WorldWideScience

Sample records for transected rat spinal

  1. Spontaneous recovery of locomotion induced by remaining fibers after spinal cord transection in adult rats.

    Science.gov (United States)

    You, Si-Wei; Chen, Bing-Yao; Liu, Hui-Ling; Lang, Bing; Xia, Jie-Lai; Jiao, Xi-Ying; Ju, Gong

    2003-01-01

    A major issue in analysis of experimental results after spinal cord injury is spontaneous functional recovery induced by remaining nerve fibers. The authors investigated the relationship between the degree of locomotor recovery and the percentage and location of the fibers that spared spinal cord transection. The spinal cords of 12 adult rats were transected at T9 with a razor blade, which often resulted in sparing of nerve fibers in the ventral spinal cord. The incompletely-transected animals were used to study the degree of spontaneous recovery of hindlimb locomotion, evaluated with the BBB rating scale, in correlation to the extent and location of the remaining fibers. Incomplete transection was found in the ventral spinal cord in 42% of the animals. The degree of locomotor recovery was highly correlated with the percentage of the remaining fibers in the ventral and ventrolateral funiculi. In one of the rats, 4.82% of remaining fibers in unilateral ventrolateral funiculus were able to sustain a certain recovery of locomotion. Less than 5% of remaining ventrolateral white matter is sufficient for an unequivocal motor recovery after incomplete spinal cord injury. Therefore, for studies with spinal cord transection, the completeness of sectioning should be carefully checked before any conclusion can be reached. The fact that the degree of locomotor recovery is correlated with the percentage of remaining fibers in the ventrolateral spinal cord, exclusive of most of the descending motor tracts, may imply an essential role of propriospinal connections in the initiation of spontaneous locomotor recovery.

  2. A brain-machine-muscle interface for restoring hindlimb locomotion after complete spinal transection in rats.

    Directory of Open Access Journals (Sweden)

    Monzurul Alam

    Full Text Available A brain-machine interface (BMI is a neuroprosthetic device that can restore motor function of individuals with paralysis. Although the feasibility of BMI control of upper-limb neuroprostheses has been demonstrated, a BMI for the restoration of lower-limb motor functions has not yet been developed. The objective of this study was to determine if gait-related information can be captured from neural activity recorded from the primary motor cortex of rats, and if this neural information can be used to stimulate paralysed hindlimb muscles after complete spinal cord transection. Neural activity was recorded from the hindlimb area of the primary motor cortex of six female Sprague Dawley rats during treadmill locomotion before and after mid-thoracic transection. Before spinal transection there was a strong association between neural activity and the step cycle. This association decreased after spinal transection. However, the locomotive state (standing vs. walking could still be successfully decoded from neural recordings made after spinal transection. A novel BMI device was developed that processed this neural information in real-time and used it to control electrical stimulation of paralysed hindlimb muscles. This system was able to elicit hindlimb muscle contractions that mimicked forelimb stepping. We propose this lower-limb BMI as a future neuroprosthesis for human paraplegics.

  3. Spinal cord transection-induced allodynia in rats--behavioral, physiopathological and pharmacological characterization.

    Directory of Open Access Journals (Sweden)

    Saïd M'Dahoma

    Full Text Available In humans, spinal cord lesions induce not only major motor and neurovegetative deficits but also severe neuropathic pain which is mostly resistant to classical analgesics. Better treatments can be expected from precise characterization of underlying physiopathological mechanisms. This led us to thoroughly investigate (i mechanical and thermal sensory alterations, (ii responses to acute treatments with drugs having patent or potential anti-allodynic properties and (iii the spinal/ganglion expression of transcripts encoding markers of neuronal injury, microglia and astrocyte activation in rats that underwent complete spinal cord transection (SCT. SCT was performed at thoracic T8-T9 level under deep isoflurane anaesthesia, and SCT rats were examined for up to two months post surgery. SCT induced a marked hyper-reflexia at hindpaws and strong mechanical and cold allodynia in a limited (6 cm2 cutaneous territory just rostral to the lesion site. At this level, pressure threshold value to trigger nocifensive reactions to locally applied von Frey filaments was 100-fold lower in SCT- versus sham-operated rats. A marked up-regulation of mRNAs encoding ATF3 (neuronal injury and glial activation markers (OX-42, GFAP, P2×4, P2×7, TLR4 was observed in spinal cord and/or dorsal root ganglia at T6-T11 levels from day 2 up to day 60 post surgery. Transcripts encoding the proinflammatory cytokines IL-1β, IL-6 and TNF-α were also markedly but differentially up-regulated at T6-T11 levels in SCT rats. Acute treatment with ketamine (50 mg/kg i.p., morphine (3-10 mg/kg s.c. and tapentadol (10-20 mg/kg i.p. significantly increased pressure threshold to trigger nocifensive reaction in the von Frey filaments test, whereas amitriptyline, pregabalin, gabapentin and clonazepam were ineffective. Because all SCT rats developed long lasting, reproducible and stable allodynia, which could be alleviated by drugs effective in humans, thoracic cord transection might be a

  4. Engraftment, neuroglial transdifferentiation and behavioral recovery after complete spinal cord transection in rats.

    Science.gov (United States)

    Sabino, Luzzi; Maria, Crovace Alberto; Luca, Lacitignola; Valerio, Valentini; Edda, Francioso; Giacomo, Rossi; Gloria, Invernici; Juan, Galzio Renato; Antonio, Crovace

    2018-01-01

    Proof of the efficacy and safety of a xenogeneic mesenchymal stem cell (MSCs) transplant for spinal cord injury (SCI) may theoretically widen the spectrum of possible grafts for neuroregeneration. Twenty rats were submitted to complete spinal cord transection. Ovine bone marrow MSCs, retrovirally transfected with red fluorescent protein and not previously induced for neuroglial differentiation, were applied in 10 study rats (MSCG). Fibrin glue was injected in 10 control rats (FGG). All rats were evaluated on a weekly basis and scored using the Basso-Beattie-Bresnahan (BBB) locomotor scale for 10 weeks, when the collected data were statistically analyzed. The spinal cords were then harvested and analyzed with light microscopy, immunohistochemistry, and immunofluorescence. Ovine MSCs culture showed positivity for Nestin. MSCG had a significant and durable recovery of motor functions ( P <.001). Red fluorescence was found at the injury sites in MSCG. Positivity for Nestin, tubulin βIII, NG2 glia, neuron-specific enolase, vimentin, and 200 kD neurofilament were also found at the same sites. Xenogeneic ovine bone marrow MSCs proved capable of engrafting into the injured rat spinal cord. Transdifferentiation into a neuroglial phenotype was able to support partial functional recovery.

  5. Effects of spinal transection on presynaptic markers for glutamatergic neurons in the rat

    International Nuclear Information System (INIS)

    Singer, H.S.; Coyle, J.T.; Frangia, J.; Price, D.L.

    1981-01-01

    To evaluate the hypothesis that glutamic acid may be the neurotransmitter of descending, excitatory supraspinal pathways, the uptake and release of L-[3H] glutamate and the levels of endogenous glutamate were measured in preparations from rat lumbar spinal cord following complete mid-thoracic transection. Following transection, the activity of the synaptosomal high-affinity glutamate uptake process was increased in both dorsal and ventral halves of lumbar cord between 1 and 14 days after transection and returned to control levels by 21 days posttransection. At 7 days, the increased activity of the uptake process for L-[3H]glutamate resulted in elevation of Vmax with no significant alteration in KT as compared to age-matched controls. Depolarization-induced release of L-[3H]glutamate from prelabeled slices did not differ significantly from control in the lesioned rat except at 21 days after lesion when the amount of tritium release was significantly greater in the transected preparations than in control. Amino acid analysis of the lumbar cord from control and transected rats indicated only a 10% decrease in the level of endogenous glutamate and no alterations in the concentration of GABA and glycine 7 days after lesion. These findings do not support the hypothesis that glutamate serves as a major excitatory neurotransmitter in supraspinal pathways innervating the lumbar cord of the rat

  6. Conduction of impulses by axons regenerated in a Schwann cell graft in the transected adult rat thoracic spinal cord.

    Science.gov (United States)

    Pinzon, A; Calancie, B; Oudega, M; Noga, B R

    2001-06-01

    Central nervous system axons regenerate into a Schwann cell implant placed in the transected thoracic spinal cord of an adult rat. The present study was designed to test whether these regenerated axons are capable of conducting action potentials. Following the transection and removal of a 4- to 5-mm segment of the thoracic spinal cord (T8-T9), a polymer guidance channel filled with a mixture of adult rat Schwann cells and Matrigel was grafted into a 4- to 5-mm-long gap in the transected thoracic spinal cord. The two cut ends of the spinal cord were eased into the guidance channel openings. Transected control animals received a channel containing Matrigel only. Three months after implantation, electrophysiological studies were performed. Tungsten microelectrodes were used for monopolar stimulation of regenerated axons within the Schwann cell graft. Glass microelectrodes were used to record responses in the spinal cord rostral to the stimulation site. Evoked responses to electrical stimulation of the axon cable were found in two out of nine Schwann cell-grafted animals. These responses had approximate latencies in the range of those of myelinated axons. No responses were seen in any of the Matrigel-grafted animals. Histological analysis revealed that the two cases that showed evoked potentials had the largest number of myelinated axons present in the cable. This study demonstrates that axons regenerating through Schwann cell grafts in the complete transected spinal cord can produce measurable evoked responses following electrical stimulation. Copyright 2001 Wiley-Liss, Inc.

  7. Integration of donor mesenchymal stem cell-derived neuron-like cells into host neural network after rat spinal cord transection.

    Science.gov (United States)

    Zeng, Xiang; Qiu, Xue-Cheng; Ma, Yuan-Huan; Duan, Jing-Jing; Chen, Yuan-Feng; Gu, Huai-Yu; Wang, Jun-Mei; Ling, Eng-Ang; Wu, Jin-Lang; Wu, Wutian; Zeng, Yuan-Shan

    2015-06-01

    Functional deficits following spinal cord injury (SCI) primarily attribute to loss of neural connectivity. We therefore tested if novel tissue engineering approaches could enable neural network repair that facilitates functional recovery after spinal cord transection (SCT). Rat bone marrow-derived mesenchymal stem cells (MSCs), genetically engineered to overexpress TrkC, receptor of neurotrophin-3 (NT-3), were pre-differentiated into cells carrying neuronal features via co-culture with NT-3 overproducing Schwann cells in 3-dimensional gelatin sponge (GS) scaffold for 14 days in vitro. Intra-GS formation of MSC assemblies emulating neural network (MSC-GS) were verified morphologically via electron microscopy (EM) and functionally by whole-cell patch clamp recording of spontaneous post-synaptic currents. The differentiated MSCs still partially maintained prototypic property with the expression of some mesodermal cytokines. MSC-GS or GS was then grafted acutely into a 2 mm-wide transection gap in the T9-T10 spinal cord segments of adult rats. Eight weeks later, hindlimb function of the MSC-GS-treated SCT rats was significantly improved relative to controls receiving the GS or lesion only as indicated by BBB score. The MSC-GS transplantation also significantly recovered cortical motor evoked potential (CMEP). Histologically, MSC-derived neuron-like cells maintained their synapse-like structures in vivo; they additionally formed similar connections with host neurites (i.e., mostly serotonergic fibers plus a few corticospinal axons; validated by double-labeled immuno-EM). Moreover, motor cortex electrical stimulation triggered c-fos expression in the grafted and lumbar spinal cord cells of the treated rats only. Our data suggest that MSC-derived neuron-like cells resulting from NT-3-TrkC-induced differentiation can partially integrate into transected spinal cord and this strategy should be further investigated for reconstructing disrupted neural circuits. Copyright

  8. Potential of human dental stem cells in repairing the complete transection of rat spinal cord

    Science.gov (United States)

    Yang, Chao; Li, Xinghan; Sun, Liang; Guo, Weihua; Tian, Weidong

    2017-04-01

    Objective. The adult spinal cord of mammals contains a certain amount of neural precursor cells, but these endogenous cells have a limited capacity for replacement of lost cells after spinal cord injury. The exogenous stem cells transplantation has become a therapeutic strategy for spinal cord repairing because of their immunomodulatory and differentiation capacity. In addition, dental stem cells originating from the cranial neural crest might be candidate cell sources for neural engineering. Approach. Human dental follicle stem cells (DFSCs), stem cells from apical papilla (SCAPs) and dental pulp stem cells (DPSCs) were isolated and identified in vitro, then green GFP-labeled stem cells with pellets were transplanted into completely transected spinal cord. The functional recovery of rats and multiple neuro-regenerative mechanisms were explored. Main results. The dental stem cells, especially DFSCs, demonstrated the potential in repairing the completely transected spinal cord and promote functional recovery after injury. The major involved mechanisms were speculated below: First, dental stem cells inhibited the expression of interleukin-1β to reduce the inflammatory response; second, they inhibited the expression of ras homolog gene family member A (RhoA) to promote neurite regeneration; third, they inhibited the sulfonylurea receptor1 (SUR-1) expression to reduce progressive hemorrhagic necrosis; lastly, parts of the transplanted cells survived and differentiated into mature neurons and oligodendrocytes but not astrocyte, which is beneficial for promoting axons growth. Significance. Dental stem cells presented remarkable tissue regenerative capability after spinal cord injury through immunomodulatory, differentiation and protection capacity.

  9. Two chronic motor training paradigms differentially influe nce acute instrume ntal learning in spinally transected rats

    Science.gov (United States)

    Bigbee, Allison J.; Crown, Eric D.; Ferguson, Adam R.; Roy, Roland R.; Tillakaratne, Niranjala J.K.; Grau, James W.; Edgerton, V. Reggie

    2008-01-01

    The effect of two chronic motor training paradigms on the ability of the lumbar spinal cord to perform an acute instrumental learning task was examined in neonatally (postnatal day 5; P5) spinal cord transected (i.e., spinal) rats. At ∼P30, rats began either unipedal hindlimb stand training (Stand-Tr; 20-25 min/day, 5 days/wk), or bipedal hindlimb step training (Step-Tr; 20 min/day; 5 days/wk) for 7 wks. Non-trained spinal rats (Non-Tr) served as controls. After 7 wks all groups were tested on the flexor-biased instrumental learning paradigm. We hypothesized that 1) Step-Tr rats would exhibit an increased capacity to learn the flexor-biased task relative to Non-Tr subjects, as locomotion involves repetitive training of the tibialis anterior (TA), the ankle flexor whose activation is important for successful instrumental learning, and 2) Stand-Tr rats would exhibit a deficit in acute motor learning, as unipedal training activates the ipsilateral ankle extensors, but not flexors. Results showed no differences in acute learning potential between Non-Tr and Step-Tr rats, while the Stand-Tr group showed a reduced capacity to learn the acute task. Further investigation of the Stand-Tr group showed that, while both the ipsilateral and contralateral hindlimbs were significantly impaired in their acute learning potential, the contralateral, untrained hindlimbs exhibited significantly greater learning deficits. These results suggest that different types of chronic peripheral input may have a significant impact on the ability to learn a novel motor task, and demonstrate the potential for experience-dependent plasticity in the spinal cord in the absence of supraspinal connectivity. PMID:17434606

  10. Electro-acupuncture promotes survival, differentiation of the bone marrow mesenchymal stem cells as well as functional recovery in the spinal cord-transected rats

    Science.gov (United States)

    Ding, Ying; Yan, Qing; Ruan, Jing-Wen; Zhang, Yan-Qing; Li, Wen-Jie; Zhang, Yu-Jiao; Li, Yan; Dong, Hongxin; Zeng, Yuan-Shan

    2009-01-01

    Background Bone marrow mesenchymal stem cells (MSCs) are one of the potential tools for treatment of the spinal cord injury; however, the survival and differentiation of MSCs in an injured spinal cord still need to be improved. In the present study, we investigated whether Governor Vessel electro-acupuncture (EA) could efficiently promote bone marrow mesenchymal stem cells (MSCs) survival and differentiation, axonal regeneration and finally, functional recovery in the transected spinal cord. Results The spinal cords of adult Sprague-Dawley (SD) rats were completely transected at T10, five experimental groups were performed: 1. sham operated control (Sham-control); 2. operated control (Op-control); 3. electro-acupuncture treatment (EA); 4. MSCs transplantation (MSCs); and 5. MSCs transplantation combined with electro-acupuncture (MSCs+EA). After 2-8 weeks of MSCs transplantation plus EA treatment, we found that the neurotrophin-3 (NT-3), cAMP level, the differentiation of MSCs, the 5-HT positive and CGRP positive nerve fibers in the lesion site and nearby tissue of injured spinal cord were significantly increased in the MSCs+EA group as compared to the group of the MSCs transplantation or the EA treated alone. Furthermore, behavioral test and spinal cord evoked potentials detection demonstrated a significantly functional recovery in the MSCs +EA group. Conclusion These results suggest that EA treatment may promote grafted MSCs survival and differentiation; MSCs transplantation combined with EA treatment could promote axonal regeneration and partial locomotor functional recovery in the transected spinal cord in rats and indicate a promising avenue of treatment of spinal cord injury. PMID:19374777

  11. Biomechanical implications of lumbar spinal ligament transection.

    Science.gov (United States)

    Von Forell, Gregory A; Bowden, Anton E

    2014-11-01

    Many lumbar spine surgeries either intentionally or inadvertently damage or transect spinal ligaments. The purpose of this work was to quantify the previously unknown biomechanical consequences of isolated spinal ligament transection on the remaining spinal ligaments (stress transfer), vertebrae (bone remodelling stimulus) and intervertebral discs (disc pressure) of the lumbar spine. A finite element model of the full lumbar spine was developed and validated against experimental data and tested in the primary modes of spinal motion in the intact condition. Once a ligament was removed, stress increased in the remaining spinal ligaments and changes occurred in vertebral strain energy, but disc pressure remained similar. All major biomechanical changes occurred at the same spinal level as the transected ligament, with minor changes at adjacent levels. This work demonstrates that iatrogenic damage to spinal ligaments disturbs the load sharing within the spinal ligament network and may induce significant clinically relevant changes in the spinal motion segment.

  12. Motor Axonal Regeneration After Partial and Complete Spinal Cord Transection

    Science.gov (United States)

    Lu, Paul; Blesch, Armin; Graham, Lori; Wang, Yaozhi; Samara, Ramsey; Banos, Karla; Haringer, Verena; Havton, Leif; Weishaupt, Nina; Bennett, David; Fouad, Karim; Tuszynski, Mark H.

    2012-01-01

    We subjected rats to either partial mid-cervical or complete upper thoracic spinal cord transections and examined whether combinatorial treatments support motor axonal regeneration into and beyond the lesion. Subjects received cAMP injections into brainstem reticular motor neurons to stimulate their endogenous growth state, bone marrow stromal cell grafts in lesion sites to provide permissive matrices for axonal growth, and brain-derived neurotrophic factor (BDNF) gradients beyond the lesion to stimulate distal growth of motor axons. Findings were compared to several control groups. Combinatorial treatment generated motor axon regeneration beyond both C5 hemisection and complete transection sites. Yet despite formation of synapses with neurons below the lesion, motor outcomes worsened after partial cervical lesions and spasticity worsened after complete transection. These findings highlight the complexity of spinal cord repair, and the need for additional control and shaping of axonal regeneration. PMID:22699902

  13. A 3D nanofibrous hydrogel and collagen sponge scaffold promotes locomotor functional recovery, spinal repair, and neuronal regeneration after complete transection of the spinal cord in adult rats

    International Nuclear Information System (INIS)

    Kaneko, Ai; Matsushita, Akira; Sankai, Yoshiyuki

    2015-01-01

    Central nervous system neurons in adult mammals display limited regeneration after injury, and functional recovery is poor following complete transection (>4 mm gap) of a rat spinal cord. A novel combination scaffold composed of 3D nanofibrous hydrogel PuraMatrix and a honeycomb collagen sponge was used to promote spinal repair and locomotor functional recovery following complete transection of the spinal cord in rats. We transplanted this scaffold into 5 mm spinal cord gaps and assessed spinal repair and functional recovery using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. The BBB score of the scaffold-transplanted group was significantly higher than that of the PBS-injected control group from 24 d to 4 months after the operation (P < 0.001–0.01), reaching 6.0  ±  0.75 (mean ± SEM) in the transplant and 0.70  ±  0.46 in the control groups. Neuronal regeneration and spinal repair were examined histologically using Pan Neuronal Marker, glial fibrillary acidic protein, growth-associated protein 43, and DAPI. The scaffolds were well integrated into the spinal cords, filling the 5 mm gaps with higher numbers of regenerated and migrated neurons, astrocytes, and other cells than in the control group. Mature and immature neurons and astrocytes in the scaffolds became colocalized and aligned longitudinally over >2 mm, suggesting their differentiation, maturation, and function. The spinal cord NF200 content of the transplant group, analyzed by western blot, was more than twice that of the control group, supporting the histological results. Transplantation of this novel scaffold promoted functional recovery, spinal repair, and neuronal regeneration. (paper)

  14. Segmental neuropathic pain does not develop in male rats with complete spinal transections.

    Science.gov (United States)

    Hubscher, Charles H; Kaddumi, Ezidin G; Johnson, Richard D

    2008-10-01

    In a previous study using male rats, a correlation was found between the development of "at-level" allodynia in T6-7 dermatomes following severe T8 spinal contusion injury and the sparing of some myelinated axons within the core of the lesion epicenter. To further test our hypothesis that this sparing is important for the expression of allodynia and the supraspinal plasticity that ensues, an injury that severs all axons (i.e., a complete spinal cord transection) was made in 15 male rats. Behavioral assessments were done at level throughout the 30-day recovery period followed by terminal electrophysiological recordings (urethane anesthesia) from single medullary reticular formation (MRF) neurons receiving convergent nociceptive inputs from receptive fields above, at, and below the lesion level. None of the rats developed signs of at-level allodynia (versus 18 of 26 male rats following severe contusion). However, the terminal recording (206 MRF neurons) data resembled those obtained previously post-contusion. That is, there was evidence of neuronal hyper-excitability (relative to previous data from intact controls) to high- and low-threshold mechanical stimulation for "at-level" (dorsal trunk) and "above-level" (eyelids and face) cutaneous territories. These results, when combined with prior data on intact controls and severe/moderate contusions, indicate that (1) an anatomically incomplete injury (some lesion epicenter axonal sparing) following severe contusion is likely important for the development of allodynia and (2) the neuronal hyper-excitability at the level of the medulla is likely involved in nociceptive processes that are not directly related to the conscious expression of pain-like avoidance behaviors that are being used as evidence of allodynia.

  15. Spinal cord transection before scoliosis correction in myelomeningocele may improve bladder function

    NARCIS (Netherlands)

    Linthorst, Josephine I.; Veenboer, Paul W.; Dik, Pieter; Pruijs, Hans E. H.; Han, Sen K. S.; de Kort, Laetitia M. O.; de Jong, Tom P. V. M.

    2014-01-01

    In patients with myelomeningocele (MMC) and coexistent scoliosis, a spinal cord transection (SC-transection) is sometimes performed before scoliosis correction to prevent traction on the myelum after stretching the spinal column. Performing a SC-transection may have positive effects on bladder

  16. Robust upregulation of serotonin 2A receptors after chronic spinal transection of rats: An immunohistochemical study

    DEFF Research Database (Denmark)

    Kong, Xiang-Yu; Wienecke, Jacob; Hultborn, Hans

    2010-01-01

    It is well known that spinal motoneurons below a spinal transection become supersensitive to a systemic administration of serotonin (5-HT) precursors, such as 5-hydroxytryptophan. This supersensitivity has been implicated in both the process of functional recovery following chronic lesions, and a...

  17. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii.

    Science.gov (United States)

    Chevallier, Stéphanie; Landry, Marc; Nagy, Frédéric; Cabelguen, Jean-Marie

    2004-10-01

    Electromyographic (EMG) analysis was used to provide an assessment of the recovery of locomotion in spinal-transected adult salamanders (Pleurodeles waltlii). EMG recordings were performed during swimming and overground stepping in the same animal before and at various times (up to 500 days) after a mid-trunk spinalization. Two-three weeks after spinalization, locomotor EMG activity was limited to the forelimbs and the body rostral to the transection. Thereafter, there was a return of the locomotor EMG activity at progressively more caudal levels below the transection. The animals reached stable locomotor patterns 3-4 months post-transection. Several locomotor parameters (cycle duration, burst duration, burst proportion, intersegmental phase lag, interlimb coupling) measured at various recovery times after spinalization were compared with those in intact animals. These comparisons revealed transient and long-term alterations in the locomotor parameters both above and below the transection site. These alterations were much more pronounced for swimming than for stepping and revealed differences in adaptive plasticity between the two locomotor networks. Recovered locomotor activity was immediately abolished by retransection at the site of the original spinalization, suggesting that the spinal cord caudal to the transection was reinnervated by descending brain and/or propriospinal axons, and that this regeneration contributed to the restoration of locomotor activity. Anatomical studies conducted in parallel further demonstrated that some of the regenerated axons came from glutamatergic and serotoninergic immunoreactive cells within the reticular formation.

  18. Human dental pulp-derived stem cells promote locomotor recovery after complete transection of the rat spinal cord by multiple neuro-regenerative mechanisms.

    Science.gov (United States)

    Sakai, Kiyoshi; Yamamoto, Akihito; Matsubara, Kohki; Nakamura, Shoko; Naruse, Mami; Yamagata, Mari; Sakamoto, Kazuma; Tauchi, Ryoji; Wakao, Norimitsu; Imagama, Shiro; Hibi, Hideharu; Kadomatsu, Kenji; Ishiguro, Naoki; Ueda, Minoru

    2012-01-01

    Spinal cord injury (SCI) often leads to persistent functional deficits due to loss of neurons and glia and to limited axonal regeneration after injury. Here we report that transplantation of human dental pulp stem cells into the completely transected adult rat spinal cord resulted in marked recovery of hind limb locomotor functions. Transplantation of human bone marrow stromal cells or skin-derived fibroblasts led to substantially less recovery of locomotor function. The human dental pulp stem cells exhibited three major neuroregenerative activities. First, they inhibited the SCI-induced apoptosis of neurons, astrocytes, and oligodendrocytes, which improved the preservation of neuronal filaments and myelin sheaths. Second, they promoted the regeneration of transected axons by directly inhibiting multiple axon growth inhibitors, including chondroitin sulfate proteoglycan and myelin-associated glycoprotein, via paracrine mechanisms. Last, they replaced lost cells by differentiating into mature oligodendrocytes under the extreme conditions of SCI. Our data demonstrate that tooth-derived stem cells may provide therapeutic benefits for treating SCI through both cell-autonomous and paracrine neuroregenerative activities.

  19. Structural remodeling of the heart and its premotor cardioinhibitory vagal neurons following T(5) spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2014-05-01

    Midthoracic spinal cord injury (SCI) is associated with enhanced cardiac sympathetic activity and reduced cardiac parasympathetic activity. The enhanced cardiac sympathetic activity is associated with sympathetic structural plasticity within the stellate ganglia, spinal cord segments T1-T4, and heart. However, changes to cardiac parasympathetic centers rostral to an experimental SCI are relatively unknown. Importantly, reduced vagal activity is a predictor of high mortality. Furthermore, this autonomic dysregulation promotes progressive left ventricular (LV) structural remodeling. Accordingly, we hypothesized that midthoracic spinal cord injury is associated with structural plasticity in premotor (preganglionic parasympathetic neurons) cardioinhibitory vagal neurons located within the nucleus ambiguus as well as LV structural remodeling. To test this hypothesis, dendritic arborization and morphology (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac projecting premotor cardioinhibitory vagal neurons located within the nucleus ambiguus were determined in intact (sham transected) and thoracic level 5 transected (T5X) rats. In addition, LV chamber size, wall thickness, and collagen content (Masson trichrome stain and structural analysis) were determined. Midthoracic SCI was associated with structural changes within the nucleus ambiguus and heart. Specifically, following T5 spinal cord transection, there was a significant increase in cardiac parasympathetic preganglionic neuron dendritic arborization, soma area, maximum dendritic length, and number of intersections/animal. This parasympathetic structural remodeling was associated with a profound LV structural remodeling. Specifically, T5 spinal cord transection increased LV chamber area, reduced LV wall thickness, and increased collagen content. Accordingly, results document a dynamic interaction between the heart and its parasympathetic innervation.

  20. Combination of edaravone and neural stem cell transplantation repairs injured spinal cord in rats.

    Science.gov (United States)

    Song, Y Y; Peng, C G; Ye, X B

    2015-12-29

    This study sought to observe the effect of the combination of edaravone and neural stem cell (NSC) transplantation on the repair of complete spinal cord transection in rats. Eighty adult female Sprague-Dawley (SD) rats were used to establish the injury model of complete spinal cord transection at T9. Animals were divided randomly into four groups (N = 20 each): control, edaravone, transplantation, and edaravone + transplantation. The recovery of spinal function was evaluated with the Basso, Beattie, Bresnahan (BBB) rating scale on days 1, 3, and 7 each week after the surgery. After 8 weeks, the BBB scores of the control, edaravone, transplantation, and combination groups were 4.21 ± 0.11, 8.46 ± 0.1, 8.54 ± 0.13, and 11.21 ± 0.14, respectively. At 8 weeks after surgery, the spinal cord was collected; the survival and transportation of transplanted cells were observed with PKH-26 labeling, and the regeneration and distribution of spinal nerve fibers with fluorescent-gold (FG) retrograde tracing. Five rats died due to the injury. PKH-26-labeled NSCs had migrated into the spinal cord. A few intact nerve fibers and pyramidal neurons passed the injured area in the transplantation and combination groups. The numbers of PKH-26-labeled cells and FG-labeled nerve fibers were in the order: combination group > edaravone group and transplantation group > control group (P edaravone can enhance the survival and differentiation of NSCs in injured areas; edaravone with NSC transplantation can improve the effectiveness of spinal cord injury repair in rats.

  1. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    Science.gov (United States)

    Oza, Chintan S.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. PMID:25948267

  2. Evaluation of purinergic mechanism for the treatment of voiding dysfunction: a study in conscious spinal cord-injured rats.

    Science.gov (United States)

    Lu, Shing-Hwa; Groat, William C de; Lin, Alex T L; Chen, Kuang-Kuo; Chang, Luke S

    2007-10-01

    To investigate the effect of a selective P2X(3-)P2X(2/3) purinergic receptor antagonist (a-317491) on detrusor hyperreflexia in conscious chronic spinal cord-injured female rats. Six chronic spinal cord-transected female Sprague-Dawley rats (290-336 g) were used in this study. Spinal transection at the T8-T9 segmental level was performed using aseptic techniques under halothane anesthesia. Fourteen to 16 weeks after spinal transection, A-317491, a selective P2X(3-)P2X(2/3) purinergic receptor antagonist, was administered intravenously in cystometry studies at increasing doses of 0.03, 0.1, 0.3, 1, 3, 10 and 30 micromol/kg at 40-50 minute intervals. Cystometrograms (CMGs) were performed before and after the administration of each dose of the drug. The continuous filling of CMGs revealed a large number of small-amplitude (> 8 cmH(2)O), non-voiding contractions (NVCs) (average, 9.7 per voiding cycle) preceding voiding contractions (mean amplitude, 31 cmH(2)O; duration, 2.5 minutes), which occurred at an interval of 539 seconds and at a pressure threshold of 5.7 cmH(2)O. When tested in a range of doses (0.03-30 micromol/kg, intravenous), A-317491 in doses between 1 and 30 micromol/kg significantly (p spinal cord injury in rats.

  3. Edaravone combined with Schwann cell transplantation may repair spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Shu-quan Zhang

    2015-01-01

    Full Text Available Edaravone has been shown to delay neuronal apoptosis, thereby improving nerve function and the microenvironment after spinal cord injury. Edaravone can provide a favorable environment for the treatment of spinal cord injury using Schwann cell transplantation. This study used rat models of complete spinal cord transection at T 9. Six hours later, Schwann cells were transplanted in the head and tail ends of the injury site. Simultaneously, edaravone was injected through the caudal vein. Eight weeks later, the PKH-26-labeled Schwann cells had survived and migrated to the center of the spinal cord injury region in rats after combined treatment with edaravone and Schwann cells. Moreover, the number of PKH-26-labeled Schwann cells in the rat spinal cord was more than that in rats undergoing Schwann cell transplantation alone or rats without any treatment. Horseradish peroxidase retrograde tracing revealed that the number of horseradish peroxidase-positive nerve fibers was greater in rats treated with edaravone combined withSchwann cells than in rats with Schwann cell transplantation alone. The results demonstrated that lower extremity motor function and neurophysiological function were better in rats treated with edaravone and Schwann cells than in rats with Schwann cell transplantation only. These data confirmed that Schwann cell transplantation combined with edaravone injection promoted the regeneration of nerve fibers of rats with spinal cord injury and improved neurological function.

  4. Profound differences in spontaneous long-term functional recovery after defined spinal tract lesions in the rat

    NARCIS (Netherlands)

    Hendriks, William T J; Eggers, R.; Ruitenberg, Marc J; Blits, Bas; Hamers, Frank P T; Verhaagen, J.; Boer, Gerard J

    The purpose of this study was to compare spontaneous functional recovery after different spinal motor tract lesions in the rat spinal cord using three methods of analysis, the BBB, the rope test, and the CatWalk. We transected the dorsal corticospinal tract (CSTx) or the rubrospinal tract (RSTx) or

  5. Trunk robot rehabilitation training with active stepping reorganizes and enriches trunk motor cortex representations in spinal transected rats.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2015-05-06

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we examine effects of robot rehabilitation that promotes recovery of hindlimb weight support functions on trunk motor cortex representations. Adult rats spinal transected as neonates (NTX rats) at the T9/10 level significantly improve function with our robot rehabilitation paradigm, whereas treadmill-only trained do not. We used intracortical microstimulation to map motor cortex in two NTX groups: (1) treadmill trained (control group); and (2) robot-assisted treadmill trained (improved function group). We found significant robot rehabilitation-driven changes in motor cortex: (1) caudal trunk motor areas expanded; (2) trunk coactivation at cortex sites increased; (3) richness of trunk cortex motor representations, as examined by cumulative entropy and mutual information for different trunk representations, increased; (4) trunk motor representations in the cortex moved toward more normal topography; and (5) trunk and forelimb motor representations that SCI-driven plasticity and compensations had caused to overlap were segregated. We conclude that effective robot rehabilitation training induces significant reorganization of trunk motor cortex and partially reverses some plastic changes that may be adaptive in non-stepping paraplegia after SCI. Copyright © 2015 the authors 0270-6474/15/357174-16$15.00/0.

  6. Adult opossums (Didelphis virginiana) demonstrate near normal locomotion after spinal cord transection as neonates.

    Science.gov (United States)

    Wang, X M; Basso, D M; Terman, J R; Bresnahan, J C; Martin, G F

    1998-05-01

    When the thoracic spinal cord of the North American opossum (Didelphis virginiana) is transected on postnatal day (PD) 5, the site of injury becomes bridged by histologically recognizable spinal cord and axons which form major long tracts grow through the lesion. In the present study we asked whether opossums lesioned on PD5 have normal use of the hindlimbs as adults and, if so, whether that use is dependent upon axons which grow through the lesion site. The thoracic spinal cord was transected on PD5 and 6 months later, hindlimb function was evaluated using the Basso, Beattie, and Bresnahan (BBB) locomotor scale. All animals supported their weight with the hindlimbs and used their hindlimbs normally during overground locomotion. In some cases, the spinal cord was retransected at the original lesion site or just caudal to it 6 months after the original transection and paralysis of the hindlimbs ensued. Surprisingly, however, these animals gradually recovered some ability to support their weight and to step with the hindlimbs. Similar recovery was not seen in animals transected only as adults. In order to verify that descending axons which grew through the lesion during development were still present in the adult animal, opossums subjected to transection of the thoracic cord on PD5 were reoperated and Fast blue was injected several segments caudal to the lesion. In all cases, neurons were labeled rostral to the lesion in each of the spinal and supraspinal nuclei labeled by comparable injections in unlesioned, age-matched controls. The results of orthograde tracing studies indicated that axons which grew through the lesion innervated areas that were appropriate for them. Copyright 1998 Academic Press.

  7. Feasibility of 3.0 T diffusion-weighted nuclear magnetic resonance imaging in the evaluation of functional recovery of rats with complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Duo Zhang

    2015-01-01

    Full Text Available Diffusion tensor imaging is a sensitive way to reflect axonal necrosis and degeneration, glial cell regeneration and demyelination following spinal cord injury, and to display microstructure changes in the spinal cord in vivo. Diffusion tensor imaging technology is a sensitive method to diagnose spinal cord injury fiber tractography visualizes the white matter fibers, and directly displays the structural integrity and resultant damage of the fiber bundle. At present, diffusion tensor imaging is restricted to brain examinations, and is rarely applied in the evaluation of spinal cord injury. This study aimed to explore the fractional anisotropy and apparent diffusion coefficient of diffusion tensor magnetic resonance imaging and the feasibility of diffusion tensor tractography in the evaluation of complete spinal cord injury in rats. The results showed that the average combined scores were obviously decreased after spinal cord transection in rats, and then began to increase over time. The fractional anisotropy scores after spinal cord transection in rats were significantly lower than those in normal rats (P <0.05 the apparent diffusion coefficient was significantly increased compared with the normal group (P < 0.05. Following spinal cord transection, fractional anisotropy scores were negatively correlated with apparent diffusion coefficient values (r = -0.856, P < 0.01, and positively correlated with the average combined scores (r = 0.943, P < 0.01, while apparent diffusion coefficient values had a negative correlation with the average combined scores (r = -0.949, P < 0.01. Experimental findings suggest that, as a non-invasive examination, diffusion tensor magnetic resonance imaging can provide qualitative and quantitative information about spinal cord injury. The fractional anisotropy score and apparent diffusion coefficient have a good correlation with the average combined scores, which reflect functional recovery after spinal cord injury.

  8. Stimulation of 5-HT2A receptors recovers sensory responsiveness in acute spinal neonatal rats.

    Science.gov (United States)

    Swann, Hillary E; Kauer, Sierra D; Allmond, Jacob T; Brumley, Michele R

    2017-02-01

    Quipazine is a 5-HT 2A -receptor agonist that has been used to induce motor activity and promote recovery of function after spinal cord injury in neonatal and adult rodents. Sensory stimulation also activates sensory and motor circuits and promotes recovery after spinal cord injury. In rats, tail pinching is an effective and robust method of sacrocaudal sensory afferent stimulation that induces motor activity, including alternating stepping. In this study, responsiveness to a tail pinch following treatment with quipazine (or saline vehicle control) was examined in spinal cord transected (at midthoracic level) and intact neonatal rats. Rat pups were secured in the supine posture with limbs unrestricted. Quipazine or saline was administered intraperitoneally and after a 10-min period, a tail pinch was administered. A 1-min baseline period prior to tail-pinch administration and a 1-min response period postpinch was observed and hind-limb motor activity, including locomotor-like stepping behavior, was recorded and analyzed. Neonatal rats showed an immediate and robust response to sensory stimulation induced by the tail pinch. Quipazine recovered hind-limb movement and step frequency in spinal rats back to intact levels, suggesting a synergistic, additive effect of 5-HT-receptor and sensory stimulation in spinal rats. Although levels of activity in spinal rats were restored with quipazine, movement quality (high vs. low amplitude) was only partially restored. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  9. Decreased gastric emptying and gastrointestinal and intestinal transits of liquid after complete spinal cord transection in awake rats

    Directory of Open Access Journals (Sweden)

    Gondim F. de-A.A.

    1998-01-01

    Full Text Available We studied the effect of complete spinal cord transection (SCT on gastric emptying (GE and on gastrointestinal (GI and intestinal transits of liquid in awake rats using the phenol red method. Male Wistar rats (N = 65 weighing 180-200 g were fasted for 24 h and complete SCT was performed between C7 and T1 vertebrae after a careful midline dorsal incision. GE and GI and intestinal transits were measured 15 min, 6 h or 24 h after recovery from anesthesia. A test meal (0.5 mg/ml phenol red in 5% glucose solution was administered intragastrically (1.5 ml and the animals were sacrificed by an iv thiopental overdose 10 min later to evaluate GE and GI transit. For intestinal transit measurements, 1 ml of the test meal was administered into the proximal duodenum through a cannula inserted into a gastric fistula. GE was inhibited (P<0.05 by 34.3, 23.4 and 22.7%, respectively, at 15 min, 6 h and 24 h after SCT. GI transit was inhibited (P<0.05 by 42.5, 19.8 and 18.4%, respectively, at 15 min, 6 h and 24 h after SCT. Intestinal transit was also inhibited (P<0.05 by 48.8, 47.2 and 40.1%, respectively, at 15 min, 6 h and 24 h after SCT. Mean arterial pressure was significantly decreased (P<0.05 by 48.5, 46.8 and 41.5%, respectively, at 15 min, 6 h and 24 h after SCT. In summary, our report describes a decreased GE and GI and intestinal transits in awake rats within the first 24 h after high SCT.

  10. Characterization of dendritic morphology and neurotransmitter phenotype of thoracic descending propriospinal neurons after complete spinal cord transection and GDNF treatment

    Science.gov (United States)

    Deng, Lingxiao; Ruan, Yiwen; Chen, Chen; Frye, Christian Corbin; Xiong, Wenhui; Jin, Xiaoming; Jones, Kathryn; Sengelaub, Dale; Xu, Xiao-Ming

    2016-01-01

    After spinal cord injury (SCI), poor regeneration of damaged axons of the central nervous system (CNS) causes limited functional recovery. This limited spontaneous functional recovery has been attributed, to a large extent, to the plasticity of propriospinal neurons, especially the descending propriospinal neurons (dPSNs). Compared with the supraspinal counterparts, dPSNs have displayed significantly greater regenerative capacity, which can be further enhanced by glial cell line-derived neurotrophic factor (GDNF). In the present study, we applied a G-mutated rabies virus (G-Rabies) co-expressing green fluorescence protein (GFP) to reveal Golgi-like dendritic morphology of dPSNs. We also investigated the neurotransmitters expressed by dPSNs after labeling with a retrograde tracer Fluoro-Gold (FG). dPSNs were examined in animals with sham injuries or complete spinal transections with or without GDNF treatment. Bilateral injections of G-Rabies and FG were made into the 2nd lumbar (L2) spinal cord at 3 days prior to a spinal cord transection performed at the 11th thoracic level (T11). The lesion gap was filled with Gelfoam containing either saline or GDNF in the injury groups. Four days post-injury, the rats were sacrificed for analysis. For those animals receiving G-rabies injection, the GFP signal in the T7–9 spinal cord was visualized via 2-photon microscopy. Dendritic morphology from stack images was traced and analyzed using a Neurolucida software. We found that dPSNs in sham injured animals had a predominantly dorsal-ventral distribution of dendrites. Transection injury resulted in alterations in the dendritic distribution with dorsal-ventral retraction and lateral-medial extension. Treatment with GDNF significantly increased the terminal dendritic length of dPSNs. The density of spine-like structures was increased after injury, and treatment with GDNF enhanced this effect. For the group receiving FG injections, immunohistochemistry for glutamate, choline

  11. First Case of Autonomic Dysreflexia Following Elective Lower Thoracic Spinal Cord Transection in a Spina Bifida Adult.

    Science.gov (United States)

    Garces, Juanita; Mathkour, Mansour; Scullen, Tyler; Kahn, Lora; Biro, Erin; Pham, Alex; Sulaiman, Olawale A R; Smith, Roger; Bui, Cuong J

    2017-12-01

    Spinal cord transection is a radical but effective treatment for highly selective cases of symptomatic spinal retethering in paraplegic spina bifida patients. Autonomic dysreflexia (AD) is a potentially life-threatening syndrome involving a dysregulated sympathetic discharge reflex commonly seen following cervical and high thoracic spinal cord injury, leading to a disconnect between autonomic pathways above and below the lesion that can lead to severe complications including uncontrolled hypertension, bradycardia, stroke, and potentially death. Herein we present a case in which a paraplegic spina bifida patient presenting with symptomatic spinal retethering experienced autonomic dysreflexia following an elective spinal cord transection. A 51-year-old male with a history of complex spina bifida presented with an active cerebrospinal fluid leak. Physical examination revealed a thin covering of abnormal epidermis over the large placode. Magnetic resonance imaging revealed a large myelomeningocele defect with posterior element defects spanning from L2 to the sacrum with evidence of tethering. The patient underwent an intradural transection of the spinal cord with a "blind-pouch" closure of the dura at the level of T12/L1. Postoperatively, the patient developed intermittent episodes of hypertension, bradycardia, headaches, altered mental status, severe perspiration, and red flushing of the upper torso, face, and arms. The diagnosis of AD was made clinically and managed with a positive response to a combination of beta- and alpha-blockade along with patient education on avoidance of common AD triggers. At 5-year follow-up the patient has continued to do well on medication. This case highlights a potential major side effect from elective transection of the spinal cord. If unrecognized and untreated, AD can cause significant distress and morbidity. We hope this first case report serves to supplement existing data and aid in future surgical and medical decision

  12. Teaching Adult Rats Spinalized as Neonates to Walk Using Trunk Robotic Rehabilitation: Elements of Success, Failure, and Dependence.

    Science.gov (United States)

    Udoekwere, Ubong I; Oza, Chintan S; Giszter, Simon F

    2016-08-10

    Robot therapy promotes functional recovery after spinal cord injury (SCI) in animal and clinical studies. Trunk actions are important in adult rats spinalized as neonates (NTX rats) that walk autonomously. Quadrupedal robot rehabilitation was tested using an implanted orthosis at the pelvis. Trunk cortical reorganization follows such rehabilitation. Here, we test the functional outcomes of such training. Robot impedance control at the pelvis allowed hindlimb, trunk, and forelimb mechanical interactions. Rats gradually increased weight support. Rats showed significant improvement in hindlimb stepping ability, quadrupedal weight support, and all measures examined. Function in NTX rats both before and after training showed bimodal distributions, with "poor" and "high weight support" groupings. A total of 35% of rats initially classified as "poor" were able to increase their weight-supported step measures to a level considered "high weight support" after robot training, thus moving between weight support groups. Recovered function in these rats persisted on treadmill with the robot both actuated and nonactuated, but returned to pretraining levels if they were completely disconnected from the robot. Locomotor recovery in robot rehabilitation of NTX rats thus likely included context dependence and/or incorporation of models of robot mechanics that became essential parts of their learned strategy. Such learned dependence is likely a hurdle to autonomy to be overcome for many robot locomotor therapies. Notwithstanding these limitations, trunk-based quadrupedal robot rehabilitation helped the rats to visit mechanical states they would never have achieved alone, to learn novel coordinations, and to achieve major improvements in locomotor function. Neonatal spinal transected rats without any weight support can be taught weight support as adults by using robot rehabilitation at trunk. No adult control rats with neonatal spinal transections spontaneously achieve similar changes

  13. Neurogenesis and growth factors expression after complete spinal cord transection in Pleurodeles waltlii

    Directory of Open Access Journals (Sweden)

    Amira Z Zaky

    2015-01-01

    Full Text Available Following spinal lesion, connections between the supra-spinal centers and spinal neuronal networks can be disturbed, which causes the deterioration or even the complete absence of sublesional locomotor activity. In Mammals, possibilities of locomotion restoration are much reduced since descending tracts either have very poor regenerative ability or do not regenerate at all. However, in lower Vertebrates, there is spontaneous locomotion recuperation after complete spinal cord transection at the mid-trunk level. This phenomenon depends on a translesional descending axon re-growth originating from the brainstem. On the other hand, cellular and molecular mechanisms underlying spinal cord regeneration and in parallel, locomotion restoration of the animal, are not well known. FGF-2 plays an important role in different processes such as neural induction, neuronal progenitor proliferation and their differentiation. Studies had shown an over expression of this growth factor after tail amputation. Nestin, a protein specific for intermediate filaments, is considered as an early marker for neuronal precursors. It has been recently shown that its expression increases after tail transection in Urodeles. Using this marker and western blots, our results show that the increase in the number of FGF-2 and FGFR2 mRNAs is correlated with an increase in neurogenesis especially in the central canal lining cells immediately after lesion. This study also confirms that spinal cord re-growth through the lesion site initially follows a rostrocaudal direction. In addition to its role known in neuronal differentiation, FGF-2 could be implicated in the differentiation of ependymal cells into neuronal progenitors.

  14. Spinal cord injury below-level neuropathic pain relief with dorsal root entry zone microcoagulation performed caudal to level of complete spinal cord transection.

    Science.gov (United States)

    Falci, Scott; Indeck, Charlotte; Barnkow, Dave

    2018-06-01

    OBJECTIVE Surgically created lesions of the spinal cord dorsal root entry zone (DREZ) to relieve central pain after spinal cord injury (SCI) have historically been performed at and cephalad to, but not below, the level of SCI. This study was initiated to investigate the validity of 3 proposed concepts regarding the DREZ in SCI central pain: 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through sympathetic nervous system (SNS) pathways. 3) Perceived SCI below-level central pain follows a unique somatotopic map of DREZ pain-generators. METHODS Three unique patients with both intractable SCI below-level central pain and complete spinal cord transection at the level of SCI were identified. All 3 patients had previously undergone surgical intervention to their spinal cords-only cephalad to the level of spinal cord transection-with either DREZ microcoagulation or cyst shunting, in failed attempts to relieve their SCI below-level central pain. Subsequent to these surgeries, DREZ lesioning of the spinal cord solely caudal to the level of complete spinal cord transection was performed using electrical intramedullary guidance. The follow-up period ranged from 1 1/2 to 11 years. RESULTS All 3 patients in this study had complete or near-complete relief of all below-level neuropathic pain. The analyzed electrical data confirmed and enhanced a previously proposed somatotopic map of SCI below-level DREZ pain generators. CONCLUSIONS The results of this study support the following hypotheses. 1) The spinal cord DREZ caudal to the level of SCI can be a primary generator of SCI below-level central pain. 2) Neuronal transmission from a DREZ that generates SCI below-level central pain to brain pain centers can be primarily through SNS pathways. 3) Perceived SCI below-level central pain follows a unique

  15. Improved axonal regeneration of transected spinal cord mediated by multichannel collagen conduits functionalized with neurotrophin-3 gene.

    Science.gov (United States)

    Yao, L; Daly, W; Newland, B; Yao, S; Wang, W; Chen, B K K; Madigan, N; Windebank, A; Pandit, A

    2013-12-01

    Functionalized biomaterial scaffolds targeted at improving axonal regeneration by enhancing guided axonal growth provide a promising approach for the repair of spinal cord injury. Collagen neural conduits provide structural guidance for neural tissue regeneration, and in this study it is shown that these conduits can also act as a reservoir for sustained gene delivery. Either a G-luciferase marker gene or a neurotrophin-3-encoding gene, complexed to a non-viral, cyclized, PEGylated transfection vector, was loaded within a multichannel collagen conduit. The complexed genes were then released in a controlled fashion using a dual release system both in vitro and in vivo. For evaluation of their biological performance, the loaded conduits were implanted into the completely transected rat thoracic spinal cord (T8-T10). Aligned axon regeneration through the channels of conduits was observed one month post-surgery. The conduits delivering neurotrophin-3 polyplexes resulted in significantly increased neurotrophin-3 levels in the surrounding tissue and a statistically higher number of regenerated axons versus the control conduits (P<0.05). This study suggests that collagen neural conduits delivering a highly effective non-viral therapeutic gene may hold promise for repair of the injured spinal cord.

  16. Thoracic rat spinal cord contusion injury induces remote spinal gliogenesis but not neurogenesis or gliogenesis in the brain.

    Directory of Open Access Journals (Sweden)

    Steffen Franz

    Full Text Available After spinal cord injury, transected axons fail to regenerate, yet significant, spontaneous functional improvement can be observed over time. Distinct central nervous system regions retain the capacity to generate new neurons and glia from an endogenous pool of progenitor cells and to compensate neural cell loss following certain lesions. The aim of the present study was to investigate whether endogenous cell replacement (neurogenesis or gliogenesis in the brain (subventricular zone, SVZ; corpus callosum, CC; hippocampus, HC; and motor cortex, MC or cervical spinal cord might represent a structural correlate for spontaneous locomotor recovery after a thoracic spinal cord injury. Adult Fischer 344 rats received severe contusion injuries (200 kDyn of the mid-thoracic spinal cord using an Infinite Horizon Impactor. Uninjured rats served as controls. From 4 to 14 days post-injury, both groups received injections of bromodeoxyuridine (BrdU to label dividing cells. Over the course of six weeks post-injury, spontaneous recovery of locomotor function occurred. Survival of newly generated cells was unaltered in the SVZ, HC, CC, and the MC. Neurogenesis, as determined by identification and quantification of doublecortin immunoreactive neuroblasts or BrdU/neuronal nuclear antigen double positive newly generated neurons, was not present in non-neurogenic regions (MC, CC, and cervical spinal cord and unaltered in neurogenic regions (dentate gyrus and SVZ of the brain. The lack of neuronal replacement in the brain and spinal cord after spinal cord injury precludes any relevance for spontaneous recovery of locomotor function. Gliogenesis was increased in the cervical spinal cord remote from the injury site, however, is unlikely to contribute to functional improvement.

  17. Tail nerve electrical stimulation induces body weight-supported stepping in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-Xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-03-30

    Walking or stepping has been considered the result from the activation of the central pattern generator (CPG). In most patients with spinal cord injury (SCI) the CPG is undamaged. To date, there are no noninvasive approaches for activating the CPG. Recently we developed a noninvasive technique, tail nerve electrical stimulation (TANES), which can induce positive hind limb movement of SCI rats. The purpose of this study is to introduce the novel technique and examine the effect of TANES on CPG activation. A 25 mm contusion injury was produced at spinal cord T10 of female, adult Long-Evans rats by using the NYU impactor device. Rats received TANES ( approximately 40 mA at 4 kHz) 7 weeks after injury. During TANES all injured rats demonstrated active body weight-supported stepping of hind limbs with left-right alternation and occasional front-hind coordination, resulting in significant, temporary increase in BBB scores (p<0.01). However, there is no response to TANES from rats with L2 transection, consistent with other reports that the CPG may be located at L1-2. S1 transection negatively implies the key role of TANES in CPG activation. The TANES not only renders paralyzed rats with a technique-induced ability to walk via activating CPG, but also is likely to be used for locomotor training. It has more beneficial effects for physical training over other training paradigms including treadmill training and invasive functional electrical stimulation. Therefore the TANES may have considerable potential for achieving improvement of functional recovery in animal models and a similar method may be suggested for human study. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  18. A novel device for studying weight supported, quadrupedal overground locomotion in spinal cord injured rats.

    Science.gov (United States)

    Hamlin, Marvin; Traughber, Terence; Reinkensmeyer, David J; de Leon, Ray D

    2015-05-15

    Providing weight support facilitates locomotion in spinal cord injured animals. To control weight support, robotic systems have been developed for treadmill stepping and more recently for overground walking. We developed a novel device, the body weight supported ambulatory rodent trainer (i.e. BART). It has a small pneumatic cylinder that moves along a linear track above the rat. When air is supplied to the cylinder, the rats are lifted as they perform overground walking. We tested the BART device in rats that received a moderate spinal cord contusion injury and in normal rats. Locomotor training with the BART device was not performed. All of the rats learned to walk in the BART device. In the contused rats, significantly greater paw dragging and dorsal stepping occurred in the hindlimbs compared to normal. Providing weight support significantly raised hip position and significantly reduced locomotor deficits. Hindlimb stepping was tightly coupled to forelimb stepping but only when the contused rats stepped without weight support. Three weeks after the contused rats received a complete spinal cord transection, significantly fewer hindlimb steps were performed. Relative to rodent robotic systems, the BART device is a simpler system for studying overground locomotion. The BART device lacks sophisticated control and sensing capability, but it can be assembled relatively easily and cheaply. These findings suggest that the BART device is a useful tool for assessing quadrupedal, overground locomotion which is a more natural form of locomotion relative to treadmill locomotion. Published by Elsevier B.V.

  19. Restoration of anatomical continuity after spinal cord transection depends on Wnt/β-catenin signaling in larval zebrafish

    Directory of Open Access Journals (Sweden)

    Daniel Wehner

    2018-02-01

    Full Text Available This data article contains descriptive and experimental data on spinal cord regeneration in larval zebrafish and its dependence on Wnt/β-catenin signaling. Analyzing spread of intraspinally injected fluorescent dextran showed that anatomical continuity is rapidly restored after complete spinal cord transection. Pharmacological interference with Wnt/β-catenin signaling (IWR-1 impaired restoration of spinal continuity. For further details and experimental findings please refer to the research article by Wehner et al. Wnt signaling controls pro-regenerative Collagen XII in functional spinal cord regeneration in zebrafish (Wehner et al., 2017 [1]. Keywords: Wnt, Beta-catenin, Regeneration, Spinal cord, Zebrafish

  20. Mondia whitei (Periplocaceae prevents and Guibourtia tessmannii (Caesalpiniaceae facilitates fictive ejaculation in spinal male rats

    Directory of Open Access Journals (Sweden)

    Watcho Pierre

    2013-01-01

    Full Text Available Abstract Background Mondia whitei and Guibourtia tessmannii are used in Cameroon traditional medicine as aphrodisiacs. The present study was undertaken to evaluate the pro-ejaculatory effects of the aqueous and organic solvent extracts of these plants in spinal male rats. Methods In spinal cord transected and urethane-anesthetized rats, two electrodes where inserted into the bulbospongiosus muscles and the ejaculatory motor pattern was recorded on a polygraph after urethral and penile stimulations, intravenous injection of saline (0.1 ml/100 g, dopamine (0.1 μM/kg, aqueous and organic solvent plant extracts (20 mg/kg. Results In all spinal rats, urethral and penile stimulations always induced the ejaculatory motor pattern. Aqueous or hexane extract of Mondia whitei (20 mg/kg prevented the expression of the ejaculatory motor pattern. The pro-ejaculatory effects of dopamine (0.1 μM/kg were not abolished in spinal rats pre-treated with Mondia whitei extracts. Aqueous and methanolic stem bark extracts of Guibourtia tessmannii (20 mg/kg induced fictive ejaculation characterized by rhythmic contractions of the bulbospongiosus muscles followed sometimes with expulsion of seminal plugs. In rats pre-treated with haloperidol (0.26 μM/kg, no ejaculatory motor pattern was recorded after intravenous injection of Guibourtia tessmannii extracts (20 mg/kg. Conclusion These results show that Mondia whitei possesses preventive effects on the expression of fictive ejaculation in spinal male rats, which is not mediated through dopaminergic pathway; on the contrary, the pro-ejaculatory activities of Guibourtia tessmannii require the integrity of dopaminergic system to exert its effects. The present findings further justify the ethno-medicinal claims of Mondia whitei and Guibourtia tessmannii.

  1. Regeneration of descending spinal axons after transection of the thoracic spinal cord during early development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Martin, G F; Terman, J R; Wang, X M

    2000-11-15

    Opossums are born in an immature, fetal-like state, making it possible to lesion their spinal cord early in development without intrauterine surgery. When the thoracic spinal cord of the North American opossum, Didelphis virginiana, is transected on postnatal day 5, and injections of Fast Blue (FB) are made caudal to the lesion site 30-40 days or 6 months later, neurons are labeled in all of the spinal and supraspinal areas that are labeled after comparable injections in age-matched, unlesioned controls. Double-labeling studies document that regeneration of cut axons contributes to growth of axons through the lesion site and behavioral studies show that animals lesioned on postnatal day 5 use their hindlimbs in normal appearing locomotion as adults. The critical period for developmental plasticity of descending spinal axons extends to postnatal day 26, although axons which grow through the lesion site become fewer in number and more restricted as to origin with increasing age. Animals lesioned between postnatal day 12 and 26 use the hindlimbs better than animals lesioned as adults, but hindlimb function is markedly abnormal and uncoordinated with that of the forelimbs. We conclude that restoration of anatomical continuity occurs after transection of the spinal cord in developing opossums, that descending axons grow through the lesion site, that regeneration of cut axons contributes to such growth, and that animals lesioned early enough in development have relatively normal motor function as adults.

  2. Repair of spinal cord injury by implantation of bFGF-incorporated HEMA-MOETACL hydrogel in rats

    Science.gov (United States)

    Chen, Bo; He, Jianyu; Yang, Hao; Zhang, Qian; Zhang, Lingling; Zhang, Xian; Xie, En; Liu, Cuicui; Zhang, Rui; Wang, Yi; Huang, Linhong; Hao, Dingjun

    2015-03-01

    There is no effective strategy for the treatment of spinal cord injury (SCI). An appropriate combination of hydrogel materials and neurotrophic factor therapy is currently thought to be a promising approach. In this study, we performed experiments to evaluate the synergic effect of implanting hydroxyl ethyl methacrylate [2-(methacryloyloxy)ethyl] trimethylammonium chloride (HEMA-MOETACL) hydrogel incorporated with basic fibroblast growth factor (bFGF) into the site of surgically induced SCI. Prior to implantation, the combined hydrogel was surrounded by an acellular vascular matrix. Sprague-Dawley rats underwent complete spinal cord transection at the T-9 level, followed by implantation of bFGF/HEMA-MOETACL 5 days after transection surgery. Our results showed that the bFGF/HEMA-MOETACL transplant provided a scaffold for the ingrowth of regenerating tissue eight weeks after implantation. Furthermore, this newly designed implant promoted both nerve tissue regeneration and functional recovery following SCI. These results indicate that HEMA-MOETACL hydrogel is a promising scaffold for intrathecal, localized and sustained delivery of bFGF to the injured spinal cord and provide evidence for the possibility that this approach may have clinical applications in the treatment of SCI.

  3. Therapy induces widespread reorganization of motor cortex after complete spinal transection that supports motor recovery.

    Science.gov (United States)

    Ganzer, Patrick D; Manohar, Anitha; Shumsky, Jed S; Moxon, Karen A

    2016-05-01

    Reorganization of the somatosensory system and its relationship to functional recovery after spinal cord injury (SCI) has been well studied. However, little is known about the impact of SCI on organization of the motor system. Recent studies suggest that step-training paradigms in combination with spinal stimulation, either electrically or through pharmacology, are more effective than step training alone at inducing recovery and that reorganization of descending corticospinal circuits is necessary. However, simpler, passive exercise combined with pharmacotherapy has also shown functional improvement after SCI and reorganization of, at least, the sensory cortex. In this study we assessed the effect of passive exercise and serotonergic (5-HT) pharmacological therapies on behavioral recovery and organization of the motor cortex. We compared the effects of passive hindlimb bike exercise to bike exercise combined with daily injections of 5-HT agonists in a rat model of complete mid-thoracic transection. 5-HT pharmacotherapy combined with bike exercise allowed the animals to achieve unassisted weight support in the open field. This combination of therapies also produced extensive expansion of the axial trunk motor cortex into the deafferented hindlimb motor cortex and, surprisingly, reorganization within the caudal and even the rostral forelimb motor cortex areas. The extent of the axial trunk expansion was correlated to improvement in behavioral recovery of hindlimbs during open field locomotion, including weight support. From a translational perspective, these data suggest a rationale for developing and optimizing cost-effective, non-invasive, pharmacological and passive exercise regimes to promote plasticity that supports restoration of movement after spinal cord injury. Copyright © 2016. Published by Elsevier Inc.

  4. Role of spared pathways in locomotor recovery after body-weight-supported treadmill training in contused rats.

    Science.gov (United States)

    Singh, Anita; Balasubramanian, Sriram; Murray, Marion; Lemay, Michel; Houle, John

    2011-12-01

    Body-weight-supported treadmill training (BWSTT)-related locomotor recovery has been shown in spinalized animals. Only a few animal studies have demonstrated locomotor recovery after BWSTT in an incomplete spinal cord injury (SCI) model, such as contusion injury. The contribution of spared descending pathways after BWSTT to behavioral recovery is unclear. Our goal was to evaluate locomotor recovery in contused rats after BWSTT, and to study the role of spared pathways in spinal plasticity after BWSTT. Forty-eight rats received a contusion, a transection, or a contusion followed at 9 weeks by a second transection injury. Half of the animals in the three injury groups were given BWSTT for up to 8 weeks. Kinematics and the Basso-Beattie-Bresnahan (BBB) test assessed behavioral improvements. Changes in Hoffmann-reflex (H-reflex) rate depression property, soleus muscle mass, and sprouting of primary afferent fibers were also evaluated. BWSTT-contused animals showed accelerated locomotor recovery, improved H-reflex properties, reduced muscle atrophy, and decreased sprouting of small caliber afferent fibers. BBB scores were not improved by BWSTT. Untrained contused rats that received a transection exhibited a decrease in kinematic parameters immediately after the transection; in contrast, trained contused rats did not show an immediate decrease in kinematic parameters after transection. This suggests that BWSTT with spared descending pathways leads to neuroplasticity at the lumbar spinal level that is capable of maintaining locomotor activity. Discontinuing training after the transection in the trained contused rats abolished the improved kinematics within 2 weeks and led to a reversal of the improved H-reflex response, increased muscle atrophy, and an increase in primary afferent fiber sprouting. Thus continued training may be required for maintenance of the recovery. Transected animals had no effect of BWSTT, indicating that in the absence of spared pathways this

  5. Spinal cord injury enables aromatic l-amino acid decarboxylase cells to synthesize monoamines

    DEFF Research Database (Denmark)

    Wienecke, Jacob; Ren, Li-Qun; Hultborn, Hans

    2014-01-01

    in spinal AADC cells is initiated by the loss of descending 5-HT projections due to spinal cord injury (SCI). By in vivo and in vitro electrophysiology, we show that 5-HT produced by AADC cells increases the excitability of spinal motoneurons. The phenotypic change in AADC cells appears to result from......Serotonin (5-HT), an important modulator of both sensory and motor functions in the mammalian spinal cord, originates mainly in the raphe nuclei of the brainstem. However, following complete transection of the spinal cord, small amounts of 5-HT remain detectable below the lesion. It has been...... zone and dorsal horn of the spinal gray matter. We show that, following complete transection of the rat spinal cord at S2 level, AADC cells distal to the lesion acquire the ability to produce 5-HT from its immediate precursor, 5-hydroxytryptophan. Our results indicate that this phenotypic change...

  6. Changes in galanin immunoreactivity in rat lumbosacral spinal cord and dorsal root ganglia after spinal cord injury.

    Science.gov (United States)

    Zvarova, K; Murray, E; Vizzard, M A

    2004-08-02

    Alterations in the expression of the neuropeptide galanin were examined in micturition reflex pathways 6 weeks after complete spinal cord transection (T8). In control animals, galanin expression was present in specific regions of the gray matter in the rostral lumbar and caudal lumbosacral spinal cord, including: (1) the dorsal commissure; (2) the superficial dorsal horn; (3) the regions of the intermediolateral cell column (L1-L2) and the sacral parasympathetic nucleus (L6-S1); and (4) the lateral collateral pathway in lumbosacral spinal segments. Densitometry analysis demonstrated significant increases (P < or = 0.001) in galanin immunoreactivity (IR) in these regions of the S1 spinal cord after spinal cord injury (SCI). Changes in galanin-IR were not observed at the L4-L6 segments except for an increase in galanin-IR in the dorsal commissure in the L4 segment. In contrast, decreases in galanin-IR were observed in the L1 segment. The number of galanin-IR cells increased (P < or = 0.001) in the L1 and S1 dorsal root ganglia (DRG) after SCI. In all DRG examined (L1, L2, L6, and S1), the percentage of bladder afferent cells expressing galanin-IR significantly increased (4-19-fold) after chronic SCI. In contrast, galanin expression in nerve fibers in the urinary bladder detrusor and urothelium was decreased or eliminated after SCI. Expression of the neurotrophic factors nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF) was altered in the spinal cord after SCI. A significant increase in BDNF expression was present in spinal cord segments after SCI. In contrast, NGF expression was only increased in the spinal segments adjacent and rostral to the transection site (T7-T8), whereas spinal segments (T13-L1; L6-S1), distal to the transection site exhibited decreased NGF expression. Changes in galanin expression in micturition pathways after SCI may be mediated by changing neurotrophic factor expression, particularly BDNF. These changes may contribute to

  7. Intramuscular Neurotrophin-3 normalizes low threshold spinal reflexes, reduces spasms and improves mobility after bilateral corticospinal tract injury in rats.

    Science.gov (United States)

    Kathe, Claudia; Hutson, Thomas Haynes; McMahon, Stephen Brendan; Moon, Lawrence David Falcon

    2016-10-19

    Brain and spinal injury reduce mobility and often impair sensorimotor processing in the spinal cord leading to spasticity. Here, we establish that complete transection of corticospinal pathways in the pyramids impairs locomotion and leads to increased spasms and excessive mono- and polysynaptic low threshold spinal reflexes in rats. Treatment of affected forelimb muscles with an adeno-associated viral vector (AAV) encoding human Neurotrophin-3 at a clinically-feasible time-point after injury reduced spasticity. Neurotrophin-3 normalized the short latency Hoffmann reflex to a treated hand muscle as well as low threshold polysynaptic spinal reflexes involving afferents from other treated muscles. Neurotrophin-3 also enhanced locomotor recovery. Furthermore, the balance of inhibitory and excitatory boutons in the spinal cord and the level of an ion co-transporter in motor neuron membranes required for normal reflexes were normalized. Our findings pave the way for Neurotrophin-3 as a therapy that treats the underlying causes of spasticity and not only its symptoms.

  8. Enhanced motor function by training in spinal cord contused rats following radiation therapy.

    Directory of Open Access Journals (Sweden)

    Ronaldo Ichiyama

    Full Text Available Weight-bearing stepping, without supraspinal re-connectivity, can be attained by treadmill training in an animal whose spinal cord has been completely transected at the lower thoracic level. Repair of damaged tissue and of supraspinal connectivity/circuitry following spinal cord injury in rat can be achieved by specific cell elimination with radiation therapy of the lesion site delivered within a critical time window, 2-3 weeks postinjury. Here we examined the effects of training in the repaired spinal cord following clinical radiation therapy. Studies were performed in a severe rat spinal cord contusion injury model, one similar to fracture/crush injuries in humans; the injury was at the lower thoracic level and the training was a combined hindlimb standing and stepping protocol. Radiotherapy, in a similar manner to that reported previously, resulted in a significant level of tissue repair/preservation at the lesion site. Training in the irradiated group, as determined by limb kinematics tests, resulted in functional improvements that were significant for standing and stepping capacity, and yielded a significant direct correlation between standing and stepping performance. In contrast, the training in the unirradiated group resulted in no apparent beneficial effects, and yielded an inverse correlation between standing and stepping performance, e.g., subject with good standing showed poor stepping capacity. Further, without any training, a differential functional change was observed in the irradiated group; standing capacity was significantly inhibited while stepping showed a slight trend of improvement compared with the unirradiated group. These data suggest that following repair by radiation therapy the spinal circuitries which control posture and locomotor were modified, and that the beneficial functional modulation of these circuitries is use dependent. Further, for restoring beneficial motor function following radiotherapy, training seems

  9. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats.

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-02-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10 th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord.

  10. Effect of electrical stimulation on neural regeneration via the p38-RhoA and ERK1/2-Bcl-2 pathways in spinal cord-injured rats

    Science.gov (United States)

    Joo, Min Cheol; Jang, Chul Hwan; Park, Jong Tae; Choi, Seung Won; Ro, Seungil; Kim, Min Seob; Lee, Moon Young

    2018-01-01

    Although electrical stimulation is therapeutically applied for neural regeneration in patients, it remains unclear how electrical stimulation exerts its effects at the molecular level on spinal cord injury (SCI). To identify the signaling pathway involved in electrical stimulation improving the function of injured spinal cord, 21 female Sprague-Dawley rats were randomly assigned to three groups: control (no surgical intervention, n = 6), SCI (SCI only, n = 5), and electrical simulation (ES; SCI induction followed by ES treatment, n = 10). A complete spinal cord transection was performed at the 10th thoracic level. Electrical stimulation of the injured spinal cord region was applied for 4 hours per day for 7 days. On days 2 and 7 post SCI, the Touch-Test Sensory Evaluators and the Basso-Beattie-Bresnahan locomotor scale were used to evaluate rat sensory and motor function. Somatosensory-evoked potentials of the tibial nerve of a hind paw of the rat were measured to evaluate the electrophysiological function of injured spinal cord. Western blot analysis was performed to measure p38-RhoA and ERK1/2-Bcl-2 pathways related protein levels in the injured spinal cord. Rat sensory and motor functions were similar between SCI and ES groups. Compared with the SCI group, in the ES group, the latencies of the somatosensory-evoked potential of the tibial nerve of rats were significantly shortened, the amplitudes were significantly increased, RhoA protein level was significantly decreased, protein gene product 9.5 expression, ERK1/2, p38, and Bcl-2 protein levels in the spinal cord were significantly increased. These data suggest that ES can promote the recovery of electrophysiological function of the injured spinal cord through regulating p38-RhoA and ERK1/2-Bcl-2 pathway-related protein levels in the injured spinal cord. PMID:29557386

  11. Regeneration of supraspinal axons after transection of the thoracic spinal cord in the developing opossum, Didelphis virginiana.

    Science.gov (United States)

    Wang, X M; Terman, J R; Martin, G F

    1998-08-17

    When the thoracic spinal cord of the North American opossum is transected early in development, supraspinal axons grow through the lesion. In the experiments reported here, we asked whether regeneration of cut axons contributes to such growth. Fast Blue (FB) was injected into the lumbar cord on postnatal day (PD)5, 8, 15, or 20. Five days later, FB was removed by gentle suction, and the spinal cord was transected at thoracic levels. Fourteen days later, rhodamine B dextran was injected between the site of the FB injection and the lesion. The pups were maintained for an additional 7-10 days before killing and perfusion. We assumed that supraspinal neurons that contained FB survived axotomy and those that contained both FB and rhodamine B dextran supported regenerating axons. In the PD5 group (lesioned at PD10), regenerative growth was documented for axons originating in all of the supraspinal nuclei that innervate the lumbar cord by PD10. When the injections were made at the later ages, however, neurons that supported regenerative growth were fewer in number and regionally restricted. In some cases, they were limited primarily to the red nucleus, the medullary raphe, and the adjacent reticular formation. Our results show that regeneration of cut axons contributes to growth of supraspinal axons through the lesion after transection of the thoracic cord in developing opossums and that the critical period for regenerative growth is not the same for all axons.

  12. Drug distribution in spinal cord during administration with spinal loop dialysis probes in anaesthetized rats

    DEFF Research Database (Denmark)

    Uustalu, Maria; Abelson, Klas S P

    2007-01-01

    The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H]Epibatid......The present investigation aimed to study two methodological concerns of an experimental model, where a spinal loop dialysis probe is used for administration of substances to the spinal cord and sampling of neurotransmitters by microdialysis from the same area of anaesthetized rats. [(3)H...... intraspinal administration of substances through the spinal loop dialysis probe....

  13. Radiation-induced apoptosis in the neonatal and adult rat spinal cord.

    Science.gov (United States)

    Li, Y Q; Wong, C S

    2000-09-01

    This study was designed to characterize radiation-induced apoptosis in the spinal cord of the neonatal and young adult rat. Spinal cords (C2-T2) of 1-, 2- and 10-week-old rats were irradiated with a single dose of 8, 18 or 22 Gy. Apoptosis was assessed histologically according to its specific morphological features or by using the TUNEL assay. Cell proliferation was assessed immunohistochemically using BrdU. Identities of cell types undergoing apoptosis were assessed using immunohistochemistry or in situ hybridization using markers for neurons, glial progenitor cells, microglia, oligodendrocytes and astrocytes. The time course of radiation-induced apoptosis in 1- or 2-week-old rat spinal cord was similar to that in the young adult rat spinal cord. A peak response was observed at about 8 h after irradiation, and the apoptosis index returned to the levels in nonirradiated spinal cords at 24 h. The neonatal rat spinal cord demonstrated increased apoptosis compared to the adult. Values for total yield of apoptosis over 24 h induced by 8 Gy in the neonatal rat spinal cord were significantly greater than that in the adult. Immunohistochemistry studies using Leu7, galactocerebroside, Rip and adenomatous polyposis coli tumor suppressor protein indicated that most apoptotic cells were cells of the oligodendroglial lineage regardless of the age of the animal. No evidence of Gfap or factor VIII-related antigen-positive apoptotic cells was observed, and there was a small number of apoptotic microglial cells (lectin-Rca1 positive) in the neonatal and adult rat spinal cord. In the neonatal but not adult rat spinal cord, about 10% of the apoptotic cells appeared to be neurons and were immunoreactive for synaptophysin. Labeling indices (LI) for BrdU in nonirradiated 1- and 2-week-old rat spinal cord were 20.0 and 16.3%, respectively, significantly greater than the LI of 1.0% in the 10-week-old rat spinal cord. At 8 h after a single dose of 8 Gy, 13.4% of the apoptotic cells were

  14. Quantitative anatomical and behavioral analyses of regeneration and collateral sprouting following spinal cord transection in the nurse shark (ginglymostoma cirratum).

    Science.gov (United States)

    Gelderd, J B

    1979-01-01

    The spinal cord was transected at the mid-thoracic level in 32 nurse sharks. Four animals per group were sacrificed at intervals of 10, 20, 30, 40, 60 and 90 days postoperative. Two groups of fish underwent a subsequent spinla1 cord retransection at the same site at 90 days and were sacrificed 10 and 20 days later. Three sections of spinal cord were removed from each shark for histological analysis. Behaviorally, timed trials for swimming speed and a strength test for axial musculature contraction caudal to the lesion site were performed at 5 day postoperative intervals. Histological analysis showed little regeneration (9-13 percent) of two descending tracts 90 days following the lesion and no return of rostrally controlled movements caudal to the lesion. However, synaptic readjustment did occur caudal to the lesion. This phenomenon was attributed to local segmental sprouting of adjacent, intact nerve fibers. A close correlation was shown between this synaptic readjustment and the strength of uncontrollable undulatory movements seen caudal to the lesion site following spinal cord transection. The relationship of regeneration and collateral sprouting to quantitative behavioral changes is discussed.

  15. Improved Neural Regeneration with Olfactory Ensheathing Cell Inoculated PLGA Scaffolds in Spinal Cord Injury Adult Rats

    Directory of Open Access Journals (Sweden)

    Changxing Wang

    2017-03-01

    Full Text Available Background/Aims: Every year, around the world, between 250000 and 500000 people suffer from spinal cord injury (SCI. This study investigated the potential for poly (lactic-co-glycolic acid (PLGA complex inoculated with olfactory ensheathing cells (OECs to treat spinal cord injury in a rat model. Methods: OECs were identified by immunofluorescence based on the nerve growth factor receptor (NGFR p75. The Basso, Beattie, and Bresnahan (BBB score, together with an inclined plane (IP test were used to detect functional recovery. Nissl staining along with the luxol fast blue (LFB staining were independently employed to illustrate morphological alterations. More so, immunofluorescence labeling of the glial fibrillary acidic protein (GFAP and the microtubule-associated protein-2 (MAP-2, representing astrocytes and neurons respectively, were investigated at time points of weeks 2 and 8 post-operation. Results: The findings showed enhanced locomotor recovery, axon myelination and better protected neurons post SCI when compared with either PLGA or untreated groups (P < 0.05. Conclusion: PLGA complexes inoculated with OECs improve locomotor functional recovery in transected spinal cord injured rat models, which is most likely due to the fact it is conducive to a relatively benevolent microenvironment, has nerve protective effects, as well as the ability to enhance remyelination, via a promotion of cell differentiation and inhibition of astrocyte formation.

  16. Erythropoietin improves place learning in fimbria-fornix-transected rats and modifies the search pattern of normal rats

    DEFF Research Database (Denmark)

    Mogensen, Jesper; Miskowiak, Kamilla; Sørensen, Thomas Alrik

    2004-01-01

    administration of EPO significantly improves the posttraumatic functional recovery of the presently studied place learning task after transections of the fimbria-fornix. Additionally, administration of EPO influences the strategy, although not quality, of task solution in normal (sham-operated) rats.......The acquisition of a water-maze-based allocentric place learning task was studied in four groups of rats: two groups subjected to bilateral transections of the fimbria-fornix and two groups undergoing a sham control operation. At the moment of surgery all animals were given one systemic......-associated impairment. The two sham-operated groups did not differ with respect to the proficiency of task acquisition. But administration of EPO to intact animals caused a significant modification of swim patterns-apparently reflecting a somewhat modified strategy of task solution. It is concluded that systemic...

  17. Positive effects of bFGF modified rat amniotic epithelial cells transplantation on transected rat optic nerve.

    Directory of Open Access Journals (Sweden)

    Jia-Xin Xie

    Full Text Available Effective therapy for visual loss caused by optic nerve injury or diseases has not been achieved even though the optic nerve has the regeneration potential after injury. This study was designed to modify amniotic epithelial cells (AECs with basic fibroblast growth factor (bFGF gene, preliminarily investigating its effect on transected optic nerve.A human bFGF gene segment was delivered into rat AECs (AECs/hbFGF by lentiviral vector, and the gene expression was examined by RT-PCR and ELISA. The AECs/hbFGF and untransfected rat AECs were transplanted into the transected site of the rat optic nerve. At 28 days post transplantation, the survival and migration of the transplanted cells was observed by tracking labeled cells; meanwhile retinal ganglion cells (RGCs were observed and counted by employing biotin dextran amine (BDA and Nissl staining. Furthermore, the expression of growth associated protein 43 (GAP-43 within the injury site was examined with immunohistochemical staining.The AECs/hbFGF was proven to express bFGF gene and secrete bFGF peptide. Both AECs/hbFGF and AECs could survive and migrate after transplantation. RGCs counting implicated that RGCs numbers of the cell transplantation groups were significantly higher than that of the control group, and the AECs/hbFGF group was significantly higher than that of the AECs group. Moreover GAP-43 integral optical density value in the control group was significantly lower than that of the cell transplantation groups, and the value in the AECs/hbFGF group was significantly higher than that of the AECs group.AECs modified with bFGF could reduce RGCs loss and promote expression of GAP-43 in the rat optic nerve transected model, facilitating the process of neural restoration following injury.

  18. Why New Spinal Cord Plasticity Does Not Disrupt Old Motor Behaviors.

    Science.gov (United States)

    Chen, Yi; Chen, Lu; Wang, Yu; Chen, Xiang Yang; Wolpaw, Jonathan R

    2017-08-23

    When new motor learning changes the spinal cord, old behaviors are not impaired; their key features are preserved by additional compensatory plasticity. To explore the mechanisms responsible for this compensatory plasticity, we transected the spinal dorsal ascending tract before or after female rats acquired a new behavior-operantly conditioned increase or decrease in the right soleus H-reflex-and examined an old behavior-locomotion. Neither spinal dorsal ascending tract transection nor H-reflex conditioning alone impaired locomotion. Nevertheless, when spinal dorsal ascending tract transection and H-reflex conditioning were combined, the rats developed a limp and a tilted posture that correlated in direction and magnitude with the H-reflex change. When the right H-reflex was increased by conditioning, the right step lasted longer than the left and the right hip was higher than the left; when the right H-reflex was decreased by conditioning, the opposite occurred. These results indicate that ascending sensory input guides the compensatory plasticity that normally prevents the plasticity underlying H-reflex change from impairing locomotion. They support the concept of the state of the spinal cord as a negotiated equilibrium that reflects the concurrent influences of all the behaviors in an individual's repertoire; and they support the new therapeutic strategies this concept introduces. SIGNIFICANCE STATEMENT The spinal cord provides a reliable final common pathway for motor behaviors throughout life. Until recently, its reliability was explained by the assumption that it is hardwired; but it is now clear that the spinal cord changes continually as new behaviors are acquired. Nevertheless, old behaviors are preserved. This study shows that their preservation depends on sensory feedback from the spinal cord to the brain: if feedback is removed, the acquisition of a new behavior may disrupt an old behavior. In sum, when a new behavior changes the spinal cord, sensory

  19. Differential expression of Cathepsin S and X in the spinal cord of a rat neuropathic pain model

    Directory of Open Access Journals (Sweden)

    Schmitz Beate

    2008-08-01

    Full Text Available Abstract Background Ample evidence suggests a substantial contribution of cellular and molecular changes in the spinal cord to the induction and persistence of chronic neuropathic pain conditions. While for a long time, proteases were mainly considered as protein degrading enzymes, they are now receiving growing interest as signalling molecules in the pain pathology. In the present study we focused on two cathepsins, CATS and CATX, and studied their spatiotemporal expression and activity during the development and progression of neuropathic pain in the CNS of the rat 5th lumbar spinal nerve transection model (L5T. Results Immediately after the lesion, both cathepsins, CATS and CATX, were upregulated in the spinal cord. Moreover, we succeeded in measuring the activity of CATX, which was substantially increased after L5T. The differential expression of these proteins exhibited the same spatial distribution and temporal progression in the spinal cord, progressing up to the medulla oblongata in the late phase of chronic pain. The cellular distribution of CATS and CATX was, however, considerably different. Conclusion The cellular distribution and the spatio-temporal development of the altered expression of CATS and CATX suggest that these proteins are important players in the spinal mechanisms involved in chronic pain induction and maintenance.

  20. Neutrophils Infiltrate the Spinal Cord Parenchyma of Rats with Experimental Diabetic Neuropathy

    Directory of Open Access Journals (Sweden)

    Victoria L. Newton

    2017-01-01

    Full Text Available Spinal glial cell activation and cytokine secretion have been implicated in the etiology of neuropathic pain in a number of experimental models, including diabetic neuropathy. In this study, streptozotocin- (STZ- induced diabetic rats were either untreated or treated with gabapentin (50 mg/kg/day by gavage for 2 weeks, from 6 weeks after STZ. At 8 weeks after STZ, hypersensitivity was confirmed in the untreated diabetic rats as a reduced response threshold to touch, whilst mechanical thresholds in gabapentin-treated diabetic rats were no different from controls. Diabetes-associated thermal hypersensitivity was also ameliorated by gabapentin. We performed a cytokine profiling array in lumbar spinal cord samples from control and diabetic rats. This revealed an increase in L-selectin, an adhesion molecule important for neutrophil transmigration, in the spinal cord of diabetic rats but not diabetic rats treated with gabapentin. Furthermore, we found an increase in the number of neutrophils present in the parenchyma of the spinal cord, which was again ameliorated in gabapentin-treated diabetic rats. Therefore, we suggest that dysregulated spinal L-selectin and neutrophil infiltration into the spinal cord could contribute to the pathogenesis of painful diabetic neuropathy.

  1. Rat models of spinal cord injury: from pathology to potential therapies

    Science.gov (United States)

    2016-01-01

    ABSTRACT A long-standing goal of spinal cord injury research is to develop effective spinal cord repair strategies for the clinic. Rat models of spinal cord injury provide an important mammalian model in which to evaluate treatment strategies and to understand the pathological basis of spinal cord injuries. These models have facilitated the development of robust tests for assessing the recovery of locomotor and sensory functions. Rat models have also allowed us to understand how neuronal circuitry changes following spinal cord injury and how recovery could be promoted by enhancing spontaneous regenerative mechanisms and by counteracting intrinsic inhibitory factors. Rat studies have also revealed possible routes to rescuing circuitry and cells in the acute stage of injury. Spatiotemporal and functional studies in these models highlight the therapeutic potential of manipulating inflammation, scarring and myelination. In addition, potential replacement therapies for spinal cord injury, including grafts and bridges, stem primarily from rat studies. Here, we discuss advantages and disadvantages of rat experimental spinal cord injury models and summarize knowledge gained from these models. We also discuss how an emerging understanding of different forms of injury, their pathology and degree of recovery has inspired numerous treatment strategies, some of which have led to clinical trials. PMID:27736748

  2. Experimental spinal cord trauma: a review of mechanically induced spinal cord injury in rat models.

    Science.gov (United States)

    Abdullahi, Dauda; Annuar, Azlina Ahmad; Mohamad, Masro; Aziz, Izzuddin; Sanusi, Junedah

    2017-01-01

    It has been shown that animal spinal cord compression (using methods such as clips, balloons, spinal cord strapping, or calibrated forceps) mimics the persistent spinal canal occlusion that is common in human spinal cord injury (SCI). These methods can be used to investigate the effects of compression or to know the optimal timing of decompression (as duration of compression can affect the outcome of pathology) in acute SCI. Compression models involve prolonged cord compression and are distinct from contusion models, which apply only transient force to inflict an acute injury to the spinal cord. While the use of forceps to compress the spinal cord is a common choice due to it being inexpensive, it has not been critically assessed against the other methods to determine whether it is the best method to use. To date, there is no available review specifically focused on the current compression methods of inducing SCI in rats; thus, we performed a systematic and comprehensive publication search to identify studies on experimental spinalization in rat models, and this review discusses the advantages and limitations of each method.

