminish the presentation of peptides derived from bacterial proteins. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  11. Genetic variation of major histocompatibility complex genes in the endangered red-crowned crane.

    Science.gov (United States)

    Akiyama, Takuya; Kohyama, Tetsuo I; Nishida, Chizuko; Onuma, Manabu; Momose, Kunikazu; Masuda, Ryuichi

    2017-07-01

    Populations that have drastically decreased in the past often have low genetic variation, which may increase the risk of extinction. The genes of major histocompatibility complex (MHC) play an important role in the adaptive immune response of jawed vertebrates. Maintenance of adaptive genetic diversity such as that of MHC genes is important for wildlife conservation. Here, we determined genotypes of exon 3 of MHC class IA genes (MHCIA) and exon 2 of MHC class IIB genes (MHCIIB) to evaluate genetic variation of the endangered red-crowned crane population on Hokkaido Island, Japan, which experienced severe population decline in the past. We identified 16 and 6 alleles of MHCIA and MHCIIB, respectively, from 152 individuals. We found evidence of a positive selection at the antigen-binding sites in MHCIA exon 3 and MHCIIB exon 2. The phylogenetic analyses indicated evidence of trans-species polymorphism among the crane MHC genes. The genetic variability in both classes of MHC genes at the population level was low. No geographic structure was found based on the genetic diversity of microsatellite and MHC genes. Our study provides useful data for the optimal management of the red-crowned crane population in Hokkaido and can contribute to future studies on MHC genes of the continental populations of the red-crowned crane and other crane species.

  12. Histone Acetylation and the Regulation of Major Histocompatibility Class II Gene Expression.

    Science.gov (United States)

    Suzuki, K; Luo, Y

    Major histocompatibility complex (MHC) class II molecules are essential for processing and presenting exogenous pathogen antigens to activate CD4 + T cells. Given their central role in adaptive immune responses, MHC class II genes are tightly regulated in a tissue- and activation-specific manner. The regulation of MHC class II gene expression involves various transcription factors that interact with conserved proximal cis-acting regulatory promoter elements, as well as MHC class II transactivator that interacts with a variety of chromatin remodeling machineries. Recent studies also identified distal regulatory elements within MHC class II gene locus that provide enormous insight into the long-range coordination of MHC class II gene expression. Novel therapeutic modalities that can modify MHC class II genes at the epigenetic level are emerging and are currently in preclinical and clinical trials. This review will focus on the role of chromatin remodeling, particularly remodeling that involves histone acetylation, in the constitutive and inducible regulation of MHC class II gene expression. © 2017 Elsevier Inc. All rights reserved.

  13. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis

    Energy Technology Data Exchange (ETDEWEB)

    Dunham, I.; Sargent, C.A.; Trowsdale, J.; Campbell, R.D.

    1987-10-01

    Pulsed-field gel electrophoresis and cosmid walking have been used to establish a molecular map of the human major histocompatibility complex (MHC). The authors have isolated approx. = 230 kilobases (kb) of genomic DNA in overlapping cosmid clones covering the genes for the second and fourth components of complement (C2 and C4, respectively), factor B, and steroid 21-hydroxylase, and approx. = 82 kb of genomic DNA surrounding the genes for the tumor necrosis factors ..cap alpha.. and ..beta... Single-copy hybridization probes isolated from these cosmid clusters and probes for the known MHC gene loci were hybridized to Southern blots of genomic DNA that had been digested with infrequently cutting restriction endonucleases and separated on pulsed-field gels. The data obtained allowed the construction of a long-range genomic restriction map and indicated that the MHC spans 3800 kb. This map orients the MHC class III gene cluster with respect to the DR subregion; the C2 gene is on the telomeric side of the 21-hydroxylase B gene. In addition they have defined the positions of the genes for the tumor necrosis factors ..cap alpha.. and ..beta.. in the human MHC. Genes for the ..cap alpha.. chain of DR and 21-hydroxylase B are separated by at least 300 kb, while the distance between the genes for C2 and tumor necrosis factor ..cap alpha.. is 390 kb. The HLA-B locus lies approx. = 250 kb on the telomeric side of the tumor necrosis factor genes.

  14. Molecular mapping of the human major histocompatibility complex by pulsed-field gel electrophoresis

    International Nuclear Information System (INIS)

    Dunham, I.; Sargent, C.A.; Trowsdale, J.; Campbell, R.D.

    1987-01-01

    Pulsed-field gel electrophoresis and cosmid walking have been used to establish a molecular map of the human major histocompatibility complex (MHC). The authors have isolated ≅ 230 kilobases (kb) of genomic DNA in overlapping cosmid clones covering the genes for the second and fourth components of complement (C2 and C4, respectively), factor B, and steroid 21-hydroxylase, and ≅ 82 kb of genomic DNA surrounding the genes for the tumor necrosis factors α and β. Single-copy hybridization probes isolated from these cosmid clusters and probes for the known MHC gene loci were hybridized to Southern blots of genomic DNA that had been digested with infrequently cutting restriction endonucleases and separated on pulsed-field gels. The data obtained allowed the construction of a long-range genomic restriction map and indicated that the MHC spans 3800 kb. This map orients the MHC class III gene cluster with respect to the DR subregion; the C2 gene is on the telomeric side of the 21-hydroxylase B gene. In addition they have defined the positions of the genes for the tumor necrosis factors α and β in the human MHC. Genes for the α chain of DR and 21-hydroxylase B are separated by at least 300 kb, while the distance between the genes for C2 and tumor necrosis factor α is 390 kb. The HLA-B locus lies ≅ 250 kb on the telomeric side of the tumor necrosis factor genes

  15. Tapasin dependence of major histocompatibility complex class I molecules correlates with their conformational flexibility.

    Science.gov (United States)

    Garstka, Malgorzata Anna; Fritzsche, Susanne; Lenart, Izabela; Hein, Zeynep; Jankevicius, Gytis; Boyle, Louise H; Elliott, Tim; Trowsdale, John; Antoniou, Antony N; Zacharias, Martin; Springer, Sebastian

    2011-11-01

    Major histocompatibility complex (MHC) class I molecules present cell internally derived peptides at the plasma membrane for surveillance by cytotoxic T lymphocytes. The surface expression of most class I molecules at least partially depends on the endoplasmic reticulum protein, tapasin, which helps them to bind peptides of the right length and sequence. To determine what makes a class I molecule dependent on support by tapasin, we have conducted in silico molecular dynamics (MD) studies and laboratory experiments to assess the conformational state of tapasin-dependent and -independent class I molecules. We find that in the absence of peptide, the region around the F pocket of the peptide binding groove of the tapasin-dependent molecule HLA-B*44:02 is in a disordered conformational state and that it is converted to a conformationally stable state by tapasin. This novel chaperone function of tapasin has not been described previously. We demonstrate that the disordered state of class I is caused by the presence of two adjacent acidic residues in the bottom of the F pocket of class I, and we suggest that conformational disorder is a common feature of tapasin-dependent class I molecules, making them essentially unable to bind peptides on their own. MD simulations are a useful tool to predict such conformational disorder of class I molecules.

  16. Spatial variation and low diversity in the major histocompatibility complex in walrus (Odobenus rosmarus)

    Science.gov (United States)

    Sonsthagen, Sarah A.; Fales, Krystal; Jay, Chadwick V.; Sage, George K.; Talbot, Sandra L.

    2014-01-01

    Increased global temperature and associated changes to Arctic habitats will likely result in the northward advance of species, including an influx of pathogens novel to the Arctic. How species respond to these immunological challenges will depend in part on the adaptive potential of their immune response system. We compared levels of genetic diversity at a gene associated with adaptive immune response [Class II major histocompatibility complex (MHC), DQB exon 2] between populations of walrus (Odobenus rosmarus), a sea ice-dependent Arctic species. Walrus was represented by only five MHC DQB alleles, with frequency differences observed between Pacific and Atlantic populations. MHC DQB alleles appear to be under balancing selection, and most (80 %; n = 4/5) of the alleles were observed in walruses from both oceans, suggesting broad scale differences in the frequency of exposure and diversity of pathogens may be influencing levels of heterozygosity at DQB in walruses. Limited genetic diversity at MHC, however, suggests that walrus may have a reduced capacity to respond to novel immunological challenges associated with shifts in ecological communities and environmental stressors predicted for changing climates. This is particularly pertinent for walrus, since reductions in summer sea ice may facilitate both northward expansion of marine species and associated pathogens from more temperate regions, and exchange of marine mammals and associated pathogens through the recently opened Northwest Passage between the Atlantic and Pacific Oceans in the Canadian high Arctic.

  17. Human Herpesvirus 7 U21 Tetramerizes To Associate with Class I Major Histocompatibility Complex Molecules

    Science.gov (United States)

    May, Nathan A.; Wang, Qiuhong; Balbo, Andrea; Konrad, Sheryl L.; Buchli, Rico; Hildebrand, William H.; Schuck, Peter

    2014-01-01

    ABSTRACT The U21 gene product from human herpesvirus 7 binds to and redirects class I major histocompatibility complex (MHC) molecules to a lysosomal compartment. The molecular mechanism by which U21 reroutes class I MHC molecules to lysosomes is not known. Here, we have reconstituted the interaction between purified soluble U21 and class I MHC molecules, suggesting that U21 does not require additional cellular proteins to interact with class I MHC molecules. Our results demonstrate that U21, itself predicted to contain an MHC class I-like protein fold, interacts tightly with class I MHC molecules as a tetramer, in a 4:2 stoichiometry. These observations have helped to elucidate a refined model describing the mechanism by which U21 escorts class I MHC molecules to the lysosomal compartment. IMPORTANCE In this report, we show that the human herpesvirus 7 (HHV-7) immunoevasin U21, itself a class I MHC-like protein, binds with high affinity to class I MHC molecules as a tetramer and escorts them to lysosomes, where they are degraded. While many class I MHC-like molecules have been described in detail, this unusual viral class I-like protein functions as a tetramer, associating with class I MHC molecules in a 4:2 ratio, illuminating a functional significance of homooligomerization of a class I MHC-like protein. PMID:24390327

  18. Sexual conflict inhibits female mate choice for major histocompatibility complex dissimilarity in Chinook salmon.

    Science.gov (United States)

    Garner, Shawn R; Bortoluzzi, Romina N; Heath, Daniel D; Neff, Bryan D

    2010-03-22

    In many species females prefer major histocompatibility complex (MHC) dissimilar mates, which may improve offspring resistance to pathogens. However, sexual conflict may interfere with female preference when males attempt to mate with all females, regardless of compatibility. Here we used semi-natural spawning channels to examine how mating behaviour and genetic similarity at the MHC class II peptide binding region affected parentage patterns in Chinook salmon (Oncorhynchus tshawytscha). We found that females directed aggression at more MHC-similar males than expected by chance, providing a possible mechanism of female MHC choice in salmon. Males also directed aggression towards MHC-similar females, which was consistent with males harassing unreceptive mates. Males' aggression was positively correlated with their reproductive success, and it appeared to overcome female aversion to mating with MHC-similar males, as females who were the target of high levels of male aggression had lower than expected MHC divergence in their offspring. Indeed, offspring MHC divergence was highest when the sex ratio was female-biased and male harassment was likely to be less intense. These data suggest that male harassment can reduce female effectiveness in selecting MHC-compatible mates, and sexual conflict can thus have an indirect cost to females.

  19. Characterization of the major histocompatibility complex class II genes in miiuy croaker.

    Directory of Open Access Journals (Sweden)

    Tianjun Xu

    Full Text Available Major histocompatibility complex (MHC has a central role in the adaptive immune system by presenting foreign peptide to the T-cell receptor. In order to study the molecular function and genomic characteristic of class II genes in teleost, the full lengths of MHC class IIA and IIB cDNA and genomic sequence were cloned from miiuy croaker (Miichthys miiuy. As in other teleost, four exons and three introns were identified in miiuy croaker class IIA gene; but the difference is that six exons and five introns were identified in the miiuy croaker class IIB gene. The deduced amino acid sequence of class IIA and class IIB had 26.3-85.7% and 11.0-88.8% identity with those of mammal and teleost, respectively. Real-time quantitative RT-PCR demonstrated that the MHC class IIA and IIB were ubiquitously expressed in ten normal tissues; expression levels of MHC genes were found first upregulated and then downregulated, and finally by a recovery to normal level throughout the pathogenic bacteria infection process. In addition, we report on the underlying mechanism that maintains sequences diversity among many fish species. A series of site-model tests implemented in the CODEML program revealed that positive Darwinian selection is likely the cause of the molecular evolution in the fish MHC class II genes.

  20. Diacylglycerol kinase α regulates tubular recycling endosome biogenesis and major histocompatibility complex class I recycling.

    Science.gov (United States)

    Xie, Shuwei; Naslavsky, Naava; Caplan, Steve

    2014-11-14

    Major histocompatibility complex class I (MHC I) presents intracellular-derived peptides to cytotoxic T lymphocytes and its subcellular itinerary is important in regulating the immune response. While a number of diacylglycerol kinase isoforms have been implicated in clathrin-dependent internalization, MHC I lacks the typical motifs known to mediate clathrin-dependent endocytosis. Here we show that depletion of diacylglycerol kinase α (DGKα), a kinase devoid of a clathrin-dependent adaptor protein complex 2 binding site, caused a delay in MHC I recycling to the plasma membrane without affecting the rate of MHC I internalization. We demonstrate that DGKα knock-down causes accumulation of intracellular and surface MHC I, resulting from decreased degradation. Furthermore, we provide evidence that DGKα is required for the generation of phosphatidic acid required for tubular recycling endosome (TRE) biogenesis. Moreover, we show that DGKα forms a complex with the TRE hub protein, MICAL-L1. Given that MICAL-L1 and the F-BAR-containing membrane-tubulating protein Syndapin2 associate selectively with phosphatidic acid, we propose a positive feedback loop in which DGKα generates phosphatidic acid to drive its own recruitment to TRE via its interaction with MICAL-L1. Our data support a novel role for the involvement of DGKα in TRE biogenesis and MHC I recycling. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Major histocompatibility complex loci are associated with susceptibility of Atlantic salmon to infectious hematopoietic necrosis virus

    Science.gov (United States)

    Miller, Kristina M.; Winton, James R.; Schulze, Angela D.; Purcell, Maureen K.; Ming, Tobi J.

    2004-01-01

    Infectious hematopoietic necrosis virus (IHNV) is one of the most significant viral pathogens of salmonids and is a leading cause of death among cultured juvenile fish. Although several vaccine strategies have been developed, some of which are highly protective, the delivery systems are still too costly for general use by the aquaculture industry. More cost effective methods could come from the identification of genes associated with IHNV resistance for use in selective breeding. Further, identification of susceptibility genes may lead to an improved understanding of viral pathogenesis and may therefore aid in the development of preventive and therapeutic measures. Genes of the major histocompatibility complex (MHC), involved in the primary recognition of foreign pathogens in the acquired immune response, are associated with resistance to a variety of diseases in vertebrate organisms. We conducted a preliminary analysis of MHC disease association in which an aquaculture strain of Atlantic salmon was challenged with IHNV at three different doses and individual fish were genotyped at three MHC loci using denaturing gradient gel electrophoresis (PCR-DGGE), followed by sequencing of all differentiated alleles. Nine to fourteen alleles per exon-locus were resolved, and alleles potentially associated with resistance or susceptibility were identified. One allele (Sasa-B-04) from a potentially non-classical class I locus was highly associated with resistance to infectious hematopoietic necrosis (p < 0.01). This information can be used to design crosses of specific haplotypes for family analysis of disease associations.

  2. The Emerging Role of the Major Histocompatibility Complex Class I in Amyotrophic Lateral Sclerosis.

    Science.gov (United States)

    Chiarotto, Gabriela Bortolança; Nardo, Giovanni; Trolese, Maria Chiara; França, Marcondes Cavalcante; Bendotti, Caterina; Rodrigues de Oliveira, Alexandre Leite

    2017-11-01

    Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease affecting upper and lower motoneurons (MNs). The etiology of the disease is still unknown for most patients with sporadic ALS, while in 5-10% of the familial cases, several gene mutations have been linked to the disease. Mutations in the gene encoding Cu, Zn superoxide dismutase (SOD1), reproducing in animal models a pathological scenario similar to that found in ALS patients, have allowed for the identification of mechanisms relevant to the ALS pathogenesis. Among them, neuroinflammation mediated by glial cells and systemic immune activation play a key role in the progression of the disease, through mechanisms that can be either neuroprotective or neurodetrimental depending on the type of cells and the MN compartment involved. In this review, we will examine and discuss the involvement of major histocompatibility complex class I (MHCI) in ALS concerning its function in the adaptive immunity and its role in modulating the neural plasticity in the central and peripheral nervous system. The evidence indicates that the overexpression of MHCI into MNs protect them from astrocytes' toxicity in the central nervous system (CNS) and promote the removal of degenerating motor axons accelerating collateral reinnervation of muscles.

  3. Major histocompatibility complex variation and the evolution of resistance to amphibian chytridiomycosis.

    Science.gov (United States)

    Fu, Minjie; Waldman, Bruce

    2017-08-01

    Chytridiomycosis, caused by the fungal pathogen Batrachochytrium dendrobatidis (Bd), has been implicated in population declines and species extinctions of amphibians around the world. Susceptibility to the disease varies both within and among species, most likely attributable to heritable immunogenetic variation. Analyses of transcriptional expression in hosts following their infection by Bd reveal complex responses. Species resistant to Bd generally show evidence of stronger innate and adaptive immune system responses. Major histocompatibility complex (MHC) class I and class II genes of some susceptible species are up-regulated following host infection by Bd, but resistant species show no comparable changes in transcriptional expression. Bd-resistant species share similar pocket conformations within the MHC-II antigen-binding groove. Among susceptible species, survivors of epizootics bear alleles encoding these conformations. Individuals with homozygous resistance alleles appear to benefit by enhanced resistance, especially in environmental conditions that promote pathogen virulence. Subjects that are repeatedly infected and subsequently cleared of Bd can develop an acquired immune response to the pathogen. Strong directional selection for MHC alleles that encode resistance to Bd may deplete genetic variation necessary to respond to other pathogens. Resistance to chytridiomycosis incurs life-history costs that require further study.

  4. Major Histocompatibility Complex and Hematopoietic Stem Cell Transplantation: Beyond the Classical HLA Polymorphism.

    Science.gov (United States)

    Bertaina, Alice; Andreani, Marco

    2018-02-22

    Allogeneic hematopoietic stem cell transplantation (HSCT) represents a curative treatment for many patients with hematological malignant or non-malignant disorders. Evaluation of potential donors for HSCT includes a rigorous assessment of the human leukocyte antigens (HLA) match status of family members, and the identification of suitable unrelated donors. Genes encoding transplantation antigens are placed both within and outside the major histocompatibility complex (MHC). The human MHC is located on the short arm of chromosome 6 and contains a series of genes encoding two distinct types of highly polymorphic cell surface glycoproteins. Donors for HSCT are routinely selected based on the level of matching for HLA-A, -B, -C, -DRB1, and -DQB1 loci. However, disease relapse, graft-versus-host-disease, and infection remain significant risk factors of morbidity and mortality. In the same breath, in high-risk patients, graft-versus-leukemia effects inherent in HLA mismatching play a substantial immunological role to limit the recurrence of post-transplant disease. The definition of a suitable donor is ever changing, shaped not only by current typing technology, but also by the specific transplant procedure. Indeed, a more complete understanding of permissible HLA mismatches and the role of Killer Immunoglobulin-like receptors' genes increases the availability of HLA-haploidentical and unrelated donors.

  5. How a T Cell Receptor-like Antibody Recognizes Major Histocompatibility Complex-bound Peptide

    Energy Technology Data Exchange (ETDEWEB)

    Mareeva, T.; Martinez-Hackert, E; Sykulev, Y

    2008-01-01

    We determined the crystal structures of the T cell receptor (TCR)-like antibody 25-D1.16 Fab fragment bound to a complex of SIINFEKL peptide from ovalbumin and the H-2Kb molecule. Remarkably, this antibody directly 'reads' the structure of the major histocompatibility complex (MHC)-bound peptide, employing the canonical diagonal binding mode utilized by most TCRs. This is in marked contrast with another TCR-like antibody, Hyb3, bound to melanoma peptide MAGE-A1 in association with HLA-A1 MHC class I. Hyb3 assumes a non-canonical orientation over its cognate peptide-MHC and appears to recognize a conformational epitope in which the MHC contribution is dominant. We conclude that TCR-like antibodies can recognize MHC-bound peptide via two different mechanisms: one is similar to that exploited by the preponderance of TCRs and the other requires a non-canonical antibody orientation over the peptide-MHC complex.

  6. Persistent Ehrlichia chaffeensis infection occurs in the absence of functional major histocompatibility complex class II genes

    Science.gov (United States)

    Ganta, Roman Reddy; Wilkerson, Melinda J.; Cheng, Chuanmin; Rokey, Aaron M.; Chapes, Stephen K.

    2002-01-01

    Human monocytic ehrlichiosis is an emerging tick-borne disease caused by the rickettsia Ehrlichia chaffeensis. We investigated the impact of two genes that control macrophage and T-cell function on murine resistance to E. chaffeensis. Congenic pairs of wild-type and toll-like receptor 4 (tlr4)- or major histocompatibility complex class II (MHC-II)-deficient mice were used for these studies. Wild-type mice cleared the infection within 2 weeks, and the response included macrophage activation and the synthesis of E. chaffeensis-specific Th1-type immunoglobulin G response. The absence of a functional tlr4 gene depressed nitric oxide and interleukin 6 secretion by macrophages and resulted in short-term persistent infections for > or =30 days. In the absence of MHC-II alleles, E. chaffeensis infections persisted throughout the entire 3-month evaluation period. Together, these data suggest that macrophage activation and cell-mediated immunity, orchestrated by CD4(+) T cells, are critical for conferring resistance to E. chaffeensis.

  7. Plasticity of empty major histocompatibility complex class I molecules determines peptide-selector function.

    Science.gov (United States)

    van Hateren, Andy; Bailey, Alistair; Werner, Jörn M; Elliott, Tim

    2015-12-01

    Major histocompatibility complex class I (MHC I) proteins provide protection from intracellular pathogens and cancer via each of a cell's MHC I molecules binding and presenting a peptide to cytotoxic T lymphocytes. MHC I genes are highly polymorphic and can have significant diversity, with polymorphisms predominantly localised in the peptide-binding groove where they can change peptide-binding specificity. However, polymorphic residues may also determine other functional properties, such as how dependent MHC I alleles are on the peptide-loading complex for optimal acquisition of peptide cargo. We describe how differences in the peptide-binding properties of two MHC I alleles correlates with altered conformational flexibility in the peptide-empty state. We hypothesise that plasticity is an intrinsic property encoded by the protein sequence, and that co-ordinated movements of the membrane-proximal and membrane-distal domains collectively determines how dependent MHC I are on the peptide-loading complex for efficient assembly with high affinity peptides. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  8. Major histocompatibility complex selection dynamics in pathogen-infected túngara frog (Physalaemus pustulosus) populations.

    Science.gov (United States)

    Kosch, Tiffany A; Bataille, Arnaud; Didinger, Chelsea; Eimes, John A; Rodríguez-Brenes, Sofia; Ryan, Michael J; Waldman, Bruce

    2016-08-01

    Pathogen-driven selection can favour major histocompatibility complex (MHC) alleles that confer immunological resistance to specific diseases. However, strong directional selection should deplete genetic variation necessary for robust immune function in the absence of balancing selection or challenges presented by other pathogens. We examined selection dynamics at one MHC class II (MHC-II) locus across Panamanian populations of the túngara frog, Physalaemus pustulosus, infected by the amphibian chytrid fungus Batrachochytrium dendrobatidis (Bd). We compared MHC-II diversity in highland túngara frog populations, where amphibian communities have experienced declines owing to Bd, with those in the lowland region that have shown no evidence of decline. Highland region frogs had MHC variants that confer resistance to Bd. Variant fixation appeared to occur by directional selection rather than inbreeding, as overall genetic variation persisted in populations. In Bd-infected lowland sites, however, selective advantage may accrue to individuals with only one Bd-resistance allele, which were more frequent. Environmental conditions in lowlands should be less favourable for Bd infection, which may reduce selection for specific Bd resistance in hosts. Our results suggest that MHC selection dynamics fluctuate in túngara frog populations as a function of the favourability of habitat to pathogen spread and the vulnerability of hosts to infection. © 2016 The Author(s).

  9. Odour-based discrimination of similarity at the major histocompatibility complex in birds.

    Science.gov (United States)

    Leclaire, Sarah; Strandh, Maria; Mardon, Jérôme; Westerdahl, Helena; Bonadonna, Francesco

    2017-01-11

    Many animals are known to preferentially mate with partners that are dissimilar at the major histocompatibility complex (MHC) in order to maximize the antigen binding repertoire (or disease resistance) in their offspring. Although several mammals, fish or lizards use odour cues to assess MHC similarity with potential partners, the ability of birds to assess MHC similarity using olfactory cues has not yet been explored. Here we used a behavioural binary choice test and high-throughput-sequencing of MHC class IIB to determine whether blue petrels can discriminate MHC similarity based on odour cues alone. Blue petrels are seabirds with particularly good sense of smell, they have a reciprocal mate choice and are known to preferentially mate with MHC-dissimilar partners. Incubating males preferentially approached the odour of the more MHC-dissimilar female, whereas incubating females showed opposite preferences. Given their mating pattern, females were, however, expected to show preference for the odour of the more MHC-dissimilar male. Further studies are needed to determine whether, as in women and female mice, the preference varies with the reproductive cycle in blue petrel females. Our results provide the first evidence that birds can use odour cues only to assess MHC dissimilarity. © 2017 The Author(s).

  10. Differentiation and major histocompatibility complex antigen expression in human liver-derived stem cells.

    Science.gov (United States)

    Lee, J-H; Park, H-J; Kim, Y-A; Lee, D-H; Noh, J-K; Kwon, C H D; Jung, S-M; Lee, S-K

    2012-05-01

    Stem cells are a promising source for liver repopulation after cell transplantation, but whether the adult liver contains hepatic stem cells is controversial. The purpose of this study was to characterize the properties and expression profile of major histocompatibility complex (MHC) antigens on the surface of human-derived stem cells. Human liver-derived stem cells (HLSC7) were isolated from the nontumorous tissue of a patient who underwent a resection of an hepatic hemangioendothelioma. We characterized HLSC7 using a fluorescence-activated cell sorter, polymerase chain reactions, and immunofluorescence assays. HLSC7 expressed mesenchymal but not hematopoietic stem cell markers. HLSC7 underwent osteogenic, chondrogenic, and hepatogenic differentiation when cultured in appropriate differentiation media. However, HLSC7 did not differentiate into adipocytes. In addition, HLSC7 did not express MHC class II (HLA-DP, -DQ, and -DR) antigens. However, they did express MHC class I antigens. These results suggest that human liver-derived stem cells express MHC class I antigens and thus may be rejected on transplantation. Therefore, in addition to studies on stem cell differentiation, one must overcome immunologic barriers for successful clinical application of this therapy. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Identification of 32 major histocompatibility complex class I alleles in African green monkeys.

    Science.gov (United States)

    Cao, Y; Li, A; Li, L; Yan, X; Fa, Y; Zeng, L; Fan, J; Liu, B; Sun, Z

    2014-09-01

    The African green monkey may be an ideal replacement for the rhesus monkey in biomedical research, but relatively little is known about the genetic background of major histocompatibility complex (MHC) class I molecules. In analysis of 12 African green monkeys, 13 Chae-A and 19 Chae-B alleles were identified. Among these alleles, 12 Chae-A and 9 Chae-B were new lineages. The full amino acid length deduced for Chae-A genes is 365 amino acids, but for Chae-B genes, the lengths are 365, 362, 361, and 359 amino acids, respectively. There were 1-3 Chae-A alleles and 2-5 Chae-B alleles in each animal. In African green monkeys, rhesus monkeys, and cynomolgus monkeys, the MHC-A and MHC-B alleles display trans-species polymorphism, rather than being clustered in a species-specific fashion. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  12. Soluble major histocompatibility complex molecules in immune regulation: highlighting class II antigens.

    Science.gov (United States)

    Bakela, Katerina; Athanassakis, Irene

    2018-03-01

    The involvement of major histocompatibility complex (MHC) antigens in the development and regulation of immune response has been well defined over the years, starting from maturation, antigenic peptide loading, migration to the cell membrane for recognition by the T-cell receptor and recycling for immune response cessation. During this intracellular trafficking, MHC antigens find a way to be excreted by the cells, because they can be found as soluble MHC class I (sMHC-I) and class II (sMHC-II) molecules in all body fluids. Although secretion mechanisms have not been sufficiently studied, sMHC molecules have been shown to display important immunoregulatory properties. Their levels in the serum have been shown to be altered in a variety of diseases, including viral infections, inflammation, autoimmunities and cancer, etc. while they seem to be involved in a number of physiological reactions, including maintenance of tolerance, reproduction, as well as mate choice vis-à-vis species evolution. The present review aims to present the thus far existing literature on sMHC molecules and point out the importance of these molecules in the maintenance of immune homeostasis. © 2017 John Wiley & Sons Ltd.

  13. Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds.

    Science.gov (United States)

    Slade, J W G; Watson, M J; Kelly, T R; Gloor, G B; Bernards, M A; MacDougall-Shackleton, E A

    2016-11-16

    In jawed vertebrates, genes of the major histocompatibility complex (MHC) play a key role in immunity by encoding cell-surface proteins that recognize and bind non-self antigens. High variability at MHC suggests that these loci may also function in social signalling such as mate choice and kin recognition. This requires that MHC genotype covaries with some perceptible phenotypic trait. In mammals and fish, MHC is signalled chemically through volatile and non-volatile peptide odour cues, facilitating MHC-dependent mate choice and other behaviours. In birds, despite evidence for MHC-dependent mating, candidate mechanisms for MHC signalling remain largely unexplored. However, feather preen wax has recently been implicated as a potential source of odour cues. We examined whether the chemical composition of preen wax correlates with MHC class IIβ genotypes of wild song sparrows (Melospiza melodia). Pairwise chemical distance reflected amino acid distance at MHC for male-female dyads, although not for same-sex dyads. Chemical diversity did not reflect MHC diversity. We used gas chromatography-mass spectrometry (GC-MS) to characterize preen wax compounds, and identified four wax esters that best reflect MHC similarity. Provided songbirds can detect variation in preen wax composition, this cue may allow individuals to assess MHC compatibility of potential mates. © 2016 The Author(s).

  14. Social and extra-pair mating in relation to major histocompatibility complex variation in common yellowthroats

    Science.gov (United States)

    Bollmer, Jennifer L.; Dunn, Peter O.; Freeman-Gallant, Corey R.; Whittingham, Linda A.

    2012-01-01

    Females are thought to gain better-quality genes for their offspring by mating with particular males. Genes of the major histocompatibility complex (MHC) play a critical role in adaptive immunity, and several studies have examined female mate choice in relation to MHC variation. In common yellowthroats, females prefer males that have larger black facial masks, an ornament associated with MHC variation, immune function and condition. Here we also tested whether mating patterns are directly correlated with MHC diversity or similarity. Using pyrosequencing, we found that the presence of extra-pair young in the brood was not related to male MHC diversity or similarity between the female and her within-pair mate. Furthermore, extra-pair sires did not differ in overall diversity from males they cuckolded, or in their similarity to the female. MHC diversity is extremely high in this species, and it may limit the ability of females to assess MHC variation in males. Thus, mating may be based on ornaments, such as mask size, which are better indicators of overall male health and genetic quality. PMID:23055067

  15. Structure and function of the non-classical major histocompatibility complex molecule MR1.

    Science.gov (United States)

    Krovi, S Harsha; Gapin, Laurent

    2016-08-01

    Polymorphic major histocompatibility complex (MHC) molecules play a central role in the vertebrate adaptive immune system. By presenting short peptides derived from pathogen-derived proteins, these "classical" MHC molecules can alert the T cell branch of the immune system of infected cells and clear the pathogen. There exist other "non-classical" MHC molecules, which while similar in structure to classical MHC proteins, are contrasted by their limited polymorphism. While the functions of many class Ib MHC molecules have still to be elucidated, the nature and diversity of antigens (if any) that some of them might present to the immune system is expected to be more restricted and might function as another approach to distinguish self from non-self. The MHC-related 1 (MR1) molecule is a member of this family of non-classical MHC proteins. It was recently shown to present unique antigens in the form of vitamin metabolites found in certain microbes. MR1 is strongly conserved genetically, structurally, and functionally through mammalian evolution, indicating its necessity in ensuring an effective immune system for members of this class. Although MR1 will be celebrating 21 years this year since its discovery, most of our understanding of how this molecule functions has only been uncovered in the past decade. Herein, we discuss where MR1 is expressed, how it selectively is able to bind to its appropriate antigens and how it, then, is able to specifically activate a distinct population of T cells.

  16. Adaptive tolerance to a pathogenic fungus drives major histocompatibility complex evolution in natural amphibian populations.

    Science.gov (United States)

    Savage, Anna E; Zamudio, Kelly R

    2016-03-30

    Amphibians have been affected globally by the disease chytridiomycosis, caused by the fungus Batrachochytrium dendrobatidis (Bd), and we are just now beginning to understand how immunogenetic variability contributes to disease susceptibility. Lineages of an expressed major histocompatibility complex (MHC) class II locus involved in acquired immunity are associated with chytridiomycosis susceptibility in controlled laboratory challenge assays. Here, we extend these findings to natural populations that vary both in exposure and response to Bd We find that MHC alleles and supertypes associated with Bd survival in the field show a molecular signal of positive selection, while those associated with susceptibility do not, supporting the hypothesis that heritable Bd tolerance is rapidly evolving. We compare MHC supertypes to neutral loci to demonstrate where selection versus demography is shaping MHC variability. One population with Bd tolerance in nature shows a significant signal of directional selection for the same allele (allele Q) that was significantly associated with survival in an earlier laboratory study. Our findings indicate that selective pressure for Bd survival drives rapid immunogenetic adaptation in some natural populations, despite differences in environment and demography. Our field-based analysis of immunogenetic variation confirms that natural amphibian populations have the evolutionary potential to adapt to chytridiomycosis. © 2016 The Authors.

  17. Binding and activation of major histocompatibility complex class II-deficient macrophages by staphylococcal exotoxins

    Science.gov (United States)

    Beharka, A. A.; Armstrong, J. W.; Iandolo, J. J.; Chapes, S. K.; Spooner, B. S. (Principal Investigator)

    1994-01-01

    Macrophages from C2D transgenic mice deficient in the expression of major histocompatibility complex (MHC) class II proteins were used to identify binding sites for superantigens distinct from the MHC class II molecule. Iodinated staphylococcal enterotoxins A and B (SEA and SEB) and exfoliative toxins A and B (ETA and ETB) bound to C2D macrophages in a concentration-dependent and competitive manner. All four toxins increased F-actin concentration within 30 s of their addition to C2D macrophages, indicating that signal transduction occurred in response to toxin in the absence of class II MHC. Furthermore, ETA, ETB, SEA, and, to a lesser extent, SEB induced C2D macrophages to produce interleukin 6. Several molecular species on C2D macrophages with molecular masses of 140, 97, 61, 52, 43, and 37 kDa bound SEA in immunoprecipitation experiments. These data indicate the presence of novel, functionally active toxin binding sites on murine macrophages distinct from MHC class II molecules.

  18. Molecular modeling of class I and II alleles of the major histocompatibility complex in Salmo salar

    Science.gov (United States)

    Cárdenas, Constanza; Bidon-Chanal, Axel; Conejeros, Pablo; Arenas, Gloria; Marshall, Sergio; Luque, F. Javier

    2010-12-01

    Knowledge of the 3D structure of the binding groove of major histocompatibility (MHC) molecules, which play a central role in the immune response, is crucial to shed light into the details of peptide recognition and polymorphism. This work reports molecular modeling studies aimed at providing 3D models for two class I and two class II MHC alleles from Salmo salar ( Sasa), as the lack of experimental structures of fish MHC molecules represents a serious limitation to understand the specific preferences for peptide binding. The reliability of the structural models built up using bioinformatic tools was explored by means of molecular dynamics simulations of their complexes with representative peptides, and the energetics of the MHC-peptide interaction was determined by combining molecular mechanics interaction energies and implicit continuum solvation calculations. The structural models revealed the occurrence of notable differences in the nature of residues at specific positions in the binding groove not only between human and Sasa MHC proteins, but also between different Sasa alleles. Those differences lead to distinct trends in the structural features that mediate the binding of peptides to both class I and II MHC molecules, which are qualitatively reflected in the relative binding affinities. Overall, the structural models presented here are a valuable starting point to explore the interactions between MHC receptors and pathogen-specific interactions and to design vaccines against viral pathogens.

  19. Prediction of peptide binding to a major histocompatibility complex class I molecule based on docking simulation

    Science.gov (United States)

    Ishikawa, Takeshi

    2016-10-01

    Binding between major histocompatibility complex (MHC) class I molecules and immunogenic epitopes is one of the most important processes for cell-mediated immunity. Consequently, computational prediction of amino acid sequences of MHC class I binding peptides from a given sequence may lead to important biomedical advances. In this study, an efficient structure-based method for predicting peptide binding to MHC class I molecules was developed, in which the binding free energy of the peptide was evaluated by two individual docking simulations. An original penalty function and restriction of degrees of freedom were determined by analysis of 361 published X-ray structures of the complex and were then introduced into the docking simulations. To validate the method, calculations using a 50-amino acid sequence as a prediction target were performed. In 27 calculations, the binding free energy of the known peptide was within the top 5 of 166 peptides generated from the 50-amino acid sequence. Finally, demonstrative calculations using a whole sequence of a protein as a prediction target were performed. These data clearly demonstrate high potential of this method for predicting peptide binding to MHC class I molecules.

  20. Understanding Immune Resistance to Infectious Bronchitis Using Major Histocompatibility Complex Chicken Lines.

    Science.gov (United States)

    da Silva, A P; Hauck, R; Zhou, H; Gallardo, R A

    2017-09-01

    Genetic resistance or susceptibility to infectious diseases has been largely associated with the avian major histocompatibility complex (MHC) genes. Our goal was to determine resistance and susceptibility of MHC B haplotype in congenic and inbred chicken lines in order to establish a resistant-susceptible model. Eight congenic lines (253/B18, 254/B15, 330/B21, 312/B24, 331/B2, 335/B19, 336/B21, and 342/BO), two inbred lines (003/B17 and 077/B19), and three commercial lines (white leghorn, brown layers, and broilers) were used in two experiments. We analyzed and compared immunologic responses and the effect of challenge by measuring viral load, IgG and IgA humoral responses, histopathology and histomorphometry, clinical signs, and immune cell populations in the different MHC B haplotype lines. We found that respiratory signs, tracheal deciliation and inflammation, airsacculitis, viral shedding in tears, and local humoral responses were good parameters to determine resistance or susceptibility. Based on these results, we identified 331/B2 as the most resistant and 335/B19 as the most susceptible congenic chicken lines. These two lines will be used as an animal model in subsequent experiments to understand the mechanisms by which the immune system in chickens generates resistance to infectious bronchitis virus.

  1. Effects of major histocompatibility complex class II knockout on mouse bone mechanical properties during development

    Science.gov (United States)

    Simske, Steven J.; Bateman, Ted A.; Smith, Erin E.; Ferguson, Virginia L.; Chapes, Stephen K.

    2002-01-01

    We investigated the effect of major histocompatibility complex class II (MHC II) knockout on the development of the mouse peripheral skeleton. These C2D mice had less skeletal development at 8, 12 and 16 weeks of age compared to wild-type C57BL/6J (B6) male mice. The C2D mice had decreased femur mechanical, geometric and compositional measurements compared to wild type mice at each of these ages. C2D femur stiffness (S), peak force in 3-pt bending (Pm), and mineral mass (Min-M) were 74%, 64% and 66%, respectively, of corresponding B6 values at 8 weeks of age. Similar differences were measured at 12 weeks (for which C2D femoral S, Pm and Min-M were 71%, 72% and 73%, respectively, of corresponding B6 values) and at 16 weeks (for which C2D femoral S, Pm and Min-M were 80%, 66% and 61%, respectively, of corresponding B6 values). MHC II knockout delays the development of adult bone properties and is accompanied by lower body mass compared to wild-type controls.

  2. Measuring complexity, nonextensivity and chaos in the DNA sequence of the Major Histocompatibility Complex

    Science.gov (United States)

    Pavlos, G. P.; Karakatsanis, L. P.; Iliopoulos, A. C.; Pavlos, E. G.; Xenakis, M. N.; Clark, Peter; Duke, Jamie; Monos, D. S.

    2015-11-01

    We analyze 4 Mb sequences of the Major Histocompatibility Complex (MHC), which is a DNA segment on chromosome 6 with high gene density, controlling many immunological functions and associated with many diseases. The analysis is based on modern theoretical and mathematical tools of complexity theory, such as nonlinear time series analysis and Tsallis non-extensive statistics. The results revealed that the DNA complexity and self-organization can be related to fractional dynamical nonlinear processes with low-dimensional deterministic chaotic and non-extensive statistical character, which generate the DNA sequences under the extremization of Tsallis q-entropy principle. While it still remains an open question as to whether the DNA walk is a fractional Brownian motion (FBM), a static anomalous diffusion process or a non-Gaussian dynamical fractional anomalous diffusion process, the results of this study testify for the latter, providing also a possible explanation for the previously observed long-range power law correlations of nucleotides, as well as the long-range correlation properties of coding and non-coding sequences present in DNA sequences.

  3. T cell receptor reversed polarity recognition of a self-antigen major histocompatibility complex.

    Science.gov (United States)

    Beringer, Dennis X; Kleijwegt, Fleur S; Wiede, Florian; van der Slik, Arno R; Loh, Khai Lee; Petersen, Jan; Dudek, Nadine L; Duinkerken, Gaby; Laban, Sandra; Joosten, Antoinette; Vivian, Julian P; Chen, Zhenjun; Uldrich, Adam P; Godfrey, Dale I; McCluskey, James; Price, David A; Radford, Kristen J; Purcell, Anthony W; Nikolic, Tatjana; Reid, Hugh H; Tiganis, Tony; Roep, Bart O; Rossjohn, Jamie

    2015-11-01

    Central to adaptive immunity is the interaction between the αβ T cell receptor (TCR) and peptide presented by the major histocompatibility complex (MHC) molecule. Presumably reflecting TCR-MHC bias and T cell signaling constraints, the TCR universally adopts a canonical polarity atop the MHC. We report the structures of two TCRs, derived from human induced T regulatory (iT(reg)) cells, complexed to an MHC class II molecule presenting a proinsulin-derived peptide. The ternary complexes revealed a 180° polarity reversal compared to all other TCR-peptide-MHC complex structures. Namely, the iT(reg) TCR α-chain and β-chain are overlaid with the α-chain and β-chain of MHC class II, respectively. Nevertheless, this TCR interaction elicited a peptide-reactive, MHC-restricted T cell signal. Thus TCRs are not 'hardwired' to interact with MHC molecules in a stereotypic manner to elicit a T cell signal, a finding that fundamentally challenges our understanding of TCR recognition.

  4. Genetic variation of major histocompatibility complex (MHC) in wild Red Junglefowl (Gallus gallus).

    Science.gov (United States)

    Nguyen-Phuc, Hoa; Fulton, Janet E; Berres, Mark E

    2016-02-01

    The major histocompatibility complex (MHC) is a multi-family gene cluster that encodes proteins with immuno-responsive function. While studies of MHC in domesticated poultry are relatively common, very little is known about this highly polymorphic locus in wild Red Junglefowl (Gallus gallus), the natural progenitor of domestic chickens. We investigated the diversity of MHC within and among four wild Red Junglefowl populations across diversified natural habitats in South Central Vietnam. Based on a SNP panel of 84 sites spanning 210 Kb of the MHC-B locus, we identified 310 unique haplotypes in 398 chromosomes. None of these haplotypes have been described before and we did not observe any of the wild Red Junglefowl haplotypes in domesticated chickens. Analysis of molecular variance (AMOVA) revealed that 94.51% of observed haplotype variation was accounted for at the within individual level. Little genetic variance was apportioned within and among populations, the latter accounting only for 0.83%. We also found evidence of increased recombination, including numerous hotspots, and limited linkage disequilibrium among the 84 SNP sites. Compared to an average haplotype diversity of 3.55% among seventeen lines of domestic chickens, our results suggest extraordinarily high haplotype diversity remains in wild Red Junglefowl and is consistent with a pattern of balancing selection. Wild Red Junglefowl in Vietnam, therefore, represent a rich resource of natural genomic variation independent from artificial selection. © 2016 Poultry Science Association Inc.

  5. Differential transmembrane domain GXXXG motif pairing impacts major histocompatibility complex (MHC) class II structure.

    Science.gov (United States)

    Dixon, Ann M; Drake, Lisa; Hughes, Kelly T; Sargent, Elizabeth; Hunt, Danielle; Harton, Jonathan A; Drake, James R

    2014-04-25

    Major histocompatibility complex (MHC) class II molecules exhibit conformational heterogeneity, which influences their ability to stimulate CD4 T cells and drive immune responses. Previous studies suggest a role for the transmembrane domain of the class II αβ heterodimer in determining molecular structure and function. Our previous studies identified an MHC class II conformer that is marked by the Ia.2 epitope. These Ia.2(+) class II conformers are lipid raft-associated and able to drive both tyrosine kinase signaling and efficient antigen presentation to CD4 T cells. Here, we establish that the Ia.2(+) I-A(k) conformer is formed early in the class II biosynthetic pathway and that differential pairing of highly conserved transmembrane domain GXXXG dimerization motifs is responsible for formation of Ia.2(+) versus Ia.2(-) I-A(k) class II conformers and controlling lipid raft partitioning. These findings provide a molecular explanation for the formation of two distinct MHC class II conformers that differ in their inherent ability to signal and drive robust T cell activation, providing new insight into the role of MHC class II in regulating antigen-presenting cell-T cell interactions critical to the initiation and control of multiple aspects of the immune response.

  6. Family-assisted inference of the genetic architecture of major histocompatibility complex variation.

    Science.gov (United States)

    Gaigher, A; Burri, R; Gharib, W H; Taberlet, P; Roulin, A; Fumagalli, L

    2016-11-01

    With their direct link to individual fitness, genes of the major histocompatibility complex (MHC) are a popular system to study the evolution of adaptive genetic diversity. However, owing to the highly dynamic evolution of the MHC region, the isolation, characterization and genotyping of MHC genes remain a major challenge. While high-throughput sequencing technologies now provide unprecedented resolution of the high allelic diversity observed at the MHC, in many species, it remains unclear (i) how alleles are distributed among MHC loci, (ii) whether MHC loci are linked or segregate independently and (iii) how much copy number variation (CNV) can be observed for MHC genes in natural populations. Here, we show that the study of allele segregation patterns within families can provide significant insights in this context. We sequenced two MHC class I (MHC-I) loci in 1267 European barn owls (Tyto alba), including 590 offspring from 130 families using Illumina MiSeq technology. Coupled with a high per-individual sequencing coverage (~3000×), the study of allele segregation patterns within families provided information on three aspects of the architecture of MHC-I variation in barn owls: (i) extensive sharing of alleles among loci, (ii) strong linkage of MHC-I loci indicating tandem architecture and (iii) the presence of CNV in the barn owl MHC-I. We conclude that the additional information that can be gained from high-coverage amplicon sequencing by investigating allele segregation patterns in families not only helps improving the accuracy of MHC genotyping, but also contributes towards enhanced analyses in the context of MHC evolutionary ecology. © 2016 John Wiley & Sons Ltd.

  7. Genotyping strategy matters when analyzing hypervariable major histocompatibility complex-Experience from a passerine bird.

    Science.gov (United States)

    Rekdal, Silje L; Anmarkrud, Jarl Andreas; Johnsen, Arild; Lifjeld, Jan T

    2018-02-01

    Genotyping of classical major histocompatibility complex (MHC) genes is challenging when they are hypervariable and occur in multiple copies. In this study, we used several different approaches to genotype the moderately variable MHC class I exon 3 (MHCIe3) and the highly polymorphic MHC class II exon 2 (MHCIIβe2) in the bluethroat ( Luscinia svecica ). Two family groups (eight individuals) were sequenced in replicates at both markers using Ion Torrent technology with both a single- and a dual-indexed primer structure. Additionally, MHCIIβe2 was sequenced on Illumina MiSeq. Allele calling was conducted by modifications of the pipeline developed by Sommer et al. (BMC Genomics, 14, 2013, 542) and the software AmpliSAS. While the different genotyping strategies gave largely consistent results for MHCIe3, with a maximum of eight alleles per individual, MHCIIβe2 was remarkably complex with a maximum of 56 MHCIIβe2 alleles called for one individual. Each genotyping strategy detected on average 50%-82% of all MHCIIβe2 alleles per individual, but dropouts were largely allele-specific and consistent within families for each strategy. The discrepancies among approaches indicate PCR biases caused by the platform-specific primer tails. Further, AmpliSAS called fewer alleles than the modified Sommer pipeline. Our results demonstrate that allelic dropout is a significant problem when genotyping the hypervariable MHCIIβe2. As these genotyping errors are largely nonrandom and method-specific, we caution against comparing genotypes across different genotyping strategies. Nevertheless, we conclude that high-throughput approaches provide a major advance in the challenging task of genotyping hypervariable MHC loci, even though they may not reveal the complete allelic repertoire.

  8. Fine mapping major histocompatibility complex associations in psoriasis and its clinical subtypes.

    Science.gov (United States)

    Okada, Yukinori; Han, Buhm; Tsoi, Lam C; Stuart, Philip E; Ellinghaus, Eva; Tejasvi, Trilokraj; Chandran, Vinod; Pellett, Fawnda; Pollock, Remy; Bowcock, Anne M; Krueger, Gerald G; Weichenthal, Michael; Voorhees, John J; Rahman, Proton; Gregersen, Peter K; Franke, Andre; Nair, Rajan P; Abecasis, Gonçalo R; Gladman, Dafna D; Elder, James T; de Bakker, Paul I W; Raychaudhuri, Soumya

    2014-08-07

    Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C(∗)06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10(-364)). Stepwise analysis revealed multiple HLA-C(∗)06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C(∗)12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQα1 amino acid position 53; p major clinical subtypes of PsV, psoriatic arthritis (PsA; n = 3,038) and cutaneous psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (Pomnibus = 2.2 × 10(-11)), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC. Copyright © 2014 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Evaluation of two approaches to genotyping major histocompatibility complex class I in a passerine—CE-SSCP and 454 pyrosequencing

    Czech Academy of Sciences Publication Activity Database

    Promerová, Marta; Babik, W.; Bryja, Josef; Albrecht, Tomáš; Stuglik, M.; Radwan, J.

    2012-01-01

    Roč. 12, č. 2 (2012), s. 285-292 ISSN 1755-098X R&D Projects: GA AV ČR IAA600930608; GA ČR GA206/06/0851; GA ČR GAP505/10/1871 Institutional research plan: CEZ:AV0Z60930519 Keywords : avian * Carpodacus erythrinus * major histocompatibility complex * next-generation sequencing * scarlet rosefinch Subject RIV: EG - Zoology Impact factor: 7.432, year: 2012

  10. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune?Mediated Myositis

    OpenAIRE

    Durward?Akhurst, S.A.; Finno, C.J.; Barnes, N.; Shivers, J.; Guo, L.T.; Shelton, G.D.; Valberg, S.J.

    2016-01-01

    Background Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune?mediated myositis (IMM) of humans and dogs and in dysferlin?deficient muscular dystrophy. Hypothesis/Objectives To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. Animals Twenty?one IMM horses of Quarter Horse?related...

  11. Downregulation of Major Histocompatibility Complex Class I Molecules by Kaposi's Sarcoma-Associated Herpesvirus K3 and K5 Proteins

    OpenAIRE

    Ishido, Satoshi; Wang, Chunyang; Lee, Bok-Soo; Cohen, George B.; Jung, J. U.

    2000-01-01

    The T-cell-mediated immune response plays a central role in the defense against intracellular pathogens. To avoid this immune response, viruses have evolved elaborate mechanisms that target and modulate many different aspects of the host's immune system. A target common to many of these viruses is the major histocompatibility complex (MHC) class I molecules. Kaposi's sarcoma-associated herpesvirus (KSHV) encodes K3 and K5 zinc finger membrane proteins which remove MHC class I molecules from t...

  12. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    OpenAIRE

    Van Hateren, Andrew; Elliott, Timothy; Bailey, Alistair

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significan...

  13. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation.

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell's own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors-tapasin for class I and HLA-DM for class II-contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity.

  14. Detection of autoreactive CD4 T cells using major histocompatibility complex class II dextramers

    Directory of Open Access Journals (Sweden)

    Kuszynski Charles

    2011-07-01

    Full Text Available Abstract Background Tetramers are useful tools to enumerate the frequencies of antigen-specific T cells. However, unlike CD8 T cells, CD4 T cells - especially self-reactive cells - are challenging to detect with major histocompatibility complex (MHC class II tetramers because of low frequencies and low affinities of their T cell receptors to MHC-peptide complexes. Here, we report the use of fluorescent multimers, designated MHC dextramers that contain a large number of peptide-MHC complexes per reagent. Results The utility of MHC dextramers was evaluated in three autoimmune disease models: 1 proteolipid protein (PLP 139-151-induced experimental autoimmune encephalomyelitis in SJL/J (H-2s mice; 2 myelin oligodendrocyte glycoprotein (MOG 35-55-induced experimental autoimmune encephalomyelitis in C57Bl/6 (H-2b mice; and 3 cardiac myosin heavy chain (Myhc-α 334-352-induced experimental autoimmune myocarditis in A/J (H-2a mice. Flow cytometrically, we demonstrate that IAs/PLP 139-151, IAb/MOG 35-55 and IAk/Myhc-α 334-352 dextramers detect the antigen-sensitized cells with specificity, and with a detection sensitivity significantly higher than that achieved with conventional tetramers. Furthermore, we show that binding of dextramers, but not tetramers, is less dependent on the activation status of cells, permitting enumeration of antigen-specific cells ex vivo. Conclusions The data suggest that MHC dextramers are useful tools to track the generation and functionalities of self-reactive CD4 cells in various experimental systems.

  15. Fine Mapping Major Histocompatibility Complex Associations in Psoriasis and Its Clinical Subtypes

    Science.gov (United States)

    Okada, Yukinori; Han, Buhm; Tsoi, Lam C.; Stuart, Philip E.; Ellinghaus, Eva; Tejasvi, Trilokraj; Chandran, Vinod; Pellett, Fawnda; Pollock, Remy; Bowcock, Anne M.; Krueger, Gerald G.; Weichenthal, Michael; Voorhees, John J.; Rahman, Proton; Gregersen, Peter K.; Franke, Andre; Nair, Rajan P.; Abecasis, Gonçalo R.; Gladman, Dafna D.; Elder, James T.; de Bakker, Paul I.W.; Raychaudhuri, Soumya

    2014-01-01

    Psoriasis vulgaris (PsV) risk is strongly associated with variation within the major histocompatibility complex (MHC) region, but its genetic architecture has yet to be fully elucidated. Here, we conducted a large-scale fine-mapping study of PsV risk in the MHC region in 9,247 PsV-affected individuals and 13,589 controls of European descent by imputing class I and II human leukocyte antigen (HLA) genes from SNP genotype data. In addition, we imputed sequence variants for MICA, an MHC HLA-like gene that has been associated with PsV, to evaluate association at that locus as well. We observed that HLA-C∗06:02 demonstrated the lowest p value for overall PsV risk (p = 1.7 × 10−364). Stepwise analysis revealed multiple HLA-C∗06:02-independent risk variants in both class I and class II HLA genes for PsV susceptibility (HLA-C∗12:03, HLA-B amino acid positions 67 and 9, HLA-A amino acid position 95, and HLA-DQα1 amino acid position 53; p psoriasis (PsC; n = 3,098). We found that risk heterogeneity between PsA and PsC might be driven by HLA-B amino acid position 45 (pomnibus = 2.2 × 10−11), indicating that different genetic factors underlie the overall risk of PsV and the risk of specific PsV subphenotypes. Our study illustrates the value of high-resolution HLA and MICA imputation for fine mapping causal variants in the MHC. PMID:25087609

  16. Major Histocompatibility Complex class IIb polymorphism influences gut microbiota composition and diversity.

    Science.gov (United States)

    Bolnick, Daniel I; Snowberg, Lisa K; Caporaso, J Gregory; Lauber, Chris; Knight, Rob; Stutz, William E

    2014-10-01

    Animals harbour diverse communities of symbiotic bacteria, which differ dramatically among host individuals. This heterogeneity poses an immunological challenge: distinguishing between mutualistic and pathogenic members of diverse and host-specific microbial communities. We propose that Major Histocompatibility class II (MHC) genotypes contribute to recognition and regulation of gut microbes, and thus, MHC polymorphism contributes to microbial variation among hosts. Here, we show that MHC IIb polymorphism is associated with among-individual variation in gut microbiota within a single wild vertebrate population of a small fish, the threespine stickleback. We sampled stickleback from Cedar Lake, on Vancouver Island, and used next-generation sequencing to genotype the sticklebacks' gut microbiota (16S sequencing) and their MHC class IIb exon 2 sequences. The presence of certain MHC motifs was associated with altered relative abundance (increase or decrease) of some microbial Families. The effect sizes are modest and entail a minority of microbial taxa, but these results represent the first indication that MHC genotype may affect gut microbiota composition in natural populations (MHC-microbe associations have also been found in a few studies of lab mice). Surprisingly, these MHC effects were frequently sex-dependent. Finally, hosts with more diverse MHC motifs had less diverse gut microbiota. One implication is that MHC might influence the efficacy of therapeutic strategies to treat dysbiosis-associated disease, including the outcome of microbial transplants between healthy and diseased patients. We also speculate that macroparasite-driven selection on MHC has the potential to indirectly alter the host gut microbiota, and vice versa. © 2014 John Wiley & Sons Ltd.

  17. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Science.gov (United States)

    2012-01-01

    Background Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia. PMID:23031405

  18. 454 sequencing reveals extreme complexity of the class II Major Histocompatibility Complex in the collared flycatcher

    Directory of Open Access Journals (Sweden)

    Gustafsson Lars

    2010-12-01

    Full Text Available Abstract Background Because of their functional significance, the Major Histocompatibility Complex (MHC class I and II genes have been the subject of continuous interest in the fields of ecology, evolution and conservation. In some vertebrate groups MHC consists of multiple loci with similar alleles; therefore, the multiple loci must be genotyped simultaneously. In such complex systems, understanding of the evolutionary patterns and their causes has been limited due to challenges posed by genotyping. Results Here we used 454 amplicon sequencing to characterize MHC class IIB exon 2 variation in the collared flycatcher, an important organism in evolutionary and immuno-ecological studies. On the basis of over 152,000 sequencing reads we identified 194 putative alleles in 237 individuals. We found an extreme complexity of the MHC class IIB in the collared flycatchers, with our estimates pointing to the presence of at least nine expressed loci and a large, though difficult to estimate precisely, number of pseudogene loci. Many similar alleles occurred in the pseudogenes indicating either a series of recent duplications or extensive concerted evolution. The expressed alleles showed unambiguous signals of historical selection and the occurrence of apparent interlocus exchange of alleles. Placing the collared flycatcher's MHC sequences in the context of passerine diversity revealed transspecific MHC class II evolution within the Muscicapidae family. Conclusions 454 amplicon sequencing is an effective tool for advancing our understanding of the MHC class II structure and evolutionary patterns in Passeriformes. We found a highly dynamic pattern of evolution of MHC class IIB genes with strong signals of selection and pronounced sequence divergence in expressed genes, in contrast to the apparent sequence homogenization in pseudogenes. We show that next generation sequencing offers a universal, affordable method for the characterization and, in perspective

  19. Low major histocompatibility complex class II DQA diversity in the Giant Panda (Ailuropoda melanoleuca

    Directory of Open Access Journals (Sweden)

    Ruan Xiang-Dong

    2007-06-01

    Full Text Available Abstract Background The giant panda (Ailuropoda melanoleuca is one of the most endangered animals due to habitat fragmentation and loss. Although the captive breeding program for this species is now nearly two decades old, researches on the genetic background of such captive populations, especially on adaptive molecular polymorphism of major histocompatibility complex (MHC, are still limited. In this study, we characterized adaptive variation of the giant panda's MHC DQA gene by PCR amplification of its antigen-recognizing region (i.e. the exon 2 and subsequent single-strand conformational polymorphism (SSCP and sequence analyses. Results The results revealed a low level of DQA exon 2 diversity in this rare animal, presenting 6 alleles from 61 giant panda individuals. The observed polymorphism was restricted to 9 amino acid substitutions, all of which occurred at and adjacent to positions forming the functionally important antigen-binding sites. All the samples were in Hardy-Weinberg proportions. A significantly higher rate of non-synonymous than synonymous substitutions at the antigen-binding sites indicated positive selection for diversity in the locus. Conclusion The DQA allelic diversity of giant pandas was low relative to other vertebrates. Nonetheless, the pandas exhibited more alleles in DQA than those in DRB, suggesting the alpha chain genes would play a leading role when coping with certain pathogens and thus should be included in conservation genetic investigation. The microsatellite and MHC loci might predict long-term persistence potential and short-term survival ability, respectively. Consequently, it is recommended to utilize multiple suites of microsatellite markers and multiple MHC loci to detect overall genetic variation in order to design unbiased conservation strategies.

  20. Evolution of major histocompatibility complex class I and class II genes in the brown bear

    Directory of Open Access Journals (Sweden)

    Kuduk Katarzyna

    2012-10-01

    Full Text Available Abstract Background Major histocompatibility complex (MHC proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. Results We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN exceeded the rate of synonymous substitutions (dS at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Conclusions Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South–north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  1. Identification of susceptibility and protective major histocompatibility complex haplotypes in canine diabetes mellitus.

    Science.gov (United States)

    Kennedy, L J; Davison, L J; Barnes, A; Short, A D; Fretwell, N; Jones, C A; Lee, A C; Ollier, W E R; Catchpole, B

    2006-12-01

    Diabetes mellitus occurs spontaneously in dogs, which is believed to have an autoimmune component and to be a model of human latent autoimmune diabetes of adults (LADA). Some dog breeds (e.g. Samoyed) are particularly predisposed, whereas others (e.g. Boxer) are highly resistant. With the completion of the Dog Genome Assembly, comparative genomic studies of complex diseases in dogs, including diabetes, could provide an important investigative approach into such disorders. Type 1 diabetes in humans is strongly associated with major histocompatibility complex (MHC) class II polymorphisms. We have investigated whether canine dog leucocyte antigen (DLA) class II haplotypes are associated with diabetes. DNA from 460 cases and 1047 controls were genotyped for DLA-DRB1, DLA-DQA1 and DLA-DQB1 using sequence-based typing. Three DLA haplotypes, DRB1*009/DQA1*001/DQB1*008, DRB1*015/DQA1*0061/DQB1*023 and DRB1*002/DQA1*009/DQB1*001, were found at significantly increased frequency in cases with diabetes compared with controls. One DLA-DQ haplotype, DQA1*004/DQB1*013, was significantly reduced in cases with diabetes. Further analysis showed that DQA1 alleles carrying arginine at codon 55 of DQA1 were increased in dogs with diabetes. To our knowledge, this is the first report of a comparative study of MHC and diabetes in a non-rodent species. Since no laboratory model of LADA exists and dogs and humans share similar environments, further research into canine diabetes is warranted.

  2. Structural Requirements and Biological Significance of Interactions between Peptides and the Major Histocompatibility Complex

    Science.gov (United States)

    Grey, H. M.; Buus, S.; Colon, S.; Miles, C.; Sette, A.