  3. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Science.gov (United States)

    Wheaton, Benjamin J; Noor, Natassya M; Whish, Sophie C; Truettner, Jessie S; Dietrich, W Dalton; Zhang, Moses; Crack, Peter J; Dziegielewska, Katarzyna M; Saunders, Norman R

    2013-01-01

    Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P)7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming) P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating that although

  4. Weight-bearing locomotion in the developing opossum, Monodelphis domestica following spinal transection: remodeling of neuronal circuits caudal to lesion.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Complete spinal transection in the mature nervous system is typically followed by minimal axonal repair, extensive motor paralysis and loss of sensory functions caudal to the injury. In contrast, the immature nervous system has greater capacity for repair, a phenomenon sometimes called the infant lesion effect. This study investigates spinal injuries early in development using the marsupial opossum Monodelphis domestica whose young are born very immature, allowing access to developmental stages only accessible in utero in eutherian mammals. Spinal cords of Monodelphis pups were completely transected in the lower thoracic region, T10, on postnatal-day (P7 or P28 and the animals grew to adulthood. In P7-injured animals regrown supraspinal and propriospinal axons through the injury site were demonstrated using retrograde axonal labelling. These animals recovered near-normal coordinated overground locomotion, but with altered gait characteristics including foot placement phase lags. In P28-injured animals no axonal regrowth through the injury site could be demonstrated yet they were able to perform weight-supporting hindlimb stepping overground and on the treadmill. When placed in an environment of reduced sensory feedback (swimming P7-injured animals swam using their hindlimbs, suggesting that the axons that grew across the lesion made functional connections; P28-injured animals swam using their forelimbs only, suggesting that their overground hindlimb movements were reflex-dependent and thus likely to be generated locally in the lumbar spinal cord. Modifications to propriospinal circuitry in P7- and P28-injured opossums were demonstrated by changes in the number of fluorescently labelled neurons detected in the lumbar cord following tracer studies and changes in the balance of excitatory, inhibitory and neuromodulatory neurotransmitter receptors' gene expression shown by qRT-PCR. These results are discussed in the context of studies indicating

  5. Brain protection by methylprednisolone in rats with spinal cord injury.

    Science.gov (United States)

    Chang, Chia-Mao; Lee, Ming-Hsueh; Wang, Ting-Chung; Weng, Hsu-Huei; Chung, Chiu-Yen; Yang, Jen-Tsung

    2009-07-01

    Traumatic spinal cord injury is clinically treated by high doses of methylprednisolone. However, the effect of methylprednisolone on the brain in spinal cord injury patients has been little investigated. This experimental study examined Bcl-2 and Bax protein expression and Nissl staining to evaluate an apoptosis-related intracellular signaling event and final neuron death, respectively. Spinal cord injury produced a significant apoptotic change and cell death not only in the spinal cord but also in the supraventricular cortex and hippocampal cornu ammonis 1 region in the rat brains. The treatment of methylprednisolone increased the Bcl-2/Bax ratio and prevented neuron death for 1-7 days after spinal cord injury. These findings suggest that rats with spinal cord injury show ascending brain injury that could be restricted through methylprednisolone management.

  6. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    Directory of Open Access Journals (Sweden)

    Weiwei Zhang

    2012-01-01

    Full Text Available The present study was designed to explore the therapeutic potential of self-assembling peptide nanofiber scaffold (SAPNS delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor, single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  7. Self-Assembling Peptide Nanofiber Scaffold Enhanced with RhoA Inhibitor CT04 Improves Axonal Regrowth in the Transected Spinal Cord

    International Nuclear Information System (INIS)

    Weiwei, Z.; Xiaoduo, Z.; Zhongying, L.

    2012-01-01

    The present study was designed to explore the therapeutic potential of self-assembling peptide nano fiber scaffold (SAPNS) delivered RhoA inhibitor to ameliorate the hostile microenvironment of injured spinal cord for axonal regeneration. After a transection was applied to the thoracic spinal cord of mice, the combination of SAPNS and CT04 (a cell permeable RhoA inhibitor), single SAPNS with vehicle, or saline was transplanted into the lesion cavity. Results showed that SAPNS+CT04 implants achieved the best therapeutic outcomes among treatment groups. The novel combination not only reconstructed the injured nerve gap but also elicited significant axonal regeneration and motor functional recovery. Additionally, the combination also effectively reduced the apoptosis and infiltration of activated macrophages in the injured spinal cord. Collectively, the present study demonstrated that SAPNS-based delivery of RhoA inhibitor CT04 presented a highly potential therapeutic strategy for spinal cord injury with reknitting lesion gap, attenuating secondary injury, and improving axonal regrowth.

  8. Measurement of amino acid levels in the vitreous humor of rats after chronic intraocular pressure elevation or optic nerve transection.

    Science.gov (United States)

    Levkovitch-Verbin, Hana; Martin, Keith R G; Quigley, Harry A; Baumrind, Lisa A; Pease, Mary Ellen; Valenta, Danielle

    2002-10-01

    To investigate whether the levels of free amino acids and protein in the vitreous of rat eyes are altered with chronic intraocular pressure (IOP) elevation or after optic nerve transection. The concentrations of 20 amino acids in the vitreous humor were measured by high-performance liquid chromatography in both eyes of 41 rats with unilateral IOP elevation induced by translimbal photocoagulation. Eyes were studied 1 day and 1, 2, 4, and 9 weeks after initial IOP elevation. The same amino acids were measured in 41 rats 1 day and 2, 4, and 9 weeks after unilateral transection of the orbital optic nerve. The intravitreal protein level was assayed in additional 22 rats with IOP elevation and 12 rats after nerve transection. Two masked observers evaluated the amount of optic nerve damage with a semiquantitative, light-microscopic technique. In rats with experimental glaucoma, amino acid concentrations were unchanged 1 day after treatment. At 1 week, 4 of 20 amino acids (aspartate, proline, alanine, and lysine) were higher than in control eyes ( 0.05). Vitreous protein level was significantly higher in glaucomatous eyes than their paired controls at 1 day ( 0.01).

  9. Repair of the transected spinal cord at different stages of development in the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Terman, J R; Wang, X M; Martin, G F

    2000-12-01

    When the thoracic spinal cord is transected on postnatal day (PD) 5 in the North American opossum, descending and ascending axons grow through the lesion site. When the lesion is made on PD20, comparable growth is limited to a subset of descending axons. To better understand the mechanisms underlying these differences, we analyzed the transection site at different times after lesioning at both ages. Axons which crossed the lesion site could be identified using silver impregnation and immunostaining for neurofilament. Nissl stains revealed that abnormal appearing grey matter was also present in some of the PD5 cases. In many PD5 cases, however, and in all of the animals transected at PD20, grey matter was not present at the lesion site. Immunostaining with a neuron specific antibody supported that conclusion. However, immunostaining with phenotypic specific antibodies revealed that glial cells were present in all cases. Immunostaining for Schwann cells was negative. Fibronectin-positive cells were also present at the lesion site after transection of the thoracic cord at PD20, but their identity was uncertain. When injections of bromodeoxyuridine (BrdU), a thymidine analog, were made at different times after lesioning and the pups were sacrificed for BrdU immunohistochemistry up to 40 days later, labeled cells were found in the tissue which bridged the lesion site indicating that cell proliferation contributed to reconstruction at the lesion site.

  10. Effects of different delayed exercise regimens on cognitive performance in fimbria‑fornix transected rats

    DEFF Research Database (Denmark)

    Wogensen, Elise; Marschner, Linda; Gram, Marie Gajhede

    2017-01-01

    Studies have shown that exercise can positively influence cognitive performance after brain injury. This study investigated the effects of different exercise regimens on allocentric place learning after fimbria‑fornix (FF) transection. One hundred and sixteen pre‑shaped rats were subjected either...... to a mechanical transection of the FF or control sham surgery and divided into following groups: i) no exercise (NE), ii) voluntary exercise in a running wheel (RW), iii) forced swimming exercise administered as interval training of short (3x5 min) duration (FS‑SI), iv) forced swimming exercise administered...

  11. Electronic bypass of spinal lesions: activation of lower motor neurons directly driven by cortical neural signals.

    Science.gov (United States)

    Li, Yan; Alam, Monzurul; Guo, Shanshan; Ting, K H; He, Jufang

    2014-07-03

    Lower motor neurons in the spinal cord lose supraspinal inputs after complete spinal cord injury, leading to a loss of volitional control below the injury site. Extensive locomotor training with spinal cord stimulation can restore locomotion function after spinal cord injury in humans and animals. However, this locomotion is non-voluntary, meaning that subjects cannot control stimulation via their natural "intent". A recent study demonstrated an advanced system that triggers a stimulator using forelimb stepping electromyographic patterns to restore quadrupedal walking in rats with spinal cord transection. However, this indirect source of "intent" may mean that other non-stepping forelimb activities may false-trigger the spinal stimulator and thus produce unwanted hindlimb movements. We hypothesized that there are distinguishable neural activities in the primary motor cortex during treadmill walking, even after low-thoracic spinal transection in adult guinea pigs. We developed an electronic spinal bridge, called "Motolink", which detects these neural patterns and triggers a "spinal" stimulator for hindlimb movement. This hardware can be head-mounted or carried in a backpack. Neural data were processed in real-time and transmitted to a computer for analysis by an embedded processor. Off-line neural spike analysis was conducted to calculate and preset the spike threshold for "Motolink" hardware. We identified correlated activities of primary motor cortex neurons during treadmill walking of guinea pigs with spinal cord transection. These neural activities were used to predict the kinematic states of the animals. The appropriate selection of spike threshold value enabled the "Motolink" system to detect the neural "intent" of walking, which triggered electrical stimulation of the spinal cord and induced stepping-like hindlimb movements. We present a direct cortical "intent"-driven electronic spinal bridge to restore hindlimb locomotion after complete spinal cord injury.

  12. Neurotrophic factors and receptors in the immature and adult spinal cord after mechanical injury or kainic acid.

    Science.gov (United States)

    Widenfalk, J; Lundströmer, K; Jubran, M; Brene, S; Olson, L

    2001-05-15

    Delivery of neurotrophic factors to the injured spinal cord has been shown to stimulate neuronal survival and regeneration. This indicates that a lack of sufficient trophic support is one factor contributing to the absence of spontaneous regeneration in the mammalian spinal cord. Regulation of the expression of neurotrophic factors and receptors after spinal cord injury has not been studied in detail. We investigated levels of mRNA-encoding neurotrophins, glial cell line-derived neurotrophic factor (GDNF) family members and related receptors, ciliary neurotrophic factor (CNTF), and c-fos in normal and injured spinal cord. Injuries in adult rats included weight-drop, transection, and excitotoxic kainic acid delivery; in newborn rats, partial transection was performed. The regulation of expression patterns in the adult spinal cord was compared with that in the PNS and the neonate spinal cord. After mechanical injury of the adult rat spinal cord, upregulations of NGF and GDNF mRNA occurred in meningeal cells adjacent to the lesion. BDNF and p75 mRNA increased in neurons, GDNF mRNA increased in astrocytes close to the lesion, and GFRalpha-1 and truncated TrkB mRNA increased in astrocytes of degenerating white matter. The relatively limited upregulation of neurotrophic factors in the spinal cord contrasted with the response of affected nerve roots, in which marked increases of NGF and GDNF mRNA levels were observed in Schwann cells. The difference between the ability of the PNS and CNS to provide trophic support correlates with their different abilities to regenerate. Kainic acid delivery led to only weak upregulations of BDNF and CNTF mRNA. Compared with several brain regions, the overall response of the spinal cord tissue to kainic acid was weak. The relative sparseness of upregulations of endogenous neurotrophic factors after injury strengthens the hypothesis that lack of regeneration in the spinal cord is attributable at least partly to lack of trophic support.

  13. Autoradiographic localization of substance P receptors in the rat and bovine spinal cord and the rat and cat spinal trigeminal nucleus pars caudalis and the effects of neonatal capsaicin

    Energy Technology Data Exchange (ETDEWEB)

    Mantyh, P.W.; Hunt, S.P. (Medical Research Council Centre, Cambridge (UK). Medical School, MRC Neurochemical Pharmacology Unit)

    1985-04-22

    Substance P (SP) is a putative neurotransmitter in the central nervous system. In the present report the authors have used autoradiographic receptor binding techniques to investigate the distribution of SP receptor binding sites in the rat and bovine spinal cord and in the rat and cat spinal trigeminal nucleus pars caudalis. Although some quantitative differences were evident, all species appeared to have a similar distribution of SP receptor binding sites in both the spinal cord and in the spinal trigeminal nucleus pars caudalis. In the spinal cord the heaviest concentration of SP receptors is located in lamina X, while moderate to heavy concentrations were found in laminae I, II and V-IX. Very low concentrations of SP receptors were present in laminae III and IV. Examination of the cat and rat spinal trigeminal nucleus pars caudalis revealed a moderate density of SP receptor binding sites in laminae I and II, very low concentrations in laminae III and IV, and low to moderate concentrations in lamina V. Rats treated neonatally with capsaicin showed a small (11%) but significant (P < 0.02) increase in the levels of SP receptor binding sites in laminae I and II of the cervical and lumbar spinal cord while in all other laminae the levels remained unchanged.

  14. Neuroprotective effect corilagin in spinal cord injury rat model by ...

    African Journals Online (AJOL)

    Background: Neurological functions get altered in a patient suffering from spinal cord injury (SCI). Present study evaluates the neuroprotective effect of corilagin in spinal cord injury rats by inhibiting nuclear factor-kappa B (NF-κB), inflammatory mediators and apoptosis. Materials and method: Spinal cord injury was ...

  15. Precise control of miR-125b levels is required to create a regeneration-permissive environment after spinal cord injury: a cross-species comparison between salamander and rat

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2014-06-01

    Full Text Available Most spinal cord injuries lead to permanent paralysis in mammals. By contrast, the remarkable regenerative abilities of salamanders enable full functional recovery even from complete spinal cord transections. The molecular differences underlying this evolutionary divergence between mammals and amphibians are poorly understood. We focused on upstream regulators of gene expression as primary entry points into this question. We identified a group of microRNAs (miRNAs that are conserved between the Mexican axolotl salamander (Ambystoma mexicanum and mammals but show marked cross-species differences in regulation patterns following spinal cord injury. We found that precise post-injury levels of one of these miRNAs (miR-125b is essential for functional recovery, and guides correct regeneration of axons through the lesion site in a process involving the direct downstream target Sema4D in axolotls. Translating these results to a mammalian model, we increased miR-125b levels in the rat through mimic treatments following spinal cord transection. These treatments downregulated Sema4D and other glial-scar-related genes, and enhanced the animal’s functional recovery. Our study identifies a key regulatory molecule conserved between salamander and mammal, and shows that the expression of miR-125b and Sema4D must be carefully controlled in the right cells at the correct level to promote regeneration. We also show that these molecular components of the salamander’s regeneration-permissive environment can be experimentally harnessed to improve treatment outcomes for mammalian spinal cord injuries.

  16. MR imaging of spinal trauma

    International Nuclear Information System (INIS)

    Buchberger, W.; Springer, P.; Birbamer, G.; Judmaier, W.; Kathrein, A.; Daniaux, H.

    1995-01-01

    To assess the value of MR imaging in the acute and chronic stages of spinal trauma. 126 MR examinations of 120 patients were evaluated retrospectively. In 15 cases of acute spinal cord injury, correlation of MR findings with the degree of neurological deficit and eventual recovery was undertaken. Cord anomalies in the acute stage were seen in 16 patients. Intramedullary haemorrhage (n=6) and cord transection (n=2) were associated with complete injuries and poor prognosis, whereas patients with cord oedema (n=7) had incomplete injuries and recovered significant neurological function. In the chronic stage, MR findings included persistent cord compression in 8 patients, syringomyelia or post-traumatic cyst in 12, myelomalacia in 6, cord atrophy in 9, and cord transection in 7 patients. In acute spinal trauma, MR proved useful in assessing spinal cord compression and instability. In addition, direct visualisation and characterisation of posttraumatic changes within the spinal cord may offer new possibilities in establishing the prognosis for neurological recovery. In the later stages, potentially remediable causes of persistent or progressive symptoms, such as chronic spinal cord compression or syringomyelia can be distinguished from other sequelae of spinal trauma, such as myelomalacia, cord transection or atrophy. (orig.) [de

  17. Retinal glutamate transporter changes in experimental glaucoma and after optic nerve transection in the rat.

    Science.gov (United States)

    Martin, Keith R G; Levkovitch-Verbin, Hana; Valenta, Danielle; Baumrind, Lisa; Pease, Mary Ellen; Quigley, Harry A

    2002-07-01

    High levels of glutamate can be toxic to retinal ganglion cells. Effective buffering of extracellular glutamate by retinal glutamate transporters is therefore important. This study was conducted to investigate whether glutamate transporter changes occur with two models of optic nerve injury in the rat. Glaucoma was induced in one eye of 35 adult Wistar rats by translimbal diode laser treatment to the trabecular meshwork. Twenty-five more rats underwent unilateral optic nerve transection. Two glutamate transporters, GLAST (EAAT-1) and GLT-1 (EAAT-2), were studied by immunohistochemistry and quantitative Western blot analysis. Treated and control eyes were compared 3 days and 1, 4, and 6 weeks after injury. Optic nerve damage was assessed semiquantitatively in epoxy-embedded optic nerve cross sections. Trabecular laser treatment resulted in moderate intraocular pressure (IOP) elevation in all animals. After 1 to 6 weeks of experimental glaucoma, all treated eyes had significant optic nerve damage. Glutamate transporter changes were not detected by immunohistochemistry. Western blot analysis demonstrated significantly reduced GLT-1 in glaucomatous eyes compared with control eyes at 3 days (29.3% +/- 6.7%, P = 0.01), 1 week (55.5% +/- 13.6%, P = 0.02), 4 weeks (27.2% +/- 10.1%, P = 0.05), and 6 weeks (38.1% +/- 7.9%, P = 0.01; mean reduction +/- SEM, paired t-tests, n = 5 animals per group, four duplicate Western blot analyses per eye). The magnitude of the reduction in GLT-1 correlated significantly with mean IOP in the glaucomatous eye (r(2) = 0.31, P = 0.01, linear regression). GLAST was significantly reduced (33.8% +/- 8.1%, mean +/- SEM) after 4 weeks of elevated IOP (P = 0.01, paired t-test, n = 5 animals per group). In contrast to glaucoma, optic nerve transection resulted in an increase in GLT-1 compared with the control eye (P = 0.01, paired t-test, n = 15 animals). There was no significant change in GLAST after transection. GLT-1 and GLAST were significantly

  18. The Neuroprotective Effect of Puerarin in Acute Spinal Cord Injury Rats

    Directory of Open Access Journals (Sweden)

    Dapeng Zhang

    2016-08-01

    Full Text Available Background: Acute spinal cord injury (SCI leads to permanent disabilities. This study evaluated the neuroprotective effect of puerarin, a natural extract, in a rat model of SCI. Methods: Acute SCI models were established in rats using a modified Allen's method. Locomotor function was evaluated using the BBB test. The histological changes in the spinal cord were observed by H&E staining. Neuron survival and glial cells activation were evaluated by immunostaining. ELISA and realtime PCR were used to measure secretion and gene expression of cytokines. TUNEL staining was used to examine cell apoptosis and western blot analysis was used to detect protein expression. Results: Puerarin significantly increased BBB score in SCI rats, attenuated histological injury of spinal cord, decreased neuron loss, inhibited glial cells activation, alleviated inflammation, and inhibited cell apoptosis in the injured spinal cords. In addition, the downregulated PI3K and phospho-Akt protein expression were restored by puerarin. Conclusion: Puerarin accelerated locomotor function recovery and tissue repair of SCI rats, which is associated with its neuroprotection, glial cell activation suppression, anti-inflammatory and anti-apoptosis effects. These effects may be associated with the activation of PI3K/Akt signaling pathway.

  19. Upper motor neurone modulation of the structure of the terminal cisternae in rat skeletal muscle fibres.

    Science.gov (United States)

    Dulhunty, A F; Gage, P W; Valois, A A

    1981-12-23

    There are fewer indentations on the flat surfaces of terminal cisternae in soleus (slow-twitch) than in extensor digitorum longus (EDL, fast-twitch) muscle fibres of rats. Following mid-thoracic spinal cord transection, there is an increase in the number of indentations in soleus fibres but no change in EDL fibres. The increase in the numbers of indentations after spinal cord transections is correlated with changes in the contractile and charge movement properties of the soleus fibres so that they resemble normal EDL fibres. The indentations appear to have an important role in excitation-contraction coupling.

  20. Pretreatment with AQP4 and NKCC1 Inhibitors Concurrently Attenuated Spinal Cord Edema and Tissue Damage after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Yan, Xiaodong; Liu, Juanfang; Wang, Xiji; Li, Wenhao; Chen, Jingyuan; Sun, Honghui

    2018-01-01

    Spinal cord injury (SCI) affects more than 2.5 million people worldwide. Spinal cord edema plays critical roles in the pathological progression of SCI. This study aimed to delineate the roles of aquaporin 4 (AQP4) and Na + -K + -Cl - cotransporter 1 (NKCC1) in acute phase edema and tissue destruction after SCI and to explore whether inhibiting both AQP4 and NKCC1 could improve SCI-induced spinal edema and damage. Rat SCI model was established by modified Allen's method. Spinal cord water content, cerebrospinal fluid lactose dehydrogenase (LDH) activity, AQP4 and NKCC1 expression, and spinal cord pathology from 30 min to 7 days after SCI were monitored. Additionally, aforementioned parameters in rats treated with AQP4 and/or NKCC1 inhibitors were assessed 2 days after SCI. Spinal cord water content was significantly increased 1 h after SCI while AQP4 and NKCC1 expression and spinal fluid LDH activity elevated 6 h after SCI. Spinal cord edema and spinal cord destruction peaked around 24 h after SCI and maintained at high levels thereafter. Treating rats with AQP4 inhibitor TGN-020 and NKCC1 antagonist bumetanide significantly reduced spinal cord edema, tissue destruction, and AQP4 and NKCC1 expression after SCI in an additive manner. These results demonstrated the benefits of simultaneously inhibiting both AQP4 and NKCC1 after SCI.

  1. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats

    Science.gov (United States)

    Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-01-01

    Objective The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Methods Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. Results The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future. PMID:26113960

  2. The Neuroprotective Effect of Kefir on Spinal Cord Ischemia/Reperfusion Injury in Rats.

    Science.gov (United States)

    Guven, Mustafa; Akman, Tarik; Yener, Ali Umit; Sehitoglu, Muserref Hilal; Yuksel, Yasemin; Cosar, Murat

    2015-05-01

    The main causes of spinal cord ischemia are a variety of vascular pathologies causing acute arterial occlusions. We investigated neuroprotective effects of kefir on spinal cord ischemia injury in rats. Rats were divided into three groups : 1) sham operated control rats; 2) spinal cord ischemia group fed on a standard diet without kefir pretreatment; and 3) spinal cord ischemia group fed on a standard diet plus kefir. Spinal cord ischemia was performed by the infrarenal aorta cross-clamping model. The spinal cord was removed after the procedure. The biochemical and histopathological changes were observed within the samples. Functional assessment was performed for neurological deficit scores. The kefir group was compared with the ischemia group, a significant decrease in malondialdehyde levels was observed (pkefir group were significantly higher than ischemia group (pkefir group is compared with ischemia group, there was a significant decrease in numbers of dead and degenerated neurons (pkefir group compared with ischemia group (pkefir group were significantly higher than ischemia group at 24 h (pkefir pretreatment in spinal cord ischemia/reperfusion reduced oxidative stress and neuronal degeneration as a neuroprotective agent. Ultrastructural studies are required in order for kefir to be developed as a promising therapeutic agent to be utilized for human spinal cord ischemia in the future.

  3. Age-related changes of neurochemically different subpopulations of cardiac spinal afferent neurons in rats.

    Science.gov (United States)

    Guić, Maja Marinović; Runtić, Branka; Košta, Vana; Aljinović, Jure; Grković, Ivica

    2013-08-01

    This study investigated the effect of aging on cardiac spinal afferent neurons in the rat. A patch loaded with retrograde tracer Fast Blue (FB) was applied to all chambers of the rat heart. Morphological and neurochemical characteristics of labeled cardiac spinal afferent neurons were assessed in young (2 months) and old (2 years) rats using markers for likely unmyelinated (isolectin B4; IB4) and myelinated (neurofilament 200; N52) neurons. The number of cardiac spinal afferent neurons decreased in senescence to 15% of that found in young rats (1604 vs. 248). The size of neuronal soma as well as proportion of IB4+ neurons increased significantly, whereas the proportion of N52+ neurons decreased significantly in senescence. Unlike somatic spinal afferents, neurochemically different populations of cardiac spinal afferent neurons experience morphological and neurochemical changes related to aging. A major decrease in total number of cardiac spinal afferent neurons occurs in senescence. The proportion of N52+ neurons decreased in senescence, but it seems that nociceptive innervation is preserved due to increased proportion and size of IB4+ unmyelinated neurons. Copyright © 2013 Elsevier Inc. All rights reserved.

  4. Passive immunization of fetal rats with antiserum to luteinizing hormone-releasing hormone (LHRH) or transection of the central roots of the nervus terminalis does not affect rat pups' preference for home nest.

    Science.gov (United States)

    Schwanzel-Fukuda, M; Pfaff, D W

    1987-01-01

    Luteinizing hormone-releasing hormone (LHRH) is found immunocytochemically in cell bodies and fibers of the nervus terminalis, a cranial nerve which courses from the nasal septum through the cribriform plate of the ethmoid bone (medial to the olfactory and vomeronasal nerves) and enters the forebrain, caudal to the olfactory bulbs. Immunoreactive LHRH is first detected in the nervus terminalis of the fetal rat at 15 days of gestation, preceding its detection by immunocytochemistry in any other area of the brain, including the median eminence, and preceding detection of immunoreactive luteinizing hormone (LH) in the anterior pituitary. During development of the rat fetus, the nervus terminalis is the principal source of LHRH in the nervous system from days 15 through 19 of a 21 day gestation period. We tested the notion that the LHRH system of the nervus terminalis is important for olfactory performance by examining the effects of administration of antisera to LHRH during fetal development (versus saline controls), or medial olfactory peduncle transections, in the neonatal rat, which would sever the central projections of the nervus terminalis (versus lateral peduncle transection, complete transection of the olfactory peduncles and the central nervus terminalis or controls) on preferences of rat pups for home nest. The hypothesis that LHRH is important for this chemosensory response was not confirmed. Neither antisera to LHRH nor medical olfactory peduncle transection disrupted preference for home shavings. Only complete olfactory peduncle transection had a significant effect compared to unoperated and sham-operated controls.

  5. Activation of Central Pattern Generator for Respiration Following Complete High Cervical Spinal Cord Interruption

    Science.gov (United States)

    2017-09-01

    hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and...neurotransmitter profile (GABAa- and Glycine-ergic). Epidural stimulation applied at frequencies 100-300 Hz to the area of phrenic nucleus location...C4 cervical segment) in spinal (C1-transected) rats induced time -frequency depended facilitation of phrenic nerve activity and was able to maintain

  6. The articulo-cardiac sympathetic reflex in spinalized, anesthetized rats.

    Science.gov (United States)

    Nakayama, Tomohiro; Suzuki, Atsuko; Ito, Ryuzo

    2006-04-01

    Somatic afferent regulation of heart rate by noxious knee joint stimulation has been proven in anesthetized cats to be a reflex response whose reflex center is in the brain and whose efferent arc is a cardiac sympathetic nerve. In the present study we examined whether articular stimulation could influence heart rate by this efferent sympathetic pathway in spinalized rats. In central nervous system (CNS)-intact rats, noxious articular movement of either the knee or elbow joint resulted in an increase in cardiac sympathetic nerve activity and heart rate. However, although in acutely spinalized rats a noxious movement of the elbow joint resulted in a significant increase in cardiac sympathetic nerve activity and heart rate, a noxious movement of the knee joint had no such effect and resulted in only a marginal increase in heart rate. Because this marginal increase was abolished by adrenalectomy suggests that it was due to the release of adrenal catecholamines. In conclusion, the spinal cord appears to be capable of mediating, by way of cardiac sympathetic nerves, the propriospinally induced reflex increase in heart rate that follows noxious stimulation of the elbow joint, but not the knee joint.

  7. Increased Cx32 expression in spinal cord TrkB oligodendrocytes following peripheral axon injury.

    Science.gov (United States)

    Coulibaly, Aminata P; Isaacson, Lori G

    2016-08-03

    Following injury to motor axons in the periphery, retrograde influences from the injury site lead to glial cell plasticity in the vicinity of the injured neurons. Following the transection of peripherally located preganglionic axons of the cervical sympathetic trunk (CST), a population of oligodendrocyte (OL) lineage cells expressing full length TrkB, the cognate receptor for brain derived neurotrophic factor (BDNF), is significantly increased in number in the spinal cord. Such robust plasticity in OL lineage cells in the spinal cord following peripheral axon transection led to the hypothesis that the gap junction communication protein connexin 32 (Cx32), which is specific to OL lineage cells, was influenced by the injury. Following CST transection, Cx32 expression in the spinal cord intermediolateral cell column (IML), the location of the parent cell bodies, was significantly increased. The increased Cx32 expression was localized specifically to TrkB OLs in the IML, rather than other cell types in the OL cell lineage, with the population of Cx32/TrkB cells increased by 59%. Cx32 expression in association with OPCs was significantly decreased at one week following the injury. The results of this study provide evidence that peripheral axon injury can differentially affect the gap junction protein expression in OL lineage cells in the adult rat spinal cord. We conclude that the retrograde influences originating from the peripheral injury site elicit dramatic changes in the CNS expression of Cx32, which in turn may mediate the plasticity of OL lineage cells observed in the spinal cord following peripheral axon injury. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  8. Expression of Lymphatic Markers in the Adult Rat Spinal Cord.

    Science.gov (United States)

    Kaser-Eichberger, Alexandra; Schroedl, Falk; Bieler, Lara; Trost, Andrea; Bogner, Barbara; Runge, Christian; Tempfer, Herbert; Zaunmair, Pia; Kreutzer, Christina; Traweger, Andreas; Reitsamer, Herbert A; Couillard-Despres, Sebastien

    2016-01-01

    Under physiological conditions, lymphatic vessels are thought to be absent from the central nervous system (CNS), although they are widely distributed within the rest of the body. Recent work in the eye, i.e., another organ regarded as alymphatic, revealed numerous cells expressing lymphatic markers. As the latter can be involved in the response to pathological conditions, we addressed the presence of cells expressing lymphatic markers within the spinal cord by immunohistochemistry. Spinal cord of young adult Fisher rats was scrutinized for the co-expression of the lymphatic markers PROX1 and LYVE-1 with the cell type markers Iba1, CD68, PGP9.5, OLIG2. Rat skin served as positive control for the lymphatic markers. PROX1-immunoreactivity was detected in many nuclei throughout the spinal cord white and gray matter. These nuclei showed no association with LYVE-1. Expression of LYVE-1 could only be detected in cells at the spinal cord surface and in cells closely associated with blood vessels. These cells were found to co-express Iba1, a macrophage and microglia marker. Further, double labeling experiments using CD68, another marker found in microglia and macrophages, also displayed co-localization in the Iba1+ cells located at the spinal cord surface and those apposed to blood vessels. On the other hand, PROX1-expressing cells found in the parenchyma were lacking Iba1 or PGP9.5, but a significant fraction of those cells showed co-expression of the oligodendrocyte lineage marker OLIG2. Intriguingly, following spinal cord injury, LYVE-1-expressing cells assembled and reorganized into putative pre-vessel structures. As expected, the rat skin used as positive controls revealed classical lymphatic vessels, displaying PROX1+ nuclei surrounded by LYVE-1-immunoreactivity. Classical lymphatics were not detected in adult rat spinal cord. Nevertheless, numerous cells expressing either LYVE-1 or PROX1 were identified. Based on their localization and overlapping expression with

  9. Spinal Cord Studies in the African Giant Rat (Cricetomys gambianus ...

    African Journals Online (AJOL)

    olayemitoyin

    J. Physiol. Sci. 30 (2015) 025 – 032 www.njps.com.ng. Spinal Cord Studies in the African Giant Rat (Cricetomys gambianus .... Body and Spinal Cord measurements of the AGR (C. gambianus), Mean ±SEM ... the eighth cervical segment appeared circular in shape. ... other lumbar segments, sacral and coccygeal segments.

  10. Changes of amino acid concentrations in the rat vestibular nuclei after inferior cerebellar peduncle transection.

    Science.gov (United States)

    Sun, Yizhe; Godfrey, Donald A; Godfrey, Timothy G; Rubin, Allan M

    2007-02-15

    Although there is a close relationship between the vestibular nuclear complex (VNC) and the cerebellum, little is known about the contribution of cerebellar inputs to amino acid neurotransmission in the VNC. Microdissection of freeze-dried brain sections and high-performance liquid chromatography (HPLC) were combined to measure changes of amino acid concentrations within the VNC of rats following transection of the cerebellovestibular connections in the inferior cerebellar peduncle. Distributions of 12 amino acids within the VNC at 2, 4, 7, and 30 days after surgery were compared with those for control and sham-lesioned rats. Concentrations of gamma-aminobutyric acid (GABA) decreased by 2 days after unilateral peduncle transection in nearly all VNC regions on the lesioned side and to lesser extents on the unlesioned side and showed partial recovery up to 30 days postsurgery. Asymmetries between the two sides of the VNC were maintained through 30 days. Glutamate concentrations were reduced bilaterally in virtually all regions of the VNC by 2 days and showed complete recovery in most VNC regions by 30 days. Glutamine concentrations increased, starting 2 days after surgery, especially on the lesioned side, so that there was asymmetry generally opposite that of glutamate. Concentrations of taurine, aspartate, and glycine also underwent partially reversible changes after peduncle transection. The results suggest that GABA and glutamate are prominent neurotransmitters in bilateral projections from the cerebellum to the VNC and that amino acid metabolism in the VNC is strongly influenced by its cerebellar connections.

  11. Mechanisms underlying the promotion of functional recovery by deferoxamine after spinal cord injury in rats

    Directory of Open Access Journals (Sweden)

    Jian Hao

    2017-01-01

    Full Text Available Deferoxamine, a clinically safe drug used for treating iron overload, also repairs spinal cord injury although the mechanism for this action remains unknown. Here, we determined whether deferoxamine was therapeutic in a rat model of spinal cord injury and explored potential mechanisms for this effect. Spinal cord injury was induced by impacting the spinal cord at the thoracic T10 vertebra level. One group of injured rats received deferoxamine, a second injured group received saline, and a third group was sham operated. Both 2 days and 2 weeks after spinal cord injury, total iron ion levels and protein expression levels of the proinflammatory cytokines tumor necrosis factor-α and interleukin-1β and the pro-apoptotic protein caspase-3 in the spinal cords of the injured deferoxamine-treated rats were significantly lower than those in the injured saline-treated group. The percentage of the area positive for glial fibrillary acidic protein immunoreactivity and the number of terminal deoxynucleotidyl transferase dUTP nick end labeling-positive cells were also significantly decreased both 2 days and 2 weeks post injury, while the number of NeuN-positive cells and the percentage of the area positive for the oligodendrocyte marker CNPase were increased in the injured deferoxamine-treated rats. At 14–56 days post injury, hind limb motor function in the deferoxamine-treated rats was superior to that in the saline-treated rats. These results suggest that deferoxamine decreases total iron ion, tumor necrosis factor-α, interleukin-1β, and caspase-3 expression levels after spinal cord injury and inhibits apoptosis and glial scar formation to promote motor function recovery.

  12. Zinc-enriched boutons in rat spinal cord

    DEFF Research Database (Denmark)

    Schrøder, H D; Danscher, G; Jo, S M

    2000-01-01

    The rat spinal cord reveals a complex pattern of zinc-enriched (ZEN) boutons. As a result of in vivo exposure to selenide ions, nanosized clusters of zinc selenide are created in places where zinc ions are present, including the zinc-containing synaptic vesicles of ZEN boutons. The clusters can...

  13. Spinal NMDA receptor activation constrains inactivity-induced phrenic motor facilitation in Charles River Sprague-Dawley rats.

    Science.gov (United States)

    Streeter, K A; Baker-Herman, T L

    2014-10-01

    Reduced spinal synaptic inputs to phrenic motor neurons elicit a unique form of spinal plasticity known as inactivity-induced phrenic motor facilitation (iPMF). iPMF requires tumor necrosis factor-α (TNF-α) and atypical protein kinase C (aPKC) activity within spinal segments containing the phrenic motor nucleus to stabilize early, transient increases in phrenic burst amplitude into long-lasting iPMF. Here we tested the hypothesis that spinal N-methyl-d-aspartate receptor (NMDAR) activation constrains long-lasting iPMF in some rat substrains. Phrenic motor output was recorded in anesthetized, ventilated Harlan (HSD) and Charles River (CRSD) Sprague-Dawley rats exposed to a 30-min central neural apnea. HSD rats expressed a robust, long-lasting (>60 min) increase in phrenic burst amplitude (i.e., long-lasting iPMF) when respiratory neural activity was restored. By contrast, CRSD rats expressed an attenuated, transient (∼15 min) iPMF. Spinal NMDAR inhibition with DL-2-amino-5-phosphonopentanoic acid (APV) before neural apnea or shortly (4 min) prior to the resumption of respiratory neural activity revealed long-lasting iPMF in CRSD rats that was phenotypically similar to that in HSD rats. By contrast, APV did not alter iPMF expression in HSD rats. Spinal TNF-α or aPKC inhibition impaired long-lasting iPMF enabled by NMDAR inhibition in CRSD rats, suggesting that similar mechanisms give rise to long-lasting iPMF in CRSD rats with NMDAR inhibition as those giving rise to long-lasting iPMF in HSD rats. These results suggest that NMDAR activation can impose constraints on TNF-α-induced aPKC activation after neural apnea, impairing stabilization of transient iPMF into long-lasting iPMF. These data may have important implications for understanding differential responses to reduced respiratory neural activity in a heterogeneous human population. Copyright © 2014 the American Physiological Society.

  14. Neurotoxic effects of levobupivacaine and fentanyl on rat spinal cord

    Directory of Open Access Journals (Sweden)

    Yesim Cokay Abut

    2015-02-01

    Full Text Available BACKGROUND: The purpose of the study was to compare the neurotoxic effects of intrathecally administered levobupivacaine, fentanyl and their mixture on rat spinal cord. METHODS: In experiment, there were four groups with medication and a control group. Rats were injected 15 µL saline or fentanyl 0.0005 µg/15 µL, levobupivacaine 0.25%/15 µL and fentanyl 0.0005 µg + levobupivacaine 0.25%/15 µL intrathecally for four days. Hot plate test was performed to assess neurologic function after each injection at 5th, 30th and 60th min. Five days after last lumbal injection, spinal cord sections between the T5 and T6 vertebral levels were obtained for histologic analysis. A score based on subjective assessment of number of eosinophilic neurons - Red neuron - which means irreversible neuronal degeneration. They reflect the approximate number of degenerating neurons present in the affected neuroanatomic areas as follows: 1, none; 2, 1-20%; 3, 21-40%; 4, 41-60%; and 5, 61-100% dead neurons. An overall neuropathologic score was calculated for each rat by summating the pathologic scores for all spinal cord areas examined. RESULTS: In the results of HPT, comparing the control group, analgesic latency statistically prolonged for all four groups.In neuropathologic investment, the fentanyl and fentanyl + levobupivacaine groups have statistically significant high degenerative neuron counts than control and saline groups. CONCLUSIONS: These results suggest that, when administered intrathecally in rats, fentanyl and levobupivacaine behave similar for analgesic action, but fentanyl may be neurotoxic for spinal cord. There was no significant degeneration with levobupivacaine, but fentanyl group has had significant degeneration.

  15. Descending serotonergic facilitation mediated by spinal 5-HT3 receptors engages spinal rapamycin-sensitive pathways in the rat

    Science.gov (United States)

    Asante, Curtis O.; Dickenson, Anthony H.

    2010-01-01

    We have recently reported the importance of spinal rapamycin-sensitive pathways in maintaining persistent pain-like states. A descending facilitatory drive mediated through spinal 5-HT3 receptors (5-HT3Rs) originating from superficial dorsal horn NK1-expressing neurons and that relays through the parabrachial nucleus and the rostroventral medial medulla to act on deep dorsal horn neurons is known be important in maintaining these pain-like states. To determine if spinal rapamycin-sensitive pathways are activated by a descending serotonergic drive, we investigated the effects of spinally administered rapamycin on responses of deep dorsal horn neurons that had been pre-treated with the selective 5-HT3R antagonist ondansetron. We also investigated the effects of spinally administered cell cycle inhibitor (CCI)-779 (a rapamycin ester analogue) on deep dorsal horn neurons from rats with carrageenan-induced inflammation of the hind paw. Unlike some other models of persistent pain, this model does not involve an altered 5-HT3R-mediated descending serotonergic drive. We found that the inhibitory effects of rapamycin were significantly reduced for neuronal responses to mechanical and thermal stimuli when the spinal cord was pre-treated with ondansetron. Furthermore, CCI-779 was found to be ineffective in attenuating spinal neuronal responses to peripheral stimuli in carrageenan-treated rats. Therefore, we conclude that 5-HT3R-mediated descending facilitation is one requirement for activation of rapamycin-sensitive pathways that contribute to persistent pain-like states. PMID:20709148

  16. Therapeutic Effect of Platelet-Rich Plasma in Rat Spinal Cord Injuries

    Directory of Open Access Journals (Sweden)

    Nan-Fu Chen

    2018-04-01

    Full Text Available Platelet-rich plasma (PRP is prepared by centrifuging fresh blood in an anticoagulant state, and harvesting the platelet-rich portion or condensing platelets. Studies have consistently demonstrated that PRP concentrates are an abundant source of growth factors, such as platelet-derived growth factor (PDGF, transforming growth factor β (TGF-β, insulin-like growth factor 1 (IGF-1, and epithelial growth factor (EGF. The complex mechanisms underlying spinal cord injury (SCI diminish intrinsic repair and neuronal regeneration. Several studies have suggested that growth factor-promoted axonal regeneration can occur for an extended period after injury. More importantly, the delivery of exogenous growth factors contained in PRP, such as EGF, IGF-1, and TGF-β, has neurotrophic effects on central nervous system (CNS injuries and neurodegenerative diseases. However, only a few studies have investigated the effects of PRP on CNS injuries or neurodegenerative diseases. According to our review of relevant literature, no study has investigated the effect of intrathecal (i.t. PRP injection into the injured spinal cord and activation of intrinsic mechanisms. In the present study, we directly injected i.t. PRP into rat spinal cords and examined the effects of PRP on normal and injured spinal cords. In rats with normal spinal cords, PRP induced microglia and astrocyte activation and PDGF-B and ICAM-1 expression. In rats with SCIs, i.t. PRP enhanced the locomotor recovery and spared white matter, promoted angiogenesis and neuronal regeneration, and modulated blood vessel size. Furthermore, a sustained treatment (a bolus of PRP followed by a 1/3 dose of initial PRP concentration exerted more favorable therapeutic effects than a single dose of PRP. Our findings suggest by i.t. PRP stimulate angiogenesis, enhancing neuronal regeneration after SCI in rats. Although PRP induces minor inflammation in normal and injured spinal cords, it has many advantages. It is an

  17. Preventive Effect of Intrathecal Paracetamol on Spinal Cord Injury in Rats

    Science.gov (United States)

    Sahin, Murat; Sayar, Ilyas; Peker, Kemal; Gullu, Huriye; Yildiz, Huseyin

    2014-01-01

    Background: Ischemic injury of the spinal cord during the surgical repair of thoracoabdominal aortic aneurysms might lead to paraplegia. Although a number of different mechanisms have been proposed, the exact cause of paraplegia has remained unknown, hampering the development of effective pharmacologic or other strategies for prevention of this condition. A number of studies suggested that cyclooxygenases (COX) contribute to neural breakdown; thus, COX inhibitors might reduce injury. Objectives: We aimed to assess the preventive effect of intrathecal (IT) pretreatment with paracetamol on spinal cord injury in a rat model. Materials and Methods: This experimental study was performed in Ataturk University Animal Research Laboratory Center, Erzurum, Turkey. Adult male Wistar rats were randomly allocated to three experimental groups (n = 6) to receive IT physiologic saline (controls), 50 µg of paracetamol, or 100 µg paracetamol one hour before induction of spinal cord ischemia. Six other rats were considered as the sham group. For the assessment of ischemic injury, motor functions of the hind limbs and histopathologic changes of the lumbar spinal cord were evaluated. Additional 20 rats were divided into two equal groups for the second part of the study where the survival rates were recorded in controls and in animals receiving 100 µg of paracetamol during the 28-day observation period. Results: Pretreatment with 100 µg of paracetamol resulted in a significant improvement in motor functions and histopathologic findings (P < 0.05). Despite a higher rate of survival in 100 µg of paracetamol group (70%) at day 28, the difference was not statistically significant in comparison with controls. Conclusions: Our results suggest a protective effect of pretreatment with IT paracetamol on ischemic spinal cord injury during thoracolumbar aortic aneurysm surgery. PMID:25763224

  18. Optimization of low-level light therapy's illumination parameters for spinal cord injury in a rat model

    Science.gov (United States)

    Shuaib, Ali; Bourisly, Ali

    2018-02-01

    Spinal cord injury (SCI) can result in complete or partial loss of sensation and motor function due to interruption along the severed axonal tract(s). SCI can result in tetraplegia or paraplegia, which can have prohibitive lifetime medical costs and result in shorter life expectancy. A promising therapeutic technique that is currently in experimental phase and that has the potential to be used to treat SCI is Low-level light therapy (LLLT). Preclinical studies have shown that LLLT has reparative and regenerative capabilities on transected spinal cords, and that LLLT can enhance axonal sprouting in animal models. However, despite the promising effects of LLLT as a therapy for SCI, it remains difficult to compare published results due to the use of a wide range of illumination parameters (i.e. different wavelengths, fluences, beam types, and beam diameter), and due to the lack of a standardized experimental protocol(s). Before any clinical applications of LLLT for SCI treatment, it is crucial to standardize illumination parameters and efficacy of light delivery. Therefore, in this study we aim to evaluate the light fluence distribution on a 3D voxelated SCI rat model with different illumination parameters (wavelengths: 660, 810, and 980 nm; beam types: Gaussian and Flat; and beam diameters: 0.1, 0.2, and 0.3 cm) for LLLT using Monte Carlo simulation. This study provides an efficient approach to guide researchers in optimizing the illumination parameters for LLLT spinal cord injury in an experimental model and will aid in quantitative and qualitative standardization of LLLT-SCI treatment.

  19. Long-term BPA infusions. Evaluation in the rat brain tumor and rat spinal cord models

    International Nuclear Information System (INIS)

    Coderre, J.A.; Micca, P.L.; Nawrocky, M.M.; Joel, D.D.; Morris, G.M.

    2000-01-01

    In the BPA-based dose escalation clinical trial, the observations of tumor recurrence in areas of extremely high calculated tumor doses suggest that the BPA distribution is non-uniform. Longer (6-hour) i.v. infusions of BPA are evaluated in the rat brain tumor and spinal cord models to address the questions of whether long-term infusions are more effective against the tumor and whether long-term infusions are detrimental in the central nervous system. In the rat spinal cord, the 50% effective doses (ED 50 ) for myeloparesis were not significantly different after a single i.p. injection of BPA-fructose or a 6 hour i.v. infusion. In the rat 9L gliosarcoma brain tumor model, BNCT following 2-hr or 6-hr infusions of BPA-F produced similar levels of long term survival. (author)

  20. Histomorphology of the Olfactory Mucosa and Spinal Tissue Sparing Following Transplantation in the Partial Spinal Cord Injury in Rats

    Directory of Open Access Journals (Sweden)

    H Delaviz

    2011-01-01

    Full Text Available Introduction & Objective: Nowadays, cellular and tissues transplant has become the focus of attention for spinal cord injury. It has been shown olfactory nerve cells or olfactory mucosa whi have more efficient on nervous tissue repair and they have been more studied in experimental study. Furthermore, they were used in a few clinical centers for spinal defect. But mucosa tissue and spinal tissue have different structure and there is doubt about the integration of mucosa tissue in nervous tissue. Thus, in this research the morphology and the effect of the fetal olfactory mucosa (FOM on spinal tissue sparing were studied after transplanted into the spinal cord hemisection in rats. Materials & Methods: This experimental study was conducted at Iran University of Medical Sciences in 2008. Of thirty eight female Sprague-Dawley (200-250g rats twenty- eight were spinally hemisected at the L1 spinal level and were randomized into two groups of 14 animals. Treatment group received FOM graft and the control group received fetal respiratory mucosa graft (FRM. The other animals received surgical procedure without spinal cord injury as a sham group. The morphology of the transplant region and spinal tissue sparing was examined histological eight weeks after transplantation. The collected data was analyzed by the SPSS software using ANOVA and the morphology of the transplant region were studied by light microscope. Results: Histological study showed that the both mucosa tissues could not integrate with the parenchyma of the spinal tissue. Although the FOM were fused more than the FRM with the host tissue but clear boundary was seen at the graft–host interface. The mean spinal tissue sparing of the treatment group increased a little compare to the control but a significant difference was not apparent whereas, the spinal tissue sparing in treatment and control groups compare to the sham group decreased significantly (P < 0.05. Conclusion: Transplantation of

  1. SPINAL ANTINOCICEPTION BY MORPHINE IN RATS IS ANTAGONIZED BY GALANIN RECEPTOR ANTAGONISTS

    NARCIS (Netherlands)

    REIMANN, W; ENGLBERGER, W; FRIDERICHS, E; SELVE, N; WILFFERT, B

    1994-01-01

    Galanin, a 29 amino acid peptide, has been reported to possess antinociceptive properties at the spinal site and to potentiate opioid-induced antinociception. Our aim was to investigate whether also endogenous galanin interacts with an exogenously administered opioid, morphine, in the rat spinal

  2. Spinal anesthesia with diphenhydramine and pheniramine in rats.

    Science.gov (United States)

    Hung, Ching-Hsia; Chu, Chin-Chen; Chen, Yu-Chung; Chen, Yu-Wen; Li, Zong-Ying; Wang, Jhi-Joung

    2011-12-30

    The aim of this study was to evaluate the local anesthetic effects of pheniramine and diphenhydramine, two histamine H₁ receptor antagonists, on spinal anesthesia and their comparison with lidocaine, a commonly used local anesthetic. After rats were injected intrathecally with diphenhydramine and pheniramine, the dose-response curves were obtained. The potency and duration of diphenhydramine and pheniramine on spinal anesthesia were compared with lidocaine. We showed that diphenhydramine and pheniramine produced dose-dependent spinal blockades in motor function, proprioception, and nociception. On a 50% effective dose (ED₅₀) basis, the rank of potency of drugs was diphenhydramine=pheniramine>lidocaine (ppheniramine or lidocaine (ppheniramine or lidocaine, elicited longer duration of sensory block than that of motor block at the same dose of 1.75 μmol. These preclinical data reported that diphenhydramine with a more sensory-selective action over motor blockade demonstrated more potent and longer-lasting spinal blockades, compared with pheniramine or lidocaine. Copyright © 2011 Elsevier B.V. All rights reserved.

  3. Effects of Sex Steroids on the Spinal Gastrin-Releasing Peptide System Controlling Male Sexual Function in Rats.

    Science.gov (United States)

    Oti, Takumi; Takanami, Keiko; Ito, Saya; Ueda, Takashi; Matsuda, Ken Ichi; Kawata, Mitsuhiro; Soh, Jintetsu; Ukimura, Osamu; Sakamoto, Tatsuya; Sakamoto, Hirotaka

    2018-04-01

    The gastrin-releasing peptide (GRP) system in the lumbosacral spinal cord controls male sexual function in rats. In contrast, in female rats, GRP neurons could scarcely be detected around puberty when circulating ovarian steroid hormones such as estradiol and progesterone levels are increasing. However, little information is available on feminizing or demasculinizing effects of ovarian steroids on the central nervous system in female puberty and adulthood. In this study, to visualize the spinal GRP neurons in vivo, we generated a GRP-promoter-Venus transgenic (Tg) rat line and studied the effects of the sex steroid hormones on GRP expression in the rat lumbar cord by examining the Venus fluorescence. In these Tg rats, the sexually dimorphic spinal GRP neurons controlling male sexual function were clearly labeled with Venus fluorescence. As expected, Venus fluorescence in the male lumbar cord was markedly decreased after castration and restored by chronic androgen replacement. Furthermore, androgen-induced Venus expression in the spinal cord of adult Tg males was significantly attenuated by chronic treatment with progesterone but not with estradiol. A luciferase assay using a human GRP-promoter construct showed that androgens enhance the spinal GRP system, and more strikingly, that progesterone acts to inhibit the GRP system via an androgen receptor-mediated mechanism. These results demonstrate that circulating androgens may play an important role in the spinal GRP system controlling male sexual function not only in rats but also in humans and that progesterone could be an important feminizing factor in the spinal GRP system in females during pubertal development.

  4. Histological effects of fibrin glue and synthetic tissue glues on the spinal cord: are they safe to use?

    Science.gov (United States)

    Kalsi, Pratipal; Thom, Maria; Choi, David

    2017-12-01

    Fibrin glues such as Tisseel ® have been established in neurosurgery for over thirty years. They are recommended for extradural use but have intradural applications. Brachial plexus reimplantation after trauma requires intradural fibrin glue because reimplanted nerves cannot be sutured to the spinal cord. Recently synthetic glues have become popular in spinal surgery but there is limited information about their safety. Our study compared the histological effects of Tisseel ® , Adherus ® and BioGlue ® on spinal cord using our rat brachial plexus repair model. Randomised observational animal study. Forty-one Sprague-Dawley rats divided in to control (n = 9), Tisseel ® (n = 8), BioGlue ® (n = 10) and Adherus ® (n = 14) groups. Under general anaesthesia a posterior midline cervical incision was made and hemi-laminectomies performed at C7 and T1. Dura was opened and T1 dorsal root transected and repositioned on the spinal cord. Two drops of Tisseel ® , BioGlue ® , Adherus ® or no glue (control) were applied over the cut nerve and cord. At days 7, 14 and 28 rats were euthanized, processed and sections stained with Haematoxylin & Eosin and evaluated blind by a neuropathologist. Control and Tisseel ® groups showed only mild focal inflammation in the cord. Adherus ® and Bioglue ® groups showed evidence of spinal cord inflammation and degeneration. All BioGlue ® and Adherus ® rats had evidence of distortion of the cord from the glue mass at all time points. Two BioGlue ® -treated and one Adherus ® -treated rat developed a hemiparesis. One BioGlue ® rat developed hind limb paralysis. One BioGlue ® rat failed to wake up at the end of the procedure. There were no complications in control and Tisseel ® groups. Tisseel ® caused a similar inflammatory response to control and may be used on spinal cord. BioGlue ® and Adherus ® should be applied thinly for a watertight dural closure but intradural use and contact with spinal tissue must be

  5. The recovery of 5-HT transporter and 5-HT immunoreactivity in injured rat spinal cord.

    Science.gov (United States)

    Saruhashi, Yasuo; Matsusue, Yoshitaka; Fujimiya, Mineko

    2009-09-01

    Experimental spinal cord injury. To determine the role of serotonin (5-HT) and 5-HT transporter in recovery from spinal cord injury. We examined 5-HT and 5-HT transporter of spinal cord immunohistologically and assessed locomotor recovery after extradural compression at the thoracic (T8) spinal cord in 21 rats. Eighteen rats had laminectomy and spinal cord injury, while the remaining three rats received laminectomy only. All rats were evaluated every other day for 4 weeks, using a 0-14 point scale open field test. Extradural compression markedly reduced mean hindlimbs scores from 14 to 1.5 +/- 2.0 (mean +/- standard error of mean). The rats recovered apparently normal walking by 4 weeks. The animals were perfused with fixative 1-3 days, 1, 2 and 4 weeks (three rats in each) after a spinal cord injury. The 5-HT transporter immunohistological study revealed a marked reduction of 5-HT transporter-containing terminals by 1 day after injury. By 4 weeks after injury, 5-HT transporter immunoreactive terminals returned to the control level. The 5-HT immunohistological study revealed a reduction of 5-HT-containing terminals by 1 week after injury. By 4 weeks after injury, 5-HT immunoreactive fibers and terminals returned to the control level. We estimated the recovery of 5-HT transporter and 5-HT neural elements in lumbosacral ventral horn by ranking 5-HT transporter and 5-HT staining intensity and counting 5-HT and 5-HT transporter terminals. The return of 5-HT transporter and 5-HT immunoreactivity of the lumbosacral ventral horn correlated with locomotor recovery, while 5-HT transporter showed closer relationship with locomotor recovery than 5-HT. The presence of 5-HT transporter indicates that the 5-HT fibers certainly function. This study shows that return of the function of 5-HT fibers predict the time course and extent of locomotory recovery after thoracic spinal cord injury.

  6. Regional differences in radiosensitivity across the rat cervical spinal cord

    International Nuclear Information System (INIS)

    Bijl, Hendrik P.; Luijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2005-01-01

    Purpose: To study regional differences in radiosensitivity within the rat cervical spinal cord. Methods and materials: Three types of inhomogeneous dose distributions were applied to compare the radiosensitivity of the lateral and central parts of the rat cervical spinal cord. The left lateral half of the spinal cord was irradiated with two grazing proton beams, each with a different penumbra (20-80% isodoses): lateral wide (penumbra = 1.1 mm) and lateral tight (penumbra = 0.8 mm). In the third experiment, the midline of the cord was irradiated with a narrow proton beam with a penumbra of 0.8 mm. The irradiated spinal cord length (CT-2) was 20 mm in all experiments. The animals were irradiated with variable single doses of unmodulated protons (150 MeV) with the shoot-through method, whereby the plateau of the depth-dose profile is used rather than the Bragg peak. The endpoint for estimating isoeffective dose (ED 50 ) values was paralysis of fore and/or hind limbs within 210 days after irradiation. Histology of the spinal cords was performed to assess the radiation-induced tissue damage. Results: High-precision proton irradiation of the lateral or the central part of the spinal cord resulted in a shift of dose-response curves to higher dose values compared with the homogeneously irradiated cervical cord to the same 20-mm length. The ED 50 values were 28.9 Gy and 33.4 Gy for the lateral wide and lateral tight irradiations, respectively, and as high as 71.9 Gy for the central beam experiment, compared with 20.4 Gy for the homogeneously irradiated 20-mm length of cervical cord. Histologic analysis of the spinal cords showed that the paralysis was due to white matter necrosis. The radiosensitivity was inhomogeneously distributed across the spinal cord, with a much more radioresistant central white matter (ED 50 = 71.9 Gy) compared with lateral white matter (ED 50 values = 28.9 Gy and 33.4 Gy). The gray matter did not show any noticeable lesions, such as necrosis or

  7. Effects of polarization in low-level laser therapy of spinal cord injury in rats

    Science.gov (United States)

    Ando, Takahiro; Sato, Shunichi; Kobayashi, Hiroaki; Nawashiro, Hiroshi; Ashida, Hiroshi; Hamblin, Michael R.; Obara, Minoru

    2012-03-01

    Low-level laser therapy (LLLT) is a promising approach to treat the spinal cord injury (SCI). Since nerve fibers have optical anisotropy, propagation of light in the spinal tissue might be affected by its polarization direction. However, the effect of polarization on the efficacy of LLLT has not been elucidated. In the present study, we investigated the effect of polarization on the efficacy of near-infrared LLLT for SCI. Rat spinal cord was injured with a weight-drop device. The lesion site was irradiated with an 808-nm diode laser beam that was transmitted through a polarizing filter immediately after injury and daily for five consecutive days. The laser power at the injured spinal cord surface was 25 mW, and the dosage per day was 9.6 J/cm2 (spot diameter, 2 cm; irradiation duration, 1200 s). Functional recovery was assessed daily by an open-field test. The results showed that the functional scores of the SCI rats that were treated with 808-nm laser irradiation were significantly higher than those of the SCI alone group (Group 1) from day 5 after injury, regardless of the polarization direction. Importantly, as compared to the locomotive function of the SCI rats that were treated with the perpendicularly-polarized laser parallel to the spinal column (Group 2), that of the SCI rats that were irradiated with the linearly aligned polarization (Group 3) was significantly improved from day 10 after injury. In addition, the ATP contents in the injured spinal tissue of Group 3, which were measured immediately after laser irradiation, were moderately higher than those of Group 2. These observations are attributable to the deeper penetration of the parallelpolarized light in the anisotropic spinal tissue, suggesting that polarization direction significantly affects the efficacy of LLLT for SCI.

  8. Spontaneous development of full weight-supported stepping after complete spinal cord transection in the neonatal opossum, Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Benjamin J Wheaton

    Full Text Available Spinal cord trauma in the adult nervous system usually results in permanent loss of function below the injury level. The immature spinal cord has greater capacity for repair and can develop considerable functionality by adulthood. This study used the marsupial laboratory opossum Monodelphis domestica, which is born at a very early stage of neural development. Complete spinal cord transection was made in the lower-thoracic region of pups at postnatal-day 7 (P7 or P28, and the animals grew to adulthood. Injury at P7 resulted in a dense neuronal tissue bridge that connected the two ends of the cord; retrograde neuronal labelling indicated that supraspinal and propriospinal innervation spanned the injury site. This repair was associated with pronounced behavioural recovery, coordinated gait and an ability to use hindlimbs when swimming. Injury at P28 resulted in a cyst-like cavity encased in scar tissue forming at the injury site. Using retrograde labelling, no labelled brainstem or propriospinal neurons were found above the lesion, indicating that detectable neuronal connectivity had not spanned the injury site. However, these animals could use their hindlimbs to take weight-supporting steps but could not use their hindlimbs when swimming. White matter, demonstrated by Luxol Fast Blue staining, was present in the injury site of P7- but not P28-injured animals. Overall, these studies demonstrated that provided spinal injury occurs early in development, regrowth of supraspinal innervation is possible. This repair appears to lead to improved functional outcomes. At older ages, even without detectable axonal growth spanning the injury site, substantial development of locomotion was still possible. This outcome is discussed in conjunction with preliminary findings of differences in the local propriospinal circuits following spinal cord injury (demonstrated with fluororuby labelling, which may underlie the weight bearing locomotion observed in the

  9. The role of spinal pathways in dopamine mediated alteration in the tail-flick reflex in rats

    DEFF Research Database (Denmark)

    Jensen, T S; Schrøder, H D; Smith, D F

    1984-01-01

    The latency of the tail-flick, following intrathecal infusion of the dopamine (DA) agonist, R-apomorphine was measured in rats with intact spinal cord or with spinal cord lesions. Apomorphine failed to influence the tail-flick response in intact rats, whereas it elevated the latency of the tail-f...

  10. Minocycline attenuates bone cancer pain in rats by inhibiting NF-κB in spinal astrocytes.

    Science.gov (United States)

    Song, Zhen-Peng; Xiong, Bing-Rui; Guan, Xue-Hai; Cao, Fei; Manyande, Anne; Zhou, Ya-Qun; Zheng, Hua; Tian, Yu-Ke

    2016-06-01

    To investigate the mechanisms underlying the anti-nociceptive effect of minocycline on bone cancer pain (BCP) in rats. A rat model of BCP was established by inoculating Walker 256 mammary carcinoma cells into tibial medullary canal. Two weeks later, the rats were injected with minocycline (50, 100 μg, intrathecally; or 40, 80 mg/kg, ip) twice daily for 3 consecutive days. Mechanical paw withdrawal threshold (PWT) was used to assess pain behavior. After the rats were euthanized, spinal cords were harvested for immunoblotting analyses. The effects of minocycline on NF-κB activation were also examined in primary rat astrocytes stimulated with IL-1β in vitro. BCP rats had marked bone destruction, and showed mechanical tactile allodynia on d 7 and d 14 after the operation. Intrathecal injection of minocycline (100 μg) or intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced mechanical tactile allodynia. Furthermore, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of GFAP (astrocyte marker) and PSD95 in spinal cord. Moreover, intraperitoneal injection of minocycline (80 mg/kg) reversed BCP-induced upregulation of NF-κB, p-IKKα and IκBα in spinal cord. In IL-1β-stimulated primary rat astrocytes, pretreatment with minocycline (75, 100 μmol/L) significantly inhibited the translocation of NF-κB to nucleus. Minocycline effectively alleviates BCP by inhibiting the NF-κB signaling pathway in spinal astrocytes.

  11. Cortex-dependent recovery of unassisted hindlimb locomotion after complete spinal cord injury in adult rats

    Science.gov (United States)

    Manohar, Anitha; Foffani, Guglielmo; Ganzer, Patrick D; Bethea, John R; Moxon, Karen A

    2017-01-01

    After paralyzing spinal cord injury the adult nervous system has little ability to ‘heal’ spinal connections, and it is assumed to be unable to develop extra-spinal recovery strategies to bypass the lesion. We challenge this assumption, showing that completely spinalized adult rats can recover unassisted hindlimb weight support and locomotion without explicit spinal transmission of motor commands through the lesion. This is achieved with combinations of pharmacological and physical therapies that maximize cortical reorganization, inducing an expansion of trunk motor cortex and forepaw sensory cortex into the deafferented hindlimb cortex, associated with sprouting of corticospinal axons. Lesioning the reorganized cortex reverses the recovery. Adult rats can thus develop a novel cortical sensorimotor circuit that bypasses the lesion, probably through biomechanical coupling, to partly recover unassisted hindlimb locomotion after complete spinal cord injury. DOI: http://dx.doi.org/10.7554/eLife.23532.001 PMID:28661400

  12. Diffusion tensor imaging of spinal cord parenchyma lesion in rat with chronic spinal cord injury.

    Science.gov (United States)

    Zhao, Can; Rao, Jia-Sheng; Pei, Xiao-Jiao; Lei, Jian-Feng; Wang, Zhan-Jing; Zhao, Wen; Wei, Rui-Han; Yang, Zhao-Yang; Li, Xiao-Guang

    2018-04-01

    Adequate evaluation of spinal cord parenchyma and accurate identification of injury range are considered two premises for the research and treatment of chronic spinal cord injury (SCI). Diffusion tensor imaging (DTI) provides information about water diffusion in spinal cord, and thus makes it possible to realize these premises. In this study, we conducted magnetic resonance imaging (MRI) for Wistar rats 84days after spinal cord contusion. DTI metrics including fractional anisotropy (FA), mean diffusivity (MD), axial diffusivity (AD), and radial diffusivity (RD) from different positions of the injured cord were collected, analyzed, and compared with the histological results and locomotor outcomes. Moreover, we performed fiber tractography, and examined the difference in cavity percentage obtained respectively via conventional MRI, DTI and histology. Results showed that the chronic SCI rats had the largest changes of all DTI metrics at the epicenter; the farther away from the epicenter, the smaller the variation. FA, AD and RD were all influenced by SCI in a greater space range than MD. The good consistency of FA values and histological results in specific regions evidenced FA's capability of reflecting Wallerian degeneration after SCI. DTI metrics at the epicenter in ventral funiculus also showed a close correlation with the BBB scores. Additionally, supported by the histological results, DTI enables a more accurate measurement of cavity percentage compared to the conventional MRI. DTI parameters might comprehensively reflect the post-SCI pathological status of spinal cord parenchyma at the epicenter and distal parts during the chronic stage, while showing good consistency with locomotor performance. DTI combined with tractography could intuitively display the distribution of spared fibers after SCI and accurately provide information such as cavity area. This may shed light on the research and treatment of chronic SCI. Copyright © 2017 Elsevier Inc. All rights

  13. MR imaging and spinal cord injury

    International Nuclear Information System (INIS)

    Azar-Kia, B.; Fine, M.; Naheedy, M.; Elias, D.

    1987-01-01

    MR imaging has significantly improved diagnostic capability of spinal cord injuries. Other available diagnostic modalities such as plain films, myelography, CT, and post-CT myelography have failed to consistently show the secific evidence of spinal cord injuries and their true extent. The authors are presenting our experiences with MR imaging in spinal column injury. They have found MR imaging to be the procedure of choice for prognostic evaluation of spinal cord trauma. They are showing examples of recent and old spinal cord injury such as hematomyelia, myelomalacia, transection, spinal cord edema, and cavitation

  14. Aphrodisiac Activity of the Aqueous Crude Extract of Purple Corn ( Zea mays) in Male Rats.

    Science.gov (United States)

    Carro-Juárez, Miguel; Rodríguez-Santiago, Magdalena G; Franco, Miguel Angel; Hueletl-Soto, María Eugenia

    2017-10-01

    In the present study, the aphrodisiac properties of the purple corn ( Zea mays) in male rats were analyzed. The aqueous crude extract of purple corn (at 25, 50, and 75 mg/kg) was administered to ( a) copulating male rats and ( b) anesthetized and spinal cord transected male rats. Behavioral parameters of copulatory behavior and parameters of the genital motor pattern of ejaculation previous to its inhibition, under the influence of the purple corn extract, are described. Administration of the aqueous crude extract of purple corn significantly facilitates the arousal and execution of male rat sexual behavior without significant influences on the ambulatory behavior. In addition, purple corn extract elicit a significant increase in the number of discharges of the ejaculatory motor patterns and in the total number of genital motor patterns evoked in spinal rats. The present findings show that the aqueous crude extract of purple corn possesses aphrodisiac activity.

  15. Spinal astrocytic activation contributes to mechanical allodynia in a rat chemotherapy-induced neuropathic pain model.

    Directory of Open Access Journals (Sweden)

    Xi-Tuan Ji

    Full Text Available Chemotherapy-induced neuropathic pain (CNP is the major dose-limiting factor in cancer chemotherapy. However, the neural mechanisms underlying CNP remain enigmatic. Accumulating evidence implicates the involvement of spinal glia in some neuropathic pain models. In this study, using a vincristine-evoked CNP rat model with obvious mechanical allodynia, we found that spinal astrocyte rather than microglia was dramatically activated. The mechanical allodynia was dose-dependently attenuated by intrathecal administratration of L-α-aminoadipate (astrocytic specific inhibitor; whereas minocycline (microglial specific inhibitor had no such effect, indicating that spinal astrocytic activation contributes to allodynia in CNP rat. Furthermore, oxidative stress mediated the development of spinal astrocytic activation, and activated astrocytes dramatically increased interleukin-1β expression which induced N-methyl-D-aspartic acid receptor (NMDAR phosphorylation in spinal neurons to strengthen pain transmission. Taken together, our findings suggest that spinal activated astrocytes may be a crucial component of the pathophysiology of CNP and "Astrocyte-Cytokine-NMDAR-neuron" pathway may be one detailed neural mechanisms underlying CNP. Thus, inhibiting spinal astrocytic activation may represent a novel therapeutic strategy for treating CNP.

  16. Valproic Acid Promotes Survival of Facial Motor Neurons in Adult Rats After Facial Nerve Transection: a Pilot Study.

    Science.gov (United States)

    Zhang, Lili; Fan, Zhaomin; Han, Yuechen; Xu, Lei; Liu, Wenwen; Bai, Xiaohui; Zhou, Meijuan; Li, Jianfeng; Wang, Haibo

    2018-04-01

    Valproic acid (VPA), a medication primarily used to treat epilepsy and bipolar disorder, has been applied to the repair of central and peripheral nervous system injury. The present study investigated the effect of VPA on functional recovery, survival of facial motor neurons (FMNs), and expression of proteins in rats after facial nerve trunk transection by functional measurement, Nissl staining, TUNEL, immunofluorescence, and Western blot. Following facial nerve injury, all rats in group VPA showed a better functional recovery, which was significant at the given time, compared with group NS. The Nissl staining results demonstrated that the number of FMNs survival in group VPA was higher than that in group normal saline (NS). TUNEL staining showed that axonal injury of facial nerve could lead to neuronal apoptosis of FMNs. But treatment of VPA significantly reduced cell apoptosis by decreasing the expression of Bax protein and increased neuronal survival by upregulating the level of brain-derived neurotrophic factor (BDNF) and growth associated protein-43 (GAP-43) expression in injured FMNs compared with group NS. Overall, our findings suggest that VPA may advance functional recovery, reduce lesion-induced apoptosis, and promote neuron survival after facial nerve transection in rats. This study provides an experimental evidence for better understanding the mechanism of injury and repair of peripheral facial paralysis.

  17. Characterization of upper thoracic spinal neurons responding to esophageal distension in diabetic rats

    DEFF Research Database (Denmark)

    Qin, Chao; Ghorbani, Marie L M; Wu, Mingyuan

    2008-01-01

    The aim of this study was to examine spinal neuronal processing of innocuous and noxious mechanical inputs from the esophagus in diabetic rats. Streptozotocin (50 mg/kg, ip) was used to induce diabetes in 15 male Sprague-Dawley rats, and vehicle (10 mM citrate buffer) was injected into 15 rats...

  18. Baicalin ameliorates neuropathic pain by suppressing HDAC1 expression in the spinal cord of spinal nerve ligation rats

    Directory of Open Access Journals (Sweden)

    Chen-Hwan Cherng

    2014-08-01

    Conclusion: The present findings suggest that baicalin can ameliorate neuropathic pain by suppressing HDAC1 expression and preventing histone-H3 acetylation in the spinal cord dorsal horn of SNL rats.

  19. Spinal cord thyrotropin releasing hormone receptors of morphine tolerant-dependent and abstinent rats

    Energy Technology Data Exchange (ETDEWEB)

    Rahmani, N.H.; Gulati, A.; Bhargava, H.N. (Univ. of Illinois, Chicago (USA))

    1990-07-01

    The effect of chronic administration of morphine and its withdrawal on the binding of 3H-(3-MeHis2)thyrotropin releasing hormone (3H-MeTRH) to membranes of the spinal cord of the rat was determined. Male Sprague-Dawley rats were implanted with either 6 placebo or 6 morphine pellets (each containing 75-mg morphine base) during a 7-day period. Two sets of animals were used. In one, the pellets were left intact at the time of sacrificing (tolerant-dependent) and in the other, the pellets were removed 16 hours prior to sacrificing (abstinent rats). In placebo-pellet-implanted rats, 3H-MeTRH bound to the spinal cord membranes at a single high affinity binding site with a Bmax of 21.3 +/- 1.6 fmol/mg protein, and an apparent dissociation constant Kd of 4.7 +/- 0.8 nM. In morphine tolerant-dependent or abstinent rats, the binding constants of 3H-MeTRH to spinal cord membranes were unaffected. Previous studies from this laboratory indicate that TRH can inhibit morphine tolerance-dependence and abstinence processes without modifying brain TRH receptors. Together with the present results, it appears that the inhibitory effect of TRH on morphine tolerance-dependence and abstinence is probably not mediated via central TRH receptors but may be due to its interaction with other neurotransmitter systems.

  20. Changes in rat spinal cord gene expression after inflammatory hyperalgesia of the joint and manual therapy.

    Science.gov (United States)

    Ruhlen, Rachel L; Singh, Vineet K; Pazdernik, Vanessa K; Towns, Lex C; Snider, Eric J; Sargentini, Neil J; Degenhardt, Brian F

    2014-10-01

    Mobilization of a joint affects local tissue directly but may also have other effects that are mediated through the central nervous system. To identify differential gene expression in the spinal cords of rats with or without inflammatory joint injury after manual therapy or no treatment. Rats were randomly assigned to 1 of 4 treatment groups: no injury and no touch (NI/NT), injury and no touch (I/NT), no injury and manual therapy (NI/MT), and injury and manual therapy (I/MT). We induced acute inflammatory joint injury in the rats by injecting carrageenan into an ankle. Rats in the no-injury groups did not receive carrageenan injection. One day after injury, rats received manual therapy to the knee of the injured limb. Rats in the no-touch groups were anesthetized without receiving manual therapy. Spinal cords were harvested 30 minutes after therapy or no touch, and spinal cord gene expression was analyzed by microarray for 3 comparisons: NI/NT vs I/NT, I/MT vs I/NT, and NI/NT vs NI/MT. Three rats were assigned to each group. Of 38,875 expressed sequence tags, 755 were differentially expressed in the NI/NT vs I/NT comparison. For the other comparisons, no expressed sequence tags were differentially expressed. Cluster analysis revealed that the differentially expressed sequence tags were over-represented in several categories, including ion homeostasis (enrichment score, 2.29), transmembrane (enrichment score, 1.55), and disulfide bond (enrichment score, 2.04). An inflammatory injury to the ankle of rats caused differential expression of genes in the spinal cord. Consistent with other studies, genes involved in ion transport were among those affected. However, manual therapy to the knees of injured limbs or to rats without injury did not alter gene expression in the spinal cord. Thus, evidence for central nervous system mediation of manual therapy was not observed. © 2014 The American Osteopathic Association.

  1. Electroacupuncture improves gait locomotion, H-reflex and ventral root potentials of spinal compression injured rats.

    Science.gov (United States)

    Escobar-Corona, Carlos; Torres-Castillo, Sergio; Rodríguez-Torres, Erika Elizabeth; Segura-Alegría, Bertha; Jiménez-Estrada, Ismael; Quiroz-González, Salvador

    2017-05-01

    This study explored the effect of electroacupuncture stimulation (EA) on alterations in the Hoffman reflex (H-reflex) response and gait locomotion provoked by spinal cord injury (SCI) in the rat. A compression lesion of the spinal cord was evoked by insufflating a Fogarty balloon located in the epidural space at the T8-9 spinal level of adult Wistar male rats (200-250 gr; n=60). In different groups of SCI rats, EA (frequencies: 2, 50 and 100Hz) was applied simultaneously to Huantiao (GB30), Yinmen (BL37), Jizhong (GV6) and Zhiyang (GV9) acupoints from the third post-injury day until the experimental session. At 1, 2, 3 and 4 post-injury weeks, the BBB scores of the SCI group of rats treated with EA at 50Hz showed a gradual but greater enhancement of locomotor activity than the other groups of rats. Unrestrained gait kinematic analysis of SCI rats treated with EA-50Hz stimulation showed a significant improvement in stride duration, length and speed (p<0.05), whereas a discrete recovery of gait locomotion was observed in the other groups of animals. After four post-injury weeks, the H-reflex amplitude and H-reflex/M wave amplitude ratio obtained in SCI rats had a noticeable enhancement (217%) compared to sham rats (n=10). Meanwhile, SCI rats treated with EA at 50Hz manifested a decreased facilitation of the H-reflex amplitude and H/M amplitude ratio (154%) and a reduced frequency-dependent amplitude depression of the H-reflex (66%). In addition, 50 Hz-EA treatment induced a recovery of the presynaptic depression of the Gs-VRP evoked by PBSt conditioning stimulation in the SCI rat (63.2±8.1%; n=9). In concordance with the latter, it could be suggested that 50 Hz-EA stimulation reduced the hyper-excitability of motoneurons and provokes a partial improvement of the locomotive performance and H reflex responses by a possible recovery of presynaptic mechanisms in the spinal cord of experimentally injured rats. Copyright © 2017 Elsevier Inc. All rights reserved.

  2. Kappa opioid receptors in rat spinal cord vary across the estrous cycle.

    Science.gov (United States)

    Chang, P C; Aicher, S A; Drake, C T

    2000-04-07

    Kappa opioid receptors (KORs) were immunocytochemically localized in the lumbosacral spinal cord of female rats in different stages of the estrous cycle to examine the influence of hormonal status on receptor density. KOR labeling was primarily in fine processes and a few neuronal cell bodies in the superficial dorsal horn and the dorsolateral funiculus. Quantitative light microscopic densitometry of the superficial dorsal horn revealed that rats in diestrus had significantly lower KOR densities than those in proestrus or estrus. This suggests that female reproductive hormones regulate spinal KOR levels, which may contribute to variations in analgesic effectiveness of KOR agonists across the estrous cycle.

  3. Protective Effects of Two Constituents of Chinese Herbs on Spinal Motor Neurons from Embryonic Rats with Hypoxia Injury

    OpenAIRE

    Chen, Jian-feng; Fan, Jian; Tian, Xiao-wu; Tang, Tian-si

    2011-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided int...

  4. The influence of surgical transection and anastomosis on the rate of cell proliferation in the colonic epithelium of normal and DMH-treated rats.

    Science.gov (United States)

    Barkla, D H; Tutton, P M

    1983-10-01

    Normal and DMH-treated male rats aged 18-20 weeks underwent surgical transection and anastomosis of the transverse colon. Animals were subsequently killed at intervals of 14, 30 and 72 days. Three hours prior to sacrifice animals were injected with vinblastine sulphate and mitotic indices were subsequently estimated in histological sections. Possible differences between experimental and control groups were tested using a Student's t-test. The results show that the accumulated mitotic indices in normal and DMH-treated colon are statistically similar. The results also show that transection and anastomosis stimulates cell division in both normal and DMH-treated colon and that the increase is of greater amplitude and more prolonged duration in the DMH-treated rats. Carcinomas developed close to the line of anastomosis in DMH-treated but not in control rats. The results support the hypothesis that non-specific injury to hyperplastic colonic epithelium promotes carcinogenesis.

  5. Time Course of Spinal Doublecortin Expression in Developing Rat and Porcine Spinal Cord: Implication in In Vivo Neural Precursor Grafting Studies

    Czech Academy of Sciences Publication Activity Database

    Juhásová, Jana; Juhás, Štefan; Hruška-Plocháň, M.; Doležalová, D.; Holubová, Monika; Strnádel, Ján; Marsala, S.; Motlík, Jan; Marsala, M.

    2015-01-01

    Roč. 35, č. 1 (2015), s. 57-70 ISSN 0272-4340 R&D Projects: GA TA ČR(CZ) TA01011466; GA MŠk ED2.1.00/03.0124 Institutional support: RVO:67985904 Keywords : doublecortin * spinal cord development * spinal neural precursor grafting * minipig * rat * GFAP Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 2.328, year: 2015

  6. Substance P release from rat hypothalamus and spinal cord

    International Nuclear Information System (INIS)

    Kronheim, S.; Sheppard, M.C.; Pimstone, B.L.

    1980-01-01

    A specific and sensitive radioimmunoassay for substance P has been developed to study the release of immunoreactive substance P from incubated rat hypothalamus and rat spinal cord in vitro. Release was significantly increased in the presence of two depolarizing stimuli (56 mM KCl and 75 μM veratrine) and was calcium-dependent. The released immunoreactive material diluted in parallel with synthetic substance P and showed close identity on Sephadex chromatography. A neuromodulator role for the peptide in the central nervous system is suggested

  7. Traumatic spinal cord injury in MR imaging

    International Nuclear Information System (INIS)

    Bronarski, J.; Wozniak, E.

    1993-01-01

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author)

  8. Involvement of melatonin metabolites in the long-term inhibitory effect of the hormone on rat spinal nociceptive transmission.

    Science.gov (United States)

    Mondaca, Mauricio; Hernández, Alejandro; Valladares, Luis; Sierralta, Walter; Noseda, Rodrigo; Soto-Moyano, Rubén

    2004-02-01

    There is evidence that melatonin and its metabolites could bind to nuclear sites in neurones, suggesting that this hormone is able to exert long-term functional effects in the central nervous system via genomic mechanisms. This study was designed to investigate (i) whether systemically administered melatonin can exert long-term effects on spinal cord windup activity, and (ii) whether blockade of melatonin degradation with eserine could prevent this effect. Rats receiving melatonin (10 mg/kg ip), the same dose of melatonin plus eserine (0.5 mg/kg ip), or saline were studied. Seven days after administration of the drugs or saline, spinal windup of rats was assessed in a C-fiber reflex response paradigm. Results show that rats receiving melatonin exhibited a reduction in spinal windup activity. This was not observed in the animals receiving melatonin plus eserine or saline, suggesting a role for melatonin metabolites in long-term changes of nociceptive transmission in the rat spinal cord.

  9. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions

    International Nuclear Information System (INIS)

    Leith, J.L.; McDonald, M.; Powers-Risius, P.; Bliven, S.F.; Walton, R.E.; Woodruff, K.H.; Howard, J.

    1980-01-01

    The response of rat spinal cord to irradiation with accelerated heavy ions, in particular carbon and neon ions has been studied. Two different ionization regions in the modified Bragg curve for each ion have been studied for both single and fractionated exposures. We have defined the paralytic response as a function of dose and dose per fraction, and we have determined RBE and repair values. The response of rat spinal cord is both dose and LET dependent, which allows the derivation of RBE and repair values

  10. Protein phosphatase 2A regulates central sensitization in the spinal cord of rats following intradermal injection of capsaicin

    Directory of Open Access Journals (Sweden)

    Fang Li

    2006-03-01

    Full Text Available Abstract Background Intradermal injection of capsaicin into the hind paw of rats induces spinal cord central sensititzation, a process in which the responsiveness of central nociceptive neurons is amplified. In central sensitization, many signal transduction pathways composed of several cascades of intracellular enzymes are involved. As the phosphorylation state of neuronal proteins is strictly controlled and balanced by the opposing activities of protein kinases and phosphatases, the involvement of phosphatases in these events needs to be investigated. This study is designed to determine the influence of serine/threonine protein phosphatase type 2A (PP2A on the central nociceptive amplification process, which is induced by intradermal injection of capsaicin in rats. Results In experiment 1, the expression of PP2A protein in rat spinal cord at different time points following capsaicin or vehicle injection was examined using the Western blot method. In experiment 2, an inhibitor of PP2A (okadaic acid, 20 nM or fostriecin, 30 nM was injected into the subarachnoid space of the spinal cord, and the spontaneous exploratory activity of the rats before and after capsaicin injection was recorded with an automated photobeam activity system. The results showed that PP2A protein expression in the spinal cord was significantly upregulated following intradermal injection of capsaicin in rats. Capsaicin injection caused a significant decrease in exploratory activity of the rats. Thirty minutes after the injection, this decrease in activity had partly recovered. Infusion of a phosphatase inhibitor into the spinal cord intrathecal space enhanced the central sensitization induced by capsaicin by making the decrease in movement last longer. Conclusion These findings indicate that PP2A plays an important role in the cellular mechanisms of spinal cord central sensitization induced by intradermal injection of capsaicin in rats, which may have implications in

  11. 5-HT modulation of multiple inward rectifiers in motoneurons in intact preparations of the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Kjaerulff, Ole; Kiehn, Ole

    2001-01-01

    This study introduces novel aspects of inward rectification in neonatal rat spinal motoneurons (MNs) and its modulation by serotonin (5-HT). Whole cell tight-seal recordings were made from MNs in an isolated lumbar spinal cord preparation from rats 1-2 days of age. In voltage clamp, hyperpolarizi...

  12. Regulation of peripheral inflammation by spinal p38 MAP kinase in rats.

    Directory of Open Access Journals (Sweden)

    David L Boyle

    2006-09-01

    Full Text Available Somatic afferent input to the spinal cord from a peripheral inflammatory site can modulate the peripheral response. However, the intracellular signaling mechanisms in the spinal cord that regulate this linkage have not been defined. Previous studies suggest spinal cord p38 mitogen-activated protein (MAP kinase and cytokines participate in nociceptive behavior. We therefore determined whether these pathways also regulate peripheral inflammation in rat adjuvant arthritis, which is a model of rheumatoid arthritis.Selective blockade of spinal cord p38 MAP kinase by administering the p38 inhibitor SB203580 via intrathecal (IT catheters in rats with adjuvant arthritis markedly suppressed paw swelling, inhibited synovial inflammation, and decreased radiographic evidence of joint destruction. The same dose of SB203580 delivered systemically had no effect, indicating that the effect was mediated by local concentrations in the neural compartment. Evaluation of articular gene expression by quantitative real-time PCR showed that spinal p38 inhibition markedly decreased synovial interleukin-1 and -6 and matrix metalloproteinase (MMP3 gene expression. Activation of p38 required tumor necrosis factor alpha (TNFalpha in the nervous system because IT etanercept (a TNF inhibitor given during adjuvant arthritis blocked spinal p38 phosphorylation and reduced clinical signs of adjuvant arthritis.These data suggest that peripheral inflammation is sensed by the central nervous system (CNS, which subsequently activates stress-induced kinases in the spinal cord via a TNFalpha-dependent mechanism. Intracellular p38 MAP kinase signaling processes this information and profoundly modulates somatic inflammatory responses. Characterization of this mechanism could have clinical and basic research implications by supporting development of new treatments for arthritis and clarifying how the CNS regulates peripheral immune responses.