    1989-06-01

    Previous studies indicate that T cells recognize a complex between the major histocompatibility complex (MHC) restriction-element and peptide-antigen fragments. Two aspects of this complex formation are considered in this paper: (1) what is the nature of the specificity of the interactions that allows a few MHC molecules to serve as restriction elements for a large universe of antigens; and (2) what is the relative contribution of determinant selection (i.e. antigen-MHC complex formation) and Tcell repertoire in determining the capacity of an individual to respond to an antigen? By analysing single amino acid substitution analogues of a peptide antigen (Ova 325-335) as well as by analysing the structural similarities between unrelated peptides capable of binding to the same MHC molecule, we have been able to document the very permissive nature of the antigen--MHC interaction. Despite this permissiveness of binding, it is possible to define certain structural features of peptides that are associated with the capacity to bind to a particular MHC specificity. With respect to the question of the relative role of determinant selection' and 'holes in the T-cell repertoire' in determining immune responsiveness, we present data that suggest both mechanisms operate in concert with one another. Thus only about 30% of a collection of peptides that in sum represent the sequence of a protein molecule were found to bind to Ia. Although immunogenicity was restricted to those peptides that were capable of binding to Ia (i.e. determinant selection was operative), we found that about 40% of Ia-binding peptides were not immunogenic (i.e. there were also 'holes in the T-cell repertoire').

  3. Introgression from domestic goat generated variation at the major histocompatibility complex of Alpine ibex.

    Directory of Open Access Journals (Sweden)

    Christine Grossen

    2014-06-01

    Full Text Available The major histocompatibility complex (MHC is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex. At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2, Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus. We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8% to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection.

  4. Evolution of major histocompatibility complex class I and class II genes in the brown bear.

    Science.gov (United States)

    Kuduk, Katarzyna; Babik, Wiesław; Bojarska, Katarzyna; Sliwińska, Ewa B; Kindberg, Jonas; Taberlet, Pierre; Swenson, Jon E; Radwan, Jacek

    2012-10-02

    Major histocompatibility complex (MHC) proteins constitute an essential component of the vertebrate immune response, and are coded by the most polymorphic of the vertebrate genes. Here, we investigated sequence variation and evolution of MHC class I and class II DRB, DQA and DQB genes in the brown bear Ursus arctos to characterise the level of polymorphism, estimate the strength of positive selection acting on them, and assess the extent of gene orthology and trans-species polymorphism in Ursidae. We found 37 MHC class I, 16 MHC class II DRB, four DQB and two DQA alleles. We confirmed the expression of several loci: three MHC class I, two DRB, two DQB and one DQA. MHC class I also contained two clusters of non-expressed sequences. MHC class I and DRB allele frequencies differed between northern and southern populations of the Scandinavian brown bear. The rate of nonsynonymous substitutions (dN) exceeded the rate of synonymous substitutions (dS) at putative antigen binding sites of DRB and DQB loci and, marginally significantly, at MHC class I loci. Models of codon evolution supported positive selection at DRB and MHC class I loci. Both MHC class I and MHC class II sequences showed orthology to gene clusters found in the giant panda Ailuropoda melanoleuca. Historical positive selection has acted on MHC class I, class II DRB and DQB, but not on the DQA locus. The signal of historical positive selection on the DRB locus was particularly strong, which may be a general feature of caniforms. The presence of MHC class I pseudogenes may indicate faster gene turnover in this class through the birth-and-death process. South-north population structure at MHC loci probably reflects origin of the populations from separate glacial refugia.

  5. Major histocompatibility complex alleles associated with parasite susceptibility in wild giant pandas.

    Science.gov (United States)

    Zhang, L; Wu, Q; Hu, Y; Wu, H; Wei, F

    2015-01-01

    Major histocompatibility complex (MHC) polymorphism is thought to be driven by antagonistic coevolution between pathogens and hosts, mediated through either overdominance or frequency-dependent selection. However, investigations under natural conditions are still rare for endangered mammals which often exhibit depleted variation, and the mechanism of selection underlying the maintenance of characteristics remains a considerable debate. In this study, 87 wild giant pandas were used to investigate MHC variation associated with parasite load. With the knowledge of the MHC profile provided by the genomic data of the giant panda, seven DRB1, seven DQA1 and eight DQA2 alleles were identified at each single locus. Positive selection evidenced by a significantly higher number of non-synonymous substitutions per non-synonymous codon site relative to synonymous substitutions per synonymous codon site could only be detected at the DRB1 locus, which leads to the speculation that DRB1 may have a more important role in dealing with parasite infection for pandas. Coprological analyses revealed that 55.17% of individuals exhibited infection with 1-2 helminthes and 95.3% of infected pandas carried Baylisascaris shroederi. Using a generalized linear model, we found that Aime-DRB1*10 was significantly associated with parasite infection, but no resistant alleles could be detected. MHC heterozygosity of the pandas was found to be uncorrelated with the infection status or the infection intensity. These results suggested that the possible selection mechanisms in extant wild pandas may be frequency dependent rather than being determined by overdominance selection. Our findings could guide the candidate selection for the ongoing reintroduction or translocation of pandas.

  6. The major histocompatibility complex genes impact pain response in DA and DA.1U rats.

    Science.gov (United States)

    Guo, Yuan; Yao, Fan-Rong; Cao, Dong-Yuan; Li, Li; Wang, Hui-Sheng; Xie, Wen; Zhao, Yan

    2015-08-01

    Our recent studies have shown that the difference in basal pain sensitivity to mechanical and thermal stimulation between Dark-Agouti (DA) rats and a novel congenic DA.1U rats is major histocompatibility complex (MHC) genes dependent. In the present study, we further used DA and DA.1U rats to investigate the role of MHC genes in formalin-induced pain model by behavioral, electrophysiological and immunohistochemical methods. Behavioral results showed biphasic nociceptive behaviors increased significantly following the intraplantar injection of formalin in the hindpaw of DA and DA.1U rats. The main nociceptive behaviors were lifting and licking, especially in DA rats (P<0.001 and P<0.01). The composite pain scores (CPS) in DA rats were significantly higher than those in DA.1U rats in both phases of the formalin test (P<0.01). Electrophysiological results also showed the biphasic increase in discharge rates of C and Aδ fibers of L5 dorsal root in the two strains, and the net change of the discharge rate of DA rats was significantly higher than that of DA.1U rats (P<0.05). The mechanical thresholds decreased after formalin injection in both strains (P<0.01), and the net change in the mechanical threshold in DA was greater than that in DA.1U rats (P<0.05). The expression of RT1-B, representation of MHC class II molecule, in laminae I-II of L4/5 spinal cord in DA rats was significantly higher than that in DA.1U rats in the respective experimental group (P<0.05). These results suggested that both DA and DA.1U rats exhibited nociceptive responses in formalin-induced pain model and DA rats were more sensitive to noxious chemical stimulus than DA.1U rats, indicating that MHC genes might contribute to the difference in pain sensitivity. Copyright © 2015 Elsevier Inc. All rights reserved.

  7. Direct evidence for conformational dynamics in major histocompatibility complex class I molecules.

    Science.gov (United States)

    van Hateren, Andy; Anderson, Malcolm; Bailey, Alistair; Werner, Jörn M; Skipp, Paul; Elliott, Tim

    2017-12-08

    Major histocompatibility complex class I molecules (MHC I) help protect jawed vertebrates by binding and presenting immunogenic peptides to cytotoxic T lymphocytes. Peptides are selected from a large diversity present in the endoplasmic reticulum. However, only a limited number of peptides complement the polymorphic MHC specificity determining pockets in a way that leads to high-affinity peptide binding and efficient antigen presentation. MHC I molecules possess an intrinsic ability to discriminate between peptides, which varies in efficiency between allotypes, but the mechanism of selection is unknown. Elucidation of the selection mechanism is likely to benefit future immune-modulatory therapies. Evidence suggests peptide selection involves transient adoption of alternative, presumably higher energy conformations than native peptide-MHC complexes. However, the instability of peptide-receptive MHC molecules has hindered characterization of such conformational plasticity. To investigate the dynamic nature of MHC, we refolded MHC proteins with peptides that can be hydrolyzed by UV light and thus released. We compared the resultant peptide-receptive MHC molecules with non-hydrolyzed peptide-loaded MHC complexes by monitoring the exchange of hydrogen for deuterium in solution. We found differences in hydrogen-deuterium exchange between peptide-loaded and peptide-receptive molecules that were negated by the addition of peptide to peptide-receptive MHC molecules. Peptide hydrolysis caused significant increases in hydrogen-deuterium exchange in sub-regions of the peptide-binding domain and smaller increases elsewhere, including in the α3 domain and the non-covalently associated β 2 -microglobulin molecule, demonstrating long-range dynamic communication. Comparing two MHC allotypes revealed allotype-specific differences in hydrogen-deuterium exchange, consistent with the notion that MHC I plasticity underpins peptide selection. © 2017 by The American Society for

  8. CD9 Regulates Major Histocompatibility Complex Class II Trafficking in Monocyte-Derived Dendritic Cells.

    Science.gov (United States)

    Rocha-Perugini, Vera; Martínez Del Hoyo, Gloria; González-Granado, José María; Ramírez-Huesca, Marta; Zorita, Virginia; Rubinstein, Eric; Boucheix, Claude; Sánchez-Madrid, Francisco

    2017-08-01

    Antigen presentation by dendritic cells (DCs) stimulates naive CD4 + T cells, triggering T cell activation and the adaptive arm of the immune response. Newly synthesized major histocompatibility complex class II (MHC-II) molecules accumulate at MHC-II-enriched endosomal compartments and are transported to the plasma membrane of DCs after binding to antigenic peptides to enable antigen presentation. In DCs, MHC-II molecules are included in tetraspanin-enriched microdomains (TEMs). However, the role of tetraspanin CD9 in these processes remains largely undefined. Here, we show that CD9 regulates the T cell-stimulatory capacity of granulocyte-macrophage colony-stimulating factor (GM-CSF)-dependent bone marrow-derived DCs (BMDCs), without affecting antigen presentation by fms-like tyrosine kinase 3 ligand (Flt3L)-dependent BMDCs. CD9 knockout (KO) GM-CSF-dependent BMDCs, which resemble monocyte-derived DCs (MoDCs), induce lower levels of T cell activation than wild-type DCs, and this effect is related to a reduction in MHC-II surface expression in CD9-deficient MoDCs. Importantly, MHC-II targeting to the plasma membrane is largely impaired in immature CD9 KO MoDCs, in which MHC-II remains arrested in acidic intracellular compartments enriched in LAMP-1 (lysosome-associated membrane protein 1), and MHC-II internalization is also blocked. Moreover, CD9 participates in MHC-II trafficking in mature MoDCs, regulating its endocytosis and recycling. Our results demonstrate that the tetraspanin CD9 specifically regulates antigenic presentation in MoDCs through the regulation of MHC-II intracellular trafficking. Copyright © 2017 American Society for Microbiology.

  9. Phenome-wide association study maps new diseases to the human major histocompatibility complex region.

    Science.gov (United States)

    Liu, Jixia; Ye, Zhan; Mayer, John G; Hoch, Brian A; Green, Clayton; Rolak, Loren; Cold, Christopher; Khor, Seik-Soon; Zheng, Xiuwen; Miyagawa, Taku; Tokunaga, Katsushi; Brilliant, Murray H; Hebbring, Scott J

    2016-10-01

    Over 160 disease phenotypes have been mapped to the major histocompatibility complex (MHC) region on chromosome 6 by genome-wide association study (GWAS), suggesting that the MHC region as a whole may be involved in the aetiology of many phenotypes, including unstudied diseases. The phenome-wide association study (PheWAS), a powerful and complementary approach to GWAS, has demonstrated its ability to discover and rediscover genetic associations. The objective of this study is to comprehensively investigate the MHC region by PheWAS to identify new phenotypes mapped to this genetically important region. In the current study, we systematically explored the MHC region using PheWAS to associate 2692 MHC-linked variants (minor allele frequency ≥0.01) with 6221 phenotypes in a cohort of 7481 subjects from the Marshfield Clinic Personalized Medicine Research Project. Findings showed that expected associations previously identified by GWAS could be identified by PheWAS (eg, psoriasis, ankylosing spondylitis, type I diabetes and coeliac disease) with some having strong cross-phenotype associations potentially driven by pleiotropic effects. Importantly, novel associations with eight diseases not previously assessed by GWAS (eg, lichen planus) were also identified and replicated in an independent population. Many of these associated diseases appear to be immune-related disorders. Further assessment of these diseases in 16 484 Marshfield Clinic twins suggests that some of these diseases, including lichen planus, may have genetic aetiologies. These results demonstrate that the PheWAS approach is a powerful and novel method to discover SNP-disease associations, and is ideal when characterising cross-phenotype associations, and further emphasise the importance of the MHC region in human health and disease. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/

  10. Population-dependent contribution of the major histocompatibility complex region to schizophrenia susceptibility.

    Science.gov (United States)

    Yamada, Kazuo; Hattori, Eiji; Iwayama, Yoshimi; Toyota, Tomoko; Iwata, Yasuhide; Suzuki, Katsuaki; Kikuchi, Mitsuru; Hashimoto, Tasuku; Kanahara, Nobuhisa; Mori, Norio; Yoshikawa, Takeo

    2015-10-01

    There is consistent data from European cohorts suggesting a genetic contribution from the major histocompatibility complex (MHC) to the pathogenesis of schizophrenia. However, the genomic complexity and ethnicity-specific diversity found in the MHC cause difficulties in identifying causal variants or genes, and there is a need for studies encompassing the entire MHC region in multiple ethnic populations. Here, we report on association signals in the MHC region, with schizophrenia in the Japanese population. We genotyped and imputed a total of 10,131 single nucleotide polymorphisms (SNPs), spanning the entire MHC interval. The analysis included 3302 participants (1518 schizophrenics and 1784 healthy controls) from the Japanese population. In this study, we present evidence for association at rs494620, located in the SLC44A4 gene. The association survived after correction for multiple testing (unadjusted P=7.78×10(-5), empirical P=0.0357). The imputation results detected the highest association at rs707937 in the MSH5-SAPCD1 gene (imputed P=8.40×10(-5)). In expression analysis using postmortem brains from schizophrenia and control samples, MSH5-SAPCD1 showed marginally significant expression differences in Brodmann's area 46 (P=0.044 by unpaired t test with Welch's correction, P=0.099 by Mann-Whitney U test). Our study further strengthens evidence for the involvement of the MHC in schizophrenia across populations, and provides insight into population-specific mechanisms for the MHC region in schizophrenia susceptibility. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Major Histocompatibility Complex (MHC) Class I and MHC Class II Proteins: Conformational Plasticity in Antigen Presentation

    Science.gov (United States)

    Wieczorek, Marek; Abualrous, Esam T.; Sticht, Jana; Álvaro-Benito, Miguel; Stolzenberg, Sebastian; Noé, Frank; Freund, Christian

    2017-01-01

    Antigen presentation by major histocompatibility complex (MHC) proteins is essential for adaptive immunity. Prior to presentation, peptides need to be generated from proteins that are either produced by the cell’s own translational machinery or that are funneled into the endo-lysosomal vesicular system. The prolonged interaction between a T cell receptor and specific pMHC complexes, after an extensive search process in secondary lymphatic organs, eventually triggers T cells to proliferate and to mount a specific cellular immune response. Once processed, the peptide repertoire presented by MHC proteins largely depends on structural features of the binding groove of each particular MHC allelic variant. Additionally, two peptide editors—tapasin for class I and HLA-DM for class II—contribute to the shaping of the presented peptidome by favoring the binding of high-affinity antigens. Although there is a vast amount of biochemical and structural information, the mechanism of the catalyzed peptide exchange for MHC class I and class II proteins still remains controversial, and it is not well understood why certain MHC allelic variants are more susceptible to peptide editing than others. Recent studies predict a high impact of protein intermediate states on MHC allele-specific peptide presentation, which implies a profound influence of MHC dynamics on the phenomenon of immunodominance and the development of autoimmune diseases. Here, we review the recent literature that describe MHC class I and II dynamics from a theoretical and experimental point of view and we highlight the similarities between MHC class I and class II dynamics despite the distinct functions they fulfill in adaptive immunity. PMID:28367149

  12. Distribution of class ii major histocompatibility complex antigenexpressing cells in human dental pulp with carious lesions

    Directory of Open Access Journals (Sweden)

    Tetiana Haniastuti

    2012-09-01

    Full Text Available Background: Dental caries is a bacterial infection which causes destruction of the hard tissues of the tooth. Exposure of the dentin to the oral environment as a result of caries inevitably results in a cellular response in the pulp. The major histocompatibility complex (MHC is a group of genes that code for cell-surface histocompatibility antigens. Cells expressing class II MHC molecules participate in the initial recognition and the processing of antigenic substances to serve as antigen-presenting cells. Purpose: The aim of the study was to elucidate the alteration in the distribution of class II MHC antigen-expressing cells in human dental pulp as carious lesions progressed toward the pulp. Methods: Fifteen third molars with caries at the occlusal site at various stages of decay and 5 intact third molars were extracted and used in this study. Before decalcifying with 10% EDTA solution (pH 7.4, all the samples were observed by micro-computed tomography to confirm the lesion condition three-dimensionally. The specimens were then processed for cryosection and immunohistochemistry using an anti-MHC class II monoclonal antibody. Results: Class II MHC antigen-expressing cells were found both in normal and carious specimens. In normal tooth, the class II MHC-immunopositive cells were observed mainly at the periphery of the pulp tissue. In teeth with caries, class II MHC-immunopositive cells were located predominantly subjacent to the carious lesions. As the caries progressed, the number of class II MHC antigen-expressing cells was increased. Conclusion: The depth of carious lesions affects the distribution of class II MHC antigen-expressing cells in the dental pulp.Latar belakang: Karies merupakan penyakit infeksi bakteri yang mengakibatkan destruksi jaringan keras gigi. Dentin yang terbuka akibat karies akan menginduksi respon imun seluler pada pulpa. Kompleks histokompatibilitas utama (MHC merupakan sekumpulan gen yang mengkode histokompatibilitas

  13. Zika Virus Escapes NK Cell Detection by Upregulating Major Histocompatibility Complex Class I Molecules.

    Science.gov (United States)

    Glasner, Ariella; Oiknine-Djian, Esther; Weisblum, Yiska; Diab, Mohammad; Panet, Amos; Wolf, Dana G; Mandelboim, Ofer

    2017-11-15

    NK cells are innate lymphocytes that participate in many immune processes encompassing cancer, bacterial and fungal infection, autoimmunity, and even pregnancy and that specialize in antiviral defense. NK cells express inhibitory and activating receptors and kill their targets when activating signals overpower inhibitory signals. The NK cell inhibitory receptors include a uniquely diverse array of proteins named killer cell immunoglobulin-like receptors (KIRs), the CD94 family, and the leukocyte immunoglobulin-like receptor (LIR) family. The NK cell inhibitory receptors recognize mostly major histocompatibility complex (MHC) class I (MHC-I) proteins. Zika virus has recently emerged as a major threat due to its association with birth defects and its pandemic potential. How Zika virus interacts with the immune system, and especially with NK cells, is unclear. Here we show that Zika virus infection is barely sensed by NK cells, since little or no increase in the expression of activating NK cell ligands was observed following Zika infection. In contrast, we demonstrate that Zika virus infection leads to the upregulation of MHC class I proteins and consequently to the inhibition of NK cell killing. Mechanistically, we show that MHC class I proteins are upregulated via the RIGI-IRF3 pathway and that this upregulation is mediated via beta interferon (IFN-β). Potentially, countering MHC class I upregulation during Zika virus infection could be used as a prophylactic treatment against Zika virus. IMPORTANCE NK cells are innate lymphocytes that recognize and eliminate various pathogens and are known mostly for their role in controlling viral infections. NK cells express inhibitory and activating receptors, and they kill or spare their targets based on the integration of inhibitory and activating signals. Zika virus has recently emerged as a major threat to humans due to its pandemic potential and its association with birth defects. The role of NK cells in Zika virus

  14. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus.

    Science.gov (United States)

    Kamath, Pauline L; Getz, Wayne M

    2011-05-18

    Major Histocompatibility Complex (MHC) genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA), DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli). We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS) averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN

  15. Adaptive molecular evolution of the Major Histocompatibility Complex genes, DRA and DQA, in the genus Equus

    Directory of Open Access Journals (Sweden)

    Getz Wayne M

    2011-05-01

    Full Text Available Abstract Background Major Histocompatibility Complex (MHC genes are central to vertebrate immune response and are believed to be under balancing selection by pathogens. This hypothesis has been supported by observations of extremely high polymorphism, elevated nonsynonymous to synonymous base pair substitution rates and trans-species polymorphisms at these loci. In equids, the organization and variability of this gene family has been described, however the full extent of diversity and selection is unknown. As selection is not expected to act uniformly on a functional gene, maximum likelihood codon-based models of selection that allow heterogeneity in selection across codon positions can be valuable for examining MHC gene evolution and the molecular basis for species adaptations. Results We investigated the evolution of two class II MHC genes of the Equine Lymphocyte Antigen (ELA, DRA and DQA, in the genus Equus with the addition of novel alleles identified in plains zebra (E. quagga, formerly E. burchelli. We found that both genes exhibited a high degree of polymorphism and inter-specific sharing of allele lineages. To our knowledge, DRA allelic diversity was discovered to be higher than has ever been observed in vertebrates. Evidence was also found to support a duplication of the DQA locus. Selection analyses, evaluated in terms of relative rates of nonsynonymous to synonymous mutations (dN/dS averaged over the gene region, indicated that the majority of codon sites were conserved and under purifying selection (dN dS. However, the most likely evolutionary codon models allowed for variable rates of selection across codon sites at both loci and, at the DQA, supported the hypothesis of positive selection acting on specific sites. Conclusions Observations of elevated genetic diversity and trans-species polymorphisms supported the conclusion that balancing selection may be acting on these loci. Furthermore, at the DQA, positive selection was

  16. The major histocompatibility complex in Old World camelids and low polymorphism of its class II genes.

    Science.gov (United States)

    Plasil, Martin; Mohandesan, Elmira; Fitak, Robert R; Musilova, Petra; Kubickova, Svatava; Burger, Pamela A; Horin, Petr

    2016-03-01

    The Major Histocompatibility Complex (MHC) is a genomic region containing genes with crucial roles in immune responses. MHC class I and class II genes encode antigen-presenting molecules expressed on the cell surface. To counteract the high variability of pathogens, the MHC evolved into a region of considerable heterogeneity in its organization, number and extent of polymorphism. Studies of MHCs in different model species contribute to our understanding of mechanisms of immunity, diseases and their evolution. Camels are economically important domestic animals and interesting biomodels. Three species of Old World camels have been recognized: the dromedary (Camelus dromedarius), Bactrian camel (Camelus bactrianus) and the wild camel (Camelus ferus). Despite their importance, little is known about the MHC genomic region, its organization and diversity in camels. The objectives of this study were to identify, map and characterize the MHC region of Old World camelids, with special attention to genetic variation at selected class MHC II loci. Physical mapping located the MHC region to the chromosome 20 in Camelus dromedarius. Cytogenetic and comparative analyses of whole genome sequences showed that the order of the three major sub-regions is "Centromere - Class II - Class III - Class I". DRA, DRB, DQA and DQB exon 2 sequences encoding the antigen binding site of the corresponding class II antigen presenting molecules showed high degree of sequence similarity and extensive allele sharing across the three species. Unexpectedly low extent of polymorphism with low numbers of alleles and haplotypes was observed in all species, despite different geographic origins of the camels analyzed. The DRA locus was found to be polymorphic, with three alleles shared by all three species. DRA and DQA sequences retrieved from ancient DNA samples of Camelus dromedarius suggested that additional polymorphism might exist. This study provided evidence that camels possess an MHC comparable to

  17. T-cell activation. VI. Inhibitory and stimulatory effects of anti-major histocompatibility complex class I antibodies in allogeneic mixed lymphocyte culture

    DEFF Research Database (Denmark)

    Röpke, M; Röpke, C; Claesson, Mogens Helweg

    1993-01-01

    Murine T splenocytes stimulated in primary allogeneic mixed lymphocyte culture (MLC) were incubated with soluble anti-major histocompatibility complex (MHC) class I monoclonal antibodies. These antibodies induced inhibition in the cytotoxicity of the responding population and this inhibition...

  18. Staphylococcus-mediated T-cell activation and spontaneous natural killer cell activity in the absence of major histocompatibility complex class II molecules

    Science.gov (United States)

    Chapes, S. K.; Hoynowski, S. M.; Woods, K. M.; Armstrong, J. W.; Beharka, A. A.; Iandolo, J. J.; Spooner, B. S. (Principal Investigator)

    1993-01-01

    We used major histocompatibility complex class II antigen-deficient transgenic mice to show that in vitro natural killer cell cytotoxicity and T-cell activation by staphylococcal exotoxins (superantigens) are not dependent upon the presence of major histocompatibility complex class II molecules. T cells can be activated by exotoxins in the presence of exogenously added interleukin 1 or 2 or in the presence of specific antibody without exogenously added cytokines.

  19. Second class minors: molecular identification of the autosomal H46 histocompatibility locus as a peptide presented by major histocompatibility complex class II molecules.

    Science.gov (United States)

    Sahara, Hiroeki; Shastri, Nilabh

    2003-02-03

    CD4 T cells regulate immune responses that cause chronic graft rejection and graft versus host disease but their target antigens remain virtually unknown. We developed a new method to identify CD4 T cell-stimulating antigens. LacZ-inducible CD4 T cells were used as a probe to detect their cognate peptide/MHC II ligand generated in dendritic cells fed with Escherichia coli expressing a library of target cell genes. The murine H46 locus on chromosome 7 was thus found to encode the interleukin 4-induced IL4i1 gene. The IL4i1 precursor contains the HAFVEAIPELQGHV peptide which is presented by A(b) major histocompatibility complex class II molecule via an endogenous pathway in professional antigen presenting cells. Both allelic peptides bind A(b) and a single alanine to methionine substitution at p2 defines nonself. These results reveal novel features of H loci that regulate CD4 T cell responses as well as provide a general strategy for identifying elusive antigens that elicit CD4 T cell responses to tumors or self-tissues in autoimmunity.

  20. Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus

    Science.gov (United States)

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A.; Touloudi, Antonia; Hammer, Anne Sofie; Valiakos, George; Giannoulis, Themis; Stamatis, Costas; Spyrou, Vassiliki; Athanasiou, Labrini V.; Kantere, Maria; Asferg, Tommy; Giannakopoulos, Alexios; Salomonsen, Charlotte M.; Bogdanos, Dimitrios; Birtsas, Periklis; Petrovska, Liljana; Hannant, Duncan; Billinis, Charalambos

    2013-01-01

    A study was conducted in order to determine the occurrence of European Brown Hare Syndrome virus (EBHSV) in Denmark and possible relation between disease pathogenesis and Major Histocompatibility Complex (MHC) host genotype. Liver samples were examined from 170 brown hares (hunted, found sick or dead), collected between 2004 and 2009. Macroscopical and histopathological findings consistent with EBHS were detected in 24 (14.1%) hares; 35 (20.6%) had liver lesions not typical of the syndrome, 50 (29.4%) had lesions in other tissues and 61 (35.9%) had no lesions. Sixty five (38.2%) of 170 samples were found to be EBHSV-positive (RT-PCR, VP60 gene). In order to investigate associations between viral pathogenesis and host genotype, variation within the exon 2 DQA gene of MHC was assessed. DQA exon 2 analysis revealed the occurrence of seven different alleles in Denmark. Consistent with other populations examined so far in Europe, observed heterozygosity of DQA (Ho = 0.1180) was lower than expected (He = 0.5835). The overall variation for both nucleotide and amino acid differences (2.9% and 14.9%, respectively) were lower in Denmark than those assessed in other European countries (8.3% and 16.9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative hares. However, allele Leeu-DQA*30 was detected in significantly higher (P = 0.000006) frequency among the positive hares found dead with severe histopathological lesions than among those found sick or apparently healthy. In contrast, the latter group was characterized by a higher frequency of the allele Leeu-DQA*14 as well as the proportion of heterozygous individuals (P = 0.000006 and P = 0.027). These data reveal a polarisation between EBHSV pathogenesis

  1. Major Histocompatibility Complex Class I Chain-Related A (MICA) Molecules: Relevance in Solid Organ Transplantation

    Science.gov (United States)

    Baranwal, Ajay Kumar; Mehra, Narinder K.

    2017-01-01

    An ever growing number of reports on graft rejection and/or failure even with good HLA matches have highlighted an important role of non-HLA antigens in influencing allograft immunity. The list of non-HLA antigens that have been implicated in graft rejection in different types of organ transplantation has already grown long. Of these, the Major Histocompatibility Complex class I chain-related molecule A (MICA) is one of the most polymorphic and extensively studied non-HLA antigenic targets especially in the kidney transplantation. Humoral response to MICA antigens has repeatedly been associated with lower graft survival and an increased risk of acute and chronic rejection following kidney and liver transplantation with few studies showing conflicting results. Although there are clear indications of MICA antibodies being associated with adverse graft outcome, a definitive consensus on this relationship has not been arrived yet. Furthermore, only a few studies have dealt with the impact of MICA donor-specific antibodies as compared to those that are not donor specific on graft outcome. In addition to the membrane bound form, a soluble isoform of MICA (sMICA), which has the potential to engage the natural killer cell-activating receptor NKG2D resulting in endocytosis and degradation of receptor–ligand interaction complex leading to suppression of NKG2D-mediated host innate immunity, has been a subject of intense discussion. Most studies on sMICA have been directed toward understanding their influence on tumor growth, with limited literature focusing its role in transplant biology. Furthermore, a unique dimorphism (methionine to valine) at position 129 in the α2 domain categorizes MICA alleles into strong (MICA-129 met) and weak (MICA-129 val) binders of NKG2D receptor depending on whether they have methionine or valine at this position. Although the implications of MICA 129 dimorphism have been highlighted in hematopoietic stem cell transplantation, its role in

  2. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex–Peptide Monomers by Flow Cytometry

    Science.gov (United States)

    Chandran, P. Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile

    2017-01-01

    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage. PMID:28228758

  3. A Simple and Rapid Method for Quality Control of Major Histocompatibility Complex-Peptide Monomers by Flow Cytometry.

    Science.gov (United States)

    Chandran, P Anoop; Heidu, Sonja; Zelba, Henning; Schmid-Horch, Barbara; Rammensee, Hans-Georg; Pascolo, Steve; Gouttefangeas, Cécile

    2017-01-01

    Major histocompatibility complex (MHC) multimers are essential tools in T cell immunomonitoring, which are employed both in basic and clinical research, as well as for assessing clinical samples during therapy. The generation of MHC monomers loaded with synthetic peptides is an elaborate and time-consuming process. It would be beneficial to assess the quality of these monomers prior to downstream applications. In this technical note, we describe a novel flow cytometry-based, cell-free, quick, and robust assay to check the quality of MHC monomers directly after refolding or after long-term storage.

  4. T cell responses affected by aminopeptidase N (CD13)-mediated trimming of major histocompatibility complex class II-bound peptides

    DEFF Research Database (Denmark)

    Larsen, S L; Pedersen, L O; Buus, S

    1996-01-01

    the exopeptidase Aminopeptidase N (APN, CD13) as one of the enzymes involved in the observed cell-surface antigen processing. The NH2-terminal end of the longer peptide could, even while bound to major histocompatibility complex (MHC) class II molecules, be digested by APN with dramatic consequences for T cell......Endocytosed protein antigens are believed to be fragmented in what appears to be a balance between proteolysis and MHC-mediated epitope protection, and the resulting peptide-MHC complexes are transported to the surface of the antigen-presenting cells (APC) and presented to T cells. The events...

  5. A Recombinant Antibody with the Antigen-Specific, Major Histocompatibility Complex-Restricted Specificity of T Cells

    Science.gov (United States)

    Andersen, Peter S.; Stryhn, Anette; Hansen, Bjarke E.; Fugger, Lars; Engberg, Jan; Buus, Soren

    1996-03-01

    Specific recognition of peptide/major histocompatibility complex (MHC) molecule complexes by the T-cell receptor is a key reaction in the specific immune response. Antibodies against peptide/MHC complexes would therefore be valuable tools in studying MHC function and T-cell recognition and might lead to novel approaches in immunotherapy. However, it has proven difficult to generate antibodies with the specificity of T cells by conventional hybridoma techniques. Here we report that the phage display technology is a feasible alternative to generate antibodies recognizing specific, predetermined peptide/MHC complexes.

  6. Oriented coupling of major histocompatibility complex (MHC) to sensor surfaces using light assisted immobilisation technology

    DEFF Research Database (Denmark)

    Snabe, Torben; Røder, Gustav Andreas; Neves-Petersen, Maria Teresa

    2005-01-01

    histocompatibility complex (MHC class I) to a sensor surface is presented. The coupling was performed using light assisted immobilisation--a novel immobilisation technology which allows specific opening of particular disulphide bridges in proteins which then is used for covalent bonding to thiol-derivatised surfaces...... via a new disulphide bond. Light assisted immobilisation specifically targets the disulphide bridge in the MHC-I molecule alpha(3)-domain which ensures oriented linking of the complex with the peptide binding site exposed away from the sensor surface. Structural analysis reveals that a similar...

  7. Highly conserved extended haplotypes of the major histocompatibility complex and their relationship to multiple sclerosis susceptibility.

    Directory of Open Access Journals (Sweden)

    Douglas S Goodin

    Full Text Available To determine the relationship between highly-conserved extended-haplotypes (CEHs in the major histocompatibility complex (MHC and MS-susceptibility.Among the ~200 MS-susceptibility regions, which are known from genome-wide analyses of single nucleotide polymorphisms (SNPs, the MHC accounts for roughly a third of the currently explained variance and the strongest MS-associations are for certain Class II alleles (e.g., HLA-DRB1*15:01; HLA-DRB1*03:01; and HLA-DRB1*13:03, which frequently reside on CEHs within the MHC.Autosomal SNPs (441,547 from 11,376 MS cases and 18,872 controls in the WTCCC dataset were phased. The most significant MS associated SNP haplotype was composed of 11 SNPs in the MHC Class II region surrounding the HLA-DRB1 gene. We also phased alleles at the HLA-A, HLA-C, HLA-B, HLA-DRB1, and HLA-DQB1 loci. This data was used to probe the relationship between CEHs and MS susceptibility.We phased a total of 59,884 extended haplotypes (HLA-A, HLA-C, HLA-B, HLA-DRB1, HLA-DQB1 and SNP haplotypes from 29,942 individuals. Of these, 10,078 unique extended haplotypes were identified. The 10 most common CEHs accounted for 22% (13,302 of the total. By contrast, the 8,446 least common extended haplotypes also accounted for approximately 20% (12,298 of the total. This extreme frequency-disparity among extended haplotypes necessarily complicates interpretation of reported disease-associations with specific HLA alleles. In particular, the HLA motif HLA-DRB1*15:01~HLA-DQB1*06:02 is strongly associated with MS risk. Nevertheless, although this motif is almost always found on the a1 SNP haplotype, it can rarely be found on others (e.g., a27 and a36, and, in these cases, it seems to have no apparent disease-association (OR = 0.7; CI = 0.3-1.3 and OR = 0.7; CI = 0.2-2.2, respectively. Furthermore, single copy carriers of the a1 SNP-haplotype without this HLA motif still have an increased disease risk (OR = 2.2; CI = 1.2-3.8. In addition, even among the

  8. DNA methylation profiling of the human major histocompatibility complex: a pilot study for the human epigenome project.

    Directory of Open Access Journals (Sweden)

    Vardhman K Rakyan

    2004-12-01

    Full Text Available The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine-guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated, tissue specificity, inter-individual variation, and correlation with independent gene expression data.

  9. DNA Methylation Profiling of the Human Major Histocompatibility Complex: A Pilot Study for the Human Epigenome Project

    Science.gov (United States)

    Rakyan, Vardhman K; Hildmann, Thomas; Novik, Karen L; Lewin, Jörn; Tost, Jörg; Cox, Antony V; Andrews, T. Dan; Howe, Kevin L; Otto, Thomas; Olek, Alexander; Fischer, Judith; Gut, Ivo G; Berlin, Kurt

    2004-01-01

    The Human Epigenome Project aims to identify, catalogue, and interpret genome-wide DNA methylation phenomena. Occurring naturally on cytosine bases at cytosine–guanine dinucleotides, DNA methylation is intimately involved in diverse biological processes and the aetiology of many diseases. Differentially methylated cytosines give rise to distinct profiles, thought to be specific for gene activity, tissue type, and disease state. The identification of such methylation variable positions will significantly improve our understanding of genome biology and our ability to diagnose disease. Here, we report the results of the pilot study for the Human Epigenome Project entailing the methylation analysis of the human major histocompatibility complex. This study involved the development of an integrated pipeline for high-throughput methylation analysis using bisulphite DNA sequencing, discovery of methylation variable positions, epigenotyping by matrix-assisted laser desorption/ionisation mass spectrometry, and development of an integrated public database available at http://www.epigenome.org. Our analysis of DNA methylation levels within the major histocompatibility complex, including regulatory exonic and intronic regions associated with 90 genes in multiple tissues and individuals, reveals a bimodal distribution of methylation profiles (i.e., the vast majority of the analysed regions were either hypo- or hypermethylated), tissue specificity, inter-individual variation, and correlation with independent gene expression data. PMID:15550986

  10. Molecular variation of human major histocompatibility complex DQw3. beta. -chains

    Energy Technology Data Exchange (ETDEWEB)

    So, A.K.L.; Lindsay, J.; Bodmer, J.; Trowsdale, J.

    1987-11-15

    Histocompatibility leukocyte antigen DQ molecules exhibit polymorphism of both DQ..cap alpha..- and ..beta..-chains. Histocompatibility leukocyte antigen-DQw3 is associated with both DR4 and DR5 and can be further subdivided by reactivity with the monoclonal antibody TA10. To determine the molecular nature of the DQ polymorphic alleles associated with the DR4 haplotype, the authors have sequenced and analyzed DQ..cap alpha.. and ..beta.. cDNA clones obtained from a DR4, Dw4, DQw3 cell line which is TA10-positive, using electrophoresis and autoradiography. The DQ..cap alpha..-chain sequence was identical to previously published sequences from the DR4 haplotype, but the DQ..beta.. sequence differed from published DR4-DQ..beta.. sequences obtained from DQw3-positive TA10-negative cell lines by eight amino acids, six of which were located in the ..beta..1 domain. Thus, the TA10 serologic determinants reside on the DQ..beta..-chain. A TA10-specific oligonucleotide probe was constructed based on the DQ..beta.. sequence, and its specificity was confirmed in a panel of TA10-positive and TA10-negative cell lines. An additional band was observed in Southern blotting experiments which may indicate a donor sequence for gene conversion.

  11. Molecular variation of human major histocompatibility complex DQw3β-chains

    International Nuclear Information System (INIS)

    So, A.K.L.; Lindsay, J.; Bodmer, J.; Trowsdale, J.

    1987-01-01

    Histocompatibility leukocyte antigen DQ molecules exhibit polymorphism of both DQα- and β-chains. Histocompatibility leukocyte antigen-DQw3 is associated with both DR4 and DR5 and can be further subdivided by reactivity with the monoclonal antibody TA10. To determine the molecular nature of the DQ polymorphic alleles associated with the DR4 haplotype, the authors have sequenced and analyzed DQα and β cDNA clones obtained from a DR4, Dw4, DQw3 cell line which is TA10-positive, using electrophoresis and autoradiography. The DQα-chain sequence was identical to previously published sequences from the DR4 haplotype, but the DQβ sequence differed from published DR4-DQβ sequences obtained from DQw3-positive TA10-negative cell lines by eight amino acids, six of which were located in the β1 domain. Thus, the TA10 serologic determinants reside on the DQβ-chain. A TA10-specific oligonucleotide probe was constructed based on the DQβ sequence, and its specificity was confirmed in a panel of TA10-positive and TA10-negative cell lines. An additional band was observed in Southern blotting experiments which may indicate a donor sequence for gene conversion

  12. Expression of bovine non-classical major histocompatibility complex class I proteins in mouse P815 and human K562 cells.

    Science.gov (United States)

    Parasar, Parveen; Wilhelm, Amanda; Rutigliano, Heloisa M; Thomas, Aaron J; Teng, Lihong; Shi, Bi; Davis, William C; Suarez, Carlos E; New, Daniel D; White, Kenneth L; Davies, Christopher J

    2016-08-01

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-classical MHC-I isoforms, we expressed the MHC proteins in murine P815 and human K562 (MHC-I deficient) cells. Following antibiotic selection, stably transfected cell lines were stained with H1A or W6/32 antibodies to detect expression of the MHC-I proteins by flow cytometry. Two non-classical proteins (BoLA-NC1*00501 and BoLA-NC3*00101) were expressed on the cell surface in both cell lines. Surprisingly, the BoLA-NC4*00201 protein was expressed on the cell membrane of human K562 but not mouse P815 cells. Two non-classical proteins (BoLA-NC1*00401, which lacks a transmembrane domain, and BoLA-NC2*00102) did not exhibit cell surface expression. Nevertheless, Western blot analyses demonstrated expression of the MHC-I heavy chain in all transfected cell lines. Ammonium-sulfate precipitation of proteins from culture supernatants showed that BoLA-NC1*00401 was secreted and that all surface expressed proteins where shed from the cell membrane by the transfected cells. Interestingly, the surface expressed MHC-I proteins were present in culture supernatants at a much higher concentration than BoLA-NC1*00401. This comprehensive study shows that bovine non-classical MHC-I proteins BoLA-NC1*00501, BoLA-NC3*00101, and BoLA-NC4*00201 are expressed as surface isoforms with the latter reaching the cell membrane only in K562 cells. Furthermore, it demonstrated that BoLA-NC1*00401 is a secreted isoform and that significant quantities of membrane associated MHC-I proteins can be shed from the cell membrane. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  13. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency

    Directory of Open Access Journals (Sweden)

    Djidjik Réda

    2012-08-01

    Full Text Available Abstract Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26. Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  14. Human major histocompatibility complex contains a minimum of 19 genes between the complement cluster and HLA-B

    International Nuclear Information System (INIS)

    Spies, T.; Bresnahan, M.; Strominger, J.L.

    1989-01-01

    A 600-kilobase (kb) DNA segment from the human major histocompatibility complex (MHC) class III region was isolated by extension of a previous 435-kb chromosome walk. The contiguous series of cloned overlapping cosmids contains the entire 555-kb interval between C2 in the complement gene cluster and HLA-B. This region is known to encode the tumor necrosis factors (TNFs) α and β, B144, and the major heat shock protein HSP70. Moreover, a cluster of genes, BAT1-BAT5 (HLA-B-associated transcripts) have been localized in the vicinity of the genes for TNFα and TNFβ. An additional four genes were identified by isolation of corresponding cDNA clones with cosmid DNA probes. These genes for BAT6-BAT9 were mapped near the gene for C2 within a 120-kb region that includes a HSP70 gene pair. These results, together with complementary data from a similar recent study, indicated the presence of a minimum of 19 genes within the C2-HLA-B interval of the MHC class III region. Although the functional properties of most of these genes are yet unknown, they may be involved in some aspects of immunity. This idea is supported by the genetic mapping of the hematopoietic histocompatibility locus-1 (Hh-1) in recombinant mice between TNFα and H-2S, which is homologous to the complement gene cluster in humans

  15. Clinical, immunological and genetic features in eleven Algerian patients with major histocompatibility complex class II expression deficiency.

    Science.gov (United States)

    Djidjik, Réda; Messaoudani, Nesrine; Tahiat, Azzedine; Meddour, Yanis; Chaib, Samia; Atek, Aziz; Khiari, Mohammed Elmokhtar; Benhalla, Nafissa Keltoum; Smati, Leila; Bensenouci, Abdelatif; Baghriche, Mourad; Ghaffor, Mohammed

    2012-08-03

    Presenting processed antigens to CD4+ lymphocytes during the immune response involves major histocompatibility complex class II molecules. MHC class II genes transcription is regulated by four transcription factors: CIITA, RFXANK, RFX5 and RFXAP. Defects in these factors result in major histocompatibility complex class II expression deficiency, a primary combined immunodeficiency frequent in North Africa. Autosomal recessive mutations in the RFXANK gene have been reported as being the principal defect found in North African patients with this disorder. In this paper, we describe clinical, immunological and genetic features of 11 unrelated Algerian patients whose monocytes display a total absence of MHC class II molecules. They shared mainly the same clinical picture which included protracted diarrhoea and respiratory tract recurrent infections. Genetic analysis revealed that 9 of the 11 patients had the same RFXANK founder mutation, a 26 bp deletion (named I5E6-25_I5E6+1, also known as 752delG26). Immunological and genetic findings in our series may facilitate genetic counselling implementation for Algerian consanguineous families. Further studies need to be conducted to determine 752delG26 heterozygous mutation frequency in Algerian population.

  16. Shared fine specificity between T-cell receptors and an antibody recognizing a peptide/major histocompatibility class I complex

    DEFF Research Database (Denmark)

    Stryhn, A; Andersen, P S; Pedersen, L O

    1996-01-01

    Cytotoxic T cells recognize mosaic structures consisting of target peptides embedded within self-major histocompatibility complex (MHC) class I molecules. This structure has been described in great detail for several peptide-MHC complexes. In contrast, how T-cell receptors recognize peptide-MHC...... complexes have been less well characterized. We have used a complete set of singly substituted analogs of a mouse MHC class I, Kk-restricted peptide, influenza hemagglutinin (Ha)255-262, to address the binding specificity of this MHC molecule. Using the same peptide-MHC complexes we determined the fine...... each other showing that peptide residues 1, 3, 4, 6, and 7 were exposed on the MHC surface and recognized by the T cells. Thus, the majority, and perhaps all, of the side chains of the non-primary anchor residues may be available for T-cell recognition, and contribute to the stringent specificity of T...

  17. Expression of triggering receptor on myeloid cell 1 and histocompatibility complex molecules in sepsis and major abdominal surgery.

    Science.gov (United States)

    González-Roldán, Nestor; Ferat-Osorio, Eduardo; Aduna-Vicente, Rosalía; Wong-Baeza, Isabel; Esquivel-Callejas, Noemí; Astudillo-de la Vega, Horacio; Sánchez-Fernández, Patricio; Arriaga-Pizano, Lourdes; Villasís-Keever, Miguel Angel; López-Macías, Constantino; Isibasi, Armando

    2005-12-21

    To evaluate the surface expression of triggering receptor on myeloid cell 1 (TREM-1), class II major histocompatibility complex molecules (HLA-DR), and the expression of the splicing variant (svTREM-1) of TREM-1 in septic patients and those subjected to major abdominal surgery. Using flow cytometry, we examined the surface expression of TREM-1 and HLA-DR in peripheral blood monocytes from 11 septic patients, 7 elective gastrointestinal surgical patients, and 10 healthy volunteers. svTREM-1 levels were analyzed by RT-PCR. Basal expression of TREM-1 and HLA-DR in healthy volunteers was 35.91+/-14.75 MFI and 75.8+/-18.3%, respectively. In septic patients, TREM-1 expression was 59.9+/-23.9 MFI and HLA-DR expression was 44.39+/-20.25%, with a significant difference between healthy and septic groups (PSIRS, CARS, and sepsis.

  18. Expression of hepatitis C virus proteins does not interfere with major histocompatibility complex class I processing and presentation in vitro.

    Science.gov (United States)

    Moradpour, D; Grabscheid, B; Kammer, A R; Schmidtke, G; Groettrup, M; Blum, H E; Cerny, A

    2001-05-01

    Hepatitis C virus (HCV) infection takes a chronic course in the majority of patients. The mechanisms underlying the evasion of the host immune response and viral persistence are poorly understood. In this context, we investigated interactions of HCV proteins with major histocompatibility complex (MHC) class I processing and presentation pathways using cell lines that allow the tetracycline-regulated expression of viral structural and nonstructural proteins. These well-characterized inducible cell lines were found to efficiently process and present endogenously synthesized HCV proteins via MHC class I. Functional MHC class I cell-surface expression and intracellular proteasome activity were not affected by the expression of HCV proteins. These results suggest that viral evasion of the host immune response does not involve interactions of HCV with MHC class I processing and presentation. Other mechanisms, such as interference with the interferon system, may be operative in HCV infection, leading to viral persistence.

  19. Preformed purified peptide/major histocompatibility class I complexes are potent stimulators of class I-restricted T cell hybridomas

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Ortiz-Navarrete, V

    1994-01-01

    A panel of antigen-specific, major histocompatibility complex class I-restricted T cell hybridomas has been generated to examine the capacity of peptide/class I complexes to stimulate T cells at the molecular level. Peptide/class I complexes were generated in detergent solution, purified...... be detected by the T cells. Preformed complexes were about 500,000 times more potent than free peptide in terms of T cell stimulation, demonstrating the physiological relevancy of the biochemically generated complexes. Surprisingly, the majority (including the most sensitive of the hybridomas) had lost CD8...... and quantitated. Latex particles were subsequently coated with known amounts of preformed complexes and used to stimulate the T cell hybridomas. Stimulation was specific, i.e. only the appropriate peptide/class I combination were stimulatory, and quite sensitive, i.e. as little as 300 complexes per bead could...

  20. [Major histocompatibility complex (MHC) in mammals' and its importance for studies of rare species (with Felidae family as an example)].

    Science.gov (United States)

    Tarasian, K K; Sorokin, P A; Kholodova, M V; Rozhnov, V V

    2014-01-01

    Major histocompatibility complex (MHC) appears to be a suitable tool for solving various tasks of popu- lationgenetics. Information on genetic basis of immunity facilitates understanding of evolutionary his- tory and assessment of current state and prospects of studied population/species survival. On the one hand, MHC variability is maintained through pathogen dependent mechanisms, i.e., directional selection of individuals resistant to diseases, that are present in the environment and balancing selection which gives advantage to those individuals carrying unusual or rare alleles of MHC genes. On the other hand, MHC genes have an influence on reproduction efficiency of individuals. Because of MHC polygeny, its studying requires an application of methods that introduce additional stages between amplification of a certain gene segment and its sequencing. In the article, different tech- niques of allele separation are considered, as well as a simplified version of MHC variability analysis based on the examination of microsatellite loci. Despite the high information value of MHC, it is still not used in zoological studies as often as it deserves. Using as an example predatory mammals of Felidae family which contains quite a few threatened species, we show that a majority of studies on MHC in wild cats is descriptive ones and only few of them deal with genes comparative analysis. The rise of interest to the studies of major histocompatibility complex in non-model species may help not only in solving the fundamental problems of evolution and phylogenetic structure of the family but also in planning the measures for conservation of rare and endangered species exposed to various anthropogenic stresses.

  1. First report of major histocompatibility complex class II loci from the Amazon pink river dolphin (genus Inia).

    Science.gov (United States)

    Martínez-Agüero, M; Flores-Ramírez, S; Ruiz-García, M

    2006-07-31

    We report the first major histocompatibility complex (MHC) DQB1 sequences for the two species of pink river dolphins (Inia geoffrensis and Inia boliviensis) inhabiting the Amazon and Orinoco River basins. These sequences were found to be polymorphic within the Inia genus and showed shared homology with cetacean DQB-1 sequences, especially, those of the Monodontidae and Phocoenidae. On the other hand, these sequences were shown to be divergent from those described for other riverine dolphin species, such as Lipotes vexillifer, the Chinese river dolphin. Two main conclusions can be drawn from our results: 1) the Mhc DQB1 sequences seem to evolve more rapidly than other nuclear sequences in cetaceans, and 2) differential positive selective pressures acting on these genes cause concomitant divergent evolutionary histories that derive phylogenetic reconstructions that could be inconsistent with widely accepted intertaxa evolutionary relationships elucidated with other molecular markers subjected to a neutral dynamics.

  2. Polymorphism in a second ABC transproter gene located within the class II region of the human major histocompatibility complex

    Energy Technology Data Exchange (ETDEWEB)

    Powis, S.H.; Mockridge, I.; Kelly, A.; Glynne, R.; Beck, S.; Trowsdale, J. (Imperial Cancer Research Fund Labs., London (United Kingdom)); Kerr, L.A. (Guy' s Campus, London (United Kingdom)); Gileadi, U. (Univ. of Oxford (United Kingdom))

    1992-02-15

    Recent studies have identified genes within the major histocompatibility complex (MHC) that may play a role in presentation of antigenic peptides to T cells. The authors have previously described RING4, a gene within the human MHC class II region that has sequence homology with members of the ABC (ATP-binding cassette) transporter superfamily. They now report the nucleotide sequence of RING11, a second ABC transporter gene located approximately 7 kilobases telomeric to RING4. RING11 is {gamma}-interferon inducible, a property shared with other genes involved in antigen presentation. Comparison between the amino acid sequences of RING11 and RING4 reveals strong homology. They propose that they form a heterodimer that transports peptides from the cytoplasm into the endoplasmic reticulum. They have identified two RING11 alleles, which differ in length of their derived protein sequence by 17 amino acids. The more common of these alleles is present in a Caucasoid population at a frequency of 79%.

  3. Mammalian non-classical major histocompatibility complex I and its receptors: Important contexts of gene, evolution, and immunity

    Science.gov (United States)

    Pratheek, B. M.; Nayak, Tapas K.; Sahoo, Subhransu S.; Mohanty, Prafulla K.; Chattopadhyay, Soma; Chakraborty, Ntiya G.; Chattopadhyay, Subhasis

    2014-01-01

    The evolutionary conserved, less-polymorphic, nonclassical major histocompatibility complex (MHC) class I molecules: Qa-1 and its human homologue human leukocyte antigen-E (HLA-E) along with HLA-F, G and H cross-talk with the T-cell receptors and also interact with natural killer T-cells and other lymphocytes. Moreover, these nonclassical MHC molecules are known to interact with CD94/NKG2 heterodimeric receptors to induce immune responses and immune regulations. This dual role of Qa-1/HLA-E in terms of innate and adaptive immunity makes them more interesting. This review highlights the new updates of the mammalian nonclassical MHC-I molecules in terms of their gene organization, evolutionary perspective and their role in immunity. PMID:25400340

  4. Effects of Lung Cotransplantation on Cardiac Allograft Tolerance Across a Full Major Histocompatibility Complex Barrier in Miniature Swine.

    Science.gov (United States)

    Madariaga, M L L; Spencer, P J; Michel, S G; La Muraglia, G M; O'Neil, M J; Mannon, E C; Leblang, C; Rosales, I A; Colvin, R B; Sachs, D H; Allan, J S; Madsen, J C

    2016-03-01

    A 12-day course of high-dose tacrolimus induces tolerance of major histocompatibility complex-mismatched lung allografts in miniature swine but does not induce tolerance of heart allografts unless a kidney is cotransplanted. To determine whether lungs share with kidneys the ability to induce cardiac allograft tolerance, we investigated heart-lung cotransplantation using the same induction protocol. Hearts (n = 3), heart-kidneys (n = 3), lungs (n = 6), and hearts-lungs (n = 3) were transplanted into fully major histocompatibility complex-mismatched recipients treated with high-dose tacrolimus for 12 days. Serial biopsy samples were used to evaluate rejection, and in vitro assays were used to detect donor responsiveness. All heart-kidney recipients and five of six lung recipients demonstrated long-term graft survival for longer than 272 days, while all heart recipients rejected their allografts within 35 days. Tolerant recipients remained free of alloantibody and showed persistent donor-specific unresponsiveness by cell-mediated lympholysis/mixed-lymphocyte reaction. In contrast, heart-lung recipients demonstrated rejection of both allografts (days 47, 55, and 202) and antidonor responsiveness in vitro. In contrast to kidneys, lung cotransplantation leads to rejection of both heart and lung allografts, indicating that lungs do not have the same tolerogenic capacity as kidneys. We conclude that cells or cell products present in kidney, but not heart or lung allografts, have a unique capacity to confer unresponsiveness on cotransplanted organs, most likely by amplifying host regulatory mechanisms. © Copyright 2015 The American Society of Transplantation and the American Society of Transplant Surgeons.

  5. Effects of pH and polysaccharides on peptide binding to class II major histocompatibility complex molecules

    International Nuclear Information System (INIS)

    Harding, C.V.; Roof, R.W.; Allen, P.M.; Unanue, E.R.

    1991-01-01

    The binding of immunogenic peptides to class II major histocompatibility molecules was examined at various pH values. The authors studied binding of peptides containing residues 52-61 from hen egg lysozyme (HEL) to I-A k on fixed peritoneal macrophages or to solubilized affinity-purified I-A k . Optimum binding occurred at pH 5.5-6.0 with accelerated kinetics relative to pH 7.4; equilibrium binding was also higher at pH 5.5-6.0 than at 7.4. Similar enhancement at pH 5-6 was observed for the binding of hemoglobin-(64-76) to I-E k and of ribonuclease-(41-61) to I-A k . In contrast, the binding of HEL-(35-45) to I-A k was minimally enhanced at acid pH. Dissociation of cell-associated or purified peptide-I-A k complexes was minimal between pH 5.5 and 7.4, with increased dissociation only at or below pH 4.0 [HEL-(46-61)] or pH 5.0 [HEL-(34-45)]. Thus, optimum peptide binding occurs at pH values similar to the endosomal environment, where the complexes appear to be formed during antigen processing. In addition, they examined the effect of a number of polysaccharides on the binding of peptide to I-A k . Polysaccharides do not appear to bind to class II major histocompatibility complex molecules, which explains the T-cell independence of polysaccharide antigens

  6. Inferring the evolution of the major histocompatibility complex of wild pigs and peccaries using hybridisation DNA capture-based sequencing.

    Science.gov (United States)

    Lee, Carol; Moroldo, Marco; Perdomo-Sabogal, Alvaro; Mach, Núria; Marthey, Sylvain; Lecardonnel, Jérôme; Wahlberg, Per; Chong, Amanda Y; Estellé, Jordi; Ho, Simon Y W; Rogel-Gaillard, Claire; Gongora, Jaime

    2017-12-18

    The major histocompatibility complex (MHC) is a key genomic model region for understanding the evolution of gene families and the co-evolution between host and pathogen. To date, MHC studies have mostly focused on species from major vertebrate lineages. The evolution of MHC classical (Ia) and non-classical (Ib) genes in pigs has attracted interest because of their antigen presentation roles as part of the adaptive immune system. The pig family Suidae comprises over 18 extant species (mostly wild), but only the domestic pig has been extensively sequenced and annotated. To address this, we used a DNA-capture approach, with probes designed from the domestic pig genome, to generate MHC data for 11 wild species of pigs and their closest living family, Tayassuidae. The approach showed good efficiency for wild pigs (~80% reads mapped, ~87× coverage), compared to tayassuids (~12% reads mapped, ~4× coverage). We retrieved 145 MHC loci across both families. Phylogenetic analyses show that the class Ia and Ib genes underwent multiple duplications and diversifications before suids and tayassuids diverged from their common ancestor. The histocompatibility genes mostly form orthologous groups and there is genetic differentiation for most of these genes between Eurasian and sub-Saharan African wild pigs. Tests of selection showed that the peptide-binding region of class Ib genes was under positive selection. These findings contribute to better understanding of the evolutionary history of the MHC, specifically, the class I genes, and provide useful data for investigating the immune response of wild populations against pathogens.

  7. Identifying the degree of major histocompatibility complex matching in genetically unrelated dogs with the use of microsatellite markers.

    Science.gov (United States)

    Park, K-M; Kang, H-S; Hussein, K H; Kim, H-M; Kwak, H-H; Woo, H-M

    2015-04-01

    The dog has served as an important experimental model for biomedical research such as transplantation and developing immunosuppressive agents. Although major histocompatibility complex (MHC) in dogs is a dominant factor of graft rejection, it has not been well investigated in dogs compared with human. For that reason, imprecise cross-matching or time-consuming sequence-based typing methods have generally been used to choose specific donor and recipient pairs. Investigation of matching distribution of MHC in dogs with the use of simple and accurate methods would be beneficial for biomedical researchers. The aim of this study was to identify the diversity of dog leukocyte antigen (DLA) types in genetically unrelated dogs by means of microsatellite markers. Thirty-three Beagle and Shih-Tzu dogs, which were negative in cross-matching, were chosen. The genomic DNA was isolated from peripheral blood leukocytes, and highly polymorphic short tandem repeats located in MHC class I and II were amplified with the use of specific primers. Among all of the dogs, MHC matching groups, including class I full match-class II full match (M-M), class I full match-class II haplo match (M-H), class I haplo match-class II full match (H-M), class I haplo match-class II haplo match (H-H) groups, were ∼1.55%, 0.39%, 1.94%, and 6.59%, respectively. MHC class I nonmatch-class II nonmatch (U-U) groups were 58.14% of the total dogs. Because differences of histocompatibility between donor and recipient leads to various allograft rejections, knowledge of the distribution of MHC matching in unrelated dogs would be helpful in designing studies and to get more accurate results from experiments using dog transplantation models. Copyright © 2015 Elsevier Inc. All rights reserved.

  8. Characterization of a major histocompatibility class II A gene (Clha-DAA) with an embedded microsatellite marker in Atlantic herring (Clupea harengus L.)

    NARCIS (Netherlands)

    Stet, R.J.M.; Mudde, K.; Wynne, J.W.; Nooijen, A.; Dahlgren, T.G.; Ruzzante, D.E.; Andre, C.

    2008-01-01

    An Atlantic herring major histocompatibility class II A (Clha-DAA) cDNA sequence has been characterized and was shown to encode a leader peptide, alpha-1 domain, alpha-2 domain, connecting peptide, transmembrane and cytoplasmic region. The Clha-DAA protein sequence has all the characteristics of a

  9. Major histocompatibility complex class I peptide presentation after Salmonella enterica serovar typhimurium infection assessed via stable isotope tagging of the B27-presented peptide repertoire

    NARCIS (Netherlands)

    Ringrose, Jeffrey H.; Meiring, Hugo D.; Speijer, Dave; Feltkamp, Theodorus E. W.; van Els, Cecile A. C. M.; de Jong, Ad P. J. M.; Dankert, Jacob

    2004-01-01

    Reactive arthritis (ReA) induced by infection with several gram-negative bacteria is strongly associated with expression of the major histocompatibility complex class I molecule HLA-B27. It is thought that due to the intracellular lifestyle of ReA-inducing bacteria, bacterial fragments can be

  10. Synthesis and Evaluation of Tc-99m-Labelled Monoclonal Antibody 1D09C3 for Molecular Imaging of Major Histocompatibility Complex Class II Protein Expression

    NARCIS (Netherlands)

    Malviya, Gaurav; de Vries, E. F. J.; Dierckx, Rudi A.; Signore, Alberto

    2011-01-01

    It is known that major histocompatibility complex class II protein HLA-DR is highly expressed in B-cell lymphomas and in a variety of autoimmune and inflammatory diseases. Therefore, a radiolabelled fully humanized IgG4 monoclonal antibody (mAb) can provide useful prognostic and diagnostic

  11. Modeling the interactions of a peptide-major histocompatibility class I ligand with its receptors. I. Recognition by two alpha beta T cell receptors

    DEFF Research Database (Denmark)

    Rognan, D; Stryhn, A; Fugger, L

    2000-01-01

    A three-dimensional model of the complex between an Influenza Hemagglutinin peptide, Ha255-262, and its restricting element, the mouse major histocompatibility complex (MHC) class I molecule, Kk, was built by homology modeling and subsequently refined by simulated annealing and restrained molecul...

  12. Non-major histocompatibility complex-restricted cytotoxic activity of blood mononuclear cells stimulated with secreted mycobacterial proteins and other mycobacterial antigens

    DEFF Research Database (Denmark)

    Ravn, P; Pedersen, B K

    1994-01-01

    Several observations indicate that non-major histocompatibility complex (MHC)-restricted cytotoxicity, mediated for example by natural killer cells and lymphokine-activated killer cells, may serve as an important antimicrobial defense mechanism. The purpose of the present study was to investigate...