  13. Sex Difference in Oxytocin-Induced Anti-Hyperalgesia at the Spinal Level in Rats with Intraplantar Carrageenan-Induced Inflammation.

    Science.gov (United States)

    Chow, Lok-Hi; Chen, Yuan-Hao; Wu, Wan-Chuan; Chang, En-Pei; Huang, Eagle Yi-Kung

    2016-01-01

    Previously, we demonstrated intrathecal administration of oxytocin strongly induced anti-hyperalgesia in male rats. By using an oxytocin-receptor antagonist (atosiban), the descending oxytocinergic pathway was found to regulate inflammatory hyperalgesia in our previous study using male rats. The activity of this neural pathway is elevated during hyperalgesia, but whether this effect differs in a sex-dependent manner remains unknown. We conducted plantar tests on adult male and female virgin rats in which paw inflammation was induced using carrageenan. Exogenous (i.t.) application of oxytocin exerted no anti-hyperalgesic effect in female rats, except at an extremely high dose. Female rats exhibited similar extent of hyperalgesia to male rats did when the animals received the same dose of carrageenan. When atosiban was administered alone, the severity of hyperalgesia was not increased in female rats. Moreover, insulin-regulated aminopeptidase (IRAP) was expressed at higher levels in the spinal cords of female rats compared with those of male rats. Oxytocin-induced anti-hyperalgesia exhibits a sex-dependent difference in rats. This difference can partially result from the higher expression of IRAP in the spinal cords of female rats, because IRAP functions as an enzyme that degrades oxytocin. Our study confirms the existence of a sex difference in oxytocin-induced anti-hyperalgesia at the spinal level in rats.

  14. Plasticity and alterations of trunk motor cortex following spinal cord injury and non-stepping robot and treadmill training.

    Science.gov (United States)

    Oza, Chintan S; Giszter, Simon F

    2014-06-01

    Spinal cord injury (SCI) induces significant reorganization in the sensorimotor cortex. Trunk motor control is crucial for postural stability and propulsion after low thoracic SCI and several rehabilitative strategies are aimed at trunk stability and control. However little is known about the effect of SCI and rehabilitation training on trunk motor representations and their plasticity in the cortex. Here, we used intracortical microstimulation to examine the motor cortex representations of the trunk in relation to other representations in three groups of chronic adult complete low thoracic SCI rats: chronic untrained, treadmill trained (but 'non-stepping') and robot assisted treadmill trained (but 'non-stepping') and compared with a group of normal rats. Our results demonstrate extensive and significant reorganization of the trunk motor cortex after chronic adult SCI which includes (1) expansion and rostral displacement of trunk motor representations in the cortex, with the greatest significant increase observed for rostral (to injury) trunk, and slight but significant increase of motor representation for caudal (to injury) trunk at low thoracic levels in all spinalized rats; (2) significant changes in coactivation and the synergy representation (or map overlap) between different trunk muscles and between trunk and forelimb. No significant differences were observed between the groups of transected rats for the majority of the comparisons. However, (3) the treadmill and robot-treadmill trained groups of rats showed a further small but significant rostral migration of the trunk representations, beyond the shift caused by transection alone. We conclude that SCI induces a significant reorganization of the trunk motor cortex, which is not qualitatively altered by non-stepping treadmill training or non-stepping robot assisted treadmill training, but is shifted further from normal topography by the training. This shift may potentially make subsequent rehabilitation with

  15. Complete reorganization of the motor cortex of adult rats following long-term spinal cord injuries.

    Science.gov (United States)

    Tandon, Shashank; Kambi, Niranjan; Mohammed, Hisham; Jain, Neeraj

    2013-07-01

    Understanding brain reorganization following long-term spinal cord injuries is important for optimizing recoveries based on residual function as well as developing brain-controlled assistive devices. Although it has been shown that the motor cortex undergoes partial reorganization within a few weeks after peripheral and spinal cord injuries, it is not known if the motor cortex of rats is capable of large-scale reorganization after longer recovery periods. Here we determined the organization of the rat (Rattus norvegicus) motor cortex at 5 or more months after chronic lesions of the spinal cord at cervical levels using intracortical microstimulation. The results show that, in the rats with the lesions, stimulation of neurons in the de-efferented forelimb motor cortex no longer evokes movements of the forelimb. Instead, movements of the body parts in the adjacent representations, namely the whiskers and neck were evoked. In addition, at many sites, movements of the ipsilateral forelimb were observed at threshold currents. The extent of representations of the eye, jaw and tongue movements was unaltered by the lesion. Thus, large-scale reorganization of the motor cortex leads to complete filling-in of the de-efferented cortex by neighboring representations following long-term partial spinal cord injuries at cervical levels in adult rats. © 2013 Federation of European Neuroscience Societies and John Wiley & Sons Ltd.

  16. Topiramate as a neuroprotective agent in a rat model of spinal cord injury

    Directory of Open Access Journals (Sweden)

    Firat Narin

    2017-01-01

    Full Text Available Topiramate (TPM is a widely used antiepileptic and antimigraine agent which has been shown to exert neuroprotective effects in various experimental traumatic brain injury and stroke models. However, its utility in spinal cord injury has not been studied extensively. Thus, we evaluated effects of TPM on secondary cellular injury mechanisms in an experimental rat model of traumatic spinal cord injury (SCI. After rat models of thoracic contusive SCI were established by free weight-drop method, TPM (40 mg/kg was given at 12-hour intervals for four times orally. Post TPM treatment, malondialdehyde and protein carbonyl levels were significantly reduced and reduced glutathione levels were increased, while immunoreactivity for endothelial nitric oxide synthase, inducible nitric oxide synthase, and apoptotic peptidase activating factor 1 was diminished in SCI rats. In addition, TPM treatment improved the functional recovery of SCI rats. This study suggests that administration of TPM exerts neuroprotective effects on SCI.

  17. Dose-volume effects in the rat cervical spinal cord after proton irradiation

    International Nuclear Information System (INIS)

    Bijl, Hendrik P.; Vuijk, Peter van; Coppes, Rob P.; Schippers, Jacobus M.; Konings, Antonius W.T.; Kogel, Albert J. van der

    2002-01-01

    Purpose: To estimate dose-volume effects in the rat cervical spinal cord with protons. Methods and Materials: Wistar rats were irradiated on the cervical spinal cord with a single fraction of unmodulated protons (150-190 MeV) using the shoot through method, which employs the plateau of the depth-dose profile rather than the Bragg peak. Four different lengths of the spinal cord (2, 4, 8, and 20 mm) were irradiated with variable doses. The endpoint for estimating dose-volume effects was paralysis of fore or hind limbs. Results: The results obtained with a high-precision proton beam showed a marginal increase of ED 50 when decreasing the irradiated cord length from 20 mm (ED 50 = 20.4 Gy) to 8 mm (ED 50 = 24.9 Gy), but a steep increase in ED 50 when further decreasing the length to 4 mm (ED 50 = 53.7 Gy) and 2 mm (ED 50 = 87.8 Gy). These results generally confirm data obtained previously in a limited series with 4-6-MV photons, and for the first time it was possible to construct complete dose-response curves down to lengths of 2 mm. At higher ED 50 values and shorter lengths irradiated, the latent period to paralysis decreased from 125 to 60 days. Conclusions: Irradiation of variable lengths of rat cervical spinal cord with protons showed steeply increasing ED 50 values for lengths of less than 8 mm. These results suggest the presence of a critical migration distance of 2-3 mm for cells involved in regeneration processes

  18. Spinal cord regeneration in Xenopus tadpoles proceeds through activation of Sox2-positive cells

    Science.gov (United States)

    2012-01-01

    Background In contrast to mammals, amphibians, such as adult urodeles (for example, newts) and anuran larvae (for example, Xenopus) can regenerate their spinal cord after injury. However, the cellular and molecular mechanisms involved in this process are still poorly understood. Results Here, we report that tail amputation results in a global increase of Sox2 levels and proliferation of Sox2+ cells. Overexpression of a dominant negative form of Sox2 diminished proliferation of spinal cord resident cells affecting tail regeneration after amputation, suggesting that spinal cord regeneration is crucial for the whole process. After spinal cord transection, Sox2+ cells are found in the ablation gap forming aggregates. Furthermore, Sox2 levels correlated with regenerative capabilities during metamorphosis, observing a decrease in Sox2 levels at non-regenerative stages. Conclusions Sox2+ cells contribute to the regeneration of spinal cord after tail amputation and transection. Sox2 levels decreases during metamorphosis concomitantly with the lost of regenerative capabilities. Our results lead to a working hypothesis in which spinal cord damage activates proliferation and/or migration of Sox2+ cells, thus allowing regeneration of the spinal cord after tail amputation or reconstitution of the ependymal epithelium after spinal cord transection. PMID:22537391

  19. Radiation induced microvascular damage in the rat spinal cord: cellular and secretory factors

    International Nuclear Information System (INIS)

    Pfeffer, M. Raphael; Siegal, Tali; Meltzer, A; Shezen, E; Ovadia, Haim

    1996-01-01

    Purpose/Objective: To investigate the short and long-term effect of radiation on micro vessel permeability, endothelin and nitric oxide production, and cellular profile in the spinal cord of rats and to evaluate the influence of recombinant human manganese superoxide dismutase (r-hMnSOD) on these effects. Materials and Methods: The thoracolumbar spinal cord of Fischer rats was irradiated to a dose of 15 Gy. At various times afterwards the rats were killed and the spinal cord was excised. Endothelin and nitric oxide synthase (NOS) activity and microvascular permeability were assayed quantitatively. Astrocytes, microglia, vascular basal membrane and neuro filaments were immunohistochemically evaluated. Results: None of the rats developed signs of neurological dysfunction. Endothelin concentrations in the spinal cord were significantly reduced 18 hours after irradiation and continued to decrease until after 10 days (p=<0.007). After 56 days endothelin concentration returned to normal and then rose to markedly elevated levels at 120 and 180 days (p=<0.002). NOS activity was reduced soon after irradiation and remained very low throughout the period of observation despite the changes in endothelin. Vascular permeability was markedly increased after 18 hours and again after 120 and 180 days. Treatment with r-hMnSOD had no effect on normal vascular permeability but abolished the increase in vascular permeability seen after irradiation. Standard microscopic examination revealed no changes in the irradiated spinal cord. Immunohistochemical stains showed a progressive increase in the number of microglial cells per field after 120 and 180 days (p=<0.0003). An increase in astrocytic cells was seen after 180 days with an earlier short lasting peak after 14 days. No abnormalities were found in blood vessel configuration, density and diameter. Vascular basal membrane and neuro filaments were unchanged throughout the study. Conclusions: Following radiation to the spinal cord there

  20. Effect of intravenous transplantation of bone marrow mesenchymal stem cells on neurotransmitters and synapsins in rats with spinal cord injury

    Science.gov (United States)

    Chen, Shaoqiang; Wu, Bilian; Lin, Jianhua

    2012-01-01

    Bone marrow mesenchymal stem cells were isolated, purified and cultured in vitro by Percoll density gradient centrifugation combined with the cell adherence method. Passages 3–5 bone marrow mesenchymal stem cells were transplanted into rats with traumatic spinal cord injury via the caudal vein. Basso-Beattie-Bresnahan scores indicate that neurological function of experimental rats was significantly improved over transplantation time (1–5 weeks). Expressions of choline acetyltransferase, glutamic acid decarboxylase and synapsins in the damaged spinal cord of rats was significantly increased after transplantation, determined by immunofluorescence staining and laser confocal scanning microscopy. Bone marrow mesenchymal stem cells that had migrated into the damaged area of rats in the experimental group began to express choline acetyltransferase, glutamic acid decarboxylase and synapsins, 3 weeks after transplantation. The Basso-Beattie- Bresnahan scores positively correlated with expression of choline acetyltransferase and synapsins. Experimental findings indicate that intravenously transplanted bone marrow mesenchymal stem cells traverse into the damaged spinal cord of rats, promote expression of choline acetyltransferase, glutamic acid decarboxylase and synapsins, and improve nerve function in rats with spinal cord injury. PMID:25657678

  1. [RECONSTRUCTION OF LOWER EXTREMITY FUNCTION OF COMPLETE SPINAL CORD INJURY RATS BY FIRST NEURON CONNECTION].

    Science.gov (United States)

    Wang, Fangyong; Yuan, Yuan; Li, Jianjun

    2015-12-01

    To investigate the effects of the first neuron connection for the reconstruction of lower extremity function of complete spinal cord injury rats. Forty adult female Sprague Dawley rats of 300-350 g in weight were selected to prepare the models of L₁ transverse spinal cord injury. After 2 weeks of establishing model, the rats were randomly divided into control group (n = 20) and experimental group (n = 20). In the experimental group, the right hind limb function was reconstructed directly by the first neuron; in the control group, the other treatments were the same to the experimental group except that the distal tibial nerve and the proximal femoral nerve were not sutured. The recovery of motor function of lower extremity was observed by the Basso-Beattie-Bresnahan (BBB) scoring system on bilateral hind limbs at 7, 30, 50, and 70 days after operation. The changes of the spinal cord were observed by HE staining, neurofilament 200 immunohistochemistry staining, and the technique of horseradish peroxidase (HRP) tracing. After establishing models, 6 rats died. The right hind limb had no obvious recovery of the motor function, with the BBB score of 0 in 2 groups; the left hind limb motor function was recovered in different degrees, and there was no significant difference in BBB score between 2 groups (P > 0.05). In the experimental group, HE staining showed that the spinal cord was reconstructed with the sciatic nerve, which was embedded in the spinal cord, and the sciatic nerve membrane was clearly identified, and there was no obvious atrophy in the connecting part of the spinal cord. In the experimental group, the expression of nerve fiber was stained with immunohistochemistry, and the axons of the spinal cord were positively by stained and the peripheral nerve was connected with the spinal cord. HRP labelled synapses were detected by HRP retrograde tracing in the experimental group, while there was no HRP labelled synapse in the control group. Direct reconstruction

  2. Endogenous stem cell proliferation induced by intravenous hedgehog agonist administration after contusion in the adult rat spinal cord.

    Science.gov (United States)

    Bambakidis, Nicholas C; Horn, Eric M; Nakaji, Peter; Theodore, Nicholas; Bless, Elizabeth; Dellovade, Tammy; Ma, Chiyuan; Wang, Xukui; Preul, Mark C; Coons, Stephen W; Spetzler, Robert F; Sonntag, Volker K H

    2009-02-01

    Sonic hedgehog (Shh) is a glycoprotein molecule that upregulates the transcription factor Gli1. The Shh protein plays a critical role in the proliferation of endogenous neural precursor cells when directly injected into the spinal cord after a spinal cord injury in adult rodents. Small-molecule agonists of the hedgehog (Hh) pathway were used in an attempt to reproduce these findings through intravenous administration. The expression of Gli1 was measured in rat spinal cord after the intravenous administration of an Hh agonist. Ten adult rats received a moderate contusion and were treated with either an Hh agonist (10 mg/kg, intravenously) or vehicle (5 rodents per group) 1 hour and 4 days after injury. The rats were killed 5 days postinjury. Tissue samples were immediately placed in fixative. Samples were immunohistochemically stained for neural precursor cells, and these cells were counted. Systemic dosing with an Hh agonist significantly upregulated Gli1 expression in the spinal cord (p < 0.005). After spinal contusion, animals treated with the Hh agonist had significantly more nestin-positive neural precursor cells around the rim of the lesion cavity than in vehicle-treated controls (means +/- SDs, 46.9 +/- 12.9 vs 20.9 +/- 8.3 cells/hpf, respectively, p < 0.005). There was no significant difference in the area of white matter injury between the groups. An intravenous Hh agonist at doses that upregulate spinal cord Gli1 transcription also increases the population of neural precursor cells after spinal cord injury in adult rats. These data support previous findings based on injections of Shh protein directly into the spinal cord.

  3. [Post-traumatic reconnection of the cervical spinal cord with skeletal striated muscles. Study in adult rats and marmosets].

    Science.gov (United States)

    Horvat, J C; Affane-Boulaid, F; Baillet-Derbin, C; Davarpanah, Y; Destombes, J; Duchossoy, Y; Emery, E; Kassar-Duchossoy, L; Mira, J C; Moissonnier, P; Pécot-Dechavassine, M; Reviron, T; Rhrich-Haddout, F; Tadié, M; Ye, J H

    1997-01-01

    In an attempt at repairing the injured spinal cord of adult mammals (rat, dog and marmoset) and its damaged muscular connections, we are currently using: 1) peripheral nerve autografts (PNG), containing Schwann cells, to trigger and direct axonal regrowth from host and/or transplanted motoneurons towards denervated muscular targets; 2) foetal spinal cord transplants to replace lost neurons. In adult rats and marmosets, a PNG bridge was used to joint the injured cervical spinal cord to a denervated skeletal muscle (longissimus atlantis [rat] or biceps brachii [rat and marmoset]). The spinal lesion was obtained by the implantation procedure of the PNG. After a post-operative delay ranging from 2 to 22 months, the animals were checked electrophysiologically for functional muscular reconnection and processed for a morphological study including retrograde axonal tracing (HRP, Fast Blue, True Blue), histochemistry (AChE, ATPase), immunocytochemistry (ChAT) and EM. It was thus demonstrated that host motoneurons of the cervical enlargement could extend axons all the way through the PNG bridge as: a) in anaesthetized animals, contraction of the reconnected muscle could be obtained by electrical stimulation of the grafted nerve; b) the retrograde axonal tracing studies indicated that a great number of host cervical neurons extended axons into the PNG bridge up to the muscle; c) many of them were assumed to be motoneurons (double labelling with True Blue and an antibody against ChAT); and even alpha-motoneurons (type C axosomatic synapses in HRP labelled neurons seen in EM in the rat); d) numerous ectopic endplates were seen around the intramuscular tip of the PNG. In larger (cavitation) spinal lesions (rat), foetal motoneurons contained in E14 spinal cord transplants could similarly grow axons through PNG bridges up to the reconnected muscle. Taking all these data into account, it can be concluded that neural transplants are interesting tools for evaluating both the

  4. Spinal cord injury in rats: inability of nimodipine or anti-neutrophil serum to improve spinal cord blood flow or neurologic status

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.; Gerdin, B.

    1989-01-01

    The role of a calcium-mediated increase in vascular resistance and of vascular damage caused by polymorphonuclear leukocytes (PMNLs) in the development of neurologic deficit and disturbance of spinal cord circulation following spinal cord compression was studied in the rat. Spinal cord injury was induced by 5 min of compression with a load of 35 g on a 2.2 x 5.0 mm compression plate. This caused transient paraparesis. The rats received either the calcium receptor antagonist nimodipine or an anti-rat neutrophil serum (ANS). Nimodipine was infused i.v. for 4 h in an amount of 1.5 μg/kg/min starting 60 min after trauma. The number of circulating PMNLs was depleted by intraperiotoneal injection of an ANS raised in sheep given 12 h before trauma. This caused a reduction to about 2% of the pre-ANS value. Controls received saline or normal sheep serum. The motor performance was assessed daily on the inclined plane. On day one, the day after injury, the capacity angle had decreased from about 63 deg. preoperatively to close to 32 deg. in the experimental groups. There was then a slow improvement in both the control and experimental groups and on day 4 the capacity angle was close to 43 deg. in all 3 groups. Spinal cord blood flow, as measured with the 14 C-iodoantipyrine autoradiography method, was similar in all groups on day 4. As neither the neurologic dysfunction nor the spinal cord blood flow was affected by post-trauma treatment with nimodipine or pretreatment with ANS, the possibility that calcium-mediated vasoconstriction or PMNLs play a role in the development of posttraumatic neuroligic disability was not supported by this study. (author)

  5. Blast overpressure induced axonal injury changes in rat brainstem and spinal cord

    Directory of Open Access Journals (Sweden)

    Srinivasu Kallakuri

    2015-01-01

    Full Text Available Introduction: Blast induced neurotrauma has been the signature wound in returning soldiers from the ongoing wars in Iraq and Afghanistan. Of importance is understanding the pathomechansim(s of blast overpressure (OP induced axonal injury. Although several recent animal models of blast injury indicate the neuronal and axonal injury in various brain regions, animal studies related to axonal injury in the white matter (WM tracts of cervical spinal cord are limited. Objective: The purpose of this study was to assess the extent of axonal injury in WM tracts of cervical spinal cord in male Sprague Dawley rats subjected to a single insult of blast OP. Materials and Methods: Sagittal brainstem sections and horizontal cervical spinal cord sections from blast and sham animals were stained by neurofilament light (NF-L chain and beta amyloid precursor protein immunocytochemistry and observed for axonal injury changes. Results: Observations from this preliminary study demonstrate axonal injury changes in the form of prominent swellings, retraction bulbs, and putative signs of membrane disruptions in the brainstem and cervical spinal cord WM tracts of rats subjected to blast OP. Conclusions: Prominent axonal injury changes following the blast OP exposure in brainstem and cervical spinal WM tracts underscores the need for careful evaluation of blast induced injury changes and associated symptoms. NF-L immunocytochemistry can be considered as an additional tool to assess the blast OP induced axonal injury.

  6. The upright posture improves plantar stepping and alters responses to serotonergic drugs in spinal rats.

    Science.gov (United States)

    Sławińska, Urszula; Majczyński, Henryk; Dai, Yue; Jordan, Larry M

    2012-04-01

    Recent studies on the restoration of locomotion after spinal cord injury have employed robotic means of positioning rats above a treadmill such that the animals are held in an upright posture and engage in bipedal locomotor activity. However, the impact of the upright posture alone, which alters hindlimb loading, an important variable in locomotor control, has not been examined. Here we compared the locomotor capabilities of chronic spinal rats when placed in the horizontal and upright postures. Hindlimb locomotor movements induced by exteroceptive stimulation (tail pinching) were monitored with video and EMG recordings. We found that the upright posture alone significantly improved plantar stepping. Locomotor trials using anaesthesia of the paws and air stepping demonstrated that the cutaneous receptors of the paws are responsible for the improved plantar stepping observed when the animals are placed in the upright posture.We also tested the effectiveness of serotonergic drugs that facilitate locomotor activity in spinal rats in both the horizontal and upright postures. Quipazine and (±)-8-hydroxy-2-(dipropylamino)tetralin hydrobromide (8-OH-DPAT) improved locomotion in the horizontal posture but in the upright posture either interfered with or had no effect on plantar walking. Combined treatment with quipazine and 8-OH-DPAT at lower doses dramatically improved locomotor activity in both postures and mitigated the need to activate the locomotor CPG with exteroceptive stimulation. Our results suggest that afferent input from the paw facilitates the spinal CPG for locomotion. These potent effects of afferent input from the paw should be taken into account when interpreting the results obtained with rats in an upright posture and when designing interventions for restoration of locomotion after spinal cord injury.

  7. Stretching After Heat But Not After Cold Decreases Contractures After Spinal Cord Injury in Rats.

    Science.gov (United States)

    Iwasawa, Hiroyuki; Nomura, Masato; Sakitani, Naoyoshi; Watanabe, Kosuke; Watanabe, Daichi; Moriyama, Hideki

    2016-12-01

    Contractures are a prevalent and potentially severe complication in patients with neurologic disorders. Although heat, cold, and stretching are commonly used for treatment of contractures and/or spasticity (the cause of many contractures), the sequential effects of these modalities remain unclear. Using an established rat model with spinal cord injury with knee flexion contracture, we sought to determine what combination of heat or cold before stretching is the most effective for treatment of contractures derived from spastic paralyses and investigated which treatment leads to the best (1) improvement in the loss of ROM; (2) restoration of deterioration in the muscular and articular factors responsible for contractures; and (3) amelioration of histopathologic features such as muscular fibrosis in biceps femoris and shortening of the joint capsule. Forty-two adolescent male Wistar rats were used. After spasticity developed at 2 weeks postinjury, each animal with spinal cord injury underwent the treatment protocol daily for 1 week. Knee extension ROM was measured with a goniometer by two examiners blinded to each other's scores. The muscular and articular factors contributing to contractures were calculated by measuring ROM before and after the myotomies. We quantitatively measured the muscular fibrosis and the synovial intima length, and observed the distribution of collagen of skeletal muscle. The results were confirmed by a blinded observer. The ROM of heat alone (34° ± 1°) and cold alone (34° ± 2°) rats were not different with the numbers available from that of rats with spinal cord injury (35° ± 2°) (p = 0.92 and 0.89, respectively). Stretching after heat (24° ± 1°) was more effective than stretching alone (27° ± 3°) at increasing ROM (p contractures. Although quantification of muscular fibrosis in the rats with spinal cord injury (11% ± 1%) was higher than that of controls (9% ± 0.4%) (p = 0.01), no difference was found between spinal cord

  8. Localization of cholecystokininlike immunoreactivity in the rat spinal cord, with particular reference to the autonomic innervation of the pelvic organs

    DEFF Research Database (Denmark)

    Schrøder, H D

    1983-01-01

    tracing and immunocytochemistry revealed that the two cholecystokinin terminal fields characteristic for L1-L2 and that surrounding the intermediolateral nucleus in L6-S1 were situated corresponding to preganglionic neurons innervating pelvic organs through the hypogastric nerve or the pelvic nerves...... from the more cranial part with respect to type of afferent connections. The origin of the spinal cholecystokinin was investigated and it was found that neither complete transection of the spinal cord nor ipsilateral sectioning of three or four dorsal roots induced visible changes...

  9. High-resolution three-dimensional visualization of the rat spinal cord microvasculature by synchrotron radiation micro-CT

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Jianzhong; Cao, Yong; Wu, Tianding; Li, Dongzhe [Department of Spine Surgery, Xiangya Hospital, Central South University, Changsha 410008 (China); Lu, Hongbin, E-mail: hongbinlu@hotmail.com [Department of Sports Medicine, Research Centre of Sports Medicine, Xiangya Hospital, Central South University, Changsha 410008 (China)

    2014-10-15

    Purpose: Understanding the three-dimensional (3D) morphology of the spinal cord microvasculature has been limited by the lack of an effective high-resolution imaging technique. In this study, synchrotron radiation microcomputed tomography (SRµCT), a novel imaging technique based on absorption imaging, was evaluated with regard to the detection of the 3D morphology of the rat spinal cord microvasculature. Methods: Ten Sprague-Dawley rats were used in this ex vivo study. After contrast agent perfusion, their spinal cords were isolated and scanned using conventional x-rays, conventional micro-CT (CµCT), and SRµCT. Results: Based on contrast agent perfusion, the microvasculature of the rat spinal cord was clearly visualized for the first time ex vivo in 3D by means of SRµCT scanning. Compared to conventional imaging techniques, SRµCT achieved higher resolution 3D vascular imaging, with the smallest vessel that could be distinguished approximately 7.4 μm in diameter. Additionally, a 3D pseudocolored image of the spinal cord microvasculature was generated in a single session of SRµCT imaging, which was conducive to detailed observation of the vessel morphology. Conclusions: The results of this study indicated that SRµCT scanning could provide higher resolution images of the vascular network of the spinal cord. This modality also has the potential to serve as a powerful imaging tool for the investigation of morphology changes in the 3D angioarchitecture of the neurovasculature in preclinical research.

  10. Quantitative histological grading methods to assess subchondral bone and synovium changes subsequent to medial meniscus transection in the rat.

    Science.gov (United States)

    Kloefkorn, Heidi E; Allen, Kyle D

    The importance of the medial meniscus to knee health is demonstrated by studies which show meniscus injuries significantly increase the likelihood of developing osteoarthritis (OA), and knee OA can be modeled in rodents using simulated meniscus injuries. Traditionally, histological assessments of OA in these models have focused on damage to the articular cartilage; however, OA is now viewed as a disease of the entire joint as an organ system. The aim of this study was to develop quantitative histological measures of bone and synovial changes in a rat medial meniscus injury model of knee OA. To initiate OA, a medial meniscus transection (MMT) and a medial collateral ligament transection (MCLT) were performed in 32 male Lewis rats (MMT group). MCLT alone served as the sham procedure in 32 additional rats (MCLT sham group). At weeks 1, 2, 4, and 6 post-surgery, histological assessment of subchondral bone and synovium was performed (n = 8 per group per time point). Trabecular bone area and the ossification width at the osteochondral interface increased in both the MMT and MCLT groups. Subintimal synovial cell morphology also changed in MMT and MCLT groups relative to naïve animals. OA affects the joint as an organ system, and quantifying changes throughout an entire joint can improve our understanding of the relationship between joint destruction and painful OA symptoms following meniscus injury.

  11. Protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model

    Directory of Open Access Journals (Sweden)

    Peng Xie

    2016-01-01

    Full Text Available Objective: To study the protective effect of bone marrow mesenchymal stem cells combined with erythropoietin therapy on spinal cord injury rat model. Methods: SD rats were selected as experimental animals, spinal cord injury rat model was built by striking spinal cord with Hatteras Instruments PCI3000, and model rats were divided into control group, bone marrow mesenchymal stem cells (BMSCs group, erythropoietin (EPO group and BMSCs combined with EPO group according to different treatment methods. Then number of apoptotic cells in spinal cord tissue, contents of neural markers and neurotrophic factors as well as expression of apoptosis and injury molecules was detected. Results: Number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs group, EPO group and BMSCs+EPO group was lower than those of control group, and number of apoptotic cells as well as mRNA contents of Caspase-3 and c-fos of BMSCs+EPO group were lower than those of BMSCs group and EPO group; mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs group, EPO group and BMSCs+EPO group were higher than those of control group, and mRNA contents of NF-200 and MBP as well as protein contents of NGF and BDNF in spinal cord tissue of BMSCs+EPO group were higher than those of BMSCs group and EPO group. Conclusions: Bone marrow mesenchymal stem cells combined with erythropoietin therapy can inhibit cell apoptosis in the injured spinal cord tissue, increase neurotrophic factor levels and inhibit apoptosis and injury molecule expression; it has protective effect on spinal cord injury.

  12. Re-irradiation tolerance in the rat spinal cord

    International Nuclear Information System (INIS)

    Shun Wong, C.; Poon, J.K.; Hill, R.P.

    1993-01-01

    The influence of the level of initial radiation damage on the long term recovery and re-irradiation tolerance in the rat spinal cord was investigated. Rats were irradiated with 0, 10, 20, 30 and 36 daily fractions of 2.15 Gy initially representing 0, 25, 50, 75 and 90% of cord tolerance. After an interval of 20 weeks, retreatments were given using graded single doses of X-ray. The end-point was paralysis of the forelimbs due to white matter necrosis. Latent times to paralysis were inversely proportional to the level of initial injury and retreatment doses. The retreatment ED 50 s were 19.0, 17.0, 15.7, 14.0 and 11.8 Gy for the control animals and animals irradiated initially with 10. 20, 30 and 36 fractions of 2.15 Gy respectively. Using the extrapolated response dose (ERD) concept, α/β of 3.0 Gy, the retreatment of ED 50 s in % ERD were 81, 70, 58 and 42% after initial doses of 25, 50, 75 and 90% ERD respectively. The level of initial injury appeared to influence the proportion of residual injury. For an initial injury of 25 and 90% of ERD, the respective residual injury was 74 and 65% of the initial damage; for an initial injury of 50 and 75% ERD, the residual injury decreased to 59 and 57% respectively. It is concluded that there was significant long-term recovery in the rat spinal cord, and that the level of initial radiation damage influenced both the treatment tolerance and the time expression of injury. (author). tabs

  13. Localization of Brain Natriuretic Peptide Immunoreactivity in Rat Spinal Cord

    Directory of Open Access Journals (Sweden)

    Essam M Abdelalim

    2016-12-01

    Full Text Available Brain natriuretic peptide (BNP exerts its functions through natriuretic peptide receptors. Recently, BNP has been shown to be involved in a wide range of functions. Previous studies reported BNP expression in the sensory afferent fibers in the dorsal horn of the spinal cord. However, BNP expression and function in the neurons of the central nervous system are still controversial. Therefore, in this study, we investigated BNP expression in the rat spinal cord in detail using RT-PCR and immunohistochemistry. RT-PCR analysis showed that BNP mRNA was present in the spinal cord and DRG. BNP immunoreactivity was observed in different structures of the spinal cord, including the neuronal cell bodies and neuronal processes. BNP immunoreactivity was observed in the dorsal horn of the spinal cord and in the neurons of the intermediate column and ventral horn. Double-immunolabeling showed a high level of BNP expression in the afferent fibers (laminae I-II labeled with calcitonin gene-related peptide (CGRP, suggesting BNP involvement in sensory function. In addition, BNP was co-localized with CGRP and choline acetyltransferase in the motor neurons of the ventral horn. Together, these results indicate that BNP is expressed in sensory and motor systems of the spinal cord, suggesting its involvement in several biological actions on sensory and motor neurons via its binding to NPR-A and/or NPR-B in the DRG and spinal cord.

  14. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection.

    Science.gov (United States)

    Li, Yi-Ke; Yang, Juan-Mei; Huang, Yi-Bo; Ren, Dong-Dong; Chi, Fang-Lu

    2015-06-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  15. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    Directory of Open Access Journals (Sweden)

    Yi-ke Li

    2015-01-01

    Full Text Available The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: control, unilateral chorda tympani nerve transection and unilateral chorda tympani nerve transection + lingual nerve transection. Rats were allowed up to 42 days of recovery before being euthanized. The taste buds were visualized using a cytokeratin 8 antibody. Taste bud counts, volumes and taste receptor cell numbers were quantified and compared among groups. No significant difference was detected between the chorda tympani nerve transection and chorda tympani nerve transection + lingual nerve transection groups. Taste bud counts, volumes and taste receptor cell numbers on the ipsilateral side all decreased significantly compared with control. On the contralateral side, the number of taste buds remained unchanged over time, but they were larger, and taste receptor cells were more numerous postoperatively. There was no evidence for a role of the trigeminal branch of the lingual nerve in maintaining the structural integrity of the anterior taste buds.

  16. A rat model of chronic syringomyelia induced by epidural compression of the lumbar spinal cord.

    Science.gov (United States)

    Lee, Ji Yeoun; Kim, Shin Won; Kim, Saet Pyoul; Kim, Hyeonjin; Cheon, Jung-Eun; Kim, Seung-Ki; Paek, Sun Ha; Pang, Dachling; Wang, Kyu-Chang

    2017-10-01

    OBJECTIVE There has been no established animal model of syringomyelia associated with lumbosacral spinal lipoma. The research on the pathophysiology of syringomyelia has been focused on Chiari malformation, trauma, and inflammation. To understand the pathophysiology of syringomyelia associated with occult spinal dysraphism, a novel animal model of syringomyelia induced by chronic mechanical compression of the lumbar spinal cord was created. METHODS The model was made by epidural injection of highly concentrated paste-like kaolin solution through windows created by partial laminectomy of L-1 and L-5 vertebrae. Behavioral outcome in terms of motor (Basso-Beattie-Bresnahan score) and urinary function was assessed serially for 12 weeks. Magnetic resonance images were obtained in some animals to confirm the formation of a syrinx and to monitor changes in its size. Immunohistochemical studies, including analysis for glial fibrillary acidic protein, NeuN, CC1, ED-1, and caspase-3, were done. RESULTS By 12 weeks after the epidural compression procedure, syringomyelia formation was confirmed in 85% of the rats (34 of 40) on histology and/or MRI. The syrinx cavities were found rostral to the epidural compression. Motor deficit of varying degrees was seen immediately after the procedure in 28% of the rats (11 of 40). In 13 rats (33%), lower urinary tract dysfunction was seen. Motor deficit improved by 5 weeks after the procedure, whereas urinary dysfunction mostly improved by 2 weeks. Five rats (13%, 5 of 40) died 1 month postoperatively or later, and 3 of the 5 had developed urinary tract infection. At 12 weeks after the operation, IHC showed no inflammatory process, demyelination, or accelerated apoptosis in the spinal cords surrounding the syrinx cavities, similar to sham-operated animals. CONCLUSIONS A novel experimental model for syringomyelia by epidural compression of the lumbar spinal cord has been created. The authors hope that it will serve as an important research

  17. Spinal cord stimulation of dorsal columns in a rat model of neuropathic pain: evidence for a segmental spinal mechanism of pain relief.

    Science.gov (United States)

    Smits, H; van Kleef, M; Joosten, E A

    2012-01-01

    Although spinal cord stimulation (SCS) of the dorsal columns is an established method for treating chronic neuropathic pain, patients still suffer from a substantial level of pain. From a clinical perspective it is known that the location of the SCS is of pivotal importance, thereby suggesting a segmental spinal mode of action. However, experimental studies suggest that SCS acts also through the modulation of supraspinal mechanisms, which might suggest that the location is unimportant. Here we investigated the effect of the rostrocaudal location of SCS stimulation and the effectiveness of pain relief in a rat model of chronic neuropathic pain. Adult male rats (n=45) were submitted to a partial ligation of the sciatic nerve. The majority of animals developed tactile hypersensitivity in the nerve lesioned paw. All allodynic rats were submitted to SCS (n=33) for 30 minutes (f=50 Hz; pulse width 0.2 ms). In one group (n=16) the electrodes were located at the level where the injured sciatic nerve afferents enter the spinal cord (T13), and in a second group (n=17) the electrodes were positioned at more rostral levels (T11) as verified by X-ray. A repositioning experiment of electrodes from T12 to T13 was performed in 2 animals. Our data demonstrate that SCS of the dorsal columns at the level where the injured fibers enter the spinal cord dorsal horn result in a much better pain-relieving effect than SCS at more rostral levels. From this we conclude that SCS in treatment of neuropathic pain acts through a segmental spinal site of action. Copyright © 2011 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  18. Complete spinal cord injury (SCI) transforms how brain derived neurotrophic factor (BDNF) affects nociceptive sensitization.

    Science.gov (United States)

    Huang, Yung-Jen; Lee, Kuan H; Grau, James W

    2017-02-01

    Noxious stimulation can induce a lasting increase in neural excitability within the spinal cord (central sensitization) that can promote pain and disrupt adaptive function (maladaptive plasticity). Brain-derived neurotrophic factor (BDNF) is known to regulate the development of plasticity and has been shown to impact the development of spinally-mediated central sensitization. The latter effect has been linked to an alteration in GABA-dependent inhibition. Prior studies have shown that, in spinally transected rats, exposure to regular (fixed spaced) stimulation can counter the development of maladaptive plasticity and have linked this effect to an up-regulation of BDNF. Here it is shown that application of the irritant capsaicin to one hind paw induces enhanced mechanical reactivity (EMR) after spinal cord injury (SCI) and that the induction of this effect is blocked by pretreatment with fixed spaced shock. This protective effect was eliminated if rats were pretreated with the BDNF sequestering antibody TrkB-IgG. Intrathecal (i.t.) application of BDNF prevented, but did not reverse, capsaicin-induced EMR. BDNF also attenuated cellular indices (ERK and pERK expression) of central sensitization after SCI. In uninjured rats, i.t. BDNF enhanced, rather than attenuated, capsaicin-induced EMR and ERK/pERK expression. These opposing effects were related to a transformation in GABA function. In uninjured rats, BDNF reduced membrane-bound KCC2 and the inhibitory effect of the GABA A agonist muscimol. After SCI, BDNF increased KCC2 expression, which would help restore GABAergic inhibition. The results suggest that SCI transforms how BDNF affects GABA function and imply that the clinical usefulness of BDNF will depend upon the extent of fiber sparing. Copyright © 2016 Elsevier Inc. All rights reserved.

  19. Resveratrol, an antioxidant, protects spinal cord injury in rats by suppressing MAPK pathway

    Directory of Open Access Journals (Sweden)

    Song Fu

    2018-02-01

    Full Text Available Resveratrol, a polyphenol found in various plants, including grapes, plums and peanuts has shown various medIRInal properties, including antioxidant, protection of cardiovascular disease and cancer risk. However, the effects of resveratrol on spinal cord reperfusion injury have not been investigated. Hence, the present study was designed to evaluate the effect of resveratrol on nitric oxide synthase (iNOS/p38MAPK signaling pathway and to elucidate its regulating effect on the protection of spinal cord injury. Spinal cord ischemia–reperfusion injury (IRI was performed by the infrarenal abdominal aorta with mini aneurysm clip model. The expressions of iNOS and p38MAPK and the levels of biochemical parameters, including nitrite/nitrate, malondialdehyde (MDA, advanced oxidation products (AOPP, reduced glutathione (GSH, superoxide dismutase (SOD and catalase (CAT were measured in control and experimental groups. IRI-induced rats treated with 10 mg/kg resveratrol protected spinal cord from ischemia injury as supported by improved biological parameters measured in spinal cord tissue homogenates. The resveratrol treatment significantly decreased the levels of plasma nitrite/nitrate, iNOS mRNA and protein expressions and phosphorylation of p38MAPK in IRI-induced rats. Further, IRI-produced free radicals were reduced by resveratrol treatment by increasing enzymatic and non-enzymatic antioxidant levels such as GSH, SOD and CAT. Taken together, administration of resveratrol protects the damage caused by spinal cord ischemia with potential mechanism of suppressing the activation of iNOS/p38MAPK pathway and subsequent reduction of oxidative stress due to IRI.

  20. Spinal cord blood flow measured by 14C-iodoantipyrine autoradiography during and after graded spinal cord compression in rats

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.G.; Gerdin, B.

    1989-01-01

    The relations between degree of thoracic spinal cord compression causing myelographic block, reversible paraparesis, and extinction of the sensory evoked potential on one hand, and spinal cord blood flow on the other, were investigated. This was done in rats using the blocking weight-technique and 14 C-iodoantipyrine autoradiography. A load of 9 g caused myelographic block. Five minutes of compression with that load caused a reduction of spinal cord blood flow to about 25%, but 5 and 60 minutes after the compression spinal cord blood flow was restored to 60% of the pretrauma value. A load of 35 g for 5 minutes caused transient paraparesis. Recovery to about 30% was observed 5 and 60 minutes thereafter. During compression at a load of 55 g, which caused almost total extinction of sensory evoked potential and irreversible paraplegia, spinal cord blood flow under the load ceased. The results indicate that myelographic block occurs at a load which does not cause irreversible paraparesis and that a load which permits sensory evoked potential to be elicited results in potentially salvageable damage

  1. Either brain-derived neurotrophic factor or neurotrophin-3 only neurotrophin-producing grafts promote locomotor recovery in untrained spinalized cats.

    Science.gov (United States)

    Ollivier-Lanvin, Karen; Fischer, Itzhak; Tom, Veronica; Houlé, John D; Lemay, Michel A

    2015-01-01

    Background. Transplants of cellular grafts expressing a combination of 2 neurotrophic factors, brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) have been shown to promote and enhance locomotor recovery in untrained spinalized cats. Based on the time course of recovery and the absence of axonal growth through the transplants, we hypothesized that recovery was due to neurotrophin-mediated plasticity within the existing locomotor circuitry of the lumbar cord. Since BDNF and NT-3 have different effects on axonal sprouting and synaptic connectivity/strengthening, it becomes important to ascertain the contribution of each individual neurotrophins to recovery. Objective. We studied whether BDNF or NT-3 only producing cellular grafts would be equally effective at restoring locomotion in untrained spinal cats. Methods. Rat fibroblasts secreting one of the 2 neurotrophins were grafted into the T12 spinal transection site of adult cats. Four cats in each group (BDNF alone or NT-3 alone) were evaluated. Locomotor recovery was tested on a treadmill at 3 and 5 weeks post-transection/grafting. Results. Animals in both groups were capable of plantar weight-bearing stepping at speed up to 0.8 m/s as early as 3 weeks and locomotor capabilities were similar at 3 and 5 weeks for both types of graft. Conclusions. Even without locomotor training, either BDNF or NT-3 only producing grafts promote locomotor recovery in complete spinal animals. More clinically applicable delivery methods need to be developed. © The Author(s) 2014.

  2. Minocycline treatment inhibits microglial activation and alters spinal levels of endocannabinoids in a rat model of neuropathic pain

    Directory of Open Access Journals (Sweden)

    Elphick Maurice R

    2009-07-01

    Full Text Available Abstract Activation of spinal microglia contributes to aberrant pain responses associated with neuropathic pain states. Endocannabinoids (ECs are present in the spinal cord, and inhibit nociceptive processing; levels of ECs may be altered by microglia which modulate the turnover of endocannabinoids in vitro. Here, we investigate the effect of minocycline, an inhibitor of activated microglia, on levels of the endocannabinoids anandamide and 2-arachidonoylglycerol (2-AG, and the related compound N-palmitoylethanolamine (PEA, in neuropathic spinal cord. Selective spinal nerve ligation (SNL in rats resulted in mechanical allodynia and the presence of activated microglia in the ipsilateral spinal cord. Chronic daily treatment with minocycline (30 mg/kg, ip for 14 days significantly reduced the development of mechanical allodynia at days 5, 10 and 14 post-SNL surgery, compared to vehicle-treated SNL rats (P P P P P

  3. Electroacupuncture improves microcirculation and neuronal morphology in the spinal cord of a rat model of intervertebral disc extrusion

    Directory of Open Access Journals (Sweden)

    Dai-xun Jiang

    2015-01-01

    Full Text Available Most studies on spinal cord neuronal injury have focused on spinal cord tissue histology and the expression of nerve cell damage and repair-related genes. The importance of the microcirculation is often ignored in spinal cord injury and repair research. Therefore, in this study, we established a rat model of intervertebral disc extrusion by inserting a silica gel pad into the left ventral surface of T 13 . Electroacupuncture was used to stimulate the bilateral Zusanli point (ST36 and Neiting point (ST44 for 14 days. Compared with control animals, blood flow in the first lumbar vertebra (L 1 was noticeably increased in rats given electroacupuncture. Microvessel density in the T 13 segment of the spinal cord was increased significantly as well. The number of normal neurons was higher in the ventral horn of the spinal cord. In addition, vacuolation in the white matter was lessened. No obvious glial cell proliferation was visible. Furthermore, hindlimb motor function was improved significantly. Collectively, our results suggest that electroacupuncture can improve neuronal morphology and microcirculation, and promote the recovery of neurological functions in a rat model of intervertebral disc extrusion.

  4. Transected sciatic nerve repair by diode laser protein soldering.

    Science.gov (United States)

    Fekrazad, Reza; Mortezai, Omid; Pedram, MirSepehr; Kalhori, Katayoun Am; Joharchi, Khojasteh; Mansoori, Korosh; Ebrahimi, Roja; Mashhadiabbas, Fatemeh

    2017-08-01

    Despite advances in microsurgical techniques, repair of peripheral nerve injuries (PNI) is still a major challenge in regenerative medicine. The standard treatment for PNI includes suturing and anasthomosis of the transected nerve. The objective of this study was to compare neurorraphy (nerve repair) using standard suturingto diode laser protein soldering on the functional recovery of transected sciatic nerves. Thirty adult male Fischer-344 Wistar rats were randomly assigned to 3 groups: 1. The control group, no repair, 2. the standard of care suture group, and 3. The laser/protein solder group. For all three groups, the sciatic nerve was transected and the repair was done immediately. For the suture repair group, 10.0 prolene suture was used and for the laser/protein solder group a diode laser (500mW output power) in combination with bovine serum albumen and indocyanine green dye was used. Behavioral assessment by sciatic functional index was done on all rats biweekly. At 12weeks post-surgery, EMG recordings were done on all the rats and the rats were euthanized for histological evaluation of the sciatic nerves. The one-way ANOVA test was used for statistical analysis. The average time required to perform the surgery was significantly shorter for the laser-assisted nerve repair group compared to the suture group. The EMG evaluation revealed no difference between the two groups. Based on the sciatic function index the laser group was significantly better than the suture group after 12weeks (pneurorraphy using standard suturing methods. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Blockade of NMDA receptors decreased spinal microglia activation in bee venom induced acute inflammatory pain in rats.

    Science.gov (United States)

    Li, Li; Wu, Yongfang; Bai, Zhifeng; Hu, Yuyan; Li, Wenbin

    2017-03-01

    Microglial cells in spinal dorsal horn can be activated by nociceptive stimuli and the activated microglial cells release various cytokines enhancing the nociceptive transmission. However, the mechanisms underlying the activation of spinal microglia during nociceptive stimuli have not been well understood. In order to define the role of NMDA receptors in the activation of spinal microglia during nociceptive stimuli, the present study was undertaken to investigate the effect of blockade of NMDA receptors on the spinal microglial activation induced by acute peripheral inflammatory pain in rats. The acute inflammatory pain was induced by subcutaneous bee venom injection to the plantar surface of hind paw of rats. Spontaneous pain behavior, thermal withdrawal latency and mechanical withdrawal threshold were rated. The expression of specific microglia marker CD11b/c was assayed by immunohistochemistry and western blot. After bee venom treatment, it was found that rats produced a monophasic nociception characterized by constantly lifting and licking the injected hind paws, decreased thermal withdrawal latency and mechanical withdrawal threshold; immunohistochemistry displayed microglia with enlarged cell bodies, thickened, extended cellular processes with few ramifications, small spines, and intensive immunostaining; western blot showed upregulated expression level of CD11b/c within the period of hyperalgesia. Prior intrathecal injection of MK-801, a selective antagonist of NMDA receptors, attenuated the pain behaviors and suppressed up-regulation of CD11b/c induced by bee venom. It can be concluded that NMDA receptors take part in the mediation of spinal microglia activation in bee venom induced peripheral inflammatory pain and hyperalgesia in rats.

  6. Development of serotonergic and adrenergic receptors in the rat spinal cord: effects of neonatal chemical lesions and hyperthyroidism.

    Science.gov (United States)

    Lau, C; Pylypiw, A; Ross, L L

    1985-03-01

    The sympathetic preganglionic neurons in the spinal cord receive dense serotonergic (5-HT) and catecholaminergic (CA) afferent inputs from the descending supraspinal pathways. In the rat spinal cord, the levels of these biogenic amines and their receptors are low at birth, but undergo rapid ontogenetic increases in the ensuing 2-3 postnatal weeks until the adult levels are reached. In many systems it has been shown that denervation of presynaptic neurons leads to an up-regulation of the number of postsynaptic receptors. To determine whether the 5-HT and CA receptors in the developing spinal cord are also subject to such transsynaptic regulation, we examined the ontogeny of serotonergic receptors and alpha- and beta-adrenergic receptors in thoracolumbar spinal cord of rats given neurotoxins which destroy serotonergic (5,7-dihydroxytryptamine (5,7-DHT)) or noradrenergic (6-hydroxydopamine (6-OHDA)) nerve terminals. Intracisternal administration of 5,7-DHT or 6-OHDA at 1 and 6 days of age prevented, respectively, the development of 5-HT and CA levels in the spinal cord. Rats lesioned with 5,7-DHT displayed a marked elevation of 5-HT receptors with a binding of 50% greater than controls at 1 week and a continuing increase to twice normal by 4 weeks. A similar pattern of up-regulation was also detected with the alpha-adrenergic receptor, as rats lesioned with 6-OHDA exhibited persistent increases in receptor concentration. However, in these same animals ontogeny of the beta-adrenergic receptor in the spinal cord remained virtually unaffected by the chemical lesion. In several other parts of the nervous system, it has been demonstrated that the beta-adrenergic sensitivity can be modulated by hormonal signals, particularly that of the thyroid hormones. This phenomenon was examined in the spinal cord and in confirmation with previous studies neonatal treatment of triiodothyronine (0.1 mg/kg, s.c. daily) was capable of evoking persistent increases in beta

  7. Spinal translocator protein (TSPO) modulates pain behavior in rats with CFA-induced monoarthritis.

    Science.gov (United States)

    Hernstadt, Hayley; Wang, Shuxing; Lim, Grewo; Mao, Jianren

    2009-08-25

    Translocator protein 18 kDa (TSPO), previously known as the peripheral benzodiazepine receptor (PBR), is predominantly located in the mitochondrial outer membrane and plays an important role in steroidogenesis, immunomodulation, cell survival and proliferation. Previous studies have shown an increased expression of TSPO centrally in neuropathology, as well as in injured nerves. TSPO has also been implicated in modulation of nociception. In the present study, we examined the hypothesis that TSPO is involved in the initiation and maintenance of inflammatory pain using a rat model of Complete Freund's Adjuvant (CFA)-induced monoarthritis of the tibio-tarsal joint. Immunohistochemistry was performed using Iba-1 (microglia), NeuN (neurons), anti-Glial Fibrillary Acidic Protein, GFAP (astrocytes) and anti-PBR (TSPO) on Days 1, 7 and 14 after CFA-induced arthritis. Rats with CFA-induced monoarthritis showed mechanical allodynia and thermal hyperalgesia on the ipsilateral hindpaw, which correlated with the increased TSPO expression in ipsilateral laminae I-II on all experimental days. Iba-1 expression in the ipsilateral dorsal horn was also increased on Days 7 and 14. Moreover, TSPO was colocalized with Iba-1, GFAP and NeuN within the spinal cord dorsal horn. The TSPO agonist Ro5-4864, given intrathecally, dose-dependently retarded or prevented the development of mechanical allodynia and thermal hyperalgesia in rats with CFA-induced monoarthritis. These findings provide evidence that spinal TSPO is involved in the development and maintenance of inflammatory pain behaviors in rats. Thus, spinal TSPO may present a central target as a complementary therapy to reduce inflammatory pain.

  8. Experimental study of effectiveness of local application of electroneurostimulation, cortexin and methylprednisolone in acute spinal cord injury

    Directory of Open Access Journals (Sweden)

    Tsymbaliuk V.I.

    2014-09-01

    Full Text Available The tasks were to investigate the effect of topical electroneurostimulation, cortexin and methy¬lprednisolone in acute spinal cord injury in electrophysiological experiments on laboratory rats. The animals un¬derwent half transection of the spinal cord in the lower-thoracic area to simulate Brown-Sequard’s syndrome. Drugs were administered subdurally once daily in the dose of 0.03 mg for cortexin and 0.7 mg for methylprednisolone during 72 hours. Electrophysiological studies were carried out using standard electrophysiological apparatus. Reliable changes of bioelectric indicators in neuromuscular complex during topical application of electrical stimulation, as well as in administered methylprednisolone, failed to be found. However, local application of cortexin in terms of traumatic spinal cord injury due the antioxidant and neurotrophic effect results in improvement of bioelectrical indicators; this is manifested in reliable (p<0.05 increase of amplitude of the background electromyogram impulses at rest by 33% and increase of spontaneous oscillations frequency by 29.82%.

  9. Radiography used to measure internal spinal cord deformation in an in vivo rat model.

    Science.gov (United States)

    Lucas, E; Whyte, T; Liu, J; Tetzlaff, W; Cripton, P A

    2018-04-11

    Little is known about the internal mechanics of the in vivo spinal cord during injury. The objective of this study was to develop a method of tracking internal and surface deformation of in vivo rat spinal cord during compression using radiography. Since neural tissue is radio-translucent, radio-opaque markers were injected into the spinal cord. Two tantalum beads (260 µm) were injected into the cord (dorsal and ventral) at C5 of nine anesthetized rats. Four beads were glued to the lateral surface of the cord, caudal and cranial to the injection site. A compression plate was displaced 0.5 mm, 2 mm, and 3 mm into the spinal cord and lateral X-ray images were taken before, during, and after each compression for measuring bead displacements. Potential bead migration was monitored for by comparing displacements of the internal and glued surface beads. Dorsal beads moved significantly more than ventral beads with a range in averages of 0.57-0.71 mm and 0.31-0.35 mm respectively. Bead displacements during 0.5 mm compressions were significantly lower than 2 mm and 3 mm compressions. There was no statistically significant migration of the internal beads. The results indicate the merit of this technique for measuring in vivo spinal cord deformation. The pattern of bead displacements illustrates the complex internal and surface deformations of the spinal cord during transverse compression. This information is needed for validating physical and finite element spinal cord surrogates and to define relationships between loading parameters, internal cord deformation, and biological and functional outcomes. Copyright © 2018 Elsevier Ltd. All rights reserved.

  10. Characterization of upper thoracic spinal neurons receiving noxious cardiac and/or somatic inputs in diabetic rats

    DEFF Research Database (Denmark)

    Ghorbani, Marie Louise M; Qin, Chao; Wu, Mingyuan

    2011-01-01

    The aim of the present study was to examine spinal processing of cardiac and somatic nociceptive input in rats with STZ-induced diabetes. Type 1 diabetes was induced with streptozotocin (50mg/kg) in 14 male Sprague-Dawley rats and citrate buffer was injected in 14 control rats. After 4-11weeks...

  11. Time-dependent, bidirectional, anti- and pro-spinal hyper-reflexia and muscle spasticity effect after chronic spinal glycine transporter 2 (GlyT2) oligonucleotide-induced downregulation.

    Science.gov (United States)

    Kamizato, Kota; Marsala, Silvia; Navarro, Michael; Kakinohana, Manabu; Platoshyn, Oleksandr; Yoshizumi, Tetsuya; Lukacova, Nadezda; Wancewicz, Ed; Powers, Berit; Mazur, Curt; Marsala, Martin

    2018-07-01

    The loss of local spinal glycine-ergic tone has been postulated as one of the mechanisms contributing to the development of spinal injury-induced spasticity. In our present study using a model of spinal transection-induced muscle spasticity, we characterize the effect of spinally-targeted GlyT2 downregulation once initiated at chronic stages after induction of spasticity in rats. In animals with identified hyper-reflexia, the anti-spasticity effect was studied after intrathecal treatment with: i) glycine, ii) GlyT2 inhibitor (ALX 1393), and iii) GlyT2 antisense oligonucleotide (GlyT2-ASO). Administration of glycine and GlyT2 inhibitor led to significant suppression of spasticity lasting for a minimum of 45-60 min. Treatment with GlyT2-ASO led to progressive suppression of muscle spasticity seen at 2-3 weeks after treatment. Over the subsequent 4-12 weeks, however, the gradual appearance of profound spinal hyper-reflexia was seen. This was presented as spontaneous or slight-tactile stimulus-evoked muscle oscillations in the hind limbs (but not in upper limbs) with individual hyper-reflexive episodes lasting between 3 and 5 min. Chronic hyper-reflexia induced by GlyT2-ASO treatment was effectively blocked by intrathecal glycine. Immunofluorescence staining and Q-PCR analysis of the lumbar spinal cord region showed a significant (>90%) decrease in GlyT2 mRNA and GlyT2 protein. These data demonstrate that spinal GlyT2 downregulation provides only a time-limited therapeutic benefit and that subsequent loss of glycine vesicular synthesis resulting from chronic GlyT2 downregulation near completely eliminates the tonic glycine-ergic activity and is functionally expressed as profound spinal hyper-reflexia. These characteristics also suggest that chronic spinal GlyT2 silencing may be associated with pro-nociceptive activity. Copyright © 2018 Elsevier Inc. All rights reserved.

  12. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Norifumi; Nagaoka, Shunji; Nojima, Kumie

    2003-01-01

    We investigate effects of localized exposure of heavy ion to the lumbar 4th to 6th segments of the rat spinal cord on the properties of motoneurons and the innervated muscle fibers without surgical treatments. Twenty 7-week-old male Wistar rats were exposed to 5 mm spread-out Bragg peak (SOBP) carbon beam (290 MeV, linear energy transfer (LET)=130 keV/μm): Two doses (15 Gy or 20 Gy) were applied to each group of rats (n=5) in two different depths; one group was exposed only for ventral horn of the spinal cord while other for whole spinal cord. Five rats served as controls. The rats were exposed to carbon irons on October 26, 2002. We will sacrifice the rats soon after they show an abnormal behavior including posture and walking. Cell body size and oxidative enzyme activity of spinal motoneurons of the control and heavy-ion-exposed rats will be analyzed. In addition, cell size, oxidative enzyme activity, and expressions of myosin heavy chain isoforms of the gastrocnemius, soleus, plantaris, extensor digitorum longus, and tibialis anterior muscle fibers will be also determined. This study is performed to test our hypothesis that atrophy and a decrease in cross-sectional area of motoneurons and muscle fibers which they innervate, as well as a decrease in oxidative activity of motoneurons and muscle fibers, will be induced due to exposure to heavy ion. (author)

  13. Retrograde tracing of fluorescent gold after autogenous nerve transplantation on spinal cord injured in rats

    DEFF Research Database (Denmark)

    Lin, X; Liu, W; Ding, Ming

    2016-01-01

    , the transplantation group using autologous sural nerve graft to repair spinal cord injury period and non-transplantation group was only exposed incision without treatment. In the 4, 6 and 8 weeks after operation, the retrograde tracing of FG Fluoro-Gold was performed to discover the recovery of the axial plasma......Objective To investigate the changes of the fluorescent gold retrograde tracing autogenous nerve transplantation on spinal cord injured in rats. Methods The animals were divided into two groups, with modified Allen impact method to establish model of spinal cord injury. After 4 weeks.......01). Conclusion After spinal cord injury, autologous nerve graft was repaired and survived well and promote the recovery of spinal cord injury segment shaft pulp transportation function....

  14. Healing of periodontal defects and calcitonin gene related peptide expression following inferior alveolar nerve transection in rats.

    Science.gov (United States)

    Lv, Linlin; Wang, Yanzhi; Zhang, Jing; Zhang, Ting; Li, Shu

    2014-06-01

    The roles of nerve and neuropeptides in the process of bone formation and remolding have been studied previously. However, the effects of nervous system and neuropeptide on periodontal alveolar bone formation remained unknown. The aim of this study was to assess the effect of innervation on regeneration of alveolar bone and expression levels of calcitonin gene related peptide (CGRP) in periodontal tissues of rats, so as to have a better understanding of the effect of nerve and its related neuropeptide on periodontal tissue regeneration. Rats received transection of the left inferior alveolar nerve and a surgery to produce bilateral periodontal defect, then the alveolar tissue was obtained from animals of each group at week 1, 2, 4, 6 and 8 weeks after operation, respectively. Hematoxylin and eosin staining, and Masson staining were performed to evaluate the ability to restore and repair periodontal tissues at 4, 6 and 8 after surgery. Then new bone formation area and mineralized area were quantified using imagepro-plus6.0 software after pictures were taken under the microscope and SPSS17.0 was used for statistical analysis. Immunohistochemical staining was applied to investigate the expression of CGRP at 1, 2, 4, 6 and 8 weeks. Rats received transection of the left inferior alveolar nerve surgery and were then sacrificed at day 1, 3, 7, 14, 21, 28 after the operation. The change of CGRP expression in periodontal tissue was detected using immunohistochemical methods. The results showed that the volume of new bone formation was not significantly difference between the experimental and control groups, but the mineralized new bone area between the two groups was statistically significant. The level of CGRP expression was lower than normal at week 1, and then it began to rise in the next stage. The plateau, at higher than normal level, was reached at 6 weeks post-surgery. Results of transection of the left inferior alveolar nerve demonstrated the expression of CGRP

  15. Electrophysiological characterization of activation state-dependent Ca(v)2 channel antagonist TROX-1 in spinal nerve injured rats.

    Science.gov (United States)

    Patel, R; Rutten, K; Valdor, M; Schiene, K; Wigge, S; Schunk, S; Damann, N; Christoph, T; Dickenson, A H

    2015-06-25

    Prialt, a synthetic version of Ca(v)2.2 antagonist ω-conotoxin MVIIA derived from Conus magus, is the first clinically approved voltage-gated calcium channel blocker for refractory chronic pain. However, due to the narrow therapeutic window and considerable side effects associated with systemic dosing, Prialt is only administered intrathecally. N-triazole oxindole (TROX-1) is a novel use-dependent and activation state-selective small-molecule inhibitor of Ca(v)2.1, 2.2 and 2.3 calcium channels designed to overcome the limitations of Prialt. We have examined the neurophysiological and behavioral effects of blocking calcium channels with TROX-1. In vitro, TROX-1, in contrast to state-independent antagonist Prialt, preferentially inhibits Ca(v)2.2 currents in rat dorsal root ganglia (DRG) neurons under depolarized conditions. In vivo electrophysiology was performed to record from deep dorsal horn lamina V/VI wide dynamic range neurons in non-sentient spinal nerve-ligated (SNL) and sham-operated rats. In SNL rats, spinal neurons exhibited reduced responses to innocuous and noxious punctate mechanical stimulation of the receptive field following subcutaneous administration of TROX-1, an effect that was absent in sham-operated animals. No effect was observed on neuronal responses evoked by dynamic brushing, heat or cold stimulation in SNL or sham rats. The wind-up response of spinal neurons following repeated electrical stimulation of the receptive field was also unaffected. Spinally applied TROX-1 dose dependently inhibited mechanically evoked neuronal responses in SNL but not sham-operated rats, consistent with behavioral observations. This study confirms the pathological state-dependent actions of TROX-1 through a likely spinal mechanism and reveals a modality selective change in calcium channel function following nerve injury. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. The use of recombinant nAG protein In spinal cord crush injury in a rat model

    International Nuclear Information System (INIS)

    Al-Qattan, M.M.; Al-Motairi, M.; Ah-Habib, A.

    2017-01-01

    Objective: To evaluate the therapeutic properties of nAG protein during the recovery following acute spinal cord injuries in the rat. Study Design: An experimental study. Place and Duration of Study: King Saud University, Riyadh, Saudi Arabia, from September 2014 to September 2015. Methodology: Eight rats were studied (4 control rats and 4 experimental rats; and hence 50% were controls and 50% were experimental). All rats were subjected to an acute spinal cord injury using the aneurysmal clip injury model. Immediately after the injury, a single intra-dural injection of either normal saline (in the control group) or the nAG protein (in the experimental group) was done. Assessment of both groups was done over a 6-week period with regard to weight maintenance, motor recovery scores, MRI and histopathology of the injury site. Results: Weight maintenance was seen in the experimental and not in the control rats. Starting at 3 weeks after injury, the motor recovery was significantly (p<0.05) better in the experimental group. MRI assessment at 6 weeks showed better maintenance of cord continuity and less fluid accumulation at the injury site in the nAG-treated group. Just proximal to the injury site, there was less gliosis in the experimental group compared to the control group. At the crush injury site, there was less tissue architecture distortion, less vacuole formation, and less granulation tissue formation in the experimental group. Conclusion: The local injection nAG protein enhances neuro-restoration, reduces gliosis, and reduces vacuole/ granulation tissue formation following acute spinal cord crush injury in the rat aneurysmal clip animal model. (author)

  17. Nerve transection repair using laser-activated chitosan in a rat model.

    Science.gov (United States)

    Bhatt, Neel K; Khan, Taleef R; Mejias, Christopher; Paniello, Randal C

    2017-08-01

    Cranial nerve transection during head and neck surgery is conventionally repaired with microsuture. Previous studies have demonstrated recovery with laser nerve welding (LNW), a novel alternative to microsuture. LNW has been reported to have poorer tensile strength, however. Laser-activated chitosan, an adhesive biopolymer, may promote nerve recovery while enhancing the tensile strength of the repair. Using a rat posterior tibial nerve injury model, we compared four different methods of nerve repair in this pilot study. Animal study. Animals underwent unilateral posterior tibial nerve transection. The injury was repaired by potassium titanyl phosphate (KTP) laser alone (n = 20), KTP + chitosan (n = 12), microsuture + chitosan (n = 12), and chitosan alone (n = 14). Weekly walking tracks were conducted to measure functional recovery (FR). Tensile strength (TS) was measured at 6 weeks. At 6 weeks, KTP laser alone had the best recovery (FR = 93.4% ± 8.3%). Microsuture + chitosan, KTP + chitosan, and chitosan alone all showed good FR (87.4% ± 13.5%, 84.6% ± 13.0%, and 84.1% ± 10.0%, respectively). One-way analysis of variance was performed (F(3,56) = 2.6, P = .061). A TS threshold of 3.8 N was selected as a control mean recovery. Three groups-KTP alone, KTP + chitosan, and microsuture + chitosan-were found to meet threshold 60% (95% confidence interval [CI]: 23.1%-88.3%), 75% (95% CI: 46.8%-91.1%), and 100% (95% CI: 75.8%-100.0%), respectively. In the posterior tibial nerve model, all repair methods promoted nerve recovery. Laser-activated chitosan as a biopolymer anchor provided good TS and appears to be a novel alternative to microsuture. This repair method may have surgical utility following cranial nerve injury during head and neck surgery. NA Laryngoscope, 127:E253-E257, 2017. © 2017 The American Laryngological, Rhinological and Otological Society, Inc.

  18. Bone marrow stem cells delivered into the subarachnoid space via cisterna magna improve repair of injured rat spinal cord white matter

    Science.gov (United States)

    Marcol, Wiesław; Slusarczyk, Wojciech; Sieroń, Aleksander L; Koryciak-Komarska, Halina; Lewin-Kowalik, Joanna

    2015-01-01

    The influence of bone marrow stem cells on regeneration of spinal cord in rats was investigated. Young adult male Wistar rats were used (n=22). Focal injury of spinal cord white matter at Th10 level was produced using our original non-laminectomy method by means of high-pressured air stream. Cells from tibial and femoral bone marrow of 1-month old rats (n=3) were cultured, labeled with BrdU/Hoechst and injected into cisterna magna (experimental group) three times: immediately after spinal cord injury and 3 as well as 7 days later. Neurons in brain stem and motor cortex were labeled with FluoroGold (FG) delivered caudally from the injury site a week before the end of experiment. Functional outcome and morphological features of regeneration were analyzed during 12-week follow-up. The lesions were characterized by means of MRI. Maximal distance of expansion of implanted cells in the spinal cord was measured and the number of FG-positive neurons in the brain was counted. Rats treated with stem cells presented significant improvement of locomotor performance and spinal cord morphology when compared to the control group. Distance covered by stem cells was 7 mm from the epicenter of the injury. Number of brain stem and motor cortex FG-positive neurons in experimental group was significantly higher than in control. Obtained data showed that bone marrow stem cells are able to induce the repair of injured spinal cord white matter. The route of cells application via cisterna magna appeared to be useful for their delivery in spinal cord injury therapy. PMID:26628950

  19. Optimizing Filter-Probe Diffusion Weighting in the Rat Spinal Cord for Human Translation

    Directory of Open Access Journals (Sweden)

    Matthew D. Budde

    2017-12-01

    Full Text Available Diffusion tensor imaging (DTI is a promising biomarker of spinal cord injury (SCI. In the acute aftermath, DTI in SCI animal models consistently demonstrates high sensitivity and prognostic performance, yet translation of DTI to acute human SCI has been limited. In addition to technical challenges, interpretation of the resulting metrics is ambiguous, with contributions in the acute setting from both axonal injury and edema. Novel diffusion MRI acquisition strategies such as double diffusion encoding (DDE have recently enabled detection of features not available with DTI or similar methods. In this work, we perform a systematic optimization of DDE using simulations and an in vivo rat model of SCI and subsequently implement the protocol to the healthy human spinal cord. First, two complementary DDE approaches were evaluated using an orientationally invariant or a filter-probe diffusion encoding approach. While the two methods were similar in their ability to detect acute SCI, the filter-probe DDE approach had greater predictive power for functional outcomes. Next, the filter-probe DDE was compared to an analogous single diffusion encoding (SDE approach, with the results indicating that in the spinal cord, SDE provides similar contrast with improved signal to noise. In the SCI rat model, the filter-probe SDE scheme was coupled with a reduced field of view (rFOV excitation, and the results demonstrate high quality maps of the spinal cord without contamination from edema and cerebrospinal fluid, thereby providing high sensitivity to injury severity. The optimized protocol was demonstrated in the healthy human spinal cord using the commercially-available diffusion MRI sequence with modifications only to the diffusion encoding directions. Maps of axial diffusivity devoid of CSF partial volume effects were obtained in a clinically feasible imaging time with a straightforward analysis and variability comparable to axial diffusivity derived from DTI

  20. A method for unit recording in the lumbar spinal cord during locomotion of the conscious adult rat

    DEFF Research Database (Denmark)

    Berg, Rune W; Chen, Ming-Teh; Huang, Hsueh-Chen

    2009-01-01

    Extracellular recordings from single units in the brain, for example the neocortex, have proven feasible in moving, awake rats, but have not yet been possible in the spinal cord. Single-unit activity during locomotor-like activity in reduced preparations from adult cats and rats have provided...... valuable insights for the development of hypotheses about the organization of functional networks in the spinal cord. However, since reduced preparations could result in spurious conclusions, it is crucial to test these hypotheses in animals that are awake and behaving. Furthermore, unresolved issues...

  1. Characterization of spinal afferent neurons projecting to different chambers of the rat heart.

    Science.gov (United States)

    Guić, Maja Marinović; Kosta, Vana; Aljinović, Jure; Sapunar, Damir; Grković, Ivica

    2010-01-29

    The pattern of distribution of spinal afferent neurons (among dorsal root ganglia-DRGs) that project to anatomically and functionally different chambers of the rat heart, as well as their morphological and neurochemical characteristics were investigated. Retrograde tracing using a patch loaded with Fast blue (FB) was applied to all four chambers of the rat heart and labeled cardiac spinal afferents were characterized by using three neurochemical markers. The majority of cardiac projecting neurons were found from T1 to T4 DRGs, whereas the peak was at T2 DRG. There was no difference in the total number of FB-labeled neurons located in ipsilateral and contralateral DRGs regardless of the chambers marked with the patch. However, significantly more FB-labeled neurons projected to the ventricles compared to the atria (859 vs. 715). The proportion of isolectin B(4) binding in FB-labeled neurons was equal among all neurons projecting to different heart chambers (2.4%). Neurofilament 200 positivity was found in greater proportions in DRG neurons projecting to the left side of the heart, whereas calretinin-immunoreactivity was mostly represented in neurons projecting to the left atrium. Spinal afferent neurons projecting to different chambers of the rat heart exhibit a variety of neurochemical phenotypes depending on binding capacity for isolectin B(4) and immunoreactivity for neurofilament 200 and calretinin, and thus represent important baseline data for future studies. (c) 2009 Elsevier Ireland Ltd. All rights reserved.

  2. Inhibitory effects of aspirin-triggered resolvin D1 on spinal nociceptive processing in rat pain models.

    Science.gov (United States)

    Meesawatsom, Pongsatorn; Burston, James; Hathway, Gareth; Bennett, Andrew; Chapman, Victoria

    2016-09-02

    Harnessing the actions of the resolvin pathways has the potential for the treatment of a wide range of conditions associated with overt inflammatory signalling. Aspirin-triggered resolvin D1 (AT-RvD1) has robust analgesic effects in behavioural models of pain; however, the potential underlying spinal neurophysiological mechanisms contributing to these inhibitory effects in vivo are yet to be determined. This study investigated the acute effects of spinal AT-RvD1 on evoked responses of spinal neurones in vivo in a model of acute inflammatory pain and chronic osteoarthritic (OA) pain and the relevance of alterations in spinal gene expression to these neurophysiological effects. Pain behaviour was assessed in rats with established carrageenan-induced inflammatory or monosodium iodoacetate (MIA)-induced OA pain, and changes in spinal gene expression of resolvin receptors and relevant enzymatic pathways were examined. At timepoints of established pain behaviour, responses of deep dorsal horn wide dynamic range (WDR) neurones to transcutaneous electrical stimulation of the hind paw were recorded pre- and post direct spinal administration of AT-RvD1 (15 and 150 ng/50 μl). AT-RvD1 (15 ng/50 μl) significantly inhibited WDR neurone responses to electrical stimuli at C- (29 % inhibition) and Aδ-fibre (27 % inhibition) intensities. Both wind-up (53 %) and post-discharge (46 %) responses of WDR neurones in carrageenan-treated animals were significantly inhibited by AT-RvD1, compared to pre-drug response (p < 0.05). These effects were abolished by spinal pre-administration of a formyl peptide receptor 2 (FPR2/ALX) antagonist, butoxy carbonyl-Phe-Leu-Phe-Leu-Phe (BOC-2) (50 μg/50 μl). AT-RvD1 did not alter evoked WDR neurone responses in non-inflamed or MIA-treated rats. Electrophysiological effects in carrageenan-inflamed rats were accompanied by a significant increase in messenger RNA (mRNA) for chemerin (ChemR23) receptor and 5-lipoxygenase

  3. The Anti-Inflammatory Compound Curcumin Enhances Locomotor and Sensory Recovery after Spinal Cord Injury in Rats by Immunomodulation

    Science.gov (United States)

    Machova Urdzikova, Lucia; Karova, Kristyna; Ruzicka, Jiri; Kloudova, Anna; Shannon, Craig; Dubisova, Jana; Murali, Raj; Kubinova, Sarka; Sykova, Eva; Jhanwar-Uniyal, Meena; Jendelova, Pavla

    2015-01-01

    Well known for its anti-oxidative and anti-inflammation properties, curcumin is a polyphenol found in the rhizome of Curcuma longa. In this study, we evaluated the effects of curcumin on behavioral recovery, glial scar formation, tissue preservation, axonal sprouting, and inflammation after spinal cord injury (SCI) in male Wistar rats. The rats were randomized into two groups following a balloon compression injury at the level of T9–T10 of the spinal cord, namely vehicle- or curcumin-treated. Curcumin was applied locally on the surface of the injured spinal cord immediately following injury and then given intraperitoneally daily; the control rats were treated with vehicle in the same manner. Curcumin treatment improved behavioral recovery within the first week following SCI as evidenced by improved Basso, Beattie, and Bresnahan (BBB) test and plantar scores, representing locomotor and sensory performance, respectively. Furthermore, curcumin treatment decreased glial scar formation by decreasing the levels of MIP1α, IL-2, and RANTES production and by decreasing NF-κB activity. These results, therefore, demonstrate that curcumin has a profound anti-inflammatory therapeutic potential in the treatment of spinal cord injury, especially when given immediately after the injury. PMID:26729105

  4. Molecular changes in articular cartilage and subchondral bone in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis

    OpenAIRE

    Zhuo Ya; Hayami Tadashi; Pickarski Maureen; Duong Le T

    2011-01-01

    Abstract Background Osteoarthritis (OA) is a debilitating, progressive joint disease. Methods Similar to the disease progression in humans, sequential events of early cartilage degradation, subchondral osteopenia followed by sclerosis, and late osteophyte formation were demonstrated in the anterior cruciate ligament transection (ACLT) or ACLT with partial medial meniscectomy (ACLT + MMx) rat OA models. We describe a reliable and consistent method to examine the time dependent changes in the g...

  5. Changes in the structural properties of peripheral nerves after transection.

    Science.gov (United States)

    Toby, E B; Meyer, B M; Schwappach, J; Alvine, G

    1996-11-01

    Changes in peripheral nerve structural properties after transection were measured weekly for 5 weeks in the distal stump of the sciatic nerve in 50 Sprague-Dawley rats. Each week after transection, the distal stump of the transected nerve showed increased stiffness when compared to intact nerves. Linear elastic stiffness reached a maximum at weeks 1 and 2 after transection, when the transected nerves were 15% stiffer than the contralateral control sides. Toughness was also increased and reached a maximum at week 4 with a 50% difference between values for experimental and control sides. Overall failure load was between 21% and 27% greater, peaking at week 3. An increase in stiffness of the distal stump would result in increased tension at the suture line, as the nerve gap is overcome when performing a delayed neurorraphy. These data suggest, with respect to structural properties, that an end-to-end repair should be carried out at the time of injury; after only 1 week, significant stiffness in the distal segment of the nerve developed, which should result in an increase in tension at the repair site.

  6. Specific involvement of atypical PKCζ/PKMζ in spinal persistent nociceptive processing following peripheral inflammation in rat

    Directory of Open Access Journals (Sweden)

    Marchand Fabien

    2011-11-01

    Full Text Available Abstract Background Central sensitization requires the activation of various intracellular signalling pathways within spinal dorsal horn neurons, leading to a lowering of activation threshold and enhanced responsiveness of these cells. Such plasticity contributes to the manifestation of chronic pain states and displays a number of features of long-term potentiation (LTP, a ubiquitous neuronal mechanism of increased synaptic strength. Here we describe the role of a novel pathway involving atypical PKCζ/PKMζ in persistent spinal nociceptive processing, previously implicated in the maintenance of late-phase LTP. Results Using both behavioral tests and in vivo electrophysiology in rats, we show that inhibition of this pathway, via spinal delivery of a myristoylated protein kinase C-ζ pseudo-substrate inhibitor, reduces both pain-related behaviors and the activity of deep dorsal horn wide dynamic range neurons (WDRs following formalin administration. In addition, Complete Freund's Adjuvant (CFA-induced mechanical and thermal hypersensitivity was also reduced by inhibition of PKCζ/PKMζ activity. Importantly, this inhibition did not affect acute pain or locomotor behavior in normal rats and interestingly, did not inhibited mechanical allodynia and hyperalgesia in neuropathic rats. Pain-related behaviors in both inflammatory models coincided with increased phosphorylation of PKCζ/PKMζ in dorsal horn neurons, specifically PKMζ phosphorylation in formalin rats. Finally, inhibition of PKCζ/PKMζ activity decreased the expression of Fos in response to formalin and CFA in both superficial and deep laminae of the dorsal horn. Conclusions These results suggest that PKCζ, especially PKMζ isoform, is a significant factor involved in spinal persistent nociceptive processing, specifically, the manifestation of chronic pain states following peripheral inflammation.

  7. Dissociating movement from movement timing in the rat primary motor cortex.

    Science.gov (United States)

    Knudsen, Eric B; Powers, Marissa E; Moxon, Karen A

    2014-11-19

    Neural encoding of the passage of time to produce temporally precise movements remains an open question. Neurons in several brain regions across different experimental contexts encode estimates of temporal intervals by scaling their activity in proportion to the interval duration. In motor cortex the degree to which this scaled activity relies upon afferent feedback and is guided by motor output remains unclear. Using a neural reward paradigm to dissociate neural activity from motor output before and after complete spinal transection, we show that temporally scaled activity occurs in the rat hindlimb motor cortex in the absence of motor output and after transection. Context-dependent changes in the encoding are plastic, reversible, and re-established following injury. Therefore, in the absence of motor output and despite a loss of afferent feedback, thought necessary for timed movements, the rat motor cortex displays scaled activity during a broad range of temporally demanding tasks similar to that identified in other brain regions. Copyright © 2014 the authors 0270-6474/14/3415576-11$15.00/0.

  8. Secondary damage in the spinal cord after motor cortex injury in rats.

    Science.gov (United States)

    Weishaupt, Nina; Silasi, Gergely; Colbourne, Frederick; Fouad, Karim

    2010-08-01

    When neurons within the motor cortex are fatally injured, their axons, many of which project into the spinal cord, undergo wallerian degeneration. Pathological processes occurring downstream of the cortical damage have not been extensively studied. We created a focal forelimb motor cortex injury in rats and found that axons from cell bodies located in the hindlimb motor cortex (spared by the cortical injury) become secondarily damaged in the spinal cord. To assess axonal degeneration in the spinal cord, we quantified silver staining in the corticospinal tract (CST) at 1 week and 4 weeks after the injury. We found a significant increase in silver deposition at the thoracic spinal cord level at 4 weeks compared to 1 week post-injury. At both time points, no degenerating neurons could be found in the hindlimb motor cortex. In a separate experiment, we showed that direct injury of neurons within the hindlimb motor cortex caused marked silver deposition in the thoracic CST at 1 week post-injury, and declined thereafter. Therefore, delayed axonal degeneration in the thoracic spinal cord after a focal forelimb motor cortex injury is indicative of secondary damage at the spinal cord level. Furthermore, immunolabeling of spinal cord sections showed that a local inflammatory response dominated by partially activated Iba-1-positive microglia is mounted in the CST, a viable mechanism to cause the observed secondary degeneration of fibers. In conclusion, we demonstrate that following motor cortex injury, wallerian degeneration of axons in the spinal cord leads to secondary damage, which is likely mediated by inflammatory processes.

  9. Development of a 3D matrix for modeling mammalian spinal cord injury in vitro

    Directory of Open Access Journals (Sweden)

    Juan Felipe Diaz Quiroz

    2016-01-01

    Full Text Available Spinal cord injury affects millions of people around the world, however, limited therapies are available to improve the quality of life of these patients. Spinal cord injury is usually modeled in rats and mice using contusion or complete transection models and this has led to a deeper understanding of the molecular and cellular complexities of the injury. However, it has not to date led to development of successful novel therapies, this is in part due to the complexity of the injury and the difficulty of deciphering the exact roles and interactions of different cells within this complex environment. Here we developed a collagen matrix that can be molded into the 3D tubular shape with a lumen and can hence support cell interactions in a similar architecture to a spinal cord. We show that astrocytes can be successfully grown on this matrix in vitro and when injured, the cells respond as they do in vivo and undergo reactive gliosis, one of the steps that lead to formation of a glial scar, the main barrier to spinal cord regeneration. In the future, this system can be used to quickly assess the effect of drugs on glial scar protein activity or to perform live imaging of labeled cells after exposure to drugs.

  10. Mild Moxibustion Decreases the Expression of Prokineticin 2 and Prokineticin Receptor 2 in the Colon and Spinal Cord of Rats with Irritable Bowel Syndrome

    Directory of Open Access Journals (Sweden)

    Cili Zhou

    2014-01-01

    Full Text Available It has been proven that prokineticin 2 (PK2 and its receptor PKR2 play an important role in hyperalgesia, while mild moxibustion can relieve visceral hypersensitivity in a rat model of irritable bowel syndrome (IBS. The goal of the present study was to determine the effects of mild moxibustion on the expression of PK2 and PKR2 in colon and spinal cord in IBS rat model, which was induced by colorectal distension using inflatable balloons. After mild moxibustion treatment, abdominal withdrawal reflex (AWR scores were assessed by colorectal distension; protein and mRNA expression of PK2 and PKR2 in rat colon and spinal cord was determined by immunohistochemistry and fluorescence quantitative PCR. Compared with normal rats, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly increased in the model group; compared with the model group, the AWR scores of rats and the expressions of PK2/PKR2 proteins and mRNAs in colon and spinal cord tissue were significantly decreased in the mild moxibustion group. These findings suggest that the analgesia effect of mild moxibustion may be associated with the reduction of the abnormally increased expression of the PK2/PKR2 proteins and mRNAs in the colon and spinal cord.

  11. Dissecting the contribution of knee joint NGF to spinal nociceptive sensitization in a model of OA pain in the rat.

    Science.gov (United States)

    Sagar, D R; Nwosu, L; Walsh, D A; Chapman, V

    2015-06-01

    Although analgesic approaches targeting nerve growth factor (NGF) for the treatment of osteoarthritis (OA) pain remain of clinical interest, neurophysiological mechanisms by which NGF contribute to OA pain remain unclear. We investigated the impact of local elevation of knee joint NGF on knee joint, vs remote (hindpaw), evoked responses of spinal neurones in a rodent model of OA pain. In vivo spinal electrophysiology was carried out in anaesthetised rats with established pain behaviour and joint pathology following intra-articular injection of monosodium iodoacetate (MIA), vs injection of saline. Neuronal responses to knee joint extension and flexion, mechanical punctate stimulation of the peripheral receptive fields over the knee and at a remote site (ipsilateral hind paw) were studied before, and following, intra-articular injection of NGF (10 μg/50 μl) or saline. MIA-injected rats exhibited significant local (knee joint) and remote (lowered hindpaw withdrawal thresholds) changes in pain behaviour, and joint pathology. Intra-articular injection of NGF significantly (P knee extension-evoked firing of spinal neurones and the size of the peripheral receptive fields of spinal neurones (100% increase) over the knee joint in MIA rats, compared to controls. Intra-articular NGF injection did not significantly alter responses of spinal neurones following noxious stimulation of the ipsilateral hind paw in MIA-injected rats. The facilitatory effects of intra-articular injection of NGF on spinal neurones receiving input from the knee joint provide a mechanistic basis for NGF mediated augmentation of OA knee pain, however additional mechanisms may contribute to the spread of pain to remote sites. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. Response of rat spinal cord to very small doses per fraction: lack of enhanced radiosensitivity

    International Nuclear Information System (INIS)

    Shun, Wong C.; Yong, Hao; Hill, Richard P.