  13. The "adjuvant effect" of the polymorphic B-G antigens of the chicken major histocompatibility complex analyzed using purified molecules incorporated in liposomes

    DEFF Research Database (Denmark)

    Salomonsen, J; Eriksson, H; Skjødt, K

    1991-01-01

    The polymorphic B-G region of the chicken major histocompatibility complex has previously been shown to mediate an "adjuvant effect" on the humoral response to other erythrocyte alloantigens. We demonstrate here that B-G molecules purified with monoclonal antibodies exert this adjuvant effect...

  14. Endoplasmic reticulum resident protein of 90 kilodaltons associates with the T- and B-cell antigen receptors and major histocompatibility complex antigens during their assembly

    NARCIS (Netherlands)

    Hochstenbach, F.; DAVID, V.; WATKINS, S.; Brenner, M. B.

    1992-01-01

    In the endoplasmic reticulum (ER), newly synthesized subunits of the T-cell antigen receptor (TCR), membrane-bound immunoglobulin (mIg), and major histocompatibility complex (MHC) class I antigens must fold correctly and assemble completely into multimeric protein complexes prior to transport to the

  15. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2...

  16. Peptide binding specificity of major histocompatibility complex class I resolved into an array of apparently independent subspecificities: quantitation by peptide libraries and improved prediction of binding

    DEFF Research Database (Denmark)

    Stryhn, A; Pedersen, L O; Romme, T

    1996-01-01

    Considerable interest has focused on understanding how major histocompatibility complex (MHC) specificity is generated and characterizing the specificity of MHC molecules with the ultimate goal being to predict peptide binding. We have used a strategy where all possible peptides of a particular...

  17. Expression of bovine non-classical major histocompatibility complex class 1 proteins in mouse P815 and human K562 cells

    Science.gov (United States)

    Major histocompatibility complex class I (MHC-I) proteins can be expressed as cell surface or secreted proteins. To investigate whether bovine non-classical MHC-I proteins are expressed as cell surface or secreted proteins, and to assess the reactivity pattern of monoclonal antibodies with non-class...

  18. A complex alloantigen system in Florida sandhill cranes, Grus canadensis pratensis: Evidence for the major histocompatibility (B) system

    Science.gov (United States)

    Jarvi, S.I.; Gee, G.F.; Miller, M.M.; Briles, W.E.

    1995-01-01

    The B blood group system constitutes the major histocompatibility complex (Mhc) in birds. The Mhc is a cluster of genes largely devoted to the processing and presentation of antigen. The Mhc is highly polymorphic in many species and, thus, useful in the evaluation of genetic diversity for fitness traits within populations of a variety of animals. Correlations found between particular Mhc haplotypes and resistance to certain diseases emphasize the importance of understanding the functional significance of diversity of the Mhc, particularly in species threatened with extinction. As part of studies focused on genetic diversity in wild birds, serological techniques were used to define a highly polymorphic alloantigen system in seven families of Florida sandhill cranes (Grus canadensis pratensis). The results of analyses with antisera produced within the crane families and with chicken Mhc antigen-specific reagents revealed a single major alloantigen system that is likely the Mhc of the Florida sandhill crane. Preliminary experiments indicate that these crane alloantisera will provide a means of defining .the Mhc in other species of cranes.

  19. Identification of monoclonal antibodies cross-reactive with bottlenose dolphin orthologues of the major histocompatibility complex and leukocyte differentiation molecules.

    Science.gov (United States)

    Elnaggar, Mahmoud M; Abdellrazeq, Gaber S; Venn-Watson, Stephanie K; Jensen, Eric D; Hulubei, Victoria; Fry, Lindsay M; Sacco, Randy E; Davis, William C

    2017-10-01

    The slow progress in understanding immunotoxic effects of environmental contaminants and their influence on disease susceptibility in whales is largely due to the limited information available on the immune systems and immune function of species included in the Cetancodontamorpha clade. Studies in species in the other major clades included in the Artiodactylamorpha, Ruminantiamorpha, Suinamorpha, and Camelidamorpha have revealed the immune systems are similar, but not identical. The present study was undertaken to expand the available monoclonal antibody reagents needed to gain insight into the composition, function, and evolution of the immune system in Cetancodontamorpha, using the dolphin (Tursiops truncatus) as a model cetacean species. Screening of a set of mAbs that recognize highly conserved epitopes expressed on the major histocompatibility complex (MHC) and leukocyte differentiation molecules (LDMs) in cattle by flow cytometry revealed some of the mAbs recognize epitopes conserved on dolphin orthologues of MHC class I, MHC class II, CD11a, CD14, CD16, CD18, CD163 and CD172a. Comparison of the amino acid sequences of dolphin and bovine orthologues revealed limited changes in sequence have occurred during speciation, suggesting an approach for developing cross-reactive mAbs for use in cetacean research. Copyright © 2017 Elsevier B.V. All rights reserved.

  20. Unconventional Peptide Presentation by Major Histocompatibility Complex (MHC) Class I Allele HLA-A*02:01: BREAKING CONFINEMENT.

    Science.gov (United States)

    Remesh, Soumya G; Andreatta, Massimo; Ying, Ge; Kaever, Thomas; Nielsen, Morten; McMurtrey, Curtis; Hildebrand, William; Peters, Bjoern; Zajonc, Dirk M

    2017-03-31

    Peptide antigen presentation by major histocompatibility complex (MHC) class I proteins initiates CD8 + T cell-mediated immunity against pathogens and cancers. MHC I molecules typically bind peptides with 9 amino acids in length with both ends tucked inside the major A and F binding pockets. It has been known for a while that longer peptides can also bind by either bulging out of the groove in the middle of the peptide or by binding in a zigzag fashion inside the groove. In a recent study, we identified an alternative binding conformation of naturally occurring peptides from Toxoplasma gondii bound by HLA-A*02:01. These peptides were extended at the C terminus (PΩ) and contained charged amino acids not more than 3 residues after the anchor amino acid at PΩ, which enabled them to open the F pocket and expose their C-terminal extension into the solvent. Here, we show that the mechanism of F pocket opening is dictated by the charge of the first charged amino acid found within the extension. Although positively charged amino acids result in the Tyr-84 swing, amino acids that are negatively charged induce a not previously described Lys-146 lift. Furthermore, we demonstrate that the peptides with alternative binding modes have properties that fit very poorly to the conventional MHC class I pathway and suggest they are presented via alternative means, potentially including cross-presentation via the MHC class II pathway. © 2017 by The American Society for Biochemistry and Molecular Biology, Inc.

  1. Major histocompatibility complex and mate choice in the polygynous primate: the Sichuan snub-nosed monkey (Rhinopithecus roxellana).

    Science.gov (United States)

    Yang, Banghe; Ren, Baoping; Xiang, Zuofu; Yang, Jingyuan; Yao, Hui; Garber, Paul A; Li, Ming

    2014-11-01

    The highly polymorphic genes within the major histocompatibility complex (MHC) not only play a major role in immunity resistance, but also seem to provide hints for mate choice in some animal populations. In the present study we investigated MHC-related mate choice in a small natural population (group size 40-55 individuals) of a polygynous primate, the Sichuan snub-nosed monkey (Rhinopithecus roxellana). We found that there was no evidence either for MHC-disassortative mating, or for females to mate with males based on MHC heterozygosity or specific alleles. Nevertheless, of the 11 alleles identified, we found that the frequencies of 2 alleles, Rhro-DRB2 (P < 0.01) and Rhro-DRB5 (P < 0.05) were higher in offspring than in their parents. These findings suggest that MHC-DRB in this population of R. roxellana is unlikely to be associated with mating preferences. Limited female opportunities for mate choice are likely due, in part, to the harem breeding structure present in R. roxellana, and the relatively small number of resident adult males in our study band (N = 4-6). In addition, we suggest that differences in the frequency of particular alleles across generations may be linked to parasite resistance in a fluctuating environment; however, confirmation of this finding requires further study. © 2013 International Society of Zoological Sciences, Institute of Zoology/Chinese Academy of Sciences and Wiley Publishing Asia Pty Ltd.

  2. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar).

    Science.gov (United States)

    Evans, Melissa L; Dionne, Mélanie; Miller, Kristina M; Bernatchez, Louis

    2012-01-22

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures.

  3. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control.

    Science.gov (United States)

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation.

  4. Characterization of classical major histocompatibility complex (MHC) class II genes in northern pig-tailed macaques (Macaca leonina).

    Science.gov (United States)

    Lian, Xiao-Dong; Zhang, Xi-He; Dai, Zheng-Xi; Zheng, Yong-Tang

    2017-12-01

    The northern pig-tailed macaque (Macaca leonina) has been identified as an independent species from the pig-tailed macaque group. The species is a promising animal model for HIV/AIDS pathogenesis and vaccine studies due to susceptibility to HIV-1. However, the major histocompatibility complex (MHC) genetics in northern pig-tailed macaques remains poorly understood. We have previously studied the MHC class I genes in northern pig-tailed macaques and identified 39 novel alleles. Here, we describe the MHC class II alleles in all six classical loci (DPA, DPB, DQA, DQB, DRA, and DRB) from northern pig-tailed macaques using a sequence-based typing method for the first time. A total of 60 MHC-II alleles were identified of which 27 were shared by other macaque species. Additionally, northern pig-tailed macaques expressed a single DRA and multiple DRB genes similar to the expression in humans and other macaque species. Polymorphism and positive selection were detected, and phylogenetic analysis suggested the presence of a common ancestor in human and northern pig-tailed macaque MHC class II allelic lineages at the DQA, DQB, and DRB loci. The characterization of full-length MHC class II alleles in this study significantly improves understanding of the immunogenetics of northern pig-tailed macaques and provides the groundwork for future animal model studies. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Proteolysis of the heavy chain of major histocompatibility complex class I antigens by complement component C1s

    DEFF Research Database (Denmark)

    Eriksson, H; Nissen, Mogens Holst

    1990-01-01

    The major histocompatibility complex (MHC) class I antigens contain a light chain, beta 2-microglobulin, non-covalently associated to the transmembrane heavy alpha-chain carrying the allotypic determinants. Since the C1q complement component is known to associate with beta 2-microglobulin, and we...... weights of the fragments are in agreement with the cleavage located in the area between the disulphide loops of the alpha 2-and alpha 3-domains of the heavy chain. In addition human C1s complement is able to cleave H-2 antigens from mouse in a similar fashion but not rat MHC class I antigen or mouse MHC...... class II antigen (I-Ad). Mouse MHC class I antigen-specific determinants could also be detected in supernatant from mouse spleen cells incubated with C1r and C1s. These results indicate the presence in the body fluids of a non-membrane-bound soluble form of the alpha 1-and alpha 2-domains which...

  6. HUBUNGAN ANTARA PERTUMBUHAN DENGAN KEBERADAAN GEN TAHAN PENYAKIT MAJOR HISTOCOMPATIBILITY COMPLEX (MHC PADA IKAN MAS (Cyprinus carpio

    Directory of Open Access Journals (Sweden)

    Erma Primanita Hayuningtyas

    2016-04-01

    Full Text Available Wabah penyakit koi herpes virus (KHV di Indonesia yang terjadi sejak tahun 2002 merupakan salah satu faktor yang memicu kemerosotan produksi ikan mas budidaya. Pembentukan strain unggul ikan mas tahan KHV dapat menjadi solusi bagi permasalahan tersebut. Pemilihan genotip ikan mas tahan KHV dengan marka molekuler gen major histocompatibility complex class II (MHC-II, khususnya pada alel Cyca DAB 1*05 akan membantu dalam kegiatan seleksi. Penelitian ini bertujuan untuk mengetahui keberadaan gen MHC-II pada populasi dasar G0 ikan mas strain Rajadanu dan hubungannya dengan pertumbuhan (bobot. Metode deteksi keberadaan gen MHC-II pada dua kelompok ikan dengan ukuran berbeda dilakukan dengan teknik PCR. Hubungan antara pertumbuhan ikan mas dengan persentase kemunculan gen MHC-II dianalisis dengan menggunakan program SPSS (Statistical Package for the Social Sciences, sehingga diperoleh korelasi di antara keduanya. Hasil penelitian menunjukkan bahwa hubungan antara pertumbuhan dengan persentase keberadaan gen MHC-II berkorelasi negatif dengan nilai R = -0,742. Hal ini mengindikasikan bahwa semakin cepat pertumbuhan populasi ikan mas maka semakin sedikit persentase individu yang mempunyai gen MHC-II pada setiap populasi ikan mas. Sehingga populasi ikan mas yang pertumbuhannya lambat memiliki tingkat persentase positif MHC-II lebih tinggi (85,71%-100% dibandingkan populasi ikan mas yang pertumbuhannya cepat (42,86%-85,71%.

  7. Two putative subunits of a peptide pump encoded in the human major histocompatability complex class 2 region

    International Nuclear Information System (INIS)

    Bahram, S.; Arnold, D.; Bresnahan, M.; Strominger, J.L.; Spies, T.

    1991-01-01

    The class 2 region of the human major histocompatibility complex (MHC) may encode several genes controlling the processing of endogenous antigen and the presentation of peptide epitopes by MHC class 1 molecules to cytotoxic T lymphocytes. A previously described peptide supply factor (PSF1) is a member of the multidrug-resistance family of transporters and may pump cytosolic peptides into the membrane-bound compartment where class 1 molecules assemble. A second transporter gene, PSF2, was identified 10 kilobases (kb) from PSF1, near the class 2 DOB gene. The complete sequences of PSF1 and PSF2 were determined from cDNA clones. The translation products are closely related in sequence and predicted secondary structure. Both contain a highly conserved ATP-binding fold and share 25% homology in a hydrophobic domain with a tentative number of eight membrane-spanning segments. Based on the principle dimeric organization of these two domains in other transporters, PSF1 and PSF2 may function as complementary subunits, independently as homodimers, or both. Taken together with previous genetic evidence, the coregulation of PSF1 and PSF2 by γ interferon and the to-some-degree coordinate transcription of these genes suggest a common role in peptide-loading of class 1 molecules, although a distinct function of PSF2 cannot be ruled out

  8. Genetic variation of the major histocompatibility complex (MHC class II B gene in the threatened Hume's pheasant, Syrmaticus humiae.

    Directory of Open Access Journals (Sweden)

    Weicai Chen

    Full Text Available Major histocompatibility complex (MHC genes are the most polymorphic genes in vertebrates and encode molecules that play a crucial role in pathogen resistance. As a result of their diversity, they have received much attention in the fields of evolutionary and conservation biology. Here, we described the genetic variation of MHC class II B (MHCIIB exon 2 in a wild population of Hume's pheasant (Syrmaticus humiae, which has suffered a dramatic decline in population over the last three decades across its ranges in the face of heavy exploitation and habitat loss. Twenty-four distinct alleles were found in 73 S. humiae specimens. We found seven shared alleles among four geographical groups as well as six rare MHCIIB alleles. Most individuals displayed between one to five alleles, suggesting that there are at least three MHCIIB loci of the Hume's pheasant. The dN ⁄ dS ratio at putative antigen-binding sites (ABS was significantly greater than one, indicating balancing selection is acting on MHCIIB exon 2. Additionally, recombination and gene conversion contributed to generating MHCIIB diversity in the Hume's pheasant. One to three recombination events and seventy-five significant gene conversion events were observed within the Hume's pheasant MHCIIB loci. The phylogenetic tree and network analysis revealed that the Hume's pheasant alleles do not cluster together, but are scattered through the tree or network indicating a trans-species evolutionary mode. These findings revealed the evolution of the Hume's pheasant MHC after suffering extreme habitat fragmentation.

  9. Clinical, Immunological, and Molecular Findings in Five Patients with Major Histocompatibility Complex Class II Deficiency from India

    Directory of Open Access Journals (Sweden)

    Jahnavi Aluri

    2018-02-01

    Full Text Available Major histocompatibility complex (MHC class II deficiency is a rare autosomal recessive form of primary immunodeficiency disorder (PID characterized by the deficiency of MHC class II molecules. This deficiency affects the cellular and humoral immune response by impairing the development of CD4+ T helper (Th cells and Th cell-dependent antibody production by B cells. Affected children typically present with severe respiratory and gastrointestinal tract infections. Hematopoietic stem cell transplantation (HSCT is the only curative therapy available for treating these patients. This is the first report from India wherein we describe the clinical, immunological, and molecular findings in five patients with MHC class II deficiency. Our patients presented with recurrent lower respiratory tract infection as the most common clinical presentation within their first year of life and had a complete absence of human leukocyte antigen-antigen D-related (HLA-DR expression on B cells and monocytes. Molecular characterization revealed novel mutations in RFAXP, RFX5, and CIITA genes. Despite genetic heterogeneity, these patients were clinically indistinguishable. Two patients underwent HSCT but had a poor survival outcome. Detectable level of T cell receptor excision circles (TRECs were measured in our patients, highlighting that this form of PID may be missed by TREC-based newborn screening program for severe combined immunodeficiency.

  10. Transplantation of islet cells across major histocompatibility barriers after total lymphoid irradiation and infusion of allogeneic bone marrow cells

    International Nuclear Information System (INIS)

    Britt, L.D.; Scharp, D.W.; Lacy, P.E.; Slavin, S.

    1982-01-01

    Diabetic Lewis rats (AgB1/L) were evaluated as recipients of allogeneic Wistar-Furth (AgB2/2) isolated adult islets without the use of standard recipient immunosuppression. One group was treated with fractionated total lymphoid irradiation (TLI) and Wistar-Furth bone marrow cell reconstitution to proven chimerism prior to islet transplantation. This group returned to a prediabetic state following Wistar-Furth islet transplantation without any evidence of rejection for 100 days posttransplant. A second group of Lewis rats received only TLI without bone marrow treatment. They gave a varying result following islet transplantation with one recipient showing evidence of prolonged islet survival. A third chimeric control group did not receive isolated islets and did not alter their diabetic state. A fourth group was not given TLI nor donor bone marrow cells and uniformly rejected their allogeneic islets by 7 days. Thus, allogeneic adult islets will survive across major rat histocompatibility barriers using TLI and donor bone marrow chimerism as the only form of immunosuppression

  11. Myelin-oligodendrocyte glycoprotein is a member of a subset of the immunoglobulin superfamily encoded within the major histocompatibility complex

    Energy Technology Data Exchange (ETDEWEB)

    Pham-Dinh, D.; Dautigny, A. (Institut des Neurosciences, Paris (France)); Mattei, M.G.; Roeckel, N. (Institut National de la Sante et de la Recherche Medicale Unite, Marseille (France)); Nussbaum, J.H.; Roussel, G. (Centre National de la Recherche Scientifique Unite, Strasbourg (France)); Pontarotti, P. (Centre Natinal de la Recherche Scientifique Unite, Toulouse (France)); Mather, I.H. (Univ. of Maryland, College Park, MD (United States)); Artzt, K. (Univ. of Texas, Austin, TX (United States)); Lindahl, K.F. (Univ. of Texas Southwestern Medical Center, Dallas, TX (United States))

    1993-09-01

    Myelin/oligodendrocyte glycoprotein (MOG) is found on the surface of myelinating oligodendrocytes and external lamellae of myelin sheaths in the central nervous system, and it is target antigen in experimental autoimmune encephalomyelitis and multiple sclerosis. The authors have isolated bovine, mouse, and rat MOG cDNA clones and shown that the developmental pattern of MOG expression in the rat central nervous system coincides with the late stages of myelination. The amino-terminal, extracellular domain of MOG has characteristics of an immunoglobulin variable domain and is 46% and 41% identical with the amino terminus of bovine butyrophilin (expressed in the lactating mammary gland) and B-G antigens of the chicken major histocompatibility complex (MHC), respectively; these proteins thus form a subset of the immunoglobulin superfamily. The homology between MOG and B-G extends beyond their structure and genetic mapping to their ability to induce strong antibody responses and has implications for the role of MOG in pathological, autoimmune conditions. The authors colocalized the MOG and BT genes to the human MHC on chromosome 6p21.3-p22. The mouse MOG gene was mapped to the homologous band C of chromosome 17, within the M region of the mouse MHC. 38 refs., 6 figs.

  12. Major histocompatibility complex-unrestricted cytolytic activity of human T cells: analysis of precursor frequency and effector phenotype

    International Nuclear Information System (INIS)

    Patel, S.S.; Thiele, D.L.; Lipsky, P.E.

    1987-01-01

    The frequency and phenotype of human T cells that mediate major histocompatibility complex (MHC)-unrestricted cytolysis were analyzed. T cell clones were generated by culturing adherent cell-depleted peripheral blood mononuclear cells at a density of 0.3 cell/well with phytohemagglutinin, recombinant interleukin 2 (rIL-2), and irradiated autologous peripheral blood mononuclear cells and/or Epstein-Barr virus-transformed lymphoblastoid cell lines. All of the 198 clones generated by this method were T cells (CD2 + , CD3 + , CD4 + or CD2 + , CD3 + , CD8 + ) that possessed potent lytic activity against K562, an erythroleukemia line sensitive to lysis by human natural killer cells, and Cur, a renal carcinoma cell line resistant to human natural killer activity. Cytolysis, measured by 51 Cr release, was MHC-unrestricted, since the clones were able to lyse MHC class I or class II negative targets, as well as MHC class I and class II negative targets. Although the clones produced tissue necrosis factor/lymphotoxin-like molecules, lysis of Cur of K562 was not mediated by a soluble factor secreted by the clones. These data indicate that the capacity for MHC-unrestricted tumoricidal activity and expression of NKH1 and CD11b, but not CD 16, are properties common to all or nearly all human peripheral blood-derived T cell clones regardless of CD4 or CD8 phenotype

  13. Determinant capture as a possible mechanism of protection afforded by major histocompatibility complex class II molecules in autoimmune disease

    Science.gov (United States)

    1993-01-01

    How peptide-major histocompatibility complex (MHC) class II complexes are naturally generated is still unknown, but accumulating evidence suggests that unfolding proteins or long peptides can become bound to class II molecules at the dominant determinant before proteolytic cleavage. We have compared the immunogenicity of hen egg-white lysozyme (HEL) in nonobese diabetic (NOD), (NOD x BALB/c)F1, and E(d) alpha transgenic NOD mice. We find that a response to the subdominant ANOD- restricted determinant disappears upon introduction of an E(d) molecule, and is restored when scission of HEL separates this determinant from its adjoining, competitively dominant, E(d)-restricted determinant. This suggests that the E(d) molecule binds and protects its dominant determinant on a long peptide while captured neighboring determinants are lost during proteolysis. These results provide clear evidence for "determinant capture" as a mechanism of determinant selection during antigen processing and a possible explanation for MHC- protective effects in insulin-dependent diabetes mellitus. PMID:8228814

  14. Elevation of soluble major histocompatibility complex class I related chain A protein in malignant and infectious diseases in Chinese patients

    Directory of Open Access Journals (Sweden)

    Jiang Xiaoxin

    2012-11-01

    Full Text Available Abstract Background Elevation of soluble major histocompatibility complex class I chain-related gene A (sMICA products in serum has been linked to tissue/organ transplantation, autoimmune diseases and some malignant disorders. Cells infected by microbiological pathogens may release sMICA, whereas less is known whether and to what extent serum sMICA levels may change in infectious diseases. Methods The present study determined serum sMICA levels by enzyme-linked immunosorbent assay (ELISA in a southern China population, including patients (n = 1041 suffering from several types of malignant and infectious diseases and healthy controls (n = 141. Results Relative to controls, serum sMICA elevation was significant in patients of hepatic cancer, and was approaching statistical significance in patients with lung, gastric and nasopharyngeal cancers. sMICA elevation was also associated with some bacterial (Enterobacteriaceae, Mycobacterium tuberculosis, non-fermenting Gram-negative bacteria and Gram-positive cocci, viral (hepatitis B and C and the Microspironema pallidum infections. Conclusion Serum sMICA levels may be informative for the diagnosis of some malignant and infectious diseases. The results also indicate that microbiological infections should be considered as a potential confounding clinical condition causing serum sMICA elevation while using this test to evaluate the status of other disorders, such as cancers, host-graft response and autoimmune diseases.

  15. Construction and phenotypic analysis of mice carrying a duplication of the major histocompatibility class I (MHC-I) locus.

    Science.gov (United States)

    Ermakova, Olga; Salimova, Ekaterina; Piszczek, Lukasz; Gross, Cornelius

    2012-08-01

    Copy number variation (CNV) has been associated increasingly with altered susceptibility to human disease. Large CNVs are likely to incur disease risk or resilience via predictable changes in gene dosage that are relatively straightforward to model using chromosomal engineering in mice. The classical class I major histocompatibility locus (MHC-I) contains a dense set of genes essential for innate immune system function in vertebrates. MHC-I genes are highly polymorphic and genetic variation in the region is associated with altered susceptibility to a wide variety of common diseases. Here we investigated the role of gene dosage within MHC-I on susceptibility to disease by engineering a mouse line carrying a 1.9-Mb duplication of this region [called Dp(MHC-I)]. Extensive phenotypic analysis of heterozygous (3N) Dp(MHC-I) animals did not reveal altered blood and stem cell parameters, susceptibility to high-fat diet, death by cancer, or contact dermatitis. However, several measures of disease severity in a model of atherosclerosis were improved, suggesting dosage-sensitive modulators of cardiovascular disease. Homozygous Dp(MHC-I)/Dp(MHC-I) mice demonstrated embryonic lethality. These mice serve as a model for studying the consequences of targeted gene dosage alteration in MHC-I with functional and evolutionary implications.

  16. Recent advances in Major Histocompatibility Complex (MHC) class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control

    Science.gov (United States)

    van Hateren, Andy; Bailey, Alistair; Elliott, Tim

    2017-01-01

    We have known since the late 1980s that the function of classical major histocompatibility complex (MHC) class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter) are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity). We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related), which has been shown to act as a second quality-control stage in MHC I antigen presentation. PMID:28299193

  17. Major Histocompatibility Complex I Mediates Immunological Tolerance of the Trophoblast during Pregnancy and May Mediate Rejection during Parturition

    Science.gov (United States)

    Rapacz-Leonard, Anna; Dąbrowska, Małgorzata; Janowski, Tomasz

    2014-01-01

    During pregnancy in larger mammals, the maternal immune system must tolerate the fetus for months while resisting external infection. This tolerance is facilitated by immunological communication between the fetus and the mother, which is mediated by Major Histocompatibility Complex I (MHC I) proteins, by leukocytes, and by the cytokines secreted by the leukocytes. Fetal-maternal immunological communication also supports pregnancy by inducing physiological changes in the mother. If the mother “misunderstands” the signal sent by the fetus during pregnancy, the fetus will be miscarried or delivered preterm. Unlike any other maternal organ, the placenta can express paternal antigens. At parturition, paternal antigens are known to be expressed in cows and may be expressed in horses, possibly so that the maternal immune system will reject the placenta and help to expel it. This review compares fetal-maternal crosstalk that is mediated by the immune system in three species with pregnancies that last for nine months or longer: humans, cattle, and horses. It raises the possibility that immunological communication early in pregnancy may prepare the mother for successful expulsion of fetal membranes at parturition. PMID:24812442

  18. T cell receptor recognition of a 'super-bulged' major histocompatibility complex class I-bound peptide

    Energy Technology Data Exchange (ETDEWEB)

    Tynan, Fleur E; Burrows, Scott R; Buckle, Ashley M; Clements, Craig S; Borg, Natalie A; Miles, John J; Beddoe, Travis; Whisstock, James C; Wilce, Matthew C; Silins, Sharon L; Burrows, Jacqueline M; Kjer-Nielsen, Lars; Kostenko, Lyudmila; Purcell, Anthony W; McCluskey, James; Rossjohn, Jamie [Queensland; (Monash); (Melbourne)

    2010-07-20

    Unusually long major histocompatibility complex (MHC) class I-restricted epitopes are important in immunity, but their 'bulged' conformation represents a potential obstacle to {alpha}{beta} T cell receptor (TCR)-MHC class I docking. To elucidate how such recognition is achieved while still preserving MHC restriction, we have determined here the structure of a TCR in complex with HLA-B*3508 presenting a peptide 13 amino acids in length. This complex was atypical of TCR-peptide-MHC class I interactions, being dominated at the interface by peptide-mediated interactions. The TCR assumed two distinct orientations, swiveling on top of the centrally bulged, rigid peptide such that only limited contacts were made with MHC class I. Although the TCR-peptide recognition resembled an antibody-antigen interaction, the TCR-MHC class I contacts defined a minimal 'generic footprint' of MHC-restriction. Thus our findings simultaneously demonstrate the considerable adaptability of the TCR and the 'shape' of MHC restriction.

  19. Assembly and function of the major histocompatibility complex (MHC) I peptide-loading complex are conserved across higher vertebrates.

    Science.gov (United States)

    Hinz, Andreas; Jedamzick, Johanna; Herbring, Valentina; Fischbach, Hanna; Hartmann, Jessica; Parcej, David; Koch, Joachim; Tampé, Robert

    2014-11-28

    Antigen presentation to cytotoxic T lymphocytes via major histocompatibility complex class I (MHC I) molecules depends on the heterodimeric transporter associated with antigen processing (TAP). For efficient antigen supply to MHC I molecules in the ER, TAP assembles a macromolecular peptide-loading complex (PLC) by recruiting tapasin. In evolution, TAP appeared together with effector cells of adaptive immunity at the transition from jawless to jawed vertebrates and diversified further within the jawed vertebrates. Here, we compared TAP function and interaction with tapasin of a range of species within two classes of jawed vertebrates. We found that avian and mammalian TAP1 and TAP2 form heterodimeric complexes across taxa. Moreover, the extra N-terminal domain TMD0 of mammalian TAP1 and TAP2 as well as avian TAP2 recruits tapasin. Strikingly, however, only TAP1 and TAP2 from the same taxon can form a functional heterodimeric translocation complex. These data demonstrate that the dimerization interface between TAP1 and TAP2 and the tapasin docking sites for PLC assembly are conserved in evolution, whereas elements of antigen translocation diverged later in evolution and are thus taxon specific. © 2014 by The American Society for Biochemistry and Molecular Biology, Inc.

  20. Structural Evidence for a Germline-Encoded T Cell Receptor - Major Histocompatibility Complex Interaction 'Codon'

    Energy Technology Data Exchange (ETDEWEB)

    Feng, D.; Bond, C.J.; Ely, L.K.; Maynard, J.; Garcia, K.C.

    2009-06-02

    All complexes of T cell receptors (TCRs) bound to peptide-major histocompatibility complex (pMHC) molecules assume a stereotyped binding 'polarity', despite wide variations in TCR-pMHC docking angles. However, existing TCR-pMHC crystal structures have failed to show broadly conserved pairwise interaction motifs. Here we determined the crystal structures of two TCRs encoded by the variable {beta}-chain 8.2 (V{sub {beta}}8.2), each bound to the MHC class II molecule I-A{sup u}, and did energetic mapping of V{sub {alpha}} and V{sub {beta}} contacts with I-A{sup u}. Together with two previously solved structures of V{sub {beta}}8.2-containing TCR-MHC complexes, we found four TCR-I-A complexes with structurally superimposable interactions between the V{sub {beta}} loops and the I-A {alpha}-helix. This examination of a narrow 'slice' of the TCR-MHC repertoire demonstrates what is probably one of many germline-derived TCR-MHC interaction 'codons'.

  1. Association Between Major Histocompatibility Complex Class I Chain-Related Gene Polymorphisms and Susceptibility of Systemic Lupus Erythematosus.

    Science.gov (United States)

    Yu, Ping; Zhu, Quan; Chen, Chunjing; Fu, Xiaoling; Li, Yu; Liu, Limin; Luo, Qizhi; Wang, Fuyan; Wang, Yong

    2017-10-01

    Major histocompatibility complex class I chain-related gene (MIC) polymorphisms have been associated with many autoimmune diseases. To explore the correlation between MIC polymorphisms and systemic lupus erythematosus (SLE), we compared the sequence of the MIC gene in Han Chinese patients with SLE from Hainan Island, China, with healthy individuals. In this study, the MIC polymorphisms in 296 subjects (159 patients with SLE and 137 healthy volunteers) of Han ethnicity from Hainan Island were characterized. A chi-square test was performed to evaluate the differences in the allelic frequency of the MIC genes between patients with SLE and the control subjects. The genotyping results indicated that the frequencies of the MICA*010, MICB*014, and MICB*002 alleles were significantly higher in the control subjects than the patients with SLE. Additionally, the results also indicated that the frequency of the MICB*009N in the SLE group was significantly increased compared to that in the matched control subjects. The results of this study suggested that the MICB*009N allele might be a risk factor for SLE, whereas the MICB*014, MICA*010 and MICB*002 alleles were associated with reduced incidence of SLE in the study population. Copyright © 2017 Southern Society for Clinical Investigation. Published by Elsevier Inc. All rights reserved.

  2. Association of early onset myasthenia gravis in Newfoundland dogs with the canine major histocompatibility complex class I.

    Science.gov (United States)

    Wolf, Zena; Vernau, Karen; Safra, Noa; Shelton, G Diane; King, Jason; Owen, Joseph; Weich, Kalie; Bannasch, Danika

    2017-05-01

    Acquired Myasthenia Gravis (MG) is an autoimmune neuromuscular disorder whose development in humans has been associated with the Major Histocompatibility Complex (MHC) or Human Leukocyte Antigen (HLA). There is a form of early onset MG (EOMG) in Newfoundland dogs that mimics the clinical presentation in humans and appears to have familial inheritance. Genotyping of three classical Dog Leukocyte Antigen (DLA) class II genes, DLA-DRB1, DLA-DQA1 and DLA-DQB1, in 16 Newfoundlands with EOMG and 46 unaffected Newfoundlands, identified DLA-DQB1 *00301 (p-value = 0.0051 OR: 7.41) as a risk locus for the development of EOMG in this breed. In order to further investigate the extent of the association to the entire MHC region, 208 additional SNPs were genotyped in two phases. Both a risk locus for EOMG to the DLA class I (chr12: 458483-506460) and a protective locus for EOMG susceptibility that extends outside of the DLA class I (chr12: 89701-475348) were identified. Four additional dog breeds with an elevated risk for the development of MG were SNP genotyped, but no shared or significant associations were found. MHC involvement in canine MG disease manifestation overlaps with loci identified in human studies and highlights the value of dogs as a model for genetic studies of naturally occurring diseases. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. IPD-MHC 2.0: an improved inter-species database for the study of the major histocompatibility complex.

    Science.gov (United States)

    Maccari, Giuseppe; Robinson, James; Ballingall, Keith; Guethlein, Lisbeth A; Grimholt, Unni; Kaufman, Jim; Ho, Chak-Sum; de Groot, Natasja G; Flicek, Paul; Bontrop, Ronald E; Hammond, John A; Marsh, Steven G E

    2017-01-04

    The IPD-MHC Database project (http://www.ebi.ac.uk/ipd/mhc/) collects and expertly curates sequences of the major histocompatibility complex from non-human species and provides the infrastructure and tools to enable accurate analysis. Since the first release of the database in 2003, IPD-MHC has grown and currently hosts a number of specific sections, with more than 7000 alleles from 70 species, including non-human primates, canines, felines, equids, ovids, suids, bovins, salmonids and murids. These sequences are expertly curated and made publicly available through an open access website. The IPD-MHC Database is a key resource in its field, and this has led to an average of 1500 unique visitors and more than 5000 viewed pages per month. As the database has grown in size and complexity, it has created a number of challenges in maintaining and organizing information, particularly the need to standardize nomenclature and taxonomic classification, while incorporating new allele submissions. Here, we describe the latest database release, the IPD-MHC 2.0 and discuss planned developments. This release incorporates sequence updates and new tools that enhance database queries and improve the submission procedure by utilizing common tools that are able to handle the varied requirements of each MHC-group. © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  4. The expression of major histocompatibility complex class I in endometrial epithelial cells from dairy cow under a simulating hypoxic environment.

    Science.gov (United States)

    Wu, Haichong; Jiang, Kangfeng; Zhang, Tao; Zhao, Gan; Shaukat, Aftab; Deng, Ganzhen

    2018-01-25

    During the first trimester of pregnancy in dairy cows, the fetus is mainly recognized by the expression of major histocompatibility complex class I (MHC-I) in the maternal immune system. Before the embryo begins to implant in the maternal uterus, it requires a long time to remodel and develop vessels in the placenta. During this stage, the embryos are exposed to a hypoxic environment. However, the expression of bovine MHC-I has not been determined in hypoxic bovine endometrial epithelial cells (bEECs). Hypoxia-inducible factor-1α (HIF-1α) is a marker for hypoxic conditions in cells. In the present study, we used cobalt chloride (CoCl 2 ) to establish a hypoxic cell model and then determined the expression of the classical gene BoLA-A and the non-classical gene MICB. qRT-PCR and western blot assays were applied to determine the expression of HIF-1α. qRT-PCR was performed to detect the levels of BoLA-A and MICB mRNAs. The results showed that HIF-1α expression was increased in the hypoxic cell model. The expression of BoLA-A was increased, but MICB levels were decreased in bEECs. Our study provides a basis for exploring the cattle intrauterine environment during pregnancy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. The dichotomy between disease phenotype databases and the implications for understanding complex diseases involving the major histocompatibility complex.

    Science.gov (United States)

    Clark, P M; Kunkel, M; Monos, D S

    2015-12-01

    Many genes related to innate and adaptive immunity reside within the major histocompatibility complex (MHC) and have been associated with a multitude of complex, immune-related disorders. Despite years of genetic study, this region has seen few causative determinants discovered for immune-mediated diseases. Reported associations have been curated in various databases including the Genetic Association Database, NCBI database of clinically relevant variants (ClinVar) and the Human Gene Mutation Database and together capture genetic associations and annotated pathogenic loci within the MHC and across the genome for a variety of complex, immune-mediated diseases. A review of these three distinct databases reveals disparate annotations between associated genes and pathogenic loci, alluding to the polygenic, multifactorial nature of immune-mediated diseases and the pleiotropic character of genes within the MHC. The technical limitations and inherent biases imposed by current approaches and technologies in studying the MHC create a strong case for the need to perform targeted deep sequencing of the MHC and other immunologically relevant loci in order to fully elucidate and study the causative elements of complex immune-mediated diseases. © 2015 The Authors. International Journal of Immunogenetics Published by John Wiley & Sons Ltd.

  6. Mate choice for major histocompatibility complex genetic divergence as a bet-hedging strategy in the Atlantic salmon (Salmo salar)

    Science.gov (United States)

    Evans, Melissa L.; Dionne, Mélanie; Miller, Kristina M.; Bernatchez, Louis

    2012-01-01

    Major histocompatibility complex (MHC)-dependent mating preferences have been observed across vertebrate taxa and these preferences are expected to promote offspring disease resistance and ultimately, viability. However, little empirical evidence linking MHC-dependent mate choice and fitness is available, particularly in wild populations. Here, we explore the adaptive potential of previously observed patterns of MHC-dependent mate choice in a wild population of Atlantic salmon (Salmo salar) in Québec, Canada, by examining the relationship between MHC genetic variation and adult reproductive success and offspring survival over 3 years of study. While Atlantic salmon choose their mates in order to increase MHC diversity in offspring, adult reproductive success was in fact maximized between pairs exhibiting an intermediate level of MHC dissimilarity. Moreover, patterns of offspring survival between years 0+ and 1+, and 1+ and 2+ and population genetic structure at the MHC locus relative to microsatellite loci indicate that strong temporal variation in selection is likely to be operating on the MHC. We interpret MHC-dependent mate choice for diversity as a likely bet-hedging strategy that maximizes parental fitness in the face of temporally variable and unpredictable natural selection pressures. PMID:21697172

  7. Male mate choice relies on major histocompatibility complex class I in a sex-role-reversed pipefish.

    Science.gov (United States)

    Roth, O; Sundin, J; Berglund, A; Rosenqvist, G; Wegner, K M

    2014-05-01

    Mate choice for compatible genes is often based on genes of the major histocompatibility complex (MHC). Although MHC-based mate choice is commonly observed in female choice, male mate choice remains elusive. In particular, if males have intense paternal care and are thus the choosing sex, male choice for females with dissimilar MHC can be expected. Here, we investigated whether male mate choice relies on MHC class I genes in the sex-role reversed pipefish Syngnathus typhle. In a mate choice experiment, we determined the relative importance of visual and olfactory cues by manipulating visibility and olfaction. We found that pipefish males chose females that maximize sequence-based amino acid distance between MHC class I genotypes in the offspring when olfactory cues were present. Under visual cues, large females were chosen, but in the absence of visual cues, the choice pattern was reversed. The use of sex-role reversed species thus revealed that sexual selection can lead to the evolution of male mate choice for MHC class I genes. © 2014 The Authors. Journal of Evolutionary Biology © 2014 European Society For Evolutionary Biology.

  8. Generation of a genomic tiling array of the human Major Histocompatibility Complex (MHC and its application for DNA methylation analysis

    Directory of Open Access Journals (Sweden)

    Ottaviani Diego

    2008-05-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is essential for human immunity and is highly associated with common diseases, including cancer. While the genetics of the MHC has been studied intensively for many decades, very little is known about the epigenetics of this most polymorphic and disease-associated region of the genome. Methods To facilitate comprehensive epigenetic analyses of this region, we have generated a genomic tiling array of 2 Kb resolution covering the entire 4 Mb MHC region. The array has been designed to be compatible with chromatin immunoprecipitation (ChIP, methylated DNA immunoprecipitation (MeDIP, array comparative genomic hybridization (aCGH and expression profiling, including of non-coding RNAs. The array comprises 7832 features, consisting of two replicates of both forward and reverse strands of MHC amplicons and appropriate controls. Results Using MeDIP, we demonstrate the application of the MHC array for DNA methylation profiling and the identification of tissue-specific differentially methylated regions (tDMRs. Based on the analysis of two tissues and two cell types, we identified 90 tDMRs within the MHC and describe their characterisation. Conclusion A tiling array covering the MHC region was developed and validated. Its successful application for DNA methylation profiling indicates that this array represents a useful tool for molecular analyses of the MHC in the context of medical genomics.

  9. Constraints within major histocompatibility complex class I restricted peptides: Presentation and consequences for T-cell recognition

    Energy Technology Data Exchange (ETDEWEB)

    Theodossis, Alex; Guillonneau, Carole; Welland, Andrew; Ely, Lauren K.; Clements, Craig S.; Williamson, Nicholas A.; Webb, Andrew I.; Wilce, Jacqueline A.; Mulder, Roger J.; Dunstone, Michelle A.; Doherty, Peter C.; McCluskey, James; Purcell, Anthony W.; Turner, Stephen J.; Rossjohn, Jamie (Ian Wark Lab.); (Monash); (Melbourne)

    2010-03-24

    Residues within processed protein fragments bound to major histocompatibility complex class I (MHC-I) glycoproteins have been considered to function as a series of 'independent pegs' that either anchor the peptide (p) to the MHC-I and/or interact with the spectrum of {alpha}{beta}-T-cell receptors (TCRs) specific for the pMHC-I epitope in question. Mining of the extensive pMHC-I structural database established that many self- and viral peptides show extensive and direct interresidue interactions, an unexpected finding that has led us to the idea of 'constrained' peptides. Mutational analysis of two constrained peptides (the HLA B44 restricted self-peptide (B44DP{alpha}-EEFGRAFSF)) and an H2-D{sup b} restricted influenza peptide (D{sup b}PA, SSLENFRAYV) demonstrated that the conformation of the prominently exposed arginine in both peptides was governed by interactions with MHC-I-orientated flanking residues from the peptide itself. Using reverse genetics in a murine influenza model, we revealed that mutation of an MHC-I-orientated residue (SSLENFRAYV {yields} SSLENARAYV) within the constrained PA peptide resulted in a diminished cytotoxic T lymphocyte (CTL) response and the recruitment of a limited pMHC-I specific TCR repertoire. Interactions between individual peptide positions can thus impose fine control on the conformation of pMHC-I epitopes, whereas the perturbation of such constraints can lead to a previously unappreciated mechanism of viral escape.

  10. Hard wiring of T cell receptor specificity for the major histocompatibility complex is underpinned by TCR adaptability

    Energy Technology Data Exchange (ETDEWEB)

    Burrows, Scott R.; Chen, Zhenjun; Archbold, Julia K.; Tynan, Fleur E.; Beddoe, Travis; Kjer-Nielsen, Lars; Miles, John J.; Khanna, Rajiv; Moss, Denis J.; Liu, Yu Chih; Gras, Stephanie; Kostenko, Lyudmila; Brennan, Rebekah M.; Clements, Craig S.; Brooks, Andrew G.; Purcell, Anthony W.; McCluskey, James; Rossjohn, Jamie (Monash); (Queensland Inst. of Med. Rsrch.); (Melbourne)

    2010-07-07

    {alpha}{beta} T cell receptors (TCRs) are genetically restricted to corecognize peptide antigens bound to self-major histocompatibility complex (pMHC) molecules; however, the basis for this MHC specificity remains unclear. Despite the current dogma, evaluation of the TCR-pMHC-I structural database shows that the nongermline-encoded complementarity-determining region (CDR)-3 loops often contact the MHC-I, and the germline-encoded CDR1 and -2 loops frequently participate in peptide-mediated interactions. Nevertheless, different TCRs adopt a roughly conserved docking mode over the pMHC-I, in which three MHC-I residues (65, 69, and 155) are invariably contacted by the TCR in one way or another. Nonetheless, the impact of mutations at these three positions, either individually or together, was not uniformly detrimental to TCR recognition of pHLA-B*0801 or pHLA-B*3508. Moreover, when TCR-pMHC-I recognition was impaired, this could be partially restored by expression of the CD8 coreceptor. The structure of a TCR-pMHC-I complex in which these three (65, 69, and 155) MHC-I positions were all mutated resulted in shifting of the TCR footprint relative to the cognate complex and formation of compensatory interactions. Collectively, our findings reveal the inherent adaptability of the TCR in maintaining peptide recognition while accommodating changes to the central docking site on the pMHC-I.

  11. Analysis of Class I Major Histocompatibility Complex Gene Transcription in Human Tumors Caused by Human Papillomavirus Infection.

    Science.gov (United States)

    Gameiro, Steven F; Zhang, Ali; Ghasemi, Farhad; Barrett, John W; Nichols, Anthony C; Mymryk, Joe S

    2017-09-10

    Oncoproteins from high-risk human papillomaviruses (HPV) downregulate the transcription of the class I major histocompatibility complex (MHC-I) antigen presentation apparatus in tissue culture model systems. This could allow infected or transformed cells to evade the adaptive immune response. Using data from over 800 human cervical and head & neck tumors from The Cancer Genome Atlas (TCGA), we determined the impact of HPV status on the mRNA expression of all six MHC-I heavy chain genes, and the β2 microglobulin light chain. Unexpectedly, these genes were all expressed at high levels in HPV positive (HPV+) cancers compared with normal control tissues. Indeed, many of these genes were expressed at significantly enhanced levels in HPV+ tumors. Similarly, the transcript levels of several other components of the MHC-I peptide-loading complex were also high in HPV+ cancers. The coordinated expression of high mRNA levels of the MHC-I antigen presentation apparatus could be a consequence of the higher intratumoral levels of interferon γ in HPV+ carcinomas, which correlate with signatures of increased infiltration by T- and NK-cells. These data, which were obtained from both cervical and oral tumors in large human cohorts, indicates that HPV oncoproteins do not efficiently suppress the transcription of the antigen presentation apparatus in human tumors.

  12. Female major histocompatibility complex type affects male testosterone levels and sperm number in the horse (Equus caballus).

    Science.gov (United States)

    Burger, D; Dolivo, G; Marti, E; Sieme, H; Wedekind, C

    2015-05-22

    Odours of vertebrates often contain information about the major histocompatibility complex (MHC), and are used in kin recognition, mate choice or female investment in pregnancy. It is, however, still unclear whether MHC-linked signals can also affect male reproductive strategies. We used horses (Equus caballus) to study this question under experimental conditions. Twelve stallions were individually exposed either to an unfamiliar MHC-similar mare and then to an unfamiliar MHC-dissimilar mare, or vice versa. Each exposure lasted over a period of four weeks. Peripheral blood testosterone levels were determined weekly. Three ejaculates each were collected in the week after exposure to both mares (i.e. in the ninth week) to determine mean sperm number and sperm velocity. We found high testosterone levels when stallions were kept close to MHC-dissimilar mares and significantly lower ones when kept close to MHC-similar mares. Mean sperm number per ejaculate (but not sperm velocity) was positively correlated to mean testosterone levels and also affected by the order of presentation of mares: sperm numbers were higher if MHC-dissimilar mares were presented last than if MHC-similar mares were presented last. We conclude that MHC-linked signals influence testosterone secretion and semen characteristics, two indicators of male reproductive strategies. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. The evolution of the major histocompatibility complex in upstream versus downstream river populations of the longnose dace.

    Science.gov (United States)

    Crispo, Erika; Tunna, Haley R; Hussain, Noreen; Rodriguez, Silvia S; Pavey, Scott A; Jackson, Leland J; Rogers, Sean M

    2017-05-01

    Populations in upstream versus downstream river locations can be exposed to vastly different environmental and ecological conditions and can thus harbor different genetic resources due to selection and neutral processes. An interesting question is how upstream-downstream directionality in rivers affects the evolution of immune response genes. We used next-generation amplicon sequencing to identify eight alleles of the major histocompatibility complex (MHC) class II β exon 2 in the cyprinid longnose dace ( Rhinichthys cataractae ) from three rivers in Alberta, upstream and downstream of municipal and agricultural areas along contaminant gradients. We used these data to test for directional and balancing selection on the MHC. We also genotyped microsatellite loci to examine neutral population processes in this system. We found evidence for balancing selection on the MHC in the form of increased nonsynonymous variation relative to neutral expectations, and selection occurred at more amino acid residues upstream than downstream in two rivers. We found this pattern despite no population structure or isolation by distance, based on microsatellite data, at these sites. Overall, our results suggest that MHC evolution is driven by upstream-downstream directionality in fish inhabiting this system.

  14. Cross-linking staphylococcal enterotoxin A bound to major histocompatibility complex class I is required for TNF-alpha secretion

    Science.gov (United States)

    Wright, A. D.; Chapes, S. K.

    1999-01-01

    The mechanism of how superantigens function to activate cells has been linked to their ability to bind and cross-link the major histocompatibility complex class II (MHCII) molecule. Cells that lack the MHCII molecule also respond to superantigens, however, with much less efficiency. Therefore, the purpose of this study was to confirm that staphylococcal enterotoxin A (SEA) could bind the MHCI molecule and to test the hypothesis that cross-linking SEA bound to MHCII-deficient macrophages would induce a more robust cytokine response than without cross-linking. We used a capture enzyme-linked immunosorbent assay and an immunprecipitation assay to directly demonstrate that MHCI molecules bind SEA. Directly cross-linking MHCI using monoclonal antibodies or cross-linking bound SEA with an anti-SEA antibody or biotinylated SEA with avidin increased TNF-alpha and IL-6 secretion by MHCII(-/-) macrophages. The induction of a vigorous macrophage cytokine response by SEA/anti-SEA cross-linking of MHCI offers a mechanism to explain how MHCI could play an important role in superantigen-mediated pathogenesis. Copyright 1999 Academic Press.

  15. Membrane-bound versus soluble major histocompatibility complex Class I-related chain A and major histocompatibility complex Class I-related chain B differential expression: Mechanisms of tumor eradication versus evasion and current drug development strategies

    Directory of Open Access Journals (Sweden)

    P K Suresh

    2016-01-01

    Full Text Available Major histocompatibility complex Class I-related chain A/chain B (MICA/MICB is stress-inducible, highly polymorphic ligands whose expression at the transcript level has been detected in all tissues except the central nervous system. However, their restricted protein expression is due to their regulation at the posttranslational level. Its levels are elevated in virally infected and neoplastically transformed cells. Membrane expression of this NKG2DL marks the aberrant cells for elimination by those immune effector cells that express the cognate NKG2D receptor. Among the evasion strategies developed by tumors, the metalloprotease-dependent shedding of MICA/MICB from tumors (either the free or the exosome form can contribute to the inhibition of cytolysis by the immune effector cells (all NK cells, most NKT cells; γδ CD8+ T cells and αβ CD8+ T cells, as well as some αβ CD4+ T cells. There are micro-RNA clusters that regulate surface expression and shedding. Polymorphic variants can be used as susceptibility/associative markers and can also possibly be used to correlate with tumor survival as well as staging/grading of tumors. Variations in the expression level require quantification of this marker for diagnostic/prognostic and therapeutic purposes. Mechanism-based studies would provide a better tumor-specific understanding of their relative roles in the processes of tumor cell elimination versus growth and progression. Last but not least, conventional, interlaboratory validated assays (for, e.g., antibody-based methods should be replaced by robust, reproducible, feasible biophysics-based methods using tumor biopsies. Further, correlative DNA polymorphism-based studies can be done using biological fluids (for, e.g., human saliva that can be sampled by minimally invasive means.

  16. Membrane-bound versus soluble major histocompatibility complex Class I-related chain A and major histocompatibility complex Class I-related chain B differential expression: Mechanisms of tumor eradication versus evasion and current drug development strategies.

    Science.gov (United States)

    Suresh, P K

    2016-01-01

    Major histocompatibility complex Class I-related chain A/chain B (MICA/MICB) is stress-inducible, highly polymorphic ligands whose expression at the transcript level has been detected in all tissues except the central nervous system. However, their restricted protein expression is due to their regulation at the posttranslational level. Its levels are elevated in virally infected and neoplastically transformed cells. Membrane expression of this NKG2DL marks the aberrant cells for elimination by those immune effector cells that express the cognate NKG2D receptor. Among the evasion strategies developed by tumors, the metalloprotease-dependent shedding of MICA/MICB from tumors (either the free or the exosome form) can contribute to the inhibition of cytolysis by the immune effector cells (all NK cells, most NKT cells; γδ CD8+ T cells and αβ CD8+ T cells, as well as some αβ CD4+ T cells). There are micro-RNA clusters that regulate surface expression and shedding. Polymorphic variants can be used as susceptibility/associative markers and can also possibly be used to correlate with tumor survival as well as staging/grading of tumors. Variations in the expression level require quantification of this marker for diagnostic/prognostic and therapeutic purposes. Mechanism-based studies would provide a better tumor-specific understanding of their relative roles in the processes of tumor cell elimination versus growth and progression. Last but not least, conventional, interlaboratory validated assays (for, e.g., antibody-based methods) should be replaced by robust, reproducible, feasible biophysics-based methods using tumor biopsies. Further, correlative DNA polymorphism-based studies can be done using biological fluids (for, e.g., human saliva) that can be sampled by minimally invasive means.

  17. Using intein catalysis to probe the origin of major histocompatibility complex class I-presented peptides

    Science.gov (United States)

    Farfán-Arribas, Diego J.; Stern, Lawrence J.; Rock, Kenneth L.

    2012-01-01

    All vertebrate nucleated cells generate peptides from their expressed gene products and then display them at the cell surface bound to MHC class I molecules. This allows CD8+ T cells to detect and eliminate abnormal cells that are synthesizing foreign proteins, e.g., from viruses or mutations. To permit the immune system to more uniformly monitor a cell's proteins, regardless of their half-life or location, it has been thought that the products of rapid degradation of the mistakes of protein synthesis (defective ribosomal products, DRiPs) preferentially contribute to the class I-presented peptides. However, using intein catalysis to generate peptide sequences exclusively by posttranslational splicing of mature proteins, we show here that presented peptides can be generated from fully folded and functional proteins. Remarkably, the presentation of peptides from two model mature proteins is just as efficient as from newly synthesized proteins subject to errors in translation or folding. These results indicate that for the constructs we have analyzed, DRiPs are not a more efficient source of class I peptides for antigen presentation than the turnover of mature functional proteins. Accordingly, our data suggest that one of the major ways the immune system evaluates the health of cells is by monitoring the breakdown products of the proteome. PMID:23027972

  18. Microsatellite markers for evaluating the diversity of the natural killer complex and major histocompatibility complex genomic regions in domestic horses.

    Science.gov (United States)

    Horecky, C; Horecka, E; Futas, J; Janova, E; Horin, P; Knoll, A

    2018-04-01

    Genotyping microsatellite markers represents a standard, relatively easy, and inexpensive method of assessing genetic diversity of complex genomic regions in various animal species, such as the major histocompatibility complex (MHC) and/or natural killer cell receptor (NKR) genes. MHC-linked microsatellite markers have been identified and some of them were used for characterizing MHC polymorphism in various species, including horses. However, most of those were MHC class II markers, while MHC class I and III sub-regions were less well covered. No tools for studying genetic diversity of NKR complex genomic regions are available in horses. Therefore, the aims of this work were to establish a panel of markers suitable for analyzing genetic diversity of the natural killer complex (NKC), and to develop additional microsatellite markers of the MHC class I and class III genomic sub-regions in horses. Nine polymorphic microsatellite loci were newly identified in the equine NKC. Along with two previously reported microsatellites flanking this region, they constituted a panel of 11 loci allowing to characterize genetic variation in this functionally important part of the horse genome. Four newly described MHC class I/III-linked markers were added to 11 known microsatellites to establish a panel of 15 MHC markers with a better coverage of the class I and class III sub-regions. Major characteristics of the two panels produced on a group of 65 horses of 13 breeds and on five Przewalski's horses showed that they do reflect genetic variation within the horse species. © 2018 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  19. Natural selection of the major histocompatibility complex (Mhc) in Hawaiian honeycreepers (Drepanidinae)

    Science.gov (United States)

    Jarvi, S.I.; Tarr, C.L.; Mcintosh, C.E.; Atkinson, C.T.; Fleischer, R.C.

    2004-01-01

    The native Hawaiian honeycreepers represent a classic example of adaptive radiation and speciation, but currently face one the highest extinction rates in the world. Although multiple factors have likely influenced the fate of Hawaiian birds, the relatively recent introduction of avian malaria is thought to be a major factor limiting honeycreeper distribution and abundance. We have initiated genetic analyses of class II ?? chain Mhc genes in four species of honeycreepers using methods that eliminate the possibility of sequencing mosaic variants formed by cloning heteroduplexed polymerase chain reaction products. Phylogenetic analyses group the honeycreeper Mhc sequences into two distinct clusters. Variation within one cluster is high, with dN > d S and levels of diversity similar to other studies of Mhc (B system) genes in birds. The second cluster is nearly invariant and includes sequences from honeycreepers (Fringillidae), a sparrow (Emberizidae) and a blackbird (Emberizidae). This highly conserved cluster appears reminiscent of the independently segregating Rfp-Y system of genes defined in chickens. The notion that balancing selection operates at the Mhc in the honeycreepers is supported by transpecies polymorphism and strikingly high dN/dS ratios at codons putatively involved in peptide interaction. Mitochondrial DNA control region sequences were invariant in the i'iwi, but were highly variable in the 'amakihi. By contrast, levels of variability of class II ?? chain Mhc sequence codons that are hypothesized to be directly involved in peptide interactions appear comparable between i'iwi and 'amakihi. In the i'iwi, natural selection may have maintained variation within the Mhc, even in the face of what appears to a genetic bottleneck.

  20. Chicken major histocompatibility complex-encoded B-G antigens are found on many cell types that are important for the immune system

    DEFF Research Database (Denmark)

    Salomonsen, J; Dunon, D; Skjødt, K

    1991-01-01

    B-G antigens are a polymorphic multigene family of cell surface molecules encoded by the chicken major histocompatibility complex (MHC). They have previously been described only on cells of the erythroid lineage. By using flow cytometry, section staining, and immunoprecipitation with monoclonal a...... with certain functional data, lead us to suggest that B-G molecules have an important role in the selection of B cells in the chicken bursa. Udgivelsesdato: 1991-Feb-15...

  1. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes.

    OpenAIRE

    Warren, A P; Ducroq, D H; Lehner, P J; Borysiewicz, L K

    1994-01-01

    Viruses which cause persistence in the naturally infected host are predicted to have evolved immune evasion mechanisms. Human cytomegalovirus (HCMV) causes significant morbidity and mortality in immunocompromised patients yet persists without clinical manifestations in seropositive individuals who have normal immune function. We report that HCMV infection in vitro impairs major histocompatibility complex class I (MHC-I) assembly accompanied by resistance to killing by cytotoxic CD8+ T lymphoc...

  2. Major histocompatibility complex variation in insular populations of the Egyptian vulture: inferences about the roles of genetic drift and selection.

    Science.gov (United States)

    Agudo, Rosa; Alcaide, Miguel; Rico, Ciro; Lemus, Jesus A; Blanco, Guillermo; Hiraldo, Fernando; Donázar, Jose A

    2011-06-01

    Insular populations have attracted the attention of evolutionary biologists because of their morphological and ecological peculiarities with respect to their mainland counterparts. Founder effects and genetic drift are known to distribute neutral genetic variability in these demes. However, elucidating whether these evolutionary forces have also shaped adaptive variation is crucial to evaluate the real impact of reduced genetic variation in small populations. Genes of the major histocompatibility complex (MHC) are classical examples of evolutionarily relevant loci because of their well-known role in pathogen confrontation and clearance. In this study, we aim to disentangle the partial roles of genetic drift and natural selection in the spatial distribution of MHC variation in insular populations. To this end, we integrate the study of neutral (22 microsatellites and one mtDNA locus) and MHC class II variation in one mainland (Iberia) and two insular populations (Fuerteventura and Menorca) of the endangered Egyptian vulture (Neophron percnopterus). Overall, the distribution of the frequencies of individual MHC alleles (n=17 alleles from two class II B loci) does not significantly depart from neutral expectations, which indicates a prominent role for genetic drift over selection. However, our results point towards an interesting co-evolution of gene duplicates that maintains different pairs of divergent alleles in strong linkage disequilibrium on islands. We hypothesize that the co-evolution of genes may counteract the loss of genetic diversity in insular demes, maximize antigen recognition capabilities when gene diversity is reduced, and promote the co-segregation of the most efficient allele combinations to cope with local pathogen communities. © 2011 Blackwell Publishing Ltd.

  3. Novel full-length major histocompatibility complex class I allele discovery and haplotype definition in pig-tailed macaques.

    Science.gov (United States)

    Semler, Matthew R; Wiseman, Roger W; Karl, Julie A; Graham, Michael E; Gieger, Samantha M; O'Connor, David H

    2017-11-13

    Pig-tailed macaques (Macaca nemestrina, Mane) are important models for human immunodeficiency virus (HIV) studies. Their infectability with minimally modified HIV makes them a uniquely valuable animal model to mimic human infection with HIV and progression to acquired immunodeficiency syndrome (AIDS). However, variation in the pig-tailed macaque major histocompatibility complex (MHC) and the impact of individual transcripts on the pathogenesis of HIV and other infectious diseases is understudied compared to that of rhesus and cynomolgus macaques. In this study, we used Pacific Biosciences single-molecule real-time circular consensus sequencing to describe full-length MHC class I (MHC-I) transcripts for 194 pig-tailed macaques from three breeding centers. We then used the full-length sequences to infer Mane-A and Mane-B haplotypes containing groups of MHC-I transcripts that co-segregate due to physical linkage. In total, we characterized full-length open reading frames (ORFs) for 313 Mane-A, Mane-B, and Mane-I sequences that defined 86 Mane-A and 106 Mane-B MHC-I haplotypes. Pacific Biosciences technology allows us to resolve these Mane-A and Mane-B haplotypes to the level of synonymous allelic variants. The newly defined haplotypes and transcript sequences containing full-length ORFs provide an important resource for infectious disease researchers as certain MHC haplotypes have been shown to provide exceptional control of simian immunodeficiency virus (SIV) replication and prevention of AIDS-like disease in nonhuman primates. The increased allelic resolution provided by Pacific Biosciences sequencing also benefits transplant research by allowing researchers to more specifically match haplotypes between donors and recipients to the level of nonsynonymous allelic variation, thus reducing the risk of graft-versus-host disease.

  4. A Comprehensive Calorimetric Investigation of an Entropically Driven T Cell Receptor-Peptide/Major Histocompatibility Complex Interaction

    Science.gov (United States)

    Armstrong, Kathryn M.; Baker, Brian M.

    2007-01-01

    The αβ T cell receptor (TCR) is responsible for recognizing peptides bound and “presented” by major histocompatibility complex (MHC) molecules. We recently reported that at 25°C the A6 TCR, which recognizes the Tax peptide presented by the class I MHC human leukocyte antigen-A*0201 (HLA-A2), binds with a weak ΔH°, a favorable ΔS°, and a moderately negative ΔCp. These observations were of interest given the unfavorable binding entropies and large heat capacity changes measured for many other TCR-ligand interactions, suggested to result from TCR conformational changes occurring upon binding. Here, we further investigated the A6-Tax/HLA-A2 interaction using titration calorimetry. We found that binding results in a pKa shift, complicating interpretation of measured binding thermodynamics. To better characterize the interaction, we measured binding as a function of pH, temperature, and buffer ionization enthalpy. A global analysis of the resulting data allowed determination of both the intrinsic binding thermodynamics separated from the influence of protonation as well as the thermodynamics associated with the pKa shift. Our results indicate that intrinsically, A6 binds Tax/HLA-A2 with a very weak ΔH°, an even more favorable ΔS° than previously thought, and a relatively large negative ΔCp. Comparison of these energetics with the makeup of the protein-protein interface suggests that conformational adjustments are required for binding, but these are more likely to be structural shifts, rather than disorder-to-order transitions. The thermodynamics of the pKa shift suggest protonation may be linked to an additional process such as ion binding. PMID:17449678

  5. Use of 8-methoxypsoralen and ultraviolet-A pretreated platelet concentrates to prevent alloimmunization against class I major histocompatibility antigens

    International Nuclear Information System (INIS)

    Grana, N.H.; Kao, K.J.

    1991-01-01

    The use of 8-methoxypsoralen (8-MOP) and UV-A irradiation to inactivate contaminating donor leukocytes in platelet concentrates and to prevent primary alloimmunization against donor class I major histocompatibility (MHC) antigens in mice was investigated. CBA/CaH-T6J mice with the H2k haplotype and BALB/cByJ mice with the H2d haplotype were used as donors and recipients, respectively. The mixed leukocyte reaction between these two strains of mice showed that treatment of spleen cells with 500 ng/mL 8-MOP and 5J/cm2 UV-A inhibited 99% of responder and 92% of stimulator function. There was no measurable loss of platelet aggregating activity after the treatment. After two weekly transfusions of platelets without any treatment, 93% of control mice (n = 15) developed anti-H2k antibody. In contrast, only 33% of mice (n = 15) receiving platelets treated with 8-MOP and UV-A became alloimmunized. After six weekly platelet transfusions, all mice became alloimmunized. Nevertheless, the mean titers of anti-H2k antibody in sera of the treated groups were significantly lower than the control groups. One hour posttransfusion recoveries of 51Cr-labeled donor platelets were also higher in mice transfused with the treated platelets. Thus, the pretreatment of platelet concentrates with 8-MOP and UV-A irradiation effectively reduced the alloantigenicity of class I MHC molecules. The implication of this finding in relation to the mechanism by which donor leukocytes allosensitize recipients is discussed

  6. Pathway of detergent-mediated and peptide ligand-mediated refolding of heterodimeric class II major histocompatibility complex (MHC) molecules.

    Science.gov (United States)

    Stöckel, J; Döring, K; Malotka, J; Jähnig, F; Dornmair, K

    1997-09-15

    We investigated the mechanism of refolding and reassembly of recombinant alpha and beta chains of the class II major histocompatibility molecules (MHC-II) HLA-DRB5*0101. Both chains were expressed in the cytosol of Escherichia coli, purified in urea and SDS, and reassembled to functional heterodimers by replacement of SDS by mild detergents, incubation in a redox-shuffling buffer and finally by oxidation and removal of detergent. Refolding was mediated by mild detergents and by peptide ligands. Early stages of structure formation were characterized by circular dichroism, fluorescence, and time-resolved fluorescence anisotropy decay (FAD) spectroscopies. We found that formation of secondary structure was detectable after replacement of SDS by mild detergents. At that stage the alpha and beta chains were still monomeric, the buffer was strongly reducing, and the folding intermediates did not yet interact with peptide ligands. Formation of folding intermediates capable of interacting with peptide ligands was detected after adjusting the redox potential with oxidized glutathione and incubation in mild detergents. We conclude that at that stage a tertiary structure close to the native structure is formed at least locally. The nature and concentration of detergent critically determined the refolding efficiency. We compared detergents with different carbohydrate headgroups, and with aliphatic chains ranging from C6 to C14 in length. For each of the detergents we observed a narrow concentration range for mediating refolding. Surprisingly, detergents with long aliphatic chains had to be used at higher concentrations than short-chain detergents, indicating that increasing the solubility of folding intermediates is not the only function of detergents during a refolding reaction. We discuss structure formation and interactions of detergents with stable folding intermediates. Understanding such interactions will help to develop rational strategies for refolding hydrophobic or

  7. Role of major histocompatibility complex class II in resistance of mice to naturally acquired infection with Syphacia obvelata

    Science.gov (United States)

    Stewart, Patricia W.; Chapes, Stephen K.

    2003-01-01

    Genetics plays a substantial role in host resistance in many host-parasite interactions. We examined the prevalence of naturally acquired infection with Syphacia obvelata in a number of mouse strains housed in a non-barrier facility. These mice, which included cross-bred and congenic, inbred strains on various genetic backgrounds, differ in the loci for the immune function genes--major histocompatibility complex class II (MHCII), toll-like receptor 4 (Tlr4), and solute carrier family 11, member 1 (Slc11a1)--which allowed comparisons of the impact of these genes on resistance to pinworm infection. Male and female mice of various ages were sampled over an 18-month period; infection was determined by use of the cellophane tape test. Results indicated that mice that were MHCII+/+ had a significantly lower prevalence of infection than did mice that were MHCII-/-. Differences were not seen between male and female mice. Although MHCII+/+ mice had an age-associated decrease in infection prevalence, such decrease was not seen in MHCII-/- mice. In contrast, infection prevalence in mice with the normal Tlr4 gene (Tlr4(LPS-n/LPS-n)) gene did not differ significantly compared with that in mice that were homozygous for either the point mutation (Tlr4(LPS-d/LPS-d)) or deletion (Tlr4(LPS-del/LPS-del)) of that gene. Likewise, the presence (Sle11a1r/r) or absence (Slc11a1s/s) of functional alleles for Slc11a1 had no effect on the prevalence of infection with S. obvelata. In conclusion, presence of MHCII, but not Tlr4 or Slc11a1 significantly influences prevalence of naturally acquired infection with S. obvelata. These data justify further comprehensive analyses of the immune components that are involved in pinworm resistance.

  8. Genetic variation in the extended major histocompatibility complex and susceptibility to childhood acute lymphoblastic leukemia: a review of the evidence

    Directory of Open Access Journals (Sweden)

    Kevin Y Urayama

    2013-12-01

    Full Text Available The enduring suspicion that infections and immunologic response may play a role in the etiology of childhood leukemia, particularly acute lymphoblastic leukemia (ALL, is now supported, albeit still indirectly, by numerous epidemiological studies. The cumulative evidence includes, for example, descriptive observations of a peculiar peak incidence at age 2-5 years for ALL in economically developed countries, clustering of cases in situations of population mixing associated with unusual patterns of personal contacts, associations with various proxy measures for immune modulatory exposures early in life, and genetic susceptibility conferred by variation in genes involved in the immune system. In this review, our focus is the extended major histocompatibility complex (xMHC, an approximately 7.6 megabase region that is well-known for its high density of expressed genes, extensive polymorphisms exhibiting complex linkage disequilibrium patterns, and its disproportionately large number of immune-related genes, including human leukocyte antigen (HLA. First discovered through the role they play in transplant rejection, the classical HLA class I (HLA-A, -B, and -C and class II (HLA-DR, HLA-DQ, and HLA-DP molecules reside at the epicenter of the immune response pathways and are now the targets of many disease susceptibility studies, including those for childhood leukemia. The genes encoding the HLA molecules are only a minority of the over 250 expressed genes in the xMHC, and a growing number of studies are beginning to evaluate other loci through targeted investigations or utilizing a mapping approach with a comprehensive screen of the entire region. Here, we review the current epidemiologic evidence available to date regarding genetic variation contained within this highly unique region of the genome and its relationship with childhood ALL risk.

  9. Selection, trans-species polymorphism, and locus identification of major histocompatibility complex class IIβ alleles of New World ranid frogs

    Science.gov (United States)

    Kiemnec-Tyburczy, Karen M.; Richmond, Jonathan Q.; Savage, Anna E.; Zamudio, Kelly R.

    2010-01-01

    Genes encoded by the major histocompatibility complex (MHC) play key roles in the vertebrate immune system. However, our understanding of the evolutionary processes and underlying genetic mechanisms shaping these genes is limited in many taxa, including amphibians, a group currently impacted by emerging infectious diseases. To further elucidate the evolution of the MHC in frogs (anurans) and develop tools for population genetics, we surveyed allelic diversity of the MHC class II ??1 domain in both genomic and complementary DNA of seven New World species in the genus Rana (Lithobates). To assign locus affiliation to our alleles, we used a "gene walking" technique to obtain intron 2 sequences that flanked MHC class II?? exon 2. Two distinct intron sequences were recovered, suggesting the presence of at least two class II?? loci in Rana. We designed a primer pair that successfully amplified an orthologous locus from all seven Rana species. In total, we recovered 13 alleles and documented trans-species polymorphism for four of the alleles. We also found quantitative evidence of selection acting on amino acid residues that are putatively involved in peptide binding and structural stability of the ??1 domain of anurans. Our results indicated that primer mismatch can result in polymerase chain reaction (PCR) bias, which influences the number of alleles that are recovered. Using a single locus may minimize PCR bias caused by primer mismatch, and the gene walking technique was an effective approach for generating single-copy orthologous markers necessary for future studies of MHC allelic variation in natural amphibian populations. ?? 2010 Springer-Verlag.

  10. Inflammatory bowel diseases influence major histocompatibility complex class I (MHC I) and II compartments in intestinal epithelial cells.

    Science.gov (United States)

    Bär, F; Sina, C; Hundorfean, G; Pagel, R; Lehnert, H; Fellermann, K; Büning, J

    2013-05-01

    Antigen presentation by intestinal epithelial cells (IEC) is crucial for intestinal homeostasis. Disturbances of major histocompatibility complex class I (MHC I)- and II-related presentation pathways in IEC appear to be involved in an altered activation of CD4(+) and CD8(+) T cells in inflammatory bowel disease. However, a comprehensive analysis of MHC I- and II-enriched compartments in IEC of the small and large bowel in the healthy state as opposed to inflammatory bowel diseases is lacking. The aim of this study was to characterize the subcellular expression of MHC I and II in the endocytic pathway of IEC throughout all parts of the intestinal tract, and to identify differences between the healthy state and inflammatory bowel diseases. Biopsies were taken by endoscopy from the duodenum, jejunum, ileum and colon in healthy individuals (n = 20). In Crohn's disease (CD), biopsies were obtained from the ileum and colon and within the colon from ulcerative colitis (UC) patients (n = 15). Analysis of IEC was performed by immunoelectron microscopy. MHC I and II were identified in early endosomes and multi-vesicular, multi-lamellar, electrondense and vacuolar late endosomes. Both molecules were enriched in multi-vesicular bodies. No differences were found between the distinct parts of the gut axis. In CD and UC the expression of MHC I and II showed a shift from multi-vesicular bodies towards the basolateral membranes. Within the multi-vesicular bodies, MHC I and II moved from internal vesicles to the limiting membranes upon inflammation in CD and UC. MHC I- and II-enriched compartments in IEC were identical in all parts of the small and large bowel. CD and UC appear to modulate the MHC I- and II-related presentation pathways of exogenous antigens in IEC. © 2012 British Society for Immunology.

  11. Major Histocompatibility Complex I and II Expression and Lymphocytic Subtypes in Muscle of Horses with Immune-Mediated Myositis.

    Science.gov (United States)

    Durward-Akhurst, S A; Finno, C J; Barnes, N; Shivers, J; Guo, L T; Shelton, G D; Valberg, S J

    2016-07-01

    Major histocompatibility complex (MHC) I and II expression is not normally detected on sarcolemma, but is detected with lymphocytic infiltrates in immune-mediated myositis (IMM) of humans and dogs and in dysferlin-deficient muscular dystrophy. To determine if sarcolemmal MHC is expressed in active IMM in horses, if MHC expression is associated with lymphocytic subtype, and if dysferlin is expressed in IMM. Twenty-one IMM horses of Quarter Horse-related breeds, 3 healthy and 6 disease controls (3 pasture myopathy, 3 amylase-resistant polysaccharide storage myopathy [PSSM]). Immunohistochemical staining for MHC I, II, and CD4+, CD8+, CD20+ lymphocytes was performed on archived muscle of IMM and control horses. Scores were given for MHC I, II, and lymphocytic subtypes. Immunofluorescent staining for dysferlin, dystrophin, and a-sarcoglycan was performed. Sarcolemmal MHC I and II expression was detected in 17/21 and 15/21 of IMM horses, respectively, and in specific fibers of PSSM horses, but not healthy or pasture myopathy controls. The CD4+, CD8+, and CD20+ cells were present in 20/21 IMM muscles with CD4+ predominance in 10/21 and CD8+ predominance in 6/21 of IMM horses. Dysferlin, dystrophin, and a-sarcoglycan staining were similar in IMM and control muscles. Deficiencies of dysferlin, dystrophin, and a-sarcoglycan are not associated with IMM. Sarcolemmal MHC I and II expression in a proportion of myofibers of IMM horses in conjunction with lymphocytic infiltration supports an immune-mediated etiology for IMM. The MHC expression also occured in specific myofibers in PSSM horses in the absence of lymphocytic infiltrates. Copyright © 2016 The Authors. Journal of Veterinary Internal Medicine published by Wiley Periodicals, Inc. on behalf of the American College of Veterinary Internal Medicine.

  12. Molecular Architecture of the Major Histocompatibility Complex Class I-Binding Site of Ly49 Natural Killer Cell Receptors

    Energy Technology Data Exchange (ETDEWEB)

    Deng,L.; Cho, S.; Malchiodi, E.; Kerzic, M.; Dam, J.; Mariuzza, R.

    2008-01-01

    Natural killer (NK) cells play a vital role in the detection and destruction of virally infected and tumor cells during innate immune responses. The highly polymorphic Ly49 family of NK receptors regulates NK cell function by sensing major histocompatibility complex class I (MHC-I) molecules on target cells. Despite the determination of two Ly49-MHC-I complex structures, the molecular features of Ly49 receptors that confer specificity for particular MHC-I alleles have not been identified. To understand the functional architecture of Ly49-binding sites, we determined the crystal structures of Ly49C and Ly49G and completed refinement of the Ly49C-H-2Kb complex. This information, combined with mutational analysis of Ly49A, permitted a structure-based classification of Ly49s that we used to dissect the binding site into three distinct regions, each having different roles in MHC recognition. One region, located at the center of the binding site, has a similar structure across the Ly49 family and mediates conserved interactions with MHC-I that contribute most to binding. However, the preference of individual Ly49s for particular MHC-I molecules is governed by two regions that flank the central region and are structurally more variable. One of the flanking regions divides Ly49s into those that recognize both H-2D and H-2K versus only H-2D ligands, whereas the other discriminates among H-2D or H-2K alleles. The modular design of Ly49-binding sites provides a framework for predicting the MHC-binding specificity of Ly49s that have not been characterized experimentally.

  13. Major histocompatibility complex diversity is positively associated with stream water temperatures in proximate populations of sockeye salmon.

    Science.gov (United States)

    Larson, W A; Lisi, P J; Seeb, J E; Seeb, L W; Schindler, D E

    2016-09-01

    Local adaptation to heterogeneous environments generates population diversity within species, significantly increasing ecosystem stability and flows of ecosystem services. However, few studies have isolated the specific mechanisms that create and maintain this diversity. Here, we examined the relationship between water temperature in streams used for spawning and genetic diversity at a gene involved in immune function [the major histocompatibility complex (MHC)] in 14 populations of sockeye salmon (Oncorhynchus nerka) sampled across the Wood River basin in south-western Alaska. The largest influence on MHC diversity was lake basin, but we also found a significant positive correlation between average water temperature and MHC diversity. This positive relationship between temperature and MHC diversity appears to have been produced by natural selection at very local scales rather than neutral processes, as no correlation was observed between temperature and genetic diversity at 90 neutral markers. Additionally, no significant relationship was observed between temperature variability and MHC diversity. Although lake basin was the largest driver of differences in MHC diversity, our results also demonstrate that fine-scale differences in water temperature may generate variable selection regimes in populations that spawn in habitats separated by as little as 1 km. Additionally, our results indicated that some populations may be reaching a maximum level of MHC diversity. We postulate that salmon from populations in warm streams may delay spawning until late summer to avoid thermal stress as well as the elevated levels of pathogen prevalence and virulence associated with warm temperatures earlier in the summer. © 2016 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2016 European Society For Evolutionary Biology.

  14. Major Histocompatibility Complex Genes Map to Two Chromosomes in an Evolutionarily Ancient Reptile, the Tuatara Sphenodon punctatus.

    Science.gov (United States)

    Miller, Hilary C; O'Meally, Denis; Ezaz, Tariq; Amemiya, Chris; Marshall-Graves, Jennifer A; Edwards, Scott

    2015-05-07

    Major histocompatibility complex (MHC) genes are a central component of the vertebrate immune system and usually exist in a single genomic region. However, considerable differences in MHC organization and size exist between different vertebrate lineages. Reptiles occupy a key evolutionary position for understanding how variation in MHC structure evolved in vertebrates, but information on the structure of the MHC region in reptiles is limited. In this study, we investigate the organization and cytogenetic location of MHC genes in the tuatara (Sphenodon punctatus), the sole extant representative of the early-diverging reptilian order Rhynchocephalia. Sequencing and mapping of 12 clones containing class I and II MHC genes from a bacterial artificial chromosome library indicated that the core MHC region is located on chromosome 13q. However, duplication and translocation of MHC genes outside of the core region was evident, because additional class I MHC genes were located on chromosome 4p. We found a total of seven class I sequences and 11 class II β sequences, with evidence for duplication and pseudogenization of genes within the tuatara lineage. The tuatara MHC is characterized by high repeat content and low gene density compared with other species and we found no antigen processing or MHC framework genes on the MHC gene-containing clones. Our findings indicate substantial differences in MHC organization in tuatara compared with mammalian and avian MHCs and highlight the dynamic nature of the MHC. Further sequencing and annotation of tuatara and other reptile MHCs will determine if the tuatara MHC is representative of nonavian reptiles in general. Copyright © 2015 Miller et al.

  15. Non-classical major histocompatibility complex class makes a crucial contribution to reproduction in the dairy cow.

    Science.gov (United States)

    Shu, Lei; Peng, Xiuli; Zhang, Shen; Deng, Ganzhen; Wu, Yue; He, Mingyue; Li, Beibei; Li, Chengye; Zhang, Kechun

    2012-01-01

    The aim of this study was to evaluate the effect of classical and non-classical major histocompatibility complex (MHC) on the reproduction in the dairy cow. Nine pairs of MHC-I genes were chosen according to their homology and possible function, and their transcription levels in maternal peripheral blood mononuclear cells (PBMCs) from all three trimesters and transcription levels in fetal tissues were compared to evaluate their contributions to cattle reproduction. The results showed that three non-classical genes were variably expressed in PBMCs of pregnant cows. MICB was downregulated in the first and second trimesters (P0.05). BoLA-NC1* was upregulated in the first and last trimesters (P0.05). BoLA-NC3* was upregulated in all trimesters (P<0.001). On the other hand, MICB was upregulated in fetal ear tissues (P<0.001), and BoLA-NC1* was almost silent in both fetal placenta and ear tissues (P<0.001); however, BoLA-NC3* was upregulated in both the fetal placenta and ear tissues (P<0.001). These results suggested that non-classical gene BoLA-NC1* increased maternal immunity against the fetus, which was inhibited by BoLA-NC3*. BoLA-NC3* also inhibited fetal autoimmunity. Apoptosis of the fetal placenta could reduce itself expressing MICB, and upregulated expression of MICB in ear tissues was favorable for the fetus to escape autoimmunity. On the other hand, downregulated expression of MICB in the fetal placenta allows for placental decoherence from the maternal placentome, which was beneficial to fetus delivery. Although classical genes were expressed differentially, their effects were restricted because of heavy chain deficiency.

  16. Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045, identified by sequence-based typing in Chinese individuals.

    Science.gov (United States)

    Xu, Y P; Gao, S Q; Tao, H

    2015-10-01

    Full-length coding sequences of three major histocompatibility complex class I-related chain A alleles, MICA*019, MICA*027 and MICA*045. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  17. Giant panda BAC library construction and assembly of a 650-kb contig spanning major histocompatibility complex class II region

    Directory of Open Access Journals (Sweden)

    Pan Hui-Juan

    2007-09-01

    Full Text Available Abstract Background Giant panda is rare and endangered species endemic to China. The low rates of reproductive success and infectious disease resistance have severely hampered the development of captive and wild populations of the giant panda. The major histocompatibility complex (MHC plays important roles in immune response and reproductive system such as mate choice and mother-fetus bio-compatibility. It is thus essential to understand genetic details of the giant panda MHC. Construction of a bacterial artificial chromosome (BAC library will provide a new tool for panda genome physical mapping and thus facilitate understanding of panda MHC genes. Results A giant panda BAC library consisting of 205,800 clones has been constructed. The average insert size was calculated to be 97 kb based on the examination of 174 randomly selected clones, indicating that the giant panda library contained 6.8-fold genome equivalents. Screening of the library with 16 giant panda PCR primer pairs revealed 6.4 positive clones per locus, in good agreement with an expected 6.8-fold genomic coverage of the library. Based on this BAC library, we constructed a contig map of the giant panda MHC class II region from BTNL2 to DAXX spanning about 650 kb by a three-step method: (1 PCR-based screening of the BAC library with primers from homologous MHC class II gene loci, end sequences and BAC clone shotgun sequences, (2 DNA sequencing validation of positive clones, and (3 restriction digest fingerprinting verification of inter-clone overlapping. Conclusion The identifications of genes and genomic regions of interest are greatly favored by the availability of this giant panda BAC library. The giant panda BAC library thus provides a useful platform for physical mapping, genome sequencing or complex analysis of targeted genomic regions. The 650 kb sequence-ready BAC contig map of the giant panda MHC class II region from BTNL2 to DAXX, verified by the three-step method, offers a

  18. A major histocompatibility Class I locus contributes to multiple sclerosis susceptibility independently from HLA-DRB1*15:01.

    Directory of Open Access Journals (Sweden)

    Bruce A C Cree

    2010-06-01

    Full Text Available In Northern European descended populations, genetic susceptibility for multiple sclerosis (MS is associated with alleles of the human leukocyte antigen (HLA Class II gene DRB1. Whether other major histocompatibility complex (MHC genes contribute to MS susceptibility is controversial.A case control analysis was performed using 958 single nucleotide polymorphisms (SNPs spanning the MHC assayed in two independent datasets. The discovery dataset consisted of 1,018 cases and 1,795 controls and the replication dataset was composed of 1,343 cases and 1,379 controls. The most significantly MS-associated SNP in the discovery dataset was rs3135391, a Class II SNP known to tag the HLA-DRB1*15:01 allele, the primary MS susceptibility allele in the MHC (O.R. = 3.04, p < 1 x 10(-78. To control for the effects of the HLA-DRB1*15:01 haplotype, case control analysis was performed adjusting for this HLA-DRB1*15:01 tagging SNP. After correction for multiple comparisons (false discovery rate = .05 52 SNPs in the Class I, II and III regions were significantly associated with MS susceptibility in both datasets using the Cochran Armitage trend test. The discovery and replication datasets were merged and subjects carrying the HLA-DRB1*15:01 tagging SNP were excluded. Association tests showed that 48 of the 52 replicated SNPs retained significant associations with MS susceptibility independently of the HLA-DRB1*15:01 as defined by the tagging SNP. 20 Class I SNPs were associated with MS susceptibility with p-values < or = 1 x 10(-8. The most significantly associated SNP was rs4959039, a SNP in the downstream un-translated region of the non-classical HLA-G gene (Odds ratio 1.59, 95% CI 1.40, 1.81, p = 8.45 x 10(-13 and is in linkage disequilibrium with several nearby SNPs. Logistic regression modeling showed that this SNP's contribution to MS susceptibility was independent of the Class II and Class III SNPs identified in this screen.A MHC Class I locus contributes to MS

  19. Ancestral polymorphism at the major histocompatibility complex (MHCIIß in the Nesospiza bunting species complex and its sister species (Rowettia goughensis

    Directory of Open Access Journals (Sweden)

    van Rensburg Alexandra

    2012-08-01

    Full Text Available Abstract Background The major histocompatibility complex (MHC is an important component of the vertebrate immune system and is frequently used to characterise adaptive variation in wild populations due to its co-evolution with pathogens. Passerine birds have an exceptionally diverse MHC with multiple gene copies and large numbers of alleles compared to other avian taxa. The Nesospiza bunting species complex (two species on Nightingale Island; one species with three sub-species on Inaccessible Island represents a rapid adaptive radiation at a small, isolated archipelago, and is thus an excellent model for the study of adaptation and speciation. In this first study of MHC in Nesospiza buntings, we aim to characterize MHCIIß variation, determine the strength of selection acting at this gene region and assess the level of shared polymorphism between the Nesospiza species complex and its putative sister taxon, Rowettia goughensis, from Gough Island. Results In total, 23 unique alleles were found in 14 Nesospiza and 2 R. goughensis individuals encoding at least four presumably functional loci and two pseudogenes. There was no evidence of ongoing selection on the peptide binding region (PBR. Of the 23 alleles, 15 were found on both the islands inhabited by Nesospiza species, and seven in both Nesospiza and Rowettia; indications of shared, ancestral polymorphism. A gene tree of Nesospiza MHCIIß alleles with several other passerine birds shows three highly supported Nesospiza-specific groups. All R. goughensis alleles were shared with Nesospiza, and these alleles were found in all three Nesospiza sequence groups in the gene tree, suggesting that most of the observed variation predates their phylogenetic split. Conclusions Lack of evidence of selection on the PBR, together with shared polymorphism across the gene tree, suggests that population variation of MHCIIß among Nesospiza and Rowettia is due to ancestral polymorphism rather than local selective

  20. Major histocompatibility complex (MHC) class III genetics in two Amerindian tribes from southern Brazil: the Kaingang and the Guarani.

    Science.gov (United States)

    Weg-Remers, S; Brenden, M; Schwarz, E; Witzel, K; Schneider, P M; Guerra, L K; Rehfeldt, I R; Lima, M T; Hartmann, D; Petzl-Erler, M L; de Messias, I J; Mauff, G

    1997-10-01

    Population genetic studies of the major histocompatibility complex (MHC) class III region, comprising C2, BF and C4 phenotypes, and molecular genetic data are rarely available for populations other than Caucasoids. We have investigated three Amerindian populations from Southern Brazil: 131 Kaingang from Ivaí (KIV), 111 Kaingang (KRC) and 100 Guarani (GRC) from Rio das Cobras. Extended MHC haplotypes were derived after standard C2, BF, C4 phenotyping and restriction fragment length polymorphism (RFLP) analysis with TaqI, together with HLA data published previously by segregation analysis. C2 and BF frequencies corresponded to other Amerindian populations. C4B*Q0 frequency was high in the GRC (0.429) but low in the Kaingang. Unusual C4 alleles were found, viz. C4A*58, A*55 and C4B*22 (presumably non-Amerindian) and aberrant C4A*3 of Amerindian origin occurring with a frequency of 0.223 in the GRC. C4A*3 bands of homo- and heterozygous individuals carrying this variant were Rodgers 1 positive and Chido 1,3 positive, showed a C4A specific lysis type and a C4A like alpha-chain. Polymerase chain reaction studies and sequencing showed that this is based on a C4A*3 duplication with a regular C4A*3 and a partially converted C4A*0304 carrying the C4B specific epitopes Ch 6 and Ch 1,3. Associations of class III haplotypes with particular RFLP patterns were similar to those reported for Caucasoids. The previously described association between combined C4A and CYP21P deletions and the 6.4 kb TaqI fragment was not seen in these Amerindians. This fragment occurred within a regular two locus gene structure in the Kaingang, representing a "short" gene at C4 locus I. C4 and CYP21 duplications were frequently observed. The distribution of extended MHC haplotypes provides evidence for a close relationship between the KIV and KRC and a larger genetic distance between the two Kaingang groups and the GRC.

  1. Proteasomal targeting and minigene repetition improve cell-surface presentation of a transfected, modified melanoma tumour antigen

    DEFF Research Database (Denmark)

    Rasmussen, A B; Zocca, M-B; Bonefeld, C M

    2004-01-01

    on the density of specific major histocompatibility complex-peptide complexes on the surface of the antigen-presenting cell. In this study, we explored the cell-surface presentation of a substituted MART-1 peptide encoded by transfected minigenes. We investigated the potential of proteasomal targeting compared...

  2. Bone Marrow Graft-Versus-Host Disease in Major Histocompatibility Complex-Matched Murine Reduced-Intensity Allogeneic Hemopoietic Cell Transplantation.

    Science.gov (United States)

    Shahin, Kifah; Mattar, Zamil; Silveira, Pablo; Hsu, Wei-Hsun; Bendall, Linda; Hart, Derek; Bradstock, Kenneth F

    2017-11-01

    Most clinical allogeneic hemopoietic cell transplants (alloHCT) are now performed using reduced-intensity conditioning (RIC) instead of myeloablative conditioning (MAC); however, the biology underlying this treatment remains incompletely understood. We investigated a murine model of major histocompatibility complex-matched multiple minor histocompatibility antigen-mismatched alloHCT using bone marrow (BM) cells and splenocytes from B6 (H-2) donor mice transplanted into BALB.B (H-2) recipients after RIC with fludarabine of 100 mg/kg per day for 5 days, cyclophosphamide of 60 mg/kg per day for 2 days, and total body irradiation (TBI). The lowest TBI dose capable of achieving complete donor chimerism in this mouse strain combination was 325 cGy given as a single fraction. Mice that underwent RIC had a reduced incidence and delayed onset of graft-versus-host disease (GVHD) and significantly prolonged survival compared with MAC-transplanted recipients (TBI of 850 cGy plus cyclophosphamide of 60 mg/kg per day for 2 days). Compared with syngeneic controls, RIC mice with GVHD showed evidence of BM suppression, have anemia, reduced BM cellularity, and showed profound reduction in BM B cell lymphopoiesis associated with damage to the endosteal BM niche. This was associated with an increase in BM CD8 effector T cells in RIC mice and elevated blood and BM plasma levels of T helper1 cytokines. Increasing doses of splenocytes resulted in increased incidence of GVHD in RIC mice. We demonstrate that the BM is a major target organ of GVHD in an informative clinically relevant RIC mouse major histocompatibility complex-matched alloHCT model by a process that seems to be driven by CD8 effector T cells.

  3. Functional isotypes are not encoded by the constant region genes of the beta subunit of the T cell receptor for antigen/major histocompatibility complex

    OpenAIRE

    1984-01-01

    Human T cell clones and a cDNA probe specific for constant regions of the beta subunit of the antigen/major histocompatibility complex (MHC) receptor, TiC beta 1 and TiC beta 2, were employed to determine whether these genes were differentially used by functional classes of T lymphocytes. DNA from 10 interleukin-2-dependent T cell clones including class I and class II MHC-specific cytotoxic T lymphocytes (n = 6), T4+ inducer T lymphocytes (n = 2), and T8+ suppressor T lymphocytes (n = 2) show...

  4. Edmonston Measles Virus Prevents Increased Cell Surface Expression of Peptide-Loaded Major Histocompatibility Complex Class II Proteins in Human Peripheral Monocytes

    OpenAIRE

    Yilla, Mamadi; Hickman, Carole; McGrew, Marcia; Meade, Elizabeth; Bellini, William J.

    2003-01-01

    Gamma interferon (IFN-γ) induces expression of the gene products of the major histocompatibility complex (MHC), whereas IFN-α/β can interfere with or suppress class II protein expression. In separate studies, measles virus (MV) was reported to induce IFN-α/β and to up-regulate MHC class II proteins. In an attempt to resolve this paradox, we examined the surface expression of MHC class I and class II proteins in MV-infected peripheral monocytes in the presence and absence of IFN-α/β. Infection...

  5. Lack of Major Histocompatibility Complex Class I Upregulation and Restrictive Infection by JC Virus Hamper Detection of Neurons by T Lymphocytes in the Central Nervous System.

    Science.gov (United States)

    Wüthrich, Christian; Batson, Stephanie; Koralnik, Igor J

    2015-08-01

    The human polyomavirus JC (JCV) infects glial cells in immunosuppressed individuals, leading to progressive multifocal leukoencephalopathy. Polyomavirus JC can also infect neurons in patients with JCV granule cell neuronopathy and JCV encephalopathy. CD8-positive T cells play a crucial role in viral containment and outcome in progressive multifocal leukoencephalopathy, but whether CD8-positive T cells can also recognize JCV-infected neurons is unclear. We used immunohistochemistry to determine the prevalence of T cells in neuron-rich areas of archival brain samples from 77 patients with JCV CNS infections and 94 control subjects. Neurons predominantly sustained a restrictive infection with expression of JCV regulatory protein T antigen (T Ag), whereas glial cells were productively infected and expressed both T Ag and the capsid protein VP1. T cells were more prevalent near JCV-infected cells with intact nuclei expressing both T Ag and VP1 compared with those expressing either protein alone. CD8-positive T cells also colocalized more with JCV-infected glial cells than with JCV-infected neurons. Major histocompatibility complex class I expression was upregulated in JCV-infected areas but could only be detected in rare neurons interspersed with infected glial cells. These results suggest that isolated neurons harboring restrictive JCV infection do not upregulate major histocompatibility complex class I and thus may escape recognition by CD8-positive T cells.

  6. Association of Local Intrapulmonary Production of Antibodies Specific to Donor Major Histocompatibility Complex Class I With the Progression of Chronic Rejection of Lung Allografts.

    Science.gov (United States)

    Miyamoto, Ei; Motoyama, Hideki; Sato, Masaaki; Aoyama, Akihiro; Menju, Toshi; Shikuma, Kei; Sowa, Terumasa; Yoshizawa, Akihiko; Saito, Masao; Takahagi, Akihiro; Tanaka, Satona; Takahashi, Mamoru; Ohata, Keiji; Kondo, Takeshi; Hijiya, Kyoko; Chen-Yoshikawa, Toyofumi F; Date, Hiroshi

    2017-05-01

    Antibody-mediated rejection may lead to chronic lung allograft dysfunction, but antibody-mediated rejection may develop in the absence of detectable donor-specific antibody (DSA) in recipient serum. This study investigated whether humoral immune responses develop not only systemically but locally within rejected lung allografts, resulting in local production of DSA. Lewis rats received orthotopic left lung transplantation from Lewis (syngeneic control) or Brown-Norway (major histocompatibility complex-mismatched allogeneic) donor rats. Rats that underwent allogeneic lung transplantation were subsequently administered cyclosporine until day 14 (short immunosuppression) or day 35 (long immunosuppression). The lung grafts and spleens of recipient animals were tissue cultured for 4 days, and the titer of antibody against donor major histocompatibility complex molecules was assayed by flow cytometry. Explanted lung grafts were also evaluated pathologically. By day 98, DSA titers in supernatants of lung graft (P = 0.0074) and spleen (P = 0.0167) cultures, but not serum, from the short immunosuppression group were significantly higher than titers in syngeneic controls. Cultures and sera from the long immunosuppression group showed no production of DSA. Microscopically, the lung grafts from the short immunosuppression group showed severe bronchiole obliteration and parenchymal fibrosis, along with lymphoid aggregates containing T and B cells, accompanying plasma cells. These findings suggestive of local humoral immune response were not observed by days 28 and 63. DSA can be locally produced in chronically rejected lung allografts, along with intragraft immunocompetent cells. Clinical testing of DSA in serum samples alone may underestimate lung allograft dysfunction.

  7. Predicting binding affinities of protein ligands from three-dimensional models: application to peptide binding to class I major histocompatibility proteins

    DEFF Research Database (Denmark)

    Rognan, D; Lauemoller, S L; Holm, A

    1999-01-01

    A simple and fast free energy scoring function (Fresno) has been developed to predict the binding free energy of peptides to class I major histocompatibility (MHC) proteins. It differs from existing scoring functions mainly by the explicit treatment of ligand desolvation and of unfavorable protein...... coordinates of the MHC-bound peptide have first been determined with an accuracy of about 1-1.5 A. Furthermore, it may be easily recalibrated for any protein-ligand complex.......) and of a series of 16 peptides to H-2K(k). Predictions were more accurate for HLA-A2-binding peptides as the training set had been built from experimentally determined structures. The average error in predicting the binding free energy of the test peptides was 3.1 kJ/mol. For the homology model-derived equation...

  8. Size polymorphism of chicken major histocompatibility complex-encoded B-G molecules is due to length variation in the cytoplasmic heptad repeat region

    DEFF Research Database (Denmark)

    Kaufman, J; Salomonsen, J; Skjødt, K

    1990-01-01

    B-G antigens are cell-surface molecules encoded by a highly polymorphic multigene family located in the chicken major histocompatibility complex (MHC). Rabbit antisera to B-G molecules immunoprecipitate 3-6 bands from iodinated erythrocytes by sodium dodecyl sulfate (SDS) gels under reducing...... conditions. These are all B-G molecules because they all map to the B-G region of the chicken MHC in congenic and recombinant chickens, most are directly recognized by the antisera, most form disulfide-linked dimers, and none bear N-linked carbohydrate. Both apparent homodimers and heterodimers are found......, which bear intrachain disulfide bonds. All 3-6 bands have different mobilities in SDS gels between different haplotypes, ranging from 30 to 55 kDa. This size polymorphism is not affected by glycosidase treatment or addition of protease inhibitors. Partial proteolysis of cell surface-iodinated B-G...

  9. Chicken major histocompatibility complex-encoded B-G antigens are found on many cell types that are important for the immune system

    DEFF Research Database (Denmark)

    Salomonsen, J; Dunon, D; Skjødt, K

    1991-01-01

    B-G antigens are a polymorphic multigene family of cell surface molecules encoded by the chicken major histocompatibility complex (MHC). They have previously been described only on cells of the erythroid lineage. By using flow cytometry, section staining, and immunoprecipitation with monoclonal...... antibodies and rabbit antisera to B-G molecules and by using Northern blots with B-G cDNA clones, we demonstrate here that B-G molecules and RNA are present in many other cell types: thrombocytes, peripheral B and T lymphocytes, bursal B cells and thymocytes, and stromal cells in the bursa, thymus......, and caecal tonsil of the intestine. The reactions also identify at least one polymorphic B-G determinant encoded by the B-F/B-L region of the chicken MHC. The serology and tissue distribution of B-G molecules are as complex as those of mammalian MHC class I and class II molecules. These facts, taken...

  10. Differential expression of guinea pig class II major histocompatibility complex antigens on vascular endothelial cells in vitro and in experimental allergic encephalomyelitis.

    Science.gov (United States)

    Wilcox, C E; Baker, D; Butter, C; Willoughby, D A; Turk, J L

    1989-04-15

    Previous studies have shown that vascular endothelial cells do not normally express major histocompatibility complex (MHC) Class II antigens either in vivo or in vitro. In this investigation it was found that endothelial in the central nervous system (CNS) of normal guinea pigs constitutively express MHC Class II antigens recognized by the monoclonal antibodies HLA-DR, 27E7, and MSgp8. This phenotype is retained when these CNS-derived endothelial cells are propagated in tissue culture. Furthermore, examination of CNS tissue taken from animals in the acute phase of chronic relapsing experimental allergic encephalomyelitis shows that additional epitopes of the MHC Class II antigen, detected by the monoclonal antibodies CI.13.1 and 22C4, are present during the diseased state. This study not only demonstrates constitutive expression of certain MHC Class II determinants by guinea pig endothelial cells, but also shows that other Class II determinants can be differentially expressed in certain disease states.

  11. Ligation of major histocompatibility complex class I antigens (MHC-I) prevents apoptosis induced by Fas or SAPK/JNK activation in T-lymphoma cells

    DEFF Research Database (Denmark)

    Lamberth, K; Claesson, M H

    2001-01-01

    Early apoptosis in Jurkat T-lymphoma cells was induced by agonistic anti-Fas Ab or by anisomycin which activates the stress kinases SAPK/JNK. Apoptosis was inhibited by ligation of major histocompatibility complex class I antigens (MHC-I). MHC-I ligation induced upregulation of the anti......-apoptotic Bcl-2 protein and stabilized the mitochondrial membrane potential (Deltapsim). MHC-I ligation also prevented downregulation of Bcl-2 and destabilization of Deltapsim induced by anti-Fas Ab treatment or anisomycin exposure. Studies on three different Jurkat cell mutants deficient for src p56(lck), ZAP......-70 kinase, or TCR/CD3 gamma-chain showed that the cells undergo apoptosis after Fas ligation. Anisomycin exposure induced apoptosis in the src p56(lck)-deficient cell line but not in the two other mutant cell lines. Simultaneous cross-linking of MHC-I and Fas ligation inhibited apoptosis in the ZAP...

  12. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I)

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Kristensen, B.; Ladekjaer-Mikkelsen, A.S.

    2002-01-01

    The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class 1) were cloned and sequenced for two haplotypes (114 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs...

  13. The interaction of beta 2-microglobulin (beta 2m) with mouse class I major histocompatibility antigens and its ability to support peptide binding. A comparison of human and mouse beta 2m

    DEFF Research Database (Denmark)

    Pedersen, L O; Stryhn, A; Holter, T L

    1995-01-01

    The function of major histocompatibility complex (MHC) class I molecules is to sample peptides derived from intracellular proteins and to present these peptides to CD8+ cytotoxic T lymphocytes. In this paper, biochemical assays addressing MHC class I binding of both peptide and beta 2-microglobul...

  14. The chicken beta 2-microglobulin gene is located on a non-major histocompatibility complex microchromosome: a small, G+C-rich gene with X and Y boxes in the promoter

    DEFF Research Database (Denmark)

    Riegert, P; Andersen, R; Bumstead, N

    1996-01-01

    beta 2-Microglobulin is an essential subunit of major histocompatibility complex (Mhc) class I molecules, which present antigenic peptides to T lymphocytes. We sequenced a number of cDNAs and two genomic clones corresponding to chicken beta 2-microglobulin. The chicken beta 2-microglobulin gene has...

  15. Association of a specific major histocompatibility complex class IIβ single nucleotide polymorphism with resistance to lactococcosis in rainbow trout, Oncorhynchus mykiss (Walbaum).

    Science.gov (United States)

    Colussi, S; Prearo, M; Bertuzzi, S A; Scanzio, T; Peletto, S; Favaro, L; Modesto, P; Maniaci, M G; Ru, G; Desiato, R; Acutis, P L

    2015-01-01

    Major histocompatibility complex (MHC) loci encode glycoproteins that bind to foreign peptides and initiate immune responses through their interaction with T cells. MHC class II molecules are heterodimers consisting of α and β chains encoded by extremely variable genes; variation in exon 2 is responsible for the majority of observed polymorphisms, mostly concentrated in the codons specifying the peptide-binding region. Lactococcus garvieae is the causative agent of lactococcosis, a warm-water bacterial infection pathogenic for cultured freshwater and marine fish. It causes considerable economic losses, limiting the profitability and development of fish industries in general and the intensive production of rainbow trout, Oncorhynchus mykiss (Walbaum), in particular. The disease is currently controlled with vaccines and antibiotics; however, vaccines have short-term efficacy, and increasing concerns regarding antibiotic residues have called for alternative strategies. To explore the involvement of the MHC class II β-1 domain as a candidate gene for resistance to lactococcosis, we exposed 400 rainbow trout to naturally contaminated water. One single nucleotide polymorphism (SNP) and one haplotype were associated with resistance (P trout resistant to lactococcosis. © 2014 John Wiley & Sons Ltd.

  16. Modulation of the major histocompatibility complex by neural stem cell-derived neurotrophic factors used for regenerative therapy in a rat model of stroke

    Directory of Open Access Journals (Sweden)

    Sun Chongran

    2010-08-01

    Full Text Available Abstract Background The relationship between functional improvements in ischemic rats given a neural stem cell (NSC transplant and the modulation of the class I major histocompatibility complex (MHC mediated by NSC-derived neurotrophins was investigated. Methods The levels of gene expression of nerve growth factor (NGF, brain-derived neurotropic factor (BDNF and neurotrophin-3 (NT-3 were assayed from cultures of cortical NSC from Sprague-Dawley rat E16 embryos. The levels of translated NGF in spent culture media from NSC cultures and the cerebral spinal fluid (CSF of rats with and without NGF injection or NSC transplant were also measured. Results We found a significant increase of NGF, BDNF and NT-3 transcripts and NGF proteins in both the NSC cultures and the CSF of the rats. The immunochemical staining for MHC in brain sections and the enzyme-linked immunosorbent assay of CSF were carried out in sham-operated rats and rats with surgically induced focal cerebral ischemia. These groups were further divided into animals that did and did not receive NGF administration or NSC transplant into the cisterna magna. Our results show an up-regulation of class I MHC in the ischemic rats with NGF and NSC administration. The extent of caspase-III immunoreactivity was comparable among three arms in the ischemic rats. Conclusion Readouts of somatosensory evoked potential and the trap channel test illustrated improvements in the neurological function of ischemic rats treated with NGF administration and NSC transplant.

  17. Applicability of major histocompatibility complex DRB1 alleles as markers to detect vertebrate hybridization: a case study from Iberian ibex × domestic goat in southern Spain

    Directory of Open Access Journals (Sweden)

    Alasaad Samer

    2012-09-01

    Full Text Available Abstract Background Hybridization between closely related wild and domestic species is of great concern because it can alter the evolutionary integrity of the affected populations. The high allelic variability of Major Histocompatibility Complex (MHC loci usually excludes them from being used in studies to detect hybridization events. However, if a the parental species don’t share alleles, and b one of the parental species possesses an exceptionally low number of alleles (to facilitate analysis, then even MHC loci have the potential to detect hybrids. Results By genotyping the exon2 of the MHC class II DRB1 locus, we were able to detect hybridization between domestic goats (Capra hircus and free-ranging Iberian ibex (Capra pyrenaica hispanica by molecular means. Conclusions This is the first documentation of a Capra pyrenaica × Capra hircus hybridization, which presented us the opportunity to test the applicability of MHC loci as new, simple, cost-effective, and time-saving approach to detect hybridization between wild species and their domesticated relatives, thus adding value to MHC genes role in animal conservation and management.

  18. CD54/intercellular adhesion molecule 1 and major histocompatibility complex II signaling induces B cells to express interleukin 2 receptors and complements help provided through CD40 ligation

    DEFF Research Database (Denmark)

    Poudrier, J; Owens, T

    1994-01-01

    We have examined signaling roles for CD54 intercellular adhesion molecule 1 and major histocompatibility complex (MHC) II as contact ligands during T help for B cell activation. We used a T helper 1 (Th1)-dependent helper system that was previously shown to be contact as well as interleukin 2 (IL-2......) dependent to demonstrate the relative roles of CD54, MHC II, and CD40 signaling in the events leading to the induction of B cell proliferation and responsiveness to IL-2. Paraformaldehyde-fixed activated Th1-induced expression of IL-2R alpha, IL-2R beta, and B7, and upregulated MHC II and CD54 on B cells....... Anti-CD54 and MHC II mAbs as well as a CD8 alpha-CD40 ligand (L) soluble construct inhibited both the T-dependent induction of Ig secretion, and B cell phenotypic changes. We then compared the effects of activated Th1 cells with that of cross-linking these molecules. Cross-linking of CD54 and MHC II...

  19. The "adjuvant effect" of the polymorphic B-G antigens of the chicken major histocompatibility complex analyzed using purified molecules incorporated in liposomes

    DEFF Research Database (Denmark)

    Salomonsen, J; Eriksson, H; Skjødt, K

    1991-01-01

    The polymorphic B-G region of the chicken major histocompatibility complex has previously been shown to mediate an "adjuvant effect" on the humoral response to other erythrocyte alloantigens. We demonstrate here that B-G molecules purified with monoclonal antibodies exert this adjuvant effect...... on the production of alloantibodies to chicken class I (B-F) molecules, when the two are in the same liposome. The adjuvant effect may in part be mediated by antibodies, since the antibody response to B-G molecules occurs much faster than the response to B-F molecules, and conditions in which antibodies to B-G...... are present increase the speed of the response to B-F molecules. We also found that the presence of B-G molecules in separate liposomes results in a lack of response to B-F molecules. In the light of this and other data, we consider the possible roles for the polymorphic B-G molecules, particularly...

  20. SNP association mapping across the extended major histocompatibility complex and risk of B-cell precursor acute lymphoblastic leukemia in children.

    Directory of Open Access Journals (Sweden)

    Kevin Y Urayama

    Full Text Available The extended major histocompatibility complex (xMHC is the most gene-dense region of the genome and harbors a disproportionately large number of genes involved in immune function. The postulated role of infection in the causation of childhood B-cell precursor acute lymphoblastic leukemia (BCP-ALL suggests that the xMHC may make an important contribution to the risk of this disease. We conducted association mapping across an approximately 4 megabase region of the xMHC using a validated panel of single nucleotide polymorphisms (SNPs in childhood BCP-ALL cases (n=567 enrolled in the Northern California Childhood Leukemia Study (NCCLS compared with population controls (n=892. Logistic regression analyses of 1,145 SNPs, adjusted for age, sex, and Hispanic ethnicity indicated potential associations between several SNPs and childhood BCP-ALL. After accounting for multiple comparisons, one of these included a statistically significant increased risk associated with rs9296068 (OR=1.40, 95% CI=1.19-1.66, corrected p=0.036, located in proximity to HLA-DOA. Sliding window haplotype analysis identified an additional locus located in the extended class I region in proximity to TRIM27 tagged by a haplotype comprising rs1237485, rs3118361, and rs2032502 (corrected global p=0.046. Our findings suggest that susceptibility to childhood BCP-ALL is influenced by genetic variation within the xMHC and indicate at least two important regions for future evaluation.

  1. The human major histocompatibility complex class II HLA-DRB1 and HLA-DQA1 genes are separated by a CTCF-binding enhancer-blocking element.

    Science.gov (United States)

    Majumder, Parimal; Gomez, Jorge A; Boss, Jeremy M

    2006-07-07

    The human major histocompatibility complex class II (MHC-II) region encodes a cluster of polymorphic heterodimeric glycoproteins HLA-DR, -DQ, and -DP that functions in antigen presentation. Separated by approximately 44 kb of DNA, the HLA-DRB1 and HLA-DQA1 encode MHC-II proteins that function in separate MHC-II heterodimers and are diametrically transcribed. A region of high acetylation located in the intergenic sequences between HLA-DRB1 and HLA-DQA1 was discovered and termed XL9. The peak of acetylation coincided with sequences that bound the insulator protein CCCTC-binding factor as determined by chromatin immunoprecipitations and in vitro DNA binding studies. XL9 was also found to be associated with the nuclear matrix. The activity of the XL9 region was examined and found to be a potent enhancer-blocking element. These results suggest that the XL9 region may have evolved to separate the transcriptional units of the HLA-DR and HLA-DQ genes.

  2. Molecular detection of targeted major histocompatibility complex I-bound peptides using a probabilistic measure and nanospray MS3 on a hybrid quadrupole-linear ion trap.

    Science.gov (United States)

    Reinhold, Bruce; Keskin, Derin B; Reinherz, Ellis L

    2010-11-01

    A nanospray MS(3) method deployed on a quadrupole linear ion trap hybrid can detect targeted peptides with high dynamic range and high sensitivity from complex mixtures without separations. The method uses a recognition algorithm that is a modification of the relative (Kullback-Leibler, KL) entropy characterization of probabilistic distance to detect if reference MS(3) fragmentation patterns are components of acquired MS(3) spectra. The recognition reflects the probabilistic structure of physical MS measurements unlike the Euclidean or inner product metrics widely used for comparing spectra. It capably handles spectra with a significant chemical ion background in contrast to the Euclidean metric or the direct relative entropy. The full nanospray MS(3) method allows both the detection and quantitation of targets without the need to obtain isotopically labeled standards. By avoiding chromatographic separations and its associated surface losses, the detection can be applied to complex samples on a very limited material scale. The methodology is illustrated by applications to the medically important problem of detecting targeted major histocompatibility complex (MHC) I associated peptides extracted from limited cell numbers.

  3. Recent advances in Major Histocompatibility Complex (MHC class I antigen presentation: Plastic MHC molecules and TAPBPR-mediated quality control [version 1; referees: 4 approved

    Directory of Open Access Journals (Sweden)

    Andy van Hateren

    2017-02-01

    Full Text Available We have known since the late 1980s that the function of classical major histocompatibility complex (MHC class I molecules is to bind peptides and display them at the cell surface to cytotoxic T cells. Recognition by these sentinels of the immune system can lead to the destruction of the presenting cell, thus protecting the host from pathogens and cancer. Classical MHC class I molecules (MHC I hereafter are co-dominantly expressed, polygenic, and exceptionally polymorphic and have significant sequence diversity. Thus, in most species, there are many different MHC I allotypes expressed, each with different peptide-binding specificity, which can have a dramatic effect on disease outcome. Although MHC allotypes vary in their primary sequence, they share common tertiary and quaternary structures. Here, we review the evidence that, despite this commonality, polymorphic amino acid differences between allotypes alter the ability of MHC I molecules to change shape (that is, their conformational plasticity. We discuss how the peptide loading co-factor tapasin might modify this plasticity to augment peptide loading. Lastly, we consider recent findings concerning the functions of the non-classical MHC I molecule HLA-E as well as the tapasin-related protein TAPBPR (transporter associated with antigen presentation binding protein-related, which has been shown to act as a second quality-control stage in MHC I antigen presentation.

  4. Comparative Analyses of the Relative Effects of Various Mutations in Major Histocompatibility Complex I-a Way to Predict Protein-Protein Interactions.

    Science.gov (United States)

    Ali, Ananya; Biswas, Ria; Bhattacharjee, Sanchari; Nath, Prabahan; Pan, Sumanjit; Bagchi, Angshuman

    2016-09-01

    Protein-protein interactions (PPIs) play pivotal roles in most of the biological processes. PPI dysfunctions are therefore associated with disease situations. Mutations often lead to PPI dysfunctions, but there are certain other types of mutations which do not cause any appreciable abnormalities. This second type of mutations is called polymorphic mutations. So far, there are many studies that deal with the identification of PPI sites, but clear-cut analyses of the involvements of mutations in PPI dysfunctions are few and far between. We therefore made an attempt to link the appearances of mutations and PPI disruptions. We used major histocompatibility complex as our reference protein complex. We analyzed the mutations leading to the disease amyloidosis and also the other mutations that do not lead to disease conditions. We computed various biophysical parameters like relative solvent accessibility to discriminate between the two different types of mutations. Our analyses for the first time came up with a plausible explanation for the effects of different types of mutations in disease development. Our future plans are to build tools to detect the effects of mutations in disease developments by disrupting the PPIs.

  5. Expression and clinical value of the soluble major histocompatibility complex class I-related chain A molecule in the serum of patients with renal tumors.

    Science.gov (United States)

    Zhao, Y-K; Jia, C-M; Yuan, G-J; Liu, W; Qiu, Y; Zhu, Q-G

    2015-06-29

    We investigated the expression and clinical value of the soluble major histocompatibility complex class I-related chain A (sMICA) molecule in the serum of patients with renal tumors. Sixty patients diagnosed with renal tumors were enrolled in the experimental group, whereas 20 healthy volunteers served as the control group. The sMICA levels were measured via enzyme-linked immunosorbent assay, and the results were analyzed in combination with data from pathol-ogy examination. The experimental group had a statistically significant higher sMICA level (P < 0.05) than the control group. The sMICA level was higher in patients with malignant tumors than in those with be-nign tumors. We also observed a positive relationship among different tumor-node-metastasis (TNM) pathological stages with more advanced diseases exhibiting higher sMICA levels. As a tumor-associated antigen, MICA has a close relationship with renal tumorigenesis and immune es-cape. Our results indicated that sMICA levels were related to tumor pathol-ogy, TNM stage, and metastasis. Therefore, sMICA might be a potential marker for tumor characteristics, prognosis, and recurrence prediction.

  6. Regulation of major histocompatibility complex class II antigens on human alveolar macrophages by granulocyte–macrophage colony-stimulating factor in the presence of glucocorticoids

    Science.gov (United States)

    Caulfield, J J; Fernandez, M H; Sousa, A R; Lane, S J; Lee, T H; Hawrylowicz, C M

    1999-01-01

    Alveolar macrophages (AM) present antigen poorly to CD4+ T cells and respond weakly to interferon-γ (IFN-γ) for up-regulation of major histocompatibility complex (MHC) class II and costimulatory molecule expression. In atopic asthma, however, AM exhibit enhanced antigen-presenting cell (APC) activity. Since granulocyte–macrophage colony-stimulating factor (GM-CSF) is increased in the airways of asthmatic patients, we have investigated its role in modulating the APC function of AM. The effects of glucocorticoids were also studied since earlier studies showed optimal induction of MHC antigens on monocytes by GM-CSF in their presence. GM-CSF in the presence, but not the absence, of dexamethasone enhanced the expression of HLA-DR, -DP and -DQ antigens by AM. However AM and monocytes differed in the optimal concentration of steroid required to mediate this effect (10−10 m and 10−7 m, respectively). Induction of MHC antigens was glucocorticoid specific and independent of IFN-γ. These studies suggest the existence of an IFN-γ-independent pathway of macrophage activation, which may be important in regulating APC function within the lung. PMID:10469240

  7. Bone marrow transplantation across major histocompatibility barriers in mice: II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    Energy Technology Data Exchange (ETDEWEB)

    Vallera, D.A.; Soderling, C.C.B.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatability barriers.Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then given to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 100-rad TLI. In TLI plus CY-conditioned recipients, it was also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for these findings are discussed. (JMT)

  8. Bone marrow transplantation across major histocompatibility barriers in mice: II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    International Nuclear Information System (INIS)

    Vallera, D.A.; Soderling, C.C.B.; Carlson, G.J.; Kersey, J.H.

    1982-01-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatability barriers.Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then given to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 100-rad TLI. In TLI plus CY-conditioned recipients, it was also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for these findings are discussed

  9. Balancing selection, random genetic drift, and genetic variation at the major histocompatibility complex in two wild populations of guppies (Poecilia reticulata).

    Science.gov (United States)

    Van Oosterhout, Cock; Joyce, Domino A; Cummings, Stephen M; Blais, Jonatan; Barson, Nicola J; Ramnarine, Indar W; Mohammed, Ryan S; Persad, Nadia; Cable, Joanne

    2006-12-01

    Our understanding of the evolution of genes of the major histocompatibility complex (MHC) is rapidly increasing, but there are still enigmatic questions remaining, particularly regarding the maintenance of high levels of MHC polymorphisms in small, isolated populations. Here, we analyze the genetic variation at eight microsatellite loci and sequence variation at exon 2 of the MHC class IIB (DAB) genes in two wild populations of the Trinidadian guppy, Poecilia reticulata. We compare the genetic variation of a small (Ne, 100) and relatively isolated upland population to that of its much larger (Ne approximately 2400) downstream counterpart. As predicted, microsatellite diversity in the upland population is significantly lower and highly differentiated from the population further downstream. Surprisingly, however, these guppy populations are not differentiated by MHC genetic variation and show very similar levels of allelic richness. Computer simulations indicate that the observed level of genetic variation can be maintained with overdominant selection acting at three DAB loci. The selection coefficients differ dramatically between the upland (s > or = 0.2) and lowland (s guppies in the upland habitat, which has resulted in high levels of MHC diversity being maintained in this population despite considerable genetic drift.

  10. Major histocompatibility complex class II expression and hemagglutinin subtype influence the infectivity of type A influenza virus for respiratory dendritic cells.

    Science.gov (United States)

    Hargadon, Kristian M; Zhou, Haixia; Albrecht, Randy A; Dodd, Haley A; García-Sastre, Adolfo; Braciale, Thomas J

    2011-11-01

    Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103(+) DC, CD11b(hi) DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103(+) and CD11b(hi) RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract.

  11. Major Histocompatibility Complex Class II Expression and Hemagglutinin Subtype Influence the Infectivity of Type A Influenza Virus for Respiratory Dendritic Cells ▿

    Science.gov (United States)

    Hargadon, Kristian M.; Zhou, Haixia; Albrecht, Randy A.; Dodd, Haley A.; García-Sastre, Adolfo; Braciale, Thomas J.

    2011-01-01

    Dendritic cells (DC) play a key role in antiviral immunity, functioning both as innate effector cells in early phases of the immune response and subsequently as antigen-presenting cells that activate the adaptive immune response. In the murine respiratory tract, there are several respiratory dendritic cell (RDC) subsets, including CD103+ DC, CD11bhi DC, monocyte/macrophage DC, and plasmacytoid DC. However, little is known about the interaction between these tissue-resident RDC and viruses that are encountered during natural infection in the respiratory tract. Here, we show both in vitro and in vivo that the susceptibility of murine RDC to infection with type A influenza virus varies with the level of MHC class II expression by RDC and with the virus strain. Both CD103+ and CD11bhi RDC, which express the highest basal level of major histocompatibility complex (MHC) class II, are highly susceptible to infection by type A influenza virus. However, efficient infection is restricted to type A influenza virus strains of the H2N2 subtype. Furthermore, enhanced infectivity by viruses of the H2N2 subtype is linked to expression of the I-E MHC class II locus product. These results suggest a potential novel role for MHC class II molecules in influenza virus infection and pathogenesis in the respiratory tract. PMID:21917972

  12. Human cytomegalovirus-infected cells have unstable assembly of major histocompatibility complex class I complexes and are resistant to lysis by cytotoxic T lymphocytes.

    Science.gov (United States)

    Warren, A P; Ducroq, D H; Lehner, P J; Borysiewicz, L K

    1994-05-01

    Viruses which cause persistence in the naturally infected host are predicted to have evolved immune evasion mechanisms. Human cytomegalovirus (HCMV) causes significant morbidity and mortality in immunocompromised patients yet persists without clinical manifestations in seropositive individuals who have normal immune function. We report that HCMV infection in vitro impairs major histocompatibility complex class I (MHC-I) assembly accompanied by resistance to killing by cytotoxic CD8+ T lymphocytes. Pulse-chase metabolic labelling experiments show that MHC-I complexes continue to be assembled by both uninfected and HCMV-infected cells. However, MHC-I molecules are unstable in HCMV-infected cells and are rapidly broken down. Endoglycosidase H treatment of immunoprecipitates indicates that the breakdown of MHC-I complexes in HCMV-infected cells occurs primarily in a pre-Golgi compartment. Interference with normal MHC-I assembly and expression, if relevant in vivo, may have implications for the restriction of the diversity of the CD8+ cytotoxic T lymphocyte repertoire directed against HCMV antigens and may be an important mechanism of viral persistence.

  13. Endoplasmic reticulum aminopeptidase 1 function and its pathogenic role in regulating innate and adaptive immunity in cancer and major histocompatibility complex class I-associated autoimmune diseases.