    1995-01-01

    Our previous work with rat spinal cord demonstrated that the linear quadratic (LQ) model based on data for large fraction sizes ((α(β)) of 2.4 Gy) failed to predict isoeffective doses between 1 and 2 Gy per fraction, and under-estimated the sparing effect of small doses per fraction given once daily. In contrast, data from mouse skin and kidney, and recent in vitro results revealed a paradoxical increase in radiosensitivity at below 1 Gy per fraction. To assess whether enhanced radiosensitivity is present in the spinal cord below 1 Gy per fraction, the rat spinal cord (C2-T2) was irradiated initially with three daily doses of 10.25 Gy (top-up doses representing 90% of tolerance), followed by graded single doses or fractionated doses in 1.5, 1.0, 0.8, 0.6 or 0.4 Gy fractions given once daily. To limit the overall treatment time to ≤ 8 weeks, a small number of the 0.6- and 0.4-Gy fractions were given twice daily with an interfraction interval of 16 h. The end-point was forelimb paralysis secondary to white matter necrosis, confirmed histologically. The ED 50 values, excluding the top-up doses, were 5.8, 10.6, 14.8, 15.2, 15.9 and 19.1 Gy for a single dose and doses in 1.5-, 1.0-, 0.8-, 0.6- and 0.4-Gy fractions, respectively. The data gave an (α(β)) of 2.1 Gy (95% CI, 1.4, 2.7 Gy). Pooling the data separately, the (α(β)) value was 2.3 Gy (95% CI, 0.82, 3.7 Gy) for fraction sizes ≥ 1 Gy, and 1.2 Gy (95% CI, 0.16, 2.3 Gy) for the 0.8-, 0.6- and 0.4-Gy experiments. These results in which top-up doses were given initially are consistent with a large sparing effect of very small fraction sizes in rat spinal cord provided sufficient time is allowed for repair of sublethal damage between fractions, and provide no evidence for a paradoxical increase in radiosensitivity in the rat spinal cord below 1 Gy down to 0.4 Gy per fraction

  13. Dynamic interaction between the heart and its sympathetic innervation following T5 spinal cord transection.

    Science.gov (United States)

    Lujan, Heidi L; Janbaih, Hussein; DiCarlo, Stephen E

    2012-10-15

    Midthoracic spinal cord injury (SCI) is associated with enhanced sympathetic support of heart rate as well as myocardial damage related to calcium overload. The myocardial damage may elicit an enhanced sympathetic support of contractility to maintain ventricular function. In contrast, the level of inotropic drive may be reduced to match the lower afterload that results from the injury-induced reduction in arterial pressure. Accordingly, the inotropic response to midthoracic SCI may be increased or decreased but has not been investigated and therefore remains unknown. Furthermore, the altered ventricular function may be associated with anatomical changes in cardiac sympathetic innervation. To determine the inotropic drive following midthoracic SCI, a telemetry device was used for repeated measurements of left ventricular (LV) function, with and without beta-adrenergic receptor blockade, in rats before and after midthoracic SCI or sham SCI. In addition, NGF content (ELISA) and dendritic arborization (cholera toxin B immunohistochemistry and Sholl analysis) of cardiac-projecting sympathetic postganglionic neurons in the stellate ganglia were determined. Midthoracic SCI was associated with an enhanced sympathetic support of heart rate, dP/dt(+), and dP/dt(-). Importantly, cardiac function was lower following blockade of the sympathetic nervous system in rats with midthoracic SCI compared with sham-operated rats. Finally, these functional neuroplastic changes were associated with an increased NGF content and structural neuroplasticity within the stellate ganglia. Results document impaired LV function with codirectional changes in chronotropic and inotropic responses following midthoracic SCI. These functional changes were associated with a dynamic interaction between the heart and its sympathetic innervation.

  14. Targeted Delivery of TrkB Receptor to Phrenic Motoneurons Enhances Functional Recovery of Rhythmic Phrenic Activity after Cervical Spinal Hemisection

    Science.gov (United States)

    Gransee, Heather M.; Zhan, Wen-Zhi; Sieck, Gary C.; Mantilla, Carlos B.

    2013-01-01

    Progressive recovery of rhythmic phrenic activity occurs over time after a spinal cord hemisection involving unilateral transection of anterolateral funiculi at C2 (SH). Brain-derived neurotrophic factor (BDNF) acting through its full-length tropomyosin related kinase receptor subtype B (TrkB.FL) contributes to neuroplasticity after spinal cord injury, but the specific cellular substrates remain unclear. We hypothesized that selectively targeting increased TrkB.FL expression to phrenic motoneurons would be sufficient to enhance recovery of rhythmic phrenic activity after SH. Several adeno-associated virus (AAV) serotypes expressing GFP were screened to determine specificity for phrenic motoneuron transduction via intrapleural injection in adult rats. GFP expression was present in the cervical spinal cord 3 weeks after treatment with AAV serotypes 7, 8, and 9, but not with AAV2, 6, or rhesus-10. Overall, AAV7 produced the most consistent GFP expression in phrenic motoneurons. SH was performed 3 weeks after intrapleural injection of AAV7 expressing human TrkB.FL-FLAG or saline. Delivery of TrkB.FL-FLAG to phrenic motoneurons was confirmed by FLAG protein expression in the phrenic motor nucleus and human TrkB.FL mRNA expression in microdissected phrenic motoneurons. In all SH rats, absence of ipsilateral diaphragm EMG activity was confirmed at 3 days post-SH, verifying complete interruption of ipsilateral descending drive to phrenic motoneurons. At 14 days post-SH, all AAV7-TrkB.FL treated rats (n = 11) displayed recovery of ipsilateral diaphragm EMG activity compared to 3 out of 8 untreated SH rats (pphrenic motoneurons is sufficient to enhance recovery of ipsilateral rhythmic phrenic activity after SH, indicating that selectively targeting gene expression in spared motoneurons below the level of spinal cord injury may promote functional recovery. PMID:23724091

  15. Glial and neuronal connexin expression patterns in the rat spinal cord during development and following injury

    DEFF Research Database (Denmark)

    Lee, I. Hui; Lindqvist, Eva; Kiehn, Ole

    2005-01-01

    Spinal cord injury induces a complex cascade of degenerative and remodeling events evolving over time. The possible roles of changed intercellular communication via gap junctions after spinal cord injury (SCI) have remained relatively unexplored. We investigated the temporospatial expression...... patterns of gap junctional genes and proteins, connexin 43 (Cx43), Cx36, and Cx32, by in situ hybridization and immunohistochemistry in the rat neonatal, adult normal, and adult injured spinal cord. Cx36 was strongly expressed in immature neurons, and levels declined markedly during development, whereas Cx...

  16. Effects of glycine on motor performance in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Gonzalez-Piña, Rigoberto; Nuño-Licona, Alberto

    2007-01-01

    It has been reported that glycine improves some functions lost after spinal cord injury (SCI). In order to assess the effects of glycine administration on motor performance after SCI, we used fifteen male Wistar rats distributed into three groups: sham (n = 3), spinal-cord injury (n = 6,) and spinal cord injury + glycine (n = 6). Motor performance was assessed using the beam-walking paradigm and footprint analysis. Results showed that for all animals with spinal-cord injury, scores in the beam-walking increased, which is an indication of increased motor deficit. In addition, footprint analysis showed a decrease in stride length and an increase in stride angle, additional indicators of motor deficit. These effects trended towards recovery after 8 weeks of recording and trended toward improvement by glycine administration; the effect was not significant. These results suggest that glycine replacement alone is not sufficient to improve the motor deficits that occur after SCI.

  17. Patterns of x-radiation-induced Schwann cell development in spinal cords of immature rats

    International Nuclear Information System (INIS)

    Gilmore, S.A.; Heard, J.K.; Leiting, J.E.

    1983-01-01

    Schwann cells, Schwann cell myelin, and connective tissue components develop in the spinal cord of the immature rat following exposure to x-rays. For the purposes of this paper, these intraspinal peripheral nervous tissue constituents are referred to as IPNT. A series of investigations are in progress to elucidate factors related to the development of IPNT, and the present study is a light microscopic evaluation of the relationship between the amount of radiation administered (1,000-3,000R) to the lumbosacral spinal cord in 3-day-old rats and the incidence and distribution of IPNT at intervals up to 60 days postirradiation (P-I). The results showed that IPNT was present in only 33% of the rats exposed to 1,000R, whereas its presence was observed in 86% or more of those in the 2,000-, 2,500-, and 3,000R groups. The distribution of IPNT was quite limited in the 1,000R group, where it was restricted to the spinal cord-dorsal root junction and was found in only a few sections within the irradiated area. The distribution was more widespread with increasing amounts of radiation, and IPNT occupied substantial portions of the dorsal funiculi and extended into the dorsal gray matter in the 3,000R group. In all aR mals developing IPNT in the groups receiving 2,000R or more, the IPNT was present in essentially all sections from the irradiated area. Further studies will compare in detail spinal cords exposed to 1,000R in which IPNT is an infrequent, limited occurrence with those exposed to higher doses where IPNT occurs in a more widespread fashion in essentially all animals

  18. GFAP and Fos immunoreactivity in lumbo-sacral spinal cord and medulla oblongata after chronic colonic inflammation in rats

    Science.gov (United States)

    Sun, Yi-Ning; Luo, Jin-Yan; Rao, Zhi-Ren; Lan, Li; Duan, Li

    2005-01-01

    AIM: To investigate the response of astrocytes and neurons in rat lumbo-sacral spinal cord and medulla oblongata induced by chronic colonic inflammation, and the relationship between them. METHODS: Thirty-three male Sprague-Dawley rats were randomly divided into two groups: experimental group (n = 17), colonic inflammation was induced by intra-luminal administration of trinitrobenzenesulfonic acid (TNBS); control group (n = 16), saline was administered intra-luminally. After 3, 7, 14, and 28 d of administration, the lumbo-sacral spinal cord and medulla oblongata were removed and processed for anti-glial fibrillary acidic protein (GFAP), Fos and GFAP/Fos immunohistochemistry. RESULTS: Activated astrocytes positive for GFAP were mainly distributed in the superficial laminae (laminae I-II) of dorsal horn, intermediolateral nucleus (laminae V), posterior commissural nucleus (laminae X) and anterolateral nucleus (laminae IX). Fos-IR (Fos-immunoreactive) neurons were mainly distributed in the deeper laminae of the spinal cord (laminae III-IV, V-VI). In the medulla oblongata, both GFAP-IR astrocytes and Fos-IR neurons were mainly distributed in the medullary visceral zone (MVZ). The density of GFAP in the spinal cord of experimental rats was significantly higher after 3, 7, and 14 d of TNBS administration compared with the controls (50.4±16.8, 29.2±6.5, 24.1±5.6, P0.05). CONCLUSION: Astrocytes in spinal cord and medulla oblongata can be activated by colonic inflammation. The activated astrocytes are closely related to Fos-IR neurons. With the recovery of colonic inflammation, the activity of astrocytes in the spinal cord and medulla oblongata is reduced. PMID:16097052

  19. Blocking weight-induced spinal cord injury in rats: effects of TRH or naloxone on motor function recovery and spinal cord blood flow

    International Nuclear Information System (INIS)

    Holtz, A.; Nystroem, B.; Gerdin, B.

    1989-01-01

    The ability of thyotropin releasing hormone (TRH) or naloxone to reduce the motor function deficit and to improve the spinal cord blood flow (SCBF) was investigated in a rat spinal cord compression injury model. Spinal cord injury was induced by compression for 5 min with a load of 35 g on a 2.2 x 5.0 mm sized compression plate causing a transient paraparesis. One group of animals was given TRH, one group naloxone and one group saline alone. Each drug was administered intravenously as a bolus dose of 2 mg/kg 60 min after injury followed by a continuous infusion of 2 mg/kg/h for 4 h. The motor performance was assessed daily on the inclined plant until Day 4, when SCBF was measured with the 14 C-iodoantipyrine autoradiographic method. It was found that neither TRH nor naloxone had promoted motor function recovery or affected SCBF 4 days after spinal cord injury. (author)

  20. An animal model for the neuromodulation of neurogenic bladder dysfunction.

    Science.gov (United States)

    Zvara, P; Sahi, S; Hassouna, M M

    1998-08-01

    To develop an animal model to examine the pathophysiology by which S3 sacral root electrostimulation alters the micturition reflex in patients with bladder hyper-reflexia. Chronic sacral nerve root electrostimulation was applied to spinally transected rats; 21 animals were divided into four groups. The spinal cord was completely transected at the T10-11 level and stainless-steel electrodes implanted into the sacral foramen in 17 animals; these animals were subsequently divided into two groups (1 and 2). Six rats in group 1 underwent sacral root elctrostimulation for 2 h/day and five in group 2 for 6 h/day, for 21 days. The sham group (group 3, six rats) received no stimulation and four rats were used as healthy controls (group 4). Voiding frequency was recorded and each animal was evaluated cystometrically at the end of the stimulation period. The results were compared with the sham and control groups. Spinal cord transection resulted in bladder areflexia and complete urinary retention; 7-9 days after the injury, the bladder recovered its activity. Twenty-one days after transection all animals had evidence of uninhibited bladder contractions. The mean (SD) hourly frequency of urination was 0.66 (0.18) in healthy controls, 0.83 (0.21) in group 1, 0.87 (0.34) in group 2 and 1.1 (0.31) in group 3. There was a significant decrease in eh cystometric signs of bladder hyper-reflexia in groups 1 and 2 when compared with group 3. This work reports and initial study showing that chronic electrostimulation of sacral nerve roots can reduce the signs of bladder hyper-reflexia in the spinally injured rat. To our knowledge, this is the first report describing the rat as an animal model to determine the effects of chronic electrostimulation on the micturition reflex.

  1. Minocycline attenuates the development of diabetic neuropathy by inhibiting spinal cord Notch signaling in rat.

    Science.gov (United States)

    Yang, Cheng; Gao, Jie; Wu, Banglin; Yan, Nuo; Li, Hui; Ren, Yiqing; Kan, Yufei; Liang, Jiamin; Jiao, Yang; Yu, Yonghao

    2017-10-01

    We studied the effects of minocycline (an inhibitor of microglial activation) on the expression and activity of Notch-1 receptor, and explored the therapeutic efficacy of minocycline combined with Notch inhibitor DAPT in the treatment of diabetic neuropathic pain (DNP). Diabetic rat model was established by intraperitoneal injection (ip) of Streptozotocin (STZ). Expression and activity of Notch-1 and expression of macrophage/microglia marker Iba-1 were detected by WB. Diabetes induction significantly attenuated sciatic nerve conduction velocity, and dramatically augmented the expression and the activity of Notch-1 in the lumbar enlargement of the spinal cord. Minocycline treatment, however, accelerated the decreased conduction velocity of sciatic nerve and suppressed Notch-1expression and activity in diabetic rats. Similar to DAPT treatment, minocycline administration also prolonged thermal withdrawal latency (TWL) and increase mechanical withdrawal threshold (MWT) in diabetic rats in response to heat or mechanical stimulation via inhibition the expression and the activity of Notch-1 in spinal cord. Combination of DAPT and minocycline further inhibited Notch-1 receptor signaling and reduce neuropathic pain exhibited as improved TWL and MWT. Our study revealed a novel mechanism of Notch-1 receptor inhibition in spinal cord induced by minocycline administration, and suggested that the combination of minocycline and DAPT has the potential to treat DNP. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Characterization of thoracic spinal neurons with noxious convergent inputs from heart and lower airways in rats.

    Science.gov (United States)

    Qin, Chao; Foreman, Robert D; Farber, Jay P

    2007-04-13

    Respiratory symptoms experienced in some patients with cardiac diseases may be due to convergence of noxious cardiac and pulmonary inputs onto neurons of the central nervous system. For example, convergence of cardiac and respiratory inputs onto single solitary tract neurons may be in part responsible for integration of regulatory and defensive reflex control. However, it is unknown whether inputs from the lungs and heart converge onto single neurons of the spinal cord. The present aim was to characterize upper thoracic spinal neurons responding to both noxious stimuli of the heart and lungs in rats. Extracellular potentials of single thoracic (T3) spinal neurons were recorded in pentobarbital anesthetized, paralyzed, and ventilated male rats. A catheter was placed in the pericardial sac to administer bradykinin (BK, 10 microg/ml, 0.2 ml, 1 min) as a noxious cardiac stimulus. The lung irritant, ammonia, obtained as vapor over a 30% solution of NH(4)OH was injected into the inspiratory line of the ventilator (0.5-1.0 ml over 20 s). Intrapericardial bradykinin (IB) altered activity of 58/65 (89%) spinal neurons that responded to inhaled ammonia (IA). Among those cardiopulmonary convergent neurons, 81% (47/58) were excited by both IA and IB, and the remainder had complex response patterns. Bilateral cervical vagotomy revealed that vagal afferents modulated but did not eliminate responses of individual spinal neurons to IB and IA. The convergence of pulmonary and cardiac nociceptive signaling in the spinal cord may be relevant to situations where a disease process in one organ influences the behavior of the other.

  3. Adeno-associated viral vector-mediated neurotrophin gene transfer in the injured adult rat spinal cord improves hind-limb function

    NARCIS (Netherlands)

    Blits, B; Oudega, M.; Boer, G J; Bartlett Bunge, M; Verhaagen, J

    2003-01-01

    To foster axonal growth from a Schwann cell bridge into the caudal spinal cord, spinal cells caudal to the implant were transduced with adeno-associated viral (AAV) vectors encoding for brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (AAV-NT-3). Control rats received AAV vectors encoding

  4. Radiation-induced nerve root degeneration and hypertrophic neuropathy in the lumbosacral spinal cord of rats: The relation with changes in aging rats

    International Nuclear Information System (INIS)

    Kogel, A.J. van der

    1977-01-01

    Three-month-old WAG Rij rats were irradiated with 300 kV X-rays on the lumbar region of the spinal column with doses below the level for causing paralysis due to radiation radiculomyelopathy. 8-9 months after irradiation. degeneration of predominantly the ventral nerve roots of the cauda equina was observed. Three stages were distinguishable: I) Demyelination and proliferation of Schwann cells: II) Local swelling of ventral nerve roots, with concentric layers of Schwann cells resembling hypertrophic neuropathy: III) Malignant Schwannoma, invading roots and spinal cord. It is concluded that the degenerative and proliferative lesions represent a continuous series of stages of slowly progressive lesions. The ventral nerve root degeneration (Ist stage) is similar to that observed in aging, unirradiated rats, normally developing at the age of 18-20 months. (orig.) [de

  5. Analgesic effect of ADX71441, a positive allosteric modulator (PAM) of GABAB receptor in a rat model of bladder pain.

    Science.gov (United States)

    Kannampalli, Pradeep; Poli, Sonia-Maria; Boléa, Christelle; Sengupta, Jyoti N

    2017-11-01

    Therapeutic use of GABA B receptor agonists for conditions like chronic abdominal pain, overactive bladder (OAB) and gastroesophageal reflux disease (GERD) is severely affected by poor blood-brain barrier permeability and potential side effects. ADX71441 is a novel positive allosteric modulator (PAM) of the GABA B receptor that has shown encouraging results in pre-clinical models of anxiety, pain, OAB and alcohol addiction. The present study investigates the analgesic effect of ADX71441 to noxious stimulation of the urinary bladder and colon in rats. In female Sprague-Dawley rats, systemic (i.p), but not intrathecal (i.t), administration of ADX71441 produced a dose-dependent decrease in viscero-motor response (VMR) to graded urinary bladder distension (UBD) and colorectal distension (CRD). Additionally, intra-cerebroventricular (i.c.v.) administration of ADX71441 significantly decreased the VMRs to noxious UBD. In electrophysiology experiments, the drug did not attenuate the responses of UBD-sensitive pelvic nerve afferent (PNA) fibers to UBD. In contrast, ADX71441 significantly decreased the responses of UBD-responsive lumbosacral (LS) spinal neurons in spinal intact rats. However, ADX71441 did not attenuate these LS neurons in cervical (C1-C2) spinal transected rats. During cystometrogram (CMG) recordings, ADX71441 (i.p.) significantly decreased the VMR to slow infusion without affecting the number of voiding contraction. These results indicate that ADX71441 modulate bladder nociception via its effect at the supra-spinal sites without affecting the normal bladder motility and micturition reflex in naïve adult rats. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats (the 3rd report)

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Wang, Xiao Dong; Nagaoka, Shunji; Nojima, Kumie

    2005-01-01

    The effects of acute exposure of heavy ion on the properties of spinal motoneurons and their innervating muscle fibers were investigated. A 15, 20, 40, 50, or 70 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in 8-week-old male rats. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of spinal motoneurons innervating the soleus and plantaris muscles were analyzed by a computer-assisted image processing system. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no differences in the number of spinal motoneurons innervating the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in spinal motoneurons of the heavy-ion-exposed rats at the dose levels of 40, 50, and 70 Gy. There were no differences in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the soleus and plantaris muscles between the control and heavy-ion-exposed rats, irrespective of the dose level. It is concluded that more than 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there are no influences on the properties of muscle fibers which they innervate. (author)

  7. Validation of a preclinical spinal safety model: effects of intrathecal morphine in the neonatal rat.

    Science.gov (United States)

    Westin, B David; Walker, Suellen M; Deumens, Ronald; Grafe, Marjorie; Yaksh, Tony L

    2010-07-01

    Preclinical studies demonstrate increased neuroapoptosis after general anesthesia in early life. Neuraxial techniques may minimize potential risks, but there has been no systematic evaluation of spinal analgesic safety in developmental models. We aimed to validate a preclinical model for evaluating dose-dependent efficacy, spinal cord toxicity, and long-term function after intrathecal morphine in the neonatal rat. Lumbar intrathecal injections were performed in anesthetized rats aged postnatal day (P) 3, 10, and 21. The relationship between injectate volume and segmental spread was assessed postmortem and by in vivo imaging. To determine the antinociceptive dose, mechanical withdrawal thresholds were measured at baseline and 30 min after intrathecal morphine. To evaluate toxicity, doses up to the maximum tolerated were administered, and spinal cord histopathology, apoptosis, and glial response were evaluated 1 and 7 days after P3 or P21 injection. Sensory thresholds and gait analysis were evaluated at P35. Intrathecal injection can be reliably performed at all postnatal ages and injectate volume influences segmental spread. Intrathecal morphine produced spinally mediated analgesia at all ages with lower dose requirements in younger pups. High-dose intrathecal morphine did not produce signs of spinal cord toxicity or alter long-term function. The therapeutic ratio for intrathecal morphine (toxic dose/antinociceptive dose) was at least 300 at P3 and at least 20 at P21 (latter doses limited by side effects). These data provide relative efficacy and safety for comparison with other analgesic preparations and contribute supporting evidence for the validity of this preclinical neonatal safety model.

  8. The excitatory amino acid receptor antagonist MK-801 prevents the hypersensitivity induced by spinal cord ischemia in the rat

    International Nuclear Information System (INIS)

    Hao, J.X.; Xu, X.J.; Aldskogius, H.; Seiger, A.; Wiesenfeld-Hallin, Z.

    1991-01-01

    Protection by the NMDA receptor antagonist MK-801 against transient spinal cord ischemia-induced hypersensitivity was studied in rats. The spinal ischemia was initiated by vascular occlusion resulting from the interaction between the photosensitizing dye Erythrosin B and an argon laser beam. The hypersensitivity, termed allodynia, where the animals reacted by vocalization to nonnoxious mechanical stimuli in the flank area, was consistently observed during several days after induction of the ischemia. Pretreatment with MK-801 (0.1-0.5 mg/kg, iv) 10 min before laser irradiation dose dependently prevented the occurrence of allodynia. The neuroprotective effect of MK-801 was not reduced by maintaining normal body temperature during and after irradiation. There was a significant negative correlation between the delay in the administration of MK-801 after irradiation and the protective effect of the drug. Histological examination revealed slight morphological damage in the spinal cord in 38% of control rats after 1 min of laser irradiation without pretreatment with MK-801. No morphological abnormalities were observed in rats after pretreatment with MK-801 (0.5 mg/kg). The present results provide further evidence for the involvement of excitatory amino acids, through activation of the NMDA receptor, in the development of dysfunction following ischemic trauma to the spinal cord

  9. Neuroprotective effects of Ganoderma lucidum polysaccharides against traumatic spinal cord injury in rats.

    Science.gov (United States)

    Gokce, Emre Cemal; Kahveci, Ramazan; Atanur, Osman Malik; Gürer, Bora; Aksoy, Nurkan; Gokce, Aysun; Sargon, Mustafa Fevzi; Cemil, Berker; Erdogan, Bulent; Kahveci, Ozan

    2015-11-01

    Ganoderma lucidum (G. lucidum) is a mushroom belonging to the polyporaceae family of Basidiomycota and has widely been used as a traditional medicine for thousands of years. G. lucidum has never been studied in traumatic spinal cord injury. The aim of this study is to investigate whether G. lucidum polysaccharides (GLPS) can protect the spinal cord after experimental spinal cord injury. Rats were randomized into five groups of eight animals each: control, sham, trauma, GLPS, and methylprednisolone. In the control group, no surgical intervention was performed. In the sham group, only a laminectomy was performed. In all the other groups, the spinal cord trauma model was created by the occlusion of the spinal cord with an aneurysm clip. In the spinal cord tissue, caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, nitric oxide levels, and superoxide dismutase levels were analysed. Histopathological and ultrastructural evaluations were also performed. Neurological evaluation was performed using the Basso, Beattie, and Bresnahan locomotor scale and the inclined-plane test. After traumatic spinal cord injury, increases in caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels were detected. After the administration of GLPS, decreases were observed in tissue caspase-3 activity, tumour necrosis factor-alpha levels, myeloperoxidase activity, malondialdehyde levels, and nitric oxide levels. Furthermore, GLPS treatment showed improved results in histopathological scores, ultrastructural scores, and functional tests. Biochemical, histopathological, and ultrastructural analyses and functional tests reveal that GLPS exhibits meaningful neuroprotective effects against spinal cord injury. Copyright © 2015 Elsevier Ltd. All rights reserved.

  10. Extraction of motor activity from the cervical spinal cord of behaving rats

    Science.gov (United States)

    Prasad, Abhishek; Sahin, Mesut

    2006-12-01

    Injury at the cervical region of the spinal cord results in the loss of the skeletal muscle control from below the shoulders and hence causes quadriplegia. The brain-computer interface technique is one way of generating a substitute for the lost command signals in these severely paralyzed individuals using the neural signals from the brain. In this study, we are investigating the feasibility of an alternative method where the volitional signals are extracted from the cervical spinal cord above the point of injury. A microelectrode array assembly was implanted chronically at the C5-C6 level of the spinal cord in rats. Neural recordings were made during the face cleaning behavior with forelimbs as this task involves cyclic forelimb movements and does not require any training. The correlation between the volitional motor signals and the elbow movements was studied. Linear regression technique was used to reconstruct the arm movement from the rectified-integrated version of the principal neural components. The results of this study demonstrate the feasibility of extracting the motor signals from the cervical spinal cord and using them for reconstruction of the elbow movements.

  11. Epidermal growth factor regulates apoptosis and oxidative stress in a rat model of spinal cord injury.

    Science.gov (United States)

    Ozturk, Anil Murat; Sozbilen, Murat Celal; Sevgili, Elvin; Dagci, Taner; Özyalcin, Halit; Armagan, Guliz

    2018-03-22

    Spinal cord injury (SCI) leads to vascular damage and disruption of blood-spinal cord barrier which participates in secondary nerve injury. Epidermal growth factor (EGF) is an endogenous protein which regulates cell proliferation, growth and differention. Previous studies reported that EGF exerts neuroprotective effect in spinal cord after SCI. However, the molecular mechanisms underlying EGF-mediated protection in different regions of nervous system have not shown yet. In this study, we aimed to examine possible anti-apoptotic and protective roles of EGF not only in spinal cord but also in brain following SCI. Twenty-eight adult rats were divided into four groups of seven animals each as follows: sham, trauma (SCI), SCI + EGF and SCI + methylprednisolone (MP) groups. The functional neurological deficits due to the SCI were assessed by behavioral analysis using the Basso, Beattie and Bresnahan (BBB) open-field locomotor test. The alterations in pro-/anti-apoptotic protein levels and antioxidant enzyme activities were measured in spinal cord and frontal cortex. In our study, EGF promoted locomotor recovery and motor neuron survival of SCI rats. EGF treatment significantly decreased Bax and increased Bcl-2 protein expressions both in spinal cord and brain when compared to SCI group. Moreover, antioxidant enzyme activities including catalase, superoxide dismutase (SOD) and glutathione peroxidase (GPx) were increased following EGF treatment similar to MP treatment. Our experiment also suggests that alteration of the ratio of Bcl-2 to Bax may result from decreased apoptosis following EGF treatment. As a conclusion, these results show, for the first time, that administration of EGF exerts its protection via regulating apoptotic and oxidative pathways in response to spinal cord injury in different regions of central nervous system. Copyright © 2018 Elsevier Ltd. All rights reserved.

  12. Propofol combined with bone marrow mesenchymal stem cell transplantation improves electrophysiological function in the hindlimb of rats with spinal cord injury better than monotherapy

    Directory of Open Access Journals (Sweden)

    Yue-xin Wang

    2015-01-01

    Full Text Available The repair effects of bone marrow mesenchymal stem cell transplantation on nervous system damage are not satisfactory. Propofol has been shown to protect against spinal cord injury. Therefore, this study sought to explore the therapeutic effects of their combination on spinal cord injury. Rat models of spinal cord injury were established using the weight drop method. Rats were subjected to bone marrow mesenchymal stem cell transplantation via tail vein injection and/or propofol injection via tail vein using an infusion pump. Four weeks after cell transplantation and/or propofol treatment, the cavity within the spinal cord was reduced. The numbers of PKH-26-positive cells and horseradish peroxidase-positive nerve fibers apparently increased in the spinal cord. Latencies of somatosensory evoked potentials and motor evoked potentials in the hindlimb were noticeably shortened, amplitude was increased and hindlimb motor function was obviously improved. Moreover, the combined effects were better than cell transplantation or propofol injection alone. The above data suggest that the combination of propofol injection and bone marrow mesenchymal stem cell transplantation can effectively improve hindlimb electrophysiological function, promote the recovery of motor funtion, and play a neuroprotective role in spinal cord injury in rats.

  13. Localized Intrathecal Delivery of Mesenchymal Stromal Cells Conditioned Medium Improves Functional Recovery in a Rat Model of Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Dasa Cizkova

    2018-03-01

    Full Text Available It was recently shown that the conditioned medium (CM of mesenchymal stem cells can enhance viability of neural and glial cell populations. In the present study, we have investigated a cell-free approach via CM from rat bone marrow stromal cells (MScCM applied intrathecally (IT for spinal cord injury (SCI recovery in adult rats. Functional in vitro test on dorsal root ganglion (DRG primary cultures confirmed biological properties of collected MScCM for production of neurosphere-like structures and axon outgrowth. Afterwards, rats underwent SCI and were treated with IT delivery of MScCM or vehicle at postsurgical Days 1, 5, 9, and 13, and left to survive 10 weeks. Rats that received MScCM showed significantly higher motor function recovery, increase in spared spinal cord tissue, enhanced GAP-43 expression and attenuated inflammation in comparison with vehicle-treated rats. Spared tissue around the lesion site was infiltrated with GAP-43-labeled axons at four weeks that gradually decreased at 10 weeks. Finally, a cytokine array performed on spinal cord extracts after MScCM treatment revealed decreased levels of IL-2, IL-6 and TNFα when compared to vehicle group. In conclusion, our results suggest that molecular cocktail found in MScCM is favorable for final neuroregeneration after SCI.

  14. Production of high quality brain-derived neurotrophic factor (BDNF) and tropomyosin receptor kinase B (TrkB) RNA from isolated populations of rat spinal cord motor neurons obtained by Laser Capture Microdissection (LCM).

    Science.gov (United States)

    Mehta, Prachi; Premkumar, Brian; Morris, Renée

    2016-08-03

    The mammalian central nervous system (CNS) is composed of multiple cellular elements, making it challenging to segregate one particular cell type to study their gene expression profile. For instance, as motor neurons represent only 5-10% of the total cell population of the spinal cord, meaningful transcriptional analysis on these neurons is almost impossible to achieve from homogenized spinal cord tissue. A major challenge faced by scientists is to obtain good quality RNA from small amounts of starting material. In this paper, we used Laser Capture Microdissection (LCM) techniques to identify and isolate spinal cord motor neurons. The present analysis revealed that perfusion with paraformaldehyde (PFA) does not alter RNA quality. RNA integrity numbers (RINs) of tissue samples from rubrospinal tract (RST)-transected, intact spinal cord or from whole spinal cord homogenate were all above 8, which indicates intact, high-quality RNA. Levels of mRNA for brain-derived neurotrophic factor (BDNF) or for its tropomyosin receptor kinase B (TrkB) were not affected by rubrospinal tract (RST) transection, a surgical procedure that deprive motor neurons from one of their main supraspinal input. The isolation of pure populations of neurons with LCM techniques allows for robust transcriptional characterization that cannot be achieved with spinal cord homogenates. Such preparations of pure population of motor neurons will provide valuable tools to advance our understanding of the molecular mechanisms underlying spinal cord injury and neuromuscular diseases. In the near future, LCM techniques might be instrumental to the success of gene therapy for these debilitating conditions. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  15. Participation of neuronal nitric oxide synthase in experimental neuropathic pain induced by sciatic nerve transection

    Directory of Open Access Journals (Sweden)

    M. Chacur

    2010-04-01

    Full Text Available Nerve injury leads to a neuropathic pain state that results from central sensitization. This phenomenom is mediated by NMDA receptors and may involve the production of nitric oxide (NO. In this study, we investigated the expression of the neuronal isoform of NO synthase (nNOS in the spinal cord of 3-month-old male, Wistar rats after sciatic nerve transection (SNT. Our attention was focused on the dorsal part of L3-L5 segments receiving sensory inputs from the sciatic nerve. SNT resulted in the development of neuropathic pain symptoms confirmed by evaluating mechanical hyperalgesia (Randall and Selitto test and allodynia (von Frey hair test. Control animals did not present any alteration (sham-animals. The selective inhibitor of nNOS, 7-nitroindazole (0.2 and 2 µg in 50 µL, blocked hyperalgesia and allodynia induced by SNT. Immunohistochemical analysis showed that nNOS was increased (48% by day 30 in the lumbar spinal cord after SNT. This increase was observed near the central canal (Rexed’s lamina X and also in lamina I-IV of the dorsal horn. Real-time PCR results indicated an increase of nNOS mRNA detected from 1 to 30 days after SNT, with the highest increase observed 1 day after injury (1469%. Immunoblotting confirmed the increase of nNOS in the spinal cord between 1 and 15 days post-lesion (20%, reaching the greatest increase (60% 30 days after surgery. The present findings demonstrate an increase of nNOS after peripheral nerve injury that may contribute to the increase of NO production observed after peripheral neuropathy.

  16. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    International Nuclear Information System (INIS)

    Gonzales-Lima, F.

    1986-01-01

    The autoradiographic ( 14 C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. (author)

  17. Activation of substantia gelatinosa by midbrain reticular stimulation demonstrated with 2-deoxyglucose in the rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Gonzales-Lima, F

    1986-04-24

    The autoradiographic (/sup 14/C)2-deoxyglucose (2-DG) method was used to map the descending effects of midbrain reticular stimulation on the rat cervical spinal cord. The stimulation evoked consistently a defensive 'freezing' reaction as well as a large and highly localized increase in 2-DG uptake in the substantia gelatinosa (SG)(Rexed laminae 2-3). No stimulus-induced changes in 2-DG uptake were produced in the other regions of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of the spinal cord. The findings represent the first anatomical demonstration of the activating effects of midbrain reticular stimulation on the spinal cord. They also support the concept of an integrative role for the SG in descending reticular mechanisms at the spinal cord level. 12 refs.

  18. Histopathological and Follicular Atresia Assessment of Rat’s Ovarian Tissue Following Experimental Chronic Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Sam Zarbakhsh

    2017-06-01

    Full Text Available Background One of the important side effects in spinal cord injuries in both genders is sexual dysfunction. This study aimed at investigating histopathological changes of ovaries in the chronic phase after spinal cord injury. Methods Animals (adult female rats were divided to the following groups, Control (Co, Sham (Sh, and Spinal Cord Injury (SCI; each group contained 18 rats. The spinal cord of SCI animals was transected by the bilateral laminectomy method on level T9, while the rats of the sham group were incised in the same location without any spinal cord injury. Animals were sacrified at 7th, 14th and 21st day postsurgical intervention, then the body weight, and the weight and volume of ovaries were measured. The slices were stained by hematoxylin and eosin and periodic acid Schiff methods. The histomorphometric changes of the diameter of the follicle and ovum, and the thickness of granulosa layer were measured in different kinds of follicles including, Unilaminar Primary Follicle (UPF, Multilaminar Primary Follicle (MPF, Secondary Follicle (SF, and Tertiary Follicle (TF. Results The results showed that the animal weights were decreased in three SCI groups (P = 0.018. In the SCI groups, the diameter of follicle and ovum and the thickness of granulosa layer were significantly decreased in different kinds of follicles (P = 0.012. Also the thickness of zona pellucida and theca interna were significantly decreased in UPF, SF, and TF in the SCI groups on 14th and 21st day (P = 0.024. The histopathologic examination revealed widespread ovarian follicle atresia in the SCI groups on the 14th and 21st day, including numerous cell debris and inflammatory cells in the antrum atretic follicles. The ovarian stroma showed edema, fibrosis, hypercellularity, and vasodilation in the SCI group, compared to the sham or control groups. Conclusions The histopathlogic data indicated that after spinal cord injury many histologic parameter changes occurred and

  19. Locomotor recovery after spinal cord contusion injury in rats is improved by spontaneous exercise

    NARCIS (Netherlands)

    Gispen, W.H.; Meeteren, N.L. van; Eggers, L.; Lankhorst, A.J.; Hamers, F.P.

    2003-01-01

    We have recently shown that enriched environment (EE) housing significantly enhances locomotor recovery following spinal cord contusion injury (SCI) in rats. As the type and intensity of locomotor training with EE housing are rather poorly characterized, we decided to compare the effectiveness of EE

  20. Tolerance of rat spinal cord to continuous interstitial irradiation

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Ruifrok, Arnout C.C.; Schalkwijk, Lia J.M.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1998-01-01

    Purpose: To study the kinetics of repair in rat spinal cord during continuous interstitial irradiation at different dose rates and to investigate the impact of a rapid dose fall off over the spinal cord thickness. Material and Methods: Two parallel catheters were inserted on each side of the vertebral bodies from the level of T 10 to L 4 . These catheters were afterloaded with two 192 Ir- wires of 4 cm length each (activity 1 - 10 mCi/cm) or connected to the HDR- microSelectron. Experiments have been carried out to obtain complete dose response curves at 7 different dose rates: 0.53, 0.90, 1.64, 2.56, 4.4, 9.9 and 120 Gy/h. Paralysis of the hindlegs after 5 - 6 months and histopathological examination of the spinal cord of each animal were used as experimental endpoints. Results: The distribution of the histological damage was a good reflection of the rapid dose fall - off over the spinal cord, with white matter necrosis or demyelination predominantly seen in the dorsal tracts of the spinal cord or dorsal roots. With each reduction of the dose rate, spinal cord tolerance was significantly increased, with a maximum dose rate factor of 4.3 if the dose rate was reduced from 120 Gy/h to 0.53 Gy/h (ED 50 of 17.3 Gy and 75.0 Gy, respectively). Estimates of the repair parameters using different types of analysis are presented. For the direct analysis the best fit of the data was obtained if a biexponential function for repair was used. For the 100% dose prescribed at the ventral side of the spinal cord the (α(β)) ratio is 1.8 Gy (0.8 - 2.8) and two components of repair are observed: a slow component of repair of 2.44 h (1.18 - ∞) and a fast component of 0.15 h (0.02 - ∞). The proportion of the damage repaired with the slow component is 0.59 (0.18 - 1). For the maximum of 150% of the prescribed dose at the dorsal side of the spinal cord the (α(β)) ratio is 2.7 Gy (1.5 - 4.4); the two components for the kinetics of repair remain the same. Conclusions: Spinal cord

  1. Plasticity of Signaling by Spinal Estrogen Receptor α, κ-Opioid Receptor, and Metabotropic Glutamate Receptors over the Rat Reproductive Cycle Regulates Spinal Endomorphin 2 Antinociception: Relevance of Endogenous-Biased Agonism.

    Science.gov (United States)

    Liu, Nai-Jiang; Murugaiyan, Vijaya; Storman, Emiliya M; Schnell, Stephen A; Kumar, Arjun; Wessendorf, Martin W; Gintzler, Alan R

    2017-11-15

    We previously showed that intrathecal application of endomorphin 2 [EM2; the highly specific endogenous μ-opioid receptor (MOR) ligand] induces antinociception that varies with stage of the rat estrous cycle: minimal during diestrus and prominent during proestrus. Earlier studies, however, did not identify proestrus-activated signaling strategies that enable spinal EM2 antinociception. We now report that in female rats, increased spinal dynorphin release and κ-opioid receptor (KOR) signaling, as well as the emergence of glutamate-activated metabotropic glutamate receptor 1 (mGluR 1 ) signaling, are critical to the transition from an EM2 nonresponsive state (during diestrus) to an analgesically responsive state (during proestrus). Differential signaling by mGluR 1 , depending on its activation by membrane estrogen receptor α (mERα; during diestrus) versus glutamate (during proestrus), concomitant with the ebb and flow of spinal dynorphin/KOR signaling, functions as a switch, preventing or promoting, respectively, spinal EM2 antinociception. Importantly, EM2 and glutamate-containing varicosities appose spinal neurons that express MOR along with mGluRs and mERα, suggesting that signaling mechanisms regulating analgesic effectiveness of intrathecally applied EM2 also pertain to endogenous EM2. Regulation of spinal EM2 antinociception by both the nature of the endogenous mGluR 1 activator (i.e., endogenous biased agonism at mGluR 1 ) and changes in spinal dynorphin/KOR signaling represent a novel mechanism for modulating analgesic responsiveness to endogenous EM2 (and perhaps other opioids). This points the way for developing noncanonical pharmacological approaches to pain management by harnessing endogenous opioids for pain relief. SIGNIFICANCE STATEMENT The current prescription opioid abuse epidemic underscores the urgency to develop alternative pharmacotherapies for managing pain. We find that the magnitude of spinal endomorphin 2 (EM2) antinociception not only

  2. Increased Hyperalgesia and Proinflammatory Cytokines in the Spinal Cord and Dorsal Root Ganglion After Surgery and/or Fentanyl Administration in Rats.

    Science.gov (United States)

    Chang, Lu; Ye, Fang; Luo, Quehua; Tao, Yuanxiang; Shu, Haihua

    2018-01-01

    Perioperative fentanyl has been reported to induce hyperalgesia and increase postoperative pain. In this study, we tried to investigate behavioral hyperalgesia, the expression of proinflammatory cytokines, such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and tumor necrosis factor-α (TNF-α), and the activation of microglia in the spinal cord and dorsal root ganglion (DRG) in a rat model of surgical plantar incision with or without perioperative fentanyl. Four groups of rats (n = 32 for each group) were subcutaneously injected with fentanyl at 60 μg/kg or normal saline for 4 times with 15-minute intervals. Plantar incisions were made to rats in 2 groups after the second drug injection. Mechanical and thermal nociceptive thresholds were assessed by the tail pressure test and paw withdrawal test on the day before, at 1, 2, 3, 4 hours, and on the days 1-7 after drug injection. The lumbar spinal cord, bilateral DRG, and cerebrospinal fluid of 4 rats in each group were collected to measure IL-1β, IL-6, and TNF-α on the day before, at the fourth hour, and on the days 1, 3, 5, and 7 after drug injection. The lumbar spinal cord and bilateral DRG were removed to detect the ionized calcium-binding adapter molecule 1 on the day before and on the days 1 and 7 after drug injection. Rats injected with normal saline only demonstrated no significant mechanical or thermal hyperalgesia or any increases of IL-1β, IL-6, and TNF-α in the spinal cord or DRG. However, injection of fentanyl induced analgesia within as early as 4 hours and a significant delayed tail mechanical and bilateral plantar thermal hyperalgesia after injections lasting for 2 days, while surgical plantar incision induced a significant mechanical and thermal hyperalgesia lasting for 1-4 days. The combination of fentanyl and incision further aggravated the hyperalgesia and prolonged the duration of hyperalgesia. The fentanyl or surgical incision upregulated the expression of IL-1β, IL-6, and TNF-α in the

  3. Trunk Robot Rehabilitation Training with Active Stepping Reorganizes and Enriches Trunk Motor Cortex Representations in Spinal Transected Rats

    OpenAIRE

    Oza, Chintan S.; Giszter, Simon F.

    2015-01-01

    Trunk motor control is crucial for postural stability and propulsion after low thoracic spinal cord injury (SCI) in animals and humans. Robotic rehabilitation aimed at trunk shows promise in SCI animal models and patients. However, little is known about the effect of SCI and robot rehabilitation of trunk on cortical motor representations. We previously showed reorganization of trunk motor cortex after adult SCI. Non-stepping training also exacerbated some SCI-driven plastic changes. Here we e...

  4. Alterations in the neural circuits from peripheral afferents to the spinal cord: possible implications for diabetic polyneuropathy in streptozotocin-induced type 1 diabetic rats

    Directory of Open Access Journals (Sweden)

    Zhen-Zhen eKou

    2014-01-01

    Full Text Available Diabetic polyneuropathy (DPN presents as a wide variety of sensorimotor symptoms and affects approximately 50% of diabetic patients. Changes in the neural circuits may occur in the early stages in diabetes and are implicated in the development of DPN. Therefore, we aimed to detect changes in the expression of isolectin B4 (IB4, the marker for nonpeptidergic unmyelinated fibers and their cell bodies and calcitonin gene-related peptide (CGRP, the marker for peptidergic fibers and their cell bodies in the dorsal root ganglion (DRG and spinal cord of streptozotocin (STZ-induced type 1 diabetic rats showing alterations in sensory and motor function. We also used cholera toxin B subunit (CTB to show the morphological changes of the myelinated fibers and motor neurons. STZ-induced diabetic rats exhibited hyperglycemia, decreased body weight gain, mechanical allodynia and impaired locomotor activity. In the DRG and spinal dorsal horn, IB4-labeled structures decreased, but both CGRP immunostaining and CTB labeling increased from day 14 to day 28 in diabetic rats. In spinal ventral horn, CTB labeling decreased in motor neurons in diabetic rats. Treatment with intrathecal injection of insulin at the early stages of DPN could alleviate mechanical allodynia and impaired locomotor activity in diabetic rats. The results suggest that the alterations of the neural circuits between spinal nerve and spinal cord via the DRG and ventral root might be involved in DPN.

  5. Study on the Mechanism Underlying the Regulation of the NMDA Receptor Pathway in Spinal Dorsal Horns of Visceral Hypersensitivity Rats by Moxibustion

    Directory of Open Access Journals (Sweden)

    L. D. Wang

    2016-01-01

    Full Text Available Visceral hypersensitivity is enhanced in irritable bowel syndrome (IBS patients. Treatment of IBS visceral pain by moxibustion methods has a long history and rich clinical experience. In the clinic, moxibustion on the Tianshu (ST25 and Shangjuxu (ST37 acupoints can effectively treat bowel disease with visceral pain and diarrhea symptoms. To investigate the regulatory function of moxibustion on the Tianshu (ST25 and Shangjuxu (ST37 acupoints on spinal cord NR1, NR2B, and PKCε protein and mRNA expression in irritable bowel syndrome (IBS visceral hypersensitivity rats, we did some research. In the study, we found that moxibustion effectively relieved the IBS visceral hyperalgesia status of rats. Analgesic effect of moxibustion was similar to intrathecal injection of Ro 25-6981. The expression of NR1, NR2B, and PKCε in the spinal dorsal horns of IBS visceral hyperalgesia rats increased. Moxibustion on the Tianshu and Shangjuxu acupoints might inhibit the visceral hypersensitivity, simultaneously decreasing the expression of NR1, NR2B, and PKCε in spinal cord of IBS visceral hyperalgesia rats. Based on the above experimental results, we hypothesized NR1, NR2B, and PKCε of spinal cord could play an important role in moxibustion inhibiting the process of central sensitization and visceral hyperalgesia state.

  6. Transplantation of oligodendrocyte precursors and sonic hedgehog results in improved function and white matter sparing in the spinal cords of adult rats after contusion.

    Science.gov (United States)

    Bambakidis, Nicholas C; Miller, Robert H

    2004-01-01

    A substantial cause of neurological disability in spinal cord injury is oligodendrocyte death leading to demyelination and axonal degeneration. Rescuing oligodendrocytes and preserving myelin is expected to result in significant improvement in functional outcome after spinal cord injury. Although previous investigators have used cellular transplantation of xenografted pluripotent embryonic stem cells and observed improved functional outcome, these transplants have required steroid administration and only a minority of these cells develop into oligodendrocytes. The objective of the present study was to determine whether allografts of oligodendrocyte precursors transplanted into an area of incomplete spinal cord contusion would improve behavioral and electrophysiological measures of spinal cord function. Additional treatment incorporated the use of the glycoprotein molecule Sonic hedgehog (Shh), which has been shown to play a critical role in oligodendroglial development and induce proliferation of endogenous neural precursors after spinal cord injury. Laboratory study. Moderate spinal cord contusion injury was produced in 39 adult rats at T9-T10. Ten animals died during the course of the study. Nine rats served as contusion controls (Group 1). Six rats were treated with oligodendrocyte precursor transplantation 5 days after injury (Group 2). The transplanted cells were isolated from newborn rat pups using immunopanning techniques. Another eight rats received an injection of recombinant Shh along with the oligodendrocyte precursors (Group 3), while six more rats were treated with Shh alone (Group 4). Eight additional rats received only T9 laminectomies to serve as noninjured controls (Group 0). Animals were followed for 28 days. After an initial complete hindlimb paralysis, rats of all groups receiving a contusive injury recovered substantial function within 1 week. By 28 days, rats in Groups 2 and 3 scored 4.7 and 5.8 points better on the Basso, Beattie, Bresnahan

  7. [Effects of small needle knife on the substance P in the dorsal root ganglion and spinal cord of rats].

    Science.gov (United States)

    Wang, Jin-Rong; Wang, Yong-Zhi; Dong, Fu-Hui; Zhong, Hong-Gang; Wang, De-Long; Wang, Xuan

    2010-09-01

    To study the mechanism of synthesis of substance P (SP) in the dorsal root ganglion (DRG) and the release of it in the dorsal horn of the spinal cord of rats after compression of skeletal muscle, and to observe the influence of small needle knife. Sustained pressure of 70 kPa was applied to rats, muscular tissues for 2 hours. The rats were divided into three groups: normal, control and experiment group respectively. In all rats except the six normal ones, the lower legs were compressed once one day. The left leg was considered as the control group, the right left was experiment group, which were divided into the 1st day, the 2nd day and the 3rd day within the two groups. Experiment group was treated with small needle knife after the muscular tissue was compressed. After completing the stimulation, the DRG related to the muscle and part of spinal cord were removed for the qualification of SP-like immunoreactivity using immunohistochemistry. The dark brown stains on the DRG and on the REXed laminae I and II in the dorsal horn of the spinal cord were counted by Image-Pro Plus software. SP-like immunoreactivity in the side treated by the small needle knife was enhanced comparing with the counterpart in DRG in normal group (P DRG in the experiment group were significantly reduced compared with the control group (P DRG, and shows no effects on the release of SP from the spinal cord in short-term (3 days).

  8. [Effect of electroacupuncture on phosphorylation of NR2B at Tyr 1742 site in the spinal dorsal horn of CFA rats].

    Science.gov (United States)

    Liang, Yi; Fang, Jian-Qiao; Fang, Jun-Fan; Du, Jun-Ying; Qiu, Yu-Jie; Liu, Jin

    2013-10-01

    To observe the effect of electroacupuncture (EA) on phosphorylation of spinal NR2B at Tyr 1742 site in complete Freund's adjuvant (CFA) induced inflammatory pain rats. METHods Forty male Sprague Dawley rats were randomly divided into normal group (N group, n = 10), the model group (CFA group, n = 15), and the EA group (n = 15). The inflammatory pain model was established by subcutaneous injecting CFA (0.1 mL per rat) into the right hind paw. Paw withdrawal thresholds (PWTs) were measured before CFA injection (as the base), as well as at 24 h, 25 h, 3rd day, and 7th day after CFA injection. Phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn at the 3rd day post-injection were detected using immunohistochemical assay. PWTs in the CFA group were significantly lower than those of the N group at every detective time point post-injection (P CFA group at 25 h and 3rd day post-injection (P CFA group was up-regulated. Compared with the CFA group, the ratio of p-NR2B positive cells in the ispilateral spinal dorsal horn of rats showed a decreasing tendency in the EA group. EA might effectively inhibit CFA-induced inflammatory pain possibly associated with down-regulating phosphorylation of NR2B at Tyr 1742 site in the ispilateral spinal dorsal horn.

  9. Right-sided vagus nerve stimulation inhibits induced spinal cord seizures.

    Science.gov (United States)

    Tubbs, R Shane; Salter, E George; Killingsworth, Cheryl; Rollins, Dennis L; Smith, William M; Ideker, Raymond E; Wellons, John C; Blount, Jeffrey P; Oakes, W Jerry

    2007-01-01

    We have previously shown that left-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. To test our hypothesis that right-sided vagus nerve stimulation will also abort seizure activity, we have initiated seizures in the spinal cord and then performed right-sided vagus nerve stimulation in an animal model. Four pigs were anesthetized and placed in the lateral position and a small laminectomy performed in the lumbar region. Topical penicillin, a known epileptogenic drug to the cerebral cortex and spinal cord, was next applied to the dorsal surface of the exposed cord. With the exception of the control animal, once seizure activity was discernible via motor convulsion or increased electrical activity, the right vagus nerve previously isolated in the neck was stimulated. Following multiple stimulations of the vagus nerve and with seizure activity confirmed, the cord was transected in the midthoracic region and vagus nerve stimulation performed. Right-sided vagus nerve stimulation resulted in cessation of spinal cord seizure activity in all animals. Transection of the spinal cord superior to the site of seizure induction resulted in the ineffectiveness of vagus nerve stimulation in causing cessation of seizure activity in all study animals. As with left-sided vagus nerve stimulation, right-sided vagus nerve stimulation results in cessation of induced spinal cord seizures. Additionally, the effects of right-sided vagus nerve stimulation on induced spinal cord seizures involve descending spinal pathways. These data may aid in the development of alternative mechanisms for electrical stimulation for patients with medically intractable seizures and add to our knowledge regarding the mechanism for seizure cessation following peripheral nerve stimulation.

  10. Electrophysiological characterization of spinal neurons in different models of diabetes type 1- and type 2-induced neuropathy in rats.

    Science.gov (United States)

    Schuelert, N; Gorodetskaya, N; Just, S; Doods, H; Corradini, L

    2015-04-16

    Diabetic polyneuropathy (DPN) is a devastating complication of diabetes. The underlying pathogenesis of DPN is still elusive and an effective treatment devoid of side effects presents a challenge. There is evidence that in type-1 and -2 diabetes, metabolic and morphological changes lead to peripheral nerve damage and altered central nociceptive transmission, which may contribute to neuropathic pain symptoms. We characterized the electrophysiological response properties of spinal wide dynamic range (WDR) neurons in three diabetic models. The streptozotocin (STZ) model was used as a drug-induced model of type-1 diabetes, and the BioBreeding/Worcester (BB/Wor) and Zucker diabetic fatty (ZDF) rat models were used for genetic DPN models. Data were compared to the respective control group (BB/Wor diabetic-resistant, Zucker lean (ZL) and saline-injected Wistar rat). Response properties of WDR neurons to mechanical stimulation and spontaneous activity were assessed. We found abnormal response properties of spinal WDR neurons in all diabetic rats but not controls. Profound differences between models were observed. In BB/Wor diabetic rats evoked responses were increased, while in ZDF rats spontaneous activity was increased and in STZ rats mainly after discharges were increased. The abnormal response properties of neurons might indicate differential pathological, diabetes-induced, changes in spinal neuronal transmission. This study shows for the first time that specific electrophysiological response properties are characteristic for certain models of DPN and that these might reflect the diverse and complex symptomatology of DPN in the clinic. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

  11. Changes in the neuroglial cell populations of the rat spinal cord after local X-irradiation

    International Nuclear Information System (INIS)

    Hubbard, B.M.; Hopewell, J.W.

    1979-01-01

    A 16 mm length of cervical spinal cord of young adult female rats was irradiated with 4000 rad of 250 kV X-rays. Counts of astrocyte and oligodendrocyte nuclei were made in the dorsal columns of both irradiated and control cervical cords during the latent period before the onset of radionecrosis. The numbers of both astrocyte and oligodendrocyte nuclei were reduced one month after exposure to radiation. Both cell populations showed an apparent recovery but this was subsequently followed by a rapid loss of cells prior to the development of white-matter necrosis. The oligodendrocyte population in unirradiated spinal cords increased with age, and mitotic figures were observed among the neuroglia of both irradiated and control cervical spinal cords. A slow, natural turnover of neuroglial cells in the cervical spinal cord is proposed and the relevance of this to the manifestation of delayed white matter necrosis is discussed. (author)

  12. Somatic modulation of spinal reflex bladder activity mediated by nociceptive bladder afferent nerve fibers in cats.

    Science.gov (United States)

    Xiao, Zhiying; Rogers, Marc J; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2014-09-15

    The goal of the present study was to determine if supraspinal pathways are necessary for inhibition of bladder reflex activity induced by activation of somatic afferents in the pudendal or tibial nerve. Cats anesthetized with α-chloralose were studied after acute spinal cord transection at the thoracic T9/T10 level. Dilute (0.25%) acetic acid was used to irritate the bladder, activate nociceptive afferent C-fibers, and trigger spinal reflex bladder contractions (amplitude: 19.3 ± 2.9 cmH2O). Hexamethonium (a ganglionic blocker, intravenously) significantly (P reflex bladder contractions to 8.5 ± 1.9 cmH2O. Injection of lidocaine (2%, 1-2 ml) into the sacral spinal cord or transection of the sacral spinal roots and spinal cord further reduced the contraction amplitude to 4.2 ± 1.3 cmH2O. Pudendal nerve stimulation (PNS) at frequencies of 0.5-5 Hz and 40 Hz but not at 10-20 Hz inhibited reflex bladder contractions, whereas tibial nerve stimulation (TNS) failed to inhibit bladder contractions at all tested frequencies (0.5-40 Hz). These results indicate that PNS inhibition of nociceptive afferent C-fiber-mediated spinal reflex bladder contractions can occur at the spinal level in the absence of supraspinal pathways, but TNS inhibition requires supraspinal pathways. In addition, this study shows, for the first time, that after acute spinal cord transection reflex bladder contractions can be triggered by activating nociceptive bladder afferent C-fibers using acetic acid irritation. Understanding the sites of action for PNS or TNS inhibition is important for the clinical application of pudendal or tibial neuromodulation to treat bladder dysfunctions. Copyright © 2014 the American Physiological Society.

  13. Functional recovery in rat spinal cord injury induced by hyperbaric oxygen preconditioning.

    Science.gov (United States)

    Lu, Pei-Gang; Hu, Sheng-Li; Hu, Rong; Wu, Nan; Chen, Zhi; Meng, Hui; Lin, Jiang-Kai; Feng, Hua

    2012-12-01

    It is a common belief that neurosurgical interventions can cause inevitable damage resulting from the procedure itself in surgery especially for intramedullary spinal cord tumors. The present study was designed to examine if hyperbaric oxygen preconditioning (HBO-PC) was neuroprotective against surgical injuries using a rat model of spinal cord injury (SCI). Sprague-Dawley rats were randomly divided into three groups: HBO-PC group, hypobaric hypoxic preconditioning (HH-PC) control group, and normobaric control group. All groups were subjected to SCI by weight drop device. Rats from each group were examined for neurological behavior and electrophysiological function. Tissue sections were analyzed by using immunohistochemistry, TdT-mediated dUTP-biotin nick end labeling, and axonal tract tracing. Significant neurological deficits were observed after SCI and HBO-PC and HH-PC improved neurological deficits 1 week post-injury. The latencies of motor-evoked potential and somatosensory-evoked potential were significantly delayed after SCI, which was attenuated by HBO-PC and HH-PC. Compared with normobaric control group, pretreatment with HBO and hypobaric hypoxia significantly reduced the number of TdT-mediated dUTP-biotin nick end labeling-positive cells, and increased nestin-positive cells. HBO-PC and HH-PC enhanced axonal growth after SCI. In conclusion, preconditioning with HBO and hypobaric hypoxia can facilitate functional recovery and suppress cell apoptosis after SCI and may prove to be a useful preventive strategy to neurosurgical SCI.

  14. Assessment of the neuroprotective effects of Lavandula angustifolia extract on the contusive model of spinal cord injury in Wistar rats

    Directory of Open Access Journals (Sweden)

    Gholamreza eKaka

    2016-02-01

    Full Text Available IntroductionSpinal cord injury (SCI involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP is a major index. ObjectiveThe aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav on the repair of spinal cord injuries in Wistar rats.Materials and MethodsForty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI, Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP testing was performed to detect the recovery of neural conduction.Results BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups.ConclusionLav at doses of 200 mg/kg and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of spinal cord injury in Wistar rats.Keywords Spinal cord injury (SCI; Lavandula angustifolia; neuroprotection; Basso, Beattie, and Bresnahan (BBB; glial fibrillary acidic protein (GFAP; somatosensory evoked potential (SEP

  15. Implantable porous gelatin microspheres sustained release of bFGF and improved its neuroprotective effect on rats after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Li Lan

    Full Text Available In this study, porous gelatin microspheres (GMSs were constructed to improve the neuroprotective effect of basic fibroblast growth factor (bFGF on spinal cord injury. GMSs were prepared by a W/O emulsion template, followed by cross-linking, washing and drying. The particle sizes and surface porosity of the blank GMSs were carefully characterized by scan electronic microscopy. The blank GMSs have a mean particle size of 35μm and theirs surface was coarse and porous. bFGF was easily encapsulated inside the bulk GMSs through diffusion along the porous channel. 200μg of bFGF was completely encapsulated in 100mg of GMSs. The bFGF-loaded GMSs displayed a continuous drug release pattern without an obvious burst release over two weeks in vitro. Moreover, the therapeutic effects of bFGF-loaded GMSs were also evaluated in spinal cord injury rat model. After implantation of bFGF-loaded GMSs, the recovery of the motor function of SCI rats were evaluated by behavioral score and foot print experiment. The motor function of SCI rats treated with bFGF-loaded GMSs was more obvious than that treated with free bFGF solution (P<0.05. At the 28th days after treatment, rats were sacrificed and the injured spinal were removed for histopathological and apoptosis examination. Compared with treatment with free bFGF solution, treatment with bFGF-loaded GMSs resulted in a less necrosis, less infiltration of leukocytes, and a reduced the cavity ratio and less apoptotic cells in injured spinal(P<0.01, indicating its better therapeutic effect. Implantable porous GMSs may be a potential carrier to deliver bFGF for therapy of spinal cord injury.

  16. Electroacupuncture reduces the evoked responses of the spinal dorsal horn neurons in ankle-sprained rats

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acupuncture is shown to be effective in producing analgesia in ankle sprain pain in humans and animals. To examine the underlying mechanisms of the acupuncture-induced analgesia, the effects of electroacupuncture (EA) on weight-bearing forces (WBR) of the affected foot and dorsal horn neuron activities were examined in a rat model of ankle sprain. Ankle sprain was induced manually by overextending ligaments of the left ankle in the rat. Dorsal horn neuron responses to ankle movements or compression were recorded from the lumbar spinal cord using an in vivo extracellular single unit recording setup 1 day after ankle sprain. EA was applied to the SI-6 acupoint on the right forelimb (contralateral to the sprained ankle) by trains of electrical pulses (10 Hz, 1-ms pulse width, 2-mA intensity) for 30 min. After EA, WBR of the sprained foot significantly recovered and dorsal horn neuron activities were significantly suppressed in ankle-sprained rats. However, EA produced no effect in normal rats. The inhibitory effect of EA on hyperactivities of dorsal horn neurons of ankle-sprained rats was blocked by the α-adrenoceptor antagonist phentolamine (5 mg/kg ip) but not by the opioid receptor antagonist naltrexone (10 mg/kg ip). These data suggest that EA-induced analgesia in ankle sprain pain is mediated mainly by suppressing dorsal horn neuron activities through α-adrenergic descending inhibitory systems at the spinal level. PMID:21389301

  17. Regulation of Neurotrophin-3 and Interleukin-1β and Inhibition of Spinal Glial Activation Contribute to the Analgesic Effect of Electroacupuncture in Chronic Neuropathic Pain States of Rats

    Directory of Open Access Journals (Sweden)

    Wenzhan Tu

    2015-01-01

    Full Text Available Growing evidence indicates that neurotrophin-3, interleukin-1β, and spinal glia are involved in neuropathic pain derived from dorsal root ganglia to spinal cord. Electroacupuncture is widely accepted to treat chronic pain, but the precise mechanism underlying the analgesic effect of EA has not been fully demonstrated. In this study, the mechanical withdrawal threshold and thermal withdrawal latency were recorded. We used immunofluorescence and western blots methods to investigate the effect of EA on the expression of NT-3 and IL-1β in DRG and spinal cord of CCI rats; we also examined the expression of spinal GFAP and OX-42 in spinal cord. In present study, the MWT and TWL of CCI group rats were lower than those in the Sham CCI group rats, but EA treatment increased the pain thresholds. Furtherly, we found that EA upregulates the expression of NT-3 in DRG and spinal cord of CCI rats, while EA downregulates the expression of IL-1β. Additionally, immunofluorescence exhibited that CCI-induced activation of microglia and astrocytes was inhibited significantly by EA treatment. These results demonstrated that the analgesic effect of EA may be achieved through promoting the neural protection of NT-3 as well as the inhibition of IL-1β production and spinal glial activity.

  18. The Long Term Effects of Chronic Spinal Cord Injury on Sperm Parameters in Rats

    Directory of Open Access Journals (Sweden)

    MA Khalili

    2004-07-01

    Full Text Available Introduction: Spinal cord injury (SCI is a serious public health problem which seriously affects the victim, family, and even the society. Research studies have shown that 80% of SCI victims are men. In recent years, there have been extensive research works on the effect of SCI (acute and/or chronic on fertility potential of sperm and spermatogenesis in laboratory animals. SCI may disturb the spermatogenic cell lines in laboratory animals. The objective of this experimental study was to investigate the effect of chronic spinal cord injury (CSCI on sperm parameters in adult rats. Materials & Methods: Adult Wistar rats weighing between 225-275g were divided into 3groups of control (n=5, sham (n=10, and experimental CSCI (n=10. No surgery was done on control animals. Only laminectomy was done in the sham animals at T10. CSCI was developed in experimental rats using 10g weight dropped 5cm above the exposed T10 level. All animals were sacrificed 50 days post experiment to extract epididymal samples. Sperm parameters of count, motility, morphology, as well as number of round cells were evaluated with the aid of Makler chamber and Geimsa staining. Results: Progressive motility was significantly reduced in CSCI group (P<0.05. The percentage of normal morphology of spermatozoa was 99.0±1.0 in control rats which was significantly reduced to 74.90±37.64 in CSCI animals In addition, sperm counts in control and CSCI rats were 69.20±12.43 and 25.0±13.68, respectively (P<0.01. Round cell concentration was increased in CSCI group as compared to controls. Conclusion: The results suggest that reduction in parameters of progressive motility, morphology, as well as sperm count following CSCI in rats may disturb the fertility potential of spermatozoa.

  19. Histochemical alternations in the Nissl bodies and ribonucleic acid (RNA) in the spinal, gangalion neurones of gamma irradiated rats

    International Nuclear Information System (INIS)

    Mousa, Tohamy A.; Roushdy, Hamed M.; Raid, Nahed A.; Al-Zahaby, Al-Ahmady S.; Sanad, Samia M.

    1984-01-01

    Four groups of adult male albino rats were subjected to whole body gamma-irradiation at the exposure levels of 200, 400, 600 and 1000 rads and the spinal ganglia were dissected out after different intervals of 3 hr., 1, 3, 5, 7, 10, 15 and 30 days. Nissl bodies and ribonucleic acid were demonstrated histochemically. Gamma irradiation may cause a decrease in RNA synthesis which was reflected in a reduced amount of Nissl substance visible in toluidine blue stained you thick sections of spinal ganglion of gamma irradiated rats and in the total amount of cytoplasmic RNA in pyronin-methyl green stained sections compared with control animals

  20. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury

    Directory of Open Access Journals (Sweden)

    F.C. Nicola

    2016-01-01

    Full Text Available Spinal cord injury (SCI is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10; SCI (laminectomy followed by SCI, n=12; SHEDs (SCI treated with SHEDs, n=11; TT (SCI treated with treadmill training, n=11; SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10. Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  1. Human dental pulp stem cells transplantation combined with treadmill training in rats after traumatic spinal cord injury.

    Science.gov (United States)

    Nicola, F C; Rodrigues, L P; Crestani, T; Quintiliano, K; Sanches, E F; Willborn, S; Aristimunha, D; Boisserand, L; Pranke, P; Netto, C A

    2016-08-08

    Spinal cord injury (SCI) is a disabling condition resulting in deficits of sensory and motor functions, and has no effective treatment. Considering that protocols with stem cell transplantation and treadmill training have shown promising results, the present study evaluated the effectiveness of stem cells from human exfoliated deciduous teeth (SHEDs) transplantation combined with treadmill training in rats with experimental spinal cord injury. Fifty-four Wistar rats were spinalized using NYU impactor. The rats were randomly distributed into 5 groups: Sham (laminectomy with no SCI, n=10); SCI (laminectomy followed by SCI, n=12); SHEDs (SCI treated with SHEDs, n=11); TT (SCI treated with treadmill training, n=11); SHEDs+TT (SCI treated with SHEDs and treadmill training; n=10). Treatment with SHEDs alone or in combination with treadmill training promoted functional recovery, reaching scores of 15 and 14, respectively, in the BBB scale, being different from the SCI group, which reached 11. SHEDs treatment was able to reduce the cystic cavity area and glial scar, increase neurofilament. Treadmill training alone had no functional effectiveness or tissue effects. In a second experiment, the SHEDs transplantation reduced the TNF-α levels in the cord tissue measured 6 h after the injury. Contrary to our hypothesis, treadmill training either alone or in combination, caused no functional improvement. However, SHEDs showed to be neuroprotective, by the reduction of TNF-α levels, the cystic cavity and the glial scar associated with the improvement of motor function after SCI. These results provide evidence that grafted SHEDs might be an effective therapy to spinal cord lesions, with possible anti-inflammatory action.

  2. Traumatic spinal cord injury in MR imaging; Urazowe przerwanie ciaglosci rdzenia kregowego w obrazie MR

    Energy Technology Data Exchange (ETDEWEB)

    Bronarski, J.; Wozniak, E. [Stoleczne Centrum Rehabilitacji, Konstancin (Poland)]|[Inst. Psychiatrii i Neurologii, Warsaw (Poland)

    1993-12-31

    Spinal cord injuries in tetraplegics were briefly discussed on the basis of MR imaging. It was found that severe cervical spine trauma usually results in concussion - the complete transection of the cord is rare. A case of 19 years old male with total cord transection confirmed by MR imaging is described. (author). 5 refs, 3 figs.

  3. Spinal high-mobility group box 1 contributes to mechanical allodynia in a rat model of bone cancer pain

    International Nuclear Information System (INIS)

    Tong, Wei; Wang, Wei; Huang, Jing; Ren, Ning; Wu, Sheng-Xi; Li, Yong-Qi

    2010-01-01

    Mechanisms underlying bone cancer-induced pain are largely unknown. Previous studies indicate that neuroinflammation in the spinal dorsal horn is especially involved. Being first reported as a nonhistone chromosomal protein, high-mobility group box 1 (HMGB1) is now implicated as a mediator of inflammation. We hypothesized that HMGB1 could trigger the release of cytokines in the spinal dorsal horn and contribute to bone cancer pain. To test this hypothesis, we first built a bone cancer pain model induced by intratibal injection of Walker 256 mammary gland carcinoma cells. The structural damage to the tibia was monitored by radiological analysis. The mechanical allodynia was measured and the expression of spinal HMGB1 and IL-1β was evaluated. We observed that inoculation of cancer cells, but not heat-killed cells, induced progressive bone destruction from 9 d to 21 d post inoculation. Behavioral tests demonstrated that the significant nociceptive response in the cancer cells-injected rats emerged on day 9 and this kind of mechanical allodynia lasted at least 21 d following inoculation. Tumor cells inoculation significantly increased HMGB1 expression in the spinal dorsal horn, while intrathecal injecting a neutralizing antibody against HMGB1 showed an effective and reliable anti-allodynia effect with a dose-dependent manner. IL-1β was significantly increased in caner pain rats while intrathecally administration of anti-HMGB1 could decrease IL-1β. Together with previous reports, we predict that bone cancer induces HMGB1 production, enhancing spinal IL-1β expression and thus modulating spinal excitatory synaptic transmission and pain response.

  4. Granulocyte Colony-Stimulating Factor Combined with Methylprednisolone Improves Functional Outcomes in Rats with Experimental Acute Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    William Gemio Jacobsen Teixeira

    2018-02-01

    Full Text Available OBJECTIVES: To evaluate the effects of combined treatment with granulocyte colony-stimulating factor (G-CSF and methylprednisolone in rats subjected to experimental spinal cord injury. METHODS: Forty Wistar rats received a moderate spinal cord injury and were divided into four groups: control (no treatment; G-CSF (G-CSF at the time of injury and daily over the next five days; methylprednisolone (methylprednisolone for 24 h; and G-CSF/Methylprednisolone (methylprednisolone for 24 h and G-CSF at the time of injury and daily over the next five days. Functional evaluation was performed using the Basso, Beattie and Bresnahan score on days 2, 7, 14, 21, 28, 35 and 42 following injury. Motor-evoked potentials were evaluated. Histological examination of the spinal cord lesion was performed immediately after euthanasia on day 42. RESULTS: Eight animals were excluded (2 from each group due to infection, a normal Basso, Beattie and Bresnahan score at their first evaluation, or autophagy, and 32 were evaluated. The combination of methylprednisolone and G-CSF promoted greater functional improvement than methylprednisolone or G-CSF alone (p<0.001. This combination also exhibited a synergistic effect, with improvements in hyperemia and cellular infiltration at the injury site (p<0.001. The groups displayed no neurophysiological differences (latency p=0.85; amplitude p=0.75. CONCLUSION: Methylprednisolone plus G-CSF promotes functional and histological improvements superior to those achieved by either of these drugs alone when treating spinal cord contusion injuries in rats. Combining the two drugs did have a synergistic effect.

  5. Radiotherapy Suppresses Bone Cancer Pain through Inhibiting Activation of cAMP Signaling in Rat Dorsal Root Ganglion and Spinal Cord

    Directory of Open Access Journals (Sweden)

    Guiqin Zhu

    2016-01-01

    Full Text Available Radiotherapy is one of the major clinical approaches for treatment of bone cancer pain. Activation of cAMP-PKA signaling pathway plays important roles in bone cancer pain. Here, we examined the effects of radiotherapy on bone cancer pain and accompanying abnormal activation of cAMP-PKA signaling. Female Sprague-Dawley rats were used and received tumor cell implantation (TCI in rat tibia (TCI cancer pain model. Some of the rats that previously received TCI treatment were treated with X-ray radiation (radiotherapy. Thermal hyperalgesia and mechanical allodynia were measured and used for evaluating level of pain caused by TCI treatment. PKA mRNA expression in dorsal root ganglion (DRG was detected by RT-PCR. Concentrations of cAMP, IL-1β, and TNF-α as well as PKA activity in DRG and the spinal cord were measured by ELISA. The results showed that radiotherapy significantly suppressed TCI-induced thermal hyperalgesia and mechanical allodynia. The level of PKA mRNA in DRG, cAMP concentration and PKA activity in DRG and in the spinal cord, and concentrations of IL-1β and TNF-α in the spinal cord were significantly reduced by radiotherapy. In addition, radiotherapy also reduced TCI-induced bone loss. These findings suggest that radiotherapy may suppress bone cancer pain through inhibition of activation of cAMP-PKA signaling pathway in DRG and the spinal cord.

  6. Bone marrow stromal cells elicit tissue sparing after acute but not delayed transplantation into the contused adult rat thoracic spinal cord.

    NARCIS (Netherlands)

    Tewarie, R.D.; Hurtado, A.; Ritfeld, G.J.; Rahiem, S.T.; Wendell, D.F.; Barroso, M.M.; Grotenhuis, J.A.; Oudega, M.

    2009-01-01

    Bone marrow stromal cells (BMSC) transplanted into the contused spinal cord may support repair by improving tissue sparing. We injected allogeneic BMSC into the moderately contused adult rat thoracic spinal cord at 15 min (acute) and at 3, 7, and 21 days (delayed) post-injury and quantified tissue

  7. Bilateral descending hypothalamic projections to the spinal trigeminal nucleus caudalis in rats.

    Directory of Open Access Journals (Sweden)

    Khaled Abdallah

    Full Text Available Several lines of evidence suggest that the hypothalamus is involved in trigeminal pain processing. However, the organization of descending hypothalamic projections to the spinal trigeminal nucleus caudalis (Sp5C remains poorly understood. Microinjections of the retrograde tracer, fluorogold (FG, into the Sp5C, in rats, reveal that five hypothalamic nuclei project to the Sp5C: the paraventricular nucleus, the lateral hypothalamic area, the perifornical hypothalamic area, the A11 nucleus and the retrochiasmatic area. Descending hypothalamic projections to the Sp5C are bilateral, except those from the paraventricular nucleus which exhibit a clear ipsilateral predominance. Moreover, the density of retrogradely FG-labeled neurons in the hypothalamus varies according to the dorso-ventral localization of the Sp5C injection site. There are much more labeled neurons after injections into the ventrolateral part of the Sp5C (where ophthalmic afferents project than after injections into its dorsomedial or intermediate parts (where mandibular and maxillary afferents, respectively, project. These results demonstrate that the organization of descending hypothalamic projections to the spinal dorsal horn and Sp5C are different. Whereas the former are ipsilateral, the latter are bilateral. Moreover, hypothalamic projections to the Sp5C display somatotopy, suggesting that these projections are preferentially involved in the processing of meningeal and cutaneous inputs from the ophthalmic branch of the trigeminal nerve in rats. Therefore, our results suggest that the control of trigeminal and spinal dorsal horn processing of nociceptive information by hypothalamic neurons is different and raise the question of the role of bilateral, rather than unilateral, hypothalamic control.

  8. Selective retrograde transport of D-aspartate in spinal interneurons anc cortical neurons of rats

    International Nuclear Information System (INIS)

    Rustioni, A.; Cuenod, M.

    1982-01-01

    Retrograde labeling of neuronal elements in the brain and spinal cord has been investigated by autoradiographic techniques following injections of D-[ 3 H]aspartate (asp), [ 3 H]γ-aminobutyric acid (GABA) or horseradish peroxidase (HRP) in the medulla and spinal cord of rats. Twenty-four hours after D-[ 3 H]asp injections focused upon the cuneate nucleus, autoradiographic labeling is present over fibers in the pyramidal tract, internal capsule and over layer V pyramids in the forelimb representation of the sensorimotor cortex. After [ 3 H]GABA injections in the same nucleus no labeling attributable to retrograde translocation can be detected in spinal segments, brain stem or cortex. Conversely, injections of 30% HRP in the cuneate nucleus label neurons in several brain stem nuclei, in spinal gray and in layer V of the sensorimotor cortex. D-[ 3 H]Asp injections focused on the dorsal horn at cervical segments label a fraction of perikarya of the substantia gelatinosa and a sparser population of larger neurons in laminae IV to VI for a distance of 3-5 segments above and below the injection point. No brain stem neuronal perikarya appear labeled following spinal injections of D-[ 3 H]asp although autoradiographic grains overlie pyramidal tract fibers on the side contralateral to the injection. (Auth.)

  9. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    Science.gov (United States)

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-labeled bone marrow mesenchymal stem cells and fluorogold-labeled nerve fibers were increased and hindlimb motor function of spinal cord-injured rats was markedly improved. These improvements were more prominent in rats subjected to bone marrow mesenchymal cell transplantation combined with propofol administration than in rats receiving monotherapy. These results indicate that propofol can enhance the therapeutic effects of bone marrow mesenchymal stem cell transplantation on spinal cord injury in rats. PMID:26487860

  10. Amelioration of motor/sensory dysfunction and spasticity in a rat model of acute lumbar spinal cord injury by human neural stem cell transplantation

    Czech Academy of Sciences Publication Activity Database

    van Gorp, S.; Leerink, M.; Kakinohana, O.; Platoshyn, O.; Santucci, C.; Galik, J.; Joosten, E. A.; Hruška-Plocháň, Marian; Goldberg, D.; Marsala, S.; Johe, K.; Ciacci, J. D.; Marsala, M.

    2013-01-01

    Roč. 4, č. 57 (2013) ISSN 1757-6512 Institutional support: RVO:67985904 Keywords : spinal cord injury * human neural stem cells * spinal grafting * functional recovery * rat Subject RIV: EB - Genetics ; Molecular Biology Impact factor: 4.634, year: 2013

  11. Systemic and Local Cytokine Profile following Spinal Cord Injury in Rats: A Multiplex Analysis

    Directory of Open Access Journals (Sweden)

    Yana O. Mukhamedshina

    2017-10-01

    Full Text Available Our study of the changes in cytokine profile in blood serum and in the spinal cord after traumatic spinal cord injury (SCI has shown that an inflammatory reaction and immunological response are not limited to the CNS, but widespread. This fact was confirmed by changes detected in a cytokine profile in blood serum samples [MIP-1α, interleukin 1 (IL-1 α, IL-2, IL-5, IL-1β, MCP-1, RANTES]. There were also changes in the levels of MIP-1α, IL-1α, IL-2, IL-5, IL-18, GM-colony-stimulating factor, IL-17α, IFN-γ, IL-10, IL-13, MCP-1, and GRO KC CINC-1 in samples of the rat injured spinal cord. The results underscore the complex cytokine network imbalance exhibited after SCI and show significant changes in the concentrations of 14 cytokines/chemokines with different inflammatory and immunological activities.

  12. A valuable animal model of spinal cord injury to study motor dysfunctions, comorbid conditions, and aging associated diseases.

    Science.gov (United States)

    Rouleau, Pascal; Guertin, Pierre A

    2013-01-01

    Most animal models of contused, compressed or transected spinal cord injury (SCI) require a laminectomy to be performed. However, despite advantages and disadvantages associated with each of these models, the laminectomy itself is generally associated with significant problems including longer surgery and anaesthesia (related post-operative complications), neuropathic pain, spinal instabilities, deformities, lordosis, and biomechanical problems, etc. This review provides an overview of findings obtained mainly from our laboratory that are associated with the development and characterization of a novel murine model of spinal cord transection that does not require a laminectomy. A number of studies successfully conducted with this model provided strong evidence that it constitutes a simple, reliable and reproducible transection model of complete paraplegia which is particularly useful for studies on large cohorts of wild-type or mutant animals - e.g., drug screening studies in vivo or studies aimed at characterizing neuronal and non-neuronal adaptive changes post-trauma. It is highly suitable also for studies aimed at identifying and developing new pharmacological treatments against aging associated comorbid problems and specific SCI-related dysfunctions (e.g., stereotyped motor behaviours such as locomotion, sexual response, defecation and micturition) largely related with 'command centers' located in lumbosacral areas of the spinal cord.

  13. Pericytes Make Spinal Cord Breathless after Injury.

    Science.gov (United States)

    Almeida, Viviani M; Paiva, Ana E; Sena, Isadora F G; Mintz, Akiva; Magno, Luiz Alexandre V; Birbrair, Alexander

    2017-09-01

    Traumatic spinal cord injury is a devastating condition that leads to significant neurological deficits and reduced quality of life. Therapeutic interventions after spinal cord lesions are designed to address multiple aspects of the secondary damage. However, the lack of detailed knowledge about the cellular and molecular changes that occur after spinal cord injury restricts the design of effective treatments. Li and colleagues using a rat model of spinal cord injury and in vivo microscopy reveal that pericytes play a key role in the regulation of capillary tone and blood flow in the spinal cord below the site of the lesion. Strikingly, inhibition of specific proteins expressed by pericytes after spinal cord injury diminished hypoxia and improved motor function and locomotion of the injured rats. This work highlights a novel central cellular population that might be pharmacologically targeted in patients with spinal cord trauma. The emerging knowledge from this research may provide new approaches for the treatment of spinal cord injury.

  14. Effects of sciatic nerve transection on glucose uptake in the presence and absence of lactate in the frog dorsal root ganglia and spinal cord

    Directory of Open Access Journals (Sweden)

    F Rigon

    Full Text Available Frogs have been used as an alternative model to study pain mechanisms because the simplicity of their nervous tissue and the phylogenetic aspect of this question. One of these models is the sciatic nerve transection (SNT, which mimics the clinical symptoms of “phantom limb”, a condition that arises in humans after amputation or transverse spinal lesions. In mammals, the SNT increases glucose metabolism in the central nervous system, and the lactate generated appears to serve as an energy source for nerve cells. An answerable question is whether there is elevated glucose uptake in the dorsal root ganglia (DRG after peripheral axotomy. As glucose is the major energy substrate for frog nervous tissue, and these animals accumulate lactic acid under some conditions, bullfrogs Lithobates catesbeianus were used to demonstrate the effect of SNT on DRG and spinal cord 1-[14C] 2-deoxy-D-glucose (14C-2-DG uptake in the presence and absence of lactate. We also investigated the effect of this condition on the formation of 14CO2 from 14C-glucose and 14C-L-lactate, and plasmatic glucose and lactate levels. The 3-O-[14C] methyl-D-glucose (14C-3-OMG uptake was used to demonstrate the steady-state tissue/medium glucose distribution ratio under these conditions. Three days after SNT, 14C-2-DG uptake increased, but 14C-3-OMG uptake remained steady. The increase in 14C-2-DG uptake was lower when lactate was added to the incubation medium. No change was found in glucose and lactate oxidation after SNT, but lactate and glucose levels in the blood were reduced. Thus, our results showed that SNT increased the glucose metabolism in the frog DRG and spinal cord. The effect of lactate on this uptake suggests that glucose is used in glycolytic pathways after SNT.

  15. Lack of evidence for increased tolerance of rat spinal cord with decreasing fraction doses below 2 Gy

    International Nuclear Information System (INIS)

    Ang, K.K.; van der Kogel, A.J.; van der Schueren, E.

    1985-01-01

    The radiation tolerance of the spinal cord, both in man and in rats, has been shown to depend strongly on the size of the dose per fraction. With fraction doses down to about 2 Gy, the spinal cord tolerance can be predicted by a modified Ellis formula. More recently alternative isoeffect formulas were based on the linear-quadratic (LQ) model of cell survival where the effect of dose fractionation is characterized by the ratio α/β which varies from tissue to tissue. For the spinal cord, as well as for other late responding tissues, the ratio α/β is small, in contrast to most acutely responding tissues. Both the Ellis-type formula, and to a lesser extent the LQ-model, predict a continuously increasing tolerance dose with decreasing fraction size. From previous experiments on the rat cervical spinal cord with doses per fraction down to about 2 Gy, the ratio α/β was determined to be 1.7 Gy, and the LQ-model would predict a rise in tolerance with a reduction in fraction size to far below 2 Gy. Based on these predictions clinical studies have been initiated assuming a significantly increased tolerance by reduction of fraction size to about 1 Gy. However, in the present experiments no evidence was found for such an increase in tolerance with fraction sizes below 2 Gy

  16. Neuronal regeneration in injured rat spinal cord after human dental pulp derived neural crest stem cell transplantation.