    Science.gov (United States)

    Fruci, D; Romania, P; D'Alicandro, V; Locatelli, F

    2014-08-01

    Major histocompatibility complex (MHC) class I molecules present antigenic peptides on the cell surface to alert natural killer (NK) cells and CD8(+) T cells for the presence of abnormal intracellular events, such as virus infection or malignant transformation. The generation of antigenic peptides is a multistep process that ends with the trimming of N-terminal extensions in the endoplasmic reticulum (ER) by aminopeptidases ERAP1 and ERAP2. Recent studies have highlighted the potential role of ERAP1 in reprogramming the immunogenicity of tumor cells in order to elicit innate and adaptive antitumor immune responses, and in conferring susceptibility to autoimmune diseases in predisposed individuals. In this review, we will provide an overview of the current knowledge about the role of ERAP1 in MHC class I antigen processing and how its manipulation may constitute a promising tool for cancer immunotherapy and treatment of MHC class I-associated autoimmune diseases. © 2014 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  14. The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile,Podarcis erhardii.

    Science.gov (United States)

    Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M

    2017-07-01

    The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

  15. Transcription of non-classic major histocompatibility complex (MHC) class I in the bovine placenta throughout gestation and after Brucella abortus infection.

    Science.gov (United States)

    Dos Santos, Larissa Sarmento; da Silva Mol, Juliana Pinto; de Macedo, Auricélio Alves; Silva, Ana Patrícia Carvalho; Dos Santos Ribeiro, Diego Luiz; Santos, Renato Lima; da Paixão, Tatiane Alves; de Carvalho Neta, Alcina Vieira

    2015-10-15

    Transcription of non-classical major histocompatibility complex class I (MHC-I) was assessed in the bovine placenta throughout gestation. Additionally, the effect of Brucella abortus infection on expression of non-classical MHC-I was also evaluated using a chorioallantoic membrane explant model of infection. The non-classical MHC-I genes MICB and NC3 had higher levels of transcription in the intercotyledonary region when compared to the placentome, which had higher levels of transcription at the second trimester of gestation. NC1 and classical MHC-I had very low levels of transcription throughout gestation. Trophoblastic cells of B. abortus-infected chorioallantoic membrane explants had an increase in transcription of non-classical MHC-I at 4h post infection. Therefore, this study provides an analysis of non-classical MHC-I transcription at different stages of gestation and different placental tissues, and during B. abortus infection. These findings provide additional knowledge on immune regulation in placental tissues, a known immune-privileged site. Copyright © 2015. Published by Elsevier B.V.

  16. Impact of lipid rafts on the T -cell-receptor and peptide-major-histocompatibility-complex interactions under different measurement conditions

    Science.gov (United States)

    Li, Long; Xu, Guang-Kui; Song, Fan

    2017-01-01

    The interactions between T-cell receptor (TCR) and peptide-major-histocompatibility complex (pMHC), which enable T-cell development and initiate adaptive immune responses, have been intensively studied. However, a central issue of how lipid rafts affect the TCR-pMHC interactions remains unclear. Here, by using a statistical-mechanical membrane model, we show that the binding affinity of TCR and pMHC anchored on two apposing cell membranes is significantly enhanced because of the lipid raft-induced signaling protein aggregation. This finding may provide an alternative insight into the mechanism of T-cell activation triggered by very low densities of pMHC. In the case of cell-substrate adhesion, our results indicate that the loss of lateral mobility of the proteins on the solid substrate leads to the inhibitory effect of lipid rafts on TCR-pMHC interactions. Our findings help to understand why different experimental methods for measuring the impact of lipid rafts on the receptor-ligand interactions have led to contradictory conclusions.

  17. Loss of T Cell Antigen Recognition Arising from Changes in Peptide and Major Histocompatibility Complex Protein Flexibility: Implications for Vaccine Design

    Energy Technology Data Exchange (ETDEWEB)

    Insaidoo, Francis K.; Borbulevych, Oleg Y.; Hossain, Moushumi; Santhanagopolan, Sujatha M.; Baxter, Tiffany K.; Baker, Brian M. (Notre)

    2012-05-08

    Modification of the primary anchor positions of antigenic peptides to improve binding to major histocompatibility complex (MHC) proteins is a commonly used strategy for engineering peptide-based vaccine candidates. However, such peptide modifications do not always improve antigenicity, complicating efforts to design effective vaccines for cancer and infectious disease. Here we investigated the MART-1{sub 27-35} tumor antigen, for which anchor modification (replacement of the position two alanine with leucine) dramatically reduces or ablates antigenicity with a wide range of T cell clones despite significantly improving peptide binding to MHC. We found that anchor modification in the MART-1{sub 27-35} antigen enhances the flexibility of both the peptide and the HLA-A*0201 molecule. Although the resulting entropic effects contribute to the improved binding of the peptide to MHC, they also negatively impact T cell receptor binding to the peptide {center_dot} MHC complex. These results help explain how the 'anchor-fixing' strategy fails to improve antigenicity in this case, and more generally, may be relevant for understanding the high specificity characteristic of the T cell repertoire. In addition to impacting vaccine design, modulation of peptide and MHC flexibility through changes to antigenic peptides may present an evolutionary strategy for the escape of pathogens from immune destruction.

  18. Histocompatible chicken inbred lines: homogeneities in the major histocompatibility complex antigens of the GSP, GSN/1, PNP/DO and BM-C inbred lines assessed by hemagglutination, mixed lymphocyte reaction and skin transplantation.

    Science.gov (United States)

    Valdez, Marcos B; Mizutani, Makoto; Fujiwara, Akira; Yazawa, Hajime; Yamagata, Takahiro; Shimada, Kiyoshi; Namikawa, Takao

    2007-10-01

    Chicken inbred lines of the GSP, GSN/1, PNP/DO and BM-C have been established by selection of a specific allele at the B blood group locus (MHC B-G region) and other polymorphic loci through pedigree mating. To extend the potential of these inbred lines as experimental animals in Aves, we assessed the antigenic homogeneities of the MHC antigens by three immunological methods. Antigenic variations of red blood cells (RBCs) were surveyed in the inbred lines and a random-bred line (NG) derived from the Nagoya breed by using ten kinds of intact antisera produced in the inbred line of chickens against RBCs of a red junglefowl and hybrids. In the hemagglutination test, no individual variations were found within the inbred line at all, while all the ten antisera detected highly heterogeneous reactions in individuals of the NG. The reciprocal one-way mixed lymphocyte reactions gave constantly higher stimulation responses (PGSP and GSN/1 inbred lines both having the B(21) allele. In reciprocal skin transplantation, the transplanted skingrafts within the inbred line and between individuals from the GSP and GSN/1 inbred lines survived more than 100 days, while all the skingrafts showed signs of rejection within 7 days among the inbred lines having different B alleles. The results obtained by the three practical methods coincidentally indicated that the individuals in the respective four inbred lines were histocompatible, and further, that the GSP and GSN/1 individuals were histocompatible.

  19. Characterization of major histocompatibility complex (MHC DRB exon 2 and DRA exon 3 fragments in a primary terrestrial rabies vector (Procyon lotor.

    Directory of Open Access Journals (Sweden)

    Sarrah Castillo

    Full Text Available The major histocompatibility complex (MHC presents a unique system to explore links between genetic diversity and pathogens, as diversity within MHC is maintained in part by pathogen driven selection. While the majority of wildlife MHC studies have investigated species that are of conservation concern, here we characterize MHC variation in a common and broadly distributed species, the North American raccoon (Procyon lotor. Raccoons host an array of broadly distributed wildlife diseases (e.g., canine distemper, parvovirus and raccoon rabies virus and present important human health risks as they persist in high densities and in close proximity to humans and livestock. To further explore how genetic variation influences the spread and maintenance of disease in raccoons we characterized a fragment of MHC class II DRA exon 3 (250 bp and DRB exon 2 (228 bp. MHC DRA was found to be functionally monomorphic in the 32 individuals screened; whereas DRB exon 2 revealed 66 unique alleles among the 246 individuals screened. Between two and four alleles were observed in each individual suggesting we were amplifying a duplicated DRB locus. Nucleotide differences between DRB alleles ranged from 1 to 36 bp (0.4-15.8% divergence and translated into 1 to 21 (1.3-27.6% divergence amino acid differences. We detected a significant excess of nonsynonymous substitutions at the peptide binding region (P = 0.005, indicating that DRB exon 2 in raccoons has been influenced by positive selection. These data will form the basis of continued analyses into the spatial and temporal relationship of the raccoon rabies virus and the immunogenetic response in its primary host.

  20. Engineering chimeric human and mouse major histocompatibility complex (MHC) class I tetramers for the production of T-cell receptor (TCR) mimic antibodies.

    Science.gov (United States)

    Li, Demin; Bentley, Carol; Yates, Jenna; Salimi, Maryam; Greig, Jenny; Wiblin, Sarah; Hassanali, Tasneem; Banham, Alison H

    2017-01-01

    Therapeutic monoclonal antibodies targeting cell surface or secreted antigens are among the most effective classes of novel immunotherapies. However, the majority of human proteins and established cancer biomarkers are intracellular. Peptides derived from these intracellular proteins are presented on the cell surface by major histocompatibility complex class I (MHC-I) and can be targeted by a novel class of T-cell receptor mimic (TCRm) antibodies that recognise similar epitopes to T-cell receptors. Humoural immune responses to MHC-I tetramers rarely generate TCRm antibodies and many antibodies recognise the α3 domain of MHC-I and β2 microglobulin (β2m) that are not directly involved in presenting the target peptide. Here we describe the production of functional chimeric human-murine HLA-A2-H2Dd tetramers and modifications that increase their bacterial expression and refolding efficiency. These chimeric tetramers were successfully used to generate TCRm antibodies against two epitopes derived from wild type tumour suppressor p53 (RMPEAAPPV and GLAPPQHLIRV) that have been used in vaccination studies. Immunisation with chimeric tetramers yielded no antibodies recognising the human α3 domain and β2m and generated TCRm antibodies capable of specifically recognising the target peptide/MHC-I complex in fully human tetramers and on the cell surface of peptide pulsed T2 cells. Chimeric tetramers represent novel immunogens for TCRm antibody production and may also improve the yield of tetramers for groups using these reagents to monitor CD8 T-cell immune responses in HLA-A2 transgenic mouse models of immunotherapy.

  1. Evidence of gene orthology and trans-species polymorphism, but not of parallel evolution, despite high levels of concerted evolution in the major histocompatibility complex of flamingo species.

    Science.gov (United States)

    Gillingham, M A F; Courtiol, A; Teixeira, M; Galan, M; Bechet, A; Cezilly, F

    2016-02-01

    The major histocompatibility complex (MHC) is a cornerstone in the study of adaptive genetic diversity. Intriguingly, highly polymorphic MHC sequences are often not more similar within species than between closely related species. Divergent selection of gene duplicates, balancing selection maintaining trans-species polymorphism (TSP) that predate speciation and parallel evolution of species sharing similar selection pressures can all lead to higher sequence similarity between species. In contrast, high rates of concerted evolution increase sequence similarity of duplicated loci within species. Assessing these evolutionary models remains difficult as relatedness and ecological similarities are often confounded. As sympatric species of flamingos are more distantly related than allopatric species, flamingos represent an ideal model to disentangle these evolutionary models. We characterized MHC Class I exon 3, Class IIB exon 2 and exon 3 of the six extant flamingo species. We found up to six MHC Class I loci and two MHC Class IIB loci. As all six species shared the same number of MHC Class IIB loci, duplication appears to predate flamingo speciation. However, the high rate of concerted evolution has prevented the divergence of duplicated loci. We found high sequence similarity between all species regardless of codon position. The latter is consistent with balancing selection maintaining TSP, as under this mechanism amino acid sites under pathogen-mediated selection should be characterized by fewer synonymous codons (due to their common ancestry) than under parallel evolution. Overall, balancing selection maintaining TSP appears to result in high MHC similarity between species regardless of species relatedness and geographical distribution. © 2015 European Society For Evolutionary Biology. Journal of Evolutionary Biology © 2015 European Society For Evolutionary Biology.

  2. Genetic drift vs. natural selection in a long-term small isolated population: major histocompatibility complex class II variation in the Gulf of California endemic porpoise (Phocoena sinus).

    Science.gov (United States)

    Munguia-Vega, Adrian; Esquer-Garrigos, Yareli; Rojas-Bracho, Lorenzo; Vazquez-Juarez, Ricardo; Castro-Prieto, Aines; Flores-Ramirez, Sergio

    2007-10-01

    Although many studies confirm long-term small isolated populations (e.g. island endemics) commonly sustain low neutral genetic variation as a result of genetic drift, it is less clear how selection on adaptive or detrimental genes interplay with random forces. We investigated sequence variation at two major histocompatibility complex (Mhc) class II loci on a porpoise endemic to the upper Gulf of California, México (Phocoena sinus, or vaquita). Its unique declining population is estimated around 500 individuals. Single-strand conformation polymorphism analysis revealed one putative functional allele fixed at the locus DQB (n = 25). At the DRB locus, we found two presumed functional alleles (n = 29), differing by a single nonsynonymous nucleotide substitution that could increase the stability at the dimer interface of alphabeta-heterodimers on heterozygous individuals. Identical trans-specific DQB1 and DRB1 alleles were identified between P. sinus and its closest relative, the Burmeister's porpoise (Phocoena spinipinnis). Comparison with studies on four island endemic mammals suggests fixation of one allele, due to genetic drift, commonly occurs at the DQA or DQB loci (effectively neutral). Similarly, deleterious alleles of small effect are also effectively neutral and can become fixed; a high frequency of anatomical malformations on vaquita gave empirical support to this prediction. In contrast, retention of low but functional polymorphism at the DRB locus was consistent with higher selection intensity. These observations indicated natural selection could maintain (and likely also purge) some crucial alleles even in the face of strong and prolonged genetic drift and inbreeding, suggesting long-term small populations should display low inbreeding depression. Low levels of Mhc variation warn about a high susceptibility to novel pathogens and diseases in vaquita.

  3. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells

    Directory of Open Access Journals (Sweden)

    Natasja Wulff Pedersen

    2017-07-01

    Full Text Available Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8+ T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK, Scalable Weighted Iterative Flow-clustering Technique (SWIFT, and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (<0.1% of live, single lymphocytes, SWIFT outperformed the other tools. As used in this study, none of the algorithms offered a completely automated pipeline for identification of MHC multimer populations, as varying degrees of human interventions were needed to complete the analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss

  4. Transcriptome analyses of immune tissues from three Japanese frogs (genus Rana ) reveals their utility in characterizing major histocompatibility complex class II.

    Science.gov (United States)

    Lau, Quintin; Igawa, Takeshi; Minei, Ryuhei; Kosch, Tiffany A; Satta, Yoko

    2017-12-28

    In Japan and East Asia, endemic frogs appear to be tolerant or not susceptible to chytridiomycosis, a deadly amphibian disease caused by the chytrid fungus Batrachochytridium dendrobatidis (Bd). Japanese frogs may have evolved mechanisms of immune resistance to pathogens such as Bd. This study characterizes immune genes expressed in various tissues of healthy Japanese Rana frogs. We generated transcriptome data sets of skin, spleen and blood from three adult Japanese Ranidae frogs (Japanese brown frog Rana japonica, the montane brown frog Rana ornativentris, and Tago's brown frog Rana tagoi tagoi) as well as whole body of R. japonica and R. ornativentris tadpoles. From this, we identified tissue- and stage-specific differentially expressed genes; in particular, the spleen was most enriched for immune-related genes. A specific immune gene, major histocompatibility complex class IIB (MHC-IIB), was further characterized due to its role in pathogen recognition. We identified a total of 33 MHC-IIB variants from the three focal species (n = 7 individuals each), which displayed evolutionary signatures related to increased MHC variation, including balancing selection. Our supertyping analyses of MHC-IIB variants from Japanese frogs and previously studied frog species identified potential physiochemical properties of MHC-II that may be important for recognizing and binding chytrid-related antigens. This is one of the first studies to generate transcriptomic resources for Japanese frogs, and contributes to further understanding the immunogenetic factors associated with resistance to infectious diseases in amphibians such as chytridiomycosis. Notably, MHC-IIB supertyping analyses identified unique functional properties of specific MHC-IIB alleles that may partially contribute to Bd resistance, and such properties provide a springboard for future experimental validation.

  5. Evidence for Directional Selection at a Novel Major Histocompatibility Class I Marker in Wild Common Frogs (Rana temporaria) Exposed to a Viral Pathogen (Ranavirus)

    Science.gov (United States)

    Teacher, Amber G. F.; Garner, Trenton W. J.; Nichols, Richard A.

    2009-01-01

    Whilst the Major Histocompatibility Complex (MHC) is well characterized in the anuran Xenopus, this region has not previously been studied in another popular model species, the common frog (Rana temporaria). Nor, to date, have there been any studies of MHC in wild amphibian host-pathogen systems. We characterise an MHC class I locus in the common frog, and present primers to amplify both the whole region, and specifically the antigen binding region. As no more than two expressed haplotypes were found in over 400 clones from 66 individuals, it is likely that there is a single class I locus in this species. This finding is consistent with the single class I locus in Xenopus, but contrasts with the multiple loci identified in axolotls, providing evidence that the diversification of MHC class I into multiple loci likely occurred after the Caudata/Anura divergence (approximately 350 million years ago) but before the Ranidae/Pipidae divergence (approximately 230 mya). We use this locus to compare wild populations of common frogs that have been infected with a viral pathogen (Ranavirus) with those that have no history of infection. We demonstrate that certain MHC supertypes are associated with infection status (even after accounting for shared ancestry), and that the diseased populations have more similar supertype frequencies (lower FST) than the uninfected. These patterns were not seen in a suite of putatively neutral microsatellite loci. We interpret this pattern at the MHC locus to indicate that the disease has imposed selection for particular haplotypes, and hence that common frogs may be adapting to the presence of Ranavirus, which currently kills tens of thousands of amphibians in the UK each year. PMID:19240796

  6. Involvement of the major histocompatibility complex region in the genetic regulation of circulating CD8 T-cell numbers in humans.

    Science.gov (United States)

    Cruz, E; Vieira, J; Gonçalves, R; Alves, H; Almeida, S; Rodrigues, P; Lacerda, R; Porto, G

    2004-07-01

    Variability in T-lymphocyte numbers is partially explained by a genetic regulation. From studies in animal models, it is known that the Major Histocompatibility Complex (MHC) is involved in this regulation. In humans, this has not been shown yet. The objective of the present study was to test the hypothesis that genes in the MHC region influence the regulation of T-lymphocyte numbers. Two approaches were used. Association studies between T-cell counts (CD4(+) and CD8(+)) or total lymphocyte counts and HLA class I alleles (A and B) or mutations in the HFE (C282Y and H63D), the hemochromatosis gene, in an unrelated population (n = 264). A second approach was a sibpair correlation analysis of the same T-cell counts in relation to HLA-HFE haplotypes in subjects belonging to 48 hemochromatosis families (n = 456 sibpairs). In the normal population, results showed a strong statistically significant association of the HLA-A*01 with high numbers of CD8(+) T cells and a less powerful association with the HLA-A*24 with low numbers of CD8(+) T cells. Sibpair correlations revealed the most significant correlation for CD8(+) T-cell numbers for sibpairs with HLA-HFE-identical haplotypes. This was not observed for CD4(+) T cells. These results show that the MHC region is involved in the genetic regulation of CD8(+) T-cell numbers in humans. Identification of genes responsible for this control may have important biological and clinical implications.

  7. Brucella abortus Inhibits Major Histocompatibility Complex Class II Expression and Antigen Processing through Interleukin-6 Secretion via Toll-Like Receptor 2▿

    Science.gov (United States)

    Barrionuevo, Paula; Cassataro, Juliana; Delpino, M. Victoria; Zwerdling, Astrid; Pasquevich, Karina A.; Samartino, Clara García; Wallach, Jorge C.; Fossati, Carlos A.; Giambartolomei, Guillermo H.

    2008-01-01

    The strategies that allow Brucella abortus to survive inside macrophages for prolonged periods and to avoid the immunological surveillance of major histocompatibility complex class II (MHC-II)-restricted gamma interferon (IFN-γ)-producing CD4+ T lymphocytes are poorly understood. We report here that infection of THP-1 cells with B. abortus inhibited expression of MHC-II molecules and antigen (Ag) processing. Heat-killed B. abortus (HKBA) also induced both these phenomena, indicating the independence of bacterial viability and involvement of a structural component of the bacterium. Accordingly, outer membrane protein 19 (Omp19), a prototypical B. abortus lipoprotein, inhibited both MHC-II expression and Ag processing to the same extent as HKBA. Moreover, a synthetic lipohexapeptide that mimics the structure of the protein lipid moiety also inhibited MHC-II expression, indicating that any Brucella lipoprotein could down-modulate MHC-II expression and Ag processing. Inhibition of MHC-II expression and Ag processing by either HKBA or lipidated Omp19 (L-Omp19) depended on Toll-like receptor 2 and was mediated by interleukin-6. HKBA or L-Omp19 also inhibited MHC-II expression and Ag processing of human monocytes. In addition, exposure to the synthetic lipohexapeptide inhibited Ag-specific T-cell proliferation and IFN-γ production of peripheral blood mononuclear cells from Brucella-infected patients. Together, these results indicate that there is a mechanism by which B. abortus may prevent recognition by T cells to evade host immunity and establish a chronic infection. PMID:17984211

  8. Characterization of major histocompatibility complex class I, and class II DRB loci of captive and wild Indian leopards (Panthera pardus fusca).

    Science.gov (United States)

    Parmar, Drashti R; Mitra, Siuli; Bhadouriya, Snehalata; Rao, Tirupathi; Kunteepuram, Vaishnavi; Gaur, Ajay

    2017-12-01

    The major histocompatibility complex (MHC), in vertebrate animals, is a multi-genic protein complex that encodes various receptors. During a disease, MHC interacts with the antigen and triggers a cascade of adaptive immune responses to overcome a disease outbreak. The MHC is very important region from immunological point of view, but it is poorly characterized among Indian leopards. During this investigation, we examined genetic diversity for MHC class I (MHC-I) and MHC class II-DRB (MHC-II) among wild and captive Indian leopards. This study estimated a pool of 9 and 17 alleles for MHC-I and MHC-II, respectively. The wild group of individuals showed higher nucleotide diversity and amino acid polymorphism compared to the captive group. A phylogenetic comparison with other felids revealed a clustering in MHC-I and interspersed presence in MHC-II sequences. A test for selection also revealed a deviation from neutrality at MHC-II DRB loci and higher non-synonymous substitution rate (dN) among the individuals from wild group. Further, the wild individuals showed higher dN for both MHC I and II genes compared to the group that was bred under captive conditions. These findings suggest the role of micro-evolutionary forces, such as pathogen-mediated selection, to cause MHC variations among the two groups of Indian leopards, because the two groups have been bred in two different environments for a substantial period of time. Since, MHC diversity is often linked with the quality of immunological health; the results obtained from this study fill the gap of knowledge on disease predisposition among wild and captive Indian leopards.

  9. Key Role of Toll-Like Receptor 2 in the Inflammatory Response and Major Histocompatibility Complex Class II Downregulation in Brucella abortus-Infected Alveolar Macrophages

    Science.gov (United States)

    Ferrero, Mariana C.; Hielpos, M. Soledad; Carvalho, Natalia B.; Barrionuevo, Paula; Corsetti, Patricia P.; Giambartolomei, Guillermo H.; Oliveira, Sergio C.

    2014-01-01

    Alveolar macrophages (AM) seem to constitute the main cellular target of inhaled brucellae. Here, we show that Brucella abortus invades and replicates in murine AM without inducing cytotoxicity. B. abortus infection induced a statistically significant increase of tumor necrosis factor alpha (TNF-α), CXCL1 or keratinocyte chemoattractant (KC), interleukin-1β (IL-1β), IL-6, and IL-12 in AM from C57BL/6 mice and BALB/c mice, but these responses were generally weaker and/or delayed compared to those elicited in peritoneal macrophages. Studies using knockout mice for TLR2, TLR4, and TLR9 revealed that TNF-α and KC responses were mediated by TLR2 recognition. Brucella infection reduced in a multiplicity of infection-dependent manner the expression of major histocompatibility complex class II (MHC-II) molecules induced by gamma interferon (IFN-γ) in AM. The same phenomenon was induced by incubation with heat-killed B. abortus (HKBA) or the lipidated form of the 19-kDa outer membrane protein of Brucella (L-Omp19), and it was shown to be mediated by TLR2 recognition. In contrast, no significant downregulation of MHC-II was induced by either unlipidated Omp19 or Brucella LPS. In a functional assay, treatment of AM with either L-Omp19 or HKBA reduced the MHC-II-restricted presentation of OVA peptides to specific T cells. One week after intratracheal infection, viable B. abortus was detected in AM from both wild-type and TLR2 KO mice, but CFU counts were higher in the latter. These results suggest that B. abortus survives in AM after inhalatory infection in spite of a certain degree of immune control exerted by the TLR2-mediated inflammatory response. Both the modest nature of the latter and the modulation of MHC-II expression by the bacterium may contribute to such survival. PMID:24478078

  10. Major Histocompatibility Complex Class II and Programmed Death Ligand 1 Expression Predict Outcome After Programmed Death 1 Blockade in Classic Hodgkin Lymphoma.

    Science.gov (United States)

    Roemer, Margaretha G M; Redd, Robert A; Cader, Fathima Zumla; Pak, Christine J; Abdelrahman, Sara; Ouyang, Jing; Sasse, Stephanie; Younes, Anas; Fanale, Michelle; Santoro, Armando; Zinzani, Pier Luigi; Timmerman, John; Collins, Graham P; Ramchandren, Radhakrishnan; Cohen, Jonathon B; De Boer, Jan Paul; Kuruvilla, John; Savage, Kerry J; Trneny, Marek; Ansell, Stephen; Kato, Kazunobu; Farsaci, Benedetto; Sumbul, Anne; Armand, Philippe; Neuberg, Donna S; Pinkus, Geraldine S; Ligon, Azra H; Rodig, Scott J; Shipp, Margaret A

    2018-02-02

    Purpose Hodgkin Reed-Sternberg (HRS) cells evade antitumor immunity by multiple means, including gains of 9p24.1/ CD274(PD-L1)/ PDCD1LG2(PD-L2) and perturbed antigen presentation. Programmed death 1 (PD-1) receptor blockade is active in classic Hodgkin lymphoma (cHL) despite reported deficiencies of major histocompatibility complex (MHC) class I expression on HRS cells. Herein, we assess bases of sensitivity to PD-1 blockade in patients with relapsed/refractory cHL who were treated with nivolumab (anti-PD-1) in the CheckMate 205 trial. Methods HRS cells from archival tumor biopsies were evaluated for 9p24.1 alterations by fluorescence in situ hybridization and for expression of PD ligand 1 (PD-L1) and the antigen presentation pathway components-β2-microglobulin, MHC class I, and MHC class II-by immunohistochemistry. These parameters were correlated with clinical responses and progression-free survival (PFS) after PD-1 blockade. Results Patients with higher-level 9p24.1 copy gain and increased PD-L1 expression on HRS cells had superior PFS. HRS cell expression of β2-microglobulin/MHC class I was not predictive for complete remission or PFS after nivolumab therapy. In contrast, HRS cell expression of MHC class II was predictive for complete remission. In patients with a > 12-month interval between myeloablative autologous stem-cell transplantation and nivolumab therapy, HRS cell expression of MHC class II was associated with prolonged PFS. Conclusion Genetically driven PD-L1 expression and MHC class II positivity on HRS cells are potential predictors of favorable outcome after PD-1 blockade. In cHL, clinical responses to nivolumab were not dependent on HRS cell expression of MHC class I.

  11. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    International Nuclear Information System (INIS)

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-01-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed

  12. Bone marrow transplantation across major histocompatibility barriers in mice. II. T cell requirement for engraftment in total lymphoid irradiation-conditioned recipients

    Energy Technology Data Exchange (ETDEWEB)

    Vallera, D.A.; Soderling, C.C.; Carlson, G.J.; Kersey, J.H.

    1982-03-01

    Studies were undertaken to examine the role of T lymphocytes in engraftment of bone marrow (BM) in animals conditioned with total lymphoid irradiation (TLI) prior to transplantation across major histocompatibility barriers. Donor BM (added as a source of lymphohematopoietic stem cells) and spleen cells (added as a source of graft-versus-host disease (GVHD)-causing cells) were pretreated in vitro with monoclonal anti-Thy-1.2 plus complement (C). T cell-depleted grafts were then give to allogeneic mice conditioned with 900 rad of single dose TLI plus cyclophosphamide (CY). These mice did not engraft. Even in the absence of added spleen cells, elimination of the small T cell population from donor BM grafts prevented engraftment compared with animals that received the same conditioning regimen and untreated donor cells. These control animals demonstrated uniform evidence of engraftment about 1 month after transplantation. Similar findings were reported when recipients were conditioned with fractionated 17 x 200-rad TLI. In TLI plus CY-conditional recipients, we have also observed that increasing the donation of treated bone marrow cells still did not result in significant engraftment. Furthermore, graft failure in mice receiving normal dosages of anti-Thy-1.2 plus C-treated donor cells was not a strain-restricted phenomenon. Moreover, removal of bone marrow T cells with monoclonal anti-Lyt-1 plus complement also resulted in graft failure in TLI-conditioned recipients. In contrast to TLI conditioning, when Thy-1.2 plus C-treated donor cells were given to recipients conditioned with total body irradiation (TBI), a high percentage of engraftment was demonstrated by an H-2 microcytotoxicity assay. Plausible mechanisms for there findings are discussed.

  13. Automated Analysis of Flow Cytometry Data to Reduce Inter-Lab Variation in the Detection of Major Histocompatibility Complex Multimer-Binding T Cells.

    Science.gov (United States)

    Pedersen, Natasja Wulff; Chandran, P Anoop; Qian, Yu; Rebhahn, Jonathan; Petersen, Nadia Viborg; Hoff, Mathilde Dalsgaard; White, Scott; Lee, Alexandra J; Stanton, Rick; Halgreen, Charlotte; Jakobsen, Kivin; Mosmann, Tim; Gouttefangeas, Cécile; Chan, Cliburn; Scheuermann, Richard H; Hadrup, Sine Reker

    2017-01-01

    Manual analysis of flow cytometry data and subjective gate-border decisions taken by individuals continue to be a source of variation in the assessment of antigen-specific T cells when comparing data across laboratories, and also over time in individual labs. Therefore, strategies to provide automated analysis of major histocompatibility complex (MHC) multimer-binding T cells represent an attractive solution to decrease subjectivity and technical variation. The challenge of using an automated analysis approach is that MHC multimer-binding T cell populations are often rare and therefore difficult to detect. We used a highly heterogeneous dataset from a recent MHC multimer proficiency panel to assess if MHC multimer-binding CD8 + T cells could be analyzed with computational solutions currently available, and if such analyses would reduce the technical variation across different laboratories. We used three different methods, FLOw Clustering without K (FLOCK), Scalable Weighted Iterative Flow-clustering Technique (SWIFT), and ReFlow to analyze flow cytometry data files from 28 laboratories. Each laboratory screened for antigen-responsive T cell populations with frequency ranging from 0.01 to 1.5% of lymphocytes within samples from two donors. Experience from this analysis shows that all three programs can be used for the identification of high to intermediate frequency of MHC multimer-binding T cell populations, with results very similar to that of manual gating. For the less frequent populations (analysis. In this study, we demonstrate the feasibility of using automated analysis pipelines for assessing and identifying even rare populations of antigen-responsive T cells and discuss the main properties, differences, and advantages of the different methods tested.

  14. Genetic factors are stressed variably by onset age-based sample selection in psoriasis: A hint from major histocompatibility complex region-based analysis.

    Science.gov (United States)

    Ye, Lei; Yang, Chao; Dou, Jin-Fa; Wen, Lei-Lei; Wang, Wen-Jun; Zheng, Xiao-Dong; Zuo, Xian-Bo; Zhou, Fu-Sheng; Fan, Xing; Zhang, Xue-Jun

    2017-12-01

    Large cohort-based genetic association studies have been established over a decade. However, for certain diseases, different results with respect to the genome-wide association study level have been obtained among studies, even for those conducted within the same ethnic groups. We hypothesized that onset age-based sample variables might have a great impact on the results. In the present study, we divided psoriasis patients into several subgroups according to the onset age bracket. We conducted genetic association analysis in the major histocompatibility complex (MHC) region of each patient subgroup with shared control subjects. We found decreases in the numbers of susceptible variants in each subgroup analysis as the onset age increased in the longitudinal analysis. Meanwhile, the pairwise analysis showed that younger patients exhibited greater numbers of genetic risks in the MHC region compared to elder patients, regardless of whether the cut-off values were defined as 20 or 30 years old. Similar results were also found among 11-20-, 21-30- and 31-40-year-old groups. Furthermore, when combining the results of both the stepwise regression analysis and the HLA-C*06:02 conditioning analysis, different variants were found to be independently associated with each psoriasis subgroup. Onset age-based sample variables influence the results of genetic association studies, at least in MHC region-based genetic analysis. We suggest that caution is required when selecting samples for genetic association studies to prevent confounders that might be a result of onset age. Copyright © 2017 John Wiley & Sons, Ltd.

  15. Karakterisasi Molekuler Ikan Gurami Soang (Osphronemus gouramy Lac. yang Mati pada Rentang Waktu Berbeda Menggunakan PCR-RFLP Gen Major Histocompatibility Complex Kelas II B

    Directory of Open Access Journals (Sweden)

    Jaka Tri Spetiawan

    2017-08-01

    Full Text Available Gurami (Osphronemus gouramy Lac. is a popular fish species among Indonesian people. Several Gurami strains have been cultivated by fish farmer, one of which is Gurami Soang. This strain is belived to have a faster growth rate compared to other strains. However, like other strains, the fingerling of Soang strain have also a low survival and suceptible to disease, especially that caused by Aeromonas hydrophila infection. It has been proved that seeds from a single spawning event show varibale disease resistance. The difference in resistance among individuals is suggested related to the difference in their genetic component. One of the genes responsible for resistance is Major Histocompatibility Complex (MHC class II B gene. Variability in resistance can be analyzed by using PCR - RFLP technique. PCR-RFLP is a technique that can produce a specific DNA fragments by PCR, followed by cutting the PCR product using restriction enzymes to describe the presence or absence of restriction sites in DNA fragments. This research aims to determine genetic marker to differiantiate between resitant and irresistant individual of Gurami Soang infected by A. hydrophila which die at a different time priod based on PCR-RFLP MHC class IIB gene. The study used survey method with purposive random sampling. The Data of PCR-RFLP band patterns were analyzed descriptively. The result indicated that cutting of the MHC class II B gene using HinfI produce two RFLP bands with 300 bp and 100 bp length in all samples. Meanwhile, the MHC IIB gene was not cuted by PstI, HindIII, BamHI and EcoRI enzymes forall samples. These mean that MHC II gene in all individuals were monomorphic. Therefore,it can be concluded that there is no specific genetic marker to differentiate gurami soang individulas which was dying in different time periods.

  16. Autoimmunity and inflammation are independent of class II transactivator type PIV-dependent class II major histocompatibility complex expression in peripheral tissues during collagen-induced arthritis.

    Science.gov (United States)

    Waldburger, Jean-Marc; Palmer, Gaby; Seemayer, Christian; Lamacchia, Celine; Finckh, Axel; Christofilopoulos, Panayiotis; Baeten, Dominique; Reith, Walter; Gabay, Cem

    2011-11-01

    To determine the regulation of class II major histocompatibility complex (MHC) expression in fibroblast-like synoviocytes (FLS) in order to investigate their role as nonprofessional antigen-presenting cells in collagen-induced arthritis (CIA). Expression of class II MHC, class II MHC transactivator (CIITA), and Ciita isoforms PI, PIII, and PIV was examined by real-time quantitative polymerase chain reaction, immunohistochemistry, and flow cytometry in human synovial tissues, arthritic mouse joints, and human and murine FLS. CIA was induced in mice in which isoform PIV of Ciita was knocked out (PIV(-/-) ), in PIV(-/-) mice transgenic for CIITA in the thymus (K14 CIITA), and in their control littermates. HLA-DRA, total CIITA, and CIITA PIII messenger RNA levels were significantly increased in synovial tissue samples from patients with rheumatoid arthritis compared with the levels in tissue from patients with osteoarthritis. Human FLS expressed surface class II MHC via CIITA PIII and PIV, while class II MHC expression in murine FLS was entirely mediated by PIV. Mice with a targeted deletion of CIITA PIV lack CD4+ T cells and were protected against CIA. The expression of CIITA was restored in the thymus of PIV(-/-) K14 CIITA-transgenic mice, which had a normal CD4+ T cell repertoire and normal surface levels of class II MHC on professional antigen-presenting cells, but did not induce class II MHC on FLS. Synovial inflammation and immune responses against type II collagen were similar in PIV(-/-) K14 CIITA-transgenic mice and control mice with CIA, but bone erosion was significantly reduced in the absence of PIV. Overexpression of class II MHC is tightly correlated with CIITA expression in arthritic synovium and in FLS. Selective targeting of Ciita PIV in peripheral tissues abrogates class II MHC expression by murine FLS but does not protect against inflammation and autoimmune responses in CIA. Copyright © 2011 by the American College of Rheumatology.

  17. Human leukocyte antigen and major histocompatibility complex class I-related chain A antibodies after kidney transplantation in Turkish renal transplant recipients.

    Science.gov (United States)

    Seyhun, Y; Ozdilli, K; Oguz, F; Karahan, G; Onal, E; Turkmen, A; Eldegez, U; Nane, I; Çalişkan, Y; Bakkaloglu, H; Carin, M

    2012-01-01

    This study was designed to determine whether human leukocyte antigen (HLA) and major histocompatibility complex class I chain-related A (MICA) antibody (Ab) production during the first 6 months posttransplantation correlated with long-term graft survival and rejection rate. The study group included 147 first transplantations from either living related (LRDs) or deceased donors (DDs) who were divided into two subgroups: rejection (RG, n = 28) and nonrejection (NRG, n = 119). Serum samples (n = 441) collected from each patient on posttransplant days 30, 90, and 180 were tested for HLA and MICA Ab using the Luminex technique. Among 82 Ab-positive patients (55.8%), 40 had both HLA and MICA, 33 only HLA, and 9 only MICA Ab in the posttransplant period. The rates of HLA class I, class II, or both Ab positivities were greater in the RG than the NRG (P = .011, .037, and .0275, respectively). At 180 days posttransplant, 64.3% of patients in the RG had Ab and 41.2% in the NRG (P = .0349). The data for the LRD (n = 116) group were similar to those for the entire group; whereas there was no significant difference in Ab positivity between RG and NRG patients who received organs from DDs. There was no significant difference with respect to HLA class II and/or MICA Ab positivity between RG and NRG among patients who lacked HLA class I Ab. We confirmed that HLA and MICA Ab may be harmful posttransplant, promoting rejection processes and representing an important cause of graft failure. HLA class II and MICA Ab positivities were only important predictors of graft failure when present together with HLA class I positivity. Patients who developed HLA alone or both HLA and MICA Ab rejected their grafts more frequently than Ab-negative recipients. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. The same major histocompatibility complex polymorphism involved in control of HIV influences peptide binding in the mouse H-2Ld system.

    Science.gov (United States)

    Narayanan, Samanthi; Kranz, David M

    2013-11-01

    Single-site polymorphisms in human class I major histocompatibility complex (MHC) products (HLA-B) have recently been shown to correlate with HIV disease progression or control. An identical single-site polymorphism (at residue 97) in the mouse class I product H-2L(d) influences stability of the complex. To gain insight into the human polymorphisms, here we examined peptide binding, stability, and structures of the corresponding L(d) polymorphisms, Trp(97) and Arg(97). Expression of L(d)W97 and L(d)R97 genes in a cell line that is antigen-processing competent showed that L(d)R97 was expressed at higher levels than L(d)W97, consistent with enhanced stability of self-peptide·L(d)R97 complexes. To further examine peptide-binding capacities of these two allelic variants, we used a high affinity pep-L(d) specific probe to quantitatively examine a collection of self- and foreign peptides that bind to L(d). L(d)R97 bound more effectively than L(d)W97 to most peptides, although L(d)W97 bound more effectively to two peptides. The results support the view that many self-peptides in the L(d) system (or the HLA-B system) would exhibit enhanced binding to Arg(97) alleles compared with Trp(97) alleles. Accordingly, the self-peptide·MHC-Arg(97) complexes would influence T-cell selection behavior, impacting the T-cell repertoire of these individuals, and could also impact peripheral T cell activity through effects of self-peptide·L(d) interacting with TCR and/or CD8. The structures of several peptide·L(d)R97 and peptide·L(d)W97 complexes provided a framework of how this single polymorphism could impact peptide binding.

  19. Molecular cloning and expression analysis of major histocompatibility complex class I, IIA and IIB genes of blunt snout bream (Megalobrama amblycephala).

    Science.gov (United States)

    Luo, Wei; Zhang, Jie; Wen, Jiu-fu; Liu, Hong; Wang, Wei-min; Gao, Ze-xia

    2014-02-01

    Major histocompatibility complex (MHC) plays an important role in the immune response of vertebrates. In this study, we isolated MHC class IIA and IIB genes from blunt snout bream (Megalobrama amblycephala) by rapid amplification of cDNA ends polymerase chain reaction (RACE-PCR). In order to study the function of the MHC genes in M. amblycephala, tissue distribution and immune response of the MHC genes to bacterial challenge were analyzed. All the characteristic features of MHC class II chain structure could be identified in the deduced amino sequences of MHC IIA and IIB, including the leader peptide, α1/β1 and α2/β2 domains, connecting peptide and transmembrane and cytoplasmic regions, as well as conserved cysteines and N-glycosylation site. The deduced amino acid sequence of the MHC IIA and IIB molecules shared from 48% to 88% and from 65% to 77% similarity with those of other teleosts, respectively. Quantitative real-time PCR (qRT-PCR) demonstrated that MHC I and II genes were ubiquitously expressed in ten tissues, with high level in immune related tissues, including kidney, intestine, gill and spleen. Challenge of M. amblycephala with the extracellular pathogen, Aeromonas hydrophila, resulted in a significant increase in the expression of MHC I, MHC IIA and IIB mRNA within 72 h after infection in gill, kidney, intestine and liver, followed by a recovery to normal level after 120 h. The changes of expression levels for MHC IIA and IIB in most tissues were significantly higher than that of MHC I in the corresponding tissues at most time points (P<0.05). These results demonstrated the MHC genes played an important role in response to bacterial infection in M. amblycephala; however, MHC class I and II genes showed different functional activity, which need be further investigated in teleost. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Brief review of the chicken Major Histocompatibility Complex: the genes, their distribution on chromosome 16, and their contributions to disease resistance

    Science.gov (United States)

    Miller, Marcia M.; Taylor, Robert L.

    2016-01-01

    Nearly all genes presently mapped to chicken chromosome 16 (GGA 16) have either a demonstrated role in immune responses or are considered to serve in immunity by reason of sequence homology with immune system genes defined in other species. The genes are best described in regional units. Among these, the best known is the polymorphic major histocompatibility complex-B (MHC-B) region containing genes for classical peptide antigen presentation. Nearby MHC-B is a small region containing two CD1 genes, which encode molecules known to bind lipid antigens and which will likely be found in chickens to present lipids to specialized T cells, as occurs with CD1 molecules in other species. Another region is the MHC-Y region, separated from MHC-B by an intervening region of tandem repeats. Like MHC-B, MHC-Y is polymorphic. It contains specialized class I and class II genes and c-type lectin-like genes. Yet another region, separated from MHC-Y by the single nucleolar organizing region (NOR) in the chicken genome, contains olfactory receptor genes and scavenger receptor genes, which are also thought to contribute to immunity. The structure, distribution, linkages and patterns of polymorphism in these regions, suggest GGA 16 evolves as a microchromosome devoted to immune defense. Many GGA 16 genes are polymorphic and polygenic. At the moment most disease associations are at the haplotype level. Roles of individual MHC genes in disease resistance are documented in only a very few instances. Provided suitable experimental stocks persist, the availability of increasingly detailed maps of GGA 16 genes combined with new means for detecting genetic variability will lead to investigations defining the contributions of individual loci and more applications for immunogenetics in breeding healthy poultry. PMID:26740135

  1. The T-Cell Receptor Can Bind to the Peptide-Bound Major Histocompatibility Complex and Uncomplexed β2-Microglobulin through Distinct Binding Sites.

    Science.gov (United States)

    Merkle, Patrick S; Irving, Melita; Hongjian, Song; Ferber, Mathias; Jørgensen, Thomas J D; Scholten, Kirsten; Luescher, Immanuel; Coukos, George; Zoete, Vincent; Cuendet, Michel A; Michielin, Olivier; Rand, Kasper D

    2017-08-01

    T-Cell receptor (TCR)-mediated recognition of the peptide-bound major histocompatibility complex (pMHC) initiates an adaptive immune response against antigen-presenting target cells. The recognition events take place at the TCR-pMHC interface, and their effects on TCR conformation and dynamics are controversial. Here, we have measured the time-resolved hydrogen/deuterium exchange (HDX) of a soluble TCR in the presence and absence of its cognate pMHC by mass spectrometry to delineate the impact of pMHC binding on solution-phase structural dynamics in the TCR. Our results demonstrate that while TCR-pMHC complex formation significantly stabilizes distinct CDR loops of the TCR, it does not trigger structural changes in receptor segments remote from the binding interface. Intriguingly, our HDX measurements reveal that the TCR α-constant domain (C- and F-strand) directly interacts with the unbound MHC light chain, β 2 -microglobulin (β 2 m). Surface plasmon resonance measurements corroborated a binding event between TCR and β 2 m with a dissociation constant of 167 ± 20 μM. We propose a model structure for the TCR-β 2 m complex based on a refined protein-protein docking approach driven by HDX data and information from molecular dynamics simulations. Using a biological assay based on TCR gene-engineered primary human T cells, we did not observe a significant effect of β 2 m on T-cell cytotoxicity, suggesting an alternate role for β 2 m binding. Overall, we show that binding of β 2 m to the TCR occurs in vitro and, as such, not only should be considered in structure-function studies of the TCR-pMHC complex but also could play a hitherto unidentified role in T-cell function in vivo.

  2. Antibodies to major histocompatibility complex class II antigens directly prime neutrophils and cause acute lung injury in a two-event in vivo rat model

    Science.gov (United States)

    Kelher, Marguerite R.; Banerjee, Anirban; Gamboni, Fabia; Anderson, Cameron; Silliman, Christopher C.

    2018-01-01

    BACKGROUND Transfusion-related acute lung injury (TRALI) is a significant cause of mortality, especially after transfusions containing antibodies to major histocompatibility complex (MHC) class II antigens. We hypothesize that a first event induces both 1) polymorphonuclear neutrophils (PMNs) to express MHC class II antigens, and 2) activation of the pulmonary endothelium, leading to PMN sequestration, so that the infusion of specific MHC class II antibodies to these antigens causes PMN-mediated acute lung injury (ALI). STUDY DESIGN AND METHODS Rats were treated with saline (NS), endotoxin (lipopolysaccharide [LPS]), or cytokines (interferon-γ [IFNγ], macrophage colony-stimulating factor [MCSF], tumor necrosis factor-α [TNFα]); the PMNs were isolated; and the surface expression of the MHC class II antigen OX6 and priming by OX6 antibodies were measured by flow cytometry or priming assays. RESULTS A two-event model of ALI was completed with NS, LPS, or IFNγ/MCSF/TNFα (first events) and the infusion of OX6 (second event). Compared with NS incubation, rats treated with either LPS or IFNγ/MCSF/TNFα exhibited OX6 PMN surface expression, OX6 antibodies primed the formyl-methionyl-leucyl phenylalanine (fMLF)-activated respiratory burst, and PMN sequestration was increased. OX6 antibody infusion into LPS-incubated or IFNγ/MCSF/TNFα-incubated rats elicited ALI, the OX6 antibody was present on the PMNs, and PMN depletion abrogated ALI. CONCLUSION Proinflammatory first events induce PMN MHC class II surface expression, activation of the pulmonary endothelium, and PMN sequestration such that the infusion of cognate antibodies precipitates TRALI. PMID:27667662

  3. Interference with major histocompatibility complex class II-restricted antigen presentation in the brain by herpes simplex virus type 1: a possible mechanism of evasion of the immune response.

    Science.gov (United States)

    Lewandowski, G A; Lo, D; Bloom, F E

    1993-03-01

    Host survival of herpes simplex virus type 1 (HSV-1) infection depends on the establishment of latent infections in both peripheral and central nervous systems. Strains of HSV-1 that are successful in escaping the immune response produce a lethal infection. We now report a possible mechanism of immune response evasion used by HSV-1. After intraocular inoculation of mice, HSV-1 strain F established a latent infection in the brain, whereas strain KOS did not. The immune response to HSV-1 infection (strains KOS and F) in the brain was characterized by induction of major histocompatibility complex class II expression and recruitment of CD4+ and CD8+ cells to highly restricted sites of intracerebral viral infection. Major histocompatibility complex class II antigen expression was primarily intracellular in strain KOS infection centers and at the cell surface in strain F infection centers. We propose that major histocompatibility complex class II-restricted viral-antigen presentation to T cells is interrupted during strain KOS infections, thereby allowing KOS infection to evade T-cell-mediated events that would normally protect the host from a lethal infection. Immunocompromised mice (athymic or irradiate mice) could not survive strain F infections; however, latent F infections were established in irradiated mice reconstituted with naive lymph node and spleen cells. These data suggest that class II-restricted presentation of viral antigens is required for the control of HSV-1 infections in the nervous system.

  4. Characterization and 454 pyrosequencing of Major Histocompatibility Complex class I genes in the great tit reveal complexity in a passerine system

    Directory of Open Access Journals (Sweden)

    Sepil Irem

    2012-05-01

    Full Text Available Abstract Background The critical role of Major Histocompatibility Complex (Mhc genes in disease resistance and their highly polymorphic nature make them exceptional candidates for studies investigating genetic effects on survival, mate choice and conservation. Species that harbor many Mhc loci and high allelic diversity are particularly intriguing as they are potentially under strong selection and studies of such species provide valuable information as to the mechanisms maintaining Mhc diversity. However comprehensive genotyping of complex multilocus systems has been a major challenge to date with the result that little is known about the consequences of this complexity in terms of fitness effects and disease resistance. Results In this study, we genotyped the Mhc class I exon 3 of the great tit (Parus major from two nest-box breeding populations near Oxford, UK that have been monitored for decades. Characterization of Mhc class I exon 3 was adopted and bidirectional sequencing was carried using the 454 sequencing platform. Full analysis of sequences through a stepwise variant validation procedure allowed reliable typing of more than 800 great tits based on 214,357 reads; from duplicates we estimated the repeatability of typing as 0.94. A total of 862 alleles were detected, and the presence of at least 16 functional loci was shown - the highest number characterized in a wild bird species. Finally, the functional alleles were grouped into 17 supertypes based on their antigen binding affinities. Conclusions We found extreme complexity at the Mhc class I of the great tit both in terms of allelic diversity and gene number. The presence of many functional loci was shown, together with a pseudogene family and putatively non-functional alleles; there was clear evidence that functional alleles were under strong balancing selection. This study is the first step towards an in-depth analysis of this gene complex in this species, which will help

  5. Giant panda genomic data provide insight into the birth-and-death process of mammalian major histocompatibility complex class II genes.

    Directory of Open Access Journals (Sweden)

    Qiu-Hong Wan

    Full Text Available To gain an understanding of the genomic structure and evolutionary history of the giant panda major histocompatibility complex (MHC genes, we determined a 636,503-bp nucleotide sequence spanning the MHC class II region. Analysis revealed that the MHC class II region from this rare species contained 26 loci (17 predicted to be expressed, of which 10 are classical class II genes (1 DRA, 2 DRB, 2 DQA, 3 DQB, 1 DYB, 1 DPA, and 2 DPB and 4 are non-classical class II genes (1 DOA, 1 DOB, 1 DMA, and 1 DMB. The presence of DYB, a gene specific to ruminants, prompted a comparison of the giant panda class II sequence with those of humans, cats, dogs, cattle, pigs, and mice. The results indicated that birth and death events within the DQ and DRB-DY regions led to major lineage differences, with absence of these regions in the cat and in humans and mice respectively. The phylogenetic trees constructed using all expressed alpha and beta genes from marsupials and placental mammals showed that: (1 because marsupials carry loci corresponding to DR, DP, DO and DM genes, those subregions most likely developed before the divergence of marsupials and placental mammals, approximately 150 million years ago (MYA; (2 conversely, the DQ and DY regions must have evolved later, but before the radiation of placental mammals (100 MYA. As a result, the typical genomic structure of MHC class II genes for the giant panda is similar to that of the other placental mammals and corresponds to BTNL2 approximately DR1 approximately DQ approximately DR2 approximately DY approximately DO_box approximately DP approximately COL11A2. Over the past 100 million years, there has been birth and death of mammalian DR, DQ, DY, and DP genes, an evolutionary process that has brought about the current species-specific genomic structure of the MHC class II region. Furthermore, facing certain similar pathogens, mammals have adopted intra-subregion (DR and DQ and inter-subregion (between DQ and DP

  6. Structural Definition of Duck Major Histocompatibility Complex Class I Molecules That Might Explain Efficient Cytotoxic T Lymphocyte Immunity to Influenza A Virus.

    Science.gov (United States)

    Wu, Yanan; Wang, Junya; Fan, Shuhua; Chen, Rong; Liu, Yanjie; Zhang, Jianhua; Yuan, Hongyu; Liang, Ruiying; Zhang, Nianzhi; Xia, Chun

    2017-07-15

    A single dominantly expressed allele of major histocompatibility complex class I (MHC I) may be responsible for the duck's high tolerance to highly pathogenic influenza A virus (HP-IAV) compared to the chicken's lower tolerance. In this study, the crystal structures of duck MHC I ( Anpl -UAA*01) and duck β2-microglobulin (β2m) with two peptides from the H5N1 strains were determined. Two remarkable features were found to distinguish the Anpl -UAA*01 complex from other known MHC I structures. A disulfide bond formed by Cys 95 and Cys 112 and connecting the β5 and β6 sheets at the bottom of peptide binding groove (PBG) in Anpl -UAA*01 complex, which can enhance IAV peptide binding, was identified. Moreover, the interface area between duck MHC I and β2m was found to be larger than in other species. In addition, the two IAV peptides that display distinctive conformations in the PBG, B, and F pockets act as the primary anchor sites. Thirty-one IAV peptides were used to verify the peptide binding motif of Anpl -UAA*01, and the results confirmed that the peptide binding motif is similar to that of HLA-A*0201. Based on this motif, approximately 600 peptides from the IAV strains were partially verified as the candidate epitope peptides for Anpl -UAA*01, which is a far greater number than those for chicken BF2*2101 and BF2*0401 molecules. Extensive IAV peptide binding should allow for ducks with this Anpl -UAA*01 haplotype to resist IAV infection. IMPORTANCE Ducks are natural reservoirs of influenza A virus (IAV) and are more resistant to the IAV than chickens. Both ducks and chickens express only one dominant MHC I locus providing resistance to the virus. To investigate how MHC I provides IAV resistance, crystal structures of the dominantly expressed duck MHC class I (p Anpl -UAA*01) with two IAV peptides were determined. A disulfide bond was identified in the peptide binding groove that can facilitate Anpl -UAA*01 binding to IAV peptides. Anpl -UAA*01 has a much wider

  7. The Effect of Photodynamic Therapy on Tumor Cell Expression of Major Histocompatibility Complex (MHC) Class I and MHC Class I-Related Molecules

    Science.gov (United States)

    Belicha-Villanueva, Alan; Riddell, Jonah; Bangia, Naveen; Gollnick, Sandra O.

    2013-01-01

    Background and Objective Photodynamic therapy (PDT) is FDA-approved anti-cancer modality for elimination of early disease and palliation in advanced disease. PDT efficacy depends in part on elicitation of a tumor-specific immune response that is dependent on cytotoxic T lymphocytes (CTLs) and natural killer (NK) cells. The cytolytic potential of CTLs and NK cells is mediated by the ability of these cells to recognize major histocompatibility complex (MHC) class I and MHC class I-related molecules. The MHC class I-related molecules MICA and MICB are induced by oxidative stress and have been reported to activate NK cells and co-stimulate CD8+ T cells. The purpose of this study was to examine the effect of PDT on tumor cell expression of MHC classes I and II-related molecules in vivo and in vitro. Study Design/Materials and Methods Human colon carcinoma Colo205 cells and murine CT26 tumors were treated with 2-[1-hexyloxyethyl]-2-devinyl pyropheophor-bide-a (HPPH)-PDT at various doses. MHC classes I and I-related molecule expression following treatment of Colo205 cells was temporally examined by flow cytometry using antibodies specific for components of MHC class I molecules and by quantitative PCR using specific primers. Expression of MHC class I-related molecules following HPPH-based PDT (HPPH-PDT) of murine tumors was monitored using a chimeric NKG2D receptor. Results In vitro HPPH-PDT significantly induces MICA in Colo205 cells, but had no effect on MHC class I molecule expression. PDT also induced expression of NKG2D ligands (NKG2DL) following in vivo HPPH-PDT of a murine tumor. Induction of MICA corresponded to increased NK killing of PDT-treated tumor cells. Conclusions PDT induction of MICA on human tumor cells and increased expression of NKG2DL by murine tumors following PDT may play a role in PDT induction of anti-tumor immunity. This conclusion is supported by our results demonstrating that tumor cells have increased sensitivity to NK cell lysis following

  8. The impact of sex-role reversal on the diversity of the major histocompatibility complex: Insights from the seahorse (Hippocampus abdominalis

    Directory of Open Access Journals (Sweden)

    Wilson Anthony B

    2011-05-01

    Full Text Available Abstract Background Both natural and sexual selection are thought to influence genetic diversity, but the study of the relative importance of these two factors on ecologically-relevant traits has traditionally focused on species with conventional sex-roles, with male-male competition and female-based mate choice. With its high variability and significance in both immune function and olfactory-mediated mate choice, the major histocompatibility complex (MHC/MH is an ideal system in which to evaluate the relative contributions of these two selective forces to genetic diversity. Intrasexual competition and mate choice are both reversed in sex-role reversed species, and sex-related differences in the detection and use of MH-odor cues are expected to influence the intensity of sexual selection in such species. The seahorse, Hippocampus abdominalis, has an exceptionally highly developed form of male parental care, with female-female competition and male mate choice. Results Here, we demonstrate that the sex-role reversed seahorse has a single MH class II beta-chain gene and that the diversity of the seahorse MHIIβ locus and its pattern of variation are comparable to those detected in species with conventional sex roles. Despite the presence of only a single gene copy, intralocus MHIIβ allelic diversity in this species exceeds that observed in species with multiple copies of this locus. The MHIIβ locus of the seahorse exhibits a novel expression domain in the male brood pouch. Conclusions The high variation found at the seahorse MHIIβ gene indicates that sex-role reversed species are capable of maintaining the high MHC diversity typical in most vertebrates. Whether such species have evolved the capacity to use MH-odor cues during mate choice is presently being investigated using mate choice experiments. If this possibility can be rejected, such systems would offer an exceptional opportunity to study the effects of natural selection in isolation

  9. Treatment of Patients With Metastatic Cancer Using a Major Histocompatibility Complex Class II-Restricted T-Cell Receptor Targeting the Cancer Germline Antigen MAGE-A3.

    Science.gov (United States)

    Lu, Yong-Chen; Parker, Linda L; Lu, Tangying; Zheng, Zhili; Toomey, Mary Ann; White, Donald E; Yao, Xin; Li, Yong F; Robbins, Paul F; Feldman, Steven A; van der Bruggen, Pierre; Klebanoff, Christopher A; Goff, Stephanie L; Sherry, Richard M; Kammula, Udai S; Yang, James C; Rosenberg, Steven A

    2017-10-10

    Purpose Adoptive transfer of genetically modified T cells is being explored as a treatment for patients with metastatic cancer. Most current strategies use genes that encode major histocompatibility complex (MHC) class I-restricted T-cell receptors (TCRs) or chimeric antigen receptors to genetically modify CD8 + T cells or bulk T cells for treatment. Here, we evaluated the safety and efficacy of an adoptive CD4 + T-cell therapy using an MHC class II-restricted, HLA-DPB1*0401-restricted TCR that recognized the cancer germline antigen, MAGE-A3 (melanoma-associated antigen-A3). Patients and Methods Patients received a lymphodepleting preparative regimen, followed by adoptive transfer of purified CD4 + T cells, retrovirally transduced with MAGE-A3 TCR plus systemic high-dose IL-2. A cell dose escalation was conducted, starting at 10 7 total cells and escalating at half-log increments to approximately 10 11 cells. Nine patients were treated at the highest dose level (0.78 to 1.23 × 10 11 cells). Results Seventeen patients were treated. During the cell dose-escalation phase, an objective complete response was observed in a patient with metastatic cervical cancer who received 2.7 × 10 9 cells (ongoing at ≥ 29 months). Among nine patients who were treated at the highest dose level, objective partial responses were observed in a patient with esophageal cancer (duration, 4 months), a patient with urothelial cancer (ongoing at ≥ 19 months), and a patient with osteosarcoma (duration, 4 months). Most patients experienced transient fevers and the expected hematologic toxicities from lymphodepletion pretreatment. Two patients experienced transient grade 3 and 4 transaminase elevations. There were no treatment-related deaths. Conclusion These results demonstrate the safety and efficacy of administering autologous CD4 + T cells that are genetically engineered to express an MHC class II-restricted antitumor TCR that targets MAGE-A3. This clinical trial extends the reach of TCR

  10. Recognition of the Major Histocompatibility Complex (MHC) Class Ib Molecule H2-Q10 by the Natural Killer Cell Receptor Ly49C.

    Science.gov (United States)

    Sullivan, Lucy C; Berry, Richard; Sosnin, Natasha; Widjaja, Jacqueline M L; Deuss, Felix A; Balaji, Gautham R; LaGruta, Nicole L; Mirams, Michiko; Trapani, Joseph A; Rossjohn, Jamie; Brooks, Andrew G; Andrews, Daniel M

    2016-09-02

    Murine natural killer (NK) cells are regulated by the interaction of Ly49 receptors with major histocompatibility complex class I molecules (MHC-I). Although the ligands for inhibitory Ly49 were considered to be restricted to classical MHC (MHC-Ia), we have shown that the non-classical MHC molecule (MHC-Ib) H2-M3 was a ligand for the inhibitory Ly49A. Here we establish that another MHC-Ib, H2-Q10, is a bona fide ligand for the inhibitory Ly49C receptor. H2-Q10 bound to Ly49C with a marginally lower affinity (∼5 μm) than that observed between Ly49C and MHC-Ia (H-2K(b)/H-2D(d), both ∼1 μm), and this recognition could be prevented by cis interactions with H-2K in situ To understand the molecular details underpinning Ly49·MHC-Ib recognition, we determined the crystal structures of H2-Q10 and Ly49C bound H2-Q10. Unliganded H2-Q10 adopted a classical MHC-I fold and possessed a peptide-binding groove that exhibited features similar to those found in MHC-Ia, explaining the diverse peptide binding repertoire of H2-Q10. Ly49C bound to H2-Q10 underneath the peptide binding platform to a region that encompassed residues from the α1, α2, and α3 domains, as well as the associated β2-microglobulin subunit. This docking mode was conserved with that previously observed for Ly49C·H-2K(b) Indeed, structure-guided mutation of Ly49C indicated that Ly49C·H2-Q10 and Ly49C·H-2K(b) possess similar energetic footprints focused around residues located within the Ly49C β4-stand and L5 loop, which contact the underside of the peptide-binding platform floor. Our data provide a structural basis for Ly49·MHC-Ib recognition and demonstrate that MHC-Ib represent an extended family of ligands for Ly49 molecules. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  11. HIV Controllers Exhibit Enhanced Frequencies of Major Histocompatibility Complex Class II Tetramer+Gag-Specific CD4+T Cells in Chronic Clade C HIV-1 Infection.

    Science.gov (United States)

    Laher, Faatima; Ranasinghe, Srinika; Porichis, Filippos; Mewalal, Nikoshia; Pretorius, Karyn; Ismail, Nasreen; Buus, Søren; Stryhn, Anette; Carrington, Mary; Walker, Bruce D; Ndung'u, Thumbi; Ndhlovu, Zaza M

    2017-04-01

    Immune control of viral infections is heavily dependent on helper CD4 + T cell function. However, the understanding of the contribution of HIV-specific CD4 + T cell responses to immune protection against HIV-1, particularly in clade C infection, remains incomplete. Recently, major histocompatibility complex (MHC) class II tetramers have emerged as a powerful tool for interrogating antigen-specific CD4 + T cells without relying on effector functions. Here, we defined the MHC class II alleles for immunodominant Gag CD4 + T cell epitopes in clade C virus infection, constructed MHC class II tetramers, and then used these to define the magnitude, function, and relation to the viral load of HIV-specific CD4 + T cell responses in a cohort of untreated HIV clade C-infected persons. We observed significantly higher frequencies of MHC class II tetramer-positive CD4 + T cells in HIV controllers than progressors ( P = 0.0001), and these expanded Gag-specific CD4 + T cells in HIV controllers showed higher levels of expression of the cytolytic proteins granzymes A and B. Importantly, targeting of the immunodominant Gag41 peptide in the context of HLA class II DRB1*1101 was associated with HIV control ( r = -0.5, P = 0.02). These data identify an association between HIV-specific CD4 + T cell targeting of immunodominant Gag epitopes and immune control, particularly the contribution of a single class II MHC-peptide complex to the immune response against HIV-1 infection. Furthermore, these results highlight the advantage of the use of class II tetramers in evaluating HIV-specific CD4 + T cell responses in natural infections. IMPORTANCE Increasing evidence suggests that virus-specific CD4 + T cells contribute to the immune-mediated control of clade B HIV-1 infection, yet there remains a relative paucity of data regarding the role of HIV-specific CD4 + T cells in shaping adaptive immune responses in individuals infected with clade C, which is responsible for the majority of HIV

  12. Development of a rapid in vitro protein refolding assay which discriminates between peptide-bound and peptide-free forms of recombinant porcine major histocompatibility class I complex (SLA-I)

    DEFF Research Database (Denmark)

    Oleksiewicz, M.B.; Kristensen, B.; Ladekjaer-Mikkelsen, A.S.

    2002-01-01

    The extracellular domains of swine leukocyte antigen class I (SLA-I, major histocompatibility complex protein class 1) were cloned and sequenced for two haplotypes (114 and H7) which do not share any alleles based on serological typing, and which are the most important in Danish farmed pigs....... The extracellular domain of SLA-I was connected to porcine beta2 microglobulin by glycine-rich linkers. The engineered sin.-le-chain proteins, consisting of fused SLA-I and beta2 microglobulin, were overexpressed as inclusion bodies in Escherichia coli. Also, variants were made of the single-chain proteins...

  13. Bone marrow-derived immature dendritic cells prime in vivo alloreactive T cells for interleukin-4-dependent rejection of major histocompatibility complex class II antigen-disparate cardiac allograft

    OpenAIRE

    Buonocore, Sofia; Flamand, Véronique; Goldman, Michel; Braun, Michel Y

    2003-01-01

    BACKGROUND: Dendritic cells (DC) at the immature state express low levels of major histocompatibility complex and costimulatory molecules and are poor stimulators of primary T-cell response in vitro. Injection of immature bone marrow-derived DC, however, was shown to prime in vivo alloreactive CD4 T lymphocytes toward type 2 cytokine-producing cells in the absence of CD8 T-cell activation. METHODS: We undertook the present study to determine whether Th2-immunization by immature DC could lead ...

  14. Detecting Site-Specific Physicochemical Selective Pressures: Applications to the Class I HLA of the Human Major Histocompatibility Complex and the SRK of the Plant Sporophytic Self-Incompatibility System

    DEFF Research Database (Denmark)

    Sainudiin, Raazesh; Wong, Wendy Shuk Wan; Yogeeswaran, Krithika

    2005-01-01

    plants (Brassicaceae), whose structure is unknown. Through likelihood ratio tests we demonstrate that at some sites, the positively selected MHC and SRK proteins are under physicochemical selective pressures to alter polarity, volume, polarity and/or volume, and charge to various extents. An empirical......:transversion biases. Here, we apply this method to two positively selected receptors involved in ligand-recognition: the class I alleles of the human major histocompatibility complex (MHC) of known structure and the S-locus receptor kinase (SRK) of the sporophytic self-incompatibility system (SSI) in cruciferous...

  15. Structural and Biochemical Analyses of Swine Major Histocompatibility Complex Class I Complexes and Prediction of the Epitope Map of Important Influenza A Virus Strains.

    Science.gov (United States)

    Fan, Shuhua; Wu, Yanan; Wang, Song; Wang, Zhenbao; Jiang, Bo; Liu, Yanjie; Liang, Ruiying; Zhou, Wenzhong; Zhang, Nianzhi; Xia, Chun

    2016-08-01

    The lack of a peptide-swine leukocyte antigen class I (pSLA I) complex structure presents difficulties for the study of swine cytotoxic T lymphocyte (CTL) immunity and molecule vaccine development to eliminate important swine viral diseases, such as influenza A virus (IAV). Here, after cloning and comparing 28 SLA I allelic genes from Chinese Heishan pigs, pSLA-3*hs0202 was crystalized and solved. SLA-3*hs0202 binding with sβ2m and a KMNTQFTAV (hemagglutinin [HA]-KMN9) peptide from the 2009 pandemic swine H1N1 strain clearly displayed two distinct conformations with HA-KMN9 peptides in the structures, which are believed to be beneficial to stimulate a broad spectrum of CTL immune responses. Notably, we found that different HA-KMN9 conformations are caused, not only by the flexibility of the side chains of residues in the peptide-binding groove (PBG), but also by the skewing of α1 and α2 helixes forming the PBG. In addition, alanine scanning and circular-dichroism (CD) spectra confirmed that the B, D, and F pockets play critical biochemical roles in determining the peptide-binding motif of SLA-3*hs0202. Based on biochemical parameters and comparisons to similar pockets in other known major histocompatibility complex class I (MHC-I) structures, the fundamental motif for SLA-3*hs0202 was determined to be X-(M/A/R)-(N/Q/R/F)-X-X-X-X-X-(V/I) by refolding in vitro and multiple mutant peptides. Finally, 28 SLA-3*hs0202-restricted epitope candidates were identified from important IAV strains, and two of them have been found in humans as HLA-A*0201-specific IAV epitopes. Structural and biochemical illumination of pSLA-3*hs0202 can benefit vaccine development to control IAV in swine. We crystalized and solved the first SLA-3 structure, SLA-3*hs0202, and found that it could present the same IAV peptide with two distinct conformations. Unlike previous findings showing that variable peptide conformations are caused only by the flexibility of the side chains in the groove

  16. Astroglioma conditioned medium increases synaptic elimination and correlates with major histocompatibility complex of class I (MHC I) upregulation in PC12Cells.

    Science.gov (United States)

    Inácio, Rodrigo Fabrizzio; Zanon, Renata Gacielle; Castro, Mateus Vidigal de; Souza, Henrique Marques de; Bajgelman, Marcio Chaim; Verinaud, Liana; Oliveira, Alexandre Leite Rodrigues de

    2016-11-10

    Astrocytes are multifunctional glial cells that actively participate in synaptic plasticity in health and disease. Little is known about molecular interactions between neurons and glial cells that result in synaptic stability or elimination. In this sense, the main histocompatibility complex of class I (MHC I) has been shown to play a role in the synaptic plasticity process during development and after lesion of the CNS. MHC I levels in neurons appear to be influenced by astrocyte secreted molecules, which may generate endoplasmic reticulum stress. In vitro studies are of relevance since cell contact can be avoided by the use of astrocyte conditioned medium, allowing investigation of soluble factors isolated from cell direct interaction. Thus, we investigated synaptic preservation by synaptophysin and MHC I immunolabeling in PC12 neuron-like cells exposed to NG97 astroglioma conditioned medium (CM). For that, PC12 cells were cultured and differentiated into neuron-like profile with nerve growth factor. MHC I was induced with interferon beta treatment (IFN), and the effects were compared to PC12 exposure to NG97 CM. Overall, the results show that NG97 CM increases, more than IFN alone, the expression of MHC I, negatively influencing synaptic stability. This indicates that glial soluble factors influence synapse elimination, compatible to in vivo synaptic stripping process, in a cell contact independent fashion. In turn, our results indicate that deleterious effects of astroglioma are not only restricted to rapid growth ratio of the tumor, but also correlated with secretion of stress-related molecules that directly affect neuronal networks. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  17. Effect of major histocompatibility complex haplotype matching by C4 and MICA genotyping on acute graft versus host disease in unrelated hematopoietic stem cell transplantation.

    Science.gov (United States)

    Park, Yongjung; Cheong, June-Won; Park, Myoung Hee; Kim, Myoung Soo; Kim, Jong Sun; Kim, Hyon-Suk

    2016-02-01

    We explored whether matching of human leukocyte antigen (HLA) haplotypes between the recipient and donor of hematopoietic stem cell transplantation (HSCT) predicted by C4 and MICA typing is associated with the incidence of acute graft versus host disease (aGVHD). DNA preparations collected from a total of 81 recipient and donor pairs were used for PCR-based C4 subtyping and/or MICA sequence-based typing. Incidences of aGVHD were compared according to C4 and MICA matching. The six most common MICA alleles were MICA*008:01, *010:01, *002:01, *004, *009:01/049, and *012:01. Among the 59 unrelated pairs, HLA alleles were matched in 34 (57.6%). C4 subtypes were identical between the recipient and donor in 28 (82.4%) HLA-matched unrelated pairs, while MICA genotypes were matched in all HLA-matched unrelated pairs. In the 22 HLA-matched related pairs, all recipients showed identical C4 subtypes with their respective donors. In multivariate analysis, C4 mismatch was a significant risk factor associated with the development of aGVHD in unrelated HSCT (hazard ratio=3.24, P=0.006). PCR-based C4 subtyping is a simple method for assessing the genetic identity of the HLA region between a recipient and unrelated donor. This test would be also useful for prediction of aGVHD in HSCT. Copyright © 2015 American Society for Histocompatibility and Immunogenetics. Published by Elsevier Inc. All rights reserved.

  18. Cholesterol Domains Enhance Transfection

    Science.gov (United States)

    Betker, Jamie L.; Kullberg, Max; Gomez, Joe; Anchordoquy, Thomas J.

    2014-01-01

    The formation of cholesterol domains in lipoplexes has been associated with enhanced serum stability and transfection rates both in cell culture and in vivo. This study utilizes the ability of saturated phosphatidylcholines to promote the formation of cholesterol domains at much lower cholesterol contents than have been utilized in previous work. The results show that lipoplexes with identical cholesterol and cationic lipid contents exhibit significantly improved transfection efficiencies when a domain is present, consistent with previous work. In addition, studies assessing transfection rates in the absence of serum demonstrate that the ability of domains to enhance transfection is not dependent on interactions with serum proteins. Consistent with this hypothesis, characterization of the adsorbed proteins composing the corona of these lipoplex formulations did not reveal a correlation between transfection and the adsorption of a specific protein. Finally, we show that the interaction with serum proteins can promote domain formation in some formulations, and thereby result in enhanced transfection only after serum exposure. PMID:23557286

  19. Stable transfection of Acanthamoeba.

    Science.gov (United States)

    Yin, J; Henney, H R

    1997-03-01

    The promoter activity of an Acanthamoeba polyubiquitin gene was analyzed in its homologous system. A modified calcium phosphate transfection method using a neomycin marker vector was developed to achieve highly efficient transfection of the Acanthamoeba polyubiquitin gene into Acanthamoeba cells. In this transfection procedure, the calcium phosphate-DNA complex was formed gradually in the medium during incubation with cells and precipitated on the cells. The crucial factors for obtaining efficient transfection were the pH (6.95) of the transfection buffer used for the calcium phosphate precipitation and the amount (25 micrograms/96-well tissue culture plate) and form (circular) of transfecting DNA. Under these conditions, Acanthamoeba isolate 1B6 was transfected at an efficiency of about 40% with the constructed vector pOPSBU, a pOP13CAT-based polyubiquitin gene incorporated neomycin resistance vector. Acanthamoeba polyphaga was transfected at an efficiency of about 10% with this vector. Transfection of both Acanthamoeba strains appeared to result in low copy plasmid integration (about two copies per cell are suggested). The chloramphenicol acetyltransferase (CAT) assays showed that the promoter of the Acanthamoeba polyubiquitin gene in the constructed vector was especially strong in A. polyphaga, thus the pOPSBU-Acanthamoeba system may be useful for the construction of cDNA expression libraries, as well as for the expression of cloned genes.

  20. In vivo test of the vertical phase separation hypothesis: the display of major histocompatibility complex (MHC) class I molecules on membranes of B cells from mice fed high-fat diets

    Science.gov (United States)

    Shaikh, Saame Raza; Boyle, Sarah; Hua, Jing; Li, Zhiping; Edidin, Michael

    2009-01-01

    The membrane vertical phase separation hypothesis predicts that a decrease in plasma membrane acyl chain order will increase major histocompatibility complex (MHC) class I surface expression. The hypothesis is based on modification of plasma membrane acyl chain order in cell culture and has not been tested in vivo. In the present study, we isolated splenic B cells from C57/BL6 mice fed either a normal diet or high-fat diets enriched in SFA or MUFA and assayed for changes in plasma membrane acyl chain order and MHC class I surface expression. Plasma membranes of B cells from MUFA-fed mice had significantly decreased acyl chain order and increased headgroup order. The decrease in acyl chain order correlated with a significant increase in the acyl chain unsaturation of B cells from the MUFA-fed mice. MHC class I surface levels on B cells were not affected by the MUFA-rich diet. This study suggests that the membrane vertical phase separation hypothesis may have limited application in a physiologically relevant setting. PMID:19283887

  1. Associations of MICB with cervical cancer in north-eastern Thais: identification of major histocompatibility complex class I chain-related gene B motifs influencing natural killer cell activation

    Science.gov (United States)

    Jumnainsong, A; Jearanaikoon, P; Khahmahpahte, S; Wongsena, W; Romphruk, A V; Chumworathayi, B; Vaeteewoottacharn, K; Ponglikitmongkol, M; Romphruk, A; Leelayuwat, C

    2008-01-01

    The expression of MICB, a member of the major histocompatibility complex class I chain-related gene B family, is induced in response to cellular stress. It is one of the ligands to the NKG2D receptor. MICB is polymorphic, but the distribution of MICB polymorphism in north-eastern Thais and their potential associations with cancer have not yet been elucidated. In this study, polymerase chain reaction–sequence-specific primers were developed to identify 15 MICB alleles and one group of alleles. We performed MICB typing in 100 healthy north-eastern Thai females (NETF) and 99 cervical cancer patients to evaluate the association of MICB polymorphisms and the risk of developing cervical cancer. Eight and nine alleles were detected in the NETF and cervical cancer respectively. MICB*00502 was associated negatively with a corrected P-value of 0·0009, suggesting the existence of a protective allele in cervical cancer. Amino acid substitutions carried by this allele were investigated for their potential involvement in natural killer (NK) cell activation. Although lysine at amino acid position 80 (Lys80) and aspartic acid at position 136 (Asp136) were associated negatively with cervical cancer, only MICB carrying Asp136 could induce NK cell killing more efficiently than MICB-Lys80 when the NK cells were blocked by anti-NKG2D. This result suggested that aspartic acid at position 136 may affect NKG2D binding, leading to different degrees of immune cell activation. PMID:18505429

  2. Human periodontal ligament stem cells suppress T-cell proliferation via down-regulation of non-classical major histocompatibility complex-like glycoprotein CD1b on dendritic cells.

    Science.gov (United States)

    Shin, C; Kim, M; Han, J-A; Choi, B; Hwang, D; Do, Y; Yun, J-H

    2017-02-01

    Periodontal ligament stem cells (PDLSCs) from the periodontal ligament tissue were recently identified as mesenchymal stem cells (MSCs). The capabilities of PDLSCs in periodontal tissue or bone regeneration have been reported, but their immunomodulatory role in T-cell immune responses via dendritic cells (DCs), known as the most potent antigen-presenting cell, has not been studied. The aim of this study is to understand the immunological function of homogeneous human STRO-1 + CD146 + PDLSCs in DC-mediated T-cell immune responses to modulate the periodontal disease process. We utilized highly purified (> 95%) human STRO-1 + CD146 + PDLSCs and human bone marrow mesenchymal stem cells (BMSCs). Each stem cell was co-cultured with human monocyte-derived DCs in the presence of lipopolysaccharide isolated from Porphyromonas gingivalis, a major pathogenic bacterium responsible for periodontal disease, in vitro to examine the immunological effect of each stem cell on DCs and DC-mediated T-cell proliferation. We discovered that STRO-1 + CD146 + PDLSCs, as well as BMSCs, significantly decreased the level of non-classical major histocompatibility complex glycoprotein CD1b on DCs, resulting in defective T-cell proliferation, whereas most human leukocyte antigens and the co-stimulatory molecules CD80 and CD86 in/on DCs were not significantly affected by the presence of BMSCs or STRO-1 + CD146 + PDLSCs. This study unveiled an immunomodulatory role of STRO-1 + CD146 + PDLSCs in negatively regulating DC-mediated T-cell immune responses, demonstrating their potential to be utilized in promising new stem cell therapies. © 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  3. Transforming Growth Factor-β2 Downregulates Major Histocompatibility Complex (MHC) I and MHC II Surface Expression on Equine Bone Marrow-Derived Mesenchymal Stem Cells Without Altering Other Phenotypic Cell Surface Markers.

    Science.gov (United States)

    Berglund, Alix K; Fisher, Matthew B; Cameron, Kristin A; Poole, Emma J; Schnabel, Lauren V

    2017-01-01

    Allogeneic mesenchymal stem cells (MSCs) are a promising cell source for treating musculoskeletal injuries in horses. Effective and safe allogeneic therapy may be hindered, however, by recipient immune recognition and rejection of major histocompatibility complex (MHC)-mismatched MSCs. Development of strategies to prevent immune rejection of MHC-mismatched MSCs in vivo is necessary to enhance cell survival and potentially increase the efficacy and safety of allogeneic MSC therapy. The purposes of this study were to evaluate if transforming growth factor-β2 (TGF-β2) downregulated MHC expression on equine MSCs and to determine if TGF-β2 treatment altered the phenotype of MSCs. Equine bone marrow-derived MSCs from 12 horses were treated with 1, 5, or 10 ng/ml TGF-β2 from initial isolation until MHC expression analysis. TGF-β2-treated MSCs had reduced MHC I and MHC II surface expression compared to untreated controls. TGF-β2 treatment also partially blocked IFN-γ-induced upregulation of MHC I and MHC II. Constitutive and IFN-γ-induced MHC I and MHC II expression on equine MSCs was dynamic and highly variable, and the effect of TGF-β2 was significantly dependent on the donor animal and baseline MHC expression. TGF-β2 treatment did not appear to change morphology, surface marker expression, MSC viability, or secretion of TGF-β1, but did significantly increase the number of cells obtained from culture. These results indicate that TGF-β2 treatment has promise for regulating MHC expression on MSCs to facilitate allogeneic therapy, but further work is needed to maintain MHC stability when exposed to an inflammatory stimulus.

  4. IFN-τ Mediated Control of Bovine Major Histocompatibility Complex Class I Expression and Function via the Regulation of bta-miR-148b/152 in Bovine Endometrial Epithelial Cells

    Directory of Open Access Journals (Sweden)

    Haichong Wu

    2018-02-01

    Full Text Available IFN-τ, a type I interferon produced by the trophoblasts of ruminants, has various important immune functions, including effects on the expression of major histocompatibility complex (MHC class I (MHC-I. A previous study has reported that IFN-τ promotes the expression of MHC-I molecules on endometrial cells. However, the immunological mechanisms by which IFN-τ regulates MHC-I molecules remain unknown. Here, we investigated which microRNA (miRNAs may be involved in the regulation of MHC-I molecule expression and function in bovine endometrial epithelial cells (bEECs. By using TargetScan 6.2 and http://www.microRNA.org, two miRNAs were suggested to target the 3′UTR of the bovine MHC-I heavy chain: bta-miR-148b and bta-miR-152. Dual luciferase reporter and miRNA mimic/inhibitor assays suggested that bta-miR-148b/152 were negatively correlated with bovine MHC-I heavy chain genes. The function of the MHC-I heavy chain was then investigated using qRT-PCR, ELISA, western blotting, immunofluorescence, and RNA interference assays in primary bEECs and an endometrial epithelial cell line (BEND. The results demonstrated that bta-miR-148b/152 could promote TLR4-triggered inflammatory responses by targeting the bovine MHC-I heavy chain, and the MHC-I molecule negatively regulated TLR4-induced inflammatory reactions may through the Fps-SHP-2 pathway. Our discovery offers novel insight into negative regulation of the TLR4 pathway and elucidates the mechanism by which bovine MHC-I molecules control congenital inflammatory reactions.

  5. Association of de novo human leukocyte antigen and major histocompatibility complex class I chain-related gene-A antibodies and proteinuria with graft survival 5 years after renal transplantation.

    Science.gov (United States)

    Zhang, L-W; Peng, Z-G; Xian, W-H; Cui, X-Q; Sun, H-B; Li, E-G; Geng, L-N; Zhao, P; Tian, J

    2013-11-01

    Association of de novo human leukocyte antigen (HLA) and major histocompatibility complex class I chain-related gene-A (MICA) antibodies and proteinuria with graft survival 5 years after renal transplantation. De novo presence of HLA and MICA antibodies after renal transplantation is associated with poor graft survival. Proteinuria after transplantation is also considered a risk factor for premature graft loss. In this study, we investigated the association of de novo HLA and MICA antibodies on proteinuria after renal transplantation and the association of proteinuria and de novo antibodies with graft survival. We enrolled 275 patients without preexisting HLA and MICA antibodies followed for >5 years after renal transplantation. All donor organs were from living-related donors or from an organ donation program. HLA and MICA antibodies were detected by the Luminex method. Patients with proteinuria (>150 mg/d) underwent intermittent 24-hour proteinuria examination. The frequencies of de novo HLA and MICA antibody 5 years after transplantation were 25.8% and 12%, respectively. In total, 26.5% of patients had proteinuria at the 5-year follow-up. De novo HLA antibody was associated with increased proteinuria after transplantation (relative risk, 3.12). HLA antibody and proteinuria were both associated with poor 5-year graft survival (P = .027 and P = .006, respectively). De novo HLA and MICA antibodies and proteinuria after renal transplantation are all associated with poor graft survival. De novo HLA antibody is independent risk factor for posttransplant proteinuria, and proteinuria affects the association of de novo antibodies with decreased graft survival after transplantation. Copyright © 2013 Elsevier Inc. All rights reserved.

  6. Expression, purification and preliminary X-ray crystallographic analysis of the human major histocompatibility antigen HLA-B*1402 in complex with a viral peptide and with a self-peptide

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, Pravin [Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin (Germany); Vahedi-Faridi, Ardeschir [Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin (Germany); Merino, Elena; López de Castro, José A. [Centro de Biología Molecular Severo Ochoa, Consejo Superior de Investigaciones Cientificas, Universidad Autónoma de Madrid, Facultad de Ciencias, Universidad Autónoma, 28049 Madrid (Spain); Volz, Armin; Ziegler, Andreas [Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin (Germany); Saenger, Wolfram, E-mail: saenger@chemie.fu-berlin.de [Institut für Chemie und Biochemie/Kristallographie, Freie Universität Berlin, Takustrasse 6, 14195 Berlin (Germany); Uchanska-Ziegler, Barbara, E-mail: saenger@chemie.fu-berlin.de [Institut für Immungenetik, Charité - Universitätsmedizin Berlin, Humboldt-Universität zu Berlin, Thielallee 73, 14195 Berlin (Germany)

    2007-07-01

    The crystallization of HLA-B*1402 in complex with two peptides is reported. The product of the human major histocompatibility (HLA) class I allele HLA-B*1402 only differs from that of allele HLA-B*1403 at amino-acid position 156 of the heavy chain (Leu in HLA-B*1402 and Arg in HLA-B*1403). However, both subtypes are known to be differentially associated with the inflammatory rheumatic disease ankylosing spondylitis (AS) in black populations in Cameroon and Togo. HLA-B*1402 is not associated with AS, in contrast to HLA-B*1403, which is associated with this disease in the Togolese population. The products of these alleles can present peptides with Arg at position 2, a feature shared by a small group of other HLA-B antigens, including HLA-B*2705, the prototypical AS-associated subtype. Complexes of HLA-B*1402 with a viral peptide (RRRWRRLTV, termed pLMP2) and a self-peptide (IRAAPPPLF, termed pCatA) were prepared and were crystallized using polyethylene glycol as precipitant. The complexes crystallized in space groups P2{sub 1} (pLMP2) and P2{sub 1}2{sub 1}2{sub 1} (pCatA) and diffracted synchrotron radiation to 2.55 and 1.86 Å resolution, respectively. Unambiguous solutions for both data sets were obtained by molecular replacement using a peptide-complexed HLA-B*2705 molecule (PDB code) as a search model.

  7. IFN-α augments natural killer-mediated antibody-dependent cellular cytotoxicity of HIV-1-infected autologous CD4+ T cells regardless of major histocompatibility complex class 1 downregulation.

    Science.gov (United States)

    Tomescu, Costin; Tebas, Pablo; Montaner, Luis J

    2017-03-13

    We have previously shown that IFN-α stimulation augments direct natural killer (NK) cell lysis of autologous CD4 primary T cells infected with certain HIV-1 isolates based upon major histocompatibility complex class 1 (MHC-1) downregulation capacity. Here, we investigated if antibody-dependent cellular cytotoxicity (ADCC) could trigger lysis of HIV-1 isolates that were resistant to direct NK lysis and if IFN-α prestimulation of NK cells could further enhance ADCC. Using broadly neutralizing monoclonal antibodies against gp120 (VRC01 or PGV04) or plasma from HIV-1-infected patients (ART-suppressed or elite controller) to trigger ADCC, we measured NK cell chromium release cytotoxicity against HIV-1-infected autologous CD4 primary T cells and NK cell CD107a degranulation against gp120-coated CD4 T cells. Total or NK-depleted peripheral blood mononuclear cells were used as effectors in the presence or absence of IFN-α prestimulation. Plasma from HIV-1-infected patients and monoclonal antibodies against gp120 could trigger NK-dependent ADCC lysis of viral isolates that were resistant to direct NK cell lysis following IFN-α stimulation. In contrast, viral isolates that exhibited potent MHC-I downregulation capacity could be lysed by NK cells through either IFN-α stimulated direct cytotoxicity or through ADCC. When utilized in combination, IFN-α prestimulation significantly augmented ADCC lysis of HIV-1-infected target cells and increased NK cell CD107a degranulation against gp120-coated ADCC targets (P cytotoxicity depending on MHC downregulation status.

  8. Changes in Expressions of Major Histocompatibility Complex Class I, Paired-Immunoglobulin-Like Receptor B, and Cluster of Differentiation 3ζ in Motor Cortical Representations of the Brachial Plexus After Avulsion in Rats.

    Science.gov (United States)

    Zhang, Jie; Chen, Liang; Gu, Yu-Dong

    2017-10-01

    Major histocompatibility complex class I (MHCI), paired-immunoglobulin-like receptor B (PirB), and cluster of differentiation 3ζ (CD3ζ) negatively regulate neuronal plasticity in developing and adult brains. The aim of this study was to evaluate expressive changes of these factors in motor cortical representations of the brachial plexus (MCRBP) after total brachial plexus root avulsion (tBPRA). A total of 45 rats were randomly and equally divided into 3 groups for evaluating mRNA and protein expression levels of MHCI, PirB, and CD3ζ: 7 days, 3 months, and control. In the 7-day and 3-month groups, expressions were examined at 7 days and 3 months, respectively, after left tBPRA. In the control group, the brachial plexus was uninjured. Three rats from each group were used for examining expressions of MHCI, PirB, and CD3ζ proteins by immunofluorescence labeling, 6 rats for quantification of MHCI, PirB, and CD3ζ mRNAs by real-time quantitative polymerase chain reaction, and the remaining 6 animals for quantification of MHCI, PirB, and CD3ζ proteins by Western blotting. In the original MCRBP, mRNA and protein expression levels of MHCI, PirB, and CD3ζ were down-regulated 7 days postinjury compared with control (P  0.05). Recovery of protein expressions were initiated from near the border region of the original MCRBP. MHCI, PirB, and CD3ζ may participate in motor cortical reorganization after tBPRA. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. The simultaneous isolation of multiple high and low frequent T-cell populations from donor peripheral blood mononuclear cells using the major histocompatibility complex I-Streptamer isolation technology.

    Science.gov (United States)

    Roex, Marthe C J; Hageman, Lois; Heemskerk, Matthias T; Veld, Sabrina A J; van Liempt, Ellis; Kester, Michel G D; Germeroth, Lothar; Stemberger, Christian; Falkenburg, J H Frederik; Jedema, Inge

    2018-02-12

    Adoptive transfer of donor-derived T cells can be applied to improve immune reconstitution in immune-compromised patients after allogeneic stem cell transplantation. The separation of beneficial T cells from potentially harmful T cells can be achieved by using the major histocompatibility complex (MHC) I-Streptamer isolation technology, which has proven its feasibility for the fast and pure isolation of T-cell populations with a single specificity. We have analyzed the feasibility of the simultaneous isolation of multiple antigen-specific T-cell populations in one procedure by combining different MHC I-Streptamers. First, the effect of combining different amounts of MHC I-Streptamers used in the isolation procedure on the isolation efficacy of target antigen-specific T cells and on the number of off-target co-isolated contaminating cells was assessed. The feasibility of this approach was demonstrated in large-scale validation procedures targeting both high and low frequent T-cell populations using the Good Manufacturing Practice (GMP)-compliant CliniMACS Plus device. T-cell products targeting up to 24 different T-cell populations could be isolated in one, simultaneous MHC I-Streptamer procedure, by adjusting the amount of MHC I- Streptamers per target antigen-specific T-cell population. Concurrently, the co-isolation of potentially harmful contaminating T cells remained below our safety limit. This technology allows the reproducible isolation of high and low frequent T-cell populations. However, the expected therapeutic relevance of direct clinical application without in vitro expansion of these low frequent T-cell populations is questionable. This study provides a feasible, fast and safe method for the generation of highly personalized MHC I-Streptamer isolated T-cell products for adoptive immunotherapy. Copyright © 2018 International Society for Cellular Therapy. Published by Elsevier Inc. All rights reserved.

  10. IFN-τ Mediated Control of Bovine Major Histocompatibility Complex Class I Expression and Functionviathe Regulation of bta-miR-148b/152 in Bovine Endometrial Epithelial Cells.

    Science.gov (United States)

    Wu, Haichong; Jiang, Kangfeng; Guo, Shuai; Yang, Jing; Zhao, Gan; Qiu, Changwei; Deng, Ganzhen

    2018-01-01

    IFN-τ, a type I interferon produced by the trophoblasts of ruminants, has various important immune functions, including effects on the expression of major histocompatibility complex (MHC) class I (MHC-I). A previous study has reported that IFN-τ promotes the expression of MHC-I molecules on endometrial cells. However, the immunological mechanisms by which IFN-τ regulates MHC-I molecules remain unknown. Here, we investigated which microRNA (miRNAs) may be involved in the regulation of MHC-I molecule expression and function in bovine endometrial epithelial cells (bEECs). By using TargetScan 6.2 and http://www.microRNA.org, two miRNAs were suggested to target the 3'UTR of the bovine MHC-I heavy chain: bta-miR-148b and bta-miR-152. Dual luciferase reporter and miRNA mimic/inhibitor assays suggested that bta-miR-148b/152 were negatively correlated with bovine MHC-I heavy chain genes. The function of the MHC-I heavy chain was then investigated using qRT-PCR, ELISA, western blotting, immunofluorescence, and RNA interference assays in primary bEECs and an endometrial epithelial cell line (BEND). The results demonstrated that bta-miR-148b/152 could promote TLR4-triggered inflammatory responses by targeting the bovine MHC-I heavy chain, and the MHC-I molecule negatively regulated TLR4-induced inflammatory reactions may through the Fps-SHP-2 pathway. Our discovery offers novel insight into negative regulation of the TLR4 pathway and elucidates the mechanism by which bovine MHC-I molecules control congenital inflammatory reactions.

  11. Escape in One of Two Cytotoxic T-Lymphocyte Epitopes Bound by a High-Frequency Major Histocompatibility Complex Class I Molecule, Mamu-A*02: a Paradigm for Virus Evolution and Persistence?

    Science.gov (United States)

    Vogel, Thorsten U.; Friedrich, Thomas C.; O'Connor, David H.; Rehrauer, William; Dodds, Elizabeth J.; Hickman, Heather; Hildebrand, William; Sidney, John; Sette, Alessandro; Hughes, Austin; Horton, Helen; Vielhuber, Kathy; Rudersdorf, Richard; de Souza, Ivna P.; Reynolds, Matthew R.; Allen, Todd M.; Wilson, Nancy; Watkins, David I.

    2002-01-01

    It is now accepted that an effective vaccine against AIDS must include effective cytotoxic-T-lymphocyte (CTL) responses. The simian immunodeficiency virus (SIV)-infected rhesus macaque is the best available animal model for AIDS, but analysis of macaque CTL responses has hitherto focused mainly on epitopes bound by a single major histocompatibility complex (MHC) class I molecule, Mamu-A*01. The availability of Mamu-A*01-positive macaques for vaccine studies is therefore severely limited. Furthermore, it is becoming clear that different CTL responses are able to control immunodeficiency virus replication with varying success, making it a priority to identify and analyze CTL responses restricted by common MHC class I molecules other than Mamu-A*01. Here we describe two novel epitopes derived from SIV, one from Gag (Gag71-79 GY9), and one from the Nef protein (Nef159-167 YY9). Both epitopes are bound by the common macaque MHC class I molecule, Mamu-A*02. The sequences of these two eptiopes are consistent with the molecule's peptide-binding motif, which we have defined by elution of natural ligands from Mamu-A*02. Strikingly, we found evidence for the selection of escape variant viruses by CTL specific for Nef159-167 YY9 in 6 of 6 Mamu-A*02-positive animals. In contrast, viral sequences encoding the Gag71-79 GY9 epitope remained intact in each animal. This situation is reminiscent of Mamu-A*01-restricted CTL that recognize Tat28-35 SL8, which reproducibly selects for escape variants during acute infection, and Gag181-189 CM9, which does not. Differential selection by CTL may therefore be a paradigm of immunodeficiency virus infection. PMID:12388723

  12. Transfection of Platyhelminthes

    Directory of Open Access Journals (Sweden)

    Bárbara Moguel

    2015-01-01

    Full Text Available Flatworms are one of the most diverse groups within Lophotrochozoa with more than 20,000 known species, distributed worldwide in different ecosystems, from the free-living organisms in the seas and lakes to highly specialized parasites living in a variety of hosts, including humans. Several infections caused by flatworms are considered major neglected diseases affecting countries in the Americas, Asia, and Africa. For several decades, a particular interest on free-living flatworms was due to their ability to regenerate considerable portions of the body, implying the presence of germ cells that could be important for medicine. The relevance of reverse genetics for this group is clear; understanding the phenotypic characteristics of specific genes will shed light on developmental traits of free-living and parasite worms. The genetic manipulation of flatworms will allow learning more about the mechanisms for tissue regeneration, designing new and more effective anthelmintic drugs, and explaining the host-parasite molecular crosstalk so far partially inaccessible for experimentation. In this review, availability of transfection techniques is analyzed across flatworms, from the initial transient achievements to the stable manipulations now developed for free-living and parasite species.

  13. HLA: The Major Histocompatibility Complex of Man

    Science.gov (United States)

    1991-01-01

    in the region of fixity. However, some patients chromosome 14. have only portions of these haplotypes and this pro- Pemphigus vulgaris is said to be...understanding of ceptibility genes for pemphigus vulgaris . One, perhaps only a few of these disorders. For example, the distri- the more ancient one, arose in...diseases Psoriasis vulgaris Cw6 13.3 0.81 Pemphigus (Jews) D/DR4 14.4 0.81 Dermatitis herpetiformis D/DR3 15.4 0.80 Beh,;et’s disease B5 6.3 0.34 Systemic

  14. An ontology for major histocompatibility restriction.

    Science.gov (United States)

    Vita, Randi; Overton, James A; Seymour, Emily; Sidney, John; Kaufman, Jim; Tallmadge, Rebecca L; Ellis, Shirley; Hammond, John; Butcher, Geoff W; Sette, Alessandro; Peters, Bjoern

    2016-01-01

    MHC molecules are a highly diverse family of proteins that play a key role in cellular immune recognition. Over time, different techniques and terminologies have been developed to identify the specific type(s) of MHC molecule involved in a specific immune recognition context. No consistent nomenclature exists across different vertebrate species. To correctly represent MHC related data in The Immune Epitope Database (IEDB), we built upon a previously established MHC ontology and created an ontology to represent MHC molecules as they relate to immunological experiments. This ontology models MHC protein chains from 16 species, deals with different approaches used to identify MHC, such as direct sequencing verses serotyping, relates engineered MHC molecules to naturally occurring ones, connects genetic loci, alleles, protein chains and multi-chain proteins, and establishes evidence codes for MHC restriction. Where available, this work is based on existing ontologies from the OBO foundry. Overall, representing MHC molecules provides a challenging and practically important test case for ontology building, and could serve as an example of how to integrate other ontology building efforts into web resources.

  15. Major histocompatibility complex : Polymorphism from coevolution

    NARCIS (Netherlands)

    Beltman, J.B.; Borghans, J.A.M.; Boer, R.J. de

    2002-01-01

    There are many examples of pathogens adapting toward evasion of immune responses. Viruses, such as influenza, rapidly alter their genetic make-up, and each year there appear to be sufficient susceptible hosts that lack memory lymphocytes from previous influenza infections to give rise to a new

  16. The major histocompatibility complex in the chicken

    DEFF Research Database (Denmark)

    Guillemot, F; Kaufman, J F; Skjoedt, K

    1989-01-01

    The chicken B complex is the first non-mammalian MHC characterized at the molecular level. It differs from the human HLA and murine H-2 complexes in the small size of the class I (B-F) and class II (B-L) genes and their close proximity. This proximity accounts for the absence of recombination......-induced tumors associated with some B complex haplotypes. Udgivelsesdato: 1989-Sep...

  17. Graphene based gene transfection

    Science.gov (United States)

    Feng, Liangzhu; Zhang, Shuai; Liu, Zhuang

    2011-03-01

    Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI-10k polymer. The positively charged GO-PEI complexes are able to further bind with plasmid DNA (pDNA) for intracellular transfection of the enhanced green fluorescence protein (EGFP) gene in HeLa cells. While EGFP transfection with PEI-1.2k appears to be ineffective, high EGFP expression is observed using the corresponding GO-PEI-1.2k as the transfection agent. On the other hand, GO-PEI-10k shows similar EGFP transfection efficiency but lower toxicity compared with PEI-10k. Our results suggest graphene to be a novel gene delivery nano-vector with low cytotoxicity and high transfection efficiency, promising for future applications in non-viral based gene therapy.Graphene as a star in materials research has been attracting tremendous attentions in the past few years in various fields including biomedicine. In this work, for the first time we successfully use graphene as a non-toxic nano-vehicle for efficient gene transfection. Graphene oxide (GO) is bound with cationic polymers, polyethyleneimine (PEI) with two different molecular weights at 1.2 kDa and 10 kDa, forming GO-PEI-1.2k and GO-PEG-10k complexes, respectively, both of which are stable in physiological solutions. Cellular toxicity tests reveal that our GO-PEI-10k complex exhibits significantly reduced toxicity to the treated cells compared to the bare PEI

  18. Resistance of Major Histocompatibility Complex Class B (MHC-B) to Nef-Mediated Downregulation Relative to that of MHC-A Is Conserved among Primate Lentiviruses and Influences Antiviral T Cell Responses in HIV-1-Infected Individuals.

    Science.gov (United States)

    Mwimanzi, Francis; Toyoda, Mako; Mahiti, Macdonald; Mann, Jaclyn K; Martin, Jeffrey N; Bangsberg, David; Brockman, Mark A; Goulder, Philip; Kirchhoff, Frank; Brumme, Zabrina L; Ndung'u, Thumbi; Ueno, Takamasa

    2018-01-01

    Patient-derived HIV-1 subtype B Nef clones downregulate HLA-A more efficiently than HLA-B. However, it remains unknown whether this property is common to Nef proteins across primate lentiviruses and how antiviral immune responses may be affected. We examined 263 Nef clones from diverse primate lentiviruses including different pandemic HIV-1 group M subtypes for their ability to downregulate major histocompatibility complex class A (MHC-A) and MHC-B from the cell surface. Though lentiviral Nef proteins differed markedly in their absolute MHC-A and MHC-B downregulation abilities, all lentiviral Nef lineages downregulated MHC-A, on average, 11 to 32% more efficiently than MHC-B. Nef genotype/phenotype analyses in a cohort of HIV-1 subtype C-infected patients ( n = 168), together with site-directed mutagenesis, revealed Nef position 9 as a subtype-specific determinant of differential HLA-A versus HLA-B downregulation activity. Nef clones harboring nonconsensus variants at codon 9 downregulated HLA-B (though not HLA-A) significantly better than those harboring the consensus sequence at this site, resulting in reduced recognition of infected target cells by HIV-1-specific CD8 + effector cells in vitro Among persons expressing protective HLA class I alleles, carriage of Nef codon 9 variants was also associated with reduced ex vivo HIV-specific T cell responses. Our results demonstrate that Nef's inferior ability to downregulate MHC-B compared to that of MHC-A is conserved across primate lentiviruses and suggest that this property influences antiviral cellular immune responses. IMPORTANCE Primate lentiviruses encode the Nef protein that plays an essential role in establishing persistent infection in their respective host species. Nef interacts with the cytoplasmic region of MHC-A and MHC-B molecules and downregulates them from the infected cell surface to escape recognition by host cellular immunity. Using a panel of Nef alleles isolated from diverse primate lentiviruses

  19. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II

    Science.gov (United States)

    Quinn, Laura L.; Williams, Luke R.; White, Claire; Forrest, Calum; Rowe, Martin

    2015-01-01

    ABSTRACT The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8+ cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8+ cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8+ cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4+ cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8+ and CD4+ T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. IMPORTANCE Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8+ T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8+ T cells specific for

  20. Native IgG2a(b) is barely antigenic to major histocompatibility complex class II-restricted T cells owing to inefficient internalization by professional antigen-presenting cells.

    Science.gov (United States)

    Bartnes, K; Hannestad, K

    2000-04-01

    Peptide epitopes derived from immunoglobulin variable regions represent tumour-specific antigens on B-cell neoplasms and can be recognized by syngeneic, major histocompatibility complex (MHC) class II-restricted T cells. Immunoglobulin peptide/MHC class II complexes may also be involved in autoimmunity and CD4+ T-cell-mediated B-cell regulation. Thus, the IgG2a(b) H-chain allopeptide gamma2a(b) 435-451 presented on I-Ad mimics the epitope implicated in herpes simplex virus-induced autoimmune stromal keratitis and is the target of T helper 1 (Th1) clones that suppress IgG2a(b) production in vivo. We here report that spleen and thymus cells constitutively present the autologous gamma2a(b) epitope to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma as a function of the animal housing conditions (specific pathogen-free or not) and the serum levels of IgG2a(b). Constitutive presentation in the spleen was predominantly performed by dendritic cells. Whereas spleen cells poorly presented native IgG2a(b) to a gamma2a(b) 435-451/I-A(d) reactive T-cell hybridoma, IgG2a(b) in the form of immune complexes were presented > 200-fold more efficiently owing to internalization via low-affinity FcgammaR on macrophages. The antigenicity could also be improved by homotypic aggregation and by targeting IgG2a(b) to complement receptors on the A20 B-cell lymphoma. Mice without detectable IgG2a(b)-containing immune complexes typically exhibited minimal constitutive presentation. Nevertheless, native IgG2a(b) can sensitize antigen-presenting cells in vivo, as mice that were devoid of immune complexes and carried an IgG2a(b)-producing tumour did present constitutively, even at physiological IgG2a(b) serum levels. Whereas the amounts of IgG released from most B-cell lymphomas may be too low to allow spontaneous priming of tumour-specific MHC class II-restricted T cells, administration of tumour immunoglobulin in aggregated form might improve the efficacy of idiotype vaccination.

  1. The Missing Link in Epstein-Barr Virus Immune Evasion: the BDLF3 Gene Induces Ubiquitination and Downregulation of Major Histocompatibility Complex Class I (MHC-I) and MHC-II.

    Science.gov (United States)

    Quinn, Laura L; Williams, Luke R; White, Claire; Forrest, Calum; Zuo, Jianmin; Rowe, Martin

    2016-01-01

    The ability of Epstein-Barr virus (EBV) to spread and persist in human populations relies on a balance between host immune responses and EBV immune evasion. CD8(+) cells specific for EBV late lytic cycle antigens show poor recognition of target cells compared to immediate early and early antigen-specific CD8(+) cells. This phenomenon is due in part to the early EBV protein BILF1, whose immunosuppressive activity increases with lytic cycle progression. However, published data suggest the existence of a hitherto unidentified immune evasion protein further enhancing protection against late EBV antigen-specific CD8(+) cells. We have now identified the late lytic BDLF3 gene as the missing link accounting for efficient evasion during the late lytic cycle. Interestingly, BDLF3 also contributes to evasion of CD4(+) cell responses to EBV. We report that BDLF3 downregulates expression of surface major histocompatibility complex (MHC) class I and class II molecules in the absence of any effect upon other surface molecules screened, including CD54 (ICAM-1) and CD71 (transferrin receptor). BDLF3 both enhanced internalization of surface MHC molecules and reduced the rate of their appearance at the cell surface. The reduced expression of surface MHC molecules correlated with functional protection against CD8(+) and CD4(+) T cell recognition. The molecular mechanism was identified as BDLF3-induced ubiquitination of MHC molecules and their subsequent downregulation in a proteasome-dependent manner. Immune evasion is a necessary feature of viruses that establish lifelong persistent infections in the face of strong immune responses. EBV is an important human pathogen whose immune evasion mechanisms are only partly understood. Of the EBV immune evasion mechanisms identified to date, none could explain why CD8(+) T cell responses to late lytic cycle genes are so infrequent and, when present, recognize lytically infected target cells so poorly relative to CD8(+) T cells specific for

  2. Augmented serum level of major histocompatibility complex class I-related chain A (MICA) protein and reduced NKG2D expression on NK and T cells in patients with cervical cancer and precursor lesions

    International Nuclear Information System (INIS)

    Arreygue-Garcia, Naela A; Delgado-Rizo, Vidal; Garcia-Iglesias, Trinidad; Hernandez-Flores, Georgina; Toro-Arreola, Susana del; Daneri-Navarro, Adrian; Toro-Arreola, Alicia del; Cid-Arregui, Angel; Gonzalez-Ramella, Oscar; Jave-Suarez, Luis F; Aguilar-Lemarroy, Adriana; Troyo-Sanroman, Rogelio; Bravo-Cuellar, Alejandro

    2008-01-01

    Cervical cancer is the second most common cancer in women worldwide. NK and cytotoxic T cells play an important role in the elimination of virus-infected and tumor cells through NKG2D activating receptors, which can promote the lysis of target cells by binding to the major histocompatibility complex class I-related chain A (MICA) proteins. Increased serum levels of MICA have been found in patients with epithelial tumors. The aim of this study was to compare the levels of soluble MICA (sMICA) and NKG2D-expressing NK and T cells in blood samples from patients with cervical cancer or precursor lesions with those from healthy donors. Peripheral blood with or without heparin was collected to obtain mononuclear cells or sera, respectively. Serum sMICA levels were measured by ELISA and NKG2D-expressing immune cells were analyzed by flow cytometry. Also, a correlation analysis was performed to associate sMICA levels with either NKG2D expression or with the stage of the lesion. Significant amounts of sMICA were detected in sera from nearly all patients. We found a decrease in the number of NKG2D-expressing NK and T cells in both cervical cancer and lesion groups when compared to healthy donors. Pearson analysis showed a negative correlation between sMICA and NKG2D-expressing T cells; however, we did not find a significant correlation when the analysis was applied to sMICA and NKG2D expression on NK cells. Our results show for the first time that high sMICA levels are found in sera from patients with both cervical cancer and precursor lesions when compared with healthy donors. We also observed a diminution in the number of NKG2D-expressing NK and T cells in the patient samples; however, a significant negative correlation between sMICA and NKG2D expression was only seen in T cells

  3. Optimized PEI-based Transfection Method for Transient Transfection and Lentiviral Production.

    Science.gov (United States)

    Yang, Shaozhe; Zhou, Xiaoling; Li, Rongxiang; Fu, Xiuhong; Sun, Pingnan

    2017-09-14

    Polyethyleneimine (PEI), a cationic polymer vehicle, forms a complex with DNA which then can carry anionic nucleic acids into eukaryotic cells. PEI-based transfection is widely used for transient transfection of plasmid DNA. The efficiency of PEI-based transfection is affected by numerous factors, including the way the PEI/DNA complex is prepared, the ratio of PEI to DNA, the concentration of DNA, the storage conditions of PEI solutions, and more. Considering the major influencing factors, PEI-based transfection has been optimized to improve its efficiency, reproducibility, and consistency. This protocol outlines the steps for ordinary transient transfection and lentiviral production using PEI. © 2017 by John Wiley & Sons, Inc. Copyright © 2017 John Wiley and Sons, Inc.

  4. Syngeneic lysis of reticuloendotheliosis virus-transformed cell lines transfected with Marek's disease virus genes by virus-specific cytotoxic T cells.

    Science.gov (United States)

    Uni, Z; Pratt, W D; Miller, M M; O'Connell, P H; Schat, K A

    1994-12-01

    Cell-mediated immune responses against Marek's disease virus (MDV) antigens were examined using reticuloendotheliosis virus (REV)-transformed cell lines of two haplotypes (B19B19 and B13B13). These cell lines were stably transfected with cloned fragments of MDV DNA resulting in the expression of the MDV-specific phosphoprotein pp38. Effector cells were obtained from P2a (B19B19) and S13 (B13B13) chickens at 7 days post inoculation with REV, oncogenic or attenuated serotype 1 MDV (JM-16/O and JM-16/A, respectively), serotype 2 MDV (SB-1), or herpesvirus of turkeys (HVT). Transfection of MDV genes did not influence the expression of Class I major histocompatibility complex antigens. The optimal effector to target cell ratio was determined to be 100:1. REV-sensitized effector cells lysed REV cell lines and REV cell lines transfected with MDV DNA in a syngeneic fashion. Effector cells from chickens inoculated with JM-16/O, JM-16/A, SB-1 or HVT lysed only the syngeneic, transfected cell lines, but not the parent REV cell lines. The percentage specific release caused by the MDV-sensitized effector cells was low, but statistically significant.

  5. Kaposi's Sarcoma-Associated Herpesvirus Latency-Associated Nuclear Antigen Inhibits Major Histocompatibility Complex Class II Expression by Disrupting Enhanceosome Assembly through Binding with the Regulatory Factor X Complex.

    Science.gov (United States)

    Thakker, Suhani; Purushothaman, Pravinkumar; Gupta, Namrata; Challa, Shanthan; Cai, Qiliang; Verma, Subhash C

    2015-05-01

    Major histocompatibility complex class II (MHC-II) molecules play a central role in adaptive antiviral immunity by presenting viral peptides to CD4(+) T cells. Due to their key role in adaptive immunity, many viruses, including Kaposi's sarcoma-associated herpesvirus (KSHV), have evolved multiple strategies to inhibit the MHC-II antigen presentation pathway. The expression of MHC-II, which is controlled mainly at the level of transcription, is strictly dependent upon the binding of the class II transactivator (CIITA) to the highly conserved promoters of all MHC-II genes. The recruitment of CIITA to MHC-II promoters requires its direct interactions with a preassembled MHC-II enhanceosome consisting of cyclic AMP response element-binding protein (CREB) and nuclear factor Y (NF-Y) complex and regulatory factor X (RFX) complex proteins. Here, we show that KSHV-encoded latency-associated nuclear antigen (LANA) disrupts the association of CIITA with the MHC-II enhanceosome by binding to the components of the RFX complex. Our data show that LANA is capable of binding to all three components of the RFX complex, RFX-associated protein (RFXAP), RFX5, and RFX-associated ankyrin-containing protein (RFXANK), in vivo but binds more strongly with the RFXAP component in in vitro binding assays. Levels of MHC-II proteins were significantly reduced in KSHV-infected as well as LANA-expressing B cells. Additionally, the expression of LANA in a luciferase promoter reporter assay showed reduced HLA-DRA promoter activity in a dose-dependent manner. Chromatin immunoprecipitation assays showed that LANA binds to the MHC-II promoter along with RFX proteins and that the overexpression of LANA disrupts the association of CIITA with the MHC-II promoter. These assays led to the conclusion that the interaction of LANA with RFX proteins interferes with the recruitment of CIITA to MHC-II promoters, resulting in an inhibition of MHC-II gene expression. Thus, the data presented here identify a novel

  6. The Major Histocompatibility Complex Class II Transactivator CIITA Inhibits the Persistent Activation of NF-κB by the Human T Cell Lymphotropic Virus Type 1 Tax-1 Oncoprotein.

    Science.gov (United States)

    Forlani, Greta; Abdallah, Rawan; Accolla, Roberto S; Tosi, Giovanna

    2016-01-20

    Human T cell lymphotropic virus type 1 (HTLV-1) Tax-1, a key protein in HTLV-1-induced T cell transformation, deregulates diverse cell signaling pathways. Among them, the NF-κB pathway is constitutively activated by Tax-1, which binds to NF-κB proteins and activates the IκB kinase (IKK). Upon phosphorylation-dependent IκB degradation, NF-κB migrates into the nucleus, mediating Tax-1-stimulated gene expression. We show that the transcriptional regulator of major histocompatibility complex class II genes CIITA (class II transactivator), endogenously or ectopically expressed in different cells, inhibits the activation of the canonical NF-κB pathway by Tax-1 and map the region that mediates this effect. CIITA affects the subcellular localization of Tax-1, which is mostly retained in the cytoplasm, and this correlates with impaired migration of RelA into the nucleus. Cytoplasmic and nuclear mutant forms of CIITA reveal that CIITA exploits different strategies to suppress Tax-1-mediated NF-κB activation in both subcellular compartments. CIITA interacts with Tax-1 without preventing Tax-1 binding to both IKKγ and RelA. Nevertheless, CIITA affects Tax-1-induced IKK activity, causing retention of the inactive p50/RelA/IκB complex in the cytoplasm. Nuclear CIITA associates with Tax-1/RelA in nuclear bodies, blocking Tax-1-dependent activation of NF-κB-responsive genes. Thus, CIITA inhibits cytoplasmic and nuclear steps of Tax-1-mediated NF-κB activation. These results, together with our previous finding that CIITA acts as a restriction factor inhibiting Tax-1-promoted HTLV-1 gene expression and replication, indicate that CIITA is a versatile molecule that might also counteract Tax-1 transforming activity. Unveiling the molecular basis of CIITA-mediated inhibition of Tax-1 functions may be important in defining new strategies to control HTLV-1 spreading and oncogenic potential. HTLV-1 is the causative agent of human adult T cell leukemia-lymphoma (ATLL). The viral

  7. Human histocompatibility leukocyte antigen (HLA)-DM edits peptides presented by HLA-DR according to their ligand binding motifs

    NARCIS (Netherlands)

    van Ham, S. M.; Grüneberg, U.; Malcherek, G.; Bröker, I.; Melms, A.; Trowsdale, J.

    1996-01-01

    Human histocompatibility leukocyte antigen (HLA)-DM is a facilitator of antigen presentation via major histocompatibility complex (MHC) class II molecules. In the absence of HLA-DM, MHC class II molecules do not present natural peptides, but tend to remain associated with class II-associated

  8. A mechanistic investigation exploring the differential transfection efficiencies between the easy-to-transfect SK-BR3 and difficult-to-transfect CT26 cell lines.

    Science.gov (United States)

    Figueroa, Elizabeth; Bugga, Pallavi; Asthana, Vishwaratn; Chen, Allen L; Stephen Yan, J; Evans, Emily Reiser; Drezek, Rebekah A

    2017-05-02

    Gold-polyamidoamine (AuPAMAM) has previously been shown to successfully transfect cells with high efficiency. However, we have observed that certain cell types are more amenable to Au-PAMAM transfection than others. Here we utilized two representative cell lines-a "difficult to transfect" CT26 cell line and an "easy to transfect" SK-BR3 cell line-and attempted to determine the underlying mechanism for differential transfection in both cell types. Using a commonly established poly-cationic polymer similar to PAMAM (polyethyleneimine, or PEI), we additionally sought to quantify the relative transfection efficiencies of each vector in CT26 and SK-BR3 cells, in the hopes of elucidating any mechanistic differences that may exist between the two transfection vectors. A comparative time course analysis of green fluorescent protein reporter-gene expression and DNA uptake was conducted to quantitatively compare PEI- and AuPAMAM-mediated transfection in CT26 and SK-BR3, while flow cytometry and confocal microscopy were used to determine the contribution of cellular uptake, endosomal escape, and cytoplasmic transport to the overall gene delivery process. Results from the time course analysis and flow cytometry studies revealed that initial complex uptake and cytoplasmic trafficking to the nucleus are likely the two main factors limiting CT26 transfectability. The cell type-dependent uptake and intracellular transport mechanisms impacting gene therapy remain largely unexplored and present a major hurdle in the application-specific design and efficiency of gene delivery vectors. This systematic investigation offers insights into the intracellular mechanistic processes that may account for cell-to-cell differences, as well as vector-to-vector differences, in gene transfectability.

  9. Evolutionary Analysis of Minor Histocompatibility Genes In Hydra

    KAUST Repository

    Aalismail, Nojood

    2016-05-01

    Hydra is a simple freshwater solitary polyp used as a model system to study evolutionary aspects. The immune response of this organism has not been studied extensively and the immune response genes have not been identified and characterized. On the other hand, immune response has been investigated and genetic analysis has been initiated in other lower invertebrates. In the present study we took initiative to study the self/nonself recognition in hydra and its relation to the immune response. Moreover, performing phylogenetic analysis to look for annotated immune genes in hydra gave us a potential to analyze the expression of minor histocompatibility genes that have been shown to play a major role in grafting and transplantation in mammals. Here we obtained the cDNA library that shows expression of minor histocompatibility genes and confirmed that the annotated sequences in databases are actually present. In addition, grafting experiments suggested, although still preliminary, that homograft showed less rejection response than in heterograft. Involvement of possible minor histocompatibility gene orthologous in immune response was examined by qPCR.

  10. Strategies for future histocompatible stem cell therapy

    DEFF Research Database (Denmark)

    Nehlin, Jan; Barington, Torben

    2009-01-01

    , genetically identical to the recipient. Once differentiation protocols and culture conditions can be defined and optimized, patient-histocompatible pluripotent stem cells could be directed towards virtually every cell type in the human body. Harnessing this capability to enrich for given cells within...... of patient-histocompatible stem cells, the pending issues needed to be dealt with before clinical trials can be initiated, evidence for the loss and/or aging of the stem cell pool and some of the possible uses of human pluripotent stem cell-derivatives aimed at curing disease and improving health....

  11. Adaptive major histocompatibility complex (MHC) and neutral genetic variation in two native Baltic Sea fishes (perch Perca fluviatilis and zander Sander lucioperca) with comparisons to an introduced and disease susceptible population in Australia (P. fluviatilis): assessing the risk of disease epidemics.

    Science.gov (United States)

    Faulks, L K; Östman, Ö

    2016-04-01

    This study assessed the major histocompatibility complex (MHC) and neutral genetic variation and structure in two percid species, perch Perca fluviatilis and zander Sander lucioperca, in a unique brackish ecosystem, the Baltic Sea. In addition, to assess the importance of MHC diversity to disease susceptibility in these populations, comparisons were made to an introduced, disease susceptible, P. fluviatilis population in Australia. Eighty-three MHC class II B exon 2 variants were amplified: 71 variants from 92 P. fluviatilis samples, and 12 variants from 82 S. lucioperca samples. Microsatellite and MHC data revealed strong spatial genetic structure in S. lucioperca, but not P. fluviatilis, across the Baltic Sea. Both microsatellite and MHC data showed higher levels of genetic diversity in P. fluviatilis from the Baltic Sea compared to Australia, which may have facilitated the spread of an endemic virus, EHNV in the Australian population. The relatively high levels of genetic variation in the Baltic Sea populations, together with spatial genetic structure, however, suggest that there currently seems to be little risk of disease epidemics in this system. To ensure this remains the case in the face of ongoing environmental changes, fisheries and habitat disturbance, the conservation of local-scale genetic variation is recommended. © 2016 The Fisheries Society of the British Isles.

  12. Transplantation of the sensitized patient: histocompatibility testing.

    Science.gov (United States)

    Montgomery, Robert A; Leffell, Mary S; Zachary, Andrea A

    2013-01-01

    A component necessary for successful transplantation of the sensitized patient is timely and high quality support from the histocompatibility laboratory that helps guide selection of the best route to transplantation and the clinical care of the patient. Responsibilities of the laboratory include risk assessment, HLA typing, and accurate antibody characterization.

  13. The Human Minor Histocompatibility Antigen1 Is a RhoGAP

    NARCIS (Netherlands)

    B.J. de Kreuk (Bart-Jan); A. Schaefer (Antje); E.C. Anthony (Eloise); S. Tol (Simon); M. Fernandez-Borja (Mar); D. Geerts (Dirk); J. Pool (Jan); L. Hambach (Lothar); E. Goulmy (Els); P.L. Hordijk (Peter )

    2013-01-01

    textabstractThe human minor Histocompatibility Antigen HMHA-1 is a major target of immune responses after allogeneic stem cell transplantation applied for the treatment of leukemia and solid tumors. The restriction of its expression to hematopoietic cells and many solid tumors raised questions

  14. Major Histocompatibility complex-DMB allelic diversity in old and ...

    African Journals Online (AJOL)

    the important function for this molecule, directing DR molecules towards the endosomal/ lysosomal class II compartment and sending inhibitory signals to cells in order to stop synthesis of unnecessary MHC-DR molecules. Some Macaca individuals. DMB molecules (appear on Earth more than ten million years ago) dobear ...

  15. Extremely high major histocompatibility complex class IIb gene ...

    Indian Academy of Sciences (India)

    Identifying the processes that maintain genetic diversity within and among populations is a central goal of mod- ern evolutionary genetics. So far, the studies on genetic diversity have mainly focussed on neutral DNA markers, such as mtDNA and microsatellites (Xu et al. 2010). While these markers are very informative in ...

  16. Phage display of peptide / major histocompatibility class I complexes

    DEFF Research Database (Denmark)

    Vest Hansen, N; Ostergaard Pedersen, L; Stryhn, A

    2001-01-01

    and subsequently that ot the T cell receptor for peptide-MHC-I complex), we have fused a single chain peptide-MHC-I complex to the phage minor coat protein, gpIII, and displayed it on filamentous phage. Expression of peptide-MHC-I complexes was shown with relevant conformation-specific monoclonal antibodies and......, more importantly, with a unique "T cell receptor-like" (i. e. peptide-specific, MHC-I-restricted) antibody. Thus, properly assembled and folded peptide-MHC-I complexes can be displayed on filamentous phage. Despite the successful display, interaction with T cells could not be demonstrated....