    Science.gov (United States)

    Kabatas, S; Demir, C S; Civelek, E; Yilmaz, I; Kircelli, A; Yilmaz, C; Akyuva, Y; Karaoz, E

    2018-01-01

    This study aimed to analyze the effect of human Dental Pulp-Neural Crest Stem Cells (hDP-NCSCs) delivery on lesion site after spinal cord injury (SCI), and to observe the functional recovery after transplantation. Neural Crest Stem Cells (NCSCs) were isolated from human Dental Pulp (hDP). The experimental rat population was divided into four groups (n = 6/24). Their behavioral motility was scored regularly. After 4-weeks, rats were sacrificed, and their spinal cords were examined for Green Fluorescent Protein (GFP) labeled hDP-NCSCs by immunofluorescence (IF) staining. In early post-injury (p.i) period, the ultrastructure of spinal cord tissue was preserved in Group 4. The majority of cells forming the ependymal region around the central canal were found to be hDP-NCSCs. While the grey-and-white-matter around the ependymal region was composed of e.g. GFP cells, with astrocytic-like appearance. The scores showed significant motor recovery in hind limb functions in Group 4. However, no obvious change was observed in other groups. Cells e.g., mesenchymal (Vimentin+) which express GFP+ cells in the gray-and-white-matter around the ependymal region could indicate the potential to self-renewal and plasticity. Thus, transplantation of hDP-NCSCs might be an effective strategy to improve functional recovery following spinal cord trauma (Fig. 10, Ref. 32).

  17. Pathological changes in the white matter after spinal contusion injury in the rat.

    Directory of Open Access Journals (Sweden)

    C Joakim Ek

    Full Text Available It has been shown previously that after spinal cord injury, the loss of grey matter is relatively faster than loss of white matter suggesting interventions to save white matter tracts offer better therapeutic possibilities. Loss of white matter in and around the injury site is believed to be the main underlying cause for the subsequent loss of neurological functions. In this study we used a series of techniques, including estimations of the number of axons with pathology, immunohistochemistry and mapping of distribution of pathological axons, to better understand the temporal and spatial pathological events in white matter following contusion injury to the rat spinal cord. There was an initial rapid loss of axons with no detectable further loss beyond 1 week after injury. Immunoreactivity for CNPase indicated that changes to oligodendrocytes are rapid, extending to several millimetres away from injury site and preceding much of the axonal loss, giving early prediction of the final volume of white matter that survived. It seems that in juvenile rats the myelination of axons in white matter tracts continues for some time, which has an important bearing on interpretation of our, and previous, studies. The amount of myelin debris and axon pathology progressively decreased with time but could still be observed at 10 weeks after injury, especially at more distant rostral and caudal levels from the injury site. This study provides new methods to assess injuries to spinal cord and indicates that early interventions are needed for the successful sparing of white matter tracts following injury.

  18. Transplantation of specific human astrocytes promotes functional recovery after spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Stephen J A Davies

    2011-03-01

    Full Text Available Repairing trauma to the central nervous system by replacement of glial support cells is an increasingly attractive therapeutic strategy. We have focused on the less-studied replacement of astrocytes, the major support cell in the central nervous system, by generating astrocytes from embryonic human glial precursor cells using two different astrocyte differentiation inducing factors. The resulting astrocytes differed in expression of multiple proteins thought to either promote or inhibit central nervous system homeostasis and regeneration. When transplanted into acute transection injuries of the adult rat spinal cord, astrocytes generated by exposing human glial precursor cells to bone morphogenetic protein promoted significant recovery of volitional foot placement, axonal growth and notably robust increases in neuronal survival in multiple spinal cord laminae. In marked contrast, human glial precursor cells and astrocytes generated from these cells by exposure to ciliary neurotrophic factor both failed to promote significant behavioral recovery or similarly robust neuronal survival and support of axon growth at sites of injury. Our studies thus demonstrate functional differences between human astrocyte populations and suggest that pre-differentiation of precursor cells into a specific astrocyte subtype is required to optimize astrocyte replacement therapies. To our knowledge, this study is the first to show functional differences in ability to promote repair of the injured adult central nervous system between two distinct subtypes of human astrocytes derived from a common fetal glial precursor population. These findings are consistent with our previous studies of transplanting specific subtypes of rodent glial precursor derived astrocytes into sites of spinal cord injury, and indicate a remarkable conservation from rat to human of functional differences between astrocyte subtypes. In addition, our studies provide a specific population of human

  19. Effect of transplantation of olfactory ensheathing cell conditioned medium induced bone marrow stromal cells on rats with spinal cord injury

    Science.gov (United States)

    Feng, Linjie; Gan, Hongquan; Zhao, Wenguo; Liu, Yingjie

    2017-01-01

    Spinal cord injury is a serious threat to human health and various techniques have been deployed to ameliorate or cure its effects. Stem cells transplantation is one of the promising methods. The primary aim of the present study was to investigate the effect of the transplantation of olfactory ensheathing cell (OEC) conditioned medium-induced bone marrow stromal cells (BMSCs) on spinal cord injury. Rat spinal cord compression injury animal models were generated, and the rats divided into the following three groups: Group A, (control) Dulbecco's modified Eagle's medium-treated group; group B, normal BMSC-treated group; group C, OEC conditioned medium-induced BMSC-treated group. The animals were sacrificed at 2, 4 and 8 weeks following transplantation for hematoxylin and eosin staining, and fluorescence staining of neurofilament protein, growth associated protein-43 and neuron-specific nuclear protein. The cavity area of the spinal cord injury was significantly reduced at 2 and 4 weeks following transplantation in group C, and a significant difference between the Basso, Beattie and Bresnahan score in group C and groups A and B was observed. Regenerated nerve fibers were observed in groups B and C; however, a greater number of regenerated nerve fibers were observed in group C. BMSCs induced by OEC conditioned medium survived in vivo, significantly reduced the cavity area of spinal cord injury, promoted nerve fiber regeneration following spinal cord injury and facilitated recovery of motor function. The present study demonstrated a novel method to repair spinal cord injury by using induced BMSCs, with satisfactory results. PMID:28656221

  20. Valproic Acid Arrests Proliferation but Promotes Neuronal Differentiation of Adult Spinal NSPCs from SCI Rats.

    Science.gov (United States)

    Chu, Weihua; Yuan, Jichao; Huang, Lei; Xiang, Xin; Zhu, Haitao; Chen, Fei; Chen, Yanyan; Lin, Jiangkai; Feng, Hua

    2015-07-01

    Although the adult spinal cord contains a population of multipotent neural stem/precursor cells (NSPCs) exhibiting the potential to replace neurons, endogenous neurogenesis is very limited after spinal cord injury (SCI) because the activated NSPCs primarily differentiate into astrocytes rather than neurons. Valproic acid (VPA), a histone deacetylase inhibitor, exerts multiple pharmacological effects including fate regulation of stem cells. In this study, we cultured adult spinal NSPCs from chronic compressive SCI rats and treated with VPA. In spite of inhibiting the proliferation and arresting in the G0/G1 phase of NSPCs, VPA markedly promoted neuronal differentiation (β-tubulin III(+) cells) as well as decreased astrocytic differentiation (GFAP(+) cells). Cell cycle regulator p21(Cip/WAF1) and proneural genes Ngn2 and NeuroD1 were increased in the two processes respectively. In vivo, to minimize the possible inhibitory effects of VPA to the proliferation of NSPCs as well as avoid other neuroprotections of VPA in acute phase of SCI, we carried out a delayed intraperitoneal injection of VPA (150 mg/kg/12 h) to SCI rats from day 15 to day 22 after injury. Both of the newborn neuron marker doublecortin and the mature neuron marker neuron-specific nuclear protein were significantly enhanced after VPA treatment in the epicenter and adjacent segments of the injured spinal cord. Although the impaired corticospinal tracks had not significantly improved, Basso-Beattie-Bresnahan scores in VPA treatment group were better than control. Our study provide the first evidence that administration of VPA enhances the neurogenic potential of NSPCs after SCI and reveal the therapeutic value of delayed treatment of VPA to SCI.

  1. Distribution of glycinergic neuronal somata in the rat spinal cord.

    Science.gov (United States)

    Hossaini, Mehdi; French, Pim J; Holstege, Jan C

    2007-04-20

    Glycine transporter 2 (GlyT2) mRNA is exclusively expressed in glycinergic neurons, and is presently considered a reliable marker for glycinergic neuronal somata. In this study, we have performed non-radioactive in situ hybridization to localize GlyT2 mRNA in fixed free-floating sections of cervical (C2 and C6), thoracic (T5), lumbar (L2 and L5) and sacral (S1) segments of the rat spinal cord. The results showed that in all segments the majority of the GlyT2 mRNA labeled (glycinergic) neuronal somata was present in the deep dorsal horn and the intermediate zone (laminae III-VIII), with around 50% (range 43.7-70.9%) in laminae VII&VIII. In contrast, the superficial dorsal horn, the motoneuronal cell groups and the area around the central canal contained only few glycinergic neuronal somata. The density (number of glycinergic neuronal somata per mm(2)) was also low in these areas, while the highest densities were found in laminae V to VIII. The lateral spinal nucleus and the lateral cervical nucleus also contained a limited number of glycinergic neurons. Our findings showed that the distribution pattern of the glycinergic neuronal somata is similar in all the examined segments. The few differences that were found in the relative laminar distribution between some of the segments, are most likely due to technical reasons. We therefore conclude that the observed distribution pattern of glycinergic neuronal somata is present throughout the spinal cord. Our findings further showed that the non-radioactive in situ hybridization technique for identifying GlyT2 mRNA in fixed free-floating sections is a highly efficient tool for identifying glycinergic neurons in the spinal cord.

  2. Imaging micro-glial/macrophage activation in spinal cords of experimental autoimmune encephalomyelitis rats by Positron Emission Tomography using the mitochondrial 18 kDa translocator protein radioligand [18F]DPA-714

    International Nuclear Information System (INIS)

    Abourbeh, Galith; Theze, Benoit; Dubois, Albertine; Tavitian, Bertrand; Boisgard, Raphael; Maroy, Renaud; Brulon, Vincent; Fontyn, Yoann; Dolle, Frederic

    2012-01-01

    Multiple sclerosis (MS) is an inflammatory demyelinating disease of the CNS. Activated micro-glia/macrophages play a key role in the immuno-pathogenesis of MS and its corresponding animal models, experimental autoimmune encephalomyelitis (EAE). Micro-glia activation begins at early stages of the disease and is associated with elevated expression of the 18 kDa mitochondrial translocator protein (TSPO). Thus, positron emission tomography (PET) imaging of micro-glial activation using TSPO-specific radioligands could be valuable for monitoring disease-associated neuro-inflammatory processes. EAE was induced in rats using a fragment of myelin basic protein, yielding acute clinical disease that reflects extensive spinal cord inflammation. Enhanced TSPO expression in spinal cords of EAE rats versus those of controls was confirmed by Western blot and immunohistochemistry. Biodistribution studies in control and EAE rats were performed using the TSPO radioligand [ 18 F]DPA-714 [N,N-diethyl-2-(2-(4-(2-fluoroethoxy)phenyl)-5,7-dimethylpyrazolo[1,5- a]pyrimidin-3-yl)acetamide]. At 1 h after injection, almost fivefold higher levels of [ 18 F]DPA-714 were measured in spinal cords of EAE rats versus controls. The specific binding of [ 18 F]DPA-714 to TSPO in spinal cords was confirmed in competition studies, using unlabeled (R,S)-PK11195 [(R,S)-N-methyl-N-(1-methylpropyl)-1-(2-chlorophenyl) - isoquinoline-3-carboxamide)] or DPA-714 in excess. MicroPET studies affirm that this differential radioactivity uptake in spinal cords of EAE versus control rats could be detected and quantified. Using [ 18 F]DPA-714, neuro-inflammation in spinal cords of EAE-induced rats could be visualized by PET, offering a sensitive technique for monitoring neuro-inflammatory lesions in the CNS and particularly in the spinal cord. In addition to current MRI protocols, this approach could provide molecular images of neuro-inflammation for detection, monitoring, and research in MS. (authors)

  3. Agmatine Modulates the Phenotype of Macrophage Acute Phase after Spinal Cord Injury in Rats.

    Science.gov (United States)

    Kim, Jae Hwan; Kim, Jae Young; Mun, Chin Hee; Suh, Minah; Lee, Jong Eun

    2017-10-01

    Agmatine is a decarboxylated arginine by arginine decarboxylase. Agmatine is known to be a neuroprotective agent. It has been reported that agmatine works as a NMDA receptor blocker or a competitive nitric oxide synthase inhibitor in CNS injuries. In spinal cord injury, agmatine showed reduction of neuropathic pain, improvement of locomotor function, and neuroprotection. Macrophage is a key cellular component in neuroinflammation, a major cause of impairment after spinal cord injury. Macrophage has subtypes, M1 and M2 macrophages. M1 macrophage induces a pro-inflammatory response, but M2 inspires an anti-inflammatory response. In this study, it was clarified whether the neuroprotective effect of agmatine is related with the modulation of macrophage subdivision after spinal cord injury. Spinal cord injury was induced in rats with contusion using MASCIS. Animals received agmatine (100 mg/kg, IP) daily for 6 days beginning the day after spinal cord injury. The proportion of M1 and M2 macrophages are confirmed with immunohistochemistry and FACS. CD206 + & ED1 + cells were counted as M2 macrophages. The systemic treatment of agmatine increased M2 macrophages caudal side to epicenter 1 week after spinal cord injury in immunohistochemistry. M2 macrophage related markers, Arginase-1 and CD206 mRNA, were increased in the agmatine treatment group and M2 macrophage expressing and stimulated cytokine, IL-10 mRNA, also was significantly overexpressed by agmatine injection. Among BMPs, BMP2/4/7, agmatine significantly increased only the expression of BMP2 known to reduce M1 macrophage under inflammatory status. These results suggest that agmatine reduces impairment after spinal cord injury through modulating the macrophage phenotype.

  4. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats.

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-11-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (Pspinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (Pspinal cord gives some positive effects for the regeneration of the white matter.

  5. Evaluation of Avulsion-Induced Neuropathology in Rat Spinal Cords with 18F-FDG Micro-PET/CT.

    Directory of Open Access Journals (Sweden)

    Ze-Min Ling

    Full Text Available Brachial plexus root avulsion (BPRA leads to dramatic motoneuron death and glial reactions in the corresponding spinal segments at the late stage of injury. To protect spinal motoneurons, assessment of the affected spinal segments should be done at an earlier stage of the injury. In this study, we employed 18F-FDG small-animal PET/CT to assess the severity of BPRA-induced cervical spinal cord injuries. Adult Sprague-Dawley rats were randomly treated and divided into three groups: Av+NS (brachial plexus root avulsion (Av treated with normal saline, Av+GM1 (treated with monosialoganglioside, and control. At time points of 3 day (d, 1 week (w, 2 w, 4 w and 8 w post-injury, 18F-FDG micro-PET/CT scans and neuropathology assessments of the injured spinal roots, as well as the spinal cord, were performed. The outcomes of the different treatments were compared. The results showed that BPRA induced local bleeding and typical Wallerian degeneration of the avulsed roots accompanied by 18F-FDG accumulations at the ipsilateral cervical intervertebral foramen. BPRA-induced astrocyte reactions and overexpression of neuronal nitric oxide synthase in the motoneurons correlated with higher 18F-FDG uptake in the ipsilateral cervical spinal cord during the first 2 w post-injury. The GM1 treatment reduced BPRA-induced astrocyte reactions and inhibited the de novo nNOS expressions in spinal motoneurons. The GM1 treatment also protected spinal motoneurons from avulsion within the first 4 w post-injury. The data from this study suggest that 18F-FDG PET/CT could be used to assess the severity of BPRA-induced primary and secondary injuries in the spinal cord. Furthermore, GM1 is an effective drug for reducing primary and secondary spinal cord injuries following BPRA.

  6. Behavioral and physiological methods for early quantitative assessment of spinal cord injury and prognosis in rats

    Directory of Open Access Journals (Sweden)

    C.A. Giglio

    2006-12-01

    Full Text Available Methods for reliable evaluation of spinal cord (SC injury in rats at short periods (2 and 24 h after lesion were tested to characterize the mechanisms implicated in primary SC damage. We measured the physiological changes occurring after several procedures for producing SC injury, with particular emphasis on sensorimotor functions. Segmental and suprasegmental reflexes were tested in 39 male Wistar rats weighing 250-300 g divided into three control groups that were subjected to a anesthesia, b dissection of soft prevertebral tissue, and c laminectomy of the vertebral segments between T10 and L1. In the lesion group the SC was completely transected, hemisected or subjected to vertebral compression. All animals were evaluated 2 and 24 h after the experimental procedure by the hind limb motility index, Bohlman motor score, open-field, hot-plate, tail flick, and paw compression tests. The locomotion scale proved to be less sensitive than the sensorimotor tests. A reduction in exploratory movements was detected in the animals 24 h after the procedures. The hot-plate was the most sensitive test for detecting sensorimotor deficiencies following light, moderate or severe SC injury. The most sensitive and simplest test of reflex function was the hot-plate. The hemisection model promoted reproducible moderate SC injury which allowed us to quantify the resulting behavior and analyze the evolution of the lesion and its consequences during the first 24 h after injury. We conclude that hemisection permitted the quantitation of behavioral responses for evaluation of the development of deficits after lesions. Hind limb evaluation scores and spontaneous exploration events provided a sensitive index of immediate injury effects after SC lesion at 2 and 24 h. Taken together, locomotion scales, open-field, and hot-plate tests represent reproducible, quantitatively sensitive methods for detecting functional deficiencies within short periods of time, indicating their

  7. Radiation response of the rat cervical spinal cord after irradiation at different ages: Tolerance, latency and pathology

    International Nuclear Information System (INIS)

    Ruifrok, A.C.C.; Van Der Kogel, A.J.; Stephens, L.C.

    1994-01-01

    Investigation of the age dependent single-dose radiation tolerance, latency to radiation myelopathy, and the histopathological changes after irradiation of the rat cervical spinal cord is presented. Rats were irradiated with graded single doses of 4 MV photons to the cervical spinal cord. When the rats showed definite signs of paresis of the forelegs, they were killed and processed for histological examination. The radiation dose resulting in paresis due to white matter damage in 50% of the animals (ED 50 ) after single dose irradiation was about 21.5 Gy at all ages ≥ 2 weeks. Only the Ed 50 at 1 week was significantly lower. The latency to the development of paresis clearly changed with the age at irradiation, from about 2 weeks after irradiation at 1 week to 6-8 months after irradiation at age ≥ 8 weeks. The white matter damage was similar in all symptomatic animals studied. The most prominent were areas with diffuse demyelination and swollen axons, often with focal necrosis, accompanied by glial reaction. This was observed in all symptomatic animals, irrespective of the age at irradiation. Expression of vascular damage appeared to depend on the age at irradiation. Although the latency to myelopathy is clearly age dependent, single dose tolerance is not age dependent at age ≥ 2 weeks in the rat cervical spinal cord. The white matter damage is similar in all symptomatic animals studied, but the vasculopathies appear to be influenced by the age at irradiation. It is concluded that white matter damage and vascular damage are separate phenomena contributing to the development of radiation myelopathy, expression of which may depend on the radiation dose applied and the age at irradiation. 28 refs., 5 figs., 3 tabs

  8. Effect of the spider toxin Tx3-3 on spinal processing of sensory information in naive and neuropathic rats: an in vivo electrophysiological study.

    Science.gov (United States)

    Dalmolin, Gerusa D; Bannister, Kirsty; Gonçalves, Leonor; Sikandar, Shafaq; Patel, Ryan; Cordeiro, Marta do Nascimento; Gomez, Marcus Vinícius; Ferreira, Juliano; Dickenson, Anthony H

    2017-07-01

    Drugs that counteract nociceptive transmission in the spinal dorsal horn preferentially after nerve injury are being pursued as possible neuropathic pain treatments. In a previous behavioural study, the peptide toxin Tx3-3, which blocks P/Q- and R-type voltage-gated calcium channels, was effective in neuropathic pain models. In the present study, we aimed to investigate the effect of Tx3-3 on dorsal horn neuronal responses in rats under physiological conditions and neuropathic pain condition induced by spinal nerve ligation (SNL). In vivo electrophysiological recordings of dorsal horn neuronal response to electrical and natural (mechanical and thermal) stimuli were made in rats under normal physiological state (naive rats) or after the SNL model of neuropathic pain. Tx3-3 (0.3-100 pmol/site) exhibited greater inhibitory effect on electrical-evoked neuronal response of SNL rats than naive rats, inhibiting nociceptive C-fibre and Aδ-fibre responses only in SNL rats. The wind-up of neurones, a measurement of spinal cord hyperexcitability, was also more susceptible to a dose-related inhibition by Tx3-3 after nerve injury. Moreover, Tx3-3 exhibited higher potency to inhibit mechanical- and thermal-evoked neuronal response in conditions of neuropathy. Tx3-3 mediated differential inhibitory effect under physiological and neuropathic conditions, exhibiting greater potency in conditions of neuropathic pain.

  9. Bone blood flow after spinal paralysis in the rat

    International Nuclear Information System (INIS)

    Takahashi, H.; Yamamuro, T.; Okumura, H.; Kasai, R.; Tada, K.

    1990-01-01

    The goal of this study was to investigate the acute and chronic effects of paralysis induced by spinal cord section or sciatic neurotomy on bone blood flow in the rat. Regional bone blood flow was measured in the early stage with the hydrogen washout technique and the change of whole bone blood flow was measured in the early and the late stages with the radioactive microsphere technique. Four to 6 h after cordotomy at the level of the 13th thoracic vertebra, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.01). After hemicordotomy with rhizotomy at the same level, the regional bone blood flow in the denervated tibia increased significantly (p less than 0.05) 6 h postoperatively. The whole bone blood flow in the denervated tibia had also increased significantly (p less than 0.05) at 6 h and at 4 and 12 weeks postoperatively. After sciatic neurotomy, the regional and the whole bone blood flow in the paralytic tibia did not change significantly. The present study demonstrated that monoplegic paralysis caused an increase in bone blood flow in the denervated hind limb from a very early stage. It was suggested that the spinal nervous system contributed to the control of bone blood flow

  10. Primary non-transecting bulbar urethroplasty long-term success rates are similar to transecting urethroplasty.

    Science.gov (United States)

    Anderson, Kirk M; Blakely, Stephen A; O'Donnell, Colin I; Nikolavsky, Dmitriy; Flynn, Brian J

    2017-01-01

    To review the long-term outcomes of transecting versus non-transecting urethroplasty to repair bulbar urethral strictures. A retrospective review was conducted of 342 patients who underwent anterior urethroplasty performed by a single surgeon from 2003 to 2014. Patients were excluded from further analysis if there had been prior urethroplasty, stricture location outside the bulbous urethra, or age urethroplasty. In the non-transecting group, surgical techniques used included non-transecting anastomotic urethroplasty and dorsal and/or ventral buccal grafting. The primary endpoint was stricture resolution in transecting vs. non-transecting bulbar urethroplasty. Success was defined as freedom from secondary procedures including dilation, urethrotomy, or repeat urethroplasty. One hundred and fifty-two patients met inclusion criteria. At a mean follow-up of 65 months (range: 10-138 months), stricture-free recurrence in the transecting and non-transecting groups was similar, 83% (n = 85/102) and 82% (n = 41/50), respectively (p = 0.84). Surgical technique (p = 0.91), stricture length (p = 0.8), and etiology (p = 0.6) did not affect stricture recurrence rate on multivariate analysis. There was no difference detected in time to stricture recurrence (p = 0.21). In this retrospective series, transecting and non-transecting primary bulbar urethroplasty resulted in similar long-term stricture resolution rate. Prospective studies are needed to determine what differences may present in outcomes related to sexual function and long-term success.

  11. Feasibility of Diffusion Tensor Imaging for Assessing Functional Recovery in Rats with Olfactory Ensheathing Cell Transplantation After Contusive Spinal Cord Injury (SCI).

    Science.gov (United States)

    Gu, Mengchao; Gao, Zhengchao; Li, Xiaohui; Zhao, Feng; Guo, Lei; Liu, Jiantao; He, Xijing

    2017-06-17

    BACKGROUND Olfactory ensheathing cell transplantation is a promising treatment for spinal cord injury. Diffusion tensor imaging has been applied to assess various kinds of spinal cord injury. However, it has rarely been used to evaluate the beneficial effects of olfactory ensheathing cell transplantation. This study aimed to explore the feasibility of diffusion tensor imaging in the evaluation of functional recovery in rats with olfactory ensheathing cell transplantation after contusive spinal cord injury. MATERIAL AND METHODS Immunofluorescence staining was performed to determine the purity of olfactory ensheathing cells. Rats received cell transplantation at week 1 after injury. Basso, Beattie, and Bresnahan score was used to assess the functional recovery. Magnetic resonance imaging was applied weekly, including diffusion tensor imaging. Diffusion tensor tractography was reconstructed to visualize the repair process. RESULTS The results showed that olfactory ensheathing cell transplantation increased the functional and histological recovery and restrained the secondary injury process after the initial spinal cord injury. The fractional anisotropy values in rats with cell transplantation were significantly higher than those in the control group, while the apparent diffusion coefficient values were significantly lower. Basso, Beattie, and Bresnahan score was positively and linearly correlated with fractional anisotropy value, and it was negatively and linearly correlated with apparent diffusion coefficient value. CONCLUSIONS These findings suggest that diffusion tensor imaging parameters are sensitive biomarker indices for olfactory ensheathing cell transplantation interventions, and diffusion tensor imaging scan can reflect the functional recovery promoted by the olfactory ensheathing cell transplantation after contusive spinal cord injury.

  12. Involvement of spinal NR2B-containing NMDA receptors in oxaliplatin-induced mechanical allodynia in rats

    Directory of Open Access Journals (Sweden)

    Yano Takahisa

    2011-01-01

    Full Text Available Abstract Background Oxaliplatin is a platinum-based chemotherapy drug characterized by the development of acute and chronic peripheral neuropathies. The chronic neuropathy is a dose-limiting toxicity. We previously reported that repeated administration of oxaliplatin induced cold hyperalgesia in the early phase and mechanical allodynia in the late phase in rats. In the present study, we investigated the involvement of NR2B-containing N-methyl-D-aspartate (NMDA receptors in oxaliplatin-induced mechanical allodynia in rats. Results Repeated administration of oxaliplatin (4 mg/kg, i.p., twice a week caused mechanical allodynia in the fourth week, which was reversed by intrathecal injection of MK-801 (10 nmol and memantine (1 μmol, NMDA receptor antagonists. Similarly, selective NR2B antagonists Ro25-6981 (300 nmol, i.t. and ifenprodil (50 mg/kg, p.o. significantly attenuated the oxaliplatin-induced pain behavior. In addition, the expression of NR2B protein and mRNA in the rat spinal cord was increased by oxaliplatin on Day 25 (late phase but not on Day 5 (early phase. Moreover, we examined the involvement of nitric oxide synthase (NOS as a downstream target of NMDA receptor. L-NAME, a non-selective NOS inhibitor, and 7-nitroindazole, a neuronal NOS (nNOS inhibitor, significantly suppressed the oxaliplatin-induced pain behavior. The intensity of NADPH diaphorase staining, a histochemical marker for NOS, in the superficial layer of spinal dorsal horn was obviously increased by oxaliplatin, and this increased intensity was reversed by intrathecal injection of Ro25-6981. Conclusion These results indicated that spinal NR2B-containing NMDA receptors are involved in the oxaliplatin-induced mechanical allodynia.

  13. Effects of low calcium plus high aluminum diet on magnesium and calcium contents in spinal cord and trabecular bone of rats

    Energy Technology Data Exchange (ETDEWEB)

    Yasui, Masayuki; Ota, Kiichiro [Wakayama Medical Coll. (Japan); Sasajima, Kazuhisa

    1998-01-01

    Current epidemiological surveys in the Western Pacific area and Kii Peninsula have suggested that low calcium (Ca), magnesium (Mg), and high aluminum (Al) and manganese (Mn) in river, soil and drinking water may be implicated in the pathogenetic process of amyotrophic lateral sclerosis (ALS) and parkinsonism-dementia (PD). The condition of unbalanced minerals was experimentally duplicated in this study using rats. Male Wistar rats, weighing 200 g, were maintained for 60 days on the following diets: (A) standard diet, (B) low Ca diet, (C) low Ca diet with high Al. Magnesium concentration was determined in spinal cord and trabecular bone using inductively coupled plasma emission spectrometry (ICP) and the calcium concentration was determined using neutron activation method. In the group maintained on low Ca high Al diet, magnesium content of the spinal cord was lower than the group fed standard diet. Also, magnesium content of lumbar bone showed lower values in the unbalanced diet group fed low Ca high Al diet than those in the standard diet and low Ca diet groups. Calcium content of spinal cord was highest in rats maintained on low Ca high Al diet. Calcium content in lumbar bone of rats significantly decreased in rats maintained on the low Ca diet (group B and C) compared to rats given a standard diet (group A). Our data indicate that low Ca and high Al dietary intake influence Mg concentration in bone and central nervous system (CNS) tissues and that low Ca and high Al diet diminish Mg in bone and CNS tissues, thereby inducing loss of calcification in bone and degeneration of CNS tissues due to disturbance of the normal biological effects of Mg. (author)

  14. Extended magnetic resonance imaging studies on the effect of classically activated microglia transplantation on white matter regeneration following spinal cord focal injury in adult rats

    Science.gov (United States)

    Marcol, Wiesław; Ślusarczyk, Wojciech; Larysz-Brysz, Magdalena; Łabuzek, Krzysztof; Kapustka, Bartosz; Staszkiewicz, Rafał; Rosicka, Paulina; Kalita, Katarzyna; Węglarz, Władysław; Lewin-Kowalik, Joanna

    2017-01-01

    Spinal cord injuries are still a serious problem for regenerative medicine. Previous research has demonstrated that activated microglia accumulate in spinal lesions, influencing the injured tissues in various ways. Therefore, transplantation of activated microglia may have a beneficial role in the regeneration of the nervous system. The present study examined the influence of transplanted activated microglial cells in adult rats with injured spinal cords. Rats were randomly divided into an experimental (M) and control (C) group, and were subjected to non-laminectomy focal injury of spinal cord white matter by means of a high-pressured air stream. In group M, activated cultured microglial cells were injected twice into the site of injury. Functional outcome and morphological features of regeneration were analyzed during a 12-week follow-up. The lesions were characterized by means of magnetic resonance imaging (MRI). Neurons in the brain stem and motor cortex were labeled with FluoroGold (FG). A total of 12 weeks after surgery, spinal cords and brains were collected and subjected to histopathological and immunohistochemical examinations. Lesion sizes in the spinal cord were measured and the number of FG-positive neurons was counted. Rats in group M demonstrated significant improvement of locomotor performance when compared with group C (PMRI analysis demonstrated moderate improvement in water diffusion along the spinal cord in the group M following microglia treatment, as compared with group C. The water diffusion perpendicular to the spinal cord in group M was closer to the reference values for a healthy spinal cord than it was in group C. The sizes of lesions were also significantly smaller in group M than in the group C (P<0.05). The number of brain stem and motor cortex FG-positive neurons in group M was significantly higher than in group C. The present study demonstrated that delivery of activated microglia directly into the injured spinal cord gives some

  15. The role of c-AMP-dependent protein kinase in spinal cord and post synaptic dorsal column neurons in a rat model of visceral pain.

    Science.gov (United States)

    Wu, Jing; Su, Guangxiao; Ma, Long; Zhang, Xuan; Lei, Yongzhong; Lin, Qing; Nauta, Haring J W; Li, Junfa; Fang, Li

    2007-04-01

    Visceral noxious stimulation induces central neuronal plasticity changes and suggests that the c-AMP-dependent protein kinase (PKA) signal transduction cascade contributes to long-term changes in nociceptive processing at the spinal cord level. Our previous studies reported the clinical neurosurgical interruption of post synaptic dorsal column neuron (PSDC) pathway by performing midline myelotomy effectively alleviating the intractable visceral pain in patients with severe pain. However, the intracellular cascade in PSDC neurons mediated by PKA nociceptive neurotransmission was not known. In this study, by using multiple experimental approaches, we investigated the role of PKA in nociceptive signaling in the spinal cord and PSDC neurons in a visceral pain model in rats with the intracolonic injection of mustard oil. We found that mustard oil injection elicited visceral pain that significantly changed exploratory behavior activity in rats in terms of decreased numbers of entries, traveled distance, active and rearing time, rearing activity and increased resting time when compared to that of rats receiving mineral oil injection. However, the intrathecal infusion of PKA inhibitor, H89 partially reversed the visceral pain-induced effects. Results from Western blot studies showed that mustard oil injection significantly induced the expression of PKA protein in the lumbosacral spinal cord. Immunofluorescent staining in pre-labeled PSDC neurons showed that mustard oil injection greatly induces the neuronal profile numbers. We also found that the intrathecal infusion of a PKA inhibitor, H89 significantly blocked the visceral pain-induced phosphorylation of c-AMP-responsive element binding (CREB) protein in spinal cord in rats. The results of our study suggest that the PKA signal transduction cascade may contribute to visceral nociceptive changes in spinal PSDC pathways.

  16. Response of rat spinal cord to single and fractionated doses of accelerated heavy ions

    International Nuclear Information System (INIS)

    Leith, J.T.; McDonald, M.; Powers-Risius, P.; Bliven, S.F.; Howard, J.

    1982-01-01

    The thoraco-lumbar (T12-L1) region of the spinal cord of rats was exposed to either single or fractionated (four daily exposures) doses of X rays (230 kVp) or heavy ions. The heavy ions used were carbon and neon, and the relative biological effectiveness (RBE) of both the plateau ionization region and the midpeak region of 4-cm spread-out Bragg peaks of each heavy ion were investigated. For single doses of carbon and neon ions in the plateau ionization region, RBE values of 1.45 +/- 0.25 (propagated 95% confidence limits) and 1.46 +/- 0.33, respectively, were obtained. In the spread peak regions for carbon and neon ions, the RBE values were 1.48 +/- 0.18 and 1.86 +/- 0.42, respectively. These values were obtained using the dose needed to produce 50% paralysis in a group of irradiated rats as the isoeffect comparison dose (ED 50 dose). Similarly, in groups of rats receiving four daily exposures, the RBE values for carbon and neon ions in the plateau ionization region were 1.31 +/- 0.27 and 1.80 +/- 0.24, respectively. In the spread peak regions of ionization for carbon and neon ions, the RBE values were 1.95 +/- 0.19 and 2.18 +/- 0.23, respectively. Similar values for RBE were obtained using changes in the activity of enzymes in spinal cord tissue (cyclic nucleotide phosphohydrolase and γ-glutamyl transpeptidase). Also, it was estimated that, for X irradiation, the fractional amount of dose repaired (at the ED 50 dose) was 0.64 +/- 0.10 (95% confidence limits). For carbon and neon ions in the plateau ionization region, the values for the fractional amount of dose repaired were 0.70 +/- 0.27 and 0.48 +/- 0.20, and for carbon and neon ions in the spread peak region of ionization, the fractional repair values were 0.40 +/- 0.10 and 0.52 +/- 0.17. Spinal cord tissue therefore shows a high capacity for subeffective damage repair

  17. Treatment with albumin-hydroxyoleic acid complex restores sensorimotor function in rats with spinal cord injury: Efficacy and gene expression regulation.

    Directory of Open Access Journals (Sweden)

    Gerardo Avila-Martin

    Full Text Available Sensorimotor dysfunction following incomplete spinal cord injury (SCI is often characterized by paralysis, spasticity and pain. Previously, we showed that intrathecal (i.t. administration of the albumin-oleic acid (A-OA complex in rats with SCI produced partial improvement of these symptoms and that oral 2-hydroxyoleic acid (HOA, a non-hydrolyzable OA analogue, was efficacious in the modulation and treatment of nociception and pain-related anxiety, respectively. Here we observed that intrathecal treatment with the complex albumin-HOA (A-HOA every 3 days following T9 spinal contusion injury improved locomotor function assessed with the Rotarod and inhibited TA noxious reflex activity in Wistar rats. To investigate the mechanism of action of A-HOA, microarray analysis was carried out in the spinal cord lesion area. Representative genes involved in pain and neuroregeneration were selected to validate the changes observed in the microarray analysis by quantitative real-time RT-PCR. Comparison of the expression between healthy rats, SCI rats, and SCI treated with A-HOA rats revealed relevant changes in the expression of genes associated with neuronal morphogenesis and growth, neuronal survival, pain and inflammation. Thus, treatment with A-HOA not only induced a significant overexpression of growth and differentiation factor 10 (GDF10, tenascin C (TNC, aspirin (ASPN and sushi-repeat-containing X-linked 2 (SRPX2, but also a significant reduction in the expression of prostaglandin E synthase (PTGES and phospholipases A1 and A2 (PLA1/2. Currently, SCI has very important unmet clinical needs. A-HOA downregulated genes involved with inflammation and upregulated genes involved in neuronal growth, and may serve to promote recovery of function after experimental SCI.

  18. Spinal Cord Tolerance in the Age of Spinal Radiosurgery: Lessons From Preclinical Studies

    International Nuclear Information System (INIS)

    Medin, Paul M.; Boike, Thomas P.

    2011-01-01

    Clinical implementation of spinal radiosurgery has increased rapidly in recent years, but little is known regarding human spinal cord tolerance to single-fraction irradiation. In contrast, preclinical studies in single-fraction spinal cord tolerance have been ongoing since the 1970s. The influences of field length, dose rate, inhomogeneous dose distributions, and reirradiation have all been investigated. This review summarizes literature regarding single-fraction spinal cord tolerance in preclinical models with an emphasis on practical clinical significance. The outcomes of studies that incorporate uniform irradiation are surprisingly consistent among multiple small- and large-animal models. Extensive investigation of inhomogeneous dose distributions in the rat has demonstrated a significant dose-volume effect while preliminary results from one pig study are contradictory. Preclinical spinal cord dose-volume studies indicate that dose distribution is more critical than the volume irradiated suggesting that neither dose-volume histogram analysis nor absolute volume constraints are effective in predicting complications. Reirradiation data are sparse, but results from guinea pig, rat, and pig studies are consistent with the hypothesis that the spinal cord possesses a large capacity for repair. The mechanisms behind the phenomena observed in spinal cord studies are not readily explained and the ability of dose response models to predict outcomes is variable underscoring the need for further investigation. Animal studies provide insight into the phenomena and mechanisms of radiosensitivity but the true significance of animal studies can only be discovered through clinical trials.

  19. Effects of bone marrow stromal cell transplantation through CSF on the subacute and chronic spinal cord injury in rats.

    Directory of Open Access Journals (Sweden)

    Norihiko Nakano

    Full Text Available It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs through the cerebrospinal fluid (CSF has beneficial effects on acute spinal cord injury (SCI in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury, and/or chronic (4-week post-injury SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0-3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle-injection subgroups, it increased only from 0.5-4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF.

  20. Effects of Bone Marrow Stromal Cell Transplantation through CSF on the Subacute and Chronic Spinal Cord Injury in Rats

    Science.gov (United States)

    Nakano, Norihiko; Nakai, Yoshiyasu; Seo, Tae-Beom; Homma, Tamami; Yamada, Yoshihiro; Ohta, Masayoshi; Suzuki, Yoshihisa; Nakatani, Toshio; Fukushima, Masanori; Hayashibe, Miki; Ide, Chizuka

    2013-01-01

    It has been demonstrated that the infusion of bone marrow stromal cells (BMSCs) through the cerebrospinal fluid (CSF) has beneficial effects on acute spinal cord injury (SCI) in rats. The present study examined whether BMSC infusion into the CSF is effective for subacute (1- and 2-week post-injury), and/or chronic (4-week post-injury) SCI in rats. The spinal cord was contused by dropping a weight at the thoracic 8-9 levels. BMSCs cultured from GFP-transgenic rats of the same strain were injected three times (once weekly) into the CSF through the fourth ventricle, beginning at 1, 2 and 4 weeks post-injury. At 4 weeks after initial injection, the average BBB score for locomotor assessment increased from 1.0–3.5 points before injection to 9.0-10.9 points in the BMSC-injection subgroups, while, in the PBS (vehicle)-injection subgroups, it increased only from 0.5–4.0 points before injection to 3.0-5.1 points. Numerous axons associated with Schwann cells extended longitudinally through the connective tissue matrices in the astrocyte-devoid lesion without being blocked at either the rostral or the caudal borders in the BMSC-injection subgroups. A small number of BMSCs were found to survive within the spinal cord lesion in SCI of the 1-week post-injury at 2 days of injection, but none at 7 days. No BMSCs were found in the spinal cord lesion at 2 days or at 7 days in the SCI of the 2-week and the 4-week post-injury groups. In an in vitro experiment, BMSC-injected CSF promoted the survival and the neurite extension of cultured neurons more effectively than did the PBS-injected CSF. These results indicate that BMSCs had beneficial effects on locomotor improvement as well as on axonal regeneration in both subacute and chronic SCI rats, and the results also suggest that BMSCs might function as neurotrophic sources via the CSF. PMID:24039961

  1. Distribution of calcium channel Ca(V)1.3 immunoreactivity in the rat spinal cord and brain stem.

    Science.gov (United States)

    Sukiasyan, N; Hultborn, H; Zhang, M

    2009-03-03

    The function of local networks in the CNS depends upon both the connectivity between neurons and their intrinsic properties. An intrinsic property of spinal motoneurons is the presence of persistent inward currents (PICs), which are mediated by non-inactivating calcium (mainly Ca(V)1.3) and/or sodium channels and serve to amplify neuronal input signals. It is of fundamental importance for the prediction of network function to determine the distribution of neurons possessing the ion channels that produce PICs. Although the distribution pattern of Ca(V)1.3 immunoreactivity (Ca(V)1.3-IR) has been studied in some specific central nervous regions in some species, so far no systematic investigations have been performed in both the rat spinal cord and brain stem. In the present study this issue was investigated by immunohistochemistry. The results indicated that the Ca(V)1.3-IR neurons were widely distributed across different parts of the spinal cord and the brain stem although with variable labeling intensities. In the spinal gray matter large neurons in the ventral horn (presumably motoneurons) tended to display higher levels of immunoreactivity than smaller neurons in the dorsal horn. In the white matter, a subset of glial cells labeled by an oligodendrocyte marker was also Ca(V)1.3-positive. In the brain stem, neurons in the motor nuclei appeared to have higher levels of immunoreactivity than those in the sensory nuclei. Moreover, a number of nuclei containing monoaminergic cells, for example the locus coeruleus, were also strongly immunoreactive. Ca(V)1.3-IR was consistently detected in the neuronal perikarya regardless of the neuronal type. However, in the large neurons in the spinal ventral horn and the cranial motor nuclei the Ca(V)1.3-IR was clearly detectable in first and second order dendrites. These results indicate that in the rat spinal cord and brain stem Ca(V)1.3 is probably a common calcium channel used by many kinds of neurons to facilitate the neuronal

  2. Curcumin attenuates morphine antinociceptive tolerance through suppressing up-regulation of spinal Toll-like receptor 4 in rats

    Directory of Open Access Journals (Sweden)

    Fei GAO

    2017-12-01

    Full Text Available Objective To investigate the effects of curcumin (Cur on activation of spinal Toll-like receptor 4 (TLR4 and on the chronic antinociceptive tolerance of morphine. Methods Sixty male Sprague-Dawley rats with successful intrathecal catheterization were randomly divided into four groups (n=15: saline (NS group; morphine (MOR group; curcumin (Cur group and morphine plus curcumin (MOR+Cur group. A morphine tolerance model of rats was induced by intrathecal injection of morphine 15μg, once a day for 7 consecutive days in MOR and MOR+Cur group; 100μg curcumin was administered intrathecally once a day for 7 consecutive days in Cur and MOR+Cur group, 10μl saline was administered intrathecally once a day for 7 consecutive days in NS group. The effect of curcumin intrathecal catheterization on morphine antinociceptive tolerance was explored by the tail flick latency (TFL method and mechanical withdrawal threshold (MWT, and then the maximum possible potential effect (MPE was calculated. The immunofluorescence staining method was applied to detect the effect of curcumin on the activation of lumbar spinal microglia. Real-time PCR and Western blotting were used to evaluate the effect of curcumin on the expression of mRNA and protein of spinal TLR4. Results The %MPE TFL and %MPE MWT increased significantly in MOR+Cur group than in MOR group (P0.05. The lumbar spinal microglia increased markedly and the expressions of polyclonal antibody IBA-1 and TLR4 were significantly up-regulated in MOR group than in NS group (P0.05. Conclusion Curcumin may attenuate chronic morphine antinociceptive tolerance through inhibiting spinal TLR4 up-regulation. DOI: 10.11855/j.issn.0577-7402.2017.12.06

  3. Spinal mechanism of micturition reflex inhibition by naftopidil in rats.

    Science.gov (United States)

    Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki

    2014-10-29

    We investigated the spinal mechanism through which naftopidil inhibits the micturition reflex by comparing the effects of noradrenaline and naftopidil in rats. The following were investigated: the influence of oral naftopidil on plasma monoamine and amino acid levels, the distribution of oral 14C-naftopidil, the effects of intravenous (IV) or intrathecal (IT) injection of noradrenaline or naftopidil on isovolumetric bladder contractions, amino acid levels in the lumbosacral spinal cord after IT noradrenaline or naftopidil, and the effects of IT naftopidil and strychnine and/or bicuculline on isovolumetric bladder contractions. Oral naftopidil decreased the plasma adrenaline level, while it increased the serotonin and glycine levels. After oral administration, 14C-naftopidil was detected in the spinal cord and cerebrum, as well as in plasma and the prostate gland. When the bladder volume was below the threshold for isovolumetric reflex contractions, IV (0.1mg) or IT (0.1μg) noradrenaline evoked bladder contractions, but IV (1mg) or IT (0.01-1μg) naftopidil did not. When the bladder volume was above the threshold for isovolumetric reflex contractions, IV or IT noradrenaline transiently abolished bladder contractions. IT noradrenaline decreased the levels of glycine and gamma-aminobutyric acid (GABA) in the lumbosacral cord, while IT naftopidil increased the GABA level. IT strychnine and/or bicuculline blocked the inhibitory effect of IT naftopidil on bladder contractions. Naftopidil inhibits the micturition reflex by blocking α1 receptors, as well as by the activation of serotonergic, glycinergic, and GABAergic neurons in the central nervous system. Copyright © 2014 Elsevier Inc. All rights reserved.

  4. Learning About Time Within the Spinal Cord II: Evidence that Temporal Regularity is Encoded by a Spinal Oscillator

    Directory of Open Access Journals (Sweden)

    Kuan Hsien Lee

    2016-02-01

    Full Text Available How a stimulus impacts spinal cord function depends upon temporal relations. When intermittent noxious stimulation (shock is applied and the interval between shock pulses is varied (unpredictable, it induces a lasting alteration that inhibits adaptive learning. If the same stimulus is applied in a temporally regular (predictable manner, the capacity to learn is preserved and a protective/restorative effect is engaged that counters the adverse effect of variable stimulation. Sensitivity to temporal relations implies a capacity to encode time. This study explores how spinal neurons discriminate variable and fixed spaced stimulation. Communication with the brain was blocked by means of a spinal transection and adaptive capacity was tested using an instrumental learning task. In this task, subjects must learn to maintain a hind limb in a flexed position to minimize shock exposure. To evaluate the possibility that a distinct class of afferent fibers provide a sensory cue for regularity, we manipulated the temporal relation between shocks given to two dermatomes (leg and tail. Evidence for timing emerged when the stimuli were applied in a coherent manner across dermatomes, implying that a central (spinal process detects regularity. Next, we show that fixed spaced stimulation has a restorative effect when half the physical stimuli are randomly omitted, as long as the stimuli remain in phase, suggesting that stimulus regularity is encoded by an internal oscillator Research suggests that the oscillator that drives the tempo of stepping depends upon neurons within the rostral lumbar (L1-L2 region. Disrupting communication with the L1-L2 tissue by means of a L3 transection eliminated the restorative effect of fixed spaced stimulation. Implications of the results for step training and rehabilitation after injury are discussed.

  5. Effect of a muscle relaxant, chlorphenesin carbamate, on the spinal neurons of rats.

    Science.gov (United States)

    Kurachi, M; Aihara, H

    1984-09-01

    The effects of chlorphenesin carbamate (CPC) and mephenesin on spinal neurons were investigated in spinal rats. CPC (50 mg/kg i.v.) inhibited the mono-(MSR) and poly-synaptic reflex (PSR), the latter being more susceptible than the former to CPC depression. Mephenesin also inhibited MSR and PSR, though the effects were short in duration. CPC had no effect on the dorsal root potential evoked by the stimulation of the dorsal root, while mephenesin reduced the dorsal root-dorsal root reflex. The excitability of motoneuron was reduced by the administration of CPC or mephenesin. The excitability of primary afferent terminal was unchanged by CPC, while it was inhibited by mephenesin. Neither CPC nor mephenesin influenced the field potential evoked by the dorsal root stimulation. Both CPC and mephenesin had no effect on the synaptic recovery. These results suggest that both CPC and mephenesin inhibit the firing of motoneurons by stabilizing the neuronal membrane, while mephenesin additionally suppresses the dorsal root reflex and the excitability of the primary afferent terminal. These inhibitory actions of CPC on spinal activities may contribute, at least partly, to its muscle relaxing action.

  6. Development of telmisartan in the therapy of spinal cord injury: pre-clinical study in rats

    Directory of Open Access Journals (Sweden)

    Lin CM

    2015-08-01

    Full Text Available Chien-Min Lin,1,* Jo-Ting Tsai,2,* Chen Kuei Chang,1 Juei-Tang Cheng,3 Jia-Wei Lin11Department of Neurosurgery, 2Department of Radiation Oncology, Shuang Ho Hospital-Taipei Medical University, 3Institute of Medical Science, College of Health Science, Chang Jung Christian University, Tainan City, Taiwan*These authors contributed equally to this workBackground: Decrease of peroxisome proliferator-activated receptors-δ (PPARδ expression has been observed after spinal cord injury (SCI. Increase of PPARδ may improve the damage in SCI. Telmisartan, the antihypertensive agent, has been mentioned to increase the expression of PPARδ. Thus, we are going to screen the effectiveness of telmisartan in SCI for the development of it in clinical application.Methods: In the present study, we used compressive SCI in rats. Telmisartan was then used to evaluate the influence in rats after SCI. Change in PPARδ expression was identified by Western blots. Also, behavioral tests were performed to check the recovery of damage.Results: Recovery of damage from SCI was observed in telmisartan-treated rats. Additionally, this action of telmisartan was inhibited by GSK0660 at the dose sufficient to block PPARδ. However, metformin at the dose enough to activate adenosine monophosphate-activated protein kinase failed to produce similar action as telmisartan. Thus, mediation of adenosine monophosphate-activated protein kinase in this action of telmisartan can be rule out. Moreover, telmisartan reversed the expressions of PPARδ in rats with SCI.Conclusion: The obtained data suggest that telmisartan can improve the damage of SCI in rats through an increase in PPARδ expression. Thus, telmisartan is useful to be developed as an agent in the therapy of SCI.Keywords: PPARδ, AMPK, spinal cord injury, angiotensin receptor blocker, metformin

  7. Distribution of networks generating and coordinating locomotor activity in the neonatal rat spinal cord in vitro: a lesion study

    DEFF Research Database (Denmark)

    Kjaerulff, O; Kiehn, O

    1996-01-01

    The isolated spinal cord of the newborn rat contains networks that are able to create a patterned motor output resembling normal locomotor movements. In this study, we sought to localize the regions of primary importance for rhythm and pattern generation using specific mechanical lesions. We used...... ventral root recordings to monitor neuronal activity and tested the ability of various isolated parts of the caudal thoraciclumbar cord to generate rhythmic bursting in a combination of 5-HT and NMDA. In addition, pathways mediating left/right and rostrocaudal burst alternation were localized. We found......, these pathways were distributed along the lumbar enlargement. Both lateral and ventral funiculi were sufficient to coordinate activity in the rostral and caudal regions. We conclude that the networks organizing locomotor-related activity in the spinal cord of the newborn rat are distributed....

  8. Exploring acute-to-chronic neuropathic pain in rats after contusion spinal cord injury.

    Science.gov (United States)

    Gaudet, Andrew D; Ayala, Monica T; Schleicher, Wolfgang E; Smith, Elana J; Bateman, Emily M; Maier, Steven F; Watkins, Linda R

    2017-09-01

    Spinal cord injury (SCI) causes chronic pain in 65% of individuals. Unfortunately, current pain management is inadequate for many SCI patients. Rodent models could help identify how SCI pain develops, explore new treatment strategies, and reveal whether acute post-SCI morphine worsens chronic pain. However, few studies explore or compare SCI-elicited neuropathic pain in rats. Here, we sought to determine how different clinically relevant contusion SCIs in male and female rats affect neuropathic pain, and whether acute morphine worsens later chronic SCI pain. First, female rats received sham surgery, or 150kDyn or 200kDyn midline T9 contusion SCI. These rats displayed modest mechanical allodynia and long-lasting thermal hyperalgesia. Next, a 150kDyn (1s dwell) midline contusion SCI was performed in male and female rats. Interestingly, males, but not females showed SCI-elicited mechanical allodynia; rats of both sexes had thermal hyperalgesia. In this model, acute morphine treatment had no significant effect on chronic neuropathic pain symptoms. Unilateral SCIs can also elicit neuropathic pain that could be exacerbated by morphine, so male rats received unilateral T13 contusion SCI (100kDyn). These rats exhibited significant, transient mechanical allodynia, but not thermal hyperalgesia. Acute morphine did not exacerbate chronic pain. Our data show that specific rat contusion SCI models cause neuropathic pain. Further, chronic neuropathic pain elicited by these contusion SCIs was not amplified by our course of early post-trauma morphine. Using clinically relevant rat models of SCI could help identify novel pain management strategies. Copyright © 2017 Elsevier Inc. All rights reserved.

  9. Central nociceptive sensitization vs. spinal cord training: Opposing forms of plasticity that dictate function after complete spinal cord injury

    Directory of Open Access Journals (Sweden)

    Adam R Ferguson

    2012-10-01

    Full Text Available The spinal cord demonstrates several forms of plasticity that resemble brain-dependent learning and memory. Among the most studied form of spinal plasticity is spinal memory for noxious (nociceptive stimulation. Numerous papers have described central pain as a spinally-stored memory that enhances future responses to cutaneous stimulation. This phenomenon, known as central sensitization, has broad relevance to a range of pathological conditions. Work from the spinal cord injury (SCI field indicates that the lumbar spinal cord demonstrates several other forms of plasticity, including formal learning and memory. After complete thoracic SCI, the lumbar spinal cord can be trained by delivering stimulation to the hindleg when the leg is extended. In the presence of this response-contingent stimulation the spinal cord rapidly learns to hold the leg in a flexed position, a centrally mediated effect that meets the formal criteria for instrumental (response-outcome learning. Instrumental flexion training produces a central change in spinal plasticity that enables future spinal learning on both the ipsilateral and contralateral leg. However, if stimulation is given in a response-independent manner, the spinal cord develops central maladaptive plasticity that undermines future spinal learning on both legs. The present paper tests for interactions between spinal cord training and central nociceptive sensitization after complete spinal cord transection. We found that spinal training alters future central sensitization by intradermal formalin (24 h post-training. Conversely intradermal formalin impaired future spinal learning (24 h post-injection. Because the NMDA receptor has been implicated in formalin-induced central sensitization, we tested whether pretreatment with NMDA affects spinal learning. We found intrathecal NMDA impaired learning in a dose-dependent fashion, and that this effect endures for at least 24h. These data provide strong evidence for an

  10. Boron neutron capture therapy: A guide to the understanding of the pathogenesis of late radiation damage to the rat spinal cord

    International Nuclear Information System (INIS)

    Morris, G.M.; Whitehouse, E.M.; Hopewell, J.W.; Coderre, J.A.; Micca, P.

    1994-01-01

    Before the commencement of new boron neutron capture therapy (BNCT) clinical trials in Europe and North America, detailed information on normal tissue tolerance is required. In this study, the pathologic effects of BNCT on the central nervous system (CNS) have been investigated using a rat spinal cord model. The neutron capture agent used was 10 B-enriched sodium mercaptoundecahydro-closo-dodecaborate (BSH), at a dosage of 100 mg/kg body weight. Rats were irradiated on the thermal beam at the Brookhaven Medical Research Reactor. The large spine of vertebra T 2 was used as the lower marker of the irradiation field. Rats were irradiated with thermal neutrons alone to a maximum physical absorbed dose of 11.4 Gy, or with thermal neutrons in combination with BSH, to maximum absorbed physical doses of 5.7 Gy to the CNS parenchyma and 33.7 Gy to the blood in the vasculature of the spinal cord. An additional group of rats was irradiated with 250 kVp X-rays to a single dose of 35 Gy. Spinal cord pathology was examined between 5 and 12 months after irradiation. The physical dose of radiation delivered to the CNS parenchyma, using thermal neutron irradiation in the presence of BSH, was a factor of two to three lower than that delivered to the vascular endothelium, and could not account for the level of damage observed in the parenchyma. The histopathological observations of the present study support the hypothesis that the blood vessels, and the endothelial cells in particular, are the critical target population responsible for the lesions seen in the spinal cord after BNCT type irradiation and by inference, after more conventional irradiation modalities such as photons or fast neutrons. 30 refs., 6 figs., 1 tab

  11. Anti-apoptotic effect of insulin in the control of cell death and neurologic deficit after acute spinal cord injury in rats.

    Science.gov (United States)

    Wu, Xing-Huo; Yang, Shu-Hua; Duan, De-Yu; Cheng, Heng-Hui; Bao, Yu-Ting; Zhang, Yukun

    2007-09-01

    Recent studies confirmed that the new cell survival signal pathway of Insulin-PI3K-Akt exerted cyto-protective actions involving anti-apoptosis. This study was undertaken to investigate the potential neuroprotective effects of insulin in the pathogenesis of spinal cord injury (SCI) and evaluate its therapeutic effects in adult rats. SCI was produced by extradural compression using modified Allen's stall with damage energy of 40 g-cm force. One group of rats was subjected to SCI in combination with the administration of recombinant human insulin dissolved in 50% glucose solution at the dose of 1 IU/kg day, for 7 days. At the same time, another group of rats was subjected to SCI in combination with the administration of an equal volume of sterile saline solution. Functional recovery was evaluated using open-field walking, inclined plane tests, and motor evoked potentials (MEPs) during the first 14 days post-trauma. Levels of protein for B-cell lymphoma/leukemia-2 gene (Bcl-2), Caspase-3, inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2) were quantified in the injured spinal cord by Western blot analysis. Neuronal apoptosis was detected by TUNEL, and spinal cord blood flow (SCBF) was measured by laser-Doppler flowmetry (LDF). Ultimately, the data established the effectiveness of insulin treatment in improving neurologic recovery, increasing the expression of anti-apoptotic bcl-2 proteins, inhibiting caspase-3 expression decreasing neuronal apoptosis, reducing the expression of proinflammatory cytokines iNOS and COX-2, and ameliorating microcirculation of injured spinal cord after moderate contusive SCI in rats. In sum, this study reported the beneficial effects of insulin in the treatment of SCI, with the suggestion that insulin should be considered as a potential therapeutic agent.

  12. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury

    Directory of Open Access Journals (Sweden)

    Westerdahl Ann-Charlotte

    2010-06-01

    Full Text Available Abstract Background Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Results Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. Conclusions This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper

  13. Transcriptional regulation of gene expression clusters in motor neurons following spinal cord injury.

    Science.gov (United States)

    Ryge, Jesper; Winther, Ole; Wienecke, Jacob; Sandelin, Albin; Westerdahl, Ann-Charlotte; Hultborn, Hans; Kiehn, Ole

    2010-06-09

    Spinal cord injury leads to neurological dysfunctions affecting the motor, sensory as well as the autonomic systems. Increased excitability of motor neurons has been implicated in injury-induced spasticity, where the reappearance of self-sustained plateau potentials in the absence of modulatory inputs from the brain correlates with the development of spasticity. Here we examine the dynamic transcriptional response of motor neurons to spinal cord injury as it evolves over time to unravel common gene expression patterns and their underlying regulatory mechanisms. For this we use a rat-tail-model with complete spinal cord transection causing injury-induced spasticity, where gene expression profiles are obtained from labeled motor neurons extracted with laser microdissection 0, 2, 7, 21 and 60 days post injury. Consensus clustering identifies 12 gene clusters with distinct time expression profiles. Analysis of these gene clusters identifies early immunological/inflammatory and late developmental responses as well as a regulation of genes relating to neuron excitability that support the development of motor neuron hyper-excitability and the reappearance of plateau potentials in the late phase of the injury response. Transcription factor motif analysis identifies differentially expressed transcription factors involved in the regulation of each gene cluster, shaping the expression of the identified biological processes and their associated genes underlying the changes in motor neuron excitability. This analysis provides important clues to the underlying mechanisms of transcriptional regulation responsible for the increased excitability observed in motor neurons in the late chronic phase of spinal cord injury suggesting alternative targets for treatment of spinal cord injury. Several transcription factors were identified as potential regulators of gene clusters containing elements related to motor neuron hyper-excitability, the manipulation of which potentially could be

  14. Output Properties of the Cortical Hindlimb Motor Area in Spinal Cord-Injured Rats.

    Science.gov (United States)

    Frost, Shawn B; Dunham, Caleb L; Barbay, Scott; Krizsan-Agbas, Dora; Winter, Michelle K; Guggenmos, David J; Nudo, Randolph J

    2015-11-01

    The purpose of this study was to examine neuronal activity levels in the hindlimb area of motor cortex following spinal cord injury (SCI) in rats and compare the results with measurements in normal rats. Fifteen male Fischer-344 rats received a 200 Kdyn contusion injury in the thoracic cord at level T9-T10. After a minimum of 4 weeks following SCI, intracortical microstimulation (ICMS) and single-unit recording techniques were used in both the forelimb and hindlimb motor areas (FLA, HLA) under ketamine anesthesia. Although movements could be evoked using ICMS in the forelimb area with relatively low current levels, no movements or electromyographical responses could be evoked from ICMS in the HLA in any of the injured rats. During the same procedure, electrophysiological recordings were obtained with a single-shank, 16-channel Michigan probe (Neuronexus) to monitor activity. Neural spikes were discriminated using principle component analysis. Neural activity (action potentials) was collected and digitized for a duration of 5 min. Despite the inability to evoke movement from stimulation of cortex, robust single-unit activity could be recorded reliably from hindlimb motor cortex in SCI rats. Activity in the motor cortex of SCI rats was significantly higher compared with uninjured rats, and increased in hindlimb and forelimb motor cortex by similar amounts. These results demonstrate that in a rat model of thoracic SCI, an increase in single-unit cortical activity can be reliably recorded for several weeks post-injury.

  15. Activation of TRPV1 by capsaicin induces functional Kinin B1 receptor in rat spinal cord microglia

    Directory of Open Access Journals (Sweden)

    Talbot Sébastien

    2012-01-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines and oxydative stress, which are enhanced by transient receptor potential vanilloid subtype 1 (TRPV1 activation. To examine the link between TRPV1 and B1R in inflammatory pain, this study aimed to determine the ability of TRPV1 to regulate microglial B1R expression in the spinal cord dorsal horn, and the underlying mechanism. Methods B1R expression (mRNA, protein and binding sites was measured in cervical, thoracic and lumbar spinal cord in response to TRPV1 activation by systemic capsaicin (1-50 mg/kg, s.c in rats pre-treated with TRPV1 antagonists (capsazepine or SB-366791, the antioxidant N-acetyl-L-cysteine (NAC, or vehicle. B1R function was assessed using a tail-flick test after intrathecal (i.t. injection of a selective B1R agonist (des-Arg9-BK, and its microglial localization was investigated by confocal microscopy with the selective fluorescent B1R agonist, [Nα-bodipy]-des-Arg9-BK. The effect of i.t. capsaicin (1 μg/site was also investigated. Results Capsaicin (10 to 50 mg/kg, s.c. enhanced time-dependently (0-24h B1R mRNA levels in the lumbar spinal cord; this effect was prevented by capsazepine (10 mg/kg, i.p.; 10 μg/site, i.t. and SB-366791 (1 mg/kg, i.p.; 30 μg/site, i.t.. Increases of B1R mRNA were correlated with IL-1β mRNA levels, and they were significantly less in cervical and thoracic spinal cord. Intrathecal capsaicin (1 μg/site also enhanced B1R mRNA in lumbar spinal cord. NAC (1 g/kg/d × 7 days prevented B1R up-regulation, superoxide anion production and NF-kB activation induced by capsaicin (15 mg/kg. Des-Arg9-BK (9.6 nmol/site, i.t. decreased by 25-30% the nociceptive threshold at 1 min post-injection in capsaicin-treated rats (10-50 mg/kg while it was without effect in control rats. Des-Arg9-BK-induced thermal hyperalgesia was blocked by capsazepine, SB-366791 and by antagonists/inhibitors of B1R (SSR240612, 10 mg/kg, p

  16. Heavy metals in the spinal cord of normal rats and of animals treated with chelating agents

    DEFF Research Database (Denmark)

    Schrøder, H D; Fjerdingstad, E; Danscher, G

    1978-01-01

    The amounts of zinc, copper, and lead in the rat spinal cord were determined by means of flameless atomic absorption spectrophotometry. Zinc was present in a concentration about 100 p.p.m. (dry weight), copper in a concentration about 5 p.p.m., and lead in slightly more than 1 p.p.m. Analysis of ...

  17. Exendin-4 Plays a Protective Role in a Rat Model of Spinal Cord Injury Through SERCA2

    Directory of Open Access Journals (Sweden)

    Zhonglei Sun

    2018-05-01

    Full Text Available Background/Aims: Current therapies for spinal cord injury (SCI have limited efficacy, and identifying a therapeutic target is a pressing need. Sarcoplasmic/endoplasmic reticulum Ca2+ ATPase 2 (SERCA2 plays an important role in regulating calcium homeostasis, which has been shown to inhibit apoptosis. Exendin-4 has been shown to inhibit the apoptosis of nerve cells in SCI, which can also improve SERCA2 expression. In this study, we sought to determine whether exendin-4 plays a protective role in a rat model of SCI via SERCA2. Methods: To investigate the effects of exendin-4 on SCI, a rat model of SCI was induced by a modified version of Allen’s method. Spinal cord tissue sections from rats and western blot analysis were used to examine SERCA2 expression after treatment with the long-acting glucagon-like peptide 1 receptor exendin-4 or the SERCA2 antagonist 5(6-carboxyfluorescein diacetate N-succinimidyl ester (CE. Locomotor function was evaluated using the Basso Beattie Bresnahan locomotor rating scale and slanting board test. Results: Cell apoptosis was increased with CE treatment and decreased with exendin-4 treatment. Upregulation of SERCA2 in female rats with SCI resulted in an improvement of motor function scores and histological changes. Conclusion: These findings suggest that exendin-4 plays a protective role in a rat model of SCI through SERCA2 via inhibition of apoptosis. Existing drugs targeting SERCA2 may be an effective therapeutic strategy for the treatment of SCI.

  18. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats

    Directory of Open Access Journals (Sweden)

    Olavo Biraghi Letaif

    2015-10-01

    Full Text Available OBJECTIVES:To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion.METHODS:In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day.RESULTS:The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers.CONCLUSIONS:Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  19. Effects of estrogen on functional and neurological recovery after spinal cord injury: An experimental study with rats.

    Science.gov (United States)

    Letaif, Olavo Biraghi; Cristante, Alexandre Fogaça; Barros Filho, Tarcísio Eloy Pessoa de; Ferreira, Ricardo; Santos, Gustavo Bispo dos; Rocha, Ivan Dias da; Marcon, Raphael Martus

    2015-10-01

    To evaluate the functional and histological effects of estrogen as a neuroprotective agent after a standard experimentally induced spinal cord lesion. In this experimental study, 20 male Wistar rats were divided into two groups: one group with rats undergoing spinal cord injury (SCI) at T10 and receiving estrogen therapy with 17-beta estradiol (4mg/kg) immediately following the injury and after the placement of skin sutures and a control group with rats only subjected to SCI. A moderate standard experimentally induced SCI was produced using a computerized device that dropped a weight on the rat's spine from a height of 12.5 mm. Functional recovery was verified with the Basso, Beattie and Bresnahan scale on the 2nd, 7th, 14th, 21st, 28th, 35th and 42nd days after injury and by quantifying the motor-evoked potential on the 42nd day after injury. Histopathological evaluation of the SCI area was performed after euthanasia on the 42nd day. The experimental group showed a significantly greater functional improvement from the 28th to the 42nd day of observation compared to the control group. The experimental group showed statistically significant improvements in the motor-evoked potential compared with the control group. The results of pathological histomorphometry evaluations showed a better neurological recovery in the experimental group, with respect to the proportion and diameter of the quantified nerve fibers. Estrogen administration provided benefits in neurological and functional motor recovery in rats with SCI beginning at the 28th day after injury.

  20. Evaluation of Purinergic Mechanism for the Treatment of Voiding Dysfunction: A Study in Conscious Spinal Cord-injured Rats

    Directory of Open Access Journals (Sweden)

    Shing-Hwa Lu

    2007-10-01

    Conclusion: These results indicate that purinergic mechanisms, presumably involving P2X3 or P2X2/3 receptors on bladder C-fiber afferent nerves, play an important role in the detrusor hyperreflexia that occurs after spinal cord injury in rats.

  1. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    Science.gov (United States)

    Sahin, Murat; Gullu, Huriye; Peker, Kemal; Sayar, Ilyas; Binici, Orhan; Yildiz, Huseyin

    2015-11-01

    The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg) was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  2. Real-time direct measurement of spinal cord blood flow at the site of compression: relationship between blood flow recovery and motor deficiency in spinal cord injury.

    Science.gov (United States)

    Hamamoto, Yuichiro; Ogata, Tadanori; Morino, Tadao; Hino, Masayuki; Yamamoto, Haruyasu

    2007-08-15

    An in vivo study to measure rat spinal cord blood flow in real-time at the site of compression using a newly developed device. To evaluate the change in thoracic spinal cord blood flow by compression force and to clarify the association between blood flow recovery and motor deficiency after a spinal cord compression injury. Until now, no real-time measurement of spinal cord blood flow at the site of compression has been conducted. In addition, it has not been clearly determined whether blood flow recovery is related to motor function after a spinal cord injury. Our blood flow measurement system was a combination of a noncontact type laser Doppler system and a spinal cord compression device. The rat thoracic spinal cord was exposed at the 11th vertebra and spinal cord blood flow at the site of compression was continuously measured before, during, and after the compression. The functioning of the animal's hind-limbs was evaluated by the Basso, Beattie and Bresnahan scoring scale and the frequency of voluntary standing. Histologic changes such as permeability of blood-spinal cord barrier, microglia proliferation, and apoptotic cell death were examined in compressed spinal cord tissue. The spinal blood flow decreased on each increase in the compression force. After applying a 5-g weight, the blood flow decreased to compression), while no significant difference was observed between the 20-minute ischemia group and the sham group. In the 20-minute ischemia group, the rats whose spinal cord blood flow recovery was incomplete showed significant motor function loss compared with rats that completely recovered blood flow. Extensive breakdown of blood-spinal cord barrier integrity and the following microglia proliferation and apoptotic cell death were detected in the 40-minute complete ischemia group. Duration of ischemia/compression and blood flow recovery of the spinal cord are important factors in the recovery of motor function after a spinal cord injury.

  3. Early application of tail nerve electrical stimulation-induced walking training promotes locomotor recovery in rats with spinal cord injury.

    Science.gov (United States)

    Zhang, S-X; Huang, F; Gates, M; Shen, X; Holmberg, E G

    2016-11-01

    This is a randomized controlled prospective trial with two parallel groups. The objective of this study was to determine whether early application of tail nerve electrical stimulation (TANES)-induced walking training can improve the locomotor function. This study was conducted in SCS Research Center in Colorado, USA. A contusion injury to spinal cord T10 was produced using the New York University impactor device with a 25 -mm height setting in female, adult Long-Evans rats. Injured rats were randomly divided into two groups (n=12 per group). One group was subjected to TANES-induced walking training 2 weeks post injury, and the other group, as control, received no TANES-induced walking training. Restorations of behavior and conduction were assessed using the Basso, Beattie and Bresnahan open-field rating scale, horizontal ladder rung walking test and electrophysiological test (Hoffmann reflex). Early application of TANES-induced walking training significantly improved the recovery of locomotor function and benefited the restoration of Hoffmann reflex. TANES-induced walking training is a useful method to promote locomotor recovery in rats with spinal cord injury.

  4. Nerve growth factor delivery by ultrasound-mediated nanobubble destruction as a treatment for acute spinal cord injury in rats

    Science.gov (United States)

    Song, Zhaojun; Wang, Zhigang; Shen, Jieliang; Xu, Shengxi; Hu, Zhenming

    2017-01-01

    Background Spinal cord injuries (SCIs) can cause severe disability or death. Treatment options include surgical intervention, drug therapy, and stem cell transplantation. However, the efficacy of these methods for functional recovery remains unsatisfactory. Purpose This study was conducted to explore the effect of ultrasound (US)-mediated destruction of poly(lactic-co-glycolic acid) (PLGA) nanobubbles (NBs) expressing nerve growth factor (NGF) (NGF/PLGA NBs) on nerve regeneration in rats following SCI. Materials and methods Adult male Sprague Dawley rats were randomly divided into four treatment groups after Allen hit models of SCI were established. The groups were normal saline (NS) group, NGF and NBs group, NGF and US group, and NGF/PLGA NBs and US group. Histological changes after SCI were observed by hematoxylin and eosin staining. Neuron viability was determined by Nissl staining. Terminal deoxynucleotidyl transferase-mediated dUTP-biotin nick end labeling staining was used to examine cell apoptosis. NGF gene and protein expressions were detected by quantitative reverse transcription polymerase chain reaction and Western blotting. Green fluorescent protein expression in the spinal cord was examined using an inverted fluorescence microscope. The recovery of neural function was determined using the Basso, Beattie, and Bresnahan test. Results NGF therapy using US-mediated NGF/PLGA NBs destruction significantly increased NGF expression, attenuated histological injury, decreased neuron loss, inhibited neuronal apoptosis in injured spinal cords, and increased BBB scores in rats with SCI. Conclusion US-mediated NGF/PLGA NBs destruction effectively transfects the NGF gene into target tissues and has a significant effect on the injured spinal cord. The combination of US irradiation and gene therapy through NGF/PLGA NBs holds great promise for the future of nanomedicine and the development of noninvasive treatment options for SCI and other diseases. PMID:28280337

  5. Recovery of colonic transit following extrinsic nerve damage in rats.

    Science.gov (United States)

    Ridolfi, Timothy J; Tong, Wei Dong; Kosinski, Lauren; Takahashi, Toku; Ludwig, Kirk A

    2011-06-01

    Injury to pelvic sympathetic and parasympathetic nerves from surgical and obstetrical trauma has long been cited as a cause for abnormal colorectal motility in humans. Using a rat model, acute transaction of these extrinsic nerves has been shown to effect colorectal motility. The aim of this study is to determine in a rat model how transection of these extrinsic nerves affects colonic transit over time. Eighty-two Sprague-Dawley rats underwent placement of a tunneled catheter into the proximal colon. Bilateral hypogastric, pelvic nerves (HGN and PN) or both were transected in 66 rats. The remaining 16 rats received a sham operation. Colonic transit was evaluated at postoperative days (PODs) 1, 3, and 7 by injecting and calculating the geometric center (GC) of the distribution of (51)Cr after 3 h of propagation. At POD 1, transection of PNs significantly delayed colonic transit (GC = 4.9, p < 0.05), while transection of HGNs (GC = 8.5, p < 0.05) or transection of both nerves (GC = 7.8, p < 0.05) significantly accelerated colonic transit, when compared with sham operation (GC = 6.0). A significant trend toward recovery was noted in both the HGN and PN transection groups at POD 7. Damage to the extrinsic sympathetic and/or parasympathetic PNs affects colonic transit acutely. These changes in large bowel motor function normalize over time implicating a compensatory mechanism within the bowel itself.

  6. Prognosis of patients with transected melanomas.

    Science.gov (United States)

    Martires, Kathryn J; Nandi, Tina; Honda, Kord; Cooper, Kevin D; Bordeaux, Jeremy S

    2013-04-01

    The management of melanoma is directly related to Breslow's depth. Biopsying melanomas in a fashion that transects the deep margin precludes an accurate measurement of the true depth. To examine the prognosis of melanomas transected along the deep margins, as well as cases where no residual melanoma was seen on re-excision after transection. Records from a cohort of patients at one institution were examined from 1996 through 2007. Patients were considered to have "transected" melanomas if tumor cells were present on the deep margin of the biopsy. Overall survival was determined. Seven hundred fourteen patients were examined. 171 (24%) of all melanomas were transected. 101(59%) of those lacked tumor cells on re-excision. Patients with transected melanomas were older (OR = 1.03, p < .001), and had higher Breslow's depths (OR = 1.21, p < .001) than those without transected tumors. Those with no residual melanoma after transection were younger (OR = 0.98, p = .010) and more likely to have no lymph node involvement (OR = 2.23, p = .037). Neither transection (p = .760), nor lack of residual melanoma on re-excision after transection (p = .793) influenced survival. A high number of melanomas are transected at diagnosis, many of which lack visible tumor. The original Breslow's depth of transected melanomas without residual tumor on re-excision accurately predicts survival and prognosis. © 2013 by the American Society for Dermatologic Surgery, Inc. Published by Wiley Periodicals, Inc.

  7. Role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrated rats.

    Science.gov (United States)

    Stone, A J; Copp, S W; Kaufman, M P

    2014-09-26

    Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide (EP) 2 or 4 receptors attenuated the exercise pressor reflex in decerebrated rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100 μg in 10 μl), a COX-2-specific inhibitor Celecoxib (100 μg in 10 μl), an EP2 antagonist PF-04418948 (10 μg in 10 μl), and an EP4 antagonist L-161,982 (4 μg in 10 μl) effectively attenuated the pressor responses to intrathecal injections of arachidonic acid (100 μg in 10 μl), EP2 agonist Butaprost (4 ng in 10 μl), and EP4 agonist TCS 2510 (6.25 μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hind limb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23 ± 5 mmHg, after Ketorolac 14 ± 5 mmHg; preflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.

  8. Role of spinal metabotropic glutamate receptor 5 in pudendal inhibition of the nociceptive bladder reflex in cats.

    Science.gov (United States)

    Reese, Jeremy N; Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-04-15

    This study examined the role of spinal metabotropic glutamate receptor 5 (mGluR5) in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in the inhibtion of this reflex by pudendal nerve stimulation (PNS). In α-chloralose-anesthetized cats after spinal cord transection at the T9/T10 level, intravesical infusion of 0.25% acetic acid irritated the bladder, activated nociceptive C-fiber afferents, and induced spinal reflex bladder contractions of low amplitude (reflexes were responsible for a major component of the contractions. This study shows that spinal mGluR5 plays an important role in the nociceptive C-fiber afferent-mediated spinal bladder reflex and in pudendal inhibition of this spinal reflex. Copyright © 2015 the American Physiological Society.

  9. Does the intrathecal propofol have a neuroprotective effect on spinal cord ischemia?

    Directory of Open Access Journals (Sweden)

    Murat Sahin

    2015-01-01

    Full Text Available The neuroprotective effects of propofol have been confirmed. However, it remains unclear whether intrathecal administration of propofol exhibits neuroprotective effects on spinal cord ischemia. At 1 hour prior to spinal cord ischemia, propofol (100 and 300 µg was intrathecally administered in rats with spinal cord ischemia. Propofol pre-treatment greatly improved rat pathological changes and neurological function deficits at 24 hours after spinal cord ischemia. These results suggest that intrathecal administration of propofol exhibits neuroprotective effects on spinal cord structural and functional damage caused by ischemia.

  10. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage.

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Vega-Alvarez, Sasha; Wang, He; Ouyang, Zheng; Shi, Riyi

    2014-04-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in spinal cord injury (SCI), mainly based on in vitro and ex vivo evidence. Here, we demonstrate an increase of acrolein up to 300%; the elevation lasted at least 2 weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health. © 2013 International Society for Neurochemistry.

  11. Agmatine inhibits nuclear factor-κB nuclear translocation in acute spinal cord compression injury rat model

    Directory of Open Access Journals (Sweden)

    Doaa M. Samy

    2016-09-01

    Full Text Available Secondary damage after acute spinal cord compression injury (SCCI exacerbates initial insult. Nuclear factor kappa-B (NF-κB-p65 activation is involved in SCCI deleterious effects. Agmatine (Agm showed neuroprotection against various CNS injuries. However, Agm impact on NF-κB signaling in acute SCCI remains to be investigated. The present study compared the effectiveness of Agm therapy and decompression laminectomy (DL in functional recovery, oxidative stress, inflammatory and apoptotic responses, and modulation of NF-κB activation in acute SCCI rat model. Rats were either sham-operated or subjected to SCCI at T8–9, using 2-Fr. catheter. SCCI rats were randomly treated with DL at T8–9, intraperitoneal Agm (100 mg/kg/day, combined (DL/Agm treatment or saline (n = 16/group. After 28-days of neurological follow-up, spinal cords were either subjected to biochemical measurement of oxidative stress and inflammatory markers or histopathology and immuno-histochemistry for NF-κB-p65 and caspase-3 expression (n = 8/group. Agm was comparable to DL in facilitating neurological functions recovery, reducing inflammation (TNF-α/interleukin-6, and apoptosis. Agm was distinctive in combating oxidative stress. Agm neuroprotective effects were paralleled with inhibition of NF-κB-p65 nuclear translocation. Combined pharmacological and surgical interventions were proved superior in functional recovery. In conclusion, present research suggested a new mechanism for Agm neuroprotection in rats SCCI through inhibition of NF-κB activation.

  12. Protective effects of two constituents of Chinese herbs on spinal motor neurons from embryonic rats with hypoxia injury.

    Science.gov (United States)

    Chen, Jian-Feng; Fan, Jian; Tian, Xiao-Wu; Tang, Tian-Si

    2012-01-01

    Neuroprotective agents are becoming significant tools in the repair of central nervous system injuries. In this study, we determined whether ginkgolides (Gin, extract of GinkgoBiloba) and Acanthopanax senticosus saponins (ASS, flavonoids extracted from Acanthopanax herbal preparations) have protective effects on rat spinal cords exposed to anoxia and we explored the mechanisms that underlie the protective effects. Spinal motor neurons (SMNs) from rat spinal cords were obtained and divided into five groups with 10 wells in each group. In control group, SMNs suffered no injury under normal oxygen; in hypoxia- inducible (HI) group, SMNs suffered injury from hypoxia; in Gin group, 37.5µg/ml Gin were used before 24 hrs of hypoxia; in ASS group, 50µg/ml ASS were used before 24 hrs of hypoxia;in glial cell-lined derived neurotrophic factor (GDNF) group, 0.1µg/ml GDNF were used before 24 hrs of hypoxia. Changes in morphology, neuron viability, and lactate dehydrogenase (LDH) release were observed. In addition, the expression of HIF-1α induced by hypoxia was measured. The neuronal viability in the Gin, ASS, and GDNF pretreated groups was higher than that in the HI group (P0.05). The quantity of LDH released in the three pretreated groups was lower than that in the HI group (Phypoxic neurons.

  13. Effects of aquaporin 4 and inward rectifier potassium channel 4.1 on medullospinal edema after methylprednisolone treatment to suppress acute spinal cord injury in rats.

    Science.gov (United States)

    Li, Ye; Hu, Haifeng; Liu, Jingchen; Zhu, Qingsan; Gu, Rui

    2018-02-01

    To investigate the effects of aquaporin 4 (AQP4) and inward rectifier potassium channel 4.1 (Kir4.1) on medullospinal edema after treatment with methylprednisolone (MP) to suppress acute spinal cord injury (ASCI) in rats. Sprague Dawley rats were randomly divided into control, sham, ASCI, and MP-treated ASCI groups. After the induction of ASCI, we injected 30 mg/kg MP via the tail vein at various time points. The Tarlov scoring method was applied to evaluate neurological symptoms, and the wet-dry weights method was applied to measure the water content of the spinal cord. The motor function score of the ASCI group was significantly lower than that of the sham group, and the spinal water content was significantly increased. In addition, the levels of AQP4 and Kir4.1 were significantly increased, as was their degree of coexpression. Compared with that in the ASCI group, the motor function score and the water content were significantly increased in the MP group; in addition, the expression and coexpression of AQP4 and Kir4.1 were significantly reduced. Methylprednisolone inhibited medullospinal edema in rats with acute spinal cord injury, possibly by reducing the coexpression of aquaporin 4 and Kir4.1 in medullospinal tissues.

  14. Angelica Sinensis attenuates inflammatory reaction in experimental rat models having spinal cord injury.

    Science.gov (United States)

    Xu, Jun; E, Xiao-Qiang; Liu, Hui-Yong; Tian, Jun; Yan, Jing-Long

    2015-01-01

    This study was aimed to evaluate the effect of Angelica Sinensis on experimental rat models in which spinal cord injury was induced by studying different factors. Different factors causing inflammation play a key role in pathophysiology of SCI. Here three groups of rats (n=15, each was used). These included a sham control group where only laminectomy was performed, SCI group where SCI was induced and AS/SCI group where although SCI was induced but Angelica Sinensis was also administered to study its effect and draw a comparison with control. The expression of I-kBα and NF-kB p65 was also studied using western blotting and after recording optical density (OD) values of western blots. MPO activity was used to measure the effect of 20 mg/kg Angelica Sinensis. The levels of proinflammatory cytokines TNF-α, IL-1β and IL-6 were also studied. As compared with SCI group and sham control it was observed that Angelica Sinensis significantly reduced the expression of I-kBα and NF-kB p65, (PSinensis in rat models can attenuate the secondary damage caused by SCI and thus help in controlling the pathology of SCI in rats.

  15. Transplants of Neurotrophin-Producing Autologous Fibroblasts Promote Recovery of Treadmill Stepping in the Acute, Sub-Chronic, and Chronic Spinal Cat.

    Science.gov (United States)

    Krupka, Alexander J; Fischer, Itzhak; Lemay, Michel A

    2017-05-15

    Adult cats show limited spontaneous locomotor capabilities following spinal transection, but recover treadmill stepping with body-weight-supported training. Delivery of neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and neurotrophic factor 3 (NT-3) can substitute for body-weight-supported training, and promotes a similar recovery in a shorter period of time. Autologous cell grafts would negate the need for the immunosuppressive agents currently used with most grafts, but have not shown functional benefits in incomplete spinal cord injury models and have never been tested in complete transection or chronic injury models. In this study, we explored the effects of autologous fibroblasts, prepared from the individual cats and modified to produce BDNF and NT-3, on the recovery of locomotion in acute, sub-chronic and chronic full-transection models of spinal injury. Fourteen female cats underwent complete spinal transection at T11/T12. Cats were separated into four groups: sham graft at the time of injury, and BDNF and NT-3 producing autologous fibroblasts grafted at the time of injury, 2 weeks after injury, or 6 weeks after injury. Kinematics were recorded 3 and 5 weeks after cell graft. Additional kinematic recordings were taken for some cats until 12 weeks post-graft. Eleven of 12 cats with neurotrophin-producing grafts recovered plantar weight-bearing stepping at treadmill speeds from 0.3 to 0.8 m/sec within 5 weeks of grafting, whereas control cats recovered poor quality stepping at low speeds only (≤ 0.4 m/sec). Further, kinematic measures in cats with grafts were closer to pre-transection values than those for controls, and recovery was maintained up to 12 weeks post-grafting. Our results show that not only are autologous neurotrophin-producing grafts effective at promoting recovery of locomotion, but that delayed delivery of neurotrophins does not diminish the therapeutic effect, and may improve outcome.

  16. Lentiviral-mediated targeted NF-kappaB blockade in dorsal spinal cord glia attenuates sciatic nerve injury-induced neuropathic pain in the rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor kappaB (NF-kappaB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-kappaB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-kappaB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-kappaB super- repressor IkappaBalpha resulted in an inhibition of the NF-kappaB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IkappaBalpha overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-kappaB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-kappaB pathway in the development of neuropathic pain after peripheral nerve injury.