  17. Evolution of major histocompatibility complex class I genes in Cetartiodactyls.

    Science.gov (United States)

    Holmes, Edward C; Roberts, Ann F C; Staines, Karen A; Ellis, Shirley A

    2003-07-01

    Previous studies of cattle MHC have suggested the presence of at least four classical class I loci. Analysis of haplotypes showed that any combination of one, two or three genes may be expressed, although no gene is expressed consistently. The aim of this study was to examine the evolutionary relationships among these genes and to study their phylogenetic history in Cetartiodactyl species, including cattle and their close relatives. A secondary aim was to determine whether recombination had occurred between any of the genes. MHC class I data sets were generated from published sequences or by polymerase chain reaction from cDNA. Phylogenetic analysis revealed that MHC class I sequences from Cetartiodactyl species closely related to cattle were distributed among the main cattle gene "groups", while those from more distantly related species were either scattered (sheep, deer) or clustered in a species-specific manner (sitatunga, giraffe). A comparison between gene and species trees showed a poor match, indicating that divergence of the MHC sequences had occurred independently from that of the hosts from which they were obtained. We also found two clear instances of interlocus recombination among the cattle MHC sequences. Finally, positive natural selection was documented at positions throughout the alpha 1 and 2 domains, primarily on those amino acids directly involved in peptide binding, although two positions in the alpha 3 domain, a region generally conserved in other species, were also shown to be undergoing adaptive evolution.

  18. Extremely high major histocompatibility complex class IIb gene ...

    Indian Academy of Sciences (India)

    genetic information for conservation and management strate- gies for this endangered population. Materials and methods. Samples and DNA extraction. A total of 21 individuals were sampled (table 1). Sample collection, transportation and storage are same as previously described (Wu et al. 2002). DNA extraction followed ...

  19. Epizone: Interlaboratory Ring Trial to Compare Dna Transfection Efficiencies

    DEFF Research Database (Denmark)

    Dory, Daniel; Albina, Emmanuel; Kwiatek, Olivier

    of viruses by reverse genetics and/or generation of mutated viruses. A large number of transfection chemicals like calcium phospate, branched organic compounds, liposomes, cationic polymers etc. are available on the market which are used by different laboratories for different cell lines. To obtain...... an overview on the efficiencies of varying transfection procedures, an interlaboratory ring trial was initiated within EPIZONE theme 5. A total of 15 participitating laboratories from 7 member institutions received RK13 cells, plasmid DNA encoding firefly luciferase under the transcriptional control...... of the human cytomegalovirus major immediate early promoter, a specially developed lysis buffer and a detailed protocol. Transfected cells were harvested in the laboratories of the participants, frozen and sent to the FLI where both the luciferase activity and protein content of the individual samples were...

  20. Transfection of Sertoli cells with androgen receptor alters gene expression without androgen stimulation.

    Science.gov (United States)

    Fietz, D; Markmann, M; Lang, D; Konrad, L; Geyer, J; Kliesch, S; Chakraborty, T; Hossain, H; Bergmann, M

    2015-12-29

    Androgens play an important role for the development of male fertility and gained interest as growth and survival factors for certain types of cancer. Androgens act via the androgen receptor (AR/Ar), which is involved in various cell biological processes such as sex differentiation. To study the functional mechanisms of androgen action, cell culture systems and AR-transfected cell lines are needed. Transfection of AR into cell lines and subsequent gene expression analysis after androgen treatment is well established to investigate the molecular biology of target cells. However, it remains unclear how the transfection with AR itself can modulate the gene expression even without androgen stimulation. Therefore, we transfected Ar-deficient rat Sertoli cells 93RS2 by electroporation using a full length human AR. Transfection success was confirmed by Western Blotting, immunofluorescence and RT-PCR. AR transfection-related gene expression alterations were detected with microarray-based genome-wide expression profiling of transfected and non-transfected 93RS2 cells without androgen stimulation. Microarray analysis revealed 672 differentially regulated genes with 200 up- and 472 down-regulated genes. These genes could be assigned to four major biological categories (development, hormone response, immune response and metabolism). Microarray results were confirmed by quantitative RT-PCR analysis for 22 candidate genes. We conclude from our data, that the transfection of Ar-deficient Sertoli cells with AR has a measurable effect on gene expression even without androgen stimulation and cause Sertoli cell damage. Studies using AR-transfected cells, subsequently stimulated, should consider alterations in AR-dependent gene expression as off-target effects of the AR transfection itself.

  1. Bio-Orthogonal Mediated Nucleic Acid Transfection of Cells via Cell Surface Engineering

    Science.gov (United States)

    2017-01-01

    The efficient delivery of foreign nucleic acids (transfection) into cells is a critical tool for fundamental biomedical research and a pillar of several biotechnology industries. There are currently three main strategies for transfection including reagent, instrument, and viral based methods. Each technology has significantly advanced cell transfection; however, reagent based methods have captured the majority of the transfection market due to their relatively low cost and ease of use. This general method relies on the efficient packaging of a reagent with nucleic acids to form a stable complex that is subsequently associated and delivered to cells via nonspecific electrostatic targeting. Reagent transfection methods generally use various polyamine cationic type molecules to condense with negatively charged nucleic acids into a highly positively charged complex, which is subsequently delivered to negatively charged cells in culture for association, internalization, release, and expression. Although this appears to be a straightforward procedure, there are several major issues including toxicity, low efficiency, sorting of viable transfected from nontransfected cells, and limited scope of transfectable cell types. Herein, we report a new strategy (SnapFect) for nucleic acid transfection to cells that does not rely on electrostatic interactions but instead uses an integrated approach combining bio-orthogonal liposome fusion, click chemistry, and cell surface engineering. We show that a target cell population is rapidly and efficiently engineered to present a bio-orthogonal functional group on its cell surface through nanoparticle liposome delivery and fusion. A complementary bio-orthogonal nucleic acid complex is then formed and delivered to which chemoselective click chemistry induced transfection occurs to the primed cell. This new strategy requires minimal time, steps, and reagents and leads to superior transfection results for a broad range of cell types

  2. Optimization of renal transfection using a renal suction-mediated transfection method in mice.

    Science.gov (United States)

    Taniguchi, Yota; Kawakami, Shigeru; Fuchigami, Yuki; Oyama, Natsuko; Yamashita, Fumiyoshi; Konishi, Satoshi; Shimizu, Kazunori; Hashida, Mitsuru

    2016-01-01

    We previously developed a suction-mediated transfection method in mice. The purpose of this study was to optimize the suction-mediated transfection conditions using a pressure-controlled computer system for efficient and safe kidney-targeted gene delivery in mice. Naked pCMV-Luc was injected into the tail vein in mice, and then the right kidney was suctioned by a device of the suction pressure-controlled system. The effects of renal transfection conditions, such as the suction pressure degree, suction pressure waveform and device area were evaluated by measuring luciferase expression. In addition, renal injury was examined. The renal suction-mediated transfection method at -30 kPa showed high transgene expression. The renal suction waveform did not affect the transfection activity. Under the optimized conditions, the high transgene expression was mostly observed at the renal suctioned site. The transfection conditions used did not induce histological defects or increases in two renal injury biomarkers (Kidney injury molecule-1 mRNA and Clusterin mRNA). We have clarified the transfection conditions for efficient and safe transfection in the kidney using the suction-mediated transfection method in mice.

  3. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  4. Fibronectin enhances transfection of Staphylococcus aureus.

    OpenAIRE

    Thompson, N E; Bergdoll, M S; Pattee, P A

    1985-01-01

    The factor in normal sera primarily responsible for the enhancement of transfection (and transformation) of Staphylococcus aureus was identified as fibronectin. Serum samples which were depleted of fibronectin by affinity chromatography showed a marked decrease in enhancing activity. Fibronectin isolated from sera of several animal species demonstrated enhancing activity.

  5. Disappearance of paternal histocompatibility antigens from hybrid mouse blastocyst at the time of implantation.

    Science.gov (United States)

    Leclipteux, T; Remacle, J

    1983-07-04

    Products of the major histocompatibility complex (H-2) are important in allograph rejection. In view of the close relationship between mother and foetus, we can consider the latter as an allograph which is however not rejected by an immunological reaction. We studied the presence of H-2 antigens on embryo membranes at the time of implantation, by immunochemical labeling using gold particles coupled with protein A. Results showed that the expression of H-2 antigens is different before and after implantation. It seems that after implantation, H-2 antigens disappear from trophoblastic membranes. This could explain the absence of immunological reaction of the mother against the foetus.

  6. IFN-induced modulation of histocompatibility antigens on human cells. Background, mechanisms and perspectives

    DEFF Research Database (Denmark)

    Hokland, M; Basse, P; Justesen, J

    1989-01-01

    IFN proteins are a family of lymphokines with anti-viral effects. Several other effects of IFNs have also been described, including enhancement of natural killer (NK) cell activity, enhancement of cytotoxic T-lymphocyte activity, and enhancement of the expression of major histocompatibility compl...... to the classical anti-viral mechanism. This concept proposes that the MHC-enhancing effect of IFNs is a vital part of the immunological defense against virus infections and an integral part of the anti-viral effects of IFN proteins. Udgivelsesdato: 1988-Nov...

  7. Optomizing Transfection Efficiency of Cervical Cancer Cells Transfected by Cationic Liposomes LipofectamineTM2000.

    Science.gov (United States)

    Huang, Fei; Zhao, Feng; Liang, Li-Ping; Zhou, Mei; Qu, Zhi-Ling; Cao, Yan-Zhen; Lin, Chen

    2015-01-01

    Currently, cationic liposome has become the commonly used vehicles for gene transfection. Furthermore, one of the most significant steps in microRNAs expression studies is transferring microRNAs into cell cultures successfully. In this study we aim to approach the feasibility of transfection of cervical cancer cell lines mediated by liposome and to obtain the optimized transfection condition for cervical cancer cell lines. Lipofectamine(TM)2000 as the carrier, miR-101 mimic was transfected into Hela cells and Siha cells. Using green fluorescent protein as reporter gene, to set different groups according to cell seeding density, the amount of miRNA , miRNA and the proportion of Liposomes, Whether to add serum into medium to study their impact on the liposomal transfection efficiency. Finally, MTT assay was used to analyze the relative minimal cell toxicity of liposome reagents. The seeding density of Hela cell line and Siha are 1.5 x 10(4) (per well of 24 well plates), miRNA amount is 1ul of both, the ratio of miRNA and liposome is 1:0.5 of Hela cell line; 1:0.7 of Siha cell line respectively, after 24 hours we can get the highest transfection efficiency. Compared with serum medium, only Siha cells cultured with serum-free medium obtained higher transfection efficiency before transfection (Ptransfected is a suitable way and it can be an efficient reagent for miRNA delivery for Hela cells and Siha cells in vitro. It may serve as a reference for the further research or application.

  8. Lipid-based Transfection Reagents Exhibit Cryo-induced Increase in Transfection Efficiency

    Directory of Open Access Journals (Sweden)

    Helena Sork

    2016-01-01

    Full Text Available The advantages of lipid-based transfection reagents have permitted their widespread use in molecular biology and gene therapy. This study outlines the effect of cryo-manipulation of a cationic lipid-based formulation, Lipofectamine 2000, which, after being frozen and thawed, showed orders of magnitude higher plasmid delivery efficiency throughout eight different cell lines, without compromising cell viability. Increased transfection efficiency with the freeze-thawed reagent was also seen with 2'-O-methyl phosphorothioate oligonucleotide delivery and in a splice-correction assay. Most importantly, a log-scale improvement in gene delivery using the freeze-thawed reagent was seen in vivo. Using three different methods, we detected considerable differences in the polydispersity of the different nucleic acid complexes as well as observed a clear difference in their surface spreading and sedimentation, with the freeze-thawed ones displaying substantially higher rate of dispersion and deposition on the glass surface. This hitherto overlooked elevated potency of the freeze-thawed reagent facilitates the targeting of hard-to-transfect cells, accomplishes higher transfection rates, and decreases the overall amount of reagent needed for delivery. Additionally, as we also saw a slight increase in plasmid delivery using other freeze-thawed transfection reagents, we postulate that freeze-thawing might prove to be useful for an even wider variety of transfection reagents.

  9. Toward Contactless Biology: Acoustophoretic DNA Transfection

    Science.gov (United States)

    Vasileiou, Thomas; Foresti, Daniele; Bayram, Adem; Poulikakos, Dimos; Ferrari, Aldo

    2016-02-01

    Acoustophoresis revolutionized the field of container-less manipulation of liquids and solids by enabling mixing procedures which avoid contamination and loss of reagents due to the contact with the support. While its applications to chemistry and engineering are straightforward, additional developments are needed to obtain reliable biological protocols in a contactless environment. Here, we provide a first, fundamental step towards biological reactions in air by demonstrating the acoustophoretic DNA transfection of mammalian cells. We developed an original acoustophoretic design capable of levitating, moving and mixing biological suspensions of living mammalians cells and of DNA plasmids. The precise and sequential delivery of the mixed solutions into tissue culture plates is actuated by a novel mechanism based on the controlled actuation of the acoustophoretic force. The viability of the contactless procedure is tested using a cellular model sensitive to small perturbation of neuronal differentiation pathways. Additionally, the efficiency of the transfection procedure is compared to standard, container-based methods for both single and double DNA transfection and for different cell types including adherent growing HeLa cancer cells, and low adhesion neuron-like PC12 cells. In all, this work provides a proof of principle which paves the way to the development of high-throughput acoustophoretic biological reactors.

  10. Photo-transfection of mammalian cells via femtosecond laser pulses

    CSIR Research Space (South Africa)

    Mthunzi, P

    2009-06-01

    Full Text Available ). Transfection efficiencies between 40 - 63 % are recorded. We show for the first time that, due to their different sensitivity, surface receptors and membrane structure the cell lines mentioned above displayed varying photo-transfection efficiencies at different...

  11. Off-target responses in the HeLa proteome subsequent to transient plasmid-mediated transfection.

    Science.gov (United States)

    Hagen, Lars; Sharma, Animesh; Aas, Per Arne; Slupphaug, Geir

    2015-01-01

    Transient transfection of mammalian cells with plasmid expression vectors and chemical transfection reagents is widely used to study protein transport and dynamics as well as phenotypic alterations mediated by the overexpressed protein. Despite the undisputed impact of this technique, surprisingly little is known about the cellular effects mediated by the transfection process per se. Conceivably, off-target effects could have implications upon proteins or processes being studied and understanding the molecular pathways affected would add value to the interpretation of experimental observations subsequent to cell transfection. Here we have used a SILAC-based proteomic approach to study differentially expressed proteins after transfection of HeLa cells with ECFP vector using a commonly employed non-liposome based transfection reagent, Fugene®HD. Whereas the transfection reagent itself mediated minimal effects upon protein expression, 11 proteins were found to be significantly upregulated after transfection, all of which were associated with an interferon type I/II response. The upregulated proteins might potentially inflict major cellular processes such as RNA splicing, chromatin remodeling, post-translational protein modification and cell cycle control. The results were validated by western analysis as well as quantitative RT-PCR and this demonstrated that an essentially identical response was induced in HeLa by transfection using an empty pUC18 vector, which does not contain a mammalian virus promoter, as well as a liposome-based transfection reagent, Lipofectamine(TM)2000. Notably, no induction of the interferon response was observed in HEK293 cells, suggesting that these cells might be preferable to HeLa to avoid undesired off-target effects in transfection studies encompassing interferon-signaling and antiviral responses. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Tissue Engineering Using Transfected Growth-Factor Genes

    Science.gov (United States)

    Madry, Henning; Langer, Robert S.; Freed, Lisa E.; Trippel, Stephen; Vunjak-Novakovic, Gordana

    2005-01-01

    A method of growing bioengineered tissues includes, as a major component, the use of mammalian cells that have been transfected with genes for secretion of regulator and growth-factor substances. In a typical application, one either seeds the cells onto an artificial matrix made of a synthetic or natural biocompatible material, or else one cultures the cells until they secrete a desired amount of an extracellular matrix. If such a bioengineered tissue construct is to be used for surgical replacement of injured tissue, then the cells should preferably be the patient s own cells or, if not, at least cells matched to the patient s cells according to a human-leucocyteantigen (HLA) test. The bioengineered tissue construct is typically implanted in the patient's injured natural tissue, wherein the growth-factor genes enhance metabolic functions that promote the in vitro development of functional tissue constructs and their integration with native tissues. If the matrix is biodegradable, then one of the results of metabolism could be absorption of the matrix and replacement of the matrix with tissue formed at least partly by the transfected cells. The method was developed for articular chondrocytes but can (at least in principle) be extended to a variety of cell types and biocompatible matrix materials, including ones that have been exploited in prior tissue-engineering methods. Examples of cell types include chondrocytes, hepatocytes, islet cells, nerve cells, muscle cells, other organ cells, bone- and cartilage-forming cells, epithelial and endothelial cells, connective- tissue stem cells, mesodermal stem cells, and cells of the liver and the pancreas. Cells can be obtained from cell-line cultures, biopsies, and tissue banks. Genes, molecules, or nucleic acids that secrete factors that influence the growth of cells, the production of extracellular matrix material, and other cell functions can be inserted in cells by any of a variety of standard transfection techniques.

  13. Optimizing conditions for calcium phosphate mediated transient transfection

    Directory of Open Access Journals (Sweden)

    Ling Guo

    2017-03-01

    Conclusions: Calcium phosphate mediated transfection is the most low-cost approach to introduce recombinant DNA into culture cells. However, the utility of this procedure is limited in highly-differentiated cells. Here we describe the specific HBS-buffered saline, PH, glycerol shock, vortex strength, transfection medium, and particle concentrations conditions necessary to optimize this transfection method in highly differentiated cells.

  14. Hydrophobic modification of polyethyleneimine for gene transfectants

    International Nuclear Information System (INIS)

    Kim, Sung Tae; Choi, Joon Sig; Jang, Hyung Suk; Suh, Hea Ran; Park, Jong Sang

    2001-01-01

    A new gene transfer system was developed by using polylipoplexes, which were prepared by hydrophobic modification of polyethyleneimine (PEI, MW 2000). PEI 25kDa is well known for its excellent transfection efficiency but it has extreme cytotoxicity; therefore, its application for medical use is strictly limited. PEI 2kDa is able to form complexes with DNA and has low cytotoxicity. However, unfortunately, it shows no transfection efficiency so it can not be a candidate carrier for gene therapy. We designed novel polycationic amphilphiles by conjugating hydrophobic moieties, such as cholesterol and myristate, to PEI 2kDa. Cholesterol-conjugated PEI (PEI-Chol: P10C, P17C and P30C) and myristate-conjugated PEI (PEI-Myr:P10M, P16M and P26M) are different from the other cationic lipids in that they can form lipopolyplexes with plasmid DNA that have extra multi-positive charges in their hydrophilic parts. From a different point of view, they are also considered to be PEI derivatives with a small proportion of hydrophobic moiety. As a result of the modification, PEI-Chol and PEI-Myr showed much enhanced transfection activity but somewhat increased cytotoxicity. We also examined the effect of the amount of hydrophobic moiety on lipopolyplex-mediated gene transfer and observed that P17C and P26M are the most effective carriers in the series of two groups. MTT assay indicated that the more myristyl groups were attached to PEI, the more injurious results were observed. In the case of PEI-Chol, however, the opposite tendency was observed

  15. Gold nanoparticle mediated laser transfection for efficient siRNA mediated gene knock down.

    Directory of Open Access Journals (Sweden)

    Dag Heinemann

    Full Text Available Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types.

  16. Gold Nanoparticle Mediated Laser Transfection for Efficient siRNA Mediated Gene Knock Down

    Science.gov (United States)

    Heinemann, Dag; Schomaker, Markus; Kalies, Stefan; Schieck, Maximilian; Carlson, Regina; Escobar, Hugo Murua; Ripken, Tammo; Meyer, Heiko; Heisterkamp, Alexander

    2013-01-01

    Laser based transfection methods have proven to be an efficient and gentle alternative to established molecule delivery methods like lipofection or electroporation. Among the laser based methods, gold nanoparticle mediated laser transfection bears the major advantage of high throughput and easy usability. This approach uses plasmon resonances on gold nanoparticles unspecifically attached to the cell membrane to evoke transient and spatially defined cell membrane permeabilization. In this study, we explore the parameter regime for gold nanoparticle mediated laser transfection for the delivery of molecules into cell lines and prove its suitability for siRNA mediated gene knock down. The developed setup allows easy usage and safe laser operation in a normal lab environment. We applied a 532 nm Nd:YAG microchip laser emitting 850 ps pulses at a repetition rate of 20.25 kHz. Scanning velocities of the laser spot over the sample of up to 200 mm/s were tested without a decline in perforation efficiency. This velocity leads to a process speed of ∼8 s per well of a 96 well plate. The optimal particle density was determined to be ∼6 particles per cell using environmental scanning electron microscopy. Applying the optimized parameters transfection efficiencies of 88% were achieved in canine pleomorphic adenoma ZMTH3 cells using a fluorescent labeled siRNA while maintaining a high cell viability of >90%. Gene knock down of d2-EGFP was demonstrated and validated by fluorescence repression and western blot analysis. On basis of our findings and established mathematical models we suppose a mixed transfection mechanism consisting of thermal and multiphoton near field effects. Our findings emphasize that gold nanoparticle mediated laser transfection provides an excellent tool for molecular delivery for both, high throughput purposes and the transfection of sensitive cells types. PMID:23536802

  17. Glucocorticoid Cell Priming Enhances Transfection Outcomes in Adult Human Mesenchymal Stem Cells

    Science.gov (United States)

    Kelly, Abby M; Plautz, Sarah A; Zempleni, Janos; Pannier, Angela K

    2016-01-01

    Human mesenchymal stem cells (hMSCs) are one of the most widely researched stem cell types with broad applications from basic research to therapeutics, the majority of which require introduction of exogenous DNA. However, safety and scalability issues hinder viral delivery, while poor efficiency hinders nonviral gene delivery, particularly to hMSCs. Here, we present the use of a pharmacologic agent (glucocorticoid) to overcome barriers to hMSC DNA transfer to enhance transfection using three common nonviral vectors. Glucocorticoid priming significantly enhances transfection in hMSCs, demonstrated by a 3-fold increase in efficiency, 4–15-fold increase in transgene expression, and prolonged transgene expression when compared to transfection without glucocorticoids. These effects are dependent on glucocorticoid receptor binding and caused in part by maintenance of normal metabolic function and increased cellular (5-fold) and nuclear (6–10-fold) DNA uptake over hMSCs transfected without glucocorticoids. Results were consistent across five human donors and in cells up to passage five. Glucocorticoid cell priming is a simple and effective technique to significantly enhance nonviral transfection of hMSCs that should enhance their clinical use, accelerate new research, and decrease reliance on early passage cells. PMID:26478250

  18. Ocular nanoparticle toxicity and transfection of the retina and retinal pigment epithelium.

    Science.gov (United States)

    Prow, Tarl W; Bhutto, Imran; Kim, Sahng Y; Grebe, Rhonda; Merges, Carol; McLeod, D Scott; Uno, Koichi; Mennon, Mohamed; Rodriguez, Li; Leong, Kam; Lutty, Gerard A

    2008-12-01

    Chitosan, PCEP (poly{[(cholesteryl oxocarbonylamido ethyl) methyl bis(ethylene) ammonium iodide] ethyl phosphate}), and magnetic nanoparticles (MNPs) were evaluated for the safe delivery of genes in the eye. Rabbits were injected with nanoparticles either intravitreally (IV) or subretinally (SR) and sacrificed 7 days later. Eyes were grossly evaluated for retinal pigment epithelium abnormalities, retinal degeneration, and inflammation. All eyes were cryopreserved and sectioned for analysis of toxicity and expression of either enhanced green or red fluorescent proteins. All of the nanoparticles were able to transfect cells in vitro and in vivo. IV chitosan showed inflammation in 12/13 eyes, whereas IV PCEP and IV MNPs were not inflammatory and did not induce retinal pathology. SR PCEP was nontoxic in the majority of cases but yielded poor transfection, whereas SR MNPs were nontoxic and yielded good transfection. Therefore, we conclude that the best nanoparticle evaluated in vivo was the least toxic nanoparticle tested, the MNP.

  19. Repeated Aurora-A siRNA Transfection Results in Effective Apoptosis of A549 Cells Compared to Single Transfection.

    Science.gov (United States)

    Wang, Zhonghua; Sun, Wenwu; Cao, Jianping; Cui, Haiyang; Ma, Zhuang

    2016-01-01

    Suppression of Aurora kinase A (Aurora-A, AURKA) by Aurora-A siRNA has been proposed for lung tumor treatment. However, protocols using single administration have shown little benefit in some types of lung tumor. Given that transfection efficiency of Aurora-A siRNA is low due to tightly packed cells in the tumor, we hypothesized that repeated administration would result in efficient cell apoptosis. We compared single vs. repeated transfection (thrice) in A549 cells by transfecting Aurora-A siRNA (siA) on the 1st or 1st, 2nd and 3rd day after cell seeding. A random sequence was used as the negative siRNA control (siC). Cells in the single transfection group received only transfection reagent without siRNAs on the 2nd and 3rd day. Two days after the third transfection, both single and repeated siA administration decreased mRNA expression of Aurora-A and cell viability compared to no administration and siC single administration. However, the decrease in these two indices with repeated transfection was more obvious than that following single administration: cell viability decreased to 72.8 ± 3.05% (p transfection and to 64.2 ± 1.99% (p transfection, compared with normal control cells, respectively. Gene expression decreased to 17 ± 16.6% (p transfection and to 43.2 ± 13.0% (p transfection. Compared to single transfection, repeated Aurora-A siRNA transfection decreased Aurora-A, which, in turn, resulted in effective apoptosis of A549 cells.

  20. pEGFP transfection into murine skeletal muscle by electrosonoporation

    Science.gov (United States)

    Tamošiūnas, Mindaugas; Jakovels, Dainis; Rubins, Uldis; Kadikis, Roberts; Petrovska, Ramona; Šatkauskas, Saulius

    2017-12-01

    In this study, we aimed to determine whether the combination of electroporation (EP) and ultrasound (US) waves (sonoporation) can affect the plasmid DNA transfection to mice tibialis cranialis muscle. Multispectral imaging technique combined with fluorescence spectroscopy point measurements has been used for the transcutaneous detection of enhanced green fluorescent protein (EGFP) fluorescence, providing information on location and duration of EGFP expression. We found that electrosonoporation, commonly enhancing pDNA transfection in vitro, had no positive effect on EGFP transfection efficiency increase in vivo with respect to electroporation alone. We presume that this may be associated with decreased viability of transfected fibers.

  1. Transfected parvalbumin alters calcium homeostasis in teratocarcinoma PCC7 cells

    DEFF Research Database (Denmark)

    Müller, B K; Kabos, P; Belhage, B

    1996-01-01

    Indirect evidence supports a protective role of some EF-hand calcium-binding proteins against calcium-induced neurotoxicity. Little is known about how these proteins influence cytosolic calcium levels. After cloning the parvalbumin cDNA into an expression vector, teratocarcinoma cells (PCC7) were...... transfected. Parvalbumin-transfected and mock-transfected cells were loaded with the calcium indicator fura-2 and were exposed, in the same dish, to different concentrations of the calcium ionophore A23187 or to KCI. The results show that parvalbumin-transfected PCC7 cells had much better calcium buffering...

  2. Inducement of radionuclides targeting therapy by gene transfection

    International Nuclear Information System (INIS)

    Luo Quanyong

    2001-01-01

    The author presents an overview of gene transfection methods to genetically induce tumor cells to express enhanced levels of cell surface antigens and receptors to intake radiolabeled antibody and peptide targeting and thus increase their therapeutic effect in radiotherapy. The current research include inducement of radioimmunotherapy through CEA gene transfection, inducement of iodine-131 therapy by sodium iodide symporter gene transfection and inducement of MIBG therapy by noradrenaline transporter gene transfection. These studies raise the prospect that gene-therapy techniques could be used to enable the treatment of a wide range of tumors with radiopharmaceuticals of established clinical acceptability

  3. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    Abstract. In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage. PMID:25069006

  4. Immobilization of gold nanoparticles on cell culture surfaces for safe and enhanced gold nanoparticle-mediated laser transfection.

    Science.gov (United States)

    Kalies, Stefan; Heinemann, Dag; Schomaker, Markus; Gentemann, Lara; Meyer, Heiko; Ripken, Tammo

    2014-01-01

    In comparison to standard transfection methods, gold nanoparticle-mediated laser transfection has proven to be a versatile alternative. This is based on its minor influence on cell viability and its high efficiency, especially for the delivery of small molecules like small interfering RNA. However, in order to transfer it to routine usage, a safety aspect is of major concern: The avoidance of nanoparticle uptake by the cells is desired. The immobilization of the gold nanoparticles on cell culture surfaces can address this issue. In this study, we achieved this by silanization of the appropriate surfaces and the binding of gold nanoparticles to them. Comparable perforation efficiencies to the previous approaches of gold nanoparticle-mediated laser transfection with free gold nanoparticles are demonstrated. The uptake of the immobilized particles by the cells is unlikely. Consequently, these investigations offer the possibility of bringing gold nanoparticle-mediated laser transfection closer to routine usage.

  5. Expressão do complexo de histocompatilidade principal de classe I (MHC I no sistema nervoso central: plasticidade sináptica e regeneração Expresión del complejo principal de histocompatibilidad de clase I (MHC I en el sistema nervioso central: plasticidad sináptica y regeneración Expression of class I major histocompatibility complex (MHC I in the central nervous system: role in synaptic plasticity and regeneration

    Directory of Open Access Journals (Sweden)

    Renata Graciele Zanon

    2010-06-01

    consecuencia, con la recuperación funcional. Por consiguiente, estos nuevos aspectos sobre la función del MHC I en el SNC orientan nuevas investigaciones con miras a entender el papel del MHC I en las enfermedades neurológicas y a desarrollar nuevas estrategias terapéuticas.It has been recently demonstrated that the major histocompatibility complex of class I (MHC I expressed in the central nervous system (CNS does not only function as a molecule of the immune system, but also plays a role in the synaptic plasticity. The expression of MHC I influences the intensity and selectivity of elimination of synapses apposed to neurons that were subjected to lesion, besides influencing the reactivity of neighboring glial cells. MHC I expression and the degree of synaptic rearrangement and glial response after injury correlate with differences in the regenerative potential and functional recovery of isogenic mice strains. In this way, the new aspects regarding MHC I functions in the CNS may guide further studies aiming at searching the involvement of MCH I in neurologic disorders, as well as the development of new therapeutic strategies.

  6. [Comparison of efficiency and cytotoxicity of different transfection reagents in transfecting RIP140-siRNA into Kupffer cells].

    Science.gov (United States)

    Li, Ji; Liu, Zuojin

    2015-12-01

    To compare the efficiency and cytotoxicity of different transfection reagents used in transfection of RIP140-siRNA into Kupffer cells to optimize the transfection conditions. Kupffer cells were transfected with RIP140-siRNA labeled with GFP as the reporter gene using lipofectamine 2000, Roche reagent (X-treme GENE siRNA Transfection Reagent) and puro screening lentivirus (1.0×10(8) TU/mL) as the transfection reagents. The transfection effect was observed under a fluorescent inverted microscope, and laser scanning confocal microscopy was used to analyze RIP140 expression in trasnfected Kupffer cells. Flow cytometry was performed to detect cell apoptosis, and CCK-8 test was used to evaluate the cell proliferation inhibition. RT-RCR and Western blotting were performed to detect the expressions of RIP140 mRNA and protein in the trasnfected cells. Puro screening lentivirus yielded the highest cell transfection efficiency, which exceeded 90%, followed by Roche reagent and then by lipofectamine 2000. Flow cytometry and CCK-8 test showed that the cytotoxicity was the mildest with Roche reagent, moderate with lentivirus, and severe with lipofectamine 2000. The cells trasnfected with lentivirus showed a significantly lower RIP140 expression than cells trasnfected with lipofectamine 2000 and Roche reagent (Ptransfection, as compared with the other two trasnfection reagents, can achieve good transfection efficiency with a relativelty low cytotoxicity, and allows for better controllability and stability of the trasnfectiion conditions.

  7. Improved transfection of HUVEC and MEF cells using DNA ...

    Indian Academy of Sciences (India)

    Cells such as mouse embryonic fibroblasts (MEFs) and human umbilical vein endothelial cells (HUVECs) used in stem cell research and endothelial cell physiology and pathology studies are difficult to transfect using 'standard' nonviral transfection methods. We have developed a novel gene delivery technique, which uses ...

  8. Correlation between cationic lipid-based transfection and cell division

    Energy Technology Data Exchange (ETDEWEB)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael, E-mail: michael@elbaum.ac.il

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24 h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. - Highlights: • Cationic lipid-based transfection supports protein expression without cell division. • Protein expression is unrelated to cell cycle status at the time of transfection. • Time-lapse imaging provides direct evaluation without statistical averaging. • Lipoplex dissociation is a likely target for improvement of transfection efficiency.

  9. Correlation between cationic lipid-based transfection and cell division.

    Science.gov (United States)

    Kirchenbuechler, Inka; Kirchenbuechler, David; Elbaum, Michael

    2016-07-01

    We evaluate the temporal relation between protein expression by cationic lipid-mediated transfection and cell division using time lapse fluorescence microscopy. Detailed image analysis provides new insights on the single cell level while simultaneously achieving appropriate statistics. Earlier evidence by less direct methods such as flow cytometry indicates a primary route for transfection involving nuclear envelope breakdown, but also suggests the existence of a pathway independent of mitosis. We confirm and quantify both mechanisms. We found the timing for successful transfection to be unexpectedly flexible, contrary to assertions of a narrow time window. Specifically, cells dividing more than 24h after exposure to the transfection medium express the probed protein at a comparable level to cells in a mitotic state during or shortly after transfection. This finding can have a profound impact on the guidance and development of non-viral gene delivery materials. Copyright © 2016. Published by Elsevier Inc.

  10. Highly efficient transfection of human THP-1 macrophages by nucleofection.

    Science.gov (United States)

    Maeß, Marten B; Wittig, Berith; Lorkowski, Stefan

    2014-09-02

    Macrophages, as key players of the innate immune response, are at the focus of research dealing with tissue homeostasis or various pathologies. Transfection with siRNA and plasmid DNA is an efficient tool for studying their function, but transfection of macrophages is not a trivial matter. Although many different approaches for transfection of eukaryotic cells are available, only few allow reliable and efficient transfection of macrophages, but reduced cell vitality and severely altered cell behavior like diminished capability for differentiation or polarization are frequently observed. Therefore a transfection protocol is required that is capable of transferring siRNA and plasmid DNA into macrophages without causing serious side-effects thus allowing the investigation of the effect of the siRNA or plasmid in the context of normal cell behavior. The protocol presented here provides a method for reliably and efficiently transfecting human THP-1 macrophages and monocytes with high cell vitality, high transfection efficiency, and minimal effects on cell behavior. This approach is based on Nucleofection and the protocol has been optimized to maintain maximum capability for cell activation after transfection. The protocol is adequate for adherent cells after detachment as well as cells in suspension, and can be used for small to medium sample numbers. Thus, the method presented is useful for investigating gene regulatory effects during macrophage differentiation and polarization. Apart from presenting results characterizing macrophages transfected according to this protocol in comparison to an alternative chemical method, the impact of cell culture medium selection after transfection on cell behavior is also discussed. The presented data indicate the importance of validating the selection for different experimental settings.

  11. Transfection of isolated rainbow trout, Oncorhynchus mykiss, granulosa cells through chemical transfection and electroporation at 12°C.

    Science.gov (United States)

    Marivin, E; Mourot, B; Loyer, P; Rime, H; Bobe, J; Fostier, A

    2015-09-15

    Over-expression or inhibition of gene expression can be efficiently used to analyse the functions and/or regulation of target genes. Modulation of gene expression can be achieved through transfection of exogenous nucleic acids into target cells. Such techniques require the development of specific protocols to transfect cell cultures with nucleic acids. The aim of this study was to develop a method of transfection suitable for rainbow trout granulosa cells in primary culture. After the isolation of rainbow trout granulosa cells, chemical transfection of cells with a fluorescent morpholino oligonucleotide (MO) was tested using FuGENE HD at 12 °C. Electroporation was also employed to transfect these cells with either a plasmid or MO. Transfection was more efficient using electroporation (with the following settings: 1200 V/40 ms/1p) than chemical transfection, but electroporation by itself was deleterious, resulting in a decrease of the steroidogenic capacity of the cells, measured via estradiol production from its androgenic substrate. The disturbance of cell biology induced by the transfection method per se should be taken into account in data interpretation when investigating the effects of under- or over-expression of candidate genes. Copyright © 2015 Elsevier Inc. All rights reserved.

  12. Transfection of Bacillus subtilis protoplasts by bacteriophage phi do7 DNA.

    OpenAIRE

    Perkins, J B; Dean, D H

    1983-01-01

    DNA from the Bacillus subtilis temperate bacteriophage phi do7 was found to efficiently transfect B. subtilis protoplasts; protoplast transfection was more efficient than competent cell transfection by a magnitude of 10(3). Unlike competent cell transfection, protoplast transfection did not require primary recombination, suggesting that phi do7 DNA enters the protoplast as double-stranded molecules.

  13. Acoustic Liquid Handling for Rapid siRNA Transfection Optimization.

    Science.gov (United States)

    Xiao, Andrew S; Lightcap, Eric S; Bouck, David C

    2015-09-01

    Gene knockdown by small interfering RNA (siRNA) has been used extensively to investigate the function of genes in targeted and genome-wide studies. One of the primary challenges of siRNA studies of any scale is to achieve sufficient gene knockdown to produce the biological changes that lead to measurable phenotypes. Reverse, lipid-based transfection efficiency minimally requires the optimization of the following parameters: cell number, knockdown duration, siRNA oligonucleotide concentration, type/brand of transfection lipid, and transfection lipid concentration. In this study, we describe a methodology to utilize the flexibility and low-volume range of the Echo acoustic liquid handler to rapidly screen a matrix of transfection conditions. The matrix includes six different transfection lipids from three separate vendors across a broad range of concentrations. Our results validate acoustic liquid transfer for the delivery of siRNAs and transfection reagents. Finally, this methodology is applied to rapidly optimize transfection conditions across many tissue culture cell lines derived from various originating tissues. © 2015 Society for Laboratory Automation and Screening.

  14. Enhancement of DNA-transfection frequency by X-rays

    International Nuclear Information System (INIS)

    Iwamoto, Ryota; Fushimi, Kazuo; Hiraki, Yoshio; Namba, Masayoshi

    1997-01-01

    This study was conducted to evaluate the frequency of DNA transfection into human cells following X-ray irradiation. We transfected plasmid DNA (pSV2neo) into human cells, HeLa and PA-1, by either calcium phosphate precipitation or the lipofection method immediately after irradiating the cells with various doses of X-rays. The transfection frequency was evaluated by counting the number of G418-resistant colonies. When circular plasmid DNA was used, irradiation up to a dose of 2 Gy dose-dependently increased the transfection frequency, which reached a maximum of 5 to 10-fold that of the control unirradiated cells. When linear plasmid DNA was used, the transfection frequency was 2 times higher than that of circular DNA. All five of the clones that were randomly chosen expressed the transfected neo gene. In addition, the pSV2neo gene was randomly integrated into the genomic DNA of each clone. These findings indicate that X-ray treatment can facilitate foreign DNA transfer into human cells and that radiation-induced DNA breaks may promote the insertion of foreign DNA into host DNA. The enhancement of DNA transfection with X-rays may be instrumental in practicing gene therapy. (author)

  15. Infectious alphavirus production from a simple plasmid transfection+

    Directory of Open Access Journals (Sweden)

    Olson Ken E

    2011-07-01

    Full Text Available Abstract We have developed a new method for producing infectious double subgenomic alphaviruses from plasmids transfected into mammalian cells. A double subgenomic Sindbis virus (TE3'2J was transcribed from a cytomegalovirus PolII promoter, which results in the production of infectious virus. Transfection of as little as 125 ng of plasmid is able to produce 1 × 108 plaque forming units/ml (PFU/ml of infectious virus 48 hours post-transfection. This system represents a more efficient method for producing recombinant Sindbis viruses.

  16. Manipulation of lipoplex concentration at the cell surface boosts transfection efficiency in hard-to-transfect cells.

    Science.gov (United States)

    Palchetti, Sara; Pozzi, Daniela; Marchini, Cristina; Amici, Augusto; Andreani, Cristina; Bartolacci, Caterina; Digiacomo, Luca; Gambini, Valentina; Cardarelli, Francesco; Di Rienzo, Carmine; Peruzzi, Giovanna; Amenitsch, Heinz; Palermo, Rocco; Screpanti, Isabella; Caracciolo, Giulio

    2017-02-01

    To date, efficiency upon non-viral DNA delivery remains low and this implies the existence of unidentified transfection barriers. Here we explore the mechanisms of action of multicomponent (MC) cationic liposome/DNA complexes (lipoplexes) by a combination of reporter technologies, dynamic light scattering (DLS), synchrotron small angle X-ray scattering (SAXS), fluorescence activated cell sorting (FACS) analysis and laser scanning confocal microscopy (LSCM) in live cells. Lipofectamine - the gold standard among transfection reagents - was used as a reference. On the basis of our results, we suggest that an additional transfection barrier impairs transfection efficiency, that is: low lipoplex concentration at the cell surface. Based on the acquired knowledge we propose an optimized transfection protocol that allowed us to efficiently transfect DND41, JURKAT, MOLT3, P12-ICHIKAWA, ALL-SILL, TALL-1 human T-cell acute lymphoblastic leukemia (T-ALL) cell lines known to be difficult-to-transfect by using non-viral vectors and where LFN-based technologies fail to give satisfactory results. Copyright © 2016 Elsevier Inc. All rights reserved.

  17. Gene therapy of transplant arteriopathy by liposome-mediated transfection of endothelial nitric oxide synthase.

    Science.gov (United States)

    Iwata, A; Sai, S; Moore, M; Nyhuis, J; de Fries-Hallstrand, R; Quetingco, G C; Allen, M D

    2000-11-01

    Transplant arteriopathy is the major factor limiting long-term survival after cardiac transplantation. We have previously demonstrated that liposome-mediated gene delivery of endothelial nitric oxide synthase (eNOS) to donor hearts reduces ischemia-reperfusion injury by blocking NFkappaB activation, adhesion molecule expression, and leukocyte infiltration. In this study, we used gene transfer of eNOS in a rabbit carotid transplant model to see whether these same effects would similarly ameliorate transplant arteriopathy. Liposomes complexed to the gene encoding eNOS were injected into donor carotid arterial segments that were transplanted orthotopically into recipient carotid arteries (n = 10). Controls included transplanted carotids transfected with liposomes complexed to empty plasmids (no functional gene) (n = 4) and transplanted carotids treated with saline (n = 6). Transplanted arteries were harvested for processing at 21 days. Intima/media (I/M) area ratios were calculated by computerized image analysis. Infiltrating T-lymphocytes and macrophages, and expression of VCAM-1 and ICAM-1 were quantified on immunocytochemistry. The I/M ratio was significantly reduced in eNOS-transfected arteries compared with arteries transfected with empty plasmids and saline-treated controls. Compared to transplanted control arteries, eNOS-transfected arteries demonstrated significantly reduced T-cell infiltration into the intima and significantly reduced macrophage infiltration into the media. Cell surface expression of VCAM-1 and ICAM-1 were both reduced in eNOS-transfected arteries. ENOS gene delivery can suppress neointimal lesion formation and T-lymphocyte and macrophage infiltration in transplanted arteries, associated with a reduction in relevant adhesion molecule expression. Thus, gene therapy with eNOS may not only reduce ischemia-reperfusion injury but may also ameliorate transplant arteriopathy in transplanted hearts.

  18. Nucleic acid transfection and transgenesis in parasitic nematodes.

    Science.gov (United States)

    Lok, James B

    2012-04-01

    Transgenesis is an essential tool for assessing gene function in any organism, and it is especially crucial for parasitic nematodes given the dwindling armamentarium of effective anthelmintics and the consequent need to validate essential molecular targets for new drugs and vaccines. Two of the major routes of gene delivery evaluated to date in parasitic nematodes, bombardment with DNA-coated microparticles and intragonadal microinjection of DNA constructs, draw upon experience with the free-living nematode Caenorhabditis elegans. Bombardment has been used to transiently transfect Ascaris suum, Brugia malayi and Litomosoides sigmodontis with both RNA and DNA. Microinjection has been used to achieve heritable transgenesis in Strongyloides stercoralis, S. ratti and Parastrongyloides trichosuri and for additional transient expression studies in B. malayi. A third route of gene delivery revisits a classic method involving DNA transfer facilitated by calcium-mediated permeabilization of recipient cells in developing B. malayi larvae and results in transgene inheritance through host and vector passage. Assembly of microinjected transgenes into multi-copy episomal arrays likely results in their transcriptional silencing in some parasitic nematodes. Methods such as transposon-mediated transgenesis that favour low-copy number chromosomal integration may remedy this impediment to establishing stable transgenic lines. In the future, stable transgenesis in parasitic nematodes could enable loss-of-function approaches by insertional mutagenesis, in situ expression of inhibitory double-stranded RNA or boosting RNAi susceptibility through heterologous expression of dsRNA processing and transport proteins.

  19. DyNAvectors: dynamic constitutional vectors for adaptive DNA transfection.

    Science.gov (United States)

    Clima, Lilia; Peptanariu, Dragos; Pinteala, Mariana; Salic, Adrian; Barboiu, Mihail

    2015-12-25

    Dynamic constitutional frameworks, based on squalene, PEG and PEI components, reversibly connected to core centers, allow the efficient identification of adaptive vectors for good DNA transfection efficiency and are well tolerated by mammalian cells.

  20. Optical sorting and photo-transfection of mammalian cells

    CSIR Research Space (South Africa)

    Mthunzi, P

    2010-02-01

    Full Text Available ), embryonic kidney, Chinese hamster ovary as well as pluripotent stem cells using a tightly focused titanium sapphire femtosecond pulsed laser beam spot. These investigations permitted advanced biological studies in femtosecond laser transfection: firstly...

  1. Isolation of antigenic substances from HIV-1 envelope gp160 gene transfectants by mild acid elution and X-irradiation treatment. For the development of CTL-based immunotherapy

    International Nuclear Information System (INIS)

    Fujimoto, Chiaki; Nakagawa, Yohko; Shimizu, Masumi; Ohara, Kunitoshi; Takahashi, Hidemi

    2003-01-01

    Cytotoxic T lymphocytes (CTLs) play a central role in a broad spectrum of tumor immunity. Such CTLs generally recognize processed antigenic fragments in association with class I major histocompatibility complex (MHC) molecules. Thus, it is important to identify naturally processed antigens associated with class I MHC molecules to generate and activate antigen-specific CTLs. Those processed antigens fitted in the groove of class I MHC molecules are fixed by the β2-microglobulin. Mild acid elution is one method used to isolate antigenic fragments from class I MHC molecules on tumor cells by unfastening a clasp of β2-microglobulin, a critical component for stabilizing class I MHC molecules on the cell surface. Indeed, after the mild acid treatment, the expression of class I MHC molecules was temporarily down-modulated and a strong antigenic fraction for CTL recognition was obtained. To our surprise, such down-modulation of class I MHC molecule expression was also observed when the tumor cells were irradiated. Therefore, using human immunodeficiency virus type I (HIV-1) gp160 env gene transfectants, we examined the effect of X-irradiation on releasing the loaded antigenic fragments. Functional extracts were obtained from X-irradiated cell supernatants that sensitized syngeneic fibroblasts for specific CTL recognition, suggesting that X-irradiation extracts would also contain known antigenic epitopes. These results indicate that, in addition to the conventional mild acid elution treatment, X-irradiation method shown in this paper may provide a new approach for CTL-based vaccine development via isolating antigenic molecules from various tumors or virally infected cells. (author)

  2. Design of pH-sensitive peptides from natural antimicrobial peptides for enhancing polyethylenimine-mediated gene transfection.

    Science.gov (United States)

    Zhang, Shi-Kun; Song, Jin-Wen; Li, Su-Bo; Gao, Hong-Wei; Chang, Hong-Yu; Jia, Li-Li; Gong, Feng; Tan, Ying-Xia; Ji, Shou-Ping

    2017-05-01

    Poor endosomal release is a major barrier of polyplex-mediated gene transfection. Antimicrobial peptides (AMPs) are commonly used to improve polyethylenimine (PEI)-mediated gene transfection by increasing endosomal release. In the present study, we designed novel pH-sensitive peptides that highly enhance transfection efficiency compared to their parent peptides. Two analogues of melittin (Mel) and RV-23 (RV) were synthesized by replacing the positively-charged residues in their sequences with glutamic acid residues. The pH-sensitive lysis ability of the peptides, the effect of the peptides on physicochemical characteristics, the intracellular trafficking, the transfection efficiency, and the cytotoxicity of the polyplexes were determined. The acidic peptides showed pH-sensitive lytic activity. The hemolytic activity of acidic peptides at pH 5.0 was higher than that at pH 7.4. The incorporation of acidic peptides did not affect the DNA binding ability of PEI but affected the physicochemical characteristics of the PEI/DNA polyplexes, which may be beneficial for endosomal release and gene transfection. The incorporation of acidic peptides into PEI/DNA polyplexes enhanced the PEI-mediated transfection efficiency corresponding to up to 42-fold higher luciferase activity compared to that of PEI alone. The results of the present study indicate that replacement of positively-charged residues with glutamic acid residues in the AMP sequence yields pH-sensitive peptides, which enhance the transfection efficiency of PEI/DNA polyplexes in various cell lines. Copyright © 2017 John Wiley & Sons, Ltd.

  3. Poly(β-Amino Ester)-Nanoparticle Mediated Transfection of Retinal Pigment Epithelial Cells In Vitro and In Vivo

    Science.gov (United States)

    Bhutto, Imran; Handa, James T.; Green, Jordan J.

    2012-01-01

    A variety of genetic diseases in the retina, including retinitis pigmentosa and leber congenital amaurosis, might be excellent targets for gene delivery as treatment. A major challenge in non-viral gene delivery remains finding a safe and effective delivery system. Poly(beta-amino ester)s (PBAEs) have shown great potential as gene delivery reagents because they are easily synthesized and they transfect a wide variety of cell types with high efficacy in vitro. We synthesized a combinatorial library of PBAEs and evaluated them for transfection efficacy and toxicity in retinal pigment epithelial (ARPE-19) cells to identify lead polymer structures and transfection formulations. Our optimal polymer (B5-S5-E7 at 60 w/w polymer∶DNA ratio) transfected ARPE-19 cells with 44±5% transfection efficacy, significantly higher than with optimized formulations of leading commercially available reagents Lipofectamine 2000 (26±7%) and X-tremeGENE HP DNA (22±6%); (ptransfection efficacy. This high non-viral efficacy was achieved with comparable cytotoxicity (23±6%) to controls; optimized formulations of Lipofectamine 2000 and X-tremeGENE HP DNA showed 15±3% and 32±9% toxicity respectively (p>0.05 for both). Our optimal polymer was also significantly better than a gold standard polymeric transfection reagent, branched 25 kDa polyethyleneimine (PEI), which achieved only 8±1% transfection efficacy with 25±6% cytotoxicity. Subretinal injections using lyophilized GFP-PBAE nanoparticles resulted in 1.1±1×103-fold and 1.5±0.7×103-fold increased GFP expression in the retinal pigment epithelium (RPE)/choroid and neural retina respectively, compared to injection of DNA alone (p = 0.003 for RPE/choroid, ptransfection of the RPE in vivo suggests that these nanoparticles could be used to study a number of genetic diseases in the laboratory with the potential to treat debilitating eye diseases. PMID:22629417

  4. Examining the evidence for major histocompatibility complex-dependent mate selection in humans and nonhuman primates

    Czech Academy of Sciences Publication Activity Database

    Winternitz, Jamie Caroline; Abbate, J. L.

    2015-01-01

    Roč. 6, 13 May (2015), s. 73-88 ISSN 1179-7274 R&D Projects: GA MŠk(CZ) EE2.3.30.0048 Institutional support : RVO:67985939 Keywords : secual selection * olfaction * facial attraction * inbreeding avoidance * parasite resistance Subject RIV: EB - Genetics ; Molecular Biology OBOR OECD: Genetics and heredity (medical genetics to be 3)

  5. Allelic Diversity of Major Histocompatibility Complex Class II DRB Gene in Indian Cattle and Buffalo

    Directory of Open Access Journals (Sweden)

    Sachinandan De

    2011-01-01

    Full Text Available The present study was conducted to study the diversity of MHC-DRB3 alleles in Indian cattle and buffalo breeds. Previously reported BoLA-DRB exon 2 alleles of Indian Zebu cattle, Bos taurus cattle, buffalo, sheep, and goats were analyzed for the identities and divergence among various allele sequences. Comparison of predicted amino acid residues of DRB3 exon 2 alleles with similar alleles from other ruminants revealed considerable congruence in amino acid substitution pattern. These alleles showed a high degree of nucleotide and amino acid polymorphism at positions forming peptide-binding regions. A higher rate of nonsynonymous substitution was detected at the peptide-binding regions, indicating that BoLA-DRB3 allelic sequence evolution was driven by positive selection.

  6. The great diversity of major histocompatibility complex class II genes in Philippine native cattle.

    Science.gov (United States)

    Takeshima, S N; Miyasaka, T; Polat, M; Kikuya, M; Matsumoto, Y; Mingala, C N; Villanueva, M A; Salces, A J; Onuma, M; Aida, Y

    2014-12-01

    Bovine leukocyte antigens (BoLA) are extensively used as markers for bovine disease and immunological traits. However, none of the BoLA genes in Southeast Asian breeds have been characterized by polymerase chain reaction (PCR)-sequence-based typing (SBT). Therefore, we sequenced exon 2 of the BoLA class II DRB3 gene from 1120 individual cows belonging to the Holstein, Sahiwal, Simbrah, Jersey, Brahman, and Philippine native breeds using PCR-SBT. Several cross-breeds were also examined. BoLA-DRB3 PCR-SBT identified 78 previously reported alleles and five novel alleles. The number of BoLA-DRB3 alleles identified in each breed from the Philippines was higher (71 in Philippine native cattle, 58 in Brahman, 46 in Holstein × Sahiwal, and 57 in Philippine native × Brahman) than that identified in breeds from other countries (e.g., 23 alleles in Japanese Black and 35 in Bolivian Yacumeño cattle). A phylogenetic tree based on the DA distance calculated from the BoLA-DRB3 allele frequency showed that Philippine native cattle from different Philippine islands are closely related, and all of them are closely similar to Philippine Brahman cattle but not to native Japanese and Latin American breeds. Furthermore, the BoLA-DRB3 allele frequency in Philippine native cattle from Luzon Island, located in the Northern Philippines was different from that in cattle from Iloilo, Bohol, and Leyte Islands, which are located in the Southern Philippines. Therefore, we conclude that Philippine native cattle can be divided into two populations, North and South areas. Moreover, a neutrality test revealed that Philippine native cattle from Leyte showed significantly greater genetic diversity, which may be maintained by balancing selection. This study shows that Asian breeds have high levels of BoLA-DRB3 polymorphism. This finding, especially the identification of five novel BoLA-DRB3 alleles, will be helpful for future SBT studies of BoLA-DRB3 alleles in East Asian cattle.

  7. Expression of Major histocompatibility complex genes in carp (Cyprinus carpio L.)

    NARCIS (Netherlands)

    Rodrigues, P.N.S.

    1996-01-01


    The common carp ( Cyprinus carpio L.) has been the experimental animal of choice because many features of the immune system of this Cyprinid fish have been well characterized. The immune system consists of an integrated set of organs containing

  8. SCIMP, a transmembrane adaptor protein involved in major histocompatibility complex class II signaling

    Czech Academy of Sciences Publication Activity Database

    Dráber, Peter; Vonková, Ivana; Štěpánek, Ondřej; Hrdinka, Matouš; Kucová, Markéta; Skopcová, Tereza; Otáhal, Pavel; Angelisová, Pavla; Hořejší, Václav; Yeung, M.; Weiss, A.; Brdička, Tomáš

    2011-01-01

    Roč. 31, č. 22 (2011), s. 4550-4562 ISSN 0270-7306 R&D Projects: GA MŠk 1M0506; GA ČR GEMEM/09/E011 Institutional research plan: CEZ:AV0Z50520514 Keywords : SCIMP * transmembrane adaptor protein * MHC II Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 5.527, year: 2011

  9. Restriction fragment length polymorphism within the class I gene loci of the equine major histocompatibility complex

    International Nuclear Information System (INIS)

    Alexander, A.J.; Bailey, E.; Woodward, J.G.

    1986-01-01

    Fourteen standard bred horses were serotyped as homozygous for 1 of 6 Equine Leukocyte Antigen (ELA) specificities. DNA was purified from peripheral leukocytes and digested with Hind III or Pvu II. Southern blot hybridization analysis was carried out using a 32 P-labeled mouse cDNA probe (PH2IIa) specific for class I MHC genes. Both enzymes generated blots that contained a large number of bands (23 to 30) per horse. Significant polymorphism existed among most fragment sizes, while a dozen highly conserved band sizes suggested the presence of Qa/tla - like genes. Only 2 animals (both W6's) showed identical band patterns. Polymorphism was greatest between horses of different serotypes and was significantly decreased within serotypes. Unique bands were present on both blots for both W1's and W6's and may account for the serologic specificity seen in ELA W1 and W6 horses. This study is consistent with the findings in other higher vertebrates and implies that the MHC of the horse includes a highly polymorphic class I multigene family

  10. Expression of rat class I major histocompatibility complex (MHC) alloantigens and hepatocytes and hepatoma cells

    International Nuclear Information System (INIS)

    Hunt, J.M.; Desai, P.A.; Chakraborty, S.

    1986-01-01

    Altered expression of Class I MHC alloantigens has been reported for murine tumors, and may be associated with the tumorigenic phenotype of tumor cells. To characterize MHC Class I alloantigen expression on a chemically-induced transplantable rat hepatoma cell line, 17X, derived from a (WF x F344) F 1 rat, polyvalent anti-F344 and anti-WF rat alloantisera were first used to immunoprecipitate the rat RT1.A Class I MHC alloantigens expressed on primary (WF x F344) F 1 hepatocyptes in short-term monolayer cultures. Two-dimensional isoelectric focusing and SDS-PAGE of immunoprecipitates from 35 S-methionine-labeled (WF x F344) F 1 hepatocytes clearly resolved the RT1.A/sup u/ (WF) and RT1.A/sup LvI/ (F344) parental alloantigens. Identical radiolabeling and immunoprecipitation failed to detect either parental alloantigen on the 17X hepatoma cells. However, indirect immunofluorescence and immunoblot analyses demonstrated the presence of parental alloantigens on the 17X cells. Immunization of F344 rats but not of WF rats with 17X cells resulted in antibodies cytotoxic for normal (WF X F344) F 1 spleen cells in the presence of complement. These findings indicate that a combination of detection techniques will be necessary to characterize altered alloantigen expression on rat hepatoma cells

  11. Expression of ras oncogene and major histocompatibility complex (MHC) antigen in carcinomas of the uterine cervix

    International Nuclear Information System (INIS)

    Cho, Kyung Ja; Jang, Ja June; Kim, Yong Dae; Ha, Chang Won; Koh, Jae Soo

    1993-01-01

    Consecutive 50 cases of squamous cell carcinomas of the uterine cervix diagnosed in 1992 were subjected to immunohistochemical study for ras oncogene product (p21) and MHC class II (DR) antigen using a microprobe immunostainer. Activated ras and aberrant DR expression were noted in 26 cases (52%) and 11 cases (22%) of cervical squamous cell carcinomas, respectively, without difference among histologic types. The reaction was mainly intracytoplasmic, with granular staining pattern and diffuse distribution. No direct histologic correlation between ras and DR expression was found. Four cases with HPV 16/18 DNA in superficial koilocytotic cells, revealed by in situ hybridization, showed various expression of ras and DR, and these 3 factors histologically did not seem to be affected one another. (Author)

  12. The outermost N-terminal region of tapasin facilitates folding of major histocompatibility complex class I

    DEFF Research Database (Denmark)

    Røder, Gustav Andreas; Geironson, Linda; Darabi, Anna

    2009-01-01

    ). Using a biochemical peptide-MHC-I-binding assay, recombinant Tpn(1-87) was found to specifically facilitate peptide-dependent folding of HLA-A*0201. Furthermore, we used Tpn(1-87) to generate a monoclonal antibody, alphaTpn(1-87)/80, specific for natural human Tpn and capable of cellular staining of ER......Tapasin (Tpn) is an ER chaperone that is uniquely dedicated to MHC-I biosynthesis. It binds MHC-I molecules, integrates them into peptide-loading complexes, and exerts quality control of the bound peptides; only when an "optimal peptide" is bound will the MHC-I be released and exported to the cell...... surface for presentation to T cells. The exact mechanisms of Tpn quality control and the criteria for being an optimal peptide are still unknown. Here, we have generated a recombinant fragment of human Tpn, Tpn(1-87) (representing the 87 N-terminal and ER-luminal amino acids of the mature Tpn protein...

  13. Conditional analysis identifies three novel major histocompatibility complex loci associated with psoriasis

    NARCIS (Netherlands)

    Knight, J.; Spain, S.L.; Capon, F.; Hayday, A.; Nestle, F.O.; Clop, A.; Barker, J.N.; Weale, M.E.; Trembath, R.C.; Donnelly, P.; Bergboer, J.G.M.; et al.,

    2012-01-01

    Psoriasis is a common, chronic, inflammatory skin disorder. A number of genetic loci have been shown to confer risk for psoriasis. Collectively, these offer an integrated model for the inherited basis for susceptibility to psoriasis that combines altered skin barrier function together with the

  14. Polarisation of Major Histocompatibility Complex II Host Genotype with Pathogenesis of European Brown Hare Syndrome Virus

    DEFF Research Database (Denmark)

    Iacovakis, Christos; Mamuris, Zissis; Moutou, Katerina A

    2013-01-01

    .9%, respectively). Within the peptide binding region codons the number of nonsynonymous substitutions (dN) was much higher than synonymous substitutions (dS), which would be expected for MHC alleles under balancing selection. Allele frequencies did not significantly differ between EBHSV-positive and -negative...

  15. Antigen-B Cell Receptor Complexes Associate with Intracellular major histocompatibility complex (MHC) Class II Molecules*

    Science.gov (United States)

    Barroso, Margarida; Tucker, Heidi; Drake, Lisa; Nichol, Kathleen; Drake, James R.

    2015-01-01

    Antigen processing and MHC class II-restricted antigen presentation by antigen-presenting cells such as dendritic cells and B cells allows the activation of naïve CD4+ T cells and cognate interactions between B cells and effector CD4+ T cells, respectively. B cells are unique among class II-restricted antigen-presenting cells in that they have a clonally restricted antigen-specific receptor, the B cell receptor (BCR), which allows the cell to recognize and respond to trace amounts of foreign antigen present in a sea of self-antigens. Moreover, engagement of peptide-class II complexes formed via BCR-mediated processing of cognate antigen has been shown to result in a unique pattern of B cell activation. Using a combined biochemical and imaging/FRET approach, we establish that internalized antigen-BCR complexes associate with intracellular class II molecules. We demonstrate that the M1-paired MHC class II conformer, shown previously to be critical for CD4 T cell activation, is incorporated selectively into these complexes and loaded selectively with peptide derived from BCR-internalized cognate antigen. These results demonstrate that, in B cells, internalized antigen-BCR complexes associate with intracellular MHC class II molecules, potentially defining a site of class II peptide acquisition, and reveal a selective role for the M1-paired class II conformer in the presentation of cognate antigen. These findings provide key insights into the molecular mechanisms used by B cells to control the source of peptides charged onto class II molecules, allowing the immune system to mount an antibody response focused on BCR-reactive cognate antigen. PMID:26400081

  16. Selection for immunoresponsiveness in chickens : effects of the major histocompatibility complex and resistance to Marek's disease

    NARCIS (Netherlands)

    Pinard, M.H.

    1992-01-01

    Improving genetic disease resistance may be an attractive preventive measure in the control of infectious diseases in livestock production. Chickens were selected for high and low antibody response to sheep red blood cells for ten generations. Divergent selection was successfully achieved

  17. Defective major histocompatibility complex class I expression on lymphoid cells in autoimmunity.

    OpenAIRE

    Fu, Y; Nathan, D M; Li, F; Li, X; Faustman, D L

    1993-01-01

    Lymphocytes from patients with insulin-dependent diabetes mellitus (IDDM), a chronic autoimmune disease, have recently been shown to have decreased surface expression of MHC class I antigens. Since IDDM and other autoimmune diseases share a strong genetic association with MHC class II genes, which may in turn be linked to genes that affect MHC class I expression, we studied other autoimmune diseases to determine whether MHC class I expression is abnormal. Fresh PBLs were isolated from patient...

  18. Prediction of major histocompatibility complex binding regions of protein antigens by sequence pattern analysis

    DEFF Research Database (Denmark)

    Sette, A; Buus, S; Appella, E

    1989-01-01

    to interact with these MHC class II molecules (IAd and IEd). The accuracy of these procedures has been tested on a large panel of synthetic peptides of eukaryotic, prokaryotic, and viral origin, and also on a set of overlapping peptides encompassing the entire staphylococcal nuclease molecule. For both sets...

  19. Geometry Dynamics of α-Helices in Different Class I Major Histocompatibility Complexes

    Directory of Open Access Journals (Sweden)

    Reiner Ribarics

    2015-01-01

    Full Text Available MHC α-helices form the antigen-binding cleft and are of particular interest for immunological reactions. To monitor these helices in molecular dynamics simulations, we applied a parsimonious fragment-fitting method to trace the axes of the α-helices. Each resulting axis was fitted by polynomials in a least-squares sense and the curvature integral was computed. To find the appropriate polynomial degree, the method was tested on two artificially modelled helices, one performing a bending movement and another a hinge movement. We found that second-order polynomials retrieve predefined parameters of helical motion with minimal relative error. From MD simulations we selected those parts of α-helices that were stable and also close to the TCR/MHC interface. We monitored the curvature integral, generated a ruled surface between the two MHC α-helices, and computed interhelical area and surface torsion, as they changed over time. We found that MHC α-helices undergo rapid but small changes in conformation. The curvature integral of helices proved to be a sensitive measure, which was closely related to changes in shape over time as confirmed by RMSD analysis. We speculate that small changes in the conformation of individual MHC α-helices are part of the intrinsic dynamics induced by engagement with the TCR.

  20. Binding stability of peptides on major histocompatibility complex class I proteins: role of entropy and dynamics

    Science.gov (United States)

    Gul, Ahmet; Erman, Burak

    2018-03-01

    Prediction of peptide binding on specific human leukocyte antigens (HLA) has long been studied with successful results. We herein describe the effects of entropy and dynamics by investigating the binding stabilities of 10 nanopeptides on various HLA Class I alleles using a theoretical model based on molecular dynamics simulations. The fluctuational entropies of the peptides are estimated over a temperature range of 310-460 K. The estimated entropies correlate well with experimental binding affinities of the peptides: peptides that have higher binding affinities have lower entropies compared to non-binders, which have significantly larger entropies. The computation of the entropies is based on a simple model that requires short molecular dynamics trajectories and allows for approximate but rapid determination. The paper draws attention to the long neglected dynamic aspects of peptide binding, and provides a fast computation scheme that allows for rapid scanning of large numbers of peptides on selected HLA antigens, which may be useful in defining the right peptides for personal immunotherapy.

  1. Comparative genomics of the human, macaque and mouse major histocompatibility complex.

    Science.gov (United States)

    Shiina, Takashi; Blancher, Antoine; Inoko, Hidetoshi; Kulski, Jerzy K

    2017-02-01

    The MHC is a highly polymorphic genomic region that encodes the transplantation and immune regulatory molecules. It receives special attention for genetic investigation because of its important role in the regulation of innate and adaptive immune responses and its strong association with numerous infectious and/or autoimmune diseases. The MHC locus was first discovered in the mouse and for the past 50 years it has been studied most intensively in both mice and humans. However, in recent years the macaque species have emerged as some of the more important and advanced experimental animal models for biomedical research into MHC with important human immunodeficiency virus/simian immunodeficiency virus and transplantation studies undertaken in association with precise MHC genotyping and haplotyping methods using Sanger sequencing and next-generation sequencing. Here, in this special issue on 'Macaque Immunology' we provide a short review of the genomic similarities and differences among the human, macaque and mouse MHC class I and class II regions, with an emphasis on the association of the macaque class I region with MHC polymorphism, haplotype structure and function. © 2016 John Wiley & Sons Ltd.

  2. Salmonella infections in the absence of the major histocompatibility complex II

    Science.gov (United States)

    Chapes, S. K.; Beharka, A. A.; Spooner, B. S. (Principal Investigator)

    1998-01-01

    We examined the pathogenesis of the facultative intracellular bacterium, Salmonella typhimurium in MHCII-/-, C2D knock-out mice, and wild-type C57BL/6J mice. The MHCII knock-out shortened the kinetics of animal death and reduced the dose of S. typhimurium needed to kill mice. We measured the physiological and cytokine responses of both mouse strains after S. typhimurium injection. Animal weight loss, spleen weights, liver weights, thymus weights, and serum corticosterone concentrations were comparable after injection with several doses of bacteria. The only physiological differences observed between the two strains were observed 3 days after injection of the highest dose of bacteria tested. Serum concentrations of tumor necrosis factor alpha, interleukin-2, and interleukin-6 increased in a dose-dependent fashion irrespective of mouse MHCII expression. Therefore, even in the absence of MHCII, mice are able to mount relatively normal physiological and immunological responses. Consistent with these normal responses, an increased percentage of MHCII-/- mice, primed with a low dose of bacteria 13 days earlier, were able to survive a lethal challenge of Salmonella compared with unprimed controls. Lastly, C2D mice had significantly higher serum interleukin-10 concentrations than C57BL/6J mice 48 h after infection with all doses of S. typhimurium. C2D macrophages also secreted significantly more IL-10 and less NO and O2- after lipopolysaccharide or phorbol ester stimulation in vitro than wild-type macrophages.

  3. Genetic heterogenicity in the major histocompatibility complex of various BB rat sublines

    DEFF Research Database (Denmark)

    Sørensen, Ilona Kryspin; Dyrberg, T.; Kastern, W.

    1986-01-01

    Fragments of cloned rat class I transplantation antigen genes were used to define the polymorphism detected between two lines of closely related BB rats. One line, BB-Hagedorn (BB/H), is prone to diabetes, and the other (BB control) is resistant. A cDNA probe representing part of the second extra...

  4. Evaluation of the major histocompatibility complex (Mhc) in cranes: applications to conservation efforts

    Science.gov (United States)

    Jarvi, S.I.; Miller, M.M.; Goto, R.M.; Gee, G.F.; Briles, W.E.

    2001-01-01

    Although there have been heated discussions concerning the relative importance of using Mhc diversity as a basis for selecting breeders in conservation projects, most parties agree that the genetic variability residual in an endangered species should be maintained through genetic management, if at all possible. Substantial evidence exists (particularly in birds) documenting the influences of specific Mhc haplotypes on disease outcome and also that those individuals which are heterozygous for Mhc alleles appear to have an advantage for survival over those that are homozygous. Thus, conservation of genetic variability of the Mhc is likely important for the preservation of fitness, especially in small breeding populations. More than half of the world's crane species are listed as endangered. Members of all 15 known species are represented among breeding animals for captive propagation at the International Crane Foundation (Wisconsin) and the USGS Patuxent Wildlife Research Center (Maryland). Collaborative multi-organization efforts and the availability of extensive pedigree records have allowed the study of Mhc variability in several species of cranes. We have found, for example, that Mhc diversity in the captive Florida sandhill crane (Grus canadensis pratensis) population appears high, whereas in the captive whooping crane (Grus americana), which has undergone a severe 'genetic bottleneck,? both the number of alleles and the levels of heterozygosity appear to be substantially reduced.

  5. Human class I major histocompatibility complex alleles determine central nervous system injury versus repair.

    Science.gov (United States)

    Wootla, Bharath; Denic, Aleksandar; Watzlawik, Jens O; Warrington, Arthur E; Zoecklein, Laurie J; Papke-Norton, Louisa M; David, Chella; Rodriguez, Moses

    2016-11-17

    We investigated the role of human HLA class I molecules in persistent central nervous system (CNS) injury versus repair following virus infection of the CNS. Human class I A11 + and B27 + transgenic human beta-2 microglobulin positive (Hβ2m + ) mice of the H-2 b background were generated on a combined class I-deficient (mouse beta-2 microglobulin deficient, β2m 0 ) and class II-deficient (mouse Aβ 0 ) phenotype. Intracranial infection with Theiler's murine encephalomyelitis virus (TMEV) in susceptible SJL mice results in acute encephalitis with prominent injury in the hippocampus, striatum, and cortex. Following infection with TMEV, a picornavirus, the Aβ 0 .β2m 0 mice lacking active immune responses died within 18 to 21 days post-infection. These mice showed severe encephalomyelitis due to rapid replication of the viral genome. In contrast, transgenic Hβ2m mice with insertion of a single human class I MHC gene in the absence of human or mouse class II survived the acute infection. Both A11 + and B27 + mice significantly controlled virus RNA expression by 45 days and did not develop late-onset spinal cord demyelination. By 45 days post-infection (DPI), B27 + transgenic mice showed almost complete repair of the virus-induced brain injury, but A11 + mice conversely showed persistent severe hippocampal and cortical injury. The findings support the hypothesis that the expression of a single human class I MHC molecule, independent of persistent virus infection, influences the extent of sub frequent chronic neuronal injury or repair in the absence of a class II MHC immune response.

  6. Lipopeptides: a novel antigen repertoire presented by major histocompatibility complex class I molecules.

    Science.gov (United States)

    Morita, Daisuke; Sugita, Masahiko

    2016-10-01

    Post-translationally modified peptides, such as those containing either phosphorylated or O-glycosylated serine/threonine residues, may be presented to cytotoxic T lymphocytes (CTLs) by MHC class I molecules. Most of these modified peptides are captured in the MHC class I groove in a similar manner to that for unmodified peptides. N-Myristoylated 5-mer lipopeptides have recently been identified as a novel chemical class of MHC class I-presented antigens. The rhesus classical MHC class I allele, Mamu-B*098, was found to be capable of binding N-myristoylated lipopeptides and presenting them to CTLs. A high-resolution X-ray crystallographic analysis of the Mamu-B*098:lipopeptide complex revealed that the myristic group as well as conserved C-terminal serine residue of the lipopeptide ligand functioned as anchors, whereas the short stretch of three amino acid residues located in the middle of the lipopeptides was only exposed externally with the potential to interact directly with specific T-cell receptors. Therefore, the modes of lipopeptide-ligand interactions with MHC class I and with T-cell receptors are novel and fundamentally distinct from that for MHC class I-presented peptides. Another lipopeptide-presenting MHC class I allele has now been identified, leading us to the prediction that MHC class I molecules may be separated on a functional basis into two groups: one presenting long peptides and the other presenting short lipopeptides. Since the N-myristoylation of viral proteins is often linked to pathogenesis, CTLs capable of sensing N-myristoylation may serve to control pathogenic viruses, raising the possibility for the development of a new type of lipopeptide vaccine. © 2016 John Wiley & Sons Ltd.

  7. Pathogen richness and abundance predict patterns of adaptive major histocompatibility complex variation in insular amphibians.

    Science.gov (United States)

    Wang, Supen; Liu, Conghui; Wilson, Anthony B; Zhao, Na; Li, Xianping; Zhu, Wei; Gao, Xu; Liu, Xuan; Li, Yiming

    2017-09-01

    The identification of the factors responsible for genetic variation and differentiation at adaptive loci can provide important insights into the evolutionary process and is crucial for the effective management of threatened species. We studied the impact of environmental viral richness and abundance on functional diversity and differentiation of the MHC class Ia locus in populations of the black-spotted pond frog (Pelophylax nigromaculatus), an IUCN-listed species, on 24 land-bridge islands of the Zhoushan Archipelago and three nearby mainland sites. We found a high proportion of private MHC alleles in mainland and insular populations, corresponding to 32 distinct functional supertypes, and strong positive selection on MHC antigen-binding sites in all populations. Viral pathogen diversity and abundance were reduced at island sites relative to the mainland, and islands housed distinctive viral communities. Standardized MHC diversity at island sites exceeded that found at neutral microsatellites, and the representation of key functional supertypes was positively correlated with the abundance of specific viruses in the environment (Frog virus 3 and Ambystoma tigrinum virus). These results indicate that pathogen-driven diversifying selection can play an important role in maintaining functionally important MHC variation following island isolation, highlighting the importance of considering functionally important genetic variation and host-pathogen associations in conservation planning and management. © 2017 John Wiley & Sons Ltd.

  8. The influence of major histocompatibility complex and vaccination with turkey herpesvirus on Marek's disease virus evolution

    Science.gov (United States)

    Over the last five decades, the pathogenicity of the Marek’s disease virus (MDV) has evolved from the relatively mild strains (mMDV) observed in the 1960s to the more severe very-virulent-plus strains currently observed in today’s outbreaks. The use of vaccines to control Marek’s disease (MD), but n...

  9. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Science.gov (United States)

    Fouriki, A.; Farrow, N.; Clements, M.A.; Dobson, J.

    2010-01-01

    The objective of this work was to examine the effects of magnet distance (and by proxy, field strength) on nanomagnetic transfection efficiency. Methods non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results Fluorescence intensity (firefly luciferase) of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™. PMID:22110859

  10. Evaluation of the magnetic field requirements for nanomagnetic gene transfection

    Directory of Open Access Journals (Sweden)

    A. Fouriki

    2010-07-01

    Full Text Available The objective of this work was to examine the effects of magnet distance (and by proxy, field strength on nanomagnetic transfection efficiency. Methods: non-viral magnetic nanoparticle-based transfection was evaluated using both static and oscillating magnet arrays. Results: Fluorescence intensity (firefly luciferase of transfected H292 cells showed no increase using a 96-well NdFeB magnet array when the magnets were 5 mm from the cell culture plate or nearer. At 6 mm and higher, fluorescence intensity decreased systematically. Conclusion: In all cases, fluorescence intensity was higher when using an oscillating array compared to a static array. For distances closer than 5 mm, the oscillating system also outperformed Lipofectamine 2000™.

  11. Modulation of microfilament protein composition by transfected cytoskeletal actin genes

    Energy Technology Data Exchange (ETDEWEB)

    Ng, S.Y.; Erba, H.; Latter, G.; Kedes, L.; Leavitt, J.

    1988-04-01

    HuT-14T is a highly tumorigenic fibroblast cell line which exhibits a reduced steady-state level of ..beta..-actin due to coding mutations in one of two ..beta..-actin alleles. The normal rate of total actin synthesis could be restored in some clones of cells following transfection of the functional ..beta..-actin gene but not following transfection of the functional ..gamma..-actin gene. In ..gamma..-actin gene-transfected substrains that have increased rates of ..gamma..-actin synthesis, ..beta..-actin synthesis is further reduced in a manner consistent with an autoregulatory mechanism, resulting in abnormal ratios of actin isoforms. Thus, both ..beta..- and ..gamma..-actin proteins can apparently regulate the synthesis of their coexpressed isoforms. In addition, decreased synthesis of normal ..beta..-actin seems to correlate with a concomitant down-regulation of tropomyosin isoforms.

  12. Reduced repair of non-dimer photoproducts in a gene transfected into xeroderma pigmentosum cells

    International Nuclear Information System (INIS)

    Protic-Sabljic, Miroslava; Kraemer, K.H.

    1986-01-01

    Cells from patients with the sun sensitive cancer-prone disease, xeroderma pigmentosum (XP) have defective repair of UV damaged DNA with reduced excision of the major photoproduct, the cyclobutane type pyrimidine dimer. Other (non-dimer) photoproducts, have recently been implicated in UV mutagenesis. Utilizing an expression vector host cell reactivation assay, UV damaged transfecting DNA that was treated by in vitro photoreactivation to reverse pyrimidine dimers while not altering other photoproducts was studied. It was found that the reduced expression of a UV damaged transfecting plasmid in XP complementation group A cells is only partially reversed by photoreactivation. E. coli photolyase treatment of pSV2catSVgpt exposed to 100 or 200 J m -2 of 254 nm radiation removed 99% of the T4 endonuclease V sensitive sites. Transfection of XP12BE(SV40) cells with photoreactivated pSV2catSVgpt showed residual inhibition corresponding to 25 to 37% of the lethal hits to the cat gene. This residual inhibition corresponds to the fraction of non-dimer photoproducts induced by UV. This result implies that XP12BE(SV40) cells do not repair most of the non-dimer photoproducts in DNA. (author)

  13. Establishment of transient and stable transfection systems for Babesia ovata.

    Science.gov (United States)

    Hakimi, Hassan; Yamagishi, Junya; Kegawa, Yuto; Kaneko, Osamu; Kawazu, Shin-Ichiro; Asada, Masahito

    2016-03-23

    Bovine babesiosis is a tick-borne disease caused by several species of Babesia which produce acute and fatal disease in cattle and affect livestock industry worldwide. Babesia ovata is a benign species widespread in east Asian countries and causes anemia, particularly in cattle which are co-infected with Theileria orientalis. The development of genetic manipulation methods is necessary to improve our understanding of the basic biology of protozoan pathogens toward a better control of disease. Such tools have not been developed for B. ovata, and are the aim of this study. In this study we transfected constructs that were designed to evaluate the ability of several B. ovata promoter candidates to drive expression of a reporter luciferase. We found that the elongation factor-1 alpha intergenic region (ef-1α IG) and the actin 5' non-coding region (NR) had highest promoter activities. To establish a stable transfection system, we generated a plasmid construct in which the ef-1α IG promoter drives gfp expression, and the actin 5' NR mediates expression of the selectable marker hdhfr. The plasmid was designed for episomal transfection, as well as to integrate by double cross-over homologous recombination into the ef-1α locus. Circular or linearized plasmid was transfected by electroporation into in vitro cultured B. ovata and retention of the plasmid was facilitated by drug selection with 5 nM WR99210 initiated 48 h after transfection. After one-week cultivation with WR99210, GFP-expressing parasites were observed by fluorescence microscopy. Integration of the plasmid construct into the ef-1α locus was confirmed by PCR, Southern blot analysis, and sequencing of recombination sites. These results confirm successful development of a stable transfection system for B. ovata. The current study provides a fundamental molecular tool to aid in molecular and cellular studies of B. ovata.

  14. Efficient transfection of MG-63 osteoblasts using magnetic nanoparticles and oscillating magnetic fields.

    Science.gov (United States)

    Fouriki, A; Clements, M A; Farrow, N; Dobson, J

    2014-03-01

    To examine the potential of magnetic nanoparticles (MNPs) in transfecting human osteosarcoma fibroblasts (MG-63) and investigate the effects of a novel non-viral oscillating nanomagnetic gene transfection system (magnefect-nano™) in enhancing transfection efficiency (TE). MG-63 cells were transfected using MNPs coupled with a GFP-carrying plasmid. The magnefect-nano system was evaluated for transfection efficiency and potential associated effects on cell viability. MG-63 cells were efficiently transfected using MNPs and the magnefect-nano system significantly enhanced overall transfection efficiency. MNPs were not found to affect cell viability and/or function of the cells. Non-viral transfection using MNPs and the magnefect-nano system can be used to transfect MG-63 cells and assist reporter gene delivery on a single cell basis, highlighting the wide potential of nanomagnetic gene transfection in gene therapy. Copyright © 2012 John Wiley & Sons, Ltd.

  15. [Expression of human Jagged-1 protein on eukaryotic cells and establishment of stable transfectant cell line].

    Science.gov (United States)

    Gan, Zhi-Hua; Chen, Yu; Yan, Hua; Wang, Kan-Kan

    2010-08-01

    Jagged-1 protein is one of the ligands belonging to Notch signaling pathway. Notch signaling pathway is one of the major signaling pathways mediated by contact between cells and plays an important role to regulate the process of proliferation and differentiation of hematopoietic cells in the hematopoietic microenvironment. To study the biological effect after the combination of receptor and ligand in Notch signaling pathway and the mechanism of Notch signaling pathway in bone marrow stromal cells mediated-drug resistance, a NIH-3T3 cell line over-expressing Jagged-1 protein was constructed for further research purposes. A full coding region of Jagged-1 gene was cloned and inserted into eukaryotic expression plasmid to construct pEGFP-IRES2-Jagged-1 eukaryotic expression vector, then transfected into NIH-3T3 cell line, a mammalian cells. As a result Western blot analysis confirmed that the transfectant NIH-3T3 cells highly expressed Jagged-1 protein and flow cytometry analysis confirmed that the NIH-3T3-pEGFP-IRES2-Jagged-1 cell line over-expressed Jagged-1 protein was monoclonal after screened by selective medium and limiting dilution analysis. It is concluded that the pEGFP-IRES2-Jagged-1 eukaryotic expression vector and a stable transfectant monoclonal NIH-3T3 cell line are successfully established. The construction of the stable transfectant monoclonal NIH-3T3 cell line which overexpressed Jagged-1 protein, provides the conditions to further study the mechanism of the bone marrow stromal cell-mediated drug resistance and to discover the new drug targets.

  16. Cell transfection as a tool to study growth hormone action

    DEFF Research Database (Denmark)

    Norstedt, G; Enberg, B; Francis, S

    1994-01-01

    of cellular function that mimic those of the endogenous GHR. GHR cDNA transfected cells also offer a system where the mechanism of GH action can be studied. Such a system has been used to demonstrate that the GHR itself becomes tyrosine phosphorylated and that further phosphorylation of downstream proteins...... is important in GH action. The GH signals are transmitted to the nucleus and GH regulated genes have now begun to be characterized. The ability to use cell transfection for mechanistic studies of GH action will be instrumental to define domains within the receptor that are of functional importance...

  17. Identification of a Novel UTY‐Encoded Minor Histocompatibility Antigen

    DEFF Research Database (Denmark)

    Mortensen, B. K.; Rasmussen, A. H.; Larsen, Malene Erup

    2012-01-01

    Minor histocompatibility antigens (mHags) encoded by the Y‐chromosome (H‐Y‐mHags) are known to play a pivotal role in allogeneic haematopoietic cell transplantation (HCT) involving female donors and male recipients. We present a new H‐Y‐mHag, YYNAFHWAI (UTY139–147), encoded by the UTY gene...... obtained post‐HCT from male recipients of female donor grafts. In one of these recipients, a CD8+ T cell response was observed against a peptide stretch encoded by the UTY gene. Another bioinformatics tool, HLArestrictor, was used to identify the optimal peptide and HLA‐restriction element. Using peptide....../HLA tetramers, the specificity of the CD8+ T cell response was successfully validated as being HLA‐A*24:02‐restricted and directed against the male UTY139–147 peptide. Functional analysis of these T cells demonstrated male UTY139–147 peptide‐specific cytokine secretion (IFNγ, TNFα and MIP‐1β) and cytotoxic...

  18. The Effect of Environmental pH on Polymeric Transfection Efficiency

    OpenAIRE

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of comple...

  19. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells.

    Science.gov (United States)

    Lee, Kunwoo; Yu, Pengzhi; Lingampalli, Nithya; Kim, Hyun Jin; Tang, Richard; Murthy, Niren

    2015-01-01

    The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT) mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from α-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation.

  20. Transfection of Primary Human Skin Fibroblasts for Peroxisomal Studies

    NARCIS (Netherlands)

    Koster, Janet; Waterham, Hans R.

    2017-01-01

    Functional studies with primary human skin fibroblasts from patients with a peroxisomal disorder often require efficient transfection with plasmids to correct the genetic defect or to express heterologous reporter proteins. Here, we describe a protocol we commonly use for efficient nonviral

  1. [Cashmere goat bacterial artificial chromosome recombination and cell transfection system].

    Science.gov (United States)

    Huang, Tian; Cao, Zhongyang; Yang, Yaohui; Cao, Gengsheng

    2016-03-01

    The Cashmere goat is mainly used to produce cashmere, which is very popular for its delicate fiber, luscious softness and natural excellent warm property. Keratin associated protein (KAP) and bone morphogenetic protein (BMP) of the Cashmere goat play an important role in the proliferation and development of cashmere fiber follicle cells. Bacterial artificial chromosome containing kap6.3, kap8.1 and bmp4 genes were used to increase the production and quality of Cashmere. First, we constructed bacterial artificial chromosomes by homology recombination. Then Tol2 transposon was inserted into bacterial artificial chromosomes that were then transfected into Cashmere goat fibroblasts by Amaxa Nucleofector technology according to the manufacture's instructions. We successfully constructed the BAC-Tol2 vectors containing target genes. Each vector contained egfp report gene with UBC promoter, Neomycin resistant gene for cell screening and two loxp elements for resistance removing after transfected into cells. The bacterial artificial chromosome-Tol2 vectors showed a high efficiency of transfection that can reach 1% to 6% with a highest efficiency of 10%. We also obtained Cashmere goat fibroblasts integrated exogenous genes (kap6.3, kap8.1 and bmp4) preparing for the clone of Cashmere goat in the future. Our research demonstrates that the insertion of Tol2 transposons into bacterial artificial chromosomes improves the transfection efficiency and accuracy of bacterial artificial chromosome error-free recombination.

  2. Optimization of in vitro culture and transfection condition of bovine ...

    African Journals Online (AJOL)

    The present study aimed to optimize the in vitro culture and transfection efficiency of bovine primary spermatogonial stem cells (SSCs). To this end, SSCs were obtained from newborn Holstein bull calves by two-step enzymatic digestion. After enrichment and culture, SSCs were characterized by using alkaline phosphatase ...

  3. D-Glucosamine Promotes Transfection Efficiency during Electroporation

    Directory of Open Access Journals (Sweden)

    Kazunari Igawa

    2014-01-01

    Full Text Available D-Glucosamine is a useful medicament in various fields of medicine and dentistry. With respect to stability of the cell membrane, it has been reported that bradykinin-induced nociceptive responses are significantly suppressed by the direct application of D-glucosamine. Electroporation is usually used to effectively introduce foreign genes into tissue culture cells. Buffers for electroporation with or without D-glucosamine are used in experiments of transfection vectors. This is the first study to indirectly observe the stability and protection of the osteoblast membrane against both electric stress and gene uptake (the proton sponge hypothesis: osmotic rupture during endosomes prior to fusion with lysosomes in electroporation with D-glucosamine application. The transfection efficiency was evaluated as the fluorescence intensity of the transfected green fluorescent protein (GFP in the cultured cells (osteoblasts; NOS-1 cells. The transfection efficiency increased over 30% in the electroporation samples treated with D-glucosamine-supplemented buffer after one day. The membrane absorption of D-glucosamine is the primary mechanism of membrane stress induced by electric stress. This new function of D-glucosamine is useful and meaningful for developing more effective transformation procedures.

  4. cDNA cloning and polymorphic domains of the major ...

    African Journals Online (AJOL)

    Major histocompatibility complex (MHC) is a highly polymorphic gene and plays an important role in immune system for vertebrate. To understand the polymorphism character of domestic, we cloned 32 cDNAs of MHC class I α genes of two local chicken breeds in different areas of China. There were 112 variable amino ...

  5. cDNA cloning and polymorphic domains of the major ...

    African Journals Online (AJOL)

    Jane

    2011-10-24

    Oct 24, 2011 ... Major histocompatibility complex (MHC) is a highly polymorphic gene and plays an important role in immune system for vertebrate. To understand the polymorphism character of domestic, we cloned 32. cDNAs of MHC class I α genes of two local chicken breeds in different areas of China. There were 112.

  6. Peptide-enhanced mRNA transfection in cultured mouse cardiac fibroblasts and direct reprogramming towards cardiomyocyte-like cells

    Directory of Open Access Journals (Sweden)

    Lee K

    2015-03-01

    Full Text Available Kunwoo Lee,1,2 Pengzhi Yu,3 Nithya Lingampalli,1 Hyun Jin Kim,1 Richard Tang,1 Niren Murthy1,2 1Department of Bioengineering, University of California, Berkeley, CA, USA; 2UC Berkeley and UCSF Joint Graduate Program in Bioengineering, Berkeley/San Francisco, CA, USA; 3Gladstone Institute of Cardiovascular Disease, San Francisco, CA, USA Abstract: The treatment of myocardial infarction is a major challenge in medicine due to the inability of heart tissue to regenerate. Direct reprogramming of endogenous cardiac fibroblasts into functional cardiomyocytes via the delivery of transcription factor mRNAs has the potential to regenerate cardiac tissue and to treat heart failure. Even though mRNA delivery to cardiac fibroblasts has the therapeutic potential, mRNA transfection in cardiac fibroblasts has been challenging. Herein, we develop an efficient mRNA transfection in cultured mouse cardiac fibroblasts via a polyarginine-fused heart-targeting peptide and lipofectamine complex, termed C-Lipo and demonstrate the partial direct reprogramming of cardiac fibroblasts towards cardiomyocyte cells. C-Lipo enabled the mRNA-induced direct cardiac reprogramming due to its efficient transfection with low toxicity, which allowed for multiple transfections of Gata4, Mef2c, and Tbx5 (GMT mRNAs for a period of 2 weeks. The induced cardiomyocyte-like cells had α-MHC promoter-driven GFP expression and striated cardiac muscle structure from a-actinin immunohistochemistry. GMT mRNA transfection of cultured mouse cardiac fibroblasts via C-Lipo significantly increased expression of the cardiomyocyte marker genes, Actc1, Actn2, Gja1, Hand2, and Tnnt2, after 2 weeks of transfection. Moreover, this study provides the first direct evidence that the stoichiometry of the GMT reprogramming factors influence the expression of cardiomyocyte marker genes. Our results demonstrate that mRNA delivery is a potential approach for cardiomyocyte generation. Keywords: direct cardiac

  7. Simulation of micro/nano electroporation for cell transfection

    Science.gov (United States)

    Zhang, Guocheng; Fan, Na; Jiang, Hai; Guo, Jian; Peng, Bei

    2018-03-01

    The 3D micro/nano electroporation for transfection has become a powerful biological cell research technique with the development of micro-nano manufacturing technology. The micro channels connected the cells with transfection reagents on the chip were important to the transmemnbrane potentical, which directly influences the electroporation efficiency. In this study, a two-dimensional model for electroporation of cells was designed to address the effects of channels’ sizes and number on transmembrane potential. The simulation results indicated that the transmembrane potential increased with increasing size of channels’ entrances. Moreover, compared with single channel entrance, the transmembrane potential was higher when the cells located at multiple channels entrances. These results suggest that it IS required to develop higher micro manufacturing technology to create channels as we expected size.

  8. Photoporation and cell transfection using a violet diode laser

    Science.gov (United States)

    Paterson, L.; Agate, B.; Comrie, M.; Ferguson, R.; Lake, T. K.; Morris, J. E.; Carruthers, A. E.; Brown, C. T. A.; Sibbett, W.; Bryant, P. E.; Gunn-Moore, F.; Riches, A. C.; Dholakia, Kishan

    2005-01-01

    The introduction and subsequent expression of foreign DNA inside living mammalian cells (transfection) is achieved by photoporation with a violet diode laser. We direct a compact 405 nm laser diode source into an inverted optical microscope configuration and expose cells to 0.3 mW for 40 ms. The localized optical power density of ~1200 MW/m2 is six orders of magnitude lower than that used in femtosecond photoporation (~104 TW/m2). The beam perforates the cell plasma membrane to allow uptake of plasmid DNA containing an antibiotic resistant gene as well as the green fluorescent protein (GFP) gene. Successfully transfected cells then expand into clonal groups which are used to create stable cell lines. The use of the violet diode laser offers a new and simple poration technique compatible with standard microscopes and is the simplest method of laser-assisted cell poration reported to date.

  9. Deep sequencing reveals complex spurious transcription from transiently transfected plasmids

    Czech Academy of Sciences Publication Activity Database

    Nejepínská, Jana; Malík, Radek; Moravec, Martin

    2012-01-01

    Roč. 7, č. 8 (2012), e43283 E-ISSN 1932-6203 R&D Projects: GA ČR GA204/09/0085 Grant - others:EMBO(XE) 0001488 Institutional research plan: CEZ:AV0Z50520514 Institutional support: RVO:68378050 Keywords : transient plasmid transfection * deep sequencing Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 3.730, year: 2012

  10. Transient transfection and expression of firefly luciferase in Giardia lamblia.

    OpenAIRE

    Yee, J; Nash, T E

    1995-01-01

    We have developed a gene transfer system for the protozoan parasite Giardia lamblia. This organism is responsible for many cases of diarrhea worldwide and is considered to be one of the most primitive eukaryotes. Expression of a heterologous gene was detected in this parasite after electroporation with appropriate DNA constructs. We constructed a series of transfection plasmids using flanking sequences of the Giardia glutamate dehydrogenase (GDH) gene to drive expression of the firefly lucife...

  11. Uptake of DNA by cancer cells without a transfection reagent.

    Science.gov (United States)

    Kong, Yanping; Zhang, Xianbo; Zhao, Yongliang; Xue, Yanfang; Zhang, Ye

    2017-01-21

    Cancer cells exhibit elevated levels of glucose uptake and may obtain pre-formed, diet-derived fatty acids from the bloodstream to boost their rapid growth; they may also use nucleic acid from their microenvironment. The study of processing nucleic acid by cancer cells will help improve the understanding of the metabolism of cancer. DNA is commonly packaged into a viral or lipid particle to be transferred into cells; this process is called transfection in laboratory. Cancer cells are known for having gene mutations and the evolving ability of endocytosis. Their uptake of DNAs might be different from normal cells; they may take in DNAs directly from the environment. In this report, we studied the uptake of DNAs in cancer cells without a transfection reagent. A group of DNA fragments were prepared with PCR and labeled with isotope phosphorous-32 to test their uptake by Huh 7 (liver cancer) and THLE3 (normal liver cells) after incubation overnight by counting radioactivity of the cells' genomic DNA. Multiple cell lines including breast cancer and lung cancer were tested with the same method. DNA molecules were also labeled with fluorescence to test the location in the cells using a kit of "label it fluorescence in situ hybridization (FISH)" from Mirus (USA). The data demonstrated that hepatocellular carcinoma cells possess the ability to take in large DNA fragments directly without a transfection reagent whereas normal liver cells cannot. Huh7 and MDA-MB231 cells displayed a significantly higher Rhodamine density in the cytoplasmic phagosomes and this suggests that the mechanism of uptake of large DNA by cancer cells is likely endocytosis. The efficacy of uptake is related to the DNA's size. Some cell lines of lung cancer and breast cancer also showed similar uptake of DNA. In the present study, we have revealed the evidence that some cancer cells, but not nontumorigenic cells, can take DNA fragments directly from the environment without the aid of the transfecting

  12. DNA uptake, intracellular trafficking and gene transfection after ultrasound exposure.

    Science.gov (United States)

    Liu, Ying; Yan, Jing; Santangelo, Philip J; Prausnitz, Mark R

    2016-07-28

    Ultrasound has been studied as a promising tool for intracellular gene delivery. In this work, we studied gene transfection of a human prostate cancer cell line exposed to megahertz pulsed ultrasound in the presence of contrast agent and assessed the efficiency of fluorescently labelled DNA delivery into cell nuclei, which is necessary for gene transfection. At the sonication conditions studied, ~30% of cells showed DNA uptake 30min after sonication, but that fraction decreased over time to ~10% of cells after 24h. Most cells containing DNA had DNA in their nuclei, but the amount varied significantly. Transfection efficiency peaked at ~10% at 8h post sonication. Among those cells containing DNA, ~30% of DNA was localized in the cell nuclei, ~30% was in autophagosomes/autophagolysosomes and the remainder was "free" in the cytoplasm 30min after sonication. At later times up to 24h, ~30% of DNA continued to be found in the nuclei and most or all of the rest of the DNA was in autophagosomes/autophagolysosomes. These results demonstrate that ultrasound can deliver DNA into cell nuclei shortly after sonication and that the rest of the DNA can be cleared by autophagosomes/autophagolysosomes. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Characterization of cell lines stably transfected with rubella virus replicons

    International Nuclear Information System (INIS)

    Tzeng, Wen-Pin; Xu, Jie; Frey, Teryl K.

    2012-01-01

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was ∼9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  14. Characterization of cell lines stably transfected with rubella virus replicons

    Energy Technology Data Exchange (ETDEWEB)

    Tzeng, Wen-Pin; Xu, Jie [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States); Frey, Teryl K., E-mail: tfrey@gsu.edu [Department of Biology, Georgia State University, P.O. Box 4010, Atlanta GA 30302-4010 (United States)

    2012-07-20

    Rubella virus (RUBV) replicons expressing a drug resistance gene and a gene of interest were used to select cell lines uniformly harboring the replicon. Replicons expressing GFP and a virus capsid protein GFP fusion (C-GFP) were compared. Vero or BHK cells transfected with either replicon survived drug selection and grew into a monolayer. However, survival was {approx}9-fold greater following transfection with the C-GFP-replicon than with the GFP-expressing replicon and while the C-GFP-replicon cells grew similarly to non-transfected cells, the GFP-replicon cells grew slower. Neither was due to the ability of the CP to enhance RNA synthesis but survival during drug selection was correlated with the ability of CP to inhibit apoptosis. Additionally, C-GFP-replicon cells were not cured of the replicon in the absence of drug selection. Interferon-alpha suppressed replicon RNA and protein synthesis, but did not cure the cells, explaining in part the ability of RUBV to establish persistent infections.

  15. Enhanced Nanomagnetic Gene Transfection of Human Prenatal Cardiac Progenitor Cells and Adult Cardiomyocytes

    Science.gov (United States)

    Subramanian, Mahendran; Lim, Jenson; Dobson, Jon

    2013-01-01

    Magnetic nanoparticle-based gene transfection has been shown to be an effective, non-viral technique for delivery of both plasmid DNA and siRNA into cells in culture. It has several advantages over other non-viral delivery techniques, such as short transfection times and high cell viability. These advantages have been demonstrated in a number of primary cells and cell lines. Here we report that oscillating magnet array-based nanomagnetic transfection significantly improves transfection efficiency in both human prenatal cardiac progenitor cells and adult cardiomyocytes when compared to static magnetofection, cationic lipid reagents and electroporation, while maintaining high cell viability. In addition, transfection of adult cardiomyocytes was improved further by seeding the cells onto Collagen I-coated plates, with transfection efficiencies of up to 49% compared to 24% with lipid reagents and 19% with electroporation. These results demonstrate that oscillating nanomagnetic transfection far outperforms other non-viral transfection techniques in these important cells. PMID:23936108

  16. Paclitaxel tumor priming promotes delivery and transfection of intravenous lipid-siRNA in pancreatic tumors.

    Science.gov (United States)

    Wang, Jie; Lu, Ze; Wang, Junfeng; Cui, Minjian; Yeung, Bertrand Z; Cole, David J; Wientjes, M Guillaume; Au, Jessie L-S

    2015-10-28

    The major barrier for using small interfering RNA (siRNA) as cancer therapeutics is the inadequate delivery and transfection in solid tumors. We have previously shown that paclitaxel tumor priming, by inducing apoptosis, expands the tumor interstitial space, improves the penetration and dispersion of nanoparticles and siRNA-lipoplexes in 3-dimensional tumor histocultures, and promotes the delivery and transfection efficiency of siRNA-lipoplexes under the locoregional setting in vivo (i.e., intraperitoneal treatment of intraperitoneal tumors). The current study evaluated whether tumor priming is functional for systemically delivered siRNA via intravenous injection, which would subject siRNA to several additional delivery barriers and elimination processes. We used the same pegylated cationic (PCat)-siRNA lipoplexes as in the intraperitoneal study to treat mice bearing subcutaneous human pancreatic Hs766T xenograft tumors. The target gene was survivin, an inducible chemoresistance gene. The results show single agent paclitaxel delayed tumor growth but also significantly induced the survivin protein level in residual tumors, whereas addition of PCat-siSurvivin completely reversed the paclitaxel-induced survivin and enhanced the paclitaxel activity (ppriming, by promoting the interstitial transport and cytoplasmic release, is critical to promote the delivery and transfection of siRNA in vivo. In addition, because paclitaxel has broad spectrum activity and is used to treat multiple types of solid tumors including the hard-to-treat pancreatic cancer, the synergistic paclitaxel+siSurvivin combination represents a potentially useful chemo-gene therapy. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Delivery of episomal vectors into primary cells by means of commercial transfection reagents.

    Science.gov (United States)

    Han, Na Rae; Lee, Hyun; Baek, Song; Yun, Jung Im; Park, Kyu Hyun; Lee, Seung Tae

    2015-05-29

    Although episomal vectors are commonly transported into cells by electroporation, a number of electroporation-derived problems have led to the search for alternative transfection protocols, such as the use of transfection reagents, which are inexpensive and easy to handle. Polyplex-mediated transport of episomal vectors into the cytoplasm has been conducted successfully in immortalized cell lines, but no report exists of successful transfection of primary cells using this method. Accordingly, we sought to optimize the conditions for polyplex-mediated transfection for effective delivery of episomal vectors into the cytoplasm of primary mouse embryonic fibroblasts. Episomal vectors were complexed with the commercially available transfection reagents Lipofectamine 2000, FuGEND HD and jetPEI. The ratio of transfection reagent to episomal vectors was varied, and the subsequent transfection efficiency and cytotoxicity of the complexes were analyzed using flow cytometry and trypan blue exclusion assay, respectively. No cytotoxicity and the highest transfection yield were observed when the ratio of transfection reagent to episomal vector was 4 (v/wt) in the cases of Lipofectamine 2000 and FuGENE HD, and 2 in the case of jetPEI. Of the three transfection reagents tested, jetPEI showed the highest transfection efficiency without any cytotoxicity. Thus, we confirmed that the transfection reagent jetPEI could be used to effectively deliver episomal vectors into primary cells without electroporation. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  18. Common minor histocompatibility antigen discovery based upon patient clinical outcomes and genomic data.

    Directory of Open Access Journals (Sweden)

    Paul M Armistead

    Full Text Available Minor histocompatibility antigens (mHA mediate much of the graft vs. leukemia (GvL effect and graft vs. host disease (GvHD in patients who undergo allogeneic stem cell transplantation (SCT. Therapeutic decision making and treatments based upon mHAs will require the evaluation of multiple candidate mHAs and the selection of those with the potential to have the greatest impact on clinical outcomes. We hypothesized that common, immunodominant mHAs, which are presented by HLA-A, B, and C molecules, can mediate clinically significant GvL and/or GvHD, and that these mHAs can be identified through association of genomic data with clinical outcomes.Because most mHAs result from donor/recipient cSNP disparities, we genotyped 57 myeloid leukemia patients and their donors at 13,917 cSNPs. We correlated the frequency of genetically predicted mHA disparities with clinical evidence of an immune response and then computationally screened all peptides mapping to the highly associated cSNPs for their ability to bind to HLA molecules. As proof-of-concept, we analyzed one predicted antigen, T4A, whose mHA mismatch trended towards improved overall and disease free survival in our cohort. T4A mHA mismatches occurred at the maximum theoretical frequency for any given SCT. T4A-specific CD8+ T lymphocytes (CTLs were detected in 3 of 4 evaluable post-transplant patients predicted to have a T4A mismatch.Our method is the first to combine clinical outcomes data with genomics and bioinformatics methods to predict and confirm a mHA. Refinement of this method should enable the discovery of clinically relevant mHAs in the majority of transplant patients and possibly lead to novel immunotherapeutics.

  19. Suppressor cell mediated regulation of delayed-type hypersensitivity to histocompatibility antigens

    NARCIS (Netherlands)

    A. Molendijk (Arie)

    1987-01-01

    textabstractDTH to allogeneic histocompatibility antigens is a T cell dependent reaction, which can be induced in immunologically competent individuals by subcutaneous (s.c.) or intravenous (i.v.) administration of alloantigens (Vander Kwast and Benner, 1978; Bianchi et al., 1984). After

  20. Efficient Transformation of Oil Palm Protoplasts by PEG-Mediated Transfection and DNA Microinjection

    Science.gov (United States)

    Masani, Mat Yunus Abdul; Noll, Gundula A.; Parveez, Ghulam Kadir Ahmad; Sambanthamurthi, Ravigadevi; Prüfer, Dirk

    2014-01-01

    Background Genetic engineering remains a major challenge in oil palm (Elaeis guineensis) because particle bombardment and Agrobacterium-mediated transformation are laborious and/or inefficient in this species, often producing chimeric plants and escapes. Protoplasts are beneficial as a starting material for genetic engineering because they are totipotent, and chimeras are avoided by regenerating transgenic plants from single cells. Novel approaches for the transformation of oil palm protoplasts could therefore offer a new and efficient strategy for the development of transgenic oil palm plants. Methodology/Principal Findings We recently achieved the regeneration of healthy and fertile oil palms from protoplasts. Therefore, we focused on the development of a reliable PEG-mediated transformation protocol for oil palm protoplasts by establishing and validating optimal heat shock conditions, concentrations of DNA, PEG and magnesium chloride, and the transfection procedure. We also investigated the transformation of oil palm protoplasts by DNA microinjection and successfully regenerated transgenic microcalli expressing green fluorescent protein as a visible marker to determine the efficiency of transformation. Conclusions/Significance We have established the first successful protocols for the transformation of oil palm protoplasts by PEG-mediated transfection and DNA microinjection. These novel protocols allow the rapid and efficient generation of non-chimeric transgenic callus and represent a significant milestone in the use of protoplasts as a starting material for the development of genetically-engineered oil palm plants. PMID:24821306

  1. Transfection of normal human bronchial epithelial cells with the bcl-2 oncogene

    Energy Technology Data Exchange (ETDEWEB)

    Kennedy, C.H.; Kenyon, K.D.; Tesfaigzi, J. [and others

    1995-12-01

    In vitro, studies examining the transformation of virus-immortalized human bronchial epithelial (HBE) cells after exposure to chemical and physical carcinogens have contributed to our understanding of the mechanisms that underlie the development of lung cancer. Virus-immortalized HBE cells have been used because of both the limited life span of normal human bronchial epithelial (NHBE) cells in culture (approximately 30-35 population doublins) and their resistance to in vitro malignant transformation. For example, human papillomavirus (HPV)-immortalized HBE cells have been used to study the genetic changes that occur after exposure to {alpha}-particles in vitro. Although this model may prove to be useful for studying the 18% or less of bronchogenic carcinomas found to contain HPV sequences, it is not an appropriate model for studying the majority of lung epithelial malignancies in which HPV DNA is not detected. This view is supported by the fact that HPV-immortalized cell lines commonly exhibit aneuploidy. This results of this study suggest that: (1) NHBE cells can be transiently transfected with the pCMV{Beta} vector; and (2) the antibiotic hygromycin-resistant transfected cells.

  2. Persistent human cardiac Na+ currents in stably transfected mammalian cells

    Science.gov (United States)

    Wang, Ging Kuo; Russell, Gabriella; Wang, Sho-Ya

    2013-01-01

    Miniature persistent late Na+ currents in cardiomyocytes have been linked to arrhythmias and sudden death. The goals of this study are to establish a stable cell line expressing robust persistent cardiac Na+ currents and to test Class 1 antiarrhythmic drugs for selective action against resting and open states. After transient transfection of an inactivation-deficient human cardiac Na+ channel clone (hNav1.5-CW with L409C/A410W double mutations), transfected mammalian HEK293 cells were treated with 1 mg/ml G-418. Individual G-418-resistant colonies were isolated using glass cylinders. One colony with high expression of persistent Na+ currents was subjected to a second colony selection. Cells from this colony remained stable in expressing robust peak Na+ currents of 996 ± 173 pA/pF at +50 mV (n = 20). Persistent late Na+ currents in these cells were clearly visible during a 4-second depolarizing pulse albeit decayed slowly. This slow decay is likely due to slow inactivation of Na+ channels and could be largely eliminated by 5 μM batrachotoxin. Peak cardiac hNav1.5-CW Na+ currents were blocked by tetrodotoxin with an IC50 value of 2.27 ± 0.08 μM (n = 6). At clinic relevant concentrations, Class 1 antiarrhythmics are much more selective in blocking persistent late Na+ currents than their peak counterparts, with a selectivity ratio ranging from 80.6 (flecainide) to 3 (disopyramide). We conclude that (1) Class 1 antiarrhythmics differ widely in their resting- vs. open-channel selectivity, and (2) stably transfected HEK293 cells expressing large persistent hNav1.5-CW Na+ currents are suitable for studying as well as screening potent open-channel blockers. PMID:23695971

  3. Graphene and carbon nanotube nanocomposite for gene transfection.

    Science.gov (United States)

    Hollanda, L M; Lobo, A O; Lancellotti, M; Berni, E; Corat, E J; Zanin, H

    2014-06-01

    Graphene and carbon nanotube nanocomposite (GCN) was synthesised and applied in gene transfection of pIRES plasmid conjugated with green fluorescent protein (GFP) in NIH-3T3 and NG97 cell lines. The tips of the multi-walled carbon nanotubes (MWCNTs) were exfoliated by oxygen plasma etching, which is also known to attach oxygen content groups on the MWCNT surfaces, changing their hydrophobicity. The nanocomposite was characterised by high resolution scanning electron microscopy; energy-dispersive X-ray, Fourier transform infrared and Raman spectroscopies, as well as zeta potential and particle size analyses using dynamic light scattering. BET adsorption isotherms showed the GCN to have an effective surface area of 38.5m(2)/g. The GCN and pIRES plasmid conjugated with the GFP gene, forming π-stacking when dispersed in water by magnetic stirring, resulting in a helical wrap. The measured zeta potential confirmed that the plasmid was connected to the nanocomposite. The NIH-3T3 and NG97 cell lines could phagocytize this wrap. The gene transfection was characterised by fluorescent protein produced in the cells and pictured by fluorescent microscopy. Before application, we studied GCN cell viability in NIH-3T3 and NG97 line cells using both MTT and Neutral Red uptake assays. Our results suggest that GCN has moderate stability behaviour as colloid solution and has great potential as a gene carrier agent in non-viral based therapy, with low cytotoxicity and good transfection efficiency. Copyright © 2014 Elsevier B.V. All rights reserved.

  4. The Effect of Environmental pH on Polymeric Transfection Efficiency

    Science.gov (United States)

    Kang, Han Chang; Samsonova, Olga; Kang, Sun-Woong; Bae, You Han

    2011-01-01

    Although polymers, polyplexes, and cells are exposed to various extracellular and intracellular pH environments during polyplex preparation and polymeric transfection, the impact of environmental pH on polymeric transfection has not yet been investigated. This study aims to understand the influence of environmental pH on polymeric transfection by modulating the pH of the transfection medium or the culture medium. Changes in the extracellular pH affected polymeric transfection by way of complex factors such as pH-induced changes in polymer characteristics (e.g., proton buffering capacity and ionization), polyplex characteristics (e.g., size, surface charge, and decomplexation), and cellular characteristics (e.g., cellular uptake, cell cycle phases, and intracellular pH environment). Notably, acidic medium delayed endocytosis, endosomal acidification, cytosolic release, and decomplexation of polyplexes, thereby negatively affecting gene expression. However, acidic medium inhibited mitosis and reduced dilution of gene expression, resulting in increased transfection efficiency. Compared to pH 7.4 medium, acidic transfection medium reduced gene expression 1.6~7.7-fold whereas acidic culture medium enhanced transfection efficiency 2.1~2.6-fold. Polymeric transfection was affected more by the culture medium than by the transfection medium. Understanding the effects of extracellular pH during polymeric transfection may stimulate new strategies for determining effective and safe polymeric gene carriers. PMID:22130563

  5. Immune monitoring using mRNA-transfected dendritic cells

    DEFF Research Database (Denmark)

    Borch, Troels Holz; Svane, Inge Marie; Met, Özcan

    2016-01-01

    Dendritic cells are known to be the most potent antigen presenting cell in the immune system and are used as cellular adjuvants in therapeutic anticancer vaccines using various tumor-associated antigens or their derivatives. One way of loading antigen into the dendritic cells is by m...... and understand the immunological impact of dendritic cell vaccination in order to improve clinical benefit. In this chapter, we describe a method for performing immune monitoring using peripheral blood mononuclear cells and autologous dendritic cells transfected with tumor-associated antigen-encoding mRNA....

  6. Establishing malaria parasite transfection technology in South Africa.

    CSIR Research Space (South Africa)

    Van Brummelen, AC

    2010-01-01

    Full Text Available stream_source_info van Brummelen_2010.pdf.txt stream_content_type text/plain stream_size 3034 Content-Encoding UTF-8 stream_name van Brummelen_2010.pdf.txt Content-Type text/plain; charset=UTF-8 Oral ( ) / Poster (X...@csir.co.za Keywords: transfection, malaria, Plasmodium Topic: Genomics Biochemistry and Molecular Biology The most important contributing factor to the current malaria crisis is the rapid spread of parasite resistance to available anti-malarial drugs. Anti...

  7. Enhanced gene transfection performance and biocompatibility of polyethylenimine through pseudopolyrotaxane formation with α-cyclodextrin

    Science.gov (United States)

    Hu, Li-Zhong; Wan, Ning; Ma, Xi-Xi; Jing, Zi-Wei; Zhang, Ya-Xuan; Li, Chen; Zhou, Si-Yuan; Zhang, Bang-Le

    2017-03-01

    Polyethylenimine (PEI), a commercially available gene transfection reagent, is a promising nonviral vector due to its inherent ability to efficiently condense genetic materials and its successful transfection performance in vitro. However, its low transfection efficiency in vivo, along with its high cytotoxicity, limit any further applications in gene therapy. To enhance the gene transfection performance and reduce the cytotoxicity of linear polyethylenimine, pseudopolyrotaxane PEI25k/CD and the polyrotaxanes PEI25k/CD-PA and PEI25k/CD-PB were prepared and their transfection efficiencies were then evaluated. The pseudopolyrotaxane PEI25k/CD exhibited better transfection efficiency and lower cytotoxicity than the transfection reagent linear PEI25k, even in the presence of serum. It also showed a remarkably higher cell viability, similar DNA protecting capability, and better DNA decondensation and release ability, and could be useful for the development of novel and safe nonviral gene delivery vectors for gene therapy.

  8. Improvement of efficiency and viability in plasma gene transfection by plasma minimization and optimization electrode configuration

    Science.gov (United States)

    Jinno, Masafumi; Tachibana, Kunihide; Motomura, Hideki; Saeki, Noboru; Satoh, Susumu

    2016-07-01

    Plasma gene transfection is expected as a safe and useful method of gene transfection. However, in this method, there is difficulty in keeping both high transfection efficiency and less cell damage simultaneously. The authors have evaluated transfection efficiency and cell viability using four different plasma sources, such as arc discharge, plasma jet, dielectric barrier discharge (DBD), and microplasma. A high transfection efficiency was achieved by discharge forms in which the electric current flows via the cells. This suggested that an electric current plays an important role in plasma gene transfection. The total volume of gas flow must be small or zero and the area in which the cells are directly irradiated by plasma must be small in order to achieve a higher cell viability. The microplasma that satisfies these conditions achieved both the highest transfection efficiency and the highest cell viability simultaneously.

  9. Preparation of gene gun bullets and biolistic transfection of neurons in slice culture.

    Science.gov (United States)

    Woods, Georgia; Zito, Karen

    2008-02-13

    Biolistic transfection is a physical means of transfecting cells by bombarding tissue with high velocity DNA coated particles. We provide a detailed protocol for biolistic transfection of rat hippocampal slices, from the initial preparation of DNA coated bullets to the final shooting of the organotypic slice cultures using a gene gun. Gene gun transfection is an efficient and easy means of transfecting neurons and is especially useful for fluorescently labeling a small subset of cells in tissue slice. In this video, we first outline the steps required to coat gold particles with DNA. We next demonstrate how to line the inside of plastic tubing with the gold/DNA bullets, and how to cut this tubing to obtain the plastic cartridges for loading into the gene gun. Finally, we perform biolistic transfection of rat hippocampal slice cultures, demonstrating handling of the Bio-Rad Helios gene gun, and offering trouble shooting advice to obtain healthy and optimally transfected tissue slices.

  10. Comparison of nanoparticle-mediated transfection methods for DNA expression plasmids: efficiency and cytotoxicity

    Science.gov (United States)

    2011-01-01

    Background Reproducibly high transfection rates with low methodology-induced cytotoxic side effects are essential to attain the required effect on targeted cells when exogenous DNA is transfected. Different approaches and modifications such as the use of nanoparticles (NPs) are being evaluated to increase transfection efficiencies. Several studies have focused on the attained transfection efficiency after NP-mediated approaches. However, data comparing toxicity of these novel approaches with conventional methods is still rare. Transfection efficiency and methodology-induced cytotoxicity were analysed after transfection with different NP-mediated and conventional approaches. Two eukaryotic DNA-expression-plasmids were used to transfect the mammalian cell line MTH53A applying six different transfection protocols: conventional transfection reagent (FuGENE HD, FHD), FHD in combination with two different sizes of stabilizer-free laser-generated AuNPs (PLAL-AuNPs_S1,_S2), FHD and commercially available AuNPs (Plano-AuNP), and two magnetic transfection protocols. 24 h post transfection efficiency of each protocol was analysed using fluorescence microscopy and GFP-based flow cytometry. Toxicity was assessed measuring cell proliferation and percentage of propidium iodide (PI%) positive cells. Expression of the respective recombinant proteins was evaluated by immunofluorescence. Results The addition of AuNPs to the transfection protocols significantly increased transfection efficiency in the pIRES-hrGFPII-eIL-12 transfections (FHD: 16%; AuNPs mean: 28%), whereas the magnet-assisted protocols did not increase efficiency. Ligand-free PLAL-AuNPs had no significant cytotoxic effect, while the ligand-stabilized Plano-AuNPs induced a significant increase in the PI% and lower cell proliferation. For pIRES-hrGFPII-rHMGB1 transfections significantly higher transfection efficiency was observed with PLAL-AuNPs (FHD: 31%; PLAL-AuNPs_S1: 46%; PLAL-AuNPs_S2: 50%), while the magnet

  11. Molecular studies of fibroblasts transfected with hepatitis B virus DNA

    International Nuclear Information System (INIS)

    Chen, M.L.; Hood, A.; Thung, S.N.; Gerber, M.A.

    1987-01-01

    Two subclones (D7 and F8) derived from an NIH 3T3 mouse fibroblast cell line after transfection with hepatitis B virus (HBV) genomes, secreted significantly different amounts of HBsAg and HBeAg. DNA extracted from the subclones revealed only integrated and no extrachromosomal HBV DNA sequences as determined by the Southern blot technique with a /sup 32/P-labeled full length HBV DNA probe. The amount and integration sites of HBV sequences were significantly different in the two subclones. HBV DNA sequences coding for HBsAg and HBcAg were detected by alkaline phosphatase-conjugated, single-stranded synthetic gene-specific oligonucleotide probes revealing a larger number of copies in D7 DNA than in F8 DNA. Using a biotinylated probe for in situ hybridization, HBV DNA was found in the nuclei of all D7 cells with predominant localization to a single chromsome, but only in 10-20% of F8 cells. These observations demonstrate different integration patterns of HBV and DNA in two subclones derived from a transfected cell line and suggest that the amount of integrated HBV DNA is proportional to the amount of HBV antigens produced

  12. Towards optical cell transfection inside a micro flow cell

    Science.gov (United States)

    Breunig, H. G.; Uchugonova, A.; König, K.

    2014-03-01

    For optical transfection, cells are shortly subjected to intense, focused laser radiation which leads to a temporary opening in the cell membrane. Although the method is very efficient and ensures high cell viability, the targeting of single cells with laser pulses is a tedious and slow approach. We present first measurements aiming at an experimental setup which is suitable for high throughput and automated optical cell transfection. In our setup, cells flow through a micro flow cell where they are spatially confined. The laser radiation is focused into the cell in a way that an elongated focal region is realized. This makes the time consuming aiming of the laser beam at individual cells unnecessary and opens the possibility to develop a completely automated system. The elongated laser focal region is realized by a quasi-Bessel beam which is generated by an axicon lens setup and continuously scanned from side to side of the cell. We present test measurements of the newly employed setup and discuss its suitability to be fully integrated into a flow cell sequencing system.

  13. A robust transfection reagent for the transfection of CHO and HEK293 cells and production of recombinant proteins and lentiviral particles - PTG1.

    Science.gov (United States)

    Gonçalves, Cristine; Gross, Fabian; Guégan, Philippe; Cheradame, Hervé; Midou, Patrick

    2014-11-01

    Bioproduction of recombinant proteins (r-proteins) and recombinant lentiviral particles (r-lentiviral particles) requires robust transfections consisting of efficient protocols that are easy to implement, with good reproducibility for a maximum production of proteins and lentiviral particles in a short time with low cytotoxicity. This study evaluates the capacity of histidinylated polyethyleneimine I (PTG1) to facilitate robust DNA transfection, with low cytotoxicity, of Chinese hamster ovary (CHO) and human embryonic kidney (HEK293T) cells for the production of r-proteins and r-lentiviral particles. We report that PTG1 transfection of cells in suspension with a plasmid DNA encoding enhanced green fluorescent protein leads to 72 and 97% of transfected CHO and HEK293T cells respectively, and does not significantly affect cell viability. PTG1 transfection of 100 mL of CHO-S cell culture in suspension at a cell density of 2 × 10(6) cells /mL resulted in a high level of transfected cells and protein expression after transfection with 0.75 μg/mL plasmid DNA. Transfection with PTG1 is more efficient than LipofectAmine2000™, and gene expression is higher than observed with FreeStyle™ and JetPEI®. Tri-transfection of HEK293T packaging cells leads to the production of a higher level of r-lentiviral particles compared to the calcium phosphate method, and permits two harvests of viral particles within three days. These results show that PTG1 is a powerful new transfection reagent for cell lines frequently used for recombinant protein and lentiviral particle production. PTG1 could be used in protocols for bioproduction of therapeutic proteins such as antibodies for cancer treatments and viral vectors for gene therapy applications. Copyright © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Fast and Efficient Transfection of Mouse Embryonic Stem Cells Using Non-Viral Reagents.

    Science.gov (United States)

    Tamm, Christoffer; Kadekar, Sandeep; Pijuan-Galitó, Sara; Annerén, Cecilia

    2016-10-01

    Reliable and efficient DNA and RNA transfection methods are required when studying the role of individual genes in mouse pluripotent stem cells. However, these cells usually grow in tight clusters and are therefore more difficult to transfect than many other cell lines. We have found that transfection is especially challenging when mouse embryonic stem (mES) cells are cultured in the newly described 2i medium, which is based on two chemical inhibitors of differentiation pathways. In the present study we have performed a side-by-side comparison of commercially available, non-viral transfection reagents with regard to their ability to deliver plasmid DNA and siRNA into adherent and/or trypsinized mES cells cultured in 2i medium, assessing transfection rates, plasmid gene expression, siRNA mediated knockdown of Oct4 and viability. Finally, we present a fast and efficient method for transfection of trypsinized mES cells using the liposomal-based Lipofectamine 2000. With only a five-minute long transfection time we obtained at least 85 % transfected cells with 80 % maintained viability. Moreover, this protocol saves up to a day of experimental time since the cells are in suspension at the time of transfection, which allows for immediately re-plating into the appropriate format. This fast, simplified and highly efficient transfection method will be valuable for both basic re