  17. Glial TNFα in the spinal cord regulates neuropathic pain induced by HIV gp120 application in rats

    Directory of Open Access Journals (Sweden)

    Ouyang Handong

    2011-05-01

    Full Text Available Abstract Background HIV-associated sensory neuropathy (HIV-SN is one of the most common forms of peripheral neuropathy, affecting about 30% of people with acquired immune deficiency syndrome (AIDS. The symptoms of HIV-SN are dominated by neuropathic pain. Glia activation in the spinal cord has become an attractive target for attenuating chronic pain. This study will investigate the role of spinal TNFα released from glia in HIV-related neuropathic pain. Results Peripheral gp120 application into the rat sciatic nerve induced mechanical allodynia for more than 7 weeks, and upregulated the expression of spinal TNFα in the mRNA and the protein levels at 2 weeks after gp120 application. Spinal TNFα was colocalized with GFAP (a marker of astrocytes and Iba1 (a marker of microglia in immunostaining, suggesting that glia produce TNFα in the spinal cord in this model. Peripheral gp120 application also increased TNFα in the L4/5 DRG. Furthermore, intrathecal administration of TNFα siRNA or soluble TNF receptor reduced gp120 application-induced mechanical allodynia. Conclusions Our results indicate that TNFα in the spinal cord and the DRG are involved in neuropathic pain, following the peripheral HIV gp120 application, and that blockade of the glial product TNFα reverses neuropathic pain induced by HIV gp120 application.

  18. Ameliorating Role of Caffeic Acid Phenethyl Ester (CAPE Against Methotrexate-Induced Oxidative Stress in the Sciatic Nerve, Spinal Cord and Brain Stem Tissues of Rats

    Directory of Open Access Journals (Sweden)

    Ertuğrul Uzar

    2010-03-01

    Full Text Available OBJECTIVE: Methotrexate (MTX-associated neurotoxicity is an important clinical problem in cancer patients, but the mechanisms of MTX-induced neurotoxicity are not yet known exactly. The aims of this study were (1 to investigate the possible role of malondialdehyde (MDA, superoxide dismutase (SOD enzyme, glutathione peroxidase (GSH-Px and catalase (CAT in the pathogenesis of MTX-induced neurotoxicity and (2 to determine whether there is a putative protective effect of caffeic acid phenethyl ester (CAPE on MTX-induced neurotoxicity in the spinal cord, brainstem and sciatic nerve of rats. METHODS: A total of 19 adult Wistar male rats were divided into three experimental groups. Group I, control group; Group II, MTX-treated group; and Group III, MTX + CAPE-treated group. MTX was administered to the MTX and MTX + CAPE groups intraperitoneally (IP with a single dose of 20 mg/kg on the second day of the experiment. CAPE was administered to the MTX + CAPE group IP with a dose of 10 μmol/kg for 7 days. RESULTS: In the sciatic nerve and spinal cord tissue, CAT and GSH-Px activities were increased in the MTX group in comparison with the control group. CAPE treatment with MTX significantly decreased CAT and GSH-Px activities in the neuronal tissues of rats in comparison with the MTX group. In the spinal cord and brainstem tissues, SOD activity in the MTX group was decreased in comparison with the control group, but in the sciatic nerve, there was no significant difference. In the spinal cord and brainstem of rats, SOD activity was increased in the CAPE + MTX group when compared with the MTX group. The level of MDA was higher in the MTX group than in the control group. CAPE administration with MTX injection caused a significant decrease in MDA level when compared with the MTX group. CONCLUSION: These results reveal that MTX increases oxidative stress in the sciatic nerve, spinal cord and brainstem of rats and that CAPE has a preventive effect on the

  19. The role of prostaglandins in spinal transmission of the exercise pressor reflex in decerebrate rats

    Science.gov (United States)

    Stone, Audrey J.; Copp, Steven W.; Kaufman, Marc P.

    2014-01-01

    Previous studies found that prostaglandins in skeletal muscle play a role in evoking the exercise pressor reflex; however the role played by prostaglandins in the spinal transmission of the reflex is not known. We determined, therefore, whether or not spinal blockade of cyclooxygenase (COX) activity and/or spinal blockade of endoperoxide receptor (EP) 2 or EP4 receptors attenuated the exercise pressor reflex in decerebrate rats. We first established that intrathecal doses of a non-specific COX inhibitor Ketorolac (100ug in 10ul), a COX-2 specific inhibitor Celecoxib (100μg in 10μl), an EP2 antagonist PF-04418948 (10μg in 10μl), and an EP4 antagonist L-161,982 (4μg in 10μl) effectively attenuated the pressor responses to intrathecal injections of Arachidonic Acid (100μg in 10μl), EP2 agonist Butaprost (4ng in 10 μl), and EP4 agonist TCS 2510 (6.25μg in 2.5 μl), respectively. Once effective doses were established, we statically contracted the hindlimb before and after intrathecal injections of Ketorolac, Celecoxib, the EP2 antagonist and the EP4 antagonist. We found that Ketorolac significantly attenuated the pressor response to static contraction (before Ketorolac: 23±5 mmHg, after Ketorolac 14±5 mmHg; preflex, and that the spinal prostaglandins produced by this enzyme are most likely activating spinal EP4 receptors, but not EP2 receptors. PMID:25003710

  20. The effect of minocycline on the masticatory movements following the inferior alveolar nerve transection in freely moving rats

    Directory of Open Access Journals (Sweden)

    Mostafeezur Rahman

    2012-04-01

    Full Text Available Abstract Background To determine the effects of inferior alveolar nerve transection (IAN-X on masticatory movements in freely moving rats and to test if microglial cells in the trigeminal principal sensory nucleus (prV or motor nucleus (motV may be involved in modulation of mastication, the effects of microglial cell inhibitor minocycline (MC on masticatory jaw movements, microglia (Iba1 immunohistochemistry and the masticatory jaw movements and related masticatory muscle EMG activities were studied in IAN-X rats. Results The number of Iba1-immunoreactive (IR cells both in prV and motV was significantly larger in IAN-X rats compared with sham rats on day 3 after IAN-X. The intraperitoneal (i.p. administration of MC caused a significant reduction of the number of Iba1-IR cells both in prV and motV that was evident on day 14 after IAN-X. Furthermore, a significant reduction of the number of Iba1-IR cells could be observed in motV but not in prV after microinjection (m.i. of MC into the motV of IAN-X rats. The rats also exhibited a significant decrease in the head-withdrawal threshold on the side ipsilateral to the IAN-X compared to the threshold before IAN-X and it lasted to day 14. In addition, IAN-X markedly affected the ability to rat to carry out mastication. The number of complete masticatory sequences was significantly decreased. Furthermore, the total masticatory sequence time and food preparatory (PP period duration was significantly elongated in compared to sham rats. Although IAN-X significantly affected the total number of chewing cycles within the RC period of a masticatory sequence, it had no effect on the duration of the chewing cycles. On the other hand, systemic administration of MC (both i.p. and m.i. in IAN-X rats significantly improved decreased head-withdrawal threshold and the impaired masticatory jaw movements. Conclusions The present findings reveal that the strong modulation of masticatory jaw movements occurs following

  1. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    International Nuclear Information System (INIS)

    Rodrigues, L.P.; Iglesias, D.; Nicola, F.C.; Steffens, D.; Valentim, L.; Witczak, A.; Zanatta, G.; Achaval, M.; Pranke, P.; Netto, C.A.

    2011-01-01

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10 6 cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10 6 cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation

  2. Transplantation of mononuclear cells from human umbilical cord blood promotes functional recovery after traumatic spinal cord injury in Wistar rats

    Energy Technology Data Exchange (ETDEWEB)

    Rodrigues, L.P. [Programa de Pós-Graduação em Neurociências, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Iglesias, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Nicola, F.C. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Steffens, D. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Valentim, L.; Witczak, A.; Zanatta, G. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Achaval, M. [Departamento de Ciências Morfológicas, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Pranke, P. [Laboratório de Hematologia e Células-Tronco, Faculdade de Farmácia, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil); Netto, C.A. [Departamento de Bioquímica, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS (Brazil)

    2011-12-23

    Cell transplantation is a promising experimental treatment for spinal cord injury. The aim of the present study was to evaluate the efficacy of mononuclear cells from human umbilical cord blood in promoting functional recovery when transplanted after a contusion spinal cord injury. Female Wistar rats (12 weeks old) were submitted to spinal injury with a MASCIS impactor and divided into 4 groups: control, surgical control, spinal cord injury, and one cell-treated lesion group. Mononuclear cells from umbilical cord blood of human male neonates were transplanted in two experiments: a) 1 h after surgery, into the injury site at a concentration of 5 x 10{sup 6} cells diluted in 10 µL 0.9% NaCl (N = 8-10 per group); b) into the cisterna magna, 9 days after lesion at a concentration of 5 x 10{sup 6} cells diluted in 150 µL 0.9% NaCl (N = 12-14 per group). The transplanted animals were immunosuppressed with cyclosporin-A (10 mg/kg per day). The BBB scale was used to evaluate motor behavior and the injury site was analyzed with immunofluorescent markers to label human transplanted cells, oligodendrocytes, neurons, and astrocytes. Spinal cord injury rats had 25% loss of cord tissue and cell treatment did not affect lesion extension. Transplanted cells survived in the injured area for 6 weeks after the procedure and both transplanted groups showed better motor recovery than the untreated ones (P < 0.05). The transplantation of mononuclear cells from human umbilical cord blood promoted functional recovery with no evidence of cell differentiation.

  3. Human neural stem cell replacement therapy for amyotrophic lateral sclerosis by spinal transplantation.

    Directory of Open Access Journals (Sweden)

    Michael P Hefferan

    Full Text Available Mutation in the ubiquitously expressed cytoplasmic superoxide dismutase (SOD1 causes an inherited form of Amyotrophic Lateral Sclerosis (ALS. Mutant synthesis in motor neurons drives disease onset and early disease progression. Previous experimental studies have shown that spinal grafting of human fetal spinal neural stem cells (hNSCs into the lumbar spinal cord of SOD1(G93A rats leads to a moderate therapeutical effect as evidenced by local α-motoneuron sparing and extension of lifespan. The aim of the present study was to analyze the degree of therapeutical effect of hNSCs once grafted into the lumbar spinal ventral horn in presymptomatic immunosuppressed SOD1(G93A rats and to assess the presence and functional integrity of the descending motor system in symptomatic SOD1(G93A animals.Presymptomatic SOD1(G93A rats (60-65 days old received spinal lumbar injections of hNSCs. After cell grafting, disease onset, disease progression and lifespan were analyzed. In separate symptomatic SOD1(G93A rats, the presence and functional conductivity of descending motor tracts (corticospinal and rubrospinal was analyzed by spinal surface recording electrodes after electrical stimulation of the motor cortex. Silver impregnation of lumbar spinal cord sections and descending motor axon counting in plastic spinal cord sections were used to validate morphologically the integrity of descending motor tracts. Grafting of hNSCs into the lumbar spinal cord of SOD1(G93A rats protected α-motoneurons in the vicinity of grafted cells, provided transient functional improvement, but offered no protection to α-motoneuron pools distant from grafted lumbar segments. Analysis of motor-evoked potentials recorded from the thoracic spinal cord of symptomatic SOD1(G93A rats showed a near complete loss of descending motor tract conduction, corresponding to a significant (50-65% loss of large caliber descending motor axons.These data demonstrate that in order to achieve a more

  4. Effects of ghrelin and des-acyl ghrelin on neurogenesis of the rat fetal spinal cord

    International Nuclear Information System (INIS)

    Sato, Miho; Nakahara, Keiko; Goto, Shintaro; Kaiya, Hiroyuki; Miyazato, Mikiya; Date, Yukari; Nakazato, Masamitsu; Kangawa, Kenji; Murakami, Noboru

    2006-01-01

    Expressions of the growth hormone secretagogue receptor (GHS-R) mRNA and its protein were confirmed in rat fetal spinal cord tissues by RT-PCR and immunohistochemistry. In vitro, over 3 nM ghrelin and des-acyl ghrelin induced significant proliferation of primary cultured cells from the fetal spinal cord. The proliferating cells were then double-stained using antibodies against the neuronal precursor marker, nestin, and the cell proliferation marker, 5-bromo-2'-deoxyuridine (BrdU), and the nestin-positive cells were also found to be co-stained with antibody against GHS-R. Furthermore, binding studies using [ 125 I]des-acyl ghrelin indicated the presence of a specific binding site for des-acyl ghrelin, and confirmed that the binding was displaced with unlabeled des-acyl ghrelin or ghrelin. These results indicate that ghrelin and des-acyl ghrelin induce proliferation of neuronal precursor cells that is both dependent and independent of GHS-R, suggesting that both ghrelin and des-acyl ghrelin are involved in neurogenesis of the fetal spinal cord

  5. Cellular localization of kinin B1 receptor in the spinal cord of streptozotocin-diabetic rats with a fluorescent [Nα-Bodipy]-des-Arg9-bradykinin

    Directory of Open Access Journals (Sweden)

    Gaudreau Pierrette

    2009-03-01

    Full Text Available Abstract Background The kinin B1 receptor (B1R is upregulated by pro-inflammatory cytokines, bacterial endotoxins and hyperglycaemia-induced oxidative stress. In animal models of diabetes, it contributes to pain polyneuropathy. This study aims at defining the cellular localization of B1R in thoracic spinal cord of type 1 diabetic rats by confocal microscopy with the use of a fluorescent agonist, [Nα-Bodipy]-des-Arg9-BK (BdABK and selective antibodies. Methods Diabetes was induced by streptozotocin (STZ; 65 mg/kg, i.p.. Four days post-STZ treatment, B1R expression was confirmed by quantitative real-time PCR and autoradiography. The B1R selectivity of BdABK was determined by assessing its ability to displace B1R [125I]-HPP-desArg10-Hoe140 and B2R [125I]-HPP-Hoe 140 radioligands. The in vivo activity of BdABK was also evaluated on thermal hyperalgesia. Results B1R was increased by 18-fold (mRNA and 2.7-fold (binding sites in the thoracic spinal cord of STZ-treated rats when compared to control. BdABK failed to displace the B2R radioligand but displaced the B1R radioligand (IC50 = 5.3 nM. In comparison, IC50 values of B1R selective antagonist R-715 and B1R agonist des-Arg9-BK were 4.3 nM and 19 nM, respectively. Intraperitoneal BdABK and des-Arg9-BK elicited dose-dependent thermal hyperalgesia in STZ-treated rats but not in control rats. The B1R fluorescent agonist was co-localized with immunomarkers of microglia, astrocytes and sensory C fibers in the spinal cord of STZ-treated rats. Conclusion The induction and up-regulation of B1R in glial and sensory cells of the spinal cord in STZ-diabetic rats reinforce the idea that kinin B1R is an important target for drug development in pain processes.

  6. Assessment of the Neuroprotective Effects of Lavandula angustifolia Extract on the Contusive Model of Spinal Cord Injury in Wistar Rats

    Science.gov (United States)

    Kaka, Gholamreza; Yaghoobi, Kayvan; Davoodi, Shaghayegh; Hosseini, Seyed R.; Sadraie, Seyed H.; Mansouri, Korosh

    2016-01-01

    Introduction: Spinal cord injury (SCI) involves a primary trauma and secondary cellular processes that can lead to severe damage to the nervous system, resulting in long-term spinal deficits. At the cellular level, SCI causes astrogliosis, of which glial fibrillary acidic protein (GFAP) is a major index. Objective: The aim of this study was to investigate the neuroprotective effects of Lavandula angustifolia (Lav) on the repair of spinal cord injuries in Wistar rats. Materials and Methods: Forty-five female rats were randomly divided into six groups of seven rats each: the intact, sham, control (SCI), Lav 100, Lav 200, and Lav 400 groups. Every week after SCI onset, all animals were evaluated for behavior outcomes by the Basso, Beattie, and Bresnahan (BBB) score. H&E staining was performed to examine the lesions post-injury. GFAP expression was assessed for astrogliosis. Somatosensory evoked potential (SEP) testing was performed to detect the recovery of neural conduction. Results: BBB scores were significantly increased and delayed responses on sensory tests were significantly decreased in the Lav 200 and Lav 400 groups compared to the control group. The greatest decrease of GFAP was evident in the Lav 200 and Lav 400 groups. EMG results showed significant improvement in the hindlimbs in the Lav 200 and Lav 400 groups compared to the control group. Cavity areas significantly decreased and the number of ventral motor neurons significantly increased in the Lav 200 and Lav 400 groups. Conclusion: Lav at doses of 200 and 400 mg/kg can promote structural and functional recovery after SCI. The neuroprotective effects of L. angustifolia can lead to improvement in the contusive model of SCI in Wistar rats. PMID:26903793

  7. Gabapentin reduces CX3CL1 signaling and blocks spinal microglial activation in monoarthritic rats

    Directory of Open Access Journals (Sweden)

    Yang Jia-Le

    2012-05-01

    Full Text Available Abstract Background Spinal glia, particularly microglia and astrocytes, are of the utmost importance in the development and maintenance of chronic pain. A recent study from our laboratory revealed that gabapentin, a recommended first-line treatment for multiple neuropathic conditions, could also efficiently antagonize thermal hyperalgesia evoked by complete Freund's adjuvant (CFA-induced monoarthritis (MA. In the present study, we investigated whether the spinal glia are involved in the anti-hyperalgesic effect of gabapentin and how this event occurs. Results Unilateral intra-articular injection of CFA produced a robust activation of microglia and astrocytes. These cells exhibited large cell bodies, thick processes and increases in the ionized calcium binding adapter molecule 1 (Iba-1, a microglial marker or the glia fibrillary acidic protein (GFAP, an astrocytic marker. These cells also displayed immunoreactive signals, and an upregulation of the voltage-gated calcium channels (VGCCs α2/δ-1 subunit, CX3CL1 and CX3CR1 expression levels in the spinal cord. These changes were associated with the development of thermal hyperalgesia. Immunofluorescence staining showed that VGCC α2/δ-1 subunit, a proposed gabapentin target of action, was widely distributed in primary afferent fibers terminals and dorsal horn neurons. CX3CL1, a potential trigger to activate microglia, colocalized with VGCC α2/δ-1 subunits in the spinal dorsal horn. However, its receptor CX3CR1 was mainly expressed in the spinal microglia. Multiple intraperitoneal (i.p. gabapentin injections (100 mg/kg, once daily for 4 days with the first injection 60 min before intra-articular CFA suppressed the activation of spinal microglia, downregulated spinal VGCC α2/δ-1 subunits decreased CX3CL1 levels and blocked the development of thermal hyperalgesia in MA rats. Conclusions Here we provide the first evidence that gabapentin diminishes CX3CL1 signaling and spinal microglia

  8. Propofol promotes spinal cord injury repair by bone marrow mesenchymal stem cell transplantation

    OpenAIRE

    Zhou, Ya-jing; Liu, Jian-min; Wei, Shu-ming; Zhang, Yun-hao; Qu, Zhen-hua; Chen, Shu-bo

    2015-01-01

    Propofol is a neuroprotective anesthetic. Whether propofol can promote spinal cord injury repair by bone marrow mesenchymal stem cells remains poorly understood. We used rats to investigate spinal cord injury repair using bone marrow mesenchymal stem cell transplantation combined with propofol administration via the tail vein. Rat spinal cord injury was clearly alleviated; a large number of newborn non-myelinated and myelinated nerve fibers appeared in the spinal cord, the numbers of CM-Dil-l...

  9. Biomarkers for severity of spinal cord injury in the cerebrospinal fluid of rats.

    Directory of Open Access Journals (Sweden)

    Joanna M Lubieniecka

    Full Text Available One of the major challenges in management of spinal cord injury (SCI is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS analyses of cerebrospinal fluid (CSF collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage.

  10. Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats

    Science.gov (United States)

    Lubieniecka, Joanna M.; Streijger, Femke; Lee, Jae H. T.; Stoynov, Nikolay; Liu, Jie; Mottus, Randy; Pfeifer, Tom; Kwon, Brian K.; Coorssen, Jens R.; Foster, Leonard J.; Grigliatti, Thomas A.; Tetzlaff, Wolfram

    2011-01-01

    One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage. PMID:21559420

  11. Transcutaneous electrical nerve stimulation attenuates CFA-induced hyperalgesia and inhibits spinal ERK1/2-COX-2 pathway activation in rats.

    Science.gov (United States)

    Fang, Jun-Fan; Liang, Yi; Du, Jun-Ying; Fang, Jian-Qiao

    2013-06-15

    Transcutaneous electrical nerve stimulation (TENS) is a non-pharmacologic treatment for pain relief. In previous animal studies, TENS effectively alleviated Complete Freund's Adjuvant (CFA)- or carrageenan-induced inflammatory pain. Although TENS is known to produce analgesia via opioid activation in the brain and at the spinal level, few reports have investigated the signal transduction pathways mediated by TENS. Prior studies have verified the importance of the activation of extracellular signal-regulated kinase (ERK) signal transduction pathway in the spinal cord dorsal horn (SCDH) in acute and persistent inflammatory pains. Here, by using CFA rat model, we tested the efficacy of TENS on inhibiting the expressions of p-ERK1/2 and of its downstream cyclooxygenase-2 (COX-2) and the level of prostaglandin E2 (PGE2) at spinal level. Rats were randomly divided into control, model and TENS groups, and injected subcutaneously with 100 μl CFA or saline in the plantar surface of right hind paw. Rats in the TENS group were treated with TENS (constant aquare wave, 2 Hz and 100 Hz alternating frequencies, intensities ranging from 1 to 2 mA, lasting for 30 min each time) at 5 h and 24 h after injection. Paw withdrawal thresholds (PWTs) were measured with dynamic plantar aesthesiometer at 3d before modeling and 5 h, 6 h, and 25 h after CFA injection. The ipsilateral sides of the lumbar spinal cord dosral horns were harvested for detecting the expressions of p-ERK1/2 and COX-2 by western blot analysis and qPCR, and PGE2 by ELISA. CFA-induced periphery inflammation decreased PWTs and increased paw volume of rats. TENS treatment significantly alleviated mechanical hyperalgesia caused by CFA. However, no anti-inflammatory effect of TENS was observed. Expression of p-ERK1/2 protein and COX-2 mRNA was significantly up-regualted at 5 h and 6 h after CFA injection, while COX-2 and PGE2 protein level only increased at 6 h after modeling. Furthermore, the high expression of p-ERK1

  12. Morus alba L. Stem Extract Attenuates Pain and Articular Cartilage Damage in the Anterior Cruciate Ligament Transection-Induced Rat Model of Osteoarthritis.

    Science.gov (United States)

    Khunakornvichaya, Arada; Lekmeechai, Sujinna; Pham, Phi Phuong; Himakoun, Wanwisa; Pitaksuteepong, Tasana; Morales, Noppawan Phumala; Hemstapat, Warinkarn

    2016-01-01

    This study was designed to investigate the anti-nociceptive effect of Morus alba stem extract as well as its cartilage protective effect in the anterior cruciate ligament transection (ACLT)-induced rat model of osteoarthritis (OA). The anti-nociceptive effect of this plant extract was determined by measuring hind limb weight bearing, while the severity of cartilage damage to the knee joints was evaluated using the modified Mankin grading system. Oral administration of M. alba stem extract (56 and 560 mg/kg) significantly attenuated joint pain as indicated by a significant (p alba stem extract at 56 and 560 mg/kg when compared to those of the vehicle-treated OA-induced group. In addition, a significant improvement in the Mankin score was also observed in rats treated with 560 mg/kg M. alba stem extract, which was in agreement with its pain-relieving effect. The results showed that M. alba stem extract exhibited an anti-nociceptive effect as well as cartilage protection in the ACLT-induced rat model of OA, supporting its potential use as a therapeutic treatment for OA. © 2016 S. Karger AG, Basel.

  13. Radiation effects in the rat spinal cord: evaluation with apparent diffusion coefficient versus T2 at serial MR imaging.

    NARCIS (Netherlands)

    Philippens, M.E.P.; Gambarota, G.; Kogel, A.J. van der; Heerschap, A.

    2009-01-01

    PURPOSE: To prospectively determine whether apparent diffusion coefficients (ADCs) are more sensitive to radiation-induced changes in the rat spinal cord than T2 relaxation times. MATERIALS AND METHODS: The study was approved by the institutional ethical committee on animal welfare. One centimeter

  14. Nanofiber mat spinal cord dressing-released glutamate impairs blood-spinal cord barrier

    Directory of Open Access Journals (Sweden)

    Dorota Sulejczak

    2016-12-01

    Full Text Available An excessive glutamate level can result in excitotoxic damage and death of central nervous system (CNS cells, and is involved in the pathogenesis of many CNS diseases. It may also be related to a failure of the blood-spinal cord barrier (BSCB. This study was aimed at examining the effects of extended administration of monosodium glutamate on the BSCB and spinal cord cells in adult male Wistar rats. The glutamate was delivered by subarachnoidal application of glutamate-carrying electrospun nanofiber mat dressing at the lumbar enlargement level. Half of the rats with the glutamate-loaded mat application were treated systemically with the histone deacetylase inhibitor valproic acid. A group of intact rats and a rat group with subarachnoidal application of an ‘empty’ (i.e., carrying no glutamate nanofiber mat dressing served as controls. All the rats were euthanized three weeks later and lumbar fragments of their spinal cords were harvested for histological, immunohistochemical and ultrastructural studies. The samples from controls revealed normal parenchyma and BSCB morphology, whereas those from rats with the glutamate-loaded nanofiber mat dressing showed many intraparenchymal microhemorrhages of variable sizes. The capillaries in the vicinity of the glutamate-carrying dressing (in the meninges and white matter alike were edematous and leaky, and their endothelial cells showed degenerative changes: extensive swelling, enhanced vacuo­lization and the presence of vascular intraluminal projections. However, endothelial tight junctions were generally well preserved. Some endothelial cells were dying by necrosis or apoptosis. The adjacent parenchyma showed astrogliosis with astrocytic hypertrophy and swelling of perivascular astrocytic feet. Neurons in the parenchyma revealed multiple symptoms of degeneration, including, inter alia, perikaryal, dendritic and axonal swelling, and destruction of organelles. All the damage symptoms were slightly less

  15. Objective measures of motor dysfunction after compression spinal cord injury in adult rats: correlations with locomotor rating scores.

    Science.gov (United States)

    Semler, Joerg; Wellmann, Katharina; Wirth, Felicitas; Stein, Gregor; Angelova, Srebrina; Ashrafi, Mahak; Schempf, Greta; Ankerne, Janina; Ozsoy, Ozlem; Ozsoy, Umut; Schönau, Eckhard; Angelov, Doychin N; Irintchev, Andrey

    2011-07-01

    Precise assessment of motor deficits after traumatic spinal cord injury (SCI) in rodents is crucial for understanding the mechanisms of functional recovery and testing therapeutic approaches. Here we analyzed the applicability to a rat SCI model of an objective approach, the single-frame motion analysis, created and used for functional analysis in mice. Adult female Wistar rats were subjected to graded compression of the spinal cord. Recovery of locomotion was analyzed using video recordings of beam walking and inclined ladder climbing. Three out of four parameters used in mice appeared suitable: the foot-stepping angle (FSA) and the rump-height index (RHI), measured during beam walking, and for estimating paw placement and body weight support, respectively, and the number of correct ladder steps (CLS), assessing skilled limb movements. These parameters, similar to the Basso, Beattie, and Bresnahan (BBB) locomotor rating scores, correlated with lesion volume and showed significant differences between moderately and severely injured rats at 1-9 weeks after SCI. The beam parameters, but not CLS, correlated well with the BBB scores within ranges of poor and good locomotor abilities. FSA co-varied with RHI only in the severely impaired rats, while RHI and CLS were barely correlated. Our findings suggest that the numerical parameters estimate, as intended by design, predominantly different aspects of locomotion. The use of these objective measures combined with BBB rating provides a time- and cost-efficient opportunity for versatile and reliable functional evaluations in both severely and moderately impaired rats, combining clinical assessment with precise numerical measures.

  16. Spinal cord dopamine D2/D3 receptors: in vivo and ex vivo imaging in the rat using 18F/11C-fallypride

    International Nuclear Information System (INIS)

    Kaur, Jasmeet; Khararjian, Armen; Coleman, Robert A.; Constantinescu, Cristian C.; Pan, Min-Liang; Mukherjee, Jogeshwar

    2014-01-01

    Objectives: The spinal cord is known to be innervated with dopaminergic cells with catecholaminergic projections arising from the medulla and pons and dopaminergic transmission in the spinal cord is vital for sensory and motor function. Our goal was to evaluate and compare the imaging capability of dopamine D2/D3 receptors in the rat spinal cord using PET ligands 18 F-fallypride and 11 C-fallypride. Methods: Male Sprague–Dawley rats were used in all in vitro and in vivo studies. Spinal cord and brain sections were used for in vitro autoradiography and ex vivo autoradiography. For in vivo studies animals received a 18 F-fallypride scan or a 11 C-fallypride PET scan. The spinal cord and the brain were then harvested, flash-frozen and imaged ex vivo. For in vivo analysis Logan plots with cerebellum as a reference was used to evaluate binding potentials (BP). Tissue ratios were used for ex vivo analysis. Drug effects were evaluated using clozapine, haloperidol and dopamine were evaluated on spinal cord sections in vitro. Results: In vitro studies showed 18 F-fallypride binding to superficial dorsal horn (SDH), dorsal horn (DH), ventral horn (VH) and the pars centralis (PC). In the cervical section, the greatest amount of binding appeared to be in the SDH. Ex vivo studies showed approximately 6% of 18 F-fallypride in SDH compared to that observed in the striatum. In vivo analysis of both 18 F-fallypride and 11 C-fallypride in the spinal cord were comparable to that in the extrastriatal regions. Haloperidol and clozapine displaced more than 75% of the 18 F-fallypride in spinal cord sections. Conclusions: Our studies showed 18 F-fallypride and 11 C-fallypride binding in the spinal cord in vitro and in vivo. The binding pattern correlates well with the known distribution of dopamine D2/D3 receptors in the spinal cord

  17. Predicting Neuroinflammation in Morphine Tolerance for Tolerance Therapy from Immunostaining Images of Rat Spinal Cord.

    Directory of Open Access Journals (Sweden)

    Shinn-Long Lin

    Full Text Available Long-term morphine treatment leads to tolerance which attenuates analgesic effect and hampers clinical utilization. Recent studies have sought to reveal the mechanism of opioid receptors and neuroinflammation by observing morphological changes of cells in the rat spinal cord. This work proposes a high-content screening (HCS based computational method, HCS-Morph, for predicting neuroinflammation in morphine tolerance to facilitate the development of tolerance therapy using immunostaining images for astrocytes, microglia, and neurons in the spinal cord. HCS-Morph first extracts numerous HCS-based features of cellular phenotypes. Next, an inheritable bi-objective genetic algorithm is used to identify a minimal set of features by maximizing the prediction accuracy of neuroinflammation. Finally, a mathematic model using a support vector machine with the identified features is established to predict drug-treated images to assess the effects of tolerance therapy. The dataset consists of 15 saline controls (1 μl/h, 15 morphine-tolerant rats (15 μg/h, and 10 rats receiving a co-infusion of morphine (15 μg/h and gabapentin (15 μg/h, Sigma. The three individual models of astrocytes, microglia, and neurons for predicting neuroinflammation yielded respective Jackknife test accuracies of 96.67%, 90.00%, and 86.67% on the 30 rats, and respective independent test accuracies of 100%, 90%, and 60% on the 10 co-infused rats. The experimental results suggest that neuroinflammation activity expresses more predominantly in astrocytes and microglia than in neuron cells. The set of features for predicting neuroinflammation from images of astrocytes comprises mean cell intensity, total cell area, and second-order geometric moment (relating to cell distribution, relevant to cell communication, cell extension, and cell migration, respectively. The present investigation provides the first evidence for the role of gabapentin in the attenuation of morphine tolerance from

  18. Electroacupuncture and Acupuncture Promote the Rat’s Transected Median Nerve Regeneration

    OpenAIRE

    Ho, C. Y.; Yao, C. H.; Chen, W. C.; Shen, W. C.; Bau, D. T.

    2013-01-01

    Background. Acupuncture and electroacupuncture treatments of damaged nerves may aid nerve regeneration related to hindlimb function, but the effects on the forelimb-related median nerve were not known. Methods. A gap was made in the median nerve of each rat by suturing the stumps into silicone rubber tubes. The influences of acupuncture and electroacupuncture treatments on transected median nerve regeneration were evaluated from morphological, electrophysiological, and functional angles. Resu...

  19. Evidence for spinal N-methyl-d-aspartate receptor involvement in prolonged chemical nociception in the rat.

    Science.gov (United States)

    Haley, Jane E; Dickenson, Anthony H

    2016-08-15

    We used in vivo electrophysiology and a model of more persistent nociceptive inputs to monitor spinal cord neuronal activity in anaesthetised rats to reveal the pharmacology of enhanced pain signalling. The study showed that all responses were blocked by non-selective antagonism of glutamate receptors but a selective and preferential role of the N-methyl-d-aspartate (NMDA) receptor in the prolonged plastic responses was clearly seen. The work lead to many publications, initially preclinical but increasingly from patient studies, showing the importance of the NMDA receptor in central sensitisation within the spinal cord and how this could relate to persistent pain states. This article is part of a Special Issue entitled SI:50th Anniversary Issue. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Neural progenitor cells but not astrocytes respond distally to thoracic spinal cord injury in rat models

    Directory of Open Access Journals (Sweden)

    Tara Nguyen

    2017-01-01

    Full Text Available Traumatic spinal cord injury (SCI is a detrimental condition that causes loss of sensory and motor function in an individual. Many complex secondary injury cascades occur after SCI and they offer great potential for therapeutic targeting. In this study, we investigated the response of endogenous neural progenitor cells, astrocytes, and microglia to a localized thoracic SCI throughout the neuroaxis. Twenty-five adult female Sprague-Dawley rats underwent mild-contusion thoracic SCI (n = 9, sham surgery (n = 8, or no surgery (n = 8. Spinal cord and brain tissues were fixed and cut at six regions of the neuroaxis. Immunohistochemistry showed increased reactivity of neural progenitor cell marker nestin in the central canal at all levels of the spinal cord. Increased reactivity of astrocyte-specific marker glial fibrillary acidic protein was found only at the lesion epicenter. The number of activated microglia was significantly increased at the lesion site, and activated microglia extended to the lumbar enlargement. Phagocytic microglia and macrophages were significantly increased only at the lesion site. There were no changes in nestin, glial fibrillary acidic protein, microglia and macrophage response in the third ventricle of rats subjected to mild-contusion thoracic SCI compared to the sham surgery or no surgery. These findings indicate that neural progenitor cells, astrocytes and microglia respond differently to a localized SCI, presumably due to differences in inflammatory signaling. These different cellular responses may have implications in the way that neural progenitor cells can be manipulated for neuroregeneration after SCI. This needs to be further investigated.

  1. Lentiviral-mediated Targeted NF-κB Blockade in Dorsal Spinal Cord Glia Attenuates Sciatic Nerve Injury-induced Neuropathic Pain in the Rat.

    Science.gov (United States)

    Meunier, Alice; Latrémolière, Alban; Dominguez, Elisa; Mauborgne, Annie; Philippe, Stéphanie; Hamon, Michel; Mallet, Jacques; Benoliel, Jean-Jacques; Pohl, Michel

    2007-04-01

    Neuropathic pain developing after peripheral nerve injury is associated with altered neuronal and glial cell functions in the spinal cord. Activated glia produces algogenic mediators, exacerbating pain. Among the different intracellular pathways possibly involved in the modified glial function, the nuclear factor κB (NF-κB) system is of particular interest, as numerous genes encoding inflammation- and pain-related molecules are controlled by this transcription factor. NF-κB is a pleiotropic factor also involved in central nervous system homeostasy. To study its role in chronic pain, it is thus essential to inhibit the NF-κB pathway selectively in activated spinal glial cells. Here, we show that when restricted to spinal cord and targeted to glial cells, lentiviral vector-mediated delivery of NF-κB super- repressor IκBα resulted in an inhibition of the NF-κB pathway activated in the rat spinal cord after sciatic nerve injury (chronic constriction injury, CCI). Concomitantly, IκBα overproduction prevented the enhanced expression of interleukin-6 and of inducible nitric oxide synthase associated with chronic constriction injury and resulted in prolonged antihyperalgesic and antiallodynic effects. These data show that targeted blockade of NF-κB activity in spinal glia efficiently alleviates pain behavior in CCI rats, demonstrating the active participation of the glial NF-κB pathway in the development of neuropathic pain after peripheral nerve injury. Copyright © 2007 The American Society of Gene Therapy. Published by Elsevier Inc. All rights reserved.

  2. Mechanism of Restoration of Forelimb Motor Function after Cervical Spinal Cord Hemisection in Rats: Electrophysiological Verification

    Directory of Open Access Journals (Sweden)

    Takumi Takeuchi

    2017-01-01

    Full Text Available The objective of this study was to electrophysiologically assess the corticospinal tracts of adult rats and the recovery of motor function of their forelimbs after cervical cord hemisection. Of 39 adult rats used, compound muscle action potentials (CMAPs of the forelimbs of 15 rats were evaluated, before they received left C5 segmental hemisection of the spinal cord, by stimulating the pyramid of the medulla oblongata on one side using an exciting microelectrode. All 15 rats exhibited contralateral electrical activity, but their CMAPs disappeared after hemisection. The remaining 24 rats received hemisection first, and CMAPs of 12 rats were assessed over time to study their recovery time. All of them exhibited electrical activity of the forelimbs in 4 weeks after surgery. The remaining 12 rats received additional right C2 segmental hemisection, and variation of CMAPs between before and after surgery was examined. The right side of the 12 rats that received the additional hemisection exhibited no electrical activity in response to the stimulation of the pyramids on both sides. These results suggest that changes in path between the resected and healthy sides, activation of the ventral corticospinal tracts, and propriospinal neurons were involved in the recovery of motor function after cervical cord injury.

  3. Determination of Urine 3-HPMA, a Stable Acrolein Metabolite in a Rat Model of Spinal Cord Injury

    Science.gov (United States)

    Zheng, Lingxing; Park, Jonghyuck; Walls, Michael; Tully, Melissa; Jannasch, Amber; Cooper, Bruce

    2013-01-01

    Abstract Acrolein has been suggested to be involved in a variety of pathological conditions. The monitoring of acrolein is of significant importance in delineating the pathogenesis of various diseases. Aimed at overcoming the reactivity and volatility of acrolein, we describe a specific and stable metabolite of acrolein in urine, N-acetyl-S-3-hydroxypropylcysteine (3-HPMA), as a potential surrogate marker for acrolein quantification. Using the LC/MS/MS method, we demonstrated that 3-HPMA was significantly elevated in a dose-dependent manner when acrolein was injected into rats IP or directly into the spinal cord, but not when acrolein scavengers were co-incubated with acrolein solution. A nonlinear mathematic relationship is established between acrolein injected directly into the spinal cord and a correlated dose-dependent increase of 3-HPMA, suggesting the increase of 3-HPMA becomes less apparent as the level of injected acrolein increases. The elevation of 3-HPMA was further detected in the rat spinal cord injury, a pathological condition known to be associated with elevated endogenous acrolein. This finding was further validated by concomitant confirmation of increased acrolein-lysine adducts using established dot immunoblotting techniques. The noninvasive nature of measuring 3-HPMA concentrations in urine allows for long-term monitoring of acrolein in the same animal and ultimately in human clinical studies. Due to wide spread involvement of acrolein in human health, the benefits of this study have the potential to enhance human health significantly. PMID:23697633

  4. The effects of local insulin application to lumbar spinal fusions in a rat model.

    Science.gov (United States)

    Koerner, John D; Yalamanchili, Praveen; Munoz, William; Uko, Linda; Chaudhary, Saad B; Lin, Sheldon S; Vives, Michael J

    2013-01-01

    The rates of pseudoarthrosis after a single-level spinal fusion have been reported up to 35%, and the agents that increase the rate of fusion have an important role in decreasing pseudoarthrosis after spinal fusion. Previous studies have analyzed the effects of local insulin application to an autograft in a rat segmental defect model. Defects treated with a time-released insulin implant had significantly more new bone formation and greater quality of bone compared with controls based on histology and histomorphometry. A time-released insulin implant may have similar effects when applied in a lumbar spinal fusion model. This study analyzes the effects of a local time-released insulin implant applied to the fusion bed in a rat posterolateral lumbar spinal fusion model. Our hypothesis was twofold: first, a time-released insulin implant applied to the autograft bed in a rat posterolateral lumbar fusion will increase the rate of successful fusion and second, will alter the local environment of the fusion site by increasing the levels of local growth factors. Animal model (Institutional Animal Care and Use Committee approved) using 40 adult male Sprague-Dawley rats. Forty skeletally mature Sprague-Dawley rats weighing approximately 500 g each underwent posterolateral intertransverse lumbar fusions with iliac crest autograft from L4 to L5 using a Wiltse-type approach. After exposure of the transverse processes and high-speed burr decortication, a Linplant (Linshin Canada, Inc., ON, Canada) consisting of 95% microrecrystalized palmitic acid and 5% bovine insulin (experimental group) or a sham implant consisting of only palmitic acid (control group) was implanted on the fusion bed with iliac crest autograft. As per the manufacturer, the Linplant has a release rate of 2 U/day for a minimum of 40 days. The transverse processes and autograft beds of 10 animals from the experimental and 10 from the control group were harvested at Day 4 and analyzed for growth factors. The

  5. 5-HT2 and 5-HT7 receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons

    Directory of Open Access Journals (Sweden)

    Urszula eSlawinska

    2014-08-01

    Full Text Available There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-OHDPAT (acting on 5-HT1A/7 receptors and quipazine (acting on 5-HT2 receptors, to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor CPG. Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the locomotor activation.

  6. Hydrogen sulfide inhibits opioid withdrawal-induced pain sensitization in rats by down-regulation of spinal calcitonin gene-related peptide expression in the spine.

    Science.gov (United States)

    Yang, Hai-Yu; Wu, Zhi-Yuan; Bian, Jin-Song

    2014-09-01

    Hyperalgesia often occurs in opioid-induced withdrawal syndrome. In the present study, we found that three hourly injections of DAMGO (a μ-opioid receptor agonist) followed by naloxone administration at the fourth hour significantly decreased rat paw nociceptive threshold, indicating the induction of withdrawal hyperalgesia. Application of NaHS (a hydrogen sulfide donor) together with each injection of DAMGO attenuated naloxone-precipitated withdrawal hyperalgesia. RT-PCR and Western blot analysis showed that NaHS significantly reversed the gene and protein expression of up-regulated spinal calcitonin gene-related peptide (CGRP) in naloxone-treated animals. NaHS also inhibited naloxone-induced cAMP rebound and cAMP response element-binding protein (CREB) phosphorylation in rat spinal cord. In SH-SY5Y neuronal cells, NaHS inhibited forskolin-stimulated cAMP production and adenylate cyclase (AC) activity. Moreover, NaHS pre-treatment suppressed naloxone-stimulated activation of protein kinase C (PKC) α, Raf-1, and extracellular signal-regulated kinase (ERK) 1/2 in rat spinal cord. Our data suggest that H2S prevents the development of opioid withdrawal-induced hyperalgesia via suppression of synthesis of CGRP in spine through inhibition of AC/cAMP and PKC/Raf-1/ERK pathways.

  7. Comparison of histopathologic changes following X-irradiation of mid-thoracic and lumbosacral levels of neonatal rat spinal cord

    International Nuclear Information System (INIS)

    Heard, J.K.; Gilmore, S.A.

    1985-01-01

    Light microscopic changes were studied in the dorsal funiculi of spinal cords from rats irradiated (4000 R) at 3 days of age and killed from 9-60 days postirradiation (P-I). The irradiated site was limited to a 5-mm length of mid-thoracic spinal cord (T only) in one group of rats, to a 5-mm length of lumbosacral spinal cord (L only) in a second group, and to 5-mm lengths of both mid-thoracic and lumbosacral spinal cord (T/L) in the third group. Changes in the lumbosacral regions were essentially the same in both L only and T/L irradiated groups. These changes included a decreased neuroglial population and a concurrent state of hypomyelination from 9-30 days P-I. In contrast, in the mid-thoracic regions of T only and T/L irradiated groups the decrease in the neuroglial population was obvious only through 13 days P-I, and by 30 days this population resembled that of the controls. The irradiated mid-thoracic areas were hypomyelinated, with the fasciculus gracilis showing a greater degree of hypomyelination than the fasciculus cuneatus. By 25 days P-I, myelination appeared to be normal in these areas. Scattered hemorrhages were noted in both lumbosacral and mid-thoracic regions, but necrotic areas occurred only at the lumbosacral level. In general, the mid-thoracic area appeared to be less sensitive to x-radiation at 3 days of age than the lumbosacral area. These data suggest that there may be marked differences in the developmental states of cells at these two levels at 3 days of age

  8. Potent spinal parenchymal AAV9-mediated gene delivery by subpial injection in adult rats and pigs

    Directory of Open Access Journals (Sweden)

    Atsushi Miyanohara

    2016-01-01

    Full Text Available Effective in vivo use of adeno-associated virus (AAV-based vectors to achieve gene-specific silencing or upregulation in the central nervous system has been limited by the inability to provide more than limited deep parenchymal expression in adult animals using delivery routes with the most clinical relevance (intravenous or intrathecal. Here, we demonstrate that the spinal pia membrane represents the primary barrier limiting effective AAV9 penetration into the spinal parenchyma after intrathecal AAV9 delivery. We develop a novel subpial AAV9 delivery technique and AAV9-dextran formulation. We use these in adult rats and pigs to show (i potent spinal parenchymal transgene expression in white and gray matter including neurons, glial and endothelial cells after single bolus subpial AAV9 delivery; (ii delivery to almost all apparent descending motor axons throughout the length of the spinal cord after cervical or thoracic subpial AAV9 injection; (iii potent retrograde transgene expression in brain motor centers (motor cortex and brain stem; and (iv the relative safety of this approach by defining normal neurological function for up to 6 months after AAV9 delivery. Thus, subpial delivery of AAV9 enables gene-based therapies with a wide range of potential experimental and clinical utilizations in adult animals and human patients.

  9. 5-HT₂ and 5-HT₇ receptor agonists facilitate plantar stepping in chronic spinal rats through actions on different populations of spinal neurons.

    Science.gov (United States)

    Sławińska, Urszula; Miazga, Krzysztof; Jordan, Larry M

    2014-01-01

    There is considerable evidence from research in neonatal and adult rat and mouse preparations to warrant the conclusion that activation of 5-HT2 and 5-HT1A/7 receptors leads to activation of the spinal cord circuitry for locomotion. These receptors are involved in control of locomotor movements, but it is not clear how they are implicated in the responses to 5-HT agonists observed after spinal cord injury. Here we used agonists that are efficient in promoting locomotor recovery in paraplegic rats, 8-hydroxy-2-(di-n-propylamino)-tetralin (8-OHDPAT) (acting on 5-HT1A/7 receptors) and quipazine (acting on 5-HT2 receptors), to examine this issue. Analysis of intra- and interlimb coordination confirmed that the locomotor performance was significantly improved by either drug, but the data revealed marked differences in their mode of action. Interlimb coordination was significantly better after 8-OHDPAT application, and the activity of the extensor soleus muscle was significantly longer during the stance phase of locomotor movements enhanced by quipazine. Our results show that activation of both receptors facilitates locomotion, but their effects are likely exerted on different populations of spinal neurons. Activation of 5-HT2 receptors facilitates the output stage of the locomotor system, in part by directly activating motoneurons, and also through activation of interneurons of the locomotor central pattern generator (CPG). Activation of 5-HT7/1A receptors facilitates the activity of the locomotor CPG, without direct actions on the output components of the locomotor system, including motoneurons. Although our findings show that the combined use of these two drugs results in production of well-coordinated weight supported locomotion with a reduced need for exteroceptive stimulation, they also indicate that there might be some limitations to the utility of combined treatment. Sensory feedback and some intraspinal circuitry recruited by the drugs can conflict with the

  10. Effect of electroacupuncture on the mRNA and protein expression of Rho-A and Rho-associated kinase II in spinal cord injury rats

    Directory of Open Access Journals (Sweden)

    You-jiang Min

    2017-01-01

    Full Text Available Electroacupuncture is beneficial for the recovery of spinal cord injury, but the underlying mechanism is unclear. The Rho/Rho-associated kinase (ROCK signaling pathway regulates the actin cytoskeleton by controlling the adhesive and migratory behaviors of cells that could inhibit neurite regrowth after neural injury and consequently hinder the recovery from spinal cord injury. Therefore, we hypothesized electroacupuncture could affect the Rho/ROCK signaling pathway to promote the recovery of spinal cord injury. In our experiments, the spinal cord injury in adult Sprague-Dawley rats was caused by an impact device. Those rats were subjected to electroacupuncture at Yaoyangguan (GV3, Dazhui (GV14, Zusanli (ST36 and Ciliao (BL32 and/or monosialoganglioside treatment. Behavioral scores revealed that the hindlimb motor functions improved with those treatments. Real-time quantitative polymerase chain reaction, fluorescence in situ hybridization and western blot assay showed that electroacupuncture suppressed the mRNA and protein expression of Rho-A and Rho-associated kinase II (ROCKII of injured spinal cord. Although monosialoganglioside promoted the recovery of hindlimb motor function, monosialoganglioside did not affect the expression of Rho-A and ROCKII. However, electroacupuncture combined with monosialoganglioside did not further improve the motor function or suppress the expression of Rho-A and ROCKII. Our data suggested that the electroacupuncture could specifically inhibit the activation of the Rho/ROCK signaling pathway thus partially contributing to the repair of injured spinal cord. Monosialoganglioside could promote the motor function but did not suppress expression of RhoA and ROCKII. There was no synergistic effect of electroacupuncture combined with monosialoganglioside.

  11. Serotonin(2) receptors mediate respiratory recovery after cervical spinal cord hemisection in adult rats.

    Science.gov (United States)

    Zhou, S Y; Basura, G J; Goshgarian, H G

    2001-12-01

    The aim of the present study was to specifically investigate the involvement of serotonin [5-hydroxytryptamine (5-HT(2))] receptors in 5-HT-mediated respiratory recovery after cervical hemisection. Experiments were conducted on C(2) spinal cord-hemisected, anesthetized (chloral hydrate, 400 mg/kg ip), vagotomized, pancuronium- paralyzed, and artificially ventilated female Sprague-Dawley rats in which CO(2) levels were monitored and maintained. Twenty-four hours after spinal hemisection, the ipsilateral phrenic nerve displayed no respiratory-related activity indicative of a functionally complete hemisection. Intravenous administration of the 5-HT(2A/2C)-receptor agonist (+/-)-2,5-dimethoxy-4-iodoamphetamine hydrochloride (DOI) induced respiratory-related activity in the phrenic nerve ipsilateral to hemisection under conditions in which CO(2) was maintained at constant levels and augmented the activity induced under conditions of hypercapnia. The effects of DOI were found to be dose dependent, and the recovery of activity could be maintained for up to 2 h after a single injection. DOI-induced recovery was attenuated by the 5-HT(2)-receptor antagonist ketanserin but not with the 5-HT(2C)-receptor antagonist RS-102221, suggesting that 5-HT(2A) and not necessarily 5-HT(2C) receptors may be involved in the induction of respiratory recovery after cervical spinal cord injury.

  12. Magnetic resonance imaging-guided focused ultrasound to increase localized blood-spinal cord barrier permeability.

    Science.gov (United States)

    Payne, Allison H; Hawryluk, Gregory W; Anzai, Yoshimi; Odéen, Henrik; Ostlie, Megan A; Reichert, Ethan C; Stump, Amanda J; Minoshima, Satoshi; Cross, Donna J

    2017-12-01

    Spinal cord injury (SCI) affects thousands of people every year in the USA, and most patients are left with some permanent paralysis. Therapeutic options are limited and only modestly affect outcome. To address this issue, we used magnetic resonance imaging-guided focused ultrasound (MRgFUS) as a non-invasive approach to increase permeability in the blood-spinal cord barrier (BSCB). We hypothesize that localized, controlled sonoporation of the BSCB by MRgFUS will aid delivery of therapeutics to the injury. Here, we report our preliminary findings for the ability of MRgFUS to increase BSCB permeability in the thoracic spinal cord of a normal rat model. First, an excised portion of normal rat spinal column was used to characterize the acoustic field and to estimate the insertion losses that could be expected in an MRgFUS blood spinal cord barrier opening. Then, in normal rats, MRgFUS was applied in combination with intravenously administered microbubbles to the spinal cord region. Permeability of the BSCB was indicated as signal enhancement by contrast administered prior to T1-weighted magnetic resonance imaging and verified by Evans blue dye. Neurological testing using the Basso, Beattie, and Breshnahan scale and the ladder walk was normal in 8 of 10 rats tested. Two rats showed minor impairment indicating need for further refinement of parameters. No gross tissue damage was evident by histology. In this study, we have opened successfully the blood spinal cord barrier in the thoracic region of the normal rat spine using magnetic resonance-guided focused ultrasound combined with microbubbles.

  13. Development of protective autoimmunity by immunization with a neural-derived peptide is ineffective in severe spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Susana Martiñón

    Full Text Available Protective autoimmunity (PA is a physiological response to central nervous system trauma that has demonstrated to promote neuroprotection after spinal cord injury (SCI. To reach its beneficial effect, PA should be boosted by immunizing with neural constituents or neural-derived peptides such as A91. Immunizing with A91 has shown to promote neuroprotection after SCI and its use has proven to be feasible in a clinical setting. The broad applications of neural-derived peptides make it important to determine the main features of this anti-A91 response. For this purpose, adult Sprague-Dawley rats were subjected to a spinal cord contusion (SCC; moderate or severe or a spinal cord transection (SCT; complete or incomplete. Immediately after injury, animals were immunized with PBS or A91. Motor recovery, T cell-specific response against A91 and the levels of IL-4, IFN-γ and brain-derived neurotrophic factor (BDNF released by A91-specific T (T(A91 cells were evaluated. Rats with moderate SCC, presented a better motor recovery after A91 immunization. Animals with moderate SCC or incomplete SCT showed significant T cell proliferation against A91 that was characterized chiefly by the predominant production of IL-4 and the release of BDNF. In contrast, immunization with A91 did not promote a better motor recovery in animals with severe SCC or complete SCT. In fact, T cell proliferation against A91 was diminished in these animals. The present results suggest that the effective development of PA and, consequently, the beneficial effects of immunizing with A91 significantly depend on the severity of SCI. This could mainly be attributed to the lack of T(A91 cells which predominantly showed to have a Th2 phenotype capable of producing BDNF, further promoting neuroprotection.

  14. Shrinkage of ipsilateral taste buds and hyperplasia of contralateral taste buds following chorda tympani nerve transection

    OpenAIRE

    Li, Yi-ke; Yang, Juan-mei; Huang, Yi-bo; Ren, Dong-dong; Chi, Fang-lu

    2015-01-01

    The morphological changes that occur in the taste buds after denervation are not well understood in rats, especially in the contralateral tongue epithelium. In this study, we investigated the time course of morphological changes in the taste buds following unilateral nerve transection. The role of the trigeminal component of the lingual nerve in maintaining the structural integrity of the taste buds was also examined. Twenty-four Sprague-Dawley rats were randomly divided into three groups: co...

  15. Effects of acute exposure of heavy ion to spinal cord on the properties of motoneurons and muscle fibers in rats. The 2nd report

    International Nuclear Information System (INIS)

    Ishihara, Akihiko; Ohira, Yoshinobu; Kawano, Fuminori; Xiao Dong Wang; Nagaoka, Shunji; Nojima, Kumie

    2004-01-01

    We examined the effects of acute exposure of heavy ion on the properties of motoneurons and their innervating muscle fibers. A 40 Gy dose of heavy ion was applied to the lumbar 4th to 6th segments of the spinal cord in five 8-week-old male rats. Five male rats served as controls. Both the control and heavy-ion-exposed rats were sacrificed one month after exposure to heavy ion. The number, cell body size, and oxidative enzyme activity of motoneurons innervating the soleus and plantaris muscles were analyzed. In addition, cell size, oxidative enzyme activity, and expression of myosin heavy chain isoforms in the soleus and plantaris muscles were analyzed. There were no changes in the number of motoneurons between the control and heavy-ion-exposed rats. On the other hand, cell body sizes were decreased and oxidative enzyme activities were disappeared in motoneurons of the heavy-ion-exposed rats. There were no changes in the cell size, oxidative enzyme activity, or expression of myosin heavy chain isoforms of the muscles between the control and heavy-ion-exposed rats. It is concluded that a 40 Gy dose of heavy ion affects the properties of spinal motoneurons, although there were no influences on the properties of muscle fibers which they innervate. (author)

  16. Antinociceptive and antiallodynic effects of Momordica charantia L. in tibial and sural nerve transection-induced neuropathic pain in rats.

    Science.gov (United States)

    Jain, Vivek; Pareek, Ashutosh; Paliwal, Nishant; Ratan, Yashumati; Jaggi, Amteshwar Singh; Singh, Nirmal

    2014-02-01

    This study was designed to investigate the ameliorative potential of Momordica charantia L. (MC) in tibial and sural nerve transection (TST)-induced neuropathic pain in rats. TST was performed by sectioning tibial and sural nerve portions (2 mm) of the sciatic nerve, and leaving the common peroneal nerve intact. Acetone drop, pin-prick, hot plate, paint-brush, and walking track tests were performed to assess cold allodynia, mechanical and heat hyperalgesia, and dynamic mechanical allodynia and tibial functional index, respectively. The levels of tumour necrosis factor (TNF)-alpha and thio-barbituric acid reactive substances (TBARS) were measured in the sciatic nerve as an index of inflammation and oxidative stress. MC (all doses, orally, once daily) was administered to the rats for 24 consecutive days. TST led to significant development of cold allodynia, mechanical and heat hyperalgesia, dynamic mechanical allodynia, and functional deficit in walking along with rise in the levels of TBARS and TNF-alpha. Administration of MC (200, 400, and 800 mg/kg) significantly attenuated TST-induced behavioural and biochemical changes. Furthermore, pretreatment of BADGE (120 mg/kg, intraperitoneally) abolished the protective effect of MC in TST-induced neuropathic pain. Collectively, it is speculated that PPAR-gamma agonistic activity, anti-inflammatory, and antioxidative potential is critical for antinociceptive effect of MC in neuropathic pain.

  17. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    International Nuclear Information System (INIS)

    Guizar-Sahagun, G.; Rivera, F.; Babinski, E.; Berlanga, E.; Madrazo, M.; Franco-Bourland, R.; Grijalva, I.; Gonzalez, J.; Contreras, B.; Madrazo, I.

    1994-01-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  18. Magnetic resonance imaging of the normal and chronically injured adult rat spinal cord in vivo

    Energy Technology Data Exchange (ETDEWEB)

    Guizar-Sahagun, G [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo XXI, Inst. Mexicano del Seguro Social, Mexico City (Mexico); Rivera, F [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Babinski, E [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico); Berlanga, E [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Madrazo, M [Dept. of Magnetic Resonance Imaging, Hospital Angeles del Pedregal, Mexico City (Mexico); Franco-Bourland, R [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Biochemistry, Inst. Nacional de la Nutricion, Mexico City (Mexico); Grijalva, I [Centro de Investigacion del Proyecto Camina, Mexico City (Mexico) Dept. of Clinical Research in Neurology and Neurosurgery, Hospital de Especialidades, Centro Medico Nacional Siglo

    1994-08-01

    We assessed the capacity of MRI to show and characterise the spinal cord (SC) in vivo in normal and chronically injured adult rats. In the chronically injured animals the SC was studied by MRI and histological examination. MRI was performed at 1.5 T, using gradient-echo and spin-echo (SE) sequences, the latter with and without gadolinium-DTPA (Gd-DTPA). Several positions were tried for good alignment and to diminish interference by respiratory movements. Images of the SC were obtained in sagittal, coronal, and axial planes. Normal SC was observed as a continuous intensity in both sequences, although contrast resolution was better using SE; it was not possible to differentiate the grey and white matter. Low signal was seen in the damaged area in chronically injured rats, which corresponded to cysts, trabeculae, mononuclear infiltrate, and fibroglial wall on histological examination. Gd-DTPA failed to enhance the SC in normal or chronically injured rats. It did, however, cause enhancement of the lesion after acute SC injury. (orig.)

  19. HDR- and LDR-interstitial irradiation (IRT) in rat spinal cord: the effect of decreasing the dose rate and the impact of a rapid dose fall off over the spinal cord

    International Nuclear Information System (INIS)

    Pop, L.A.M.; Plas, M. van der; Hanssen, A.E.J.; Kogel, A.J. van der

    1996-01-01

    Introduction: Detailed knowledge of radiobiological parameters of the different tissues involved are warranted before HDR- and recently PDR-brachytherapy can be successfully introduced in clinical practice as an alternative to LDR- brachytherapy. The purpose of this study is to determine the α/β ratio and half time of repair of rat spinal cord during continuous irradiation at different dose rates and to investigate the impact of a rapid dose fall off over the spinal cord thickness. Material and methods: Two parallel catheters are inserted on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters were afterloaded with two 192 Ir- wires of 4 cm length each (activity 1- 10 mCi/cm) or connected to the HDR-microSelectron. Serial experiments have been carried out to obtain complete dose response curves at 5 different dose rates, resp. 0.5, 0.9, 1.6, 2.6 and 120 Gy/h. Paralysis of the hindlegs after 5-6 months and histopathological examination of the spinal cord of each animal are used as experimental endpoints. Dose-volume histograms of each irradiated rat have been analysed to evaluate the correlation between dose distribution and biological response and the histopathological damage seen. Results: The distribution of the histological damage was a good reflection of the rapid dose fall-off over the spinal cord, with white matter necrosis or demyelination predominantly seen in the dorsal tracts of the spinal cord or dorsal roots. With each reduction of the dose rate, spinal cord tolerance was significantly increased, with a maximum dose rate factor of 4.3 if the dose rate was reduced from 120 Gy/h to 0.53 Gy/h. Estimates of the repair parameters using different types of analysis revealed an α/β ratio of 2.44 Gy and a (mono- exponential) half time of repair (=t (1(2)) ) of 1.43 hours; for the maximum of 150 % of the prescribed dose these values were 3.67 Gy and 1.43 hours respectively. Conclusions: Spinal cord radiation tolerance is

  20. Tramadol and propentofylline coadministration exerted synergistic effects on rat spinal nerve ligation-induced neuropathic pain.

    Science.gov (United States)

    Zhang, Jin; Wu, Dan; Xie, Cheng; Wang, Huan; Wang, Wei; Zhang, Hui; Liu, Rui; Xu, Li-Xian; Mei, Xiao-Peng

    2013-01-01

    Neuropathic pain is an intractable clinical problem. Drug treatments such as tramadol have been reported to effectively decrease neuropathic pain by inhibiting the activity of nociceptive neurons. It has also been reported that modulating glial activation could also prevent or reverse neuropathic pain via the administration of a glial modulator or inhibitor, such as propentofylline. Thus far, there has been no clinical strategy incorporating both neuronal and glial participation for treating neuropathic pain. Therefore, the present research study was designed to assess whether coadministration of tramadol and propentofylline, as neuronal and glial activation inhibitors, respectively, would exert a synergistic effect on the reduction of rat spinal nerve ligation (SNL)-induced neuropathic pain. Rats underwent SNL surgery to induce neuropathic pain. Pain behavioral tests were conducted to ascertain the effect of drugs on SNL-induced mechanical allodynia with von-Frey hairs. Proinflammatory factor interleukin-1β (IL-1β) expression was also detected by Real-time RT-PCR. Intrathecal tramadol and propentofylline administered alone relieved SNL-induced mechanical allodynia in a dose-dependent manner. Tramadol and propentofylline coadministration exerted a more potent effect in a synergistic and dose dependent manner than the intrathecal administration of either drug alone. Real-time RT-PCR demonstrated IL-1β up-expression in the ipsilateral spinal dorsal horn after the lesion, which was significantly decreased by tramadol and propentofylline coadministration. Inhibiting proinflammatory factor IL-1β contributed to the synergistic effects of tramadol and propentofylline coadministration on rat peripheral nerve injury-induced neuropathic pain. Thus, our study provided a rationale for utilizing a novel strategy for treating neuropathic pain by blocking the proinflammatory factor related pathways in the central nervous system.

  1. Crocin improved locomotor function and mechanical behavior in the rat model of contused spinal cord injury through decreasing calcitonin gene related peptide (CGRP).

    Science.gov (United States)

    Karami, Masoume; Bathaie, S Zahra; Tiraihi, Taqi; Habibi-Rezaei, Mehran; Arabkheradmand, Jalil; Faghihzadeh, Soghrat

    2013-12-15

    Various approaches have been offered to alleviate chronic pain resulting from spinal cord injuries (SCIs). Application of herbs and natural products, with potentially lower adverse effects, to cure diseases has been recommended in both traditional and modern medicines. Here, the effect of crocin on chronic pain induced by spinal cord contusion was investigated in an animal model. Female Wistar rats were randomly divided into five groups (5 rats in each); three groups were contused at the L1 level. One group was treated with crocin (150mg/kg) two weeks after spinal cord injury; the second group, control, was treated with vehicle only; and the third group was treated with ketoprofen. Two normal groups were also considered with or without crocin treatment. The mechanical behavioral test, the locomotor recovery test and the thermal behavioral test were applied weekly to evaluate the injury and recovery of rats. Significant improvements (plocomotor recovery tests were seen in the rats treated with crocin. Thermal behavioral test did not show any significant changes due to crocin treatment. Plasma concentration of calcitonin-gene related peptide (CGRP) changed from 780.2±2.3 to 1140.3±4.5pg/ml due to SCI and reached 789.1±2.7pg/ml after crocin treatment. These changes were significant at the level of p<0.05. The present study shows the beneficial effects of crocin treatment on chronic pain induced by SCI, through decreasing CGRP as an important mediator of inflammation and pain. Copyright © 2013 Elsevier GmbH. All rights reserved.

  2. A 3D map of the hindlimb motor representation in the lumbar spinal cord in Sprague Dawley rats

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn B.; Peterson, Jeremy; Nudo, Randolph J.

    2017-02-01

    Objective. Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282 000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach. Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a 3D (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and electromyographic (EMG) activity. Via fine wire EMG electrodes, stimulus-triggered averaging (StTA) was used on rectified EMG data to determine response latency. Main results. Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance. The derived motor map provides insight into the parameters needed for future neuromodulatory devices.

  3. A THREE-DIMENSIONAL MAP OF THE HINDLIMB MOTOR REPRESENTATION IN THE LUMBAR SPINAL CORD IN SPRAGUE DAWLEY RATS

    Science.gov (United States)

    Borrell, Jordan A.; Frost, Shawn; Peterson, Jeremy; Nudo, Randolph J.

    2016-01-01

    Objective Spinal cord injury (SCI) is a devastating neurological trauma with a prevalence of about 282,000 people living with an SCI in the United States in 2016. Advances in neuromodulatory devices hold promise for restoring function by incorporating the delivery of electrical current directly into the spinal cord grey matter via intraspinal microstimulation (ISMS). In such designs, detailed topographic maps of spinal cord outputs are needed to determine ISMS locations for eliciting hindlimb movements. The primary goal of the present study was to derive a topographic map of functional motor outputs in the lumbar spinal cord to hindlimb skeletal muscles as defined by ISMS in a rat model. Approach Experiments were carried out in nine healthy, adult, male, Sprague Dawley rats. After a laminectomy of the T13-L1 vertebrae and removal of the dura mater, a four-shank, 16-channel microelectrode array was inserted along a three-dimensional (200 µm) stimulation grid. Trains of three biphasic current pulses were used to determine evoked movements and EMG activity. Via fine wire electromyographic (EMG) electrodes, Stimulus-Triggered Averaging (StTA) was used on rectified EMG data to determine response latency. Main results Hindlimb movements were elicited at a median current intensity of 6 µA, and thresholds were significantly lower in ventrolateral sites. Movements typically consisted of whole leg, hip, knee, ankle, toe, and trunk movements. Hip movements dominated rostral to the T13 vertebral segment, knee movements were evoked at the T13-L1 vertebral junction, while ankle and digit movements were found near the rostral L1 vertebra. Whole leg movements spanned the entire rostrocaudal region explored, while trunk movements dominated medially. StTAs of EMG activity demonstrated a latency of ~4 ms. Significance The derived motor map provides insight into the parameters needed for future neuromodulatory devices. PMID:27934789

  4. Nerve Root Compression Increases Spinal Astrocytic Vimentin in Parallel With Sustained Pain and Endothelial Vimentin in Association With Spinal Vascular Reestablishment.

    Science.gov (United States)

    Smith, Jenell R; Lee, Jasmine; Winkelstein, Beth A

    2017-10-01

    Temporal immunohistochemistry analysis of spinal cord tissue from a rat model of cervical radiculopathy. The goal was to measure spinal endothelial and astrocytic vimentin expression after a painful nerve root compression to define spinal cellular expression of vimentin in the context of pain. The intermediate filament, vimentin, is expressed in a variety of cell types in the spinal cord and is modulated in response to neural pathologies. Early after nerve root compression spinal astrocytes become activated and blood-spinal cord barrier (BSCB) breakdown occurs in parallel with development of pain-related behaviors; these spinal responses remain activated as does the presence of pain. In addition to vimentin, glial fibrillary acidic protein (GFAP) expression is a hallmark of astrocyte activation. In contrast, vascular endothelial cells down-regulate vimentin expression in parallel with vascular breakdown. It is not known whether spinal astrocytes and endothelial cells modulate their expression of vimentin in response to a painful neural injury. Mechanical hyperalgesia was measured and spinal cord tissue was harvested at days 1 and 7 after a unilateral nerve root compression in rats. Vimentin was coimmunolabeled with GFAP to label astrocytes and von Willebrand factor (VWF) for endothelial cells in the spinal cord on the side of injury. Spinal astrocytic vimentin increases by day 7 after nerve root compression, corresponding to when mechanical hyperalgesia is maintained. Spinal endothelial vimentin increases as early as day 1 after a painful compression and is even more robust at day 7. The delayed elevation in spinal astrocytic vimentin corresponding to sustained mechanical hyperalgesia supports its having a relationship with pain maintenance. Further, since BSCB integrity has been shown to be reestablished by day 7 after a painful compression, endothelial expressed vimentin may help to fortify spinal vasculature contributing to BSCB stability. N/A.

  5. Developmental plasticity of ascending spinal axons studies using the North American opossum, Didelphis virginiana.

    Science.gov (United States)

    Terman, J R; Wang, X M; Martin, G F

    1999-01-11

    The objectives of the present study were to determine if axons of all ascending tracts grow through the lesion after transection of the thoracic spinal cord during development in the North American opossum, and if so, whether they reach regions of the brain they normally innervate. Opossum pups were subjected to transection of the mid-thoracic cord at PD5, PD8, PD12, PD20, or PD26 and injections of Fast Blue (FB) into the lower thoracic or upper lumbar cord 30-40 days or 6 months later. In the PD5 transected cases, labeled axons were present in all of the supraspinal areas labeled by comparable injections in unlesioned, age-matched controls. In the experimental cases, however, labeled axons appeared to be fewer in number and in some areas more restricted in location than in the controls. When lesions were made at PD8, labeled axons were present in the brain of animals allowed to survive 30-40 days prior to FB injections but they were not observed in those allowed to survive 6 months. When lesions were made at PD12 or later, labeled axons were never found rostral to the lesion. It appears, therefore, that axons of all ascending spinal pathways grow though the lesion after transection of the thoracic cord in developing opossums and that they innervate appropriate areas of the brain. Interestingly, the critical period for such growth is shorter than that for most descending axons, suggesting that factors which influence loss of developmental plasticity are not the same for all axons.

  6. Dual spinal lesion paradigm in the cat: evolution of the kinematic locomotor pattern.

    Science.gov (United States)

    Barrière, Grégory; Frigon, Alain; Leblond, Hugues; Provencher, Janyne; Rossignol, Serge

    2010-08-01

    The recovery of voluntary quadrupedal locomotion after an incomplete spinal cord injury can involve different levels of the CNS, including the spinal locomotor circuitry. The latter conclusion was reached using a dual spinal lesion paradigm in which a low thoracic partial spinal lesion is followed, several weeks later, by a complete spinal transection (i.e., spinalization). In this dual spinal lesion paradigm, cats can express hindlimb walking 1 day after spinalization, a process that normally takes several weeks, suggesting that the locomotor circuitry within the lumbosacral spinal cord had been modified after the partial lesion. Here we detail the evolution of the kinematic locomotor pattern throughout the dual spinal lesion paradigm in five cats to gain further insight into putative neurophysiological mechanisms involved in locomotor recovery after a partial spinal lesion. All cats recovered voluntary quadrupedal locomotion with treadmill training (3-5 days/wk) over several weeks. After the partial lesion, the locomotor pattern was characterized by several left/right asymmetries in various kinematic parameters, such as homolateral and homologous interlimb coupling, cycle duration, and swing/stance durations. When no further locomotor improvement was observed, cats were spinalized. After spinalization, the hindlimb locomotor pattern rapidly reappeared, but left/right asymmetries in swing/stance durations observed after the partial lesion could disappear or reverse. It is concluded that, after a partial spinal lesion, the hindlimb locomotor pattern was actively maintained by new dynamic interactions between spinal and supraspinal levels but also by intrinsic changes within the spinal cord.

  7. Histological and functional benefit following transplantation of motor neuron progenitors to the injured rat spinal cord.

    Directory of Open Access Journals (Sweden)

    Sharyn L Rossi

    2010-07-01

    Full Text Available Motor neuron loss is characteristic of cervical spinal cord injury (SCI and contributes to functional deficit.In order to investigate the amenability of the injured adult spinal cord to motor neuron differentiation, we transplanted spinal cord injured animals with a high purity population of human motor neuron progenitors (hMNP derived from human embryonic stem cells (hESCs. In vitro, hMNPs displayed characteristic motor neuron-specific markers, a typical electrophysiological profile, functionally innervated human or rodent muscle, and secreted physiologically active growth factors that caused neurite branching and neuronal survival. hMNP transplantation into cervical SCI sites in adult rats resulted in suppression of intracellular signaling pathways associated with SCI pathogenesis, which correlated with greater endogenous neuronal survival and neurite branching. These neurotrophic effects were accompanied by significantly enhanced performance on all parameters of the balance beam task, as compared to controls. Interestingly, hMNP transplantation resulted in survival, differentiation, and site-specific integration of hMNPs distal to the SCI site within ventral horns, but hMNPs near the SCI site reverted to a neuronal progenitor state, suggesting an environmental deficiency for neuronal maturation associated with SCI.These findings underscore the barriers imposed on neuronal differentiation of transplanted cells by the gliogenic nature of the injured spinal cord, and the physiological relevance of transplant-derived neurotrophic support to functional recovery.

  8. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    OpenAIRE

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon; Chung, Jin Mo

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in res...

  9. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury.

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H; Lee, Jae K; Bunge, Mary Bartlett

    2018-04-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  10. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Science.gov (United States)

    Lee, Yee-Shuan; Funk, Lucy H.; Lee, Jae K.; Bunge, Mary Bartlett

    2018-01-01

    Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI) and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA) was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP), and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with macrophage

  11. Macrophage depletion and Schwann cell transplantation reduce cyst size after rat contusive spinal cord injury

    Directory of Open Access Journals (Sweden)

    Yee-Shuan Lee

    2018-01-01

    Full Text Available Schwann cell transplantation is a promising therapy for the treatment of spinal cord injury (SCI and is currently in clinical trials. In our continuing efforts to improve Schwann cell transplantation strategies, we sought to determine the combined effects of Schwann cell transplantation with macrophage depletion. Since macrophages are major inflammatory contributors to the acute spinal cord injury, and are the major phagocytic cells, we hypothesized that transplanting Schwann cells after macrophage depletion will improve cell survival and integration with host tissue after SCI. To test this hypothesis, rat models of contusive SCI at thoracic level 8 were randomly subjected to macrophage depletion or not. In rat subjected to macrophage depletion, liposomes filled with clodronate were intraperitoneally injected at 1, 3, 6, 11, and 18 days post injury. Rats not subjected to macrophage depletion were intraperitoneally injected with liposomes filled with phosphate buffered saline. Schwann cells were transplanted 1 week post injury in all rats. Biotinylated dextran amine (BDA was injected at thoracic level 5 to evalute axon regeneration. The Basso, Beattie, and Bresnahan locomotor test, Gridwalk test, and sensory test using von Frey filaments were performed to assess functional recovery. Immunohistochemistry was used to detect glial fibrillary acidic protein, neurofilament, and green fluorescent protein (GFP, and also to visulize BDA-labelled axons. The GFP labeled Schwann cell and cyst and lesion volumes were quantified using stained slides. The numbers of BDA-positive axons were also quantified. At 8 weeks after Schwann cell transplantation, there was a significant reduction in cyst and lesion volumes in the combined treatment group compared to Schwann cell transplantation alone. These changes were not associated, however, with improved Schwann cell survival, axon growth, or locomotor recovery. Although combining Schwann cell transplantation with

  12. Effect of Chorda Tympani Nerve Transection on Salt Taste Perception in Mice

    Science.gov (United States)

    Ishiwatari, Yutaka; Theodorides, Maria L.; Bachmanov, Alexander A.

    2011-01-01

    Effects of gustatory nerve transection on salt taste have been studied extensively in rats and hamsters but have not been well explored in the mouse. We examined the effects of chorda tympani (CT) nerve transection on NaCl taste preferences and thresholds in outbred CD-1 mice using a high-throughput phenotyping method developed in our laboratory. To measure taste thresholds, mice were conditioned by oral self-administration of LiCl or NaCl and then presented with NaCl concentration series in 2-bottle preference tests. LiCl-conditioned and control NaCl-exposed mice were given bilateral transections of the CT nerve (LiCl-CTX, NaCl-CTX) or were left intact as controls (LiCl-CNT, NaCl-CNT). After recovery from surgery, mice received a concentration series of NaCl (0–300 mM) in 48-h 2-bottle tests. CT transection increased NaCl taste thresholds in LiCl-conditioned mice and eliminated avoidance of concentrated NaCl in control NaCl-exposed mice. This demonstrates that in mice, the CT nerve is important for detection and recognition of NaCl taste and is necessary for the normal avoidance of high concentrations of NaCl. The results of this experiment also show that the method of high-throughput phenotyping of salt taste thresholds is suitable for detecting changes in the taste periphery in mouse genetic studies. PMID:21743094

  13. Extracellular magnesium enhances the damage to locomotor networks produced by metabolic perturbation mimicking spinal injury in the neonatal rat spinal cord in vitro.

    Science.gov (United States)

    Margaryan, G; Mladinic, M; Mattioli, C; Nistri, A

    2009-10-06

    An acute injury to brain or spinal cord produces profound metabolic perturbation that extends and exacerbates tissue damage. Recent clinical interventions to treat this condition with i.v. Mg(2+) to stabilize its extracellular concentration provided disappointing results. The present study used an in vitro spinal cord model from the neonatal rat to investigate the role of extracellular Mg(2+) in the lesion evoked by a pathological medium mimicking the metabolic perturbation (hypoxia, aglycemia, oxidative stress, and acid pH) occurring in vivo. Damage was measured by taking as outcome locomotor network activity for up to 24 h after the primary insult. Pathological medium in 1 mM Mg(2+) solution (1 h) largely depressed spinal reflexes and suppressed fictive locomotion on the same and the following day. Conversely, pathological medium in either Mg(2+)-free or 5 mM Mg(2+) solution evoked temporary network depression and enabled fictive locomotion the day after. While global cell death was similar regardless of extracellular Mg(2+) solution, white matter was particularly affected. In ventral horn the number of surviving neurons was the highest in Mg(2+) free solution and the lowest in 1 mM Mg(2+), while motoneurons were unaffected. Although the excitotoxic damage elicited by kainate was insensitive to extracellular Mg(2+), 1 mM Mg(2+) potentiated the effect of combining pathological medium with kainate at low concentrations. These results indicate that preserving Mg(2+) homeostasis rendered experimental spinal injury more severe. Furthermore, analyzing ventral horn neuron numbers in relation to fictive locomotion expression might provide a first estimate of the minimal size of the functional locomotor network.

  14. A cell population that strongly expresses the CB1 cannabinoid receptor in the ependyma of the rat spinal cord.

    Science.gov (United States)

    Garcia-Ovejero, Daniel; Arevalo-Martin, Angel; Paniagua-Torija, Beatriz; Sierra-Palomares, Yolanda; Molina-Holgado, Eduardo

    2013-01-01

    The cells surrounding the central canal of the spinal cord are a source of stem/precursor cells that may give rise to neurons, astrocytes, or oligodendrocytes. However, they are a heterogeneous population that remains poorly understood. Here we describe a subpopulation characterized by their strong expression of the CB(1) cannabinoid receptor, oval/round soma, apical nucleus, a variable number of cilia (0, 1, or 2), and the presence of a single short and occasionally ramified basal process. These cells are mainly located in the lateral and dorsal central canal throughout the spinal cord. These CB(1)(HIGH) cells are closely related to the basal lamina labyrinths or fractones derived from subependymal microglia. In addition, CB(1)(HIGH) cells express some stem/precursor cell markers, including vimentin, nestin, Sox2, Sox9, and GLAST, but not others such as CD15 or GFAP. In addition, this cell population does not proliferate in the intact adult spinal cord, although up to 50% of these cells express the proliferation marker Ki67 in newly born rats or after a spinal cord contusion. The present findings contribute to our understanding of the spinal cord central canal structure and reveal the targets for endocannabinoids inside this neurogenic niche. Copyright © 2012 Wiley Periodicals, Inc.

  15. Local injection of Lenti-Olig2 at lesion site promotes functional recovery of spinal cord injury in rats.

    Science.gov (United States)

    Tan, Bo-Tao; Jiang, Long; Liu, Li; Yin, Ying; Luo, Ze-Ru-Xin; Long, Zai-Yun; Li, Sen; Yu, Le-Hua; Wu, Ya-Min; Liu, Yuan

    2017-06-01

    Olig2 is one of the most critical factors during CNS development, which belongs to b-HLH transcription factor family. Previous reports have shown that Olig2 regulates the remyelination processes in CNS demyelination diseases models. However, the role of Olig2 in contusion spinal cord injury (SCI) and the possible therapeutic effects remain obscure. This study aims to investigate the effects of overexpression Olig2 by lentivirus on adult spinal cord injury rats. Lenti-Olig2 expression and control Lenti-eGFP vectors were prepared, and virus in a total of 5 μL (10 8 TU/mL) was locally injected into the injured spinal cord 1.5 mm rostral and caudal near the epicenter. Immunostaining, Western blot, electron microscopy, and CatWalk analyzes were employed to investigate the effects of Olig2 on spinal cord tissue repair and functional recovery. Injection of Lenti-Olig2 significantly increased the number of oligodendrocytes lineage cells and enhanced myelination after SCI. More importantly, the introduction of Olig2 greatly improved hindlimb locomotor performances. Other oligodendrocyte-related transcription factors, which were downregulated or upregulated after injury, were reversed by Olig2 induction. Our findings provided the evidence that overexpression Olig2 promotes myelination and locomotor recovery of contusion SCI, which gives us more understanding of Olig2 on spinal cord injury treatment. © 2017 John Wiley & Sons Ltd.

  16. The Correlation of Gene Expression of Inflammasome Indicators and Impaired Fertility in Rat Model of Spinal Cord Injury: A Time Course Study.

    Science.gov (United States)

    Nikmehr, Banafsheh; Bazrafkan, Mahshid; Hassanzadeh, Gholamreza; Shahverdi, Abdolhossein; Sadighi Gilani, Mohammad Ali; Kiani, Sahar; Mokhtari, Tahmineh; Abolhassani, Farid

    2017-11-04

    Expression assessment of the inflammasome genes in the acute and the chronic phases of Spinal cord injury (SCI) on adult rat testis and examination of associations between inflammasome complex expression and sperm parameters. In this study, 25 adult male rats were randomly divided into 5 groups. SCI surgery was performed at T10-T11 level of rats' spinal cord in four groups (SCI1, SCI3, SCI7, and SCI56). They were sacrificed after 1day, 3days, 7days and 56 days post SCI, respectively. One group remained intact as control (Co).CASA analysis of sperm parameters and qRT-PCR (ASC and Caspase-1) were made in all cases. Our data showed a severe reduction in sperm count and motility, especially on day 3 and 7. ASC gene expression had a non-significant increase on day 1 and 56 after surgery compared to control group. Caspase-1 expression increased significantly on day 3 post injury versus the control group (P = .009). Moreover, Caspase-1 overexpression, had significant correlations with sperm count (r = -0.555, P = .01) and sperm progressive motility (r = -0.524, P = .02). Inflammasome complex expression increase following SCI induction. This overexpression correlates to low sperm parameters in SCI rats.

  17. Neuroprotective role of hydralazine in rat spinal cord injury-attenuation of acrolein-mediated damage

    Science.gov (United States)

    Park, Jonghyuck; Zheng, Lingxing; Marquis, Andrew; Walls, Michael; Duerstock, Brad; Pond, Amber; Alvarez, Sascha Vega; He, Wang; Ouyang, Zheng; Shi, Riyi

    2014-01-01

    Acrolein, an α,β-unsaturated aldehyde and a reactive product of lipid peroxidation, has been suggested as a key factor in neural post-traumatic secondary injury in SCI, mainly based on in vitro and ex vivo evidence. Here we demonstrate an increase of acrolein up to 300%; the elevation lasted at least two weeks in a rat SCI model. More importantly, hydralazine, a known acrolein scavenger can provide neuroprotection when applied systemically. Besides effectively reducing acrolein, hydralazine treatment also resulted in significant amelioration of tissue damage, motor deficits, and neuropathic pain. This effect was further supported by demonstrating the ability of hydralazine to reach spinal cord tissue at a therapeutic level following intraperitoneal application. This suggests that hydralazine is an effective neuroprotective agent not only in vitro, but in a live animal model of SCI as well. Finally, the role of acrolein in SCI was further validated by the fact that acrolein injection into the spinal cord caused significant SCI-like tissue damage and motor deficits. Taken together, available evidence strongly suggests a critical causal role of acrolein in the pathogenesis of spinal cord trauma. Since acrolein has been linked to a variety of illness and conditions, we believe that acrolein-scavenging measures have the potential to be expanded significantly ensuring a broad impact on human health. PMID:24286176

  18. Calcium channel alpha-2-delta-1 protein upregulation in dorsal spinal cord mediates spinal cord injury-induced neuropathic pain states.

    Science.gov (United States)

    Boroujerdi, Amin; Zeng, Jun; Sharp, Kelli; Kim, Donghyun; Steward, Oswald; Luo, Z David

    2011-03-01

    Spinal cord injury (SCI) commonly results in the development of neuropathic pain, which can dramatically impair the quality of life for SCI patients. SCI-induced neuropathic pain can be manifested as both tactile allodynia (a painful sensation to a non-noxious stimulus) and hyperalgesia (an enhanced sensation to a painful stimulus). The mechanisms underlying these pain states are poorly understood. Clinical studies have shown that gabapentin, a drug that binds to the voltage-gated calcium channel alpha-2-delta-1 subunit (Ca(v)α2δ-1) proteins is effective in the management of SCI-induced neuropathic pain. Accordingly, we hypothesized that tactile allodynia post SCI is mediated by an upregulation of Ca(v)α2δ-1 in dorsal spinal cord. To test this hypothesis, we examined whether SCI-induced dysregulation of spinal Ca(v)α2δ-1 plays a contributory role in below-level allodynia development in a rat spinal T9 contusion injury model. We found that Ca(v)α2δ-1 expression levels were significantly increased in L4-6 dorsal, but not ventral, spinal cord of SCI rats that correlated with tactile allodynia development in the hind paw plantar surface. Furthermore, both intrathecal gabapentin treatment and blocking SCI-induced Ca(v)α2δ-1 protein upregulation by intrathecal Ca(v)α2δ-1 antisense oligodeoxynucleotides could reverse tactile allodynia in SCI rats. These findings support that SCI-induced Ca(v)α2δ-1 upregulation in spinal dorsal horn is a key component in mediating below-level neuropathic pain states, and selectively targeting this pathway may provide effective pain relief for SCI patients. Spinal cord contusion injury caused increased calcium channel Ca(v)α2δ-1 subunit expression in dorsal spinal cord that contributes to neuropathic pain states. Copyright © 2010 International Association for the Study of Pain. Published by Elsevier B.V. All rights reserved.

  19. Towards a miniaturized brain-machine-spinal cord interface (BMSI) for restoration of function after spinal cord injury.

    Science.gov (United States)

    Shahdoost, Shahab; Frost, Shawn; Van Acker, Gustaf; DeJong, Stacey; Dunham, Caleb; Barbay, Scott; Nudo, Randolph; Mohseni, Pedram

    2014-01-01

    Nearly 6 million people in the United States are currently living with paralysis in which 23% of the cases are related to spinal cord injury (SCI). Miniaturized closed-loop neural interfaces have the potential for restoring function and mobility lost to debilitating neural injuries such as SCI by leveraging recent advancements in bioelectronics and a better understanding of the processes that underlie functional and anatomical reorganization in an injured nervous system. This paper describes our current progress towards developing a miniaturized brain-machine-spinal cord interface (BMSI) that is envisioned to convert in real time the neural command signals recorded from the brain to electrical stimuli delivered to the spinal cord below the injury level. Specifically, the paper reports on a corticospinal interface integrated circuit (IC) as a core building block for such a BMSI that is capable of low-noise recording of extracellular neural spikes from the cerebral cortex as well as muscle activation using intraspinal microstimulation (ISMS) in a rat with contusion injury to the thoracic spinal cord. The paper further presents results from a neurobiological study conducted in both normal and SCI rats to investigate the effect of various ISMS parameters on movement thresholds in the rat hindlimb. Coupled with proper signal-processing algorithms in the future for the transformation between the cortically recorded data and ISMS parameters, such a BMSI has the potential to facilitate functional recovery after an SCI by re-establishing corticospinal communication channels lost due to the injury.

  20. Allopregnanolone suppresses diabetes-induced neuropathic pain and motor deficit through inhibition of GABAA receptor down-regulation in the spinal cord of diabetic rats

    Directory of Open Access Journals (Sweden)

    Samira Afrazi

    2014-05-01

    Full Text Available Objective(s:Painful diabetic neuropathy is associated with hyperexcitability and hyperactivity of spinal cord neurons. However, its underlying pathophysiological mechanisms have not been fully clarified. Induction of excitatory/inhibitory neurotransmission imbalance at the spinal cord seems to account for the abnormal neuronal activity in diabetes. Protective properties of neurosteroids have been demonstrated in numerous cellular and animal models of neurodegeneration. Materials and Methods: Here, the protective effects of allopregnanolone, a neurosteroid were investigated in an in vivo model of diabetic neuropathy. The tail-flick test was used to assess the nociceptive threshold. Diabetes was induced by injection of 50 mg/kg (IP streptozotocin. Seven weeks after the induction of diabetes, the dorsal half of the lumbar spinal cord was assayed for the expression of γ2 subunit of GABAA receptor using semiquantitative RT-PCR. Results: The data shows that allopregnanolone (5 and 20 mg/kg markedly ameliorated diabetes-induced thermal hyperalgesia and motor deficit. The weights of diabetic rats that received 5 and 20 mg/kg allopregnanolone did not significantly reduce during the time course of study. Furthermore, this neurosteroid could inhibit GABAA receptor down-regulation induced by diabetes in the rat spinal cord. Conclusion: The data revealed that allopregnanolone has preventive effects against hyperglycemic-induced neuropathic pain and motor deficit which are related to the inhibition of GABAA receptor down-regulation.

  1. Early Postoperative Nociceptive Threshold and Production of Brain-Derived Neurotrophic Factor Induced by Plantar Incision Are Not Influenced with Minocycline in a Rat: Role of Spinal Microglia

    Directory of Open Access Journals (Sweden)

    Eiji Masaki

    2016-03-01

    Full Text Available Background: Brain-derived neurotrophic factor (BDNF from spinal microglia is crucial for aberrant nociceptive signaling in several pathological pain conditions, including postoperative pain. We assess the contribution of spinal microglial activation and associated BDNF overexpression to the early post-incisional nociceptive threshold. Methods: Male Sprague-Dawley rats were implanted with an intrathecal catheter. A postoperative pain model was established by plantar incision. Thermal and mechanical nociceptive responses were assessed by infrared radiant heat and von Frey filaments before and after plantar incision. Rats were injected intrathecally the microglial activation inhibitor minocycline before incision, 24 h after incision, or both. Other groups were subjected to the same treatments and the L4-L5 spinal cord segment removed for immunohistochemical analysis of microglia activation and BNDF expression. Results: Plantar incision reduced both thermal latency and mechanical threshold, indicating thermal hypersensitivity and mechanical allodynia. Minocycline temporally reduced thermal withdrawal latency but had no effect on mechanical withdrawal threshold, spinal microglial activity, or dorsal horn BDNF overexpression during the early post-incision period. Conclusion: These results suggest that spinal microglia does not contribute substantially to post-incisional nociceptive threshold. The BDNF overexpression response that may contribute to postoperative hyperalgesia and allodynia is likely derived from other sources.

  2. Intravenous dextromethorphan/quinidine inhibits activity of dura-sensitive spinal trigeminal neurons in rats.

    Science.gov (United States)

    Sokolov, A Y; Lyubashina, O A; Berkovich, R R; Panteleev, S S

    2015-09-01

    Migraine is a chronic neurological disorder characterized by episodes of throbbing headaches. Practically all medications currently used in migraine prophylaxis have a number of substantial disadvantages and use limitations. Therefore, the further search for principally new prophylactic antimigraine agents remains an important task. The objective of our study was to evaluate the effects of a fixed combination of dextromethorphan hydrobromide and quinidine sulphate (DM/Q) on activity of the spinal trigeminal neurons in an electrophysiological model of trigemino-durovascular nociception. The study was performed in 15 male Wistar rats, which were anaesthetized with urethane/α-chloralose and paralysed using pipecuronium bromide. The effects of cumulative intravenous infusions of DM/Q (three steps performed 30 min apart, 15/7.5 mg/kg of DM/Q in 0.5 mL of isotonic saline per step) on ongoing and dural electrical stimulation-induced neuronal activities were tested in a group of eight rats over 90 min. Other seven animals received cumulative infusion of equal volumes of saline and served as control. Cumulative administration of DM/Q produced steady suppression of both the ongoing activity of the spinal trigeminal neurons and their responses to electrical stimulation of the dura mater. It is evident that the observed DM/Q-induced suppression of trigeminal neuron excitability can lead to a reduction in nociceptive transmission from meninges to higher centres of the brain. Since the same mechanism is believed to underlie the pharmacodynamics of many well-known antimigraine drugs, results of the present study enable us to anticipate the potential efficacy of DM/Q in migraine. © 2014 European Pain Federation - EFIC®

  3. Pathological activity in mediodorsal thalamus of rats with spinal cord injury pain.

    Science.gov (United States)

    Whitt, Jessica L; Masri, Radi; Pulimood, Nisha S; Keller, Asaf

    2013-02-27

    Spinal cord injury (SCI) results not only in motor deficits, but produces, in many patients, excruciating chronic pain (SCI pain). We have previously shown, in a rodent model, that SCI causes suppression of activity in the GABAergic nucleus, the zona incerta (ZI), and concomitant increased activity in one of its main targets, the posterior nucleus of the thalamus (PO); the increased PO activity is correlated with the maintenance and expression of hyperalgesia after SCI. Here, we test the hypothesis that SCI causes a similar pathological increase in other thalamic nuclei regulated by the ZI, specifically the mediodorsal thalamus (MD), which is involved in the emotional-affective aspects of pain. We recorded single and multiunit activity from MD of either anesthetized or awake rats, and compared data from rats with SCI with data from sham-operated controls (anesthetized experiments) or with data from the same animals prelesion (awake experiments). Consistent with our hypothesis, MD neurons from rats with SCI show significant increases in spontaneous firing rates and in the magnitude and duration of responses to noxious stimuli. In a subset of anesthetized animals, similar changes in activity of MD neurons were produced by pharmacologically inactivating ZI in naive rats, suggesting that the changes in the MD after SCI are related to suppressed inhibition from the ZI. These data support our hypothesis that SCI pain results, at least in part, from a loss of inhibition to thalamic nuclei associated with both the sensory-discriminative and emotional-affective components of pain.

  4. Effect of endogenous androgens on 17beta-estradiol-mediated protection after spinal cord injury in male rats.

    Science.gov (United States)

    Kachadroka, Supatra; Hall, Alicia M; Niedzielko, Tracy L; Chongthammakun, Sukumal; Floyd, Candace L

    2010-03-01

    Several groups have recently shown that 17beta-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17beta-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17beta-estradiol-mediated protection by evaluating a delayed administration over a clinically relevant dose range and manipulating testicular-derived testosterone. Adult male Sprague Dawley rats were either gonadectomized or left gonad-intact prior to SCI. SCI was produced by a midthoracic crush injury. At 30 min post SCI, animals received a subcutaneous pellet of 0.0, 0.05, 0.5, or 5.0 mg of 17beta-estradiol, released over 21 days. Hindlimb locomotion was analyzed weekly in the open field. Spinal cords were collected and analyzed for cell death, expression of Bcl-family proteins, and white-matter sparing. Post-SCI administration of the 0.5- or 5.0-mg pellet improved hindlimb locomotion, reduced urinary bladder size, increased neuronal survival, reduced apoptosis, improved the Bax/Bcl-xL protein ratio, and increased white-matter sparing. In the absence of endogenous testicular-derived androgens, SCI induced greater apoptosis, yet 17beta-estradiol administration reduced apoptosis to the same extent in gonadectomized and gonad-intact male rats. These data suggest that delayed post-SCI administration of a clinically relevant dose of 17beta-estradiol is protective in male rats, and endogenous androgens do not alter estrogen-mediated protection. These data suggest that 17beta-estradiol is an effective therapeutic intervention for reducing secondary damage after SCI in males, which could be readily translated to clinical trials.

  5. Constitutively reduced sensory capacity promotes better recovery after spinal cord-injury (SCI) in blind rats of the dystrophic RCS strain.

    Science.gov (United States)

    Rink, Svenja; Bendella, Habib; Alsolivany, Kurdin; Meyer, Carolin; Woehler, Aliona; Jansen, Ramona; Isik, Zeynep; Stein, Gregor; Wennmachers, Sina; Nakamura, Makoto; Angelov, Doychin N

    2018-01-01

    We compared functional, electrophysiological and morphological parameters after SCI in two groups of rats Sprague Dawley (SD) rats with normal vision and blind rats from a SD-substrain "Royal College of Surgeons" (SD/RCS) who lose their photoreceptor cells after birth due to a genetic defect in the retinal pigment epithelium. For these animals skin-, intramuscular-, and tendon receptors are major available means to resolve spatial information. The purpose of this study was to check whether increased sensitivity in SD/RCS rats would promote an improved recovery after SCI. All rats were subjected to severe compression of the spinal cord at vertebra Th8, spinal cord segment Th10. Recovery of locomotion was analyzed at 1, 3, 6, 9, and 12 weeks after SCI using video recordings of beam walking and inclined ladder climbing. Five functional parameters were studied: foot-stepping angle (FSA), rump-height index (RHI) estimating paw placement and body weight support, respectively, number of correct ladder steps (CLS) assessing skilled hindlimb movements, the BBB-locomotor score and an established urinary bladder score (BS). Sensitivity tests were followed by electrophysiological measurement of M- and H-wave amplitudes from contractions of the plantar musculature after stimulation of the tibial nerve. The closing morphological measurements included lesion volume and expression of astro- and microglia below the lesion. Numerical assessments of BBB, FSA, BS, lesion volume and GFAP-expression revealed no significant differences between both strains. However, compared to SD-rats, the blind SD/RCS animals significantly improved RHI and CLS by 6 - 12 weeks after SCI. To our surprise the withdrawal latencies in the blind SD/RCS rats were longer and the amplitudes of M- and H-waves lower. The expression of IBA1-immunoreactivity in the lumbar enlargement was lower than in the SD-animals. The longer withdrawal latencies suggest a decreased sensitivity in the blind SD/RCS rats, which

  6. The inhibition of nitric oxide-activated poly(ADP-ribose) synthetase attenuates transsynaptic alteration of spinal cord dorsal horn neurons and neuropathic pain in the rat.

    Science.gov (United States)

    Mao, J; Price, D D; Zhu, J; Lu, J; Mayer, D J

    1997-09-01

    Transsynaptic alteration of spinal cord dorsal horn neurons characterized by hyperchromatosis of cytoplasm and nucleoplasm (so-called 'dark' neurons) occurs in a rat model of neuropathic pain induced by chronic constriction injury (CCI) of the common sciatic nerve. The incidence of dark neurons in CCI rats has been proposed to be mediated by glutamate-induced neurotoxicity. In the present study, we examined whether the inhibition of the nitric oxide (NO)-activated poly(ADP-ribose) synthetase (PARS), a nuclear enzyme critical to glutamate-induced neurotoxicity, would both reduce the incidence of dark neurons and attenuate behavioral manifestations of neuropathic pain in CCI rats. Dark neurons were observed bilaterally (with ipsilateral predominance) within the spinal cord dorsal horn, particularly in laminae I-II, of rats 8 days after unilateral sciatic nerve ligation as compared to sham operated rats. The number of dark neurons in the dorsal horn was dose-dependently reduced in CCI rats receiving once daily intrathecal (i.t.) treatment with the PARS inhibitor benzamide (200 or 400 nmol, but not 100 nmol benzamide or saline) for 7 days. Consistent with the histological improvement, thermal hyperalgesia, mechanical hyperalgesia, and low threshold mechano-allodynia also were reliably reduced in CCI rats treated with either 200 or 400 nmol benzamide. Neither dark neurons nor neuropathic pain behaviors were reliably affected by i.t. administration of either 800 nmol novobiocin (a mono(ADP-ribose) synthetase) or 800 nmol benzoic acid (the backbone structure of benzamide), indicating a selective effect of benzamide. Intrathecal treatment with an NO synthase inhibitor NG-nitro-L-arginine methyl ester (40 nmol, but not its inactive D-isomer) utilizing the same benzamide treatment regimen resulted in similar reductions of both dark neurons and neuropathic pain behaviors in CCI rats. These results provide, for the first time, in vivo evidence indicating that benzamide is

  7. Granulocyte-colony stimulating factor (G-CSF improves motor recovery in the rat impactor model for spinal cord injury.

    Directory of Open Access Journals (Sweden)

    Tanjew Dittgen

    Full Text Available Granulocyte-colony stimulating factor (G-CSF improves outcome after experimental SCI by counteracting apoptosis, and enhancing connectivity in the injured spinal cord. Previously we have employed the mouse hemisection SCI model and studied motor function after subcutaneous or transgenic delivery of the protein. To further broaden confidence in animal efficacy data we sought to determine efficacy in a different model and a different species. Here we investigated the effects of G-CSF in Wistar rats using the New York University Impactor. In this model, corroborating our previous data, rats treated subcutaneously with G-CSF over 2 weeks show significant improvement of motor function.

  8. Electromyographic activity associated with spontaneous functional recovery after spinal cord injury in rats.

    Science.gov (United States)

    Kaegi, Sibille; Schwab, Martin E; Dietz, Volker; Fouad, Karim

    2002-07-01

    This investigation was designed to study the spontaneous functional recovery of adult rats with incomplete spinal cord injury (SCI) at thoracic level during a time course of 2 weeks. Daily testing sessions included open field locomotor examination and electromyographic (EMG) recordings from a knee extensor (vastus lateralis, VL) and an ankle flexor muscle (tibialis anterior, TA) in the hindlimbs of treadmill walking rats. The BBB score (a locomotor score named after Basso et al., 1995, J. Neurotrauma, 12, 1-21) and various measures from EMG recordings were analysed (i.e. step cycle duration, rhythmicity of limb movements, flexor and extensor burst duration, EMG amplitude, root-mean-square, activity overlap between flexor and extensor muscles and hindlimb coupling). Directly after SCI, a marked drop in locomotor ability occurred in all rats with subsequent partial recovery over 14 days. The recovery was most pronounced during the first week. Significant changes were noted in the recovery of almost all analysed EMG measures. Within the 14 days of recovery, many of these measures approached control levels. Persistent abnormalities included a prolonged flexor burst and increased activity overlap between flexor and extensor muscles. Activity overlap between flexor and extensor muscles might be directly caused by altered descending input or by maladaptation of central pattern generating networks and/or sensory feedback.

  9. Effects of Electroacupuncture at Governor Vessel Acupoints on Neurotrophin-3 in Rats with Experimental Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Yu-ping Mo

    2016-01-01

    Full Text Available In an effort to explore new, noninvasive treatment options for spinal cord injuries (SCI, this study investigated the effects of electroacupuncture (EA for SCI rat models. SCI was induced by a modified Allen’s weight-drop method. We investigated the response of EA at Dazhui (GV 14 and Mingmen (GV 4 acupoints to understand the effects and mechanisms of EA in neuroprotection and neuronal function recovery after SCI. BBB testing was used to detect motor function of rats’ hind limbs among groups, and EA was shown to promote the recovery of SCI rats’ motor function. Nissl staining showed a restored neural morphology and an increase in the quantity of neurons after EA. Also, the antiapoptosis role was exposed by TUNEL staining. Western blotting analysis was used to determine the protein expression of neurotrophin-3 (NT-3 in spinal cord tissue. Compared to the sham group, the expression levels of NT-3 were significantly decreased and EA was shown to upregulate the expression of NT-3. The present study suggests that the role of EA in neuroprotection and dorsal neuronal function recovery after SCI in rats, especially EA stimulation at GV 14 and GV 4, can greatly promote neuronal function recovery, which may result from upregulating the expression of NT-3.

  10. Late effects of radiation on the spinal cord

    International Nuclear Information System (INIS)

    Kogel, A.J. van der.

    1979-01-01

    The author describes experiments concerned with the mechanisms of the development of late radiation damage in the spinal cord. Male rats were used in most of the experiments. The effects of 300 kV X-rays or 15 MeV neutrons were evaluated for different regions of the spinal cord. (Auth.)

  11. Cross-organ sensitization of thoracic spinal neurons receiving noxious cardiac input in rats with gastroesophageal reflux.

    Science.gov (United States)

    Qin, Chao; Malykhina, Anna P; Thompson, Ann M; Farber, Jay P; Foreman, Robert D

    2010-06-01

    Gastroesophageal reflux (GER) frequently triggers or worsens cardiac pain or symptoms in patients with coronary heart disease. This study aimed to determine whether GER enhances the activity of upper thoracic spinal neurons receiving noxious cardiac input. Gastric fundus and pyloric ligations as well as a longitudinal myelotomy at the gastroesophageal junction induced acute GER in pentobarbital-anesthetized, paralyzed, and ventilated male Sprague-Dawley rats. Manual manipulations of the stomach and lower esophagus were used as surgical controls in another group. At 4-9 h after GER surgery, extracellular potentials of single neurons were recorded from the T3 spinal segment. Intrapericardial bradykinin (IB) (10 microg/ml, 0.2 ml, 1 min) injections were used to activate cardiac nociceptors, and esophageal distensions were used to activate esophageal afferent fibers. Significantly more spinal neurons in the GER group responded to IB compared with the control group (69.1 vs. 38%, P neurons in the superficial laminae of GER animals was significantly different from those in deeper layers (1/8 vs. 46/60, P 0.05). Excitatory responses of spinal neurons to IB in the GER group were greater than in the control group [32.4 +/- 3.5 impulses (imp)/s vs. 13.3 +/- 2.3 imp/s, P neurons responded to cardiac input and ED, which was higher than the control group (61.5%, P neurons in deeper laminae of the dorsal horn to noxious cardiac stimulus.

  12. Rapid but not slow spinal cord compression elicits neurogenic pulmonary edema in the rat

    Czech Academy of Sciences Publication Activity Database

    Šedý, Jiří; Zicha, Josef; Kuneš, Jaroslav; Jendelová, Pavla; Syková, Eva

    2009-01-01

    Roč. 58, č. 2 (2009), s. 269-277 ISSN 0862-8408 R&D Projects: GA MŠk(CZ) LC554; GA ČR GA309/06/1246 Grant - others:EC FP6 projekt RESCUE(FR) LSHB-CT-2005-518233; GA MZd(CZ) 1A8697; GA MZd(CZ) NR8339; GA MŠk(CZ) 1M0538; GA MŠk(CZ) 1M0510 Program:1M; 1M Institutional research plan: CEZ:AV0Z50390512; CEZ:AV0Z50110509 Keywords : neurogenic pulmonary edema * rat * spinal cord injury Subject RIV: FH - Neurology Impact factor: 1.430, year: 2009

  13. Extensive scarring induced by chronic intrathecal tubing augmented cord tissue damage and worsened functional recovery after rat spinal cord injury.

    Science.gov (United States)

    Zhang, Shu-xin; Huang, Fengfa; Gates, Mary; White, Jason; Holmberg, Eric G

    2010-08-30

    Intrathecal infusion has been widely used to directly deliver drugs or neurotrophins to a lesion site following spinal cord injury. Evidence shows that intrathecal infusion is efficient for 7 days but is markedly reduced after 14 days, due to time dependent occlusion. In addition, extensive fibrotic scarring is commonly observed with intrathecal infusion. These anomalies need to be clearly elucidated in histology. In the present study, all adult Long-Evans rats received a 25 mm contusion injury on spinal cord T10 produced using the NYU impactor device. Immediately after injury, catheter tubing with an outer diameter of 0.38 mm was inserted through a small dural opening at L3 into the subdural space with the tubing tip positioned near the injury site. The tubing was connected to an Alzet mini pump, which was filled with saline solution and was placed subcutaneously. Injured rats without tubing served as control. Rats were behaviorally tested for 6 weeks using the BBB locomotor rating scale and histologically assessed for tissue scarring. Six weeks later, we found that the intrathecal tubing caused extensive scarring and inflammation, related to neutrophils, macrophages and plasma cells. The tubing's tip was occluded by scar tissue and inflammatory cells. The scar tissue surrounding the tubing consists of 20-70 layers of fibroblasts and densely compacted collagen fibers, seriously compressing and damaging the cord tissue. BBB scores of rats with intrathecal tubing were significantly lower than control rats (p<0.01) from 2 weeks after injury, implying serious impairment of functional recovery caused by the scarring. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  14. Monosodium iodoacetate-induced joint pain is associated with increased phosphorylation of mitogen activated protein kinases in the rat spinal cord

    Directory of Open Access Journals (Sweden)

    Jarvis Michael F

    2011-05-01

    Full Text Available Abstract Background Intra-articular injection of monosodium iodoacetate (MIA in the knee joint of rats disrupts chondrocyte metabolism resulting in cartilage degeneration and subsequent nociceptive behavior that has been described as a model of osteoarthritis (OA pain. Central sensitization through activation of mitogen activated protein kinases (MAPKs is recognized as a pathogenic mechanism in chronic pain. In the present studies, induction of central sensitization as indicated by spinal dorsal horn MAPK activation, specifically ERK and p38 phosphorylation, was assessed in the MIA-OA model. Results Behaviorally, MIA-injected rats displayed reduced hind limb grip force 1, 2, and 3 weeks post-MIA treatment. In the same animals, activation of phospho ERK1/2 was gradually increased, reaching a significant level at post injection week 3. Conversely, phosphorylation of p38 MAPK was enhanced maximally at post injection week 1 and decreased, but remained elevated, thereafter. Double labeling from 3-wk MIA rats demonstrated spinal pERK1/2 expression in neurons, but not glia. In contrast, p-p38 was expressed by microglia and a subpopulation of neurons, but not astrocytes. Additionally, there was increased ipsilateral expression of microglia, but not astrocytes, in 3-wk MIA-OA rats. Consistent with increased MAPK immunoreactivity in the contralateral dorsal horn, mechanical allodynia to the contralateral hind-limb was observed 3-wk following MIA. Finally, intrathecal injection of the MEK1 inhibitor PD98059 blocked both reduced hind-limb grip force and pERK1/2 induction in MIA-OA rats. Conclusion Results of these studies support the role of MAPK activation in the progression and maintenance of central sensitization in the MIA-OA experimental pain model.

  15. Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia.

    Science.gov (United States)

    Gregus, Ann M; Dumlao, Darren S; Wei, Spencer C; Norris, Paul C; Catella, Laura C; Meyerstein, Flore G; Buczynski, Matthew W; Steinauer, Joanne J; Fitzsimmons, Bethany L; Yaksh, Tony L; Dennis, Edward A

    2013-05-01

    Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presence of LOX inhibitors (NDGA, AA-861, CDC, baicalein, and PD146176) vs. vehicle-treated and mock-transfected controls. We detected the following primary intrinsic activities: 12-LOX (Alox12, Alox15), 15-LOX (Alox15b), and HXS (Alox12, Alox15). Similar to human and mouse orthologs, proteins encoded by rat Alox12b and Alox12e possessed minimal 12-LOX activity with AA as substrate, while eLOX3 (encoded by Aloxe3) exhibited HXS without 12-LOX activity when coexpressed with Alox12b or supplemented with 12-HpETE. CDC potently inhibited HXS and 12-LOX activity in vitro (relative IC50s: CDC, ~0.5 and 0.8 μM, respectively) and carrageenan-evoked tactile allodynia in vivo. Notably, peripheral inflammation significantly increased spinal eLOX3; intrathecal pretreatment with either siRNA targeting Aloxe3 or an eLOX3-selective antibody attenuated the associated allodynia. These findings implicate spinal eLOX3-mediated hepoxilin synthesis in inflammatory hyperesthesia and underscore the importance of developing more selective 12-LOX/HXS inhibitors.

  16. Electroacupuncture in the repair of spinal cord injury: inhibiting the Notch signaling pathway and promoting neural stem cell proliferation

    Directory of Open Access Journals (Sweden)

    Xin Geng

    2015-01-01

    Full Text Available Electroacupuncture for the treatment of spinal cord injury has a good clinical curative effect, but the underlying mechanism is unclear. In our experiments, the spinal cord of adult Sprague-Dawley rats was clamped for 60 seconds. Dazhui (GV14 and Mingmen (GV4 acupoints of rats were subjected to electroacupuncture. Enzyme-linked immunosorbent assay revealed that the expression of serum inflammatory factors was apparently downregulated in rat models of spinal cord injury after electroacupuncture. Hematoxylin-eosin staining and immunohistochemistry results demonstrated that electroacupuncture contributed to the proliferation of neural stem cells in rat injured spinal cord, and suppressed their differentiation into astrocytes. Real-time quantitative PCR and western blot assays showed that electroacupuncture inhibited activation of the Notch signaling pathway induced by spinal cord injury. These findings indicate that electroacupuncture repaired the injured spinal cord by suppressing the Notch signaling pathway and promoting the proliferation of endogenous neural stem cells.

  17. Effects of hyperthermia applied to previously irradiated cervical spinal cord in the rat

    International Nuclear Information System (INIS)

    Sminia, P.; Haveman, J.; Koedoder, C.

    1991-01-01

    Rat cervical spinal cord was X-ray irradiated at doses of 15, 18, 20 and 26 Gy. Approximately the same part of the spinal cord was heated by means of a 434 MHz microwave applicator 90 days later. After treatment, animals were observed for 18 months, for expression of neurological complications. These could either be result of the heat or of the radiation treatment. The time course showed 3 distinct peaks in the incidence of neurological symptoms. The 1st peak was due to the acute response to hyperthermia. The ED 50 value for neurological complications one day after treatment at 42.3±0.4 o C was 74 ±2 min. Previous X-ray irradiation of spinal cord with 18, 20 and 26 Gy reduced ED 50 to 57±7,65±4 and 55±5 min (12-26% of control), resp. Recovery from heat-induced neurological complications was diminished in previously irradiated animals. The 2nd peak (150-300 days after X-rays) concerned expression of 'early-delayed' radiation damage. Hyperthermia given in 90 days after irradiation did not influence either the percentage of animals with paralysis or the latent period. Neurological symptoms developing after day 300 were due to the late delayed radiation response. Significant difference was not observed in data on paralysis induced by radiation alone or radiation followed by heat. The late radiation-induced minor neurological symptoms, were however, influenced by retreatment with heat. (author). 30 refs., 6 figs., 3 tabs

  18. Effect of Endogenous Androgens on 17β-Estradiol-Mediated Protection after Spinal Cord Injury in Male Rats

    OpenAIRE

    Kachadroka, Supatra; Hall, Alicia M.; Niedzielko, Tracy L.; Chongthammakun, Sukumal; Floyd, Candace L.

    2010-01-01

    Several groups have recently shown that 17β-estradiol is protective in spinal cord injury (SCI). Testosterone can be aromatized to 17β-estradiol and may increase estrogen-mediated protection. Alternatively, testosterone has been shown to increase excitotoxicity in models of central nervous system (CNS) injury. These experiments test the hypothesis that endogenous testosterone in male rats alters 17β-estradiol-mediated protection by evaluating a delayed administration over a clinically relevan...

  19. Arterial Blood Supply to the Spinal Cord in Animal Models of Spinal Cord Injury. A Review.

    Science.gov (United States)

    Mazensky, David; Flesarova, Slavka; Sulla, Igor

    2017-12-01

    Animal models are used to examine the results of experimental spinal cord injury. Alterations in spinal cord blood supply caused by complex spinal cord injuries contribute significantly to the diversity and severity of the spinal cord damage, particularly ischemic changes. However, the literature has not completely clarified our knowledge of anatomy of the complex three-dimensional arterial system of the spinal cord in experimental animals, which can impede the translation of experimental results to human clinical applications. As the literary sources dealing with the spinal cord arterial blood supply in experimental animals are limited and scattered, the authors performed a review of the anatomy of the arterial blood supply to the spinal cord in several experimental animals, including pigs, dogs, cats, rabbits, guinea pigs, rats, and mice and created a coherent format discussing the interspecies differences. This provides researchers with a valuable tool for the selection of the most suitable animal model for their experiments in the study of spinal cord ischemia and provides clinicians with a basis for the appropriate translation of research work to their clinical applications. Anat Rec, 300:2091-2106, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  20. [Expressions of neuropathic pain-related proteins in the spinal cord dorsal horn in rats with bilateral chronic constriction injury].

    Science.gov (United States)

    Shen, Le; Li, Xu; Wang, Hai-tang; Yu, Xue-rong; Huang, Yu-guang

    2013-12-01

    To evaluate the pain-related behavioral changes in rats with bilateral chronic constriction injury(bCCI)and identify the expressions of neuropathic pain-related proteins. The bCCI models were established by ligating the sciatic nerves in female Sprague Dawley rats. Both mechanical hyperalgesia and cold hyperalgesia were evaluated through electronic von Frey and acetone method. Liquid chromatography-mass spectrometry/mass spectrometry was applied to characterize the differentially expressed proteins. Both mechanical withdrawal threshold and cold hyperalgesia threshold decreased significantly on the postoperative day 7 and 14, when compared with na ve or sham rats(P <0.05). Twenty five differentially expressed proteins associated with bilateral CCI were discovered, with eighteen of them were upregulated and seven of them downregulated. The bCCT rats have remarkably decreased mechanical and cold hyperalgesia thresholds. Twenty five neuropathic pain-related proteins are found in the spinal cord dorsal horn.

  1. Transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into rat spinal cord injuries does not cause harm.

    Science.gov (United States)

    Cloutier, Frank; Siegenthaler, Monica M; Nistor, Gabriel; Keirstead, Hans S

    2006-07-01

    Demyelination contributes to loss of function following spinal cord injury. We have shown previously that transplantation of human embryonic stem cell-derived oligodendrocyte progenitors into adult rat 200 kD contusive spinal cord injury sites enhances remyelination and promotes recovery of motor function. Previous studies using oligodendrocyte lineage cells have noted a correlation between the presence of demyelinating pathology and the survival and migration rate of the transplanted cells. The present study compared the survival and migration of human embryonic stem cell-derived oligodendrocyte progenitors injected 7 days after a 200 or 50 kD contusive spinal cord injury, as well as the locomotor outcome of transplantation. Our findings indicate that a 200 kD spinal cord injury induces extensive demyelination, whereas a 50 kD spinal cord injury induces no detectable demyelination. Cells transplanted into the 200 kD injury group survived, migrated, and resulted in robust remyelination, replicating our previous studies. In contrast, cells transplanted into the 50 kD injury group survived, exhibited limited migration, and failed to induce remyelination as demyelination in this injury group was absent. Animals that received a 50 kD injury displayed only a transient decline in locomotor function as a result of the injury. Importantly, human embryonic stem cell-derived oligodendrocyte progenitor transplants into the 50 kD injury group did not cause a further decline in locomotion. Our studies highlight the importance of a demyelinating pathology as a prerequisite for the function of transplanted myelinogenic cells. In addition, our results indicate that transplantation of human embryonic stem cell-derived oligodendrocyte progenitor cells into the injured spinal cord is not associated with a decline in locomotor function.

  2. Oral Administration of α-Asarone Promotes Functional Recovery in Rats With Spinal Cord Injury

    Directory of Open Access Journals (Sweden)

    Min-Jae Jo

    2018-05-01

    Full Text Available α-asarone, a bioactive compound found in Acorus plant species, has been shown to exhibit neuroprotective, anti-oxidative, anti-inflammatory, and cognitive-enhancing effects. However, the effects of α-asarone on spinal cord injury (SCI have not yet been elucidated. The present study investigated the effects of α-asarone on the mRNA of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis in rats with compressive SCI. α-Asarone was orally administered (10 mg/kg once per day for 14 days following moderate static compression SCI. Compared to controls, α-asarone treatment significantly improved locomotor score, prevented neuroinflammation, and facilitated angiogenesis in the spinal cord at 14 days after SCI. Furthermore, α-asarone significantly reduced the TNF-α, IL-1β, IL-6, monocyte chemoattractant protein 1 (MCP-1, macrophage inflammatory protein 2 (MIP-2, and inducible nitric oxide synthase (iNOS levels but increased the IL-4, IL-10, and arginase 1 levels at 24 h after SCI. At 7 and 14 days after SCI, immunohistochemistry showed reduced reactive gliosis and neuroinflammation and an increased expression of M2 macrophage markers and angiogenesis. The results suggest that the inhibition of pro-inflammatory cytokines, macrophage polarization toward an anti-inflammatory M2 phenotype, and angiogenesis by α-asarone may be some of the mechanisms underlying the α-asarone-mediated neuroprotective effects on an injured spinal cord.

  3. Observations on the interactions of Schwann cells and astrocytes following x irradiation of neonatal rat spinal cord

    Energy Technology Data Exchange (ETDEWEB)

    Blakemore, W F; Patterson, R C

    1975-10-01

    Myelination was inhibited in the spinal cord of three day-old rats with 2000 rads of x irradiation. Myelination subsequently occurred as a result of caudal migration of oligodendrocytes and extensive invasion of the cord by Schwann cells. Although oligodendrocytes were present in areas containing Schwann cells, astrocytes were absent. The presence of Schwann cells in the neuropil of the spinal cord did not stimulate production of basement membrane by astrocytes, so no new glial limiting membrane was formed. Evidence is presented which suggests that if astrocytes do not form a glial limiting membrane when opposed by large numbers of Schwann cells they are destroyed by the invading cells. It is suggested that the glial limiting membrane normally inhibits entry of Schwann cells into the central nervous system; if this is destroyed and not reconstituted, Schwann cells can migrate freely into the neuropil.

  4. Bone marrow mesenchymal stem cells with Nogo-66 receptor gene silencing for repair of spinal cord injury

    Science.gov (United States)

    Li, Zhiyuan; Zhang, Zhanxiu; Zhao, Lili; Li, Hui; Wang, Suxia; Shen, Yong

    2014-01-01

    We hypothesized that RNA interference to silence Nogo-66 receptor gene expression in bone marrow mesenchymal stem cells before transplantation might further improve neurological function in rats with spinal cord transection injury. After 2 weeks, the number of neurons and BrdU-positive cells in the Nogo-66 receptor gene silencing group was higher than in the bone marrow mesenchymal stem cell group, and significantly greater compared with the model group. After 4 weeks, behavioral performance was significantly enhanced in the model group. After 8 weeks, the number of horseradish peroxidase-labeled nerve fibers was higher in the Nogo-66 receptor gene silencing group than in the bone marrow mesenchymal stem cell group, and significantly higher than in the model group. The newly formed nerve fibers and myelinated nerve fibers were detectable in the central transverse plane section in the bone marrow mesenchymal stem cell group and in the Nogo-66 receptor gene silencing group. PMID:25206893

  5. Plasmid-based genetic modification of human bone marrow-derived stromal cells: analysis of cell survival and transgene expression after transplantation in rat spinal cord.

    Science.gov (United States)

    Ronsyn, Mark W; Daans, Jasmijn; Spaepen, Gie; Chatterjee, Shyama; Vermeulen, Katrien; D'Haese, Patrick; Van Tendeloo, Viggo Fi; Van Marck, Eric; Ysebaert, Dirk; Berneman, Zwi N; Jorens, Philippe G; Ponsaerts, Peter

    2007-12-14

    Bone marrow-derived stromal cells (MSC) are attractive targets for ex vivo cell and gene therapy. In this context, we investigated the feasibility of a plasmid-based strategy for genetic modification of human (h)MSC with enhanced green fluorescent protein (EGFP) and neurotrophin (NT)3. Three genetically modified hMSC lines (EGFP, NT3, NT3-EGFP) were established and used to study cell survival and transgene expression following transplantation in rat spinal cord. First, we demonstrate long-term survival of transplanted hMSC-EGFP cells in rat spinal cord under, but not without, appropriate immune suppression. Next, we examined the stability of EGFP or NT3 transgene expression following transplantation of hMSC-EGFP, hMSC-NT3 and hMSC-NT3-EGFP in rat spinal cord. While in vivo EGFP mRNA and protein expression by transplanted hMSC-EGFP cells was readily detectable at different time points post-transplantation, in vivo NT3 mRNA expression by hMSC-NT3 cells and in vivo EGFP protein expression by hMSC-NT3-EGFP cells was, respectively, undetectable or declined rapidly between day 1 and 7 post-transplantation. Further investigation revealed that the observed in vivo decline of EGFP protein expression by hMSC-NT3-EGFP cells: (i) was associated with a decrease in transgenic NT3-EGFP mRNA expression as suggested following laser capture micro-dissection analysis of hMSC-NT3-EGFP cell transplants at day 1 and day 7 post-transplantation, (ii) did not occur when hMSC-NT3-EGFP cells were transplanted subcutaneously, and (iii) was reversed upon re-establishment of hMSC-NT3-EGFP cell cultures at 2 weeks post-transplantation. Finally, because we observed a slowly progressing tumour growth following transplantation of all our hMSC cell transplants, we here demonstrate that omitting immune suppressive therapy is sufficient to prevent further tumour growth and to eradicate malignant xenogeneic cell transplants. In this study, we demonstrate that genetically modified hMSC lines can survive

  6. Effect of intra-peritoneal fludarabine on rat spinal cord tolerance to fractionated irradiation

    Energy Technology Data Exchange (ETDEWEB)

    Gregoire, V; Ruifrok, A C.C.; Price, R E; Brock, W A; Hittelman, W N; Plunkett, W K; Ang, K K

    1995-07-01

    The effect of fludarabine (9-{beta}-d-arabinosyl-2-fluoroadenine-5'-monophosphate), an adenine nucleoside analogue, on the tolerance of the spinal cord to fractionated irradiation was studied in a rat model. Anesthesized female Fisher 344 rats received irradiation to 2 cm of the cervical spine with a telecobalt unit (dose rate 1.14 Gy/min). Radiation was administered in two, four or eight fractions spread over a 48-h period with or without fludarabine. Animals assigned to combined therapy received two daily intraperitoneal injections of fludarabine (150 mg/kg) given 3 h prior to the first daily radiation fraction. It was found that fludarabine reduced the iso-effect dose required to induce leg paresis at 9 months after irradiation for all fractionation schedules. Dose modification factors of 1.23, 1.29 and greater than 1.27 were obtained for two, four and eight fractions, respectively. Fitting the data with the direct analysis method of Thames et al. with an incomplete repair model [18] showed that the potentiating effect of fludarabine may be mediated through reduction in the number of 'tissue-rescuing units' (lnK). Alpha and {beta} values were slightly but not significantly decreased, whereas the ({alpha}({beta})) ratio was unchanged. These features suggest that fludarabine did not significantly inhibit cellular repair processes but rather reduced the spinal cord tolerance by a fixed additive toxic effect on the same target cells. In rodent models, the combination of fludarabine and fractionated radiation has previously been found to yield a therapeutic gain, i.e., the drug enhanced tumor response to a greater extent than it reduced normal tissue tolerance. However, given our results, caution should be exercised in extrapolating these findings to the clinic. Normal tissue reactions will have to be monitored rigorously in phase I clinical studies.

  7. Systematic analysis of rat 12/15-lipoxygenase enzymes reveals critical role for spinal eLOX3 hepoxilin synthase activity in inflammatory hyperalgesia

    OpenAIRE

    Gregus, Ann M.; Dumlao, Darren S.; Wei, Spencer C.; Norris, Paul C.; Catella, Laura C.; Meyerstein, Flore G.; Buczynski, Matthew W.; Steinauer, Joanne J.; Fitzsimmons, Bethany L.; Yaksh, Tony L.; Dennis, Edward A.

    2013-01-01

    Previously, we observed significant increases in spinal 12-lipoxygenase (LOX) metabolites, in particular, hepoxilins, which contribute to peripheral inflammation-induced tactile allodynia. However, the enzymatic sources of hepoxilin synthase (HXS) activity in rats remain elusive. Therefore, we overexpressed each of the 6 rat 12/15-LOX enzymes in HEK-293T cells and measured by LC-MS/MS the formation of HXB3, 12-HETE, 8-HETE, and 15-HETE from arachidonic acid (AA) at baseline and in the presenc...

  8. [Curcumin down-regulates CX3CR1 expression in spinal cord dorsal horn and DRG in neuropathic pain rats].

    Science.gov (United States)

    Zheng, Jinwei; Zheng, Changjian; Cao, Hong; Li, Jun; Lian, Qingquan

    2011-09-01

    To investigate the effects of curcumin on the behavior of chronic constrictive injury (CCI) rats and the CX3CR1 expression in spinal cord dorsal horn and dorsal root ganglia (DRG). Seventy-two male SD rats were randomly divided into 4 groups: 1) Sham operation group (Sham); 2) Chronic constrictive injury group (CCI); 3) Curcumin treated group (Cur), administrated with curcumin 100 mg x kg(-1) x d(-1) ip for 14 days after CCI; 4) Solvent contrast group (SC), administrated with an equal volume of solvent for 14 days after CCI. Paw thermal withdrawal (PTWL) and paw mechanical withdrawal threshold (PMWT) were measured on 2 pre-operative and 1, 3, 5, 7, 10, 14 post-operative days respectively. The lumbar segments L4-5 of the spinal cord and the L4, L5 DRG were removed at 3, 7, 14 days after surgery. The expression of CX3CR1 was determined by immunohistochemical staining. Compared with Sham group, PTWL and PMWT in CCI group were significantly lower on each post-operative day (PDRG. In Cur group, PTWL were higher than in CCI group on 7, 10, 14 post-operative day (Pdorsal root ganglia.

  9. Effect of intrathecal non-NMDA EAA receptor antagonist LY293558 in rats: a new class of drugs for spinal anesthesia.

    Science.gov (United States)

    Von Bergen, Nicholas H; Subieta, Alberto; Brennan, Timothy J

    2002-07-01

    Excitatory amino acid receptors are important for both sensory and motor function in the spinal cord. We studied the effects of intrathecal LY293558, a competitive non-N-methyl-D-aspartate excitatory amino acid receptor antagonist, on motor and sensory function in rats to determine whether drugs blocking these receptors could potentially be used as alternative agents to local anesthetics for spinal anesthesia. Rats were tested before and 15-240 min after intrathecal injection of 5 nmol (in 10 microl) LY293558. Sensory function was tested at the hind paw using withdrawal response to pin prick and withdrawal to pinch with sharp forceps. Motor performance (ambulation, placing reflex, and Rotorod time), blood pressure, and heart rate were also evaluated. Some tests were repeated the next day. Responses after LY293558 were compared to injection of 40 microl bupivacaine, 0.75%. Pin-prick responses at the forepaw, chest, abdomen, hind leg, and hind paw were also examined after intrathecal LY293558. Intrathecal LY293558 blocked both sensory and motor responses through 180 min; complete recovery was present the following day. No change in blood pressure or heart rate occurred. The effects of LY293558 were more pronounced and sustained than those of bupivacaine. Segmental blockade of the response to pin prick was present after LY293558. Drugs like LY293558 that block alpha-amino-3-hydroxy-5-methyl-4-isoxazole-propionic acid (AMPA)/kainate receptors may be an alternative to local anesthetics for spinal anesthesia in humans.

  10. Involvement of spinal glutamate transporter-1 in the development of mechanical allodynia and hyperalgesia associated with type 2 diabetes

    Directory of Open Access Journals (Sweden)

    Shi J

    2016-11-01

    Full Text Available Jinshan Shi,1,* Ke Jiang,2,* Zhaoduan Li,3 1Department of Anesthesiology, Guizhou Provincial People’s Hospital, 2Department of Anesthesiology, The Affiliated Hospital of Guizhou Medical University, Guiyang, 3Department of Anesthesiology, Tianjin Nankai Hospital, Tianjin, People’s Republic of China *These authors contributed equally to this work Abstract: Little is known about the effects of the development of type 2 diabetes on glutamate homeostasis in the spinal cord. Therefore, we quantified the extracellular levels of glutamate in the spinal cord of Zucker diabetic fatty (ZDF rats using in vivo microdialysis. In addition, protein levels of glutamate transporter-1 (GLT-1 in the spinal cord of ZDF rats were measured using Western blot. Finally, the effects of repeated intrathecal injections of ceftriaxone, which was previously shown to enhance GLT-1 expression, on the development of mechanical allodynia and hyperalgesia as well as on basal extracellular level of glutamate and the expression of GLT-1 in the spinal cord of ZDF rats were evaluated. It was found that ZDF rats developed mechanical hyperalgesia and allodynia, which were associated with increased basal extracellular levels of glutamate and attenuated levels of GLT-1 expression in the spinal cord, particularly in the dorsal horn. Furthermore, repeated intrathecal administrations of ceftriaxone dose-dependently prevented the development of mechanical hyperalgesia and allodynia in ZDF rats, which were correlated with enhanced GLT-1 expression without altering the basal glutamate levels in the spinal cord of ZDF rats. Overall, the results suggested that impaired glutamate reuptake in the spinal cord may contribute to the development of neuropathic pains in type 2 diabetes. Keywords: diabetes, peripheral neuropathy, spinal cord, Zucker diabetic fatty rats, glutamate, glutamate transporter-1

  11. γ-diketone central neuropathy: quantitative morphometric analysis of axons in rat spinal cord white matter regions and nerve roots

    International Nuclear Information System (INIS)

    LoPachin, Richard M.; Jortner, Bernard S.; Reid, Maria L.; Das, Soma

    2003-01-01

    A quantitative analytical method was used to measure myelinated axon morphometric parameters (e.g., axon area, ratio of axon area/fiber area, and index of circularity) in rat nervous tissue during intoxication with 2,5-hexanedione (HD). Parameters were assessed in nerve roots (dorsal and ventral) and in ascending (gracile fasciculus and spinocerebellar tract) and descending (corticospinal and rubrospinal tracts) spinal cord white matter tracts (L4-L5) of rats intoxicated with HD at two different daily dose-rates (175 or 400 mg HD/kg/day, gavage). For each dose-rate, tissue was sampled at four neurological endpoints: unaffected, slight, moderate, and severe toxicity, as determined by gait analysis and measurements of grip strength. Results indicate that, regardless of the HD dose-rate, axon atrophy (reduced axon area) was a widespread, abundant effect that developed in concert with neurological deficits. The atrophy response occurred contemporaneously in both ascending and descending spinal tracts, which suggests that loss of caliber developed simultaneously along the proximodistal axon axis. In contrast, swollen axons were a numerically small component and were present in nerve roots and spinal tracts only during subchronic intoxication at the lower HD dose-rate (i.e., 175 mg/kg/day). Intoxication at the higher dose-rate (400 mg/kg/day) produced neurological deficits in the absence of axonal swellings. These observations in conjunction with our previous studies of HD-induced peripheral neuropathy (Toxicol. Appl. Pharmacol. 135 (1995) 58; and Toxicol. Appl. Pharmacol. 165 (2000) 127) indicate that axon atrophy, and not axonal swelling, is a primary neuropathic phenomenon

  12. The mechanism of Naringin-enhanced remyelination after spinal cord injury

    Directory of Open Access Journals (Sweden)

    Wei Rong

    2017-01-01

    Full Text Available Our previous study revealed that intragastric administration of naringin improved remyelination in rats with spinal cord injury and promoted the recovery of neurological function of the injured spinal cord. This study sought to reveal the mechanisms by which naringin improves oligodendrocyte precursor cell differentiation and maturation, and promotes remyelination. Spinal cord injury was induced in rats by the weight-drop method. Naringin was intragastrically administered daily (20, 40 mg/kg for 4 weeks after spinal cord injury induction. Behavioral assessment, histopathological staining, immunofluorescence spectroscopy, ultrastructural analysis and biochemical assays were employed. Naringin treatment remarkably mitigated demyelination in the white matter, increased the quality of myelinated nerve fibers and myelin sheath thickness, promoted oligodendrocyte precursor cell differentiation by upregulating the expression of NKx2.2 and 2′3′-cyclic nucleotide 3′-phosphodiesterase, and inhibited β-catenin expression and glycogen synthase kinase-3β (GSK-3β phosphorylation. These findings indicate that naringin treatment regulates oligodendrocyte precursor cell differentiation and promotes remyelination after spinal cord injury through the β-catenin/GSK-3β signaling pathway.

  13. Signaling pathways involved in HSP32 induction by hyperbaric oxygen in rat spinal neurons

    Directory of Open Access Journals (Sweden)

    Guoyang Huang

    2016-12-01

    Full Text Available Spinal cord injury (SCI is a debilitating disease, effective prevention measures are in desperate need. Our previous work found that hyperbaric oxygen (HBO preconditioning significantly protected rats from SCI after stimulated diving, and in vitro study further testified that HBO protected primary cultured rat spinal neurons from oxidative insult and oxygen glucose deprivation injury via heat shock protein (HSP 32 induction. In this study, underlying molecular mechanisms were further investigated. The results showed that a single exposure to HBO significantly increased intracellular levels of reactive oxygen species (ROS and nitric oxide (NO and activated MEK1/2, ERK1/2, p38 MAPK, CREB, Bach1 and Nrf2. The induction of HSP32 by HBO was significantly reversed by pretreatment neurons with ROS scavenger N-Acetyl-L-cysteine, p38 MAPK inhibitor or Nrf2 gene knockdown, enhanced by MEK1/2 inhibitors or gene knockdown but not by ERK1/2 inhibitor. CREB knockdown did not change the expression of HSP32 induced by HBO. N-Acetyl-L-cysteine significantly inhibited the activation of MEK1/2, ERK1/2, p38 MAPK, and Nrf2. Activation of Nrf2 was significantly inhibited by p38 MAPK inhibitor and the nuclear export of Bach1 was significantly enhanced by MEK1/2 inhibitor. The results demonstrated that HBO induces HSP32 expression through a ROS/p38 MAPK/Nrf2 pathway and the MEK1/2/Bach1 pathway contributes to negative regulation in the process. More importantly, as we know, this is the first study to delineate that ERK1/2 is not the only physiological substrates of MEK1/2.

  14. Spinal afferent neurons projecting to the rat lung and pleura express acid sensitive channels

    Directory of Open Access Journals (Sweden)

    Kummer Wolfgang

    2006-07-01

    Full Text Available Abstract Background The acid sensitive ion channels TRPV1 (transient receptor potential vanilloid receptor-1 and ASIC3 (acid sensing ion channel-3 respond to tissue acidification in the range that occurs during painful conditions such as inflammation and ischemia. Here, we investigated to which extent they are expressed by rat dorsal root ganglion neurons projecting to lung and pleura, respectively. Methods The tracer DiI was either injected into the left lung or applied to the costal pleura. Retrogradely labelled dorsal root ganglion neurons were subjected to triple-labelling immunohistochemistry using antisera against TRPV1, ASIC3 and neurofilament 68 (marker for myelinated neurons, and their soma diameter was measured. Results Whereas 22% of pulmonary spinal afferents contained neither channel-immunoreactivity, at least one is expressed by 97% of pleural afferents. TRPV1+/ASIC3- neurons with probably slow conduction velocity (small soma, neurofilament 68-negative were significantly more frequent among pleural (35% than pulmonary afferents (20%. TRPV1+/ASIC3+ neurons amounted to 14 and 10% respectively. TRPV1-/ASIC3+ neurons made up between 44% (lung and 48% (pleura of neurons, and half of them presumably conducted in the A-fibre range (larger soma, neurofilament 68-positive. Conclusion Rat pleural and pulmonary spinal afferents express at least two different acid-sensitive channels that make them suitable to monitor tissue acidification. Patterns of co-expression and structural markers define neuronal subgroups that can be inferred to subserve different functions and may initiate specific reflex responses. The higher prevalence of TRPV1+/ASIC3- neurons among pleural afferents probably reflects the high sensitivity of the parietal pleura to painful stimuli.

  15. Organization of projections from the spinal trigeminal subnucleus oralis to the spinal cord in the rat: a neuroanatomical substrate for reciprocal orofacial-cervical interactions.

    Science.gov (United States)

    Devoize, Laurent; Doméjean, Sophie; Melin, Céline; Raboisson, Patrick; Artola, Alain; Dallel, Radhouane

    2010-07-09

    The organization of efferent projections from the spinal trigeminal nucleus oralis (Sp5O) to the spinal cord in the rat was studied using the anterograde tracer Phaseolus vulgaris leucoagglutinin. Sp5O projections to the spinal cord are restricted to the cervical cord. No labeled terminal can be detected in the thoracic and lumbar cord. The organization of these projections happens to critically depend on the dorso-ventral location of the injection site. On the one hand, the dorsal part of the Sp5O projects to the medial part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the ipsilateral one. Ipsilateral labeled terminals are distributed throughout laminae VII to IX but tend to cluster around the dorso-medial motor nuclei, especially at C3-C5 levels. Within the contralateral ventral horn, label terminals are found particularly in the region of the ventro-medial motor nucleus. This projection extends as far caudally as C3 or C4 level. On the other hand, the ventral part of the Sp5O projects to the lateral part of the dorsal horn (laminae III-V) at the C1 level, on the ipsilateral side, and to the ventral horn, on both sides but mainly on the contralateral one. Contralateral labeled terminals are distributed within the region of the dorso- and ventro-medial motor nuclei at C1-C4 levels whereas they are restricted to the dorso-medial motor nucleus at C5-C8 levels. These findings suggest that Sp5O is involved in the coordination of neck movements and in the modulation of incoming sensory information at the cervical spinal cord. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  16. 24R,25-Dihydroxyvitamin D3 Protects against Articular Cartilage Damage following Anterior Cruciate Ligament Transection in Male Rats.

    Directory of Open Access Journals (Sweden)

    Barbara D Boyan

    Full Text Available Osteoarthritis (OA in humans is associated with low circulating 25-hydroxyvitamin D3 [25(OHD3]. In vitamin D replete rats, radiolabeled 24R,25-dihydroxyvitamin D3 [24R,25(OH2D3] accumulates in articular cartilage following injection of [3H]-25(OHD3. Previously, we showed that 24R,25(OH2D3 blocks chondrocyte apoptosis via phospholipase D and p53, suggesting a role for 24R,25(OH2D3 in maintaining cartilage health. We examined the ability of 24R,25(OH2D3 to prevent degenerative changes in articular cartilage in an OA-like environment and the potential mechanisms involved. In vitro, rat articular chondrocytes were treated with IL-1β with and without 24R,25(OH2D3 or 1α,25(OH2D3. 24R,25(OH2D3 but not 1α,25(OH2D3 blocked the effects of IL-1β in a dose-dependent manner, and its effect was partially mediated through the TGF-β1 signaling pathway. In vivo, unilateral anterior cruciate ligament transections were performed in immunocompetent rats followed by intra-articular injections of 24R,25(OH2D3 or vehicle (t = 0, 7, 14, 21 days. Tissues were harvested on day 28. Joints treated with vehicle had changes typical of OA whereas joints treated with 24R,25(OH2D3 had less articular cartilage damage and levels of inflammatory mediators. These results indicate that 24R,25(OH2D3 protects against OA, and suggest that it may be a therapeutic approach for preventing trauma-induced osteoarthritis.

  17. Cholinergic mechanisms in spinal cord and muscle

    International Nuclear Information System (INIS)

    Aquilonius, S.M.; Askmark, H.; Gilberg, P.G.

    1986-01-01

    Current knowledge regarding the distribution of acetylcholinesterase (ACHE) cholineacetyltranferase (ChAT) and cholinergic receptors in the spinal cord is presented as well as changes in these markers coupled to the degenerations in amyotrophic lateral sclerosis (ALS). The principal changes in ChAT and nicotonic receptors in rat hindleg muscles during denervation and reinnervation is discussed as a background for quantitative studies in human muscle biopsies. It is noted that thefirst published autoradiograph on spinal cord muscarinic receptors was from the rat, depicting an intense binding of radiolabeled quinuclikiny benzilate (tritium-QNB) in the ventral horn, and expecially in an apical part of the dorsal horn claimed to correspond to correspond to sustantia gelatinosa

  18. High dose rate (HDR) and low dose rate (LDR) interstitial irradiation (IRT) of the rat spinal cord

    International Nuclear Information System (INIS)

    Pop, Lucas A.M.; Plas, Mirjam van der; Skwarchuk, Mark W.; Hanssen, Alex E.J.; Kogel, Albert J. van der

    1997-01-01

    Purpose: To describe a newly developed technique to study radiation tolerance of rat spinal cord to continuous interstitial irradiation (IRT) at different dose rates. Material and methods: Two parallel catheters are inserted just laterally on each side of the vertebral bodies from the level of Th 10 to L 4 . These catheters are afterloaded with two 192 Ir wires of 4 cm length each (activity 1-2.3 mCi/cm) for the low dose rate (LDR) IRT or connected to the HDR micro-Selectron for the high dose rate (HDR) IRT. Spinal cord target volume is located at the level of Th 12 -L 2 . Due to the rapid dose fall-off around the implanted sources, a dose inhomogeneity across the spinal cord thickness is obtained in the dorso-ventral direction. Using the 100% reference dose (rate) at the ventral side of the spinal cord to prescribe the dose, experiments have been carried out to obtain complete dose response curves at average dose rates of 0.49, 0.96 and 120 Gy/h. Paralysis of the hind-legs after 5-6 months and histopathological examination of the spinal cord of each irradiated rat are used as experimental endpoints. Results: The histopathological damage seen after irradiation is clearly reflected the inhomogeneous dose distribution around the implanted catheters, with the damage predominantly located in the dorsal tract of the cord or dorsal roots. With each reduction in average dose rate, spinal cord radiation tolerance is significantly increased. When the dose is prescribed at the 100% reference dose rate, the ED 50 (induction of paresis in 50% of the animals) for the HDR-IRT is 17.3 Gy. If the average dose rate is reduced from 120 Gy/h to 0.96 or 0.49 Gy/h, a 2.9- or 4.7-fold increase in the ED 50 values to 50.3 Gy and 80.9 Gy is observed; for the dose prescribed at the 150% reference dose rate (dorsal side of cord) ED 50 values are 26.0, 75.5 and 121.4 Gy, respectively. Using different types of analysis and in dependence of the dose prescription and reference dose rate, the

  19. Spinal Microgliosis Due to Resident Microglial Proliferation Is Required for Pain Hypersensitivity after Peripheral Nerve Injury

    Directory of Open Access Journals (Sweden)

    Nan Gu

    2016-07-01

    Full Text Available Peripheral nerve injury causes neuropathic pain accompanied by remarkable microgliosis in the spinal cord dorsal horn. However, it is still debated whether infiltrated monocytes contribute to injury-induced expansion of the microglial population. Here, we found that spinal microgliosis predominantly results from local proliferation of resident microglia but not from infiltrating monocytes after spinal nerve transection (SNT by using two genetic mouse models (CCR2RFP/+:CX3CR1GFP/+ and CX3CR1creER/+:R26tdTomato/+ mice as well as specific staining of microglia and macrophages. Pharmacological inhibition of SNT-induced microglial proliferation correlated with attenuated neuropathic pain hypersensitivities. Microglial proliferation is partially controlled by purinergic and fractalkine signaling, as CX3CR1−/− and P2Y12−/− mice show reduced spinal microglial proliferation and neuropathic pain. These results suggest that local microglial proliferation is the sole source of spinal microgliosis, which represents a potential therapeutic target for neuropathic pain management.

  20. INFLAMMATION IS INCREASED WITH ANXIETY- AND DEPRESSION-LIKE SIGNS IN A RAT MODEL OF SPINAL CORD INJURY

    Science.gov (United States)

    Maldonado-Bouchard, Sioui; Peters, Kelsey; Woller, Sarah A.; Madahian, Behrouz; Faghihi, Usef; Patel, Shivani; Bake, Shameena; Hook, Michelle A

    2015-01-01

    Spinal cord injury (SCI) leads to increased anxiety and depression in as many as 60% of patients. Yet, despite extensive clinical research focused on understanding the variables influencing psychological well-being following SCI, risk factors that decrease it remain unclear. We hypothesized that excitation of the immune system, inherent to SCI, may contribute to the decrease in psychological well-being. To test this hypothesis, we used a battery of established behavioral tests to assess depression and anxiety in spinally contused rats. The behavioral tests, and subsequent statistical analyses, revealed three cohorts of subjects that displayed behavioral characteristics of 1) depression, 2) depression and anxiety, or 3) no signs of decreased psychological well-being. Subsequent molecular analyses demonstrated that the psychological cohorts differed not only in behavioral symptoms, but also in peripheral (serum) and central (hippocampi and spinal cord) levels of pro-inflammatory cytokines. Subjects exhibiting a purely depression-like profile showed higher levels of pro-inflammatory cytokines peripherally, whereas subjects exhibiting a depression- and anxiety-like profile showed higher levels of pro-inflammatory cytokines centrally (hippocampi and spinal cord). These changes in inflammation were not associated with injury severity; suggesting that the association between inflammation and the expression of behaviors characteristic of decreased psychological well-being was not confounded by differential impairments in motor ability. These data support the hypothesis that inflammatory changes are associated with decreased psychological well-being following SCI. PMID:26296565

  1. Combined effects of rat Schwann cells and 17β-estradiol in a spinal cord injury model.

    Science.gov (United States)

    Namjoo, Zeinab; Moradi, Fateme; Aryanpour, Roya; Piryaei, Abbas; Joghataei, Mohammad Taghi; Abbasi, Yusef; Hosseini, Amir; Hassanzadeh, Sajad; Taklimie, Fatemeh Ranjbar; Beyer, Cordian; Zendedel, Adib

    2018-04-15

    Spinal cord injury (SCI) is a devastating traumatic event which burdens the affected individuals and the health system. Schwann cell (SC) transplantation is a promising repair strategy after SCI. However, a large number of SCs do not survive following transplantation. Previous studies demonstrated that 17β-estradiol (E2) protects different cell types and reduces tissue damage in SCI experimental animal model. In the current study, we evaluated the protective potential of E2 on SCs in vitro and investigated whether the combination of hormonal and SC therapeutic strategy has a better effect on the outcome after SCI. Primary SC cultures were incubated with E2 for 72 h. In a subsequent experiment, thoracic contusion SCI was induced in male rats followed by sustained administration of E2 or vehicle. Eight days after SCI, DiI-labeled SCs were transplanted into the injury epicenter in vehicle and E2-treated animals. The combinatory regimen decreased neurological and behavioral deficits and protected neurons and oligodendrocytes in comparison to vehicle rats. Moreover, E2 and SC significantly decreased the number of Iba-1+ (microglia) and GFAP + cells (astrocyte) in the SCI group. In addition, we found a significant reduction of mitochondrial fission-markers (Fis1) and an increase of fusion-markers (Mfn1 and Mfn2) in the injured spinal cord after E2 and SC treatment. These data demonstrated that E2 protects SCs against hypoxia-induced SCI and improves the survival of transplanted SCs.

  2. Generation patterns of four groups of cholinergic neurons in rat cervical spinal cord: a combined tritiated thymidine autoradiographic and choline acetyltransferase immunocytochemical study

    International Nuclear Information System (INIS)

    Phelps, P.E.; Barber, R.P.; Vaughn, J.E.

    1988-01-01

    This report examines the generation of cholinergic neurons in the spinal cord in order to determine whether the transmitter phenotype of neurons is associated with specific patterns of neurogenesis. Previous immunocytochemical studies identified four groups of choline acetyltransferase (ChAT)-positive neurons in the cervical enlargement of the rat spinal cord. These cell groups vary in both somatic size and location along the previously described ventrodorsal neurogenic gradient of the spinal cord. Thus, large (and small) motoneurons are located in the ventral horn, medium-sized partition cells are found in the intermediate gray matter, small central canal cluster cells are situated within lamina X, and small dorsal horn neurons are scattered predominantly through laminae III-V. The relationships among the birthdays of these four subsets of cholinergic neurons have been examined by combining 3H-thymidine autoradiography and ChAT immunocytochemistry. Embryonic day 11 was the earliest time that neurons were generated within the cervical enlargement. Large and small ChAT-positive motoneurons were produced on E11 and 12, with 70% of both groups being born on E11. ChAT-positive partition cells were produced between E11 and 13, with their peak generation occurring on E12. Approximately 70% of the cholinergic central canal cluster and dorsal horn cells were born on E13, and the remainder of each of these groups was generated on E14. Other investigators have shown that all neurons within the rat cervical spinal cord are produced in a ventrodorsal sequence between E11 and E16. In contrast, ChAT-positive neurons are born only from E11 to E14 and are among the earliest cells generated in the ventral, intermediate, and dorsal subdivisions of the spinal cord

  3. [Effect of electroacupuncture on the expression of oligodendrocyte precursor cells in rats with compressed spinal cord injury].

    Science.gov (United States)

    Huang, Si-qin; Qi, Wei; Zeng, Zhi-hua; Wang, Ke-jian; Wu, Xiu-yu

    2014-11-01

    To investigate the effect of electroacupuncture on the expression of oligodendrocyte precursor cells in rats with compressed spinal cord injury (CSCI) and to explore the mechanism of remyelinization. Thirty-six SD rats were randomly divided into a control group and three treatment groups with 3 d, 7 d and 14 d of treatment respectively. Acupuncture was given to rats in the treatment groups through jiaji point, double zusanli (ST36), and double taixi (KI3). Electroacupuncture (continuous wave, 2 Hz/1. 5 V, 30 min) was applied for the double zusanli (ST36) and double taixi (KI3). Ethological alterations of the rats were observed with quantitative assessment of neurologic function. The ultrastructure changes of nerve fibers in white matter were determined under electronic microscope. Expressions of NG2 protein, an OPC marker, was observed by Western blot. No significant changes in neurologic function and G-ratio were observed after three days and seven days of electroacupuncture treatment (P>0. 05). However, 14 d of electroacupuncture treatment made a significant change compared to the 7 d treatment group and the control group (PElectroacupuncture can improve inflammation and edema in the injured nerve fibers and up regulate NG2 expression and remyelination of the injured nerve fibers in rats with CSCI.

  4. One day of motor training with amphetamine impairs motor recovery following spinal cord injury.

    Science.gov (United States)

    Wong, Jamie K; Steward, Oswald

    2012-02-01

    It has previously been reported that a single dose of amphetamine paired with training on a beam walking task can enhance locomotor recovery following brain injury (Feeney et al., 1982). Here, we investigated whether this same drug/training regimen could enhance functional recovery following either thoracic (T9) or cervical (C5) spinal cord injury. Different groups of female Sprague-Dawley rats were trained on a beam walking task, and in a straight alley for assessment of hindlimb locomotor recovery using the BBB locomotor scale. For rats that received C5 hemisections, forelimb grip strength was assessed using a grip strength meter. Three separate experiments assessed the consequences of training rats on the beam walking task 24 h following a thoracic lateral hemisection with administration of either amphetamine or saline. Beginning 1 h following drug administration, rats either received additional testing/retraining on the beam hourly for 6 h, or they were returned to their home cages without further testing/retraining. Rats with thoracic spinal cord injuries that received amphetamine in conjunction with testing/retraining on the beam at 1 day post injury (DPI) exhibited significantly impaired recovery on the beam walking task and BBB. Rats with cervical spinal cord injuries that received training with amphetamine also exhibited significant impairments in beam walking and locomotion, as well as impairments in gripping and reaching abilities. Even when administered at 14 DPI, the drug/training regimen significantly impaired reaching ability in cervical spinal cord injured rats. Impairments were not seen in rats that received amphetamine without training. Histological analyses revealed that rats that received training with amphetamine had significantly larger lesions than saline controls. These data indicate that an amphetamine/training regimen that improves recovery after cortical injury has the opposite effect of impairing recovery following spinal cord injury

  5. High-frequency epidural stimulation across the respiratory cycle evokes phrenic short-term potentiation after incomplete cervical spinal cord injury.

    Science.gov (United States)

    Gonzalez-Rothi, Elisa J; Streeter, Kristi A; Hanna, Marie H; Stamas, Anna C; Reier, Paul J; Baekey, David M; Fuller, David D

    2017-10-01

    C2 spinal hemilesion (C2Hx) paralyzes the ipsilateral diaphragm, but recovery is possible through activation of "crossed spinal" synaptic inputs to ipsilateral phrenic motoneurons. We tested the hypothesis that high-frequency epidural stimulation (HF-ES) would potentiate ipsilateral phrenic output after subacute and chronic C2Hx. HF-ES (300 Hz) was applied to the ventrolateral C4 or T2 spinal cord ipsilateral to C2Hx in anesthetized and mechanically ventilated adult rats. Stimulus duration was 60 s, and currents ranged from 100 to 1,000 µA. Bilateral phrenic nerve activity and ipsilateral hypoglossal (XII) nerve activity were recorded before and after HF-ES. Higher T2 stimulus currents potentiated ipsilateral phasic inspiratory activity at both 2 and 12 wk post-C2Hx, whereas higher stimulus currents delivered at C4 potentiated ipsilateral phasic phrenic activity only at 12 wk ( P = 0.028). Meanwhile, tonic output in the ipsilateral phrenic nerve reached 500% of baseline values at the high currents with no difference between 2 and 12 wk. HF-ES did not trigger inspiratory burst-frequency changes. Similar responses occurred following T2 HF-ES. Increases in contralateral phrenic and XII nerve output were induced by C4 and T2 HF-ES at higher currents, but the relative magnitude of these changes was small compared with the ipsilateral phrenic response. We conclude that following incomplete cervical spinal cord injury, HF-ES of the ventrolateral midcervical or thoracic spinal cord can potentiate efferent phrenic motor output with little impact on inspiratory burst frequency. However, the substantial increases in tonic output indicate that the uninterrupted 60-s stimulation paradigm used is unlikely to be useful for respiratory muscle activation after spinal injury. NEW & NOTEWORTHY Previous studies reported that high-frequency epidural stimulation (HF-ES) activates the diaphragm following acute spinal transection. This study examined HF-ES and phrenic motor output

  6. Action of naftopidil on spinal serotonergic neurotransmission for inhibition of the micturition reflex in rats.

    Science.gov (United States)

    Sugaya, Kimio; Nishijima, Saori; Kadekawa, Katsumi; Ashitomi, Katsuhiro; Ueda, Tomoyuki; Yamamoto, Hideyuki; Hattori, Tsuyoshi

    2017-03-01

    We examined the mechanism of action of naftopidil, an α1D/A blocker, on spinal descending serotonergic neurotransmission for the micturition reflex. We examined (1) urinary 5-hydroxyindole acetic acid (5-HIAA) after intraperitoneal administration of saline, para-chlorophenylalanine (PCPA; a serotonin synthetic enzyme inhibitor), and/or 5-hydroxytryptophan (5-HTP; a serotonin precursor); (2) isovolumetric cystometry after intraperitoneal administration of saline, PCPA, and/or 5-HTP and intravenous injection of naftopidil; and (3) isovolumetric cystometry before and after intrathecal administration of serotonin (5-HT) receptor antagonists and intravenous injection of naftopidil. PCPA decreased and 5-HTP increased urinary 5-HIAA/creatinine. Intraperitoneal injection of PCPA did not influence cystometric parameters. Intraperitoneal injection of 5-HTP significantly shortened the interval between bladder contractions. Intravenous injection of naftopidil transiently abolished bladder contractions. However, the duration of abolishment of bladder contractions after injection of naftopidil in rats given PCPA was significantly shorter than that in rats given vehicle, but significantly longer than that in rats given PCPA and 5-HTP. Intrathecal injection of 5-HT1B, 5-HT3, or 5-HT7 receptor antagonists significantly prolonged the interval between bladder contractions. Intrathecal injection of 5-HT1D or 5-HT2B receptor antagonists significantly shortened the interval between bladder contractions. Combined administration of the maximum non-effective dose of 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, or 5-HT3 receptor antagonists and intravenous injection of naftopidil significantly shortened the duration of abolishment of bladder contraction compared to intravenous injection of naftopidil alone. Naftopidil may inhibit the micturition reflex via 5-HT1D, 5-HT2A, 5-HT2B, 5-HT2C, and 5-HT3 receptors in the spinal cord. Neurourol. Urodynam. 36:604-609, 2017. © 2016 Wiley Periodicals, Inc.

  7. Regulated viral BDNF delivery in combination with Schwann cells promotes axonal regeneration through capillary alginate hydrogels after spinal cord injury.

    Science.gov (United States)

    Liu, Shengwen; Sandner, Beatrice; Schackel, Thomas; Nicholson, LaShae; Chtarto, Abdelwahed; Tenenbaum, Liliane; Puttagunta, Radhika; Müller, Rainer; Weidner, Norbert; Blesch, Armin

    2017-09-15

    Grafting of cell-seeded alginate capillary hydrogels into a spinal cord lesion site provides an axonal bridge while physically directing regenerating axonal growth in a linear pattern. However, without an additional growth stimulus, bridging axons fail to extend into the distal host spinal cord. Here we examined whether a combinatory strategy would support regeneration of descending axons across a cervical (C5) lateral hemisection lesion in the rat spinal cord. Following spinal cord transections, Schwann cell (SC)-seeded alginate hydrogels were grafted to the lesion site and AAV5 expressing brain-derived neurotrophic factor (BDNF) under control of a tetracycline-regulated promoter was injected caudally. In addition, we examined whether SC injection into the caudal spinal parenchyma would further enhance regeneration of descending axons to re-enter the host spinal cord. Our data show that both serotonergic and descending axons traced by biotinylated dextran amine (BDA) extend throughout the scaffolds. The number of regenerating axons is significantly increased when caudal BDNF expression is activated and transient BDNF delivery is able to sustain axons after gene expression is switched off. Descending axons are confined to the caudal graft/host interface even with continuous BDNF expression for 8weeks. Only with a caudal injection of SCs, a pathway facilitating axonal regeneration through the host/graft interface is generated allowing axons to successfully re-enter the caudal spinal cord. Recovery from spinal cord injury is poor due to the limited regeneration observed in the adult mammalian central nervous system. Biomaterials, cell transplantation and growth factors that can guide axons across a lesion site, provide a cellular substrate, stimulate axon growth and have shown some promise in increasing the growth distance of regenerating axons. In the present study, we combined an alginate biomaterial with linear channels with transplantation of Schwann cells within

  8. Intervention of electroacupuncture on spinal p38 MAPK/ATF-2/VR-1 pathway in treating inflammatory pain induced by CFA in rats.

    Science.gov (United States)

    Fang, Jian-Qiao; Du, Jun-Ying; Liang, Yi; Fang, Jun-Fan

    2013-03-22

    Previous studies have demonstrated that p38 MAPK signal transduction pathway plays an important role in the development and maintenance of inflammatory pain. Electroacupuncture (EA) can suppress the inflammatory pain. However, the relationship between EA effect and p38 MAPK signal transduction pathway in inflammatory pain remains poorly understood. It is our hypothesis that p38 MAPK/ATF-2/VR-1 and/or p38 MAPK/ATF-2/COX-2 signal transduction pathway should be activated by inflammatory pain in CFA-injected model. Meanwhile, EA may inhibit the activation of p38 MAPK signal transduction pathway. The present study aims to investigate that anti-inflammatory and analgesic effect of EA and its intervention on the p38 MAPK signal transduction pathway in a rat model of inflammatory pain. EA had a pronounced anti-inflammatory and analgesic effect on CFA-induced chronic inflammatory pain in rats. EA could quickly raise CFA-rat's paw withdrawal thresholds (PWTs) and maintain good and long analgesic effect, while it subdued the ankle swelling of CFA rats only at postinjection day 14. EA could down-regulate the protein expressions of p-p38 MAPK and p-ATF-2, reduced the numbers of p-p38 MAPK-IR cells and p-ATF-2-IR cells in spinal dorsal horn in CFA rats, inhibited the expressions of both protein and mRNA of VR-1, but had no effect on the COX-2 mRNA expression. The present study indicates that inhibiting the activation of spinal p38 MAPK/ATF-2/VR-1 pathway may be one of the main mechanisms via central signal transduction pathway in the process of anti-inflammatory pain by EA in CFA rats.

  9. Regulatory effect of neuroglobin in the recovery of spinal cord injury.

    Science.gov (United States)

    Dai, Ji-Lin; Lin, Yun; Yuan, Yong-Jian; Xing, Shi-Tong; Xu, Yi; Zhang, Qiang-Hua; Min, Ji-Kang

    2017-11-16

    The present study was aimed to investigate the therapeutic potential of neuroglobin in the recovery of spinal cord injury. The male albino Wistar strain rats were used as an experimental model, and adeno associated virus (AAV) was administered in the T12 section of spinal cord ten days prior to the injury. Basso Beattie Bresnahan (BBB) locomotor rating scale was used to determine the recovery of the hind limb during four weeks post-operation. Malondialdehyde (MDA), catalase and superoxide dismutase (SOD) were determined in the spinal cord tissues. Terminal deoxynucleotidyl transferase (TdT) dUTP Nick-End Labeling (TUNEL) assay was carried out to determine the presence of apoptotic cells. Immunofluorescence analysis was carried out to determine the neuroglobin expression. Western blot analysis was carried out to determine the protein expressions of caspase-3, cytochrome c, bax and bcl-2 in the spinal cord tissues. Experimental results showed that rats were recovered from the spinal cord injury due to increased neuroglobin expression. Lipid peroxidation was reduced, whereas catalase and SOD activity were increased in the spinal cord tissues. Apoptosis and lesions were significantly reduced in the spinal cord tissues. Caspase-3, cytochrome c and bax levels were significantly reduced, whereas bcl-2 expression was reduced in the spinal cord tissues. Taking all these data together, it is suggested that the increased neuroglobin expression could improve the locomotor function.

  10. A free vein graft cap influences neuroma formation after nerve transection.

    Science.gov (United States)

    Galeano, Mariarosaria; Manasseri, Benedetto; Risitano, Giovanni; Geuna, Stefano; Di Scipio, Federica; La Rosa, Paola; Delia, Gabriele; D'Alcontres, Francesco Stagno; Colonna, Michele R

    2009-01-01

    : Neuroma formation is a major problem in nerve surgery and consensus about its prevention has not been reached. It has been suggested that vein covering can reduce neuroma formation in transected nerves. In this article, the Authors propose an easy and novel method of covering by nerve stump capping with a free vein graft. : Neuroma-like lesions were created on the rat thigh sectioning the femoral nerve above its division in 16 animals. The proximal nerve stump was invaginated into the lumen of a 1.5 cm long femoral free vein graft on the right side, and the vein was closed on itself by microsurgical sutures to form a cap for the nerve stump. On the left side acting as the control neuroma, the nerve was cut and left uncovered. Histological and immunohistochemical assessment was used to quantify the degree of neuroma formation. : Significant differences were found in both neuroma size and axon-glia organization between the treated and control sides indicating that free vein graft capping reduced neuroma formation in comparison to uncovered nerve stumps. : Our results confirm that vein-covering of a transected nerve stump can be effective in reducing neuroma formation. Moreover, unlike previous works that buried the nerve into an adjacent vein left in place, our experiments showed that also the use of a free vein graft cap can hinder neuroma formation. Although translation of rat experiments to the clinics should be dealt with caution, our data suggest a careful clinical use of the technique. (c) 2009 Wiley-Liss, Inc. Microsurgery, 2009.

  11. Spinal cord regeneration by modulating bone marrow with neurotransmitters and Citicholine: Analysis at micromolecular level.

    Science.gov (United States)

    Paulose, Cheramadathukudiyil Skaria; John, Ponnezhathu Sebastian; Chinthu, Romeo; Akhilraj, Puthenveetil Raju; Anju, Thoppil Raveendran

    2017-04-01

    Spinal cord injury results in disruption of brain-spinal cord fibre connectivity, leading to progressive tissue damage at the site of injury and resultant paralysis of varying degrees. The current study investigated the role of autologous bone marrow modulated with neurotransmitters and neurotransmitter stimulating agent, Citicholine, in spinal cord of spinal cord injured rats. Radioreceptor assay using [3H] ligand was carried out to quantify muscarinic receptor. Gene expression studies were done using Real Time PCR analysis. Scatchard analysis of muscarinic M1 receptor showed significantly decreased B max (p neurotransmitters combination along with bone marrow or Citicholine with bone marrow can reverse the muscarinic receptor alterations in the spinal cord of spinal cord injured rats, which is a promising step towards a better therapeutic intervention for spinal cord injury because of the positive role of cholinergic system in regulation of both locomotor activity and synaptic plasticity. Copyright © 2017 Chang Gung University. Published by Elsevier B.V. All rights reserved.

  12. A Brain–Spinal Interface Alleviating Gait Deficits after Spinal Cord Injury in Primates

    Science.gov (United States)

    Capogrosso, Marco; Milekovic, Tomislav; Borton, David; Wagner, Fabien; Moraud, Eduardo Martin; Mignardot, Jean-Baptiste; Buse, Nicolas; Gandar, Jerome; Barraud, Quentin; Xing, David; Rey, Elodie; Duis, Simone; Jianzhong, Yang; Ko, Wai Kin D.; Li, Qin; Detemple, Peter; Denison, Tim; Micera, Silvestro; Bezard, Erwan; Bloch, Jocelyne; Courtine, Grégoire

    2016-01-01

    Spinal cord injury disrupts the communication between the brain and the spinal circuits that orchestrate movement. To bypass the lesion, brain–computer interfaces1–3 have directly linked cortical activity to electrical stimulation of muscles, which have restored grasping abilities after hand paralysis1,4. Theoretically, this strategy could also restore control over leg muscle activity for walking5. However, replicating the complex sequence of individual muscle activation patterns underlying natural and adaptive locomotor movements poses formidable conceptual and technological challenges6,7. Recently, we showed in rats that epidural electrical stimulation of the lumbar spinal cord can reproduce the natural activation of synergistic muscle groups producing locomotion8–10. Here, we interfaced leg motor cortex activity with epidural electrical stimulation protocols to establish a brain–spinal interface that alleviated gait deficits after a spinal cord injury in nonhuman primates. Rhesus monkeys were implanted with an intracortical microelectrode array into the leg area of motor cortex; and a spinal cord stimulation system composed of a spatially selective epidural implant and a pulse generator with real-time triggering capabilities. We designed and implemented wireless control systems that linked online neural decoding of extension and flexion motor states with stimulation protocols promoting these movements. These systems allowed the monkeys to behave freely without any restrictions or constraining tethered electronics. After validation of the brain–spinal interface in intact monkeys, we performed a unilateral corticospinal tract lesion at the thoracic level. As early as six days post-injury and without prior training of the monkeys, the brain–spinal interface restored weight-bearing locomotion of the paralyzed leg on a treadmill and overground. The implantable components integrated in the brain–spinal interface have all been approved for investigational

  13. Peripheral and spinal 5-HT receptors participate in the pronociceptive and antinociceptive effects of fluoxetine in rats.

    Science.gov (United States)

    Cervantes-Durán, C; Rocha-González, H I; Granados-Soto, V

    2013-11-12

    -yl]methyl]cyclopentanepropanamide dihydrochloride, SB-699551, 1-3 nmol/paw), receptor antagonists. In marked contrast, the spinal antinociceptive effect of fluoxetine was prevented by the 5-HT1A (WAY-100635, 0.3-1 nmol/rat), 5-HT1B/1D (GR-127935, 0.3-1 nmol/rat), 5-HT1B (SB-224289, 0.3-1 nmol/rat), 5-HT1D (BRL-15572, 0.3-1 nmol/rat) and 5-HT5A (SB-699551, 1-3 nmol/rat), but not by the 5-HT2A (ketanserin, 3-10 pmol/rat), 5-HT2B (RS-127445, 3-10 pmol/rat), 5-HT2C (RS-102221, 3-10 pmol/rat), 5-HT3 (ondansetron, 3-10 nmol/rat), 5-HT4 (GR-113808, 3-100 fmol/rat), 5-HT6 (SB-258585, 3-10 pmol/rat) nor 5-HT7 (SB-269970, 0.3-1 nmol/rat), receptor antagonists. These results suggest that fluoxetine produces nociception at the periphery by activating peripheral 5-HT2A/2B/2C/3/4/6/7 receptors. In addition, intrathecal fluoxetine produces antinociception by activation of spinal 5-HT1A/1B/1D/5A receptors. Copyright © 2013 IBRO. Published by Elsevier Ltd. All rights reserved.

  14. Bone marrow mesenchymal stem cells repair spinal cord ischemia/reperfusion injury by promoting axonal growth and anti-autophagy

    Science.gov (United States)

    Yin, Fei; Meng, Chunyang; Lu, Rifeng; Li, Lei; Zhang, Ying; Chen, Hao; Qin, Yonggang; Guo, Li

    2014-01-01

    Bone marrow mesenchymal stem cells can differentiate into neurons and astrocytes after transplantation in the spinal cord of rats with ischemia/reperfusion injury. Although bone marrow mesenchymal stem cells are known to protect against spinal cord ischemia/reperfusion injury through anti-apoptotic effects, the precise mechanisms remain unclear. In the present study, bone marrow mesenchymal stem cells were cultured and proliferated, then transplanted into rats with ischemia/reperfusion injury via retro-orbital injection. Immunohistochemistry and immunofluorescence with subsequent quantification revealed that the expression of the axonal regeneration marker, growth associated protein-43, and the neuronal marker, microtubule-associated protein 2, significantly increased in rats with bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Furthermore, the expression of the autophagy marker, microtubule-associated protein light chain 3B, and Beclin 1, was significantly reduced in rats with the bone marrow mesenchymal stem cell transplantation compared with those in rats with spinal cord ischemia/reperfusion injury. Western blot analysis showed that the expression of growth associated protein-43 and neurofilament-H increased but light chain 3B and Beclin 1 decreased in rats with the bone marrow mesenchymal stem cell transplantation. Our results therefore suggest that bone marrow mesenchymal stem cell transplantation promotes neurite growth and regeneration and prevents autophagy. These responses may likely be mechanisms underlying the protective effect of bone marrow mesenchymal stem cells against spinal cord ischemia/reperfusion injury. PMID:25374587

  15. Prolonged Minocycline Treatment Impairs Motor Neuronal Survival and Glial Function in Organotypic Rat Spinal Cord Cultures

    Science.gov (United States)

    Pinkernelle, Josephine; Fansa, Hisham; Ebmeyer, Uwe; Keilhoff, Gerburg

    2013-01-01

    Background Minocycline, a second-generation tetracycline antibiotic, exhibits anti-inflammatory and neuroprotective effects in various experimental models of neurological diseases, such as stroke, Alzheimer’s disease, amyotrophic lateral sclerosis and spinal cord injury. However, conflicting results have prompted a debate regarding the beneficial effects of minocycline. Methods In this study, we analyzed minocycline treatment in organotypic spinal cord cultures of neonatal rats as a model of motor neuron survival and regeneration after injury. Minocycline was administered in 2 different concentrations (10 and 100 µM) at various time points in culture and fixed after 1 week. Results Prolonged minocycline administration decreased the survival of motor neurons in the organotypic cultures. This effect was strongly enhanced with higher concentrations of minocycline. High concentrations of minocycline reduced the number of DAPI-positive cell nuclei in organotypic cultures and simultaneously inhibited microglial activation. Astrocytes, which covered the surface of the control organotypic cultures, revealed a peripheral distribution after early minocycline treatment. Thus, we further analyzed the effects of 100 µM minocycline on the viability and migration ability of dispersed primary glial cell cultures. We found that minocycline reduced cell viability, delayed wound closure in a scratch migration assay and increased connexin 43 protein levels in these cultures. Conclusions The administration of high doses of minocycline was deleterious for motor neuron survival. In addition, it inhibited microglial activation and impaired glial viability and migration. These data suggest that especially high doses of minocycline might have undesired affects in treatment of spinal cord injury. Further experiments are required to determine the conditions for the safe clinical administration of minocycline in spinal cord injured patients. PMID:23967343

  16. Expression and cellular distribution of ubiquitin in response to injury in the developing spinal cord of Monodelphis domestica.

    Directory of Open Access Journals (Sweden)

    Natassya M Noor

    Full Text Available Ubiquitin, an 8.5 kDa protein associated with the proteasome degradation pathway has been recently identified as differentially expressed in segment of cord caudal to site of injury in developing spinal cord. Here we describe ubiquitin expression and cellular distribution in spinal cord up to postnatal day P35 in control opossums (Monodelphis domestica and in response to complete spinal transection (T10 at P7, when axonal growth through site of injury occurs, and P28 when this is no longer possible. Cords were collected 1 or 7 days after injury, with age-matched controls and segments rostral to lesion were studied. Following spinal injury ubiquitin levels (western blotting appeared reduced compared to controls especially one day after injury at P28. In contrast, after injury mRNA expression (qRT-PCR was slightly increased at P7 but decreased at P28. Changes in isoelectric point of separated ubiquitin indicated possible post-translational modifications. Cellular distribution demonstrated a developmental shift between earliest (P8 and latest (P35 ages examined, from a predominantly cytoplasmic immunoreactivity to a nuclear expression; staining level and shift to nuclear staining was more pronounced following injury, except 7 days after transection at P28. After injury at P7 immunostaining increased in neurons and additionally in oligodendrocytes at P28. Mass spectrometry showed two ubiquitin bands; the heavier was identified as a fusion product, likely to be an ubiquitin precursor. Apparent changes in ubiquitin expression and cellular distribution in development and response to spinal injury suggest an intricate regulatory system that modulates these responses which, when better understood, may lead to potential therapeutic targets.

  17. Plateau properties in mammalian spinal interneurons during transmitter-induced locomotor activity

    DEFF Research Database (Denmark)

    Kiehn, O.; Johnson, B. R.; Raastad, M.

    1996-01-01

    We examined the organization of spinal networks controlling locomotion in the isolated spinal cord of the neonatal rat, and in this study we provide the first demonstration of plateau and bursting mechanisms in mammalian interneurons that show locomotor-related activity. Using tight-seal whole...

  18. Polyethylene glycol restores axonal conduction after corpus callosum transection

    Directory of Open Access Journals (Sweden)

    Ravinder Bamba

    2017-01-01

    Full Text Available Polyethylene glycol (PEG has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA were used to measure mean firing rate (MFR and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups (P < 0.01, P < 0.05. These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  19. Polyethylene glycol restores axonal conduction after corpus callosum transection.

    Science.gov (United States)

    Bamba, Ravinder; Riley, D Colton; Boyer, Richard B; Pollins, Alonda C; Shack, R Bruce; Thayer, Wesley P

    2017-05-01

    Polyethylene glycol (PEG) has been shown to restore axonal continuity after peripheral nerve transection in animal models. We hypothesized that PEG can also restore axonal continuity in the central nervous system. In this current experiment, coronal sectioning of the brains of Sprague-Dawley rats was performed after animal sacrifice. 3Brain high-resolution microelectrode arrays (MEA) were used to measure mean firing rate (MFR) and peak amplitude across the corpus callosum of the ex-vivo brain slices. The corpus callosum was subsequently transected and repeated measurements were performed. The cut ends of the corpus callosum were still apposite at this time. A PEG solution was applied to the injury site and repeated measurements were performed. MEA measurements showed that PEG was capable of restoring electrophysiology signaling after transection of central nerves. Before injury, the average MFRs at the ipsilateral, midline, and contralateral corpus callosum were 0.76, 0.66, and 0.65 spikes/second, respectively, and the average peak amplitudes were 69.79, 58.68, and 49.60 μV, respectively. After injury, the average MFRs were 0.71, 0.14, and 0.25 spikes/second, respectively and peak amplitudes were 52.11, 8.98, and 16.09 μV, respectively. After application of PEG, there were spikes in MFR and peak amplitude at the injury site and contralaterally. The average MFRs were 0.75, 0.55, and 0.47 spikes/second at the ipsilateral, midline, and contralateral corpus callosum, respectively and peak amplitudes were 59.44, 45.33, 40.02 μV, respectively. There were statistically differences in the average MFRs and peak amplitudes between the midline and non-midline corpus callosum groups ( P < 0.01, P < 0.05). These findings suggest that PEG restores axonal conduction between severed central nerves, potentially representing axonal fusion.

  20. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by μ-opioid receptor internalization

    Science.gov (United States)

    Chen, Wenling; Marvizón, Juan Carlos G.

    2009-01-01

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using μ-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hindpaw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hindpaw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected Complete Freund's Adjuvant (CFA) in the hindpaw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hindpaw. These results show that acute inflammation, but not chronic inflammation, induce segmental opioid release in the spinal cord that involves supraspinal signals. PMID:19298846

  1. Acute inflammation induces segmental, bilateral, supraspinally mediated opioid release in the rat spinal cord, as measured by mu-opioid receptor internalization.

    Science.gov (United States)

    Chen, W; Marvizón, J C G

    2009-06-16

    The objective of this study was to measure opioid release in the spinal cord during acute and long-term inflammation using mu-opioid receptor (MOR) internalization. In particular, we determined whether opioid release occurs in the segments receiving the noxious signals or in the entire spinal cord, and whether it involves supraspinal signals. Internalization of neurokinin 1 receptors (NK1Rs) was measured to track the intensity of the noxious stimulus. Rats received peptidase inhibitors intrathecally to protect opioids from degradation. Acute inflammation of the hind paw with formalin induced moderate MOR internalization in the L5 segment bilaterally, whereas NK1R internalization occurred only ipsilaterally. MOR internalization was restricted to the lumbar spinal cord, regardless of whether the peptidase inhibitors were injected in a lumbar or thoracic site. Formalin-induced MOR internalization was substantially reduced by isoflurane anesthesia. It was also markedly reduced by a lidocaine block of the cervical-thoracic spinal cord (which did not affect the evoked NK1R internalization) indicating that spinal opioid release is mediated supraspinally. In the absence of peptidase inhibitors, formalin and hind paw clamp induced a small amount of MOR internalization, which was significantly higher than in controls. To study spinal opioid release during chronic inflammation, we injected complete Freund's adjuvant (CFA) in the hind paw and peptidase inhibitors intrathecally. Two days later, no MOR or NK1R internalization was detected. Furthermore, CFA inflammation decreased MOR internalization induced by clamping the inflamed hind paw. These results show that acute inflammation, but not chronic inflammation, induces segmental opioid release in the spinal cord that involves supraspinal signals.

  2. Characterization of articular cartilage and subchondral bone changes in the rat anterior cruciate ligament transection and meniscectomized models of osteoarthritis.

    Science.gov (United States)

    Hayami, Tadashi; Pickarski, Maureen; Zhuo, Ya; Wesolowski, Gregg A; Rodan, Gideon A; Duong, Le T

    2006-02-01

    Osteoarthritis (OA) is a chronic joint disease characterized by cartilage destruction, subchondral bone sclerosis, and osteophyte formation. Subchondral bone stiffness has been proposed to initiate and/or contribute to cartilage deterioration in OA. The purpose of this study was to characterize subchondral bone remodeling, cartilage damage, and osteophytosis during the disease progression in two models of surgically induced OA. Rat knee joints were subjected either to anterior cruciate ligament transection (ACLT) alone or in combination with resection of medial menisci (ACLT + MMx). Histopathological changes in the surgical joints were compared with sham at 1, 2, 4, 6, and 10 weeks post-surgery. Using a modified Mankin scoring system, we demonstrate that articular cartilage damage occurs within 2 weeks post-surgery in both surgical models. Detectable cartilage surface damage and proteoglycan loss were observed as early as 1 week post-surgery. These were followed by the increases in vascular invasion into cartilage, in loss of chondrocyte number and in cell clustering. Histomorphometric analysis revealed subchondral bone loss in both models within 2 weeks post-surgery followed by significant increases in subchondral bone volume relative to sham up to 10 weeks post-surgery. Incidence of osteophyte formation was optimally observed in ACLT joints at 10 weeks and in ACLT + MMx joints at 6 weeks post-surgery. In summary, the two surgically induced rat OA models share many characteristics seen in human and other animal models of OA, including progressive articular cartilage degradation, subchondral bone sclerosis, and osteophyte formation. Moreover, increased subchondral bone resorption is associated with early development of cartilage lesions, which precedes significant cartilage thinning and subchondral bone sclerosis. Together, these findings support a role for bone remodeling in OA pathogenesis and suggest that these rat models are suitable for evaluating bone

  3. Spinal sensory projection neuron responses to spinal cord stimulation are mediated by circuits beyond gate control.

    Science.gov (United States)

    Zhang, Tianhe C; Janik, John J; Peters, Ryan V; Chen, Gang; Ji, Ru-Rong; Grill, Warren M

    2015-07-01

    Spinal cord stimulation (SCS) is a therapy used to treat intractable pain with a putative mechanism of action based on the Gate Control Theory. We hypothesized that sensory projection neuron responses to SCS would follow a single stereotyped response curve as a function of SCS frequency, as predicted by the Gate Control circuit. We recorded the responses of antidromically identified sensory projection neurons in the lumbar spinal cord during 1- to 150-Hz SCS in both healthy rats and neuropathic rats following chronic constriction injury (CCI). The relationship between SCS frequency and projection neuron activity predicted by the Gate Control circuit accounted for a subset of neuronal responses to SCS but could not account for the full range of observed responses. Heterogeneous responses were classifiable into three additional groups and were reproduced using computational models of spinal microcircuits representing other interactions between nociceptive and nonnociceptive sensory inputs. Intrathecal administration of bicuculline, a GABAA receptor antagonist, increased spontaneous and evoked activity in projection neurons, enhanced excitatory responses to SCS, and reduced inhibitory responses to SCS, suggesting that GABAA neurotransmission plays a broad role in regulating projection neuron activity. These in vivo and computational results challenge the Gate Control Theory as the only mechanism underlying SCS and refine our understanding of the effects of SCS on spinal sensory neurons within the framework of contemporary understanding of dorsal horn circuitry. Copyright © 2015 the American Physiological Society.

  4. Ryanodine receptors contribute to the induction of nociceptive input-evoked long-term potentiation in the rat spinal cord slice

    Directory of Open Access Journals (Sweden)

    Zhao Zhi-Qi

    2010-01-01

    Full Text Available Abstract Background Our previous study demonstrated that nitric oxide (NO contributes to long-term potentiation (LTP of C-fiber-evoked field potentials by tetanic stimulation of the sciatic nerve in the spinal cord in vivo. Ryanodine receptor (RyR is a downstream target for NO. The present study further explored the role of RyR in synaptic plasticity of the spinal pain pathway. Results By means of field potential recordings in the adult male rat in vivo, we showed that RyR antagonist reduced LTP of C-fiber-evoked responses in the spinal dorsal horn by tetanic stimulation of the sciatic nerve. Using spinal cord slice preparations and field potential recordings from superficial dorsal horn, high frequency stimulation of Lissauer's tract (LT stably induced LTP of field excitatory postsynaptic potentials (fEPSPs. Perfusion of RyR antagonists blocked the induction of LT stimulation-evoked spinal LTP, while Ins(1,4,5P3 receptor (IP3R antagonist had no significant effect on LTP induction. Moreover, activation of RyRs by caffeine without high frequency stimulation induced a long-term potentiation in the presence of bicuculline methiodide and strychnine. Further, in patch-clamp recordings from superficial dorsal horn neurons, activation of RyRs resulted in a large increase in the frequency of miniature EPSCs (mEPSCs. Immunohistochemical study showed that RyRs were expressed in the dorsal root ganglion (DRG neurons. Likewise, calcium imaging in small DRG neurons illustrated that activation of RyRs elevated [Ca2+]i in small DRG neurons. Conclusions These data indicate that activation of presynaptic RyRs play a crucial role in the induction of LTP in the spinal pain pathway, probably through enhancement of transmitter release.

  5. New products tissue-engineering in the treatment of spinal cord injury

    Science.gov (United States)

    Bolshakov, I. N.; Sergienko, V. I.; Kiselev, S. L.; Lagarkova, M. A.; Remigaylo, A. A.; Mihaylov, A. A.; Prokopenko, S. V.

    2015-11-01

    In the treatment of patients with complicated spinal cord injury the Russian Health spends about one million rubles for each patient in the acute and the interim period after the injury. The number of complicated spinal cord injury is different in geographical areas Russian Federation from 30 to 50 people per 1 million that is affected by the year 5600. Applied to the present surgical and pharmacological techniques provide unsatisfactory results or minimally effective treatment. Transplantation of 100 thousand neuronal mouse predecessors (24 rats) or human neuronal predecessors (18 rats) in the anatomical gap rat spinal cord, followed by analysis of neurological deficit. The neuro-matrix implantation in the rat spinal cord containing 100 thousand neuronal precursors hESC, repeatable control neuro-matrix transplantation, non-cell mass, eliminating neurological deficit for 14 weeks after transplantation about 5-9 points on the scale of the BBB. The cultivation under conditions in vitro human induced pluripotent stem cells on collagen-chitosan matrix (hIPSC) showed that neurons differentiated from induced pluripotent stem cells grown on scaffolds as compact groups and has no neurites. Cells do not penetrate into the matrix during long-term cultivation and formed near the surface of the spherical structures resembling neurospheres. At least 90% of the cells were positive for the neuronal marker tubulin b3. Further studies should be performed to examine the compatibility of neuronal cultures and matrices.

  6. Induction of Fos protein immunoreactivity by spinal cord contusion

    Directory of Open Access Journals (Sweden)

    E.A. Del-Bel

    2000-05-01

    Full Text Available The objective of the present study was to identify neurons in the central nervous system that respond to spinal contusion injury in the rat by monitoring the expression of the nuclear protein encoded by the c-fos gene, an activity-dependent gene, in spinal cord and brainstem regions. Rats were anesthetized with urethane and the injury was produced by dropping a 5-g weight from 20.0 cm onto the exposed dura at the T10-L1 vertebral level (contusion group. The spinal cord was exposed but not lesioned in anesthetized control animals (laminectomy group; intact animals were also subjected to anesthesia (intact control. Behavioral alterations were analyzed by Tarlov/Bohlman scores, 2 h after the procedures and the animals were then perfused for immunocytochemistry. The patterns of Fos-like immunoreactivity (FLI which were site-specific, reproducible and correlated with spinal laminae that respond predominantly to noxious stimulation or injury: laminae I-II (outer substantia gelatinosa and X and the nucleus of the intermediolateral cell column. At the brain stem level FLI was detected in the reticular formation, area postrema and solitary tract nucleus of lesioned animals. No Fos staining was detected by immunocytochemistry in the intact control group. However, detection of FLI in the group submitted to anesthesia and surgical procedures, although less intense than in the lesion group, indicated that microtraumas may occur which are not detected by the Tarlov/Bohlman scores. There is both a local and remote effect of a distal contusion on the spinal cord of rats, implicating sensory neurons and centers related to autonomic control in the reaction to this kind of injury.

  7. Lycopene ameliorates neuropathic pain by upregulating spinal astrocytic connexin 43 expression.

    Science.gov (United States)

    Zhang, Fang Fang; Morioka, Norimitsu; Kitamura, Tomoya; Fujii, Shiori; Miyauchi, Kazuki; Nakamura, Yoki; Hisaoka-Nakashima, Kazue; Nakata, Yoshihiro

    2016-06-15

    Peripheral nerve injury upregulates tumor necrosis factor (TNF) expression. In turn, connexin 43 (Cx43) expression in spinal astrocytes is downregulated by TNF. Therefore, restoration of spinal astrocyte Cx43 expression to normal level could lead to the reduction of nerve injury-induced pain. While the non-provitaminic carotenoid lycopene reverses thermal hyperalgesia in mice with painful diabetic neuropathy, the antinociceptive mechanism is not entirely clear. The current study evaluated whether the antinociceptive effect of lycopene is mediated through the modulation of Cx43 expression in spinal astrocytes. The effect of lycopene on Cx43 expression was examined in cultured rat spinal astrocytes. The effect of intrathecal lycopene on Cx43 expression and neuropathic pain were evaluated in mice with partial sciatic nerve ligation (PSNL). Treatment of cultured rat spinal astrocytes with lycopene reversed TNF-induced downregulation of Cx43 protein expression through a transcription-independent mechanism. By contrast, treatment of cultured spinal astrocytes with either pro-vitamin A carotenoid β-carotene or antioxidant N-acetyl cysteine had no effect on TNF-induced downregulation of Cx43 protein expression. In addition, repeated, but not single, intrathecal treatment with lycopene of mice with a partial sciatic nerve ligation significantly prevented not only the downregulation of Cx43 expression in spinal dorsal horn but mechanical hypersensitivity as well. The current findings suggest a significant spinal mechanism that mediates the analgesic effect of lycopene, through the restoration of normal spinal Cx43 expression. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Multidetector CT findings of bowel Transection in blunt abdominal trauma

    International Nuclear Information System (INIS)

    Cho, Hyun Suk; Woo, Ji Young; Hong, Hye Suk; Park, Mee Hyun; Yang, Ik; Lee, Yul; Jung, Ah Young; Hwang, Ji Young; Ha, Hong Il

    2013-01-01

    Though a number of CT findings of bowel and mesenteric injuries in blunt abdominal trauma are described in literature, no studies on the specific CT signs of a transected bowel have been published. In the present study we describe the incidence and new CT signs of bowel transection in blunt abdominal trauma. We investigated the incidence of bowel transection in 513 patients admitted for blunt abdominal trauma who underwent multidetector CT (MDCT). The MDCT findings of 8 patients with a surgically proven complete bowel transection were assessed retrospectively. We report novel CT signs that are unique for transection, such as complete cutoff sign (transection of bowel loop), Janus sign (abnormal dual bowel wall enhancement, both increased and decreased), and fecal spillage. The incidence of bowel transection in blunt abdominal trauma was 1.56%. In eight cases of bowel transection, percentage of CT signs unique for bowel transection were as follows: complete cutoff in 8 (100%), Janus sign in 6 (100%, excluding duodenal injury), and fecal spillage in 2 (25%). The combination of complete cutoff and Janus sign were highly specific findings in patients with bowel transection. Complete cut off and Janus sign are the unique CT findings to help detect bowel transection in blunt abdominal trauma and recognition of these findings enables an accurate and prompt diagnosis for emergency laparotomy leading to reduced mortality and morbidity.

  9. Detection of Ca2+-dependent acid phosphatase activity identifies neuronal integrity in damaged rat central nervous system after application of bacterial melanin

    Directory of Open Access Journals (Sweden)

    Tigran R Petrosyan

    2016-01-01

    Full Text Available The study aims to confirm the neuroregenerative effects of bacterial melanin (BM on central nervous system injury using a special staining method based on the detection of Ca2+-dependent acid phosphatase activity. Twenty-four rats were randomly assigned to undergo either unilateral destruction of sensorimotor cortex (group I; n = 12 or unilateral rubrospinal tract transection at the cervical level (C3–4 (group II; n = 12. In each group, six rats were randomly selected after surgery to undergo intramuscular injection of BM solution (BM subgroup and the remaining six rats were intramuscularly injected with saline (saline subgroup. Neurological testing confirmed that BM accelerated the recovery of motor function in rats from both BM and saline subgroups. Two months after surgery, Ca2+-dependent acid phosphatase activity detection in combination with Chilingarian's calcium adenoside triphosphate method revealed that BM stimulated the sprouting of fibers and dilated the capillaries in the brain and spinal cord. These results suggest that BM can promote the recovery of motor function of rats with central nervous system injury; and detection of Ca2+-dependent acid phosphatase activity is a fast and easy method used to study the regeneration-promoting effects of BM on the injured central nervous system.

  10. Establishment of rats model of spinal cord injury by injection of bupivacaine%布比卡因注射致大鼠脊髓损伤模型的制作

    Institute of Scientific and Technical Information of China (English)

    李昕; 董有静; 张晓宁

    2015-01-01

    Objective To observe the pathophysiological changes after spinal cord injury by establishing the animal model,and to find the method that can directly determine the extent of spinal cord injury and optimize the best treatment for the injury. Methods After the exposure of the L2-3 spinal cord of each rat,0. 5% bupivacaine was injec-ted,and the changes in behavior and morphology were evaluated. The behavior changes of each rat′s hind limb and the histopathological changes of spinal cord neurons and the surrounding were observed and recorded to provide a evalua-tion of the degree of SCI. Results The spinal cord injury in rats of bupivacaine group was more serious compared with that of control group,the BBB score of postoperative rats in bupivacaine group was lower than that of control group, and the pathological HE staining of spinal cord neurons in bupivacaine group appeared empty degeneration and liquefac-tion necrosis. Conclusion The model of rats that received spinal needle puncture and injected with bupivacaine has a more stable and controllable effects on spinal cord injury.%目的:建立动物模型观察脊髓损伤后的病理生理改变,寻找可直接判断脊髓损伤程度的方法,优选出治疗脊髓损伤的最佳方案。方法暴露大鼠L2-3脊髓后,于脊髓内注射0.5%布比卡因,评价大鼠行为学改变及脊髓形态学改变。观察并记录大鼠后肢行为学改变及脊髓神经元和周围组织的病理改变,评估脊髓损伤程度。结果与生理盐水注射组(对照组)相比,布比卡因注射组(观察组)大鼠脊髓损伤,表现为术后大鼠BBB评分降低,与对照组比较差异有统计学意义,病理HE染色可见脊髓神经元出现空泡变性及液化坏死。结论应用腰麻针进行大鼠脊髓穿刺并注射布比卡因的大鼠动物模型,具有稳定可控的脊髓损伤效果。

  11. Induction of spinal cord paralysis by negative pi-mesons

    International Nuclear Information System (INIS)

    Amols, H.I.; Yuhas, J.M.

    1981-01-01

    As part of an investigation on late non-neoplastic injury induced by negative pi-mesons (pions), a series of studies have been performed using pion beams for the induction of spinal cord paralysis in the Fisher 344 rat. Groups of rats were exposed to 1, 5 or 15 daily doses of peak pions or X rays. Paralysis appeared earlier after treatment with pions than after X-rays even in a comparison of groups with similar final incidences. A single dose RBE for spinal cord paralysis of 1.3 was found. The RBE rises to a value of 3.2 if the total dose is given as a series of 15 daily exposures. These RBEs are far larger than those observed using other late injury end-points, such as tubular degeneration in the kidney or fibrosis and sclerosis in the support structures of the colon for which the single dose RBE is less than 1.2. The biological and/or physical basis for the high sensitivity of the spinal cord to peak pions has not yet been resolved, but these data have suggested caution in exposing the spinal cord to peak pions in clinical trials. (author)

  12. Measure of pancreas transection and postoperative pancreatic fistula.

    Science.gov (United States)

    Takahashi, Shinichiro; Gotohda, Naoto; Kato, Yuichiro; Konishi, Masaru

    2016-05-15

    In pancreaticoduodenectomy (PD), a standard protocol for pancreas transection has not been established although the method of pancreas transection might be involved in the occurrence of postoperative pancreatic fistula (POPF). This study aimed to compare whether pancreas transection by ultrasonically activated shears (UAS) or that by scalpel contributed more to POPF development. A prospective database of 171 patients who underwent PD for periampullary tumor at National Cancer Center Hospital East between January 2010 and June 2013 was reviewed. Among the 171 patients, 93 patients with soft pancreas were specifically included in this study. Surgical results and background were compared between patients with pancreas transection by UAS and scalpel to evaluate the effectiveness of UAS on reducing POPF. Body mass index, main pancreatic duct diameter, or other clinicopathologic factors that have been reported as predictive factors for POPF were not significantly different between the two groups. The incidence of all grades of POPF and that of grade B were significantly lower in the scalpel group (52%, 4%) than in the UAS group (74%, 42%). Postoperative complications ≥ grade III were also significantly fewer in the scalpel group. Scalpel transection was less associated with POPF than UAS transection in patients who underwent PD for soft pancreas. The method of pancreas transection plays an important role in the prevention of clinical POPF. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Plasticity and Activation of Spared Intraspinal Respiratory Circuits Following Spinal Cord Injury

    Science.gov (United States)

    2017-12-01

    in the Diaphragm (DIA), External Intercostal (EIC) and Sternocleidomastoid (SCM) muscles. B) Dorsal view of the exposed spinal cord. Grey circles...ISMS treatment in rats with chronic C2Hx. Not completed This part of the SOW involves a challenging technical approach in order to provide chronic ISMS...light-dark cycles) with food and water ad libitum. The C4 or T2 spinal cord was stimulated in separate rats at either 2 or 12 wk post-C2Hx: 2-wk C4, n 8

  14. INAA for interelement correlations in rats after mercuric chloride exposure

    International Nuclear Information System (INIS)

    Tandon, L.; Kasarskis, E.J.; Ehmann, W.D.

    1991-01-01

    Motor neurons in rat spinal cord have been shown to have a selective affinity for Hg in a study by Moeller-Madsen and Dansher (1986). In a related animal model study the authors have exposed seventeen rats to mercuric chloride through drinking water continuously for eight months. A control group of rats was given regular water. Rat brain, spinal cord, and kidney were irradiated with thermal neutrons for determination of Hg and 16 other elements by INAA. As expected, Hg was increased in all tissues from treated rats. Cs was significantly elevated in spinal cord of Hg-dosed rats. Kidney had a significant decrease in As, Co, and K with a significant increase in Br and Se in Hg-dosed rats. These results in rats are contrasted with data (Khare, et al., 1990) from patients with amyotrophic lateral sclerosis (ALS) to determine if the elemental imbalances in this neurodegenerative disease are primary alterations, or merely secondary effects related to Hg levels

  15. Effects of Electroacupuncture on N-Methyl-D-aspartate Receptor-Related Signaling Pathway in the Spinal Cord of Normal Rats

    Directory of Open Access Journals (Sweden)

    Ha-Neui Kim

    2012-01-01

    rats. Bilateral 2 Hz EA stimulations (1-2-3.0 mA were delivered at acupoints corresponding to Zusanli (ST36 and Sanyinjiao (SP6 in men for 30 min. Thermal sensitization was strongly inhibited by EA, but this analgesia was reduced by preintrathecal injection of the NMDAR antagonist, MK801. Phosphorylation of the NMDAR NR2B subunit, cAMP response element-binding protein (CREB, and especially phosphatidylinositol 3-kinase (PI3K were significantly induced by EA. However, these marked phosphorylations were not observed in MK801-pretreated rats. EA analgesia was reduced by preintrathecal injection with the calcium chelators Quin2 and TMB8, similar to the results evident using MK801. Phosphorylation of PI3K and CREB induced by EA was also inhibited by TMB8. Calcium influx by NMDAR activation may play an important role in EA analgesia of normal rats through the modulation of the phosphorylation of spinal PI3K and CREB.

  16. Study of the efficiency of transplantation of human neural stem cells to rats with spinal trauma: the use of functional load tests and BBB test.

    Science.gov (United States)

    Lebedev, S V; Karasev, A V; Chekhonin, V P; Savchenko, E A; Viktorov, I V; Chelyshev, Yu A; Shaimardanova, G F

    2010-09-01

    Human ensheating neural stem cells of the olfactory epithelium were transplanted to adult male rats immediately after contusion trauma of the spinal cord at T9 level rostrally and caudally to the injury. Voluntary movements (by a 21-point BBB scale), rota-rod performance, and walking along a narrowing beam were monitored weekly over 60 days. In rats receiving cell transplantation, the mean BBB score significantly increased by 11% by the end of the experiment. The mean parameters of load tests also regularly surpassed the corresponding parameters in controls. The efficiency of transplantation (percent of animals with motor function recovery parameters surpassing the corresponding mean values in the control groups) was 62% by the state of voluntary motions, 37% by the rota-rod test, and 32% by the narrowing beam test. Morphometry revealed considerable shrinking of the zone of traumatic damage in the spinal cord and activation of posttraumatic remyelination in animals receiving transplantation of human neural stem cells.

  17. Fungiform taste bud degeneration in C57BL/6J mice following chorda-lingual nerve transection.

    Science.gov (United States)

    Guagliardo, Nick A; Hill, David L

    2007-09-10

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were smaller and more abundant on the anterior tip (taste buds were smaller and fewer on the side of the tongue ipsilateral to the transection and continued to decrease in both size and number until 15 days posttransection. Degenerating fungiform taste buds were smaller due to a loss of taste bud cells rather than changes in taste bud morphology. While almost all taste buds disappeared in more posterior fungiform papillae by 15 days posttransection, the anterior tip of the tongue retained nearly half of its taste buds compared to intact mice. Surviving taste buds could not be explained by an apparent innervation from the remaining intact nerves. Contralateral effects of nerve transection were also observed; taste buds were larger due to an increase in the number of taste bud cells. These data are the first to characterize adult mouse fungiform taste buds and subsequent degeneration after unilateral nerve transection. They provide the basis for more mechanistic studies in which genetically engineered mice can be used. (c) 2007 Wiley-Liss, Inc.

  18. Nitric Oxide Orchestrates a Power-Law Modulation of Sympathetic Firing Behaviors in Neonatal Rat Spinal Cords

    Directory of Open Access Journals (Sweden)

    Chun-Kuei Su

    2018-03-01

    Full Text Available Nitric oxide (NO is a diffusible gas and has multifarious effects on both pre- and postsynaptic events. As a consequence of complex excitatory and inhibitory integrations, NO effects on neuronal activities are heterogeneous. Using in vitro preparations of neonatal rats that retain the splanchnic sympathetic nerves and the thoracic spinal cord as an experimental model, we report here that either enhancement or attenuation of NO production in the neonatal rat spinal cords could increase, decrease, or not change the spontaneous firing behaviors recorded from splanchnic sympathetic single fibers. To elucidate the mathematical features of NO-mediated heterogeneous responses, the ratios of changes in firing were plotted against their original firing rates. In log-log plots, a linear data distribution demonstrated that NO-mediated heterogeneity in sympathetic firing responses was well described by a power function. Selective antagonists were applied to test if glycinergic, GABAergic, glutamatergic, and cholinergic neurotransmission in the spinal cord are involved in NO-mediated power-law firing modulations (plFM. NO-mediated plFM diminished in the presence of mecamylamine (an open-channel blocker of nicotinic cholinergic receptors, indicating that endogenous nicotinic receptor activities were essential for plFM. Applications of strychnine (a glycine receptor blocker, gabazine (a GABAA receptor blocker, or kynurenate (a broad-spectrum ionotropic glutamate receptor blocker also caused plFM. However, strychnine- or kynurenate-induced plFM was diminished by L-NAME (an NO synthase inhibitor pretreatments, indicating that the involvements of glycine or ionotropic glutamate receptor activities in plFM were secondary to NO signaling. To recapitulate the arithmetic natures of the plFM, the plFM were simulated by firing changes in two components: a step increment and a fractional reduction of their basal firing activities. Ionotropic glutamate receptor

  19. The number of postsynaptic currents necessary to produce locomotor- related cyclic information in neurons in the neonatal rat spinal cord

    DEFF Research Database (Denmark)

    Raastad, Morten; Johnson, Bruce R.; Kiehn, Ole

    1996-01-01

    To understand better how synaptic signaling contributes to network activity, we analyzed the potential contribution of putative unitary postsynaptic currents (PSCs) to locomotor-related information received by spinal interneurons in neonatal rats. The average cyclic modulation of the whole-cell c......-5) of the synapses contributing to the cyclic information need to be active simultaneously. This suggests that individual presynaptic cells in a central locomotor network can have a powerful influence on other neurons....

  20. Salvianolic Acid B Ameliorates Motor Dysfuntion in Spinal Cord ...

    African Journals Online (AJOL)

    Purpose: To evaluate the effect of salvianolic acid B (Sal B) treatment on the motor function of spinal cord injury (SCI) rat. Methods: SCI rats were modelled by contusion, and then received 10 mg/kg Sal B, or methylprednisolone, or phosphate-buffered saline (PBS) intraperitoneally daily for 4 weeks, two hours after the ...

  1. Propranolol, but not naloxone, enhances spinal reflex bladder activity and reduces pudendal inhibition in cats.

    Science.gov (United States)

    Rogers, Marc J; Xiao, Zhiying; Shen, Bing; Wang, Jicheng; Schwen, Zeyad; Roppolo, James R; de Groat, William C; Tai, Changfeng

    2015-01-01

    This study examined the role of β-adrenergic and opioid receptors in spinal reflex bladder activity and in the inhibition induced by pudendal nerve stimulation (PNS) or tibial nerve stimulation (TNS). Spinal reflex bladder contractions were induced by intravesical infusion of 0.25% acetic acid in α-chloralose-anesthetized cats after an acute spinal cord transection (SCT) at the thoracic T9/T10 level. PNS or TNS at 5 Hz was applied to inhibit these spinal reflex contractions at 2 and 4 times the threshold intensity (T) for inducing anal or toe twitch, respectively. During a cystrometrogram (CMG), PNS at 2T and 4T significantly (P reflex bladder contractions. After administering propranolol (3 mg/kg iv, a β₁/β₂-adrenergic receptor antagonist), the effects of 2T and 4T PNS on bladder capacity were significantly (P reflex bladder contractions or PNS inhibition. At the end of experiments, hexamethonium (10 mg/kg iv, a ganglionic blocker) significantly (P reflex bladder contractions. This study indicates an important role of β₁/β₂-adrenergic receptors in pudendal inhibition and spinal reflex bladder activity. Copyright © 2015 the American Physiological Society.

  2. ERK-GluR1 phosphorylation in trigeminal spinal subnucleus caudalis neurons is involved in pain associated with dry tongue.

    Science.gov (United States)

    Nakaya, Yuka; Tsuboi, Yoshiyuki; Okada-Ogawa, Akiko; Shinoda, Masamichi; Kubo, Asako; Chen, Jui Yen; Noma, Noboru; Batbold, Dulguun; Imamura, Yoshiki; Sessle, Barry J; Iwata, Koichi

    2016-01-01

    Dry mouth is known to cause severe pain in the intraoral structures, and many dry mouth patients have been suffering from intraoral pain. In development of an appropriate treatment, it is crucial to study the mechanisms underlying intraoral pain associated with dry mouth, yet the detailed mechanisms are not fully understood. To evaluate the mechanisms underlying pain related to dry mouth, the dry-tongue rat model was developed. Hence, the mechanical or heat nocifensive reflex, the phosphorylated extracellular signal-regulated kinase and phosphorylated GluR1-IR immunohistochemistries, and the single neuronal activity were examined in the trigeminal spinal subnucleus caudalis of dry-tongue rats. The head-withdrawal reflex threshold to mechanical, but not heat, stimulation of the tongue was significantly decreased on day 7 after tongue drying. The mechanical, but not heat, responses of trigeminal spinal subnucleus caudalis nociceptive neurons were significantly enhanced in dry-tongue rats compared to sham rats on day 7. The number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells was also significantly increased in the trigeminal spinal subnucleus caudalis following noxious stimulation of the tongue in dry-tongue rats compared to sham rats on day 7. The decrement of the mechanical head-withdrawal reflex threshold (HWT) was reversed during intracisternal administration of the mitogen-activated protein kinase kinase 1 inhibitor, PD98059. The trigeminal spinal subnucleus caudalis neuronal activities and the number of phosphorylated extracellular signal-regulated kinase-immunoreactive cells following noxious mechanical stimulation of dried tongue were also significantly decreased following intracisternal administration of PD98059 compared to vehicle-administrated rats. Increased number of the phosphorylated GluR1-IR cells was observed in the trigeminal spinal subnucleus caudalis of dry-tongue rats, and the number of phosphorylated GluR1-IR cells

  3. Responses of spinal dorsal horn neurons to foot movements in rats with a sprained ankle

    Science.gov (United States)

    Kim, Jae Hyo; Kim, Hee Young; Chung, Kyungsoon

    2011-01-01

    Acute ankle injuries are common problems and often lead to persistent pain. To investigate the underlying mechanism of ankle sprain pain, the response properties of spinal dorsal horn neurons were examined after ankle sprain. Acute ankle sprain was induced manually by overextending the ankle of a rat hindlimb in a direction of plantarflexion and inversion. The weight-bearing ratio (WBR) of the affected foot was used as an indicator of pain. Single unit activities of dorsal horn neurons in response to plantarflexion and inversion of the foot or ankle compression were recorded from the medial part of the deep dorsal horn, laminae IV-VI, in normal and ankle-sprained rats. One day after ankle sprain, rats showed significantly reduced WBRs on the affected foot, and this reduction was partially restored by systemic morphine. The majority of deep dorsal horn neurons responded to a single ankle stimulus modality. After ankle sprain, the mean evoked response rates were significantly increased, and afterdischarges were developed in recorded dorsal horn neurons. The ankle sprain-induced enhanced evoked responses were significantly reduced by morphine, which was reversed by naltrexone. The data indicate that movement-specific dorsal horn neuron responses were enhanced after ankle sprain in a morphine-dependent manner, thus suggesting that hyperactivity of dorsal horn neurons is an underlying mechanism of pain after ankle sprain. PMID:21389306

  4. Chronic intrathecal cannulation enhances nociceptive responses in rats

    Directory of Open Access Journals (Sweden)

    Almeida F.R.C.

    2000-01-01

    Full Text Available The influence of a chronically implanted spinal cannula on the nociceptive response induced by mechanical, chemical or thermal stimuli was evaluated. The hyperalgesia in response to mechanical stimulation induced by carrageenin or prostaglandin E2 (PGE2 was significantly increased in cannulated (Cn rats, compared with naive (Nv or sham-operated (Sh rats. Only Cn animals presented an enhanced nociceptive response in the first phase of the formalin test when low doses were used (0.3 and 1%. The withdrawal latency to thermal stimulation of a paw inflamed by carrageenin was significantly reduced in Cn rats but not in Nv or Sh rats. In contrast to Nv and Sh rats, injection in Cn animals of a standard non-steroid anti-inflammatory drug, indomethacin, either intraperitoneally or into the spinal cord via an implanted cannula or by direct puncture of the intrathecal space significantly blocked the intensity of the hyperalgesia induced by PGE2. Cannulated animals treated with indomethacin also showed a significant inhibition of second phase formalin-induced paw flinches. Histopathological analysis of the spinal cord showed an increased frequency of mononuclear inflammatory cells in the Cn groups. Thus, the presence of a chronically implanted cannula seems to cause nociceptive spinal sensitization to mechanical, chemical and thermal stimulation, which can be blocked by indomethacin, thus suggesting that it may result from the spinal release of prostaglandins due to an ongoing mild inflammation.

  5. Dexmedetomidine attenuates persistent postsurgical pain by upregulating K+–Cl− cotransporter-2 in the spinal dorsal horn in rats

    Directory of Open Access Journals (Sweden)

    Dai S

    2018-05-01

    Full Text Available Shuhong Dai,1 Yu Qi,1 Jie Fu,1 Na Li,1 Xu Zhang,1 Juan Zhang,2 Wei Zhang,2 Haijun Xu,1 Hai Zhou,1 Zhengliang Ma2 1Department of Anesthesiology, XuZhou Central Hospital, Xuzhou, China; 2The Affiliated Nanjing Drum Tower Hospital, Medical School, Nanjing University, Nanjing, China Background: Dexmedetomidine (DEX could have an analgesic effect on pain transmission through the modulation of brain-derived neurotrophic factor (BDNF. In addition, KCC2-induced shift in neuronal Cl- homeostasis is crucial for postsynaptic inhibition mediated by GABAA receptors. Accumulating evidence shows that nerve injury, peripheral inflammation and stress activate the spinal BDNF/TrkB signal, which results in the downregulation of KCC2 transport and expression, eventually leads to GAGAergic disinhibition and hyperalgesia. The aim of this experiment was to explore the interaction between DEX and KCC2 at a molecular level in rats in the persistent postsurgical pain (PPSP. Methods: PPSP in rats was evoked by the skin/muscle incision and retraction (SMIR. Mechanical hypersensitivity was assessed with the Dynamic Plantar Aesthesiometer. Western blot and immunofluorescence assay were used to assess the expressions of related proteins. Results: In the first part of our experiment, the results revealed that the BDNF/TrkB-KCC2 signal plays a critical role in the development of SMIR-evoked PPSP; the second part showed that intraperitoneal administrations of 40 µg/kg DEX at 15 min presurgery and 1 to 3 days post-surgery significantly attenuated SMIR-evoked PPSP. Simultaneously, SMIR-induced KCC2 downregulation was partly reversed, which coincided with the inhibition of the BDNF/TrkB signal in the spinal dorsal horn. Moreover, intrathecal administrations of KCC2 inhibitor VU0240551 significantly reduced the analgesic effect of DEX on SMIR-evoked PPSP. Conclusion: The results of our study indicated that DEX attenuated PPSP by restoring KCC2 function through reducing BDNF

  6. Overexpression of HIPK2 attenuates spinal cord injury in rats by modulating apoptosis, oxidative stress, and inflammation.

    Science.gov (United States)

    Li, Renbo; Shang, Jingbo; Zhou, Wei; Jiang, Li; Xie, Donghui; Tu, Guanjun

    2018-04-09

    HIPK2 is considered to be a tumor suppressor. It also has been implicated in several functions such as apoptosis and inflammation that are linked to spinal cord injury (SCI). However, whether HIPK2 ameliorates the neurological pain of SCI remains unclear. Here, we investigated the effects of HIPK2 on neurological function, oxidative stress, levels of inflammatory cytokines and expression of Bcl-2/Bax in an SCI model. Firstly, we evaluated the therapeutic effects of HIPK2 on neurological pain in the SCI rat using the Basso, Beattie and Bresnahan scores and H & E staining. Overexpression of HIPK2 significantly elevated the levels of brain-derived neurotrophic factor (BDNF) and glial cell line-derived neurotrophic factor (GDNF), and reduced the mRNA expression of Nogo-A and RhoA in SCI rats. Furthermore, terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays showed that overexpression of HIPK2 significantly reduced the number of apoptotic cells. Overexpression of HIPK2 also decreased expression of Bax and Caspase-3 and elevated expression of Bcl-2 in the SCI model, indicating that HIPK2 exhibited its protective activity by inhibiting SCI-induced apoptosis. Then, we measured the serum concentrations of malondialdehyde (MDA), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GSH-PX). We also determined the mRNA and protein levels of nuclear factor-κB p65 unit, tumor necrosis factor-α (TNF-α), and interleukin (IL)-1β. HIPK2 overexpression reduced oxidative stress and the levels of inflammatory cytokines compared with SCI control animals. Additionally, acetylation of HIPK2 was reduced in SCI rats. Overexpression of HIPK2 could enhance autophagy by elevating the expression of Beclin-1 and LC3-II while autophagy is regarded as a beneficial regulator to improve spinal cord injury. Together, overexpression of HIPK2 improved contusive SCI induced pain by modulating oxidative stress, Bcl‑2 and Bax signaling, and

  7. GABA, not glycine, mediates inhibition of latent respiratory motor pathways after spinal cord injury

    OpenAIRE

    Zimmer, M. Beth; Goshgarian, Harry G.

    2006-01-01

    Previous work has shown that latent respiratory motor pathways known as crossed phrenic pathways are inhibited via a spinal inhibitory process; however, the underlying mechanisms remain unknown. The present study investigated whether spinal GABA-A and/or glycine receptors are involved in the inhibition of the crossed phrenic pathways after a C2 spinal cord hemisection injury. Under ketamine/xylazine anesthesia, adult, female, Sprague Dawley rats were hemisected at the C2 spinal cord level. Fo...

  8. HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in a rat model of bone cancer pain by restoring μ-opioid receptor in spinal cord.

    Science.gov (United States)

    Hou, Xinran; Weng, Yingqi; Ouyang, Bihan; Ding, Zhuofeng; Song, Zongbin; Zou, Wangyuan; Huang, Changsheng; Guo, Qulian

    2017-08-15

    Bone cancer pain (BCP) is a common complication with inadequate management in patients suffering from advanced cancer. Histone deacetylase inhibitors showed significant analgesic effect in multiple inflammatory and neuropathic pain models, but their effect in bone cancer pain has never been explored. In this study, we utilized a BCP rat model with intra-tibial inoculation of Walker 256 mammary gland carcinoma cells, which developed progressive mechanical hypersensitivity but not thermal hypersensitivity. Intrathecal application of trichostatin A (TSA), a classic pan-HDAC inhibitor, ameliorated tactile hypersensitivity and enhanced the analgesic effect of morphine in BCP rats. The analgesic effect of TSA was blocked by co-administration of CTAP, a specific MOR antagonist, confirming the involvement of mu-opioid receptor (MOR). A reduction of MOR expression was observed in the lumbar spinal cord of BCP rats and TSA treatment was able to partially reverse it. In vitro study in PC12 cells also demonstrated the dose-dependent enhancement of MOR expression by TSA treatment. Taking all into consideration, we could draw the conclusion that HDAC inhibitor TSA ameliorates mechanical hypersensitivity and potentiates analgesic effect of morphine in BCP rats, probably by restoring MOR expression in spinal cord. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury

    Science.gov (United States)

    Liu, Yuan; Tan, Botao; Wang, Li; Long, Zaiyun; Li, Yingyu; Liao, Weihong; Wu, Yamin

    2015-01-01

    Endogenous neural stem cells in central canal of adult mammalian spinal cord exhibit stem cell properties following injury. In the present study, the endogenous neural stem cells were labeled with Dil to track the differentiation of cells after mild spinal cord injury (SCI). Compared with 1 and 14 days post mild injury, the number of endogenous neural stem cells significantly increased at the injured site of spinal cord on 3 and 7 days post-injury. Dil-labeled βIII-tublin and GFAP expressing cells could be detected on 7 days post-injury, which indicated that the endogenous neural stem cells in central canal of spinal cord differentiated into different type of neural cells, but there were more differentiated astrocytes than the neurons after injury. Furthermore, after injury the expression of inhibitory Notch1 and Hes1 mRNA began to increase at 6 hours and was evident at 12 and 24 hours, which maintained high levels up to 7 days post-injury. These results indicated that a mild SCI in rat is sufficient to induce endogenous neural stem cells proliferation and differentiation. However, the ability to differentiate into neurons is limited, which may be, at least in part, due to high expression of inhibitory Notch1 and Hes1 genes after injury. PMID:26097566

  10. Repetitive Treatment with Diluted Bee Venom Attenuates the Induction of Below-Level Neuropathic Pain Behaviors in a Rat Spinal Cord Injury Model.

    Science.gov (United States)

    Kang, Suk-Yun; Roh, Dae-Hyun; Choi, Jung-Wan; Ryu, Yeonhee; Lee, Jang-Hern

    2015-07-10

    The administration of diluted bee venom (DBV) into an acupuncture point has been utilized traditionally in Eastern medicine to treat chronic pain. We demonstrated previously that DBV has a potent anti-nociceptive efficacy in several rodent pain models. The present study was designed to examine the potential anti-nociceptive effect of repetitive DBV treatment in the development of below-level neuropathic pain in spinal cord injury (SCI) rats. DBV was applied into the Joksamli acupoint during the induction and maintenance phase following thoracic 13 (T13) spinal hemisection. We examined the effect of repetitive DBV stimulation on SCI-induced bilateral pain behaviors, glia expression and motor function recovery. Repetitive DBV stimulation during the induction period, but not the maintenance, suppressed pain behavior in the ipsilateral hind paw. Moreover, SCI-induced increase in spinal glia expression was also suppressed by repetitive DBV treatment in the ipsilateral dorsal spinal cord. Finally, DBV injection facilitated motor function recovery as indicated by the Basso-Beattie-Bresnahan rating score. These results indicate that the repetitive application of DBV during the induction phase not only decreased neuropathic pain behavior and glia expression, but also enhanced locomotor functional recovery after SCI. This study suggests that DBV acupuncture can be a potential clinical therapy for SCI management.

  11. Interactions between intraspinal Schwann cells and the cellular constituents normally occurring in the spinal cord: an ultrastructural study in the irradiated rat

    International Nuclear Information System (INIS)

    Sims, T.J.; Gilmore, S.A.

    1983-01-01

    Relationships between intraspinal Schwann cells and neuroglia, particularly astrocytes, were studied following X-irradiation of the spinal cord in 3-day old rats. Initially, this exposure results in a depletion of the neuroglial population. By 10 days post-irradiation (P-I), gaps occur in the glia limitans, although the overlying basal lamina remains intact. Development of and myelination by intraspinal Schwann cells is well underway by 15 days P-I. These Schwann cell-occupied regions have a paucity of astrocyte processes, a finding which persists throughout the study (60 days P-I), and several types of Schwann cell-neuroglial interfaces are observed. The gaps in the glia limitans widen as the P-I interval increases. At 45 and 60 days P-I, the basal lamina no longer forms a singular, continuous covering over the spinal cord surface, but follows instead a rather tortuous course over the disrupted glia limitans and the intraspinal Schwann cells. Although the mode of initial occurrence of Schwann cells within the spinal cord is not yet understood, the data indicate that the astrocyte population is involved in that process, as well as in limiting the further development of Schwann cells within the substance of the spinal cord. (Auth.)

  12. Spinal cord distribution of sup 3 H-morphine after intrathecal administration: Relationship to analgesia

    Energy Technology Data Exchange (ETDEWEB)

    Nishio, Y.; Sinatra, R.S.; Kitahata, L.M.; Collins, J.G. (Yale Univ. School of Medicine, CT (USA))

    1989-09-01

    The distribution of intrathecally administered {sup 3}H-morphine was examined by light microscopic autoradiography in rat spinal cord and temporal changes in silver grain localization were compared with results obtained from simultaneous measurements of analgesia. After tissue processing, radio-activity was found to have penetrated in superficial as well as in deeper layers (Rexed lamina V, VII, and X) of rat spinal cord within minutes after application. Silver grain density reached maximal values at 30 min in every region of cord studied. Radioactivity decreased rapidly between 30 min and 2 hr and then more slowly over the next 24 hr. In rats tested for responses to a thermal stimulus (tail flick test), intrathecal administration of morphine (5 and 15 micrograms) resulted in significant dose dependent analgesia that peaked at 30 min and lasted up to 5 hr (P less than 0.5). There was a close relationship between analgesia and spinal cord silver grain density during the first 4 hr of the study. It is postulated that the onset of spinal morphine analgesia depends on appearance of molecules at sites of action followed by the activation of anti-nociceptive mechanisms.

  13. Characterization of a cerebral palsy-like model in rats: Analysis of gait pattern and of brain and spinal cord motor areas.

    Science.gov (United States)

    Dos Santos, Adriana Souza; de Almeida, Wellington; Popik, Bruno; Sbardelotto, Bruno Marques; Torrejais, Márcia Miranda; de Souza, Marcelo Alves; Centenaro, Lígia Aline

    2017-08-01

    In an attempt to propose an animal model that reproduces in rats the phenotype of cerebral palsy, this study evaluated the effects of maternal exposure to bacterial endotoxin associated with perinatal asphyxia and sensorimotor restriction on gait pattern, brain and spinal cord morphology. Two experimental groups were used: Control Group (CTG) - offspring of rats injected with saline during pregnancy and Cerebral Palsy Group (CPG) - offspring of rats injected with lipopolysaccharide during pregnancy, submitted to perinatal asphyxia and sensorimotor restriction for 30days. At 29days of age, the CPG exhibited coordination between limbs, weight-supported dorsal steps or weight-supported plantar steps with paw rotation. At 45days of age, CPG exhibited plantar stepping with the paw rotated in the balance phase. An increase in the number of glial cells in the primary somatosensory cortex and dorsal striatum were observed in the CPG, but the corpus callosum thickness and cross-sectional area of lateral ventricle were similar between studied groups. No changes were found in the number of motoneurons, glial cells and soma area of the motoneurons in the ventral horn of spinal cord. The combination of insults in the pre, peri and postnatal periods produced changes in hindlimbs gait pattern of animals similar to those observed in diplegic patients, but motor impairments were attenuated over time. Besides, the greater number of glial cells observed seems to be related to the formation of a glial scar in important sensorimotor brain areas. Copyright © 2017 ISDN. Published by Elsevier Ltd. All rights reserved.

  14. Electrophysiological evidence for voltage-gated calcium channel 2 (Cav2) modulation of mechano- and thermosensitive spinal neuronal responses in a rat model of osteoarthritis.

    Science.gov (United States)

    Rahman, W; Patel, R; Dickenson, A H

    2015-10-01

    Osteoarthritis (OA) remains one of the greatest healthcare burdens in western society, with chronic debilitating pain-dominating clinical presentation yet therapeutic strategies are inadequate in many patients. Development of better analgesics is contingent on improved understanding of the molecular mechanisms mediating OA pain. Voltage-gated calcium channels 2.2 (Cav2.2) play a critical role in spinal nociceptive transmission, therefore blocking Cav2.2 activity represents an attractive opportunity for OA pain treatment, but the only available licensed Cav2.2 antagonist ziconitide (PrilatTM) is of limited use. TROX-1 is an orally available, use dependent and state-selective Cav2 antagonist, exerting its analgesic effect primarily via Cav2.2 blockade, with an improved therapeutic window compared with ziconitide. Using a rat model of monosodium iodoacetate (MIA), 2 mg, induced OA we used in vivo electrophysiology to assess the effects of spinal or systemic administration of TROX-1 on the evoked activity of wide dynamic range spinal dorsal horn neurons in response to electrical, natural mechanical (dynamic brush and von Frey 2, 8, 26 and 6 g) and thermal (40, 45 and 45 °C) stimuli applied to the peripheral receptive field. MIA injection into the knee joint resulted in mechanical hypersensitivity of the ipsilateral hind paw and weight-bearing asymmetry. Spinal administration of TROX-1 (0.1 and 1 μg/50 μl) produced a significant dose-related inhibition of dynamic brush, mechanical (von Frey filament (vF) 8, 26 and 60 g) and noxious thermal-(45 and 48 °C) evoked neuronal responses in MIA rats only. Systemic administration of TROX-1 produced a significant inhibition of the mechanical-(vF 8, 26 and 60 g) evoked neuronal responses in MIA rats. TROX-1 did not produce any significant effect on any neuronal measure in Sham controls. Our in vivo electrophysiological results demonstrate a pathological state-dependent effect of TROX-1, which suggests an increased functional

  15. Fungiform Taste Bud Degeneration in C57BL/6J Mice Following Chorda-Lingual Nerve Transection

    OpenAIRE

    Guagliardo, Nick A.; Hill, David L.

    2007-01-01

    Taste buds are dependent on innervation for normal morphology and function. Fungiform taste bud degeneration after chorda tympani nerve injury has been well documented in rats, hamsters, and gerbils. The current study examines fungiform taste bud distribution and structure in adult C57BL/6J mice from both intact taste systems and after unilateral chorda-lingual nerve transection. Fungiform taste buds were visualized and measured with the aid of cytokeratin 8. In control mice, taste buds were ...

  16. Olfactory neural cells: an untapped diagnostic and therapeutic resource. The 2000 Ogura Lecture.

    Science.gov (United States)

    Perry, Christopher; Mackay-Sim, Alan; Feron, Francois; McGrath, John

    2002-04-01

    This is an overview of the cellular biology of upper nasal mucosal cells that have special characteristics that enable them to be used to diagnose and study congenital neurological diseases and to aid neural repair. After mapping the distribution of neural cells in the upper nose, the authors' investigations moved to the use of olfactory neurones to diagnose neurological diseases of development, especially schizophrenia. Olfactory-ensheathing glial cells (OEGs) from the cranial cavity promote axonal penetration of the central nervous system and aid spinal cord repair in rodents. The authors sought to isolate these cells from the more accessible upper nasal cavity in rats and in humans and prove they could likewise promote neural regeneration, making these cells suitable for human spinal repair investigations. The schizophrenia-diagnosis aspect of the study entailed the biopsy of the olfactory areas of 10 schizophrenic patients and 10 control subjects. The tissue samples were sliced and grown in culture medium. The ease of cell attachment to fibronectin (artificial epithelial basement membrane), as well as the mitotic and apoptotic indices, was studied in the presence and absence of dopamine in those cell cultures. The neural repair part of the study entailed a harvesting and insertion of first rat olfactory lamina propria rich in OEGs between cut ends of the spinal cords and then later the microinjection of an OEG-rich suspension into rat spinal cords previously transected by open laminectomy. Further studies were done in which OEG insertion was performed up to 1 month after rat cord transection and also in monkeys. Schizophrenic patients' olfactory tissues do not easily attach to basement membrane compared with control subjects, adding evidence to the theory that cell wall anomalies are part of the schizophrenic "lesion" of neurones. Schizophrenic patient cell cultures had higher mitotic and apoptotic indices compared with control subjects. The addition of

  17. Use of paper for treatment of a peripheral nerve trauma in the rat.

    Science.gov (United States)

    Kauppila, T; Jyväsjärvi, E; Murtomäki, S; Mansikka, H; Pertovaara, A; Virtanen, I; Liesi, P

    1997-09-29

    Reinnervation of the muscles and skin in the rat hindpaw was studied after transection and attempted repair of the sciatic nerve. Reconnecting the transected nerve with lens cleaning paper was at least as effective in rejoining the transected nerves as traditional microsurgical neurorraphy. Paper induced a slightly bigger fibrous scar around the site of transection than neurorraphy, but this scar did not cause impairment of functional recovery or excessive signs of neuropathic pain. We conclude that a paper graft can be used in restorative surgery of severed peripheral nerves.

  18. Key role for spinal dorsal horn microglial kinin B1 receptor in early diabetic pain neuropathy

    Directory of Open Access Journals (Sweden)

    Couture Réjean

    2010-06-01

    Full Text Available Abstract Background The pro-nociceptive kinin B1 receptor (B1R is upregulated on sensory C-fibres, astrocytes and microglia in the spinal cord of streptozotocin (STZ-diabetic rat. This study aims at defining the role of microglial kinin B1R in diabetic pain neuropathy. Methods Sprague-Dawley rats were made diabetic with STZ (65 mg/kg, i.p., and 4 days later, two specific inhibitors of microglial cells (fluorocitrate, 1 nmol, i.t.; minocycline, 10 mg/kg, i.p. were administered to assess the impact on thermal hyperalgesia, allodynia and mRNA expression (qRT-PCR of B1R and pro-inflammatory markers. Spinal B1R binding sites ((125I-HPP-desArg10-Hoe 140 were also measured by quantitative autoradiography. Inhibition of microglia was confirmed by confocal microscopy with the specific marker Iba-1. Effects of intrathecal and/or systemic administration of B1R agonist (des-Arg9-BK and antagonists (SSR240612 and R-715 were measured on neuropathic pain manifestations. Results STZ-diabetic rats displayed significant tactile and cold allodynia compared with control rats. Intrathecal or peripheral blockade of B1R or inhibition of microglia reversed time-dependently tactile and cold allodynia in diabetic rats without affecting basal values in control rats. Microglia inhibition also abolished thermal hyperalgesia and the enhanced allodynia induced by intrathecal des-Arg9-BK without affecting hyperglycemia in STZ rats. The enhanced mRNA expression (B1R, IL-1β, TNF-α, TRPV1 and Iba-1 immunoreactivity in the STZ spinal cord were normalized by fluorocitrate or minocycline, yet B1R binding sites were reduced by 38%. Conclusion The upregulation of kinin B1R in spinal dorsal horn microglia by pro-inflammatory cytokines is proposed as a crucial mechanism in early pain neuropathy in STZ-diabetic rats.

  19. Restoring walking after spinal cord injury: operant conditioning of spinal reflexes can help.

    Science.gov (United States)

    Thompson, Aiko K; Wolpaw, Jonathan R

    2015-04-01

    People with incomplete spinal cord injury (SCI) frequently suffer motor disabilities due to spasticity and poor muscle control, even after conventional therapy. Abnormal spinal reflex activity often contributes to these problems. Operant conditioning of spinal reflexes, which can target plasticity to specific reflex pathways, can enhance recovery. In rats in which a right lateral column lesion had weakened right stance and produced an asymmetrical gait, up-conditioning of the right soleus H-reflex, which increased muscle spindle afferent excitation of soleus, strengthened right stance and eliminated the asymmetry. In people with hyperreflexia due to incomplete SCI, down-conditioning of the soleus H-reflex improved walking speed and symmetry. Furthermore, modulation of electromyographic activity during walking improved bilaterally, indicating that a protocol that targets plasticity to a specific pathway can trigger widespread plasticity that improves recovery far beyond that attributable to the change in the targeted pathway. These improvements were apparent to people in their daily lives. They reported walking faster and farther, and noted less spasticity and better balance. Operant conditioning protocols could be developed to modify other spinal reflexes or corticospinal connections; and could be combined with other therapies to enhance recovery in people with SCI or other neuromuscular disorders. © The Author(s) 2014.

  20. Clinical and magnetic resonance imaging correlation in acute spinal cord injury

    Energy Technology Data Exchange (ETDEWEB)

    Ramon, S.; Dominguez, R.; Ramirez, L.; Garcia Fernandez, L. [University Hospital Vall d`Hebron, Barcelona (Spain)

    1998-04-01

    The aim of this study was to correlate traumatic spinal cord injury (SCI) patients`outcome with magnetic resonance imaging (MRI) performed within the first 15 days following trauma. We retrospectively analyzed 55 SCI patients. Early functional prognosis may be established on the basis of clinical presentation of SCI and associated MRI. Cord hemorrhage and transection are irreversible, while edema has a potential for neurological recovery. Cord contusion tends to be associated with an incomplete SCI, unlike the compression pattern, in which the prognosis depends on the degree of the initial neurological damage. (author)

  1. Clinical and magnetic resonance imaging correlation in acute spinal cord injury

    International Nuclear Information System (INIS)

    Ramon, S.; Dominguez, R.; Ramirez, L.; Garcia Fernandez, L.

    1998-01-01

    The aim of this study was to correlate traumatic spinal cord injury (SCI) patients'outcome with magnetic resonance imaging (MRI) performed within the first 15 days following trauma. We retrospectively analyzed 55 SCI patients. Early functional prognosis may be established on the basis of clinical presentation of SCI and associated MRI. Cord hemorrhage and transection are irreversible, while edema has a potential for neurological recovery. Cord contusion tends to be associated with an incomplete SCI, unlike the compression pattern, in which the prognosis depends on the degree of the initial neurological damage. (author)

  2. MRI in the early stage of spinal cord injury: does it have clinical relevance? An experimental study

    International Nuclear Information System (INIS)

    Hannmann, T.T.; Freund, M.

    2007-01-01

    Purpose: An experimental technique for producing a ventral spinal trauma which imitates a slipped intervertebral disc or a fractured vertebra was evaluated using magnetic resonance imaging and histology. The results were evaluated with respect to their clinical importance. Materials and Methods: A total of 69 Wistar rats were used for this study. An inflatable angioplasty balloon device was placed dorsally or ventrally to the spinal cord in order to produce a spinal trauma. 30 rats were used to compare neurological pathologies between ventral and dorsal trauma. 30 animals underwent graded ventral spinal cord compression. Magnetic resonance imaging was performed and the results were compared to histology. Results: Using this technique, the balloon device can be placed ventrally to the spinal cord. The compression time had a direct effect on changes on magnetic resonance images and edema in histology, but a longer compression time did not produce increased bleeding. The T2-weighted MRI scans showed hyperintense changes immediately after spinal compression. Therefore, they are the appropriate way for diagnosing acute spinal injuries. Although the T1-weighted MRI scans did not change after spinal compression, they are important for diagnosing epidural hematomas. (orig.)

  3. Action of hypo- and hyperthyroidism on the postmortal decay of acetylcholine in the rat spinal cord.

    Science.gov (United States)

    Molinengo, L; Cassone, M C; Oggero, L

    1986-01-01

    The postmortal decay of acetylcholine (Ach) was studied in the cervical spinal cords of rats in conditions of hyper- and hypothyroidism. The modifications of thyroid function were achieved either by chronic (20-25 days) administration of l-thyroxine or of methimazole. The basal metabolic rate and plasma T4 concentration were measured to estimate the degree of modification of thyroid activity. The levels of Ach at the start of postmortal decay were evaluated by extrapolation to time 0 of the curves of the postmortal decay of Ach and the levels of Ach at stabilization were estimated from the means of all the measures made at lapses of time over 100-200 s from death. In low and high hypothyroidism a reduction (53 and 72%, respectively) of the levels of Ach was found. A similar effect was found in hyperthyroidism: a 73 and 63% reduction of Ach levels in high and low hyperthyroidism, respectively. The level of Ach at stabilization of the postmortal decay increased only in hyperthyroid rats. The process by which Ach is destroyed is not modified in hyper- or hypothyroidism.

  4. Microarray analysis of expression of cell death-associated genes in rat spinal cord cells exposed to cyclic tensile stresses in vitro

    Directory of Open Access Journals (Sweden)

    Roberts Sally

    2010-07-01

    Full Text Available Abstract Background The application of mechanical insults to the spinal cord results in profound cellular and molecular changes, including the induction of neuronal cell death and altered gene expression profiles. Previous studies have described alterations in gene expression following spinal cord injury, but the specificity of this response to mechanical stimuli is difficult to investigate in vivo. Therefore, we have investigated the effect of cyclic tensile stresses on cultured spinal cord cells from E15 Sprague-Dawley rats, using the FX3000® Flexercell Strain Unit. We examined cell morphology and viability over a 72 hour time course. Microarray analysis of gene expression was performed using the Affymetrix GeneChip System®, where categorization of identified genes was performed using the Gene Ontology (GO and Kyoto Encyclopedia of Genes and Genomes (KEGG systems. Changes in expression of 12 genes were validated with quantitative real-time reverse transcription polymerase chain reaction (RT-PCR. Results The application of cyclic tensile stress reduced the viability of cultured spinal cord cells significantly in a dose- and time-dependent manner. Increasing either the strain or the strain rate independently was associated with significant decreases in spinal cord cell survival. There was no clear evidence of additive effects of strain level with strain rate. GO analysis identified 44 candidate genes which were significantly related to "apoptosis" and 17 genes related to "response to stimulus". KEGG analysis identified changes in the expression levels of 12 genes of the mitogen-activated protein kinase (MAPK signaling pathway, which were confirmed to be upregulated by RT-PCR analysis. Conclusions We have demonstrated that spinal cord cells undergo cell death in response to cyclic tensile stresses, which were dose- and time-dependent. In addition, we have identified the up regulation of various genes, in particular of the MAPK pathway, which

  5. Salvianolic acid B protects the myelin sheath around injured spinal cord axons

    Directory of Open Access Journals (Sweden)

    Zhe Zhu

    2016-01-01

    Full Text Available Salvianolic acid B, an active pharmaceutical compound present in Salvia miltiorrhiza, exerts a neuroprotective effect in animal models of brain and spinal cord injury. Salvianolic acid B can promote recovery of neurological function; however, its protective effect on the myelin sheath after spinal cord injury remains poorly understood. Thus, in this study, in vitro tests showed that salvianolic acid B contributed to oligodendrocyte precursor cell differentiation, and the most effective dose was 20 μg/mL. For in vivo investigation, rats with spinal cord injury were intraperitoneally injected with 20 mg/kg salvianolic acid B for 8 weeks. The amount of myelin sheath and the number of regenerating axons increased, neurological function recovered, and caspase-3 expression was decreased in the spinal cord of salvianolic acid B-treated animals compared with untreated control rats. These results indicate that salvianolic acid B can protect axons and the myelin sheath, and can promote the recovery of neurological function. Its mechanism of action is likely to be associated with inhibiting apoptosis and promoting the differentiation and maturation of oligodendrocyte precursor cells.

  6. Effect of Fenugreek Seed Extract (Trigonella Foenum-graecum on Brachial Region of the Spinal Cord of an 18-Day Old Rat Offspring with Diabetes

    Directory of Open Access Journals (Sweden)

    Z Khaksar

    2013-08-01

    Full Text Available Abstract Background & aim: Diabetes can affect the spinal cord, an important part of the central nervous system. Fenugreek seed has been suggested to have potential antidiabetic effects. This study was conducted to assess the effects of Fenugreek seed extract (trigonella foenum-graecum on fetal spinal cord structure, specifically in the brachial enlargement cord in an 18-day old fetus of diabetic mothers treated with extracts in comparison with the control groups' mothers. Methods: In the present cross-sectional study, sixteen healthy female rats were randomly divided into four equal groups: Healthy control, Diabetes control, Fenugreek control, Fenugreek treatment. Diabetes was induced by intraperitoneal injection of Streptozotcin (50 mg/kg. All four groups became pregnant by natural mating. After formation of the nervous system, two fetuses from each group were expelled by cesarean after performing anesthesia on the animals on 18th day of pregnancy furthermore their brachial enlargement spinal cord samples were taken. Finally, the tissue sections were prepared by routine procedures and diverse histological parameters were examined. The collected data were analyzed by one-way ANOVA. Results: results showed that fetal body weight on the diabetic control group was significantly higher compared to the other groups (P≤ 0/05. Moreover, significant reductions in the transvers and vertical diameters in central channel of the spinal cord and as well in the number of neurons of the spinal cord gray matter in the diabetic control groups in comparison with the other groups were observed (P≤0/05. Conclusion: The hyperglycemic effect of maternal diabetes during fetal period causes abnormalities, especially in the brachial enlargement of spinal cord, including changes in the spinal cord and neurons number in the gray matter. Disorders occurring in the prenatal remains and may perhaps cause lack of ability to perform certain physical activities. Key words

  7. 9 Expression in Rats with Acute Spinal Cord Injury by Cantharidin

    African Journals Online (AJOL)

    Purpose: To demonstrate the anti-apoptotic effects of cantharidin in mice with acute spinal cord injury. (ASCI). Methods: In total, 30 ... were obtained from the Shanghai Laboratory .... prevent the development of secondary spinal injury in mice ...

  8. [Effect of electric acupuncture on the expression of NgR in the cerebral cortex, the medulla oblongata, and the spinal cord of hypertensive rats after cerebral infarction].

    Science.gov (United States)

    Tan, Feng; Chen, Jie; Liang, Yan-Gui; Li, Yan-Ping; Wang, Xue-Wen; Meng, Di; Cheng, Nan-Fang

    2014-03-01

    To observe the effect of electric acupuncture (EA) on the Nogo receptors (NgR) protein expression in the cerebral cortex, the medulla oblongata, and the spinal cord of cerebral ischemia-reperfusion (I/R) stroke-prone renovascular hypertensive rats (RHRSP) with middle cerebral artery occlusion (MCAO) at different time points, and to investigate its possible mechanisms for remote-organ injury of acute cerebral infarction (ACI). The RHRSP model was duplicated in male SPF grade SD rats. Then the MCAO model was prepared by a thread stringing method. Rats were divided into the hypertension group,the sham-operation group, the MCAO group, the EA group, and the sham-acupoint group by random number table method, 60 in each group. Rats in the MCAO group only received MCAO reperfusion treatment. Those in the sham-operation group only received surgical trauma. Baihui (DU20) and Dazhui (DU14) were needled in the EA group, once daily for a total of 28 days.The needles were acupunctured at the skin one cun distant from Baihui (DU20) and Dazhui (DU14) and then the same EA treatment was performed in the sham-acupoint group. At day 1, 7, 14, 28 after treatment, six rats were executed from each group, and their right cortex and medulla oblongata, and the left spinal cord were isolated. The infarct volume was detected by Nissl's staining method. The NgR expression was detect by Western blot. (1) In the cortex area: compared with the hypertension group,the NgR expression increased in the MCAO group at day 1,7,14,and 28 after MCAO (P 0.05). At day 7, 14,and 28 after MCAO, the NgR expression decreased in the EA group (P 0.05). (2) In the medulla oblongata area: compared with the hypertension group, the NgR expression was equivalent in the sham-operation group. the MCAO group,the EA group, and the sham-acupoint group at 1 day after MCAO (P > 0.05). At day 7.14, and 28 after MCAO, the NgR expression increased in the MCAO group (P 0.05). (3) In the spinal cord area: compared with the

  9. Involvement of ERK phosphorylation of trigeminal spinal subnucleus caudalis neurons in thermal hypersensitivity in rats with infraorbital nerve injury.

    Directory of Open Access Journals (Sweden)

    Ikuko Suzuki

    Full Text Available To evaluate the involvement of the mitogen-activated protein kinase (MAPK cascade in orofacial neuropathic pain mechanisms, this study assessed nocifensive behavior evoked by mechanical or thermal stimulation of the whisker pad skin, phosphorylation of extracellular signal-regulated kinase (ERK in trigeminal spinal subnucleus caudalis (Vc neurons, and Vc neuronal responses to mechanical or thermal stimulation of the whisker pad skin in rats with the chronic constriction nerve injury of the infraorbital nerve (ION-CCI. The mechanical and thermal nocifensive behavior was significantly enhanced on the side ipsilateral to the ION-CCI compared to the contralateral whisker pad or sham rats. ION-CCI rats had an increased number of phosphorylated ERK immunoreactive (pERK-IR cells which also manifested NeuN-IR but not GFAP-IR and Iba1-IR, and were significantly more in ION-CCI rats compared with sham rats following noxious but not non-noxious mechanical stimulation. After intrathecal administration of the MEK1 inhibitor PD98059 in ION-CCI rats, the number of pERK-IR cells after noxious stimulation and the enhanced thermal nocifensive behavior but not the mechanical nocifensive behavior were significantly reduced in ION-CCI rats. The enhanced background activities, afterdischarges and responses of wide dynamic range neurons to noxious mechanical and thermal stimulation in ION-CCI rats were significantly depressed following i.t. administration of PD98059, whereas responses to non-noxious mechanical and thermal stimulation were not altered. The present findings suggest that pERK-IR neurons in the Vc play a pivotal role in the development of thermal hypersensitivity in the face following trigeminal nerve injury.

  10. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy—Effects of Therapeutic Alginate Implant in Rat Models

    Science.gov (United States)

    Uckermann, Ortrud; Sitoci-Ficici, Kerim H.; Later, Robert; Beiermeister, Rudolf; Doberenz, Falko; Gelinsky, Michael; Leipnitz, Elke; Schackert, Gabriele; Koch, Edmund; Sablinskas, Valdas; Steiner, Gerald; Kirsch, Matthias

    2015-01-01

    Spinal cord injury (SCI) induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR) spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28). Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies. PMID:26559822

  11. Biochemical Monitoring of Spinal Cord Injury by FT-IR Spectroscopy--Effects of Therapeutic Alginate Implant in Rat Models.

    Directory of Open Access Journals (Sweden)

    Sandra Tamosaityte

    Full Text Available Spinal cord injury (SCI induces complex biochemical changes, which result in inhibition of nervous tissue regeneration abilities. In this study, Fourier-transform infrared (FT-IR spectroscopy was applied to assess the outcomes of implants made of a novel type of non-functionalized soft calcium alginate hydrogel in a rat model of spinal cord hemisection (n = 28. Using FT-IR spectroscopic imaging, we evaluated the stability of the implants and the effects on morphology and biochemistry of the injured tissue one and six months after injury. A semi-quantitative evaluation of the distribution of lipids and collagen showed that alginate significantly reduced injury-induced demyelination of the contralateral white matter and fibrotic scarring in the chronic state after SCI. The spectral information enabled to detect and localize the alginate hydrogel at the lesion site and proved its long-term persistence in vivo. These findings demonstrate a positive impact of alginate hydrogel on recovery after SCI and prove FT-IR spectroscopic imaging as alternative method to evaluate and optimize future SCI repair strategies.

  12. Correction of bias in belt transect studies of immotile objects

    Science.gov (United States)

    Anderson, D.R.; Pospahala, R.S.

    1970-01-01

    Unless a correction is made, population estimates derived from a sample of belt transects will be biased if a fraction of, the individuals on the sample transects are not counted. An approach, useful for correcting this bias when sampling immotile populations using transects of a fixed width, is presented. The method assumes that a searcher's ability to find objects near the center of the transect is nearly perfect. The method utilizes a mathematical equation, estimated from the data, to represent the searcher's inability to find all objects at increasing distances from the center of the transect. An example of the analysis of data, formation of the equation, and application is presented using waterfowl nesting data collected in Colorado.

  13. Neurogenic period of ascending tract neurons in the upper lumbar spinal cord of the rat

    International Nuclear Information System (INIS)

    Nandi, K.N.; Beal, J.A.; Knight, D.S.

    1990-01-01

    Although the neurogenic period for neurons in the lumbar spinal cord has been clearly established (Days 12 through 16 of gestation), it is not known when the neurogenesis of ascending tract neurons is completed within this period. The purpose of the present study was to determine the duration of the neurogenic period for projection neurons of the ascending tracts. To label neurons undergoing mitosis during this period, tritiated thymidine was administered to fetal rats on Embryonic (E) Days E13 through E16 of gestation. Ascending tract neurons of the lumbar cord were later (Postnatal Days 40-50) labeled in each animal with a retrograde tracer, Fluoro-Gold, applied at the site of a hemisection at spinal cord segment C3. Ascending tract neurons which were undergoing mitosis in the upper lumbar cord were double labeled, i.e., labeled with both tritiated thymidine and Fluoro-Gold. On Day E13, 89-92% of the ascending tract neurons were double labeled; on Day E14, 35-37%; and on Day E15, 1-4%. Results showed, then, that some ascending tract neurons were double labeled through Day E15 and were, therefore, proliferating in the final one-third of the neurogenic period. Ascending tract neurons proliferating on Day E15 were confined to laminae III, IV, V, and X and the nucleus dorsalis. Long tract neurons in the superficial dorsal horn (laminae I and II), on the other hand, were found to have completed neurogenesis on Day E14 of gestation. Results of the present study show that spinal neurogenesis of ascending projection neurons continues throughout most of the neurogenic period and does not completely follow the well-established ventral to dorsal gradient

  14. Age-Related Features of Reactive Catecholamine Shifts in the Spinal Cord in Acute Somatic Pain: Experimental Study

    Directory of Open Access Journals (Sweden)

    V. G. Ovsyannikov

    2007-01-01

    Full Text Available Objective: to study the age-related features of an adrenergic response of the central nervous system to acute somatic pain (ASP.Subjects and methods: The spinal cord (SC levels of adrenaline (A, noradrenaline (NA, and dopamine (DA were studied in albino male rats of five age groups: 1 neonatal (2—4-day rats; 2 17—18-day rats that began to see; 3 monthly rats; 4 sexually mature (3—4 month ones; and 5 old ones aged over 2 years. ASP was reproduced by electrodermal stimulation of the rat tail; the levels of catecholamines (CA were measured by spectrofluorimetric microassay.Results. During postnatal ontogenesis, the rats were found to have a phase pattern of physiological changes in the spinal concentrations of CA: a decrease in their high neonatal levels (due to DA by the time the animals began to see; their progressive increase by prepuberty (due to NA and in sexually maturity (due to A and DA, and a reduction in all CA fractions in old rats. ASP was attended by a rise in the SC concentration of CA in the neonatal animals and by clearly-cut reactive shifts in all fractions in the old ones. With A and DA increases, the SC concentrations of NA halved in the rats that began to see and had ASP; the amount of CA remained unchanged as compared with the controls. In prepubertal and sexually mature male rats, there was a reduction in the spinal CA pool, but due to different components: to A and NA in 35-day rats and to A and DA in 3-month ones.Conclusion. Age-related changes in the pattern of a spinal CA response in rats with ASP show a ontogenetic trend in the development of adrenal responsiveness from the immature generalized forms of an early postnatal period to the definitive differentiated economic reactions of the hypo-to-normergic type and then to the hyperergic destructive reactions of old age. 

  15. Spinal CPEB-mtROS-CBP signaling pathway contributes to perineural HIV gp120 with ddC-related neuropathic pain in rats.

    Science.gov (United States)

    Iida, Takafumi; Yi, Hyun; Liu, Shue; Huang, Wan; Kanda, Hirotsugu; Lubarsky, David A; Hao, Shuanglin

    2016-07-01

    Human immunodeficiency virus (HIV) patients treated with nucleoside reverse transcriptase inhibitors (NRTIs), have been known to develop neuropathic pain. While there has been a major shift away from some neurotoxic NRTIs in current antiretroviral therapy, a large number of HIV patients alive today have previously received them, and many have developed painful peripheral neuropathy. The exact mechanisms by which HIV with NRTIs contribute to the development of neuropathic pain are not known. Previous studies suggest that cytoplasmic polyadenylation element-binding protein (CPEB), reactive oxygen species (ROS), and cAMP-response element-binding protein (CREB)-binding protein (CBP), are involved in the neuroimmunological diseases including inflammatory/neuropathic pain. In this study, we investigated the role of CPEB, mitochondrial ROS (mtROS), or CBP in neuropathic pain induced by HIV envelope protein gp120 combined with antiretroviral drug. The application of recombinant gp120 into the sciatic nerve plus systemic ddC (one of NRTIs) induced mechanical allodynia. Knockdown of CPEB or CBP using intrathecal antisense oligodeoxynucleotide (AS-ODN) reduced mechanical allodynia. Intrathecal mitochondrial superoxide scavenger mito-tempol (Mito-T) increased mechanical withdrawal threshold. Knockdown of CPEB using intrathecal AS-ODN, reduced the up-regulated mitochondrial superoxide in the spinal dorsal horn in rats with gp120 combined with ddC. Intrathecal Mito-T lowered the increased expression of CBP in the spinal dorsal horn. Immunostaining studies showed that neuronal CPEB positive cells were co-localized with MitoSox positive profiles, and that MitoSox positive profiles were co-localized with neuronal CBP. Our studies suggest that neuronal CPEB-mtROS-CBP pathway in the spinal dorsal horn, plays an important role in the gp120/ddC-induced neuropathic pain in rats. Copyright © 2016. Published by Elsevier Inc.

  16. Modelling the endothelial blood-CNS barriers: a method for the production of robust in vitro models of the rat blood-brain barrier and blood-spinal cord barrier.

    Science.gov (United States)

    Watson, P Marc D; Paterson, Judy C; Thom, George; Ginman, Ulrika; Lundquist, Stefan; Webster, Carl I

    2013-06-18

    Modelling the blood-CNS barriers of the brain and spinal cord in vitro continues to provide a considerable challenge for research studying the passage of large and small molecules in and out of the central nervous system, both within the context of basic biology and for pharmaceutical drug discovery. Although there has been considerable success over the previous two decades in establishing useful in vitro primary endothelial cell cultures from the blood-CNS barriers, no model fully mimics the high electrical resistance, low paracellular permeability and selective influx/efflux characteristics of the in vivo situation. Furthermore, such primary-derived cultures are typically labour-intensive and generate low yields of cells, limiting scope for experimental work. We thus aimed to establish protocols for the high yield isolation and culture of endothelial cells from both rat brain and spinal cord. Our aim was to optimise in vitro conditions for inducing phenotypic characteristics in these cells that were reminiscent of the in vivo situation, such that they developed into tight endothelial barriers suitable for performing investigative biology and permeability studies. Brain and spinal cord tissue was taken from the same rats and used to specifically isolate endothelial cells to reconstitute as in vitro blood-CNS barrier models. Isolated endothelial cells were cultured to expand the cellular yield and then passaged onto cell culture inserts for further investigation. Cell culture conditions were optimised using commercially available reagents and the resulting barrier-forming endothelial monolayers were characterised by functional permeability experiments and in vitro phenotyping by immunocytochemistry and western blotting. Using a combination of modified handling techniques and cell culture conditions, we have established and optimised a protocol for the in vitro culture of brain and, for the first time in rat, spinal cord endothelial cells. High yields of both CNS

  17. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions.

    Science.gov (United States)

    Song, Zhiyang; Viisanen, Hanna; Meyerson, Björn A; Pertovaara, Antti; Linderoth, Bengt

    2014-04-01

    The aim was to compare the effects of high-frequency spinal cord stimulation (HF-SCS) at subparesthetic intensity with conventional SCS in rat models of different types of pain. In addition, microrecordings of afferent activity in the dorsal columns during both types of SCS were performed to elucidate their mode of action. Miniature SCS electrodes were implanted in all rats. One group was submitted to the spared nerve injury procedure (SNI) and another to inflammatory pain after carrageenan injection into a hind paw. All animals were tested for hypersensitivity to normally innocuous tactile and thermal stimuli. One group of normal healthy rats was submitted to acute nociceptive (pinch, heat) pain. Microrecording of afferent activity in the gracile nucleus (GN) was performed in a group of nerve-lesioned rats responding to conventional SCS. HF-SCS at 500, 1,000, or 10,000 Hz at subparesthetic amplitudes produced similar reductions in hypersensitivity due to nerve lesion as did conventional SCS at 50 Hz. HF-SCS showed no effect on thermal pain. A trial to rescue non-responders to conventional SCS using HF-SCS was not successful. There were no effects either of conventional or of HF-SCS on acute or inflammatory pain. Conventional SCS produced massive activation in the GN but no activation during HF-SCS, though normal peripherally evoked afferent activity remained. Conventional SCS proved equally effective to HF-SCS in various pain models. As no activity is conveyed rostrally in subparesthetic HF-SCS, we hypothesize that its mechanisms of action are primarily segmental. © 2014 International Neuromodulation Society.

  18. Dose-dependent opposite effects of gabapentin on the depressive action of morphine on a C-fibre reflex in the rat.

    Science.gov (United States)

    Pollin, Bernard; Roy-Ledoux, Randy; le Bars, Daniel; Adam, Frédéric

    2011-09-01

    Gabapentin is a structural analogue of gamma-amino-butyric acid with anticonvulsant activity. Recently, indications for its use were extended to the management of acute pain in the postoperative period. The effects of pre-administration of gabapentin on the depressive action of intravenous morphine were studied on the C-fibre reflex elicited by a wide range of stimulus intensities. The reflex was elicited by electrical stimulation of the sural nerve and recorded from the ipsilateral biceps femoris muscle in halothane anaesthetized rats with either an intact neuraxis or a brainstem previously transected at the level of the obex. As previously reported, 6 mg/kg intravenous morphine both increased the threshold and decreased the slope of the stimulus-response recruitment curve. The C-fibre reflex was not modified following intravenous gabapentin. Gabapentin pre-treatment at lower doses (0.01-7.5 mg/kg) not only antagonized the depressive effect of morphine, but caused facilitation of the reflex. At higher doses (10-50 mg/kg), gabapentin pre-treatment potentiated the depressive effect of morphine. In obex-transected rats, the facilitation of the C-fibre reflex, seen following 1 mg/kg gabapentin and 6 mg/kg morphine, disappeared and was replaced by a strong reinforcement of the depressive effect of morphine. It is concluded that a strong synergy between the effects of gabapentin and morphine can be seen at the spinal level. However, radically opposite effects with supraspinal origins thwart this mechanism. From the clinical standpoint, these results incite cautiousness in the use of combinations of gabapentin and opioids. Copyright © 2011. Published by Elsevier Ltd.

  19. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni

    Directory of Open Access Journals (Sweden)

    Partata W.A.

    1999-01-01

    Full Text Available Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.

  20. Axotomy increases NADPH-diaphorase activity in the dorsal root ganglia and lumbar spinal cord of the turtle Trachemys dorbigni.

    Science.gov (United States)

    Partata, W A; Krepsky, A M; Marques, M; Achaval, M

    1999-04-01

    Seven days after transection of the sciatic nerve NADPH-diaphorase activity increased in the small and medium neurons of the dorsal root ganglia of the turtle. However, this increase was observed only in medium neurons for up to 90 days. At this time a bilateral increase of NADPH-diaphorase staining was observed in all areas and neuronal types of the dorsal horn, and in positive motoneurons in the lumbar spinal cord, ipsilateral to the lesion. A similar increase was also demonstrable in spinal glial and endothelial cells. These findings are discussed in relation to the role of nitric oxide in hyperalgesia and neuronal regeneration or degeneration